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Abstract

The motivation of this work is to use statistical signal processing to help to separate mixtures of marine mammal
vocalizations, in particular sperm whale click trains. It is observed that clicks from a single whale are spaced at
regular intervals which we exploit to do the separation.

To begin, we consider an idealized problem: each source k ∈ {1, 2, . . . ,K} emits at impulses at iid intervals
according to some distribution Tk. That is, the impulse times for each source constitute a renewal process. The
Tk induce a likelihood function for impulse times given some assignment. We present an algorithm inspired by
the Viterbi algorithm to give assignments that maximizes the likelihood. Additionally, we provide more compu-
tationally feasible approximations of this algorithm. Under the assumption that Tk are Gaussians truncated at 0,
we develop a lower bound on the classification error rate. We verify the bound through simulations and show that
cv = σ/µ is directly proportional to the error rate. That is, if known, cv can be used to tell whether or not separation
based on timing only is viable.

Additionally, we provide methods to estimate the parameters of Tk using alternating maximization (AM) and
the expectation maximization Viterbi algorithm (EMV). The solution space is not convex, so the outcome of AM or
EMV are sensitive to their initialization point. In this case, it means we need to provide timing parameters that are
at least in the neighborhood of the actual parameters for Tk. We tested a number of methods but found that with
δτ -histogram based methods we were able to approach the same classification error rates when the actual para-
meters were given. Armed with classification and parameter estimation for any given number of sources, we were
then able to use the minimum description length principle to determine the actual number of sources. We used
simulated data to verify that we can generally achieve low source number estimation error and low classification
error rates.

Next we attempted to use timing to help improve detection methods for impulses. Using a Bayesian framework
we came up with an objective function to maximize that consisted of the previous timing likelihood function and
a likelihood function based on the shapes of impulses, but it was impractical to actually optimize to determine
the detection times. We explored some feasibility approximations, but we still needed to assume too much to get
reasonable results. So detection using timing was abandoned. However, the concepts were used for classifica-
tion using timing information and impulse shape information. This is one way in which we begin to move away
from the idealized problem and towards the actual problem of separating sperm whale click trains. The shapes or
features of clicks have long been used for classification.

A sperm whale’s interclick interval (ICI) does not have a stationary Tk, but it can be approximated as stationary
over short periods of times. Over these short periods, the methods developed for the idealized problem can be
applied. To determine these short periods, we explored the use of the PRI map which is to the δτ -histogram as
spectrograms are to Fourier transforms. We propose a parameter estimation method for the map values and then
segment by grouping adjacent times with similar parameters together. We tested this on a recording of sperm
whale clicks and the initial results are promising. A pressing issue is the handling of missing clicks: a whale may
skip one or many clicks for various reasons or the detection method might miss certain clicks. We simulated
removal of clicks and compared our method with a sequential search method designed to handle missing clicks
and found that we met or exceeded its performance without any modifications. However, there is still room for
improvement. In total, we have provided a basis for the practical application, but it needs to be expanded upon.
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1
Introduction

Sounds are everywhere, from crickets chirping to airplanes flying overhead; if we listen to them carefully, they can
tell us a lot about the world we live in. For example, the vocalizations of marine mammals are an invaluable re-
source for those who wish to study them. Most marine mammals spend their lives far out of human sight, but not
out of the reach of our ears/hydrophones. Underwater, sound travels quite far, and depending on the conditions,
whale songs can be heard all the way on the other side of the world [1]. This makes marine mammals ideal candi-
dates for passive acoustic monitoring (PAM). In PAM, fixed or mobile hydrophones (e.g. anchored to the seafloor
or towed behind a boat) are used to record any sounds underwater over some duration of time (usually long peri-
ods). Though sometimes PAM of marine mammals is accompanied by visual observations, generally, what is being
recorded is unknown [2]. Thus the following is needed:

• Automatic detection: The recordings are usually long (possibly months) and mostly noise; it is infeasible to
listen to everything and manually mark the areas of interest (e.g. where there are vocalizations).

• Automatic classification: When we detect something, what is it? A ship? Whales? Wind or waves? Depending
on what it is, we can process it differently.

• Source separation: If there are multiple animals vocalizing at the same time, who said what? (see Figure
1.0.1)

– Density estimation: If there are multiple animals, how many of them are there?

– Localization: Where are the animals in relation to each other/the hydrophone?

Though each aspect is important, the focus of this paper is on source separation. There are many different types
of vocalizations marine mammals make, but we focus our efforts on separating a particular type– clicks. Clicks are
quasi-impulsive signals that are produced by odontocetes; they often occur in sequences called click trains during
which clicks are regularly spaced in time [3, 4]. That is, the time between successive clicks from a single animal,
called the inter-click-interval (ICI) among biologists, pulse repetition interval (PRI) among the ELINT community,
or interimpulse spacing here, is randomly distributed about some mean. Animals can and do vary their mean

1



CHAPTER 1. INTRODUCTION

impulse spacing over time, but a constant-mean can be a good approximation over short time periods. We will
exploit this fact to classify each click in a mixture1.

MIX UNMIX

source signals

observed signal

recovered signals

Figure 1.0.1: This is an illustration of the problem considered in this paper for two arbitrary sources. The original signals are

mixed when recorded by the sensor, and the goal is to recover the original input signals from the mixture using timing.

Specifically, we consider the following problem. A source k ∈ {1, . . . ,K} generates events at times τk,i ∈
[0, T ], where subscript k, i denotes the i-th event from the k-th source. The events could be transmission of pac-
kets, or emission of an impulsive signal. An observer is given the total set of event times {τk,i} without any labels.
Can the observer determine which event time belongs to which source solely from the timing information?

Though our main application is for marine mammals, this type of problem occurs in many other applications,
for example:

• Computer networks: Can the timing of packets reveal who transmitted it?

• Radar and sonar: Can the sources of radar pulses be identified only using each pulse’s time of arrival (TOA)?
(this is called deinterleaving [5, 6, 7, 8, 9])

• Heart beats: In a mixture of heartbeats, e.g. in fetal ECG [10], is it possible to say which heartbeat belongs to
the mother and which to each fetus (with multiple pregnancy) based solely on timing?

• Nervous system: In recordings of neural spike trains, can spike trains from different sources be separated
[11]?

In many of these applications, there are secondary characteristics that would allow separations of events/impulses.
However, we believe it is of value to understand the timing separation problem by itself as a fundamental problem.
This is a classical approach: to extract and understand a simple mathematical problem from a practical problem
(e.g. information theory [12]). Furthermore, there might be situations where we just have the timing information,
for example due to privacy/security. There might also be situations where it is unknown if a source has secondary
characteristics, in which case separating based on timing might make it easier to analyze common secondary
characteristics.

Several approaches appear in prior literature to separate marine mammal click trains from recordings on sin-
gle sensors. For example, [13] used click cross-correlation to establish relationships between clicks and to separate
click trains. The paper [14] separated sperm whale click trains based on correlation between clicks, click structure
detail (inter-pulse-intervals), and frequency characteristics (but ultimately relied on time delay estimates between
two hydrophones to separate click trains). [15] used a cluster analysis approach on features extracted from de-
tected clicks; [16] sequentially matched the frequency spectra of successive clicks; and [17] separated click trains
based on spectral dissimilarity. These methods rely on the slowly-varying nature of click pulse shapes within a click
train. Only a few click train separation methods have made use of another robust and important piece of informa-
tion: click timing based on the slowly-varying nature of ICI within a click train. [18] tracked slow variations in click
amplitude and ICI to separate two click trains. Baggenstoss’ algorithms ([19, 20, 21]) define statistical measures

1To clarify, “classify each click in a mixture” means assign each click to its source

2



CHAPTER 1. INTRODUCTION

of click similarity based on features, including inter-click-interval, extracted from click pairs and that maximize
a global measure of similarity between associated clicks. As does our paper, [22] analyzed click trains based on
timing only. It used the PRI transform of [23] to estimate ICIs and extended this to time varying ICIs, but it did not
separate (classify) each pulse.

Deinterleaving of radar signal has also been considered before, e.g. [6, 7, 8, 9]. Radar signals usually are either
periodic, staggered, or jittered. In jittered PRI radar, a random time is added to each PRI by the transmitter, which
makes the signal a renewal process (see Section 2.1 below). Deinterleaving radar signals (in the sense of classifying
each impulse) has been considered before in [8, 9], but as far as we know, specifically deinterleaving jittered PRI
radar as a renewal process has not been considered. [8] considered noisy time of arrival (TOA) and [9] used a
random walk model for PRI, while [23] specifically considered jittered PRI, but only to estimate the PRIs.

The main contribution of this dissertation is to develop algorithms specifically for separation/deinterlea-
ving of renewal processes, which we believe is a new problem.

In Chapter 2 we present solutions for separation based on interimpulse spacing only for an ideal system model.
Section 2.1 describes the initial problem which is then extended to account for unknown parameters in Section 2.3
and an unknown number of sources in Section 2.4. The problem of parameter estimation/initialization itself is
interesting, so Chapter 3 is dedicated to it. Then in Chapter 4 we explore the use of timing to detect (and classify)
impulses. Chapter 5 goes over the basics of producing labeled datasets from actual recordings of sperm whales and
some associated analysis. This analysis motivates the methods in Chapter 6 where we try to modify our previous
solutions to be more practical for actual marine mammal click trains. Labeled datasets are used for testing and
verification. Finally, we conclude in Chapter 7.

Various parts of and versions of this work have been disseminated in [24, 25, 26], and [27]. More specifically,
[24, 25] were early versions of Sections 2.1, 2.2, 2.2.2, and 2.3.1. In [26], more current versions of the same sections
were presented in addition to Sections 2.3.2, 2.4, 3.1, and 6.3. Finally, the contents of [27] are contained in Sections
2.1, 2.2, 2.5, 2.3.3, 3.2, and 6.2.
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2
Ideal timing-only based separation

The general model for source separations models is that there areN source signals

x(t) =
[
x1(t) x2(t) · · · xN (t)

]T ∈ RN

that we want to recover from the P mixed signals

s(t) =
[
s1(t) s2(t) · · · sP (t)

]T ∈ RP

defined by
s(t) = A(x(t)),

whereA : RN 7→ RP is usually unknown. Typical source separation methods require that there at least as many
mixtures as there are sources (i.e. P ≥ N ) in order for the recovery to be possible [28], but here we consider P = 1
forN ≥ 1. Setting up an array of sensors may be physically and/or cost prohibitive, so it is beneficial if the problem
can be solved using a single receiver. Additionally, the results could be used to improve the more general multiple
sensor case.

2.1 System model

We consider a system model with K sources that each generate events or emit impulse-like signals. Each source
k transmits a sequence of impulses at times τk,i. We assume that the support of the impulse response is much
shorter than the pulse spacing, so there is no overlap. To be precise: We assume that the probability of overlap is
low enough that it can be ignored. Without loss of generality, we assume that the first impulse time occurs at t = 0.

We want to decide which pulse belongs to which source. Our aim is to classify based only on the (unclassi-
fied) impulse times {τi}. We assume the impulses have been found by some detection algorithm with low error
probability.

To be able to classify the {τi} based only on timing information, we assume the following:

• The interimpulse spacing τk,i − τk,i−1 > 0 is distributed according to some parametric prior distribution
Tk(t) whose parameters may be known or unknown.

4
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• The interimpulse spacings τk,i − τk,i−1 and τl,j − τl,j−1 are independent for k 6= l or i 6= j .

With these assumptions, the set of event times for a single source constitutes a renewal or counting process [29,
Section 8.3]; the most well-know example is the Poisson process. Renewal processes are widely used to model
many processes, which is one reason to use this model. In particular, it is probably a good model for biological
signals. At a purely speculative level, biological systems likely do not have an internal metronome to which they tie
event (e.g. heartbeat, click) generation; rather they have a timer to count down to the next event. To generate nearly
periodic signals, the timing distribution can then be made very narrow around a mean. The timing distribution
might not be independent, but the first order approximation is usually to assume independence, which results in
a renewal process. While a good model for click trains is not known, heartbeat is often modeled in this way [30].

For many applications we might not know the type of prior distribution Tk(t). Without further knowledge, a
truncated Gaussian seems a reasonable assumption. One can argue for the truncated Gaussian distribution in
terms of central limit theory or maximum entropy: given mean µ and variance σ2, the positive distribution with
largest entropy is exactly a truncated Gaussian distribution [31]. It is necessary to truncate the distribution at 0 to
enforce the constraint of non-negative impulse spacings. We denote a Gaussian distribution truncated at 0 with

mean µ and variance σ2 by N0(µ, σ2); the probability density function is f(x) = 1

Φ(µσ )
√

2πσ2
exp

(
− (x−µ)2

2σ2

)
for

x > 0, where Φ is the normal cumulative distribution function [29]. In many cases we consider, µ� 0 and µ� σ.
Therefore the correction Φ

(
µ
σ

)
due to truncation is close to one and can be ignored in many calculations. (See

Appendix B.1)
We assess the performance of our algorithms by the error probability, that is the probability that an impulse

is wrongly classified. Let Di ∈ {1, . . .K} denote the source that originated the impulse at time τi, and D̂i an
estimate. We then define the error probability for source k as

Pe,k = lim
T→∞

P (D̂j 6= Dj |Dj = k)

and the total error probability as
Pe = lim

T→∞
P (D̂j 6= Dj). (2.1.1)

Note, Pe and Pe,k are directly related by

Pe =
∑
k

Pe,kρk (2.1.2)

where ρk is the likelihood of source k. That is

ρk = lim
T→∞

∑
j I(Dj = k)∑K

n=1

∑
i I(Di = n)

.

Note, (2.1.2) is simply a consequence of the Law of Total Probability

P (A) =
∑
k

P (A|Bk)P (Bk).

In this case, A ≡ D̂j 6= Dj and Bk ≡ Dj = k. The general law of total probability does not have limits, but it is
trivial to add

lim
T→∞

P (A) = lim
T→∞

∑
k

P (A|Bk)P (Bk).

5
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2.2 Timing-based separation with known parameters

In the basic approach, we assume that the number of sources and prior distributions are completely known. The
problem is therefore to classify the impulses based on the impulse times {τi} only using the known prior distribu-
tions Tk(t). We consider the maximum likelihood (ML) solution1

max
D̂

L; L(D̂) =

K∑
k=1

∑
i

log Tk(τSk(i) − τSk(i−1)) (2.2.1)

with respect to Sk(i). Here Sk(i) denotes the index corresponding to the i-th impulse assigned to the k-th source,
and is a function of D̂ = [D1, D2, . . .]. For example, if for two sources D̂ = [1, 1, 2, 1, 2, 2] then S1 = [1, 2, 4] and
S2 = [3, 5, 6].

Brute force maximization of (2.2.1) has complexity O(KM ), where M is the total number of impulses in the
received signal; adopting ideas from the Viterbi algorithm [33, 34], algorithms with lower complexity can be found.
In order to develop these algorithms, we first describe the Viterbi algorithm in a way that fits the current context.
Suppose that we have to make decisions betweenK options at times 1, 2, 3, . . ., and that process is Markov. A path
to the the i-th time is a path or set of decisions Pi = {D̂j ; j = 1 . . . i}. Let Pi,k denote the set of paths leading to

D̂i = k. With respect to decisions at times i + 1, i + 2, . . . all of these paths are equivalent, that is, the optimum
decisions at times i+ 1, i+ 2, . . . does not depend on which path led to D̂i = k because of the Markov property. It
is therefore sufficient to only memorize the optimum path leading to D̂i = k for each k. At each stage there areK
optimum paths. For the optimum path leading to D̂i = k we now consider theK possible extensions to time i+1,
and we do so for all k ≤ K. We then again choose the K optimum paths for each of D̂i+1 = k. The complexity is
thereforeO(MK).

For timing based separations, the issue is that while each source’s timing process is assumed to be Markov
(i.e., a renewal process), this is in general not true for the mixture. Decisions at times i + 1, i + 2, . . . do not
only depend on decisions at time i. However, it is still possible to discard many paths, as outlined in the follo-
wing. For a path Pi let dk(Pi) be number of pulses since the last pulse assigned to source k. For example, if
P6 = D̂ = [1, 1, 2, 1, 2, 2] we would have d1(P6) = 2, d2(P6) = 0, and d3(P6) = ∞. A key observation is
that paths with the same K-tuple (d1(Pi), d2(Pi), . . . , dK(Pi)) are equivalent with respect to future decisions,
as in the Viterbi case. This is easiest seen through an example. Let’s assume P100 = [. . . , 3, 1, 1, 2, 1, 2, 2], then
(d1(P100), d2(P100), d3(P100)) = (2, 0, 6). When impulse 101 is assigned to each of the three sources, one of the
following terms is added to the log-likelihood

log T1(τ101 − τ98) ifD101 = 1

log T2(τ101 − τ100) ifD101 = 2

log T3(τ101 − τ94) ifD101 = 3

Now consider P100 = [. . . , 3, 2, 2, 1, 1, 2, 2], the K-tuple is still (2, 0, 6), and terms potentially added are still the
same

log T1(τ101 − τ98) ifD101 = 1

log T2(τ101 − τ100) ifD101 = 2

log T3(τ101 − τ94) ifD101 = 3

With regards to the assignment of the 101st impulse these two paths are identical. On the other hand if P100 =

1This is not directly an optimum solution to (2.1.1); but in general ML is considered near-optimum ([32, 33])

6
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[. . . , 3, 2, 1, 1, 2, 1, 2, 2], theK-tuple is (2, 0, 7)], and we get the following modified terms

log T1(τ101 − τ98) ifD101 = 1

log T2(τ101 − τ100) ifD101 = 2

log T3(τ101 − τ93) ifD101 = 3

It is clear that these terms do not depend on what happened in the part of the path before the 3, indicated by (. . .).
Thus, the likelihood for the decision at time i+1 only depends on the tail of the path, and this is exactly characteri-
zed by (d1(Pi), d2(Pi), . . . , dK(Pi)). Therefore, among paths with the sameK-tuple (d1(Pi), d2(Pi), . . . , dK(Pi))
we only need to memorize the optimum one. By definition, dk(Pi) can take on i+1 values (i.e. 0, 1, 2, . . . , i−1,∞),
and dk(Pi) must be different for different values of k. Therefore, at a time i there are (i+ 1)(i)(i− 1) · · · (i+ 1−
(K − 1)) ∼ iK unique paths. The overall complexity therefore is O(MK+1), which is feasible to implement for
moderate values ofM andK. This ML algorithm is outlined in Algorithm 2.1; we will refer to it as A2.1.

For large M the complexity can still be prohibitive. We therefore consider a number of simplifications of the
algorithm. First we notice that many of the paths considered for the optimum solution have very low likelihood of
emerging as the final optimum solution. To see this, for a pathPi in addition to dk(Pi) define rk(Pi) as the actual
time since the last pulse assigned to source k. Let Tk be the time so that∫ ∞

TK

Tk(t)dt < ε

for some choice of a small ε (see Theorem E.1). If rk(Pi) > Tk this means that if we extend pathPi with D̂j = k for
j > i, a term of at least log εwill be added to the likelihood. If ε is small, this term is a large negative number which
makes any extensions of this path unlikely to come out as the maximum likelihood solution; we call this a source
timeout (STO). Thus, such paths can be eliminated from the the set of paths to keep with very little loss compared
to the optimum solution – if ε is chosen small. This STO algorithm is outlined in Algorithm 2.2; we will refer to it as
A2.2.

The complexity, that is, the number of paths to memorize, of the simplified algorithm is stochastic. Suppose
that at time i there are N(Tk) impulses in the interval (τi − Tk, τi). Then the algorithm only considers paths
with dk(Pi) ≤ N(Tk). The complexity therefore is N(T1)N(T2) · · ·N(TK), which is independent of M . The
exact expected complexity is hard to calculate (and probably not that important), but we can do a “back of the
envelope” estimate as follows. Suppose that the average impulse spacing is ρ – this is a generalization of all the
distributions Tk . The number of impulses from source k during a time period of Tk then is approximately Tk

ρ , so

the approximate total number of paths to keep is T1

ρ ·
T2

ρ · · ·
TK
ρ . Assume further that Tk ≈ T for all k. Then the

approximate complexity is O

(
M
(
T
ρ

)K)
, which for large M is much less than the O(MK+1) of the optimum

algorithm.
A further simplified algorithm is to keep a fixed number (or maximum number) of paths, call this number a.

At each step, we maintain the paths with the largest likelihood. However, we still want to avoid any errors caused
by source timeouts, so we still eliminate paths with rk(Pi) > Tk. This simplified STO algorithm is outlined in
Algorithm 2.3; we will refer to it as A2.3.

Alternatively, instead of eliminating paths, we restart the algorithm whenever a source timeout is detected in
the most-likely path. Another way to think of this algorithm is that we are exploring the solution space incremen-
tally. When a source timeout error is encountered, then we have converged towards a poor solution. To get out
of this mode, we forget where we came from and restart the exploration. The argument for only considering the
most-likely path rests on the premise that if a source timeout occurs in a lesser path, it would probably be elimi-
nated in further iterations. This STO restart algorithm is outlined in Algorithm 2.4; we will refer to it as A2.4. Since
we only maintain a fixed number of paths, A2.3 and A2.4 both have complexityO(aM). However, in terms of total

7
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runtime, A2.4 is generally faster than A2.3 because it does not have to check for timeouts in every path or manage
path deletion. After some experimentation, we found that a = K3 works well for both versions (see Section 2.2.2).

Algorithm 2.1 (A2.1 or A1 in plots) Exact maximum likelihood solution for separation based solely on timing with
known distributions
GivenK sources and Tk with observations τi, i = 1, . . . ,M

1. Initialize the assignment of τ1 such that in the firstK paths τ1 is labeled 1, . . . ,K. Set i = 1.

2. For each path consider the extensions where τi+1 is assigned to source k = 1, . . . ,K

(a) Update (d1(Pi), . . . , dK(Pi)) for each extended path as follows: if the extension is D̂i+1 = k then

dk(Pi) = 0

dj(Pi) = dj(Pi) + 1

(b) Update the likelihood of each path.

3. Put the paths with same (d1(Pi), . . . , dK(Pi)) into a group.

4. In each group, eliminate all paths except the one with largest likelihood.

5. If i = M , done. Choose the most likely path as the assignment. Otherwise, increment i and go to step 2.

8
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Algorithm 2.2 (A2.2 or A2 in plots) Maximum likelihood algorithm for separation based solely on timing with
known distributions with STO pruning

GivenK sources and Tk with observations τi, i = 1, . . . ,M

1. Initialize the assignment of τ1 such that in the firstK paths τ1 is labeled 1, . . . ,K. Set i = 1.

2. For each path consider the extensions where τi+1 is assigned to source k = 1, . . . ,K

(a) Update (d1(Pi), . . . , dK(Pi)) and (r1(Pi), . . . , rK(Pi)) for each extended path as follows: if the exten-
sion is D̂i+1 = k then

dk(Pi) = 0 rk(Pi) = 0

dj(Pi) = dj(P ) + 1 rj(Pi) = rj(Pi) + τi+1 − τi

(b) Update the likelihood of each path.

3. Put the paths with same (d1(Pi), . . . , dK(Pi)) into a group.

4. Eliminate groups where for at least one k: rk(Pi) > Tk.

5. In each remaining group, eliminate all paths except the one with largest likelihood.

6. If i = M , done. Choose the most likely path as the assignment. Otherwise, increment i and go to step 2.

Algorithm 2.3 (A2.3 or A3 in plots) Simplified algorithm for separation based solely on timing with known distri-
butions with STO pruning and a static number of states

GivenK sources and Tk with observations τi, i = 1, . . . ,M , and a paths in memory

1. Initialize the assignment of τ1 such that in the first K paths τ1 is labeled 1, . . . ,K. The assignment of the
remaining a−K paths is arbitrary. Set i = 1.

2. For each path consider the extensions where τi+1 is assigned to source k = 1, . . . ,K

(a) Update (r1(Pi), . . . , rK(Pi)) for each extended path as follows: if the extension is D̂i+1 = k then

rk(Pi) = 0

rj(Pi) = rj(Pi) + τi+1 − τi

(b) Update the likelihood of each path.

3. Eliminate paths where for at least one k: rk(Pi) > Tk.

4. For the remaining paths, keep the a paths with highest likelihood.

5. If i = M , done. Choose the most likely path as the assignment. Otherwise, increment i and go to step 2.
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Algorithm 2.4 (A2.4 or A4 in plots) Simplified algorithm for separation based solely on timing with known distri-
butions with a static number of states and STO restarts
GivenK sources and Tk with observations τi, i = 1, . . . ,M , and a paths in memory

1. Initialize the assignment of τ1 such that in the first K paths τ1 is labeled 1, . . . ,K. The assignment of the
remaining a−K paths is arbitrary. Set i = 1.

2. For each path consider the extensions where τi+1 is assigned to source k = 1, . . . ,K

(a) Update (r1(Pi), . . . , rK(Pi)) for each extended path as follows: if the extension is D̂i+1 = k then

rk(Pi) = 0

rj(Pi) = rj(Pi) + τi+1 − τi

(b) Update the likelihood of each path.

3. If in the most likely path for at least one k: rk(Pi) > Tk, start at step 1 for the next impulse. If not, proceed
to the next step.

4. For the remaining paths, keep the a paths with highest likelihood.

5. If i = M , done. Choose the most likely path as the assignment, and if you have restarted, concatenate all the
segments together in order. Otherwise, increment i and go to step 2.
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2.2.1 Theoretical error analysis

In this section we develop a lower bound on the error probability for separating two impulsive sources using ti-
ming only. The bound is unrelated to any specific algorithm, and can therefore be used to evaluate how close an
algorithm is to optimum. It also gives insight into what kind of distributions can be separated, and how the para-
meters of those distributions influence separability. We derive the bound for two sources only, but the bound can
be generalized to more sources.

The bound is based on a rather crude analysis. In general, there are many ways the two sources can be confu-
sed, but to be able to evaluate the bound, we focus on one specific type of error event. Consider the i-th impulse
of source 1, and let j(i) be the nearest impulse of source 2. LetAi be the event that impulses i and j(i) are nearest
neighbors and that the classifications of the i-th impulse and the j(i)-th impulse are swapped (i.e. i is assigned
to 2 and j is assigned to 1). IfAi happens, one error for source 1 happens. Since i and j(i) are nearest neighbors,
the pair is disjoint from any other nearest neighbor pair. We discount all other possible errors because we are
developing a lower bound. A lower bound on the error probability of source 1 therefore is

Pe,1 ≥ lim
n→∞

E

[
1

n

n∑
i=1

I(Ai)

]
= lim
n→∞

1

n

n∑
i=1

P (Ai) (2.2.2)

= P (Ai), (2.2.3)

where n is the number of impulses from source 1 and I(·) is the indicator function for eventAi. We arrive at (2.2.3)
since for large n, theAi have the same probability (though they are not independent).

Figure 2.2.1: Timeline illustrating the various quantities and their relations introduced for the error bound cal-
culation for a specific source assignment. The assumption of d = (12) only matters for the rkp, rks distinctions.
Drawing not to scale.

The probability P (Ai) is still difficult to calculate. However, we can find a lower bound for P (Ai) by letting a
genie provide the correct decision for all impulses except i and j(i). The genie also tells us that impulses i and j(i)
are from different sources. In the following refer to Figure 2.2.1 for an illustration of notation. Denote δ = τj(i)−τi,
tkp as the time-difference from the midpoint between i and j(i) to the nearest prior impulse from source k, and tks
as the time-difference to the nearest following impulse. Let t = (t1p, t2p, t1s, t2s) and let d ∈ {(12), (21)}, where
d = (12) means that the first impulse is from source 1, the second from source 2. The optimum decision is now

d̂ = argmaxP (d|t) = argmax
f(t|d)P (d)

f(t)

= argmax f(t|d),

where f(t) is the joint pdf of t obtained from the Tk. Here we have used that P (d) = 1
2 (due to symmetry). We

normalize time so that the midpoint between pulses i and j(i) is zero. We have

11
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f(t|d = (12)) =T1(t1p − 1
2δ|t1p >

3
2δ)T1(t1s + 1

2δ|t1s >
3
2δ)T2(t2p + 1

2δ|t2p >
3
2δ)T2(t2s − 1

2δ|t2s >
3
2δ)

=
T1(t1p − 1

2δ)T1(t1s + 1
2δ)T2(t2p + 1

2δ)T2(t2s − 1
2δ)

P1(t > 3
2δ)

2P2(t > 3
2δ)

2

f(t|d = (21)) =
T1(t1p + 1

2δ)T1(t1s − 1
2δ)T2(t2p − 1

2δ)T2(t2s + 1
2δ),

P1(t > 3
2δ)

2P2(t > 3
2δ)

2

where Pk is the probability under distribution Tk.
If the timing process is a Poisson process, T1 and T2 are exponential, i.e., Ti(t) = λie

−λit, so that

T1(t1p − 1
2δ)T1(t1s + 1

2δ) = λ2
1e
−λ1(t1p+t1s) = T1(t1p + 1

2δ)T1(t1s − 1
2δ)

and similarly forT2. Therefore these two probabilities are equal and the optimum decision is achieved by randomly
choosing one of the hypotheses. Since this is a lower bound, it shows

Proposition 2.1. Poisson processes cannot be separated purely based on timing.

This is a direct result of the memoryless property of exponential distributions that make up a Poisson process.
For more information, see Theorem E.3 in Appendix E.

Now assuming that the process is not Poisson, we can find the error probability by calculating the probability
that f(t|d) is larger for the incorrect decision than for the the correct decision. This can be done for truncated
Gaussians:

Theorem 2.1. Suppose Ti ∼ N0(µi, σ
2
i ). A lower bound on the error probability for source 1 then is

Pe,1 ≥
∫ ∞

0

(∫ ∞
x

gX2
(x, t)dt

)(∫ ∞
σ2x/σ1

gX1
(σ2x/σ1, t)dt

)
σ2

µ2
Q

(
x− µ2

σ2

)
dx. (2.2.4)

where

gXi(x, t) =
Q
(√

2(−µiσi + x− t
2 )
)

+Q
(√

2(−µiσi + 2x− t
2 )
)
− 1

2
√
πQ
(
−µi
σi

+ x
)
Q
(
−µi
σi

+ 2x
) e−

t2

4

andQ(x) = 1− Φ(x). Note, the same holds for Pe,2; in (2.2.4) just change all ·1 for ·2 and vice versa.

Proof. Let us assume d = (12). An error happens if

T1(t1p + 1
2δ)T1(t1s − 1

2δ)T2(t2p − 1
2δ)T2(t2s + 1

2δ) > T1(t1p − 1
2δ)T1(t1s + 1

2δ)T2(t2p + 1
2δ)T2(t2s − 1

2δ).

In particular if we let Ti ∼ N0(µi, σ
2
i ) an error happens if2

1
σ2
1
(t1p + 1

2δ − µ1)2 + 1
σ2
1
(t1s − 1

2δ − µ1)2

+ 1
σ2
2
(t2p − 1

2δ − µ2)2 + 1
σ2
2
(t2s + 1

2δ − µ2)2 <
1
σ2
1
(t1p − 1

2δ − µ1)2 + 1
σ2
1
(t1s + 1

2δ − µ1)2

+ 1
σ2
2
(t2p + 1

2δ − µ2)2 + 1
σ2
2
(t2s − 1

2δ − µ2)2.

Equivalently,

0 < − 1

σ2
1

(t1p − µ1) +
1

σ2
1

(t1s − µ1)− 1

σ2
2

(t2s − µ2) +
1

σ2
2

(t2p − µ2).

2Here the truncated Gaussian gives the same result as Gaussian, as the scaling constants cancel out.
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Rewritten in terms of the inter-impulse spacing, r1p = t1p − 1
2δ, r1s = t1s + 1

2δ etc.,(
1

σ2
1

+
1

σ2
2

)
δ < − 1

σ2
1

(r1p − µ1) +
1

σ2
1

(r1s − µ1)− 1

σ2
2

(r2s − µ2) +
1

σ2
2

(r2p − µ2).

SinceX > a, Y > b⇒ X + Y > a+ b, for independent random variablesX,Y

Pr(X + Y > a+ b) ≥ Pr(X > a)P (Y > b),

and we can therefore lower bound

Pe,1 ≥ Pr

(
− 1

σ1
(r1p − µ1) +

1

σ1
(r1s − µ1) >

1

σ1
δ

)
Pr

(
− 1

σ2
(r2p − µ2) +

1

σ2
(r2s − µ2) >

1

σ2
δ

)
. (2.2.5)

Here r1p > δ by the setup, and the random variable 1
σ1

(r1p − µ1) therefore has pdf (for t > −µ1+δ
σ1

)

f(t) =
1

Q
(
−µ1+δ
σ1

)√
2π

exp

(
− t

2

2

)
.

Also r1s > 2δ and the random variable 1
σ1

(r1s − µ1) therefore has pdf (for t > −µ1+2δ
σ1

)

f̃(t) =
1

Q
(
−µ1+2δ
σ1

)√
2π

exp

(
− t

2

2

)
.

The random variable X1 = − 1
σ1

(r1p − µ1) + 1
σ1

(r1s − µ1) is difference, and the pdf can be calculated using a

convolution-type integral of these two pdfs, which gives3

fX1(t|δ) = − e−
t2

4

4
√
πQ
(
−µ1+δ
σ1

)
Q
(
−µ1+2δ
σ1

) (Erf

[
−µ1 + δ

σ1
− t

2

]
+ Erf

[
−µ1 + 2δ

σ1
− t

2

])

= − e−
t2

4

2
√
πQ
(
−µ1+δ
σ1

)
Q
(
−µ1+2δ
σ1

) (Q [√2

(
−µ1 + δ

σ1
− t

2

)]
+Q

[√
2

(
−µ1 + 2δ

σ1
− t

2

)]
− 1

)
,

where−2µ1 + 3δ ≤ t. A similar calculation can be done for the quantities related to source 2. Let

gXi(x, t) == −

(
Q
[√

2
(
−µi
σi

+ x− t
2

)]
+Q

[√
2
(
−µi
σi

+ 2x− t
2

)]
− 1
)
e−

t2

4

2
√
πQ
(
−µi
σi

+ x
)
Q
(
−µi
σi

+ 2x
) .

GivenD = δ
σ2

, we now write the second factor in (2.2.5) as∫ ∞
D

gx2
(D, t)dt,

and therefore

Pe,1 ≥
∫ ∞
σ2
σ1
D

gx1(
σ2

σ1
D, t)dt

∫ ∞
D

gx2(D, t)dt.

According to renewal theory [29, Theorem 10.3.5],D has distribution

fD(d) =
σ2

µ2
Q

(
d− µ2

σ2

)
.

We can then lower bound the error probability by (2.2.4).
3The integral was done in Mathematica.
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2.2.2 Performance of algorithms

In this section, under the assumption that Tk are completely known, we compare the different algorithms from
Section 2.2, as well as the lower bound of Theorem 2.1.

In order to verify the performance of the different algorithms we simulate impulse times according to Algorithm
2.5. Algorithm 2.5 generates data according to the generic system model (Section 2.1) for specified parameters and
number of sources. We will often refer to it as the data generation algorithm within this paper.

Algorithm 2.5 Method to generate a mixture of impulse times for given Θ andK

Given the number of sourcesK and the timing distribution type and parameters Θ (e.g. {(µ1, σ
2
1), (µ2, σ

2
2), . . .}),

outputM impulse times of mixture corresponding to the model in Section 2.1.

1. Generate M̃ interimpulse times for each source according to Θ, where M̃ is some constant such that M̃ �
M

(a) See Appendix A for more details on generating samples from a specified distribution

(b) Let tk = {tk,1, tk,2, . . . , tk,M̃}where tk,i is the i-th interimpulse spacing sample generated for the k-th
source

2. To convert tk to impulse times τ k = {τk,1, τk,2, . . . , τk,M̃−1}, take the cumulative sum

(a) τk,1 = tk,1

(b) For i > 1, τk,i = τk,i−1 + tk,i

3. Remove the trailing ends

(a) Find T̃ = min{τ1,M̃ , τ2,M̃ , . . . , τK,M̃}

(b) For each τ k, delete all times> T̃

4. Merge and sort the τ k in to τ

(a) τ = sort{τ 1, τ 2, . . . , τK}, where “sort” is a function that reorders elements in ascending order (e.g.
sort{a, b, c} = [c, a, b] if c ≤ a ≤ b)

(b) Take special care to also keep record (possibly in another vector) of which source each impulse time
belongs to

(c) Inspect τ for duplicate values. Usually there are none, but if one or more is found restart the process.

5. Get the out impulse train times

(a) Delete all but the last M times from τ (this is how we avoid any initial transient behavior)

(b) Set first time to 0 (this step is optional): τ = τ − τ1

First, we test the lower bound. We use the data generation algorithm to generate 500 impulses from two sources
with T1 ∼ N0(1, σ2) and T2 ∼ N0(π, σ2). Then A2.1, A2.2, A2.3, and A2.4 are applied to the times, and we compute
the source error on the outputs as Pe,k defined in Section 2.1 evaluated for finite time/number of impulses

Pe,k =

∑
i I(D̂i 6= Di)I(Di = k)∑

i I(Di = k)
,

14
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where I(·) is the indicator function

I(X) =

{
1 ifX

0 otherwise
.

Note, I(D̂i 6= Di)I(Di = k) = 1 i.f.f. there is an error and the correct assignment is source k; it is 0 otherwise. We
adjust σ between 10−3 and 10−1, and repeat this process 500 times for each σ. The average of the source errors
over the 500 trials are computed and are compared with the lower bound as shown in Figure 2.2.2. All the proposed
algorithms perform similarly; there is a constant factor of about 5 in difference between the lower bound and the
algorithms’ error rates, although, importantly, they have the same slope. We do not know if the gap is due to the
bound being loose, or the fact that even the exact maximum likelihood algorithm A2.1 is not a direct optimum
solution. As σ increases, the simplified algorithms (A2.3 & A2.4) show a slight degradation in performance in
comparison with the “optimal” ones (A2.1 & A2.2). Thus with some confidence we can substitute these simplified
algorithms for the optimal ones for large problems where the optimum algorithms become too complex. In this
test, there is no significant difference between the two simplified algorithms.
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Figure 2.2.2: For two synthetic sources with fixed mean impulse spacings and identical standard deviations, the source error

probability of each source from A2.1, A2.2, A2.3, and A2.4 with Tk = µk + 3σk and a = K3 where needed was averaged over

500 trials. The theoretical lower bounds (2.2.4) are shown as a dashed lines.

Then to give some idea of how the algorithm behaves with respect to different means, we consider two synthetic
sources with mean impulse spacings 1-100 (at 50 evenly spaced values) and standard deviations of 0.1. We generate
a total of 100 impulses using the data generation algorithm and then apply a timing separation algorithm using
the actual timing parameters (specifically we show results from A2.2 here, but for these parameters, all methods
have virtually identical performance; differences are on the order of 10−5 ) . As a performance metric we will use
Pe given by (2.1.1) evaluated for finite M . When means are equal, source numbering is arbitrary, so we use the
minimum Pe over all permutations of labelings. For each dataset (i.e. a set of means), we compute Pe and then
compute the average over 500 trials. The results are shown in Figure 2.2.3. In general, we see that the probability
of error is low except when the source means are low (< 10) and similar. This is not unexpected: when means are
equal there are situations where sources emit at almost simultaneously for a length of time which makes separation
is difficult. To see why separation is difficult, consider Figure 2.2.4. When there is a near simultaneous emission,
the distance to the next set of impulses is approximately the same from either. Thus the resulting assignment
is essentially a coin flip (e.g. 50% error for K = 2). Near simultaneous emission can happen in any dataset,

15



2.2. KNOWN PARAMETERS CHAPTER 2. IDEAL TIMING-ONLY BASED SEPARATION

but if the means are the same, near simultaneous emissions are very likely to continue to occur after a single
occurrence. There is always some chance that a near simultaneous emission occurs at the first impulse from
each source, but another possibility is that one source “drifts” into the other. When then means are lower, the
distance a source has to “drift” is smaller. For example, consider we have two sources with (µk, σk) = (0.3, 0.1)
and t1,1 = 0, t1,2 = 0.3. (Here we are using the notation of the data generation algorithm) If t2,1 = 0.1, it is not
very unlikely that t2,2 ≈ 0.3 = t1,2. However, if instead (µk, σk) = (25, 0.1) and t1,1 = 0, t1,2 = 25 and t2,1 = 8.3
(again ≈ 1/3 between t1,1 and t1,2), it would be quite unusual for t2,2 ≈ t1,2. This explains why we do not see as
much error when means are equal but large. Furthermore, when the means are equal but low we do not see the
random assignment error rate 0.50 exactly since although simultaneous emissions are occurring often, there are
still times where it is not.
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Figure 2.2.3: Total error probability of A2.2 for two sources with σ = 0.1s and µ1, µ2 as shown.

??

About the same

About the same

Figure 2.2.4: When two sources have the same mean, it is possible that their impulses from different sources will
line up close together as shown. The dots indicate impulses and their position on the line indicates their relative
time of occurrence. Consider the red dot as an impulse assigned source 1, the blue dot as an impulse assigned to
source 2, and the “?” labeled dots as impulses to be assigned. Note, that the distance to the next two impulses from
either the blue or red dot is roughly the same.

We explore this concept a more by considering the coefficient of variation, cv . For a dataset, it is defined as its
standard deviation of some dataset divided by its mean;

cv ,
σ

µ
.
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In Figure 2.2.3, we changed the means of sources, but not the standard deviation, so there is a one-to-one corre-
spondence between cv and a µi (e.g. when µi = 1 ⇒ cv = 10−1 and when µi = 100 ⇒ cv = 10−3). Since
the mean shows up in the denominator, we say cv is inversely proportional to µi. That is, when µi increases, cv
decreases, and vice versa; see Figure 2.2.10. Based on this we suppose then that when cv is small, the error is also
small. We can confirm this by reconsidering Figure 2.2.2. For this simulation, we changed the standard deviation,
but not the mean, so again there is a one-to-one direct correspondence. Though it is a simply transformation,
we choose to re-plot the result with regard to cv in Figure 2.2.5 as it emphasizes that our theoretical lower bound
(Theorem 2.1) also behaves in the same fashion: Error rate increases proportionally with cv (in what appears to be
a linear fashion). We do not have a closed form for the integral (2.2.4), but we do recognize that cv and c−1

v show up
in various places in the expression. Most notably, we see cv for the second source σ2/µ2 shows up as a scale factor;
perhaps this is the dominant term that determines the trend.

To further support the notion that error rate is tied to cv , see Figure 2.2.6b. For this figure we consider two
identical sources with mean impulse spacings 1-100 (at 50 evenly spaced values) and cv ∈ [10−3, 1] (at 50 loga-
rithmically spaced values). Akin to Figure 2.2.3, 100 total impulses are generated we apply the same algorithms
and average the error rates over 500 trials. In Figure 2.2.6b, notice that across all µi the behavior are virtually the
same; the differences are well within normal variation for the number of trials. Looking at Figure 2.2.6c and Figure
2.2.7, the trend appears to be linear4 up to cv ≈ 10−1. After this it begins to roll-off because there is a maximum
error rate (0.5 for two sources when optimized over labeling).
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Figure 2.2.5: This is Figure 2.2.2 re-plotted using cv instead of σ.

According to Figure 2.2.7, cv ≤ 10−2 yield error rates less than 0.05. Having a cv ≤ 10−2 is a little restrictive,
but for this, we assumed the sources have the same cv . It is also interesting to consider how error rate changes
when sources have different cv . So we consider another simulation where we set the mean of the two sources
arbitrarily to 50 (we also repeated the experiment with µi = 10 and see the exact same results) and then vary the
cv between 10−3 and 100. For each cv pair, we apply the same algorithms and compute the error rate and report
the average over 500 trials; the result is shown in Figure 2.2.8. Let cv,i be the cv for the i-th source. When the pair
of cv,1 = cv,2, we get the same result as 2.2.6. Interestingly, when the cv,1 6= cv,2, we can achieve the same error
rate for larger values of cv . That is, when at least one cv,i ≤ 10−1.5, the error rate is less than 0.05 (when cv are not
equal). Note, this means that you can still get a good error rate with large a cv (e.g. cv = 1) as long as the other

4In a semi-log plot, linear data looks like an exponential.
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source has a cv small enough– this is much less restrictive.

So far, the experiments designed to test cv have always considered µ1 = µ2. This was inspired by the fact
that in Figure 2.2.3 the highest error was found when the means were equal. That is, equal means will give us
a worst case scenario, so any other combination of means will be bounded by it. In order to confirm this we
replicated the same test in Figure 2.2.8, but for unequal mean pairs as shown in Figure 2.2.9. Clearly, this is not
an exhaustive set, but we tried to pick pairs to showcase small (µ1 = 1, µ2 = 3), moderate (µ1 = 50, µ2 = 75),
and large (µ1 = 10, µ2 = 100) differences in the means. Across all pairs, we see largely the same behavior: Higher
error when both sources have large cv . Perhaps unsurprisingly, Figure 2.2.9a, the moderate difference, is the same
as Figure 2.2.8 but without high error along the diagonal (where cv,1 = cv,2). Then in Figure 2.2.9b, the small
difference, the area of high error is slightly lower and squashed a bit more to the right than Figure 2.2.9a. This effect
is even more exaggerated with the large difference, µ1 = 10, µ2 = 100. Let us define this effect more clearly. For
µ1 = µ2, we gave a threshold below which the error rate was less than 0.05 (i.e. cv ≤ 10−1.5); squashing operates
on this threshold. Specifically, squashing means that the cv,1 threshold increases but the cv,2 threshold decreases.
A higher threshold means that we can handle sources with larger variations, whereas a lowered threshold can be
viewed as a decrease in performance. We have a combination of an increase and a decrease, but also the maximum
error rate is lowered in a squash. So though we only have a few examples, we say that increased squash is to be
desired. Squashing appears increase as the ratio between the means (i.e. µ1/µ2) decreases rather than the size of
the difference between the means. In this experiment µ1/µ2 is also the approximate ratio of number of impulses
from source 2 to number of impulses from source 1. This seems to imply that cv is more important when there are
less samples, and similarly when there are more samples, cv is less important. In other words, if there is a lot of
data points, we can find the pattern even if the amount of variation is high. But if there is not a lot of data points,
then even small amounts of variation can cause issues in detecting the source.

Note with the moderate and small differences, A2.1, A2.2, and A2.3 all have essentially the same outcome, so it
suffices to show just one of the results. However, with the µ1 = 10, µ2 = 100, there is noticeable degradation as
the more approximate methods are used. Figure 2.2.9d, the A2.2 result, is shown to highlight the difference. The
loss in performance can be attributed to the trade off between accuracy and speed.

These results and conclusions about cv are not in conflict with previous results. Again consider Figure 2.2.10,
these are the cv that are generated in Figure 2.2.3. With exception of the first two means, all are well below cv =
10−1.5, the threshold for less than 0.05 error rate for unequal means. This is why we see very low error rates for
most of the mean pairs in Figure 2.2.3. Further, only the first five means are above cv = 10−2 , the threshold for
less than 0.05 error rate for equal means. This is consistent with Figure 2.2.3 when µ1 = µ2, error rates are only
highly elevated for the first few data points.

The take away with cv is that even in the best case, our algorithms will perform poorly in the case of high cv
values. This makes sense; a large cv indicates a large amount of jitter (relative to the mean interimpulse spacing).
While our algorithms are designed to handle jitter directly via the optimization of the likelihood function, at some
point too much jitter can obfuscate any pattern. Though we see that cv directly influences error rate, in future
simulations, we do not always consider cv as an independent variable. This is because as seen in Figure 2.2.9,
individual parameters (e.g. the µi) also impact performance, and cv is a composite parameter computed from the
individual parameters. Further, the way cv is computed, there is not a one-to-one mapping between cv and the
individual parameters, so it is not sufficient to only consider cv .

Finally, for the approximate algorithms A2.3 and A2.4, we mentioned thatK3 seemed to be a sufficient number
of paths; now we will provide some evidence. We repeat the previous simulation for a = K,K2,K3,K4,K5. As
performance measure we use P̄e, the average Pe over all the (µ1, µ2) ∈ [1, 100]2 generated. Results are given in
Table 2.2.1. As expected, the performance improves with increasing a. However, the improvement diminishes.
Going to K4 from K3, the improvement in performance is on the order of 10−5. For this reason, we decide that
added overhead is not worth the reduction in error rate, and we settle on K3 as the best value for a to use. From
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this point on, all algorithms/results that require a useK3 unless otherwise stated. While both algorithms perform
similarly, it is interesting to note that A2.4 is consistently better than A2.3 but only by about 1.91× 10−5.

Table 2.2.1: Error rate for different values of a and the improvement in rate from increasing a

a P̄e (A2.3) Improvement P̄e (A2.4) Improvement

K 0.0083198 - 0.008832 -
K2 0.002573 0.0057468 0.0025527 0.0062790
K3 0.0025368 3.62E-5 0.0025197 3.3E-5
K4 0.0025283 8.5E-6 0.0025078 1.19E-5
K5 0.0025225 5.8E-6 0.002504 3.8E-6
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(b) X-Y plane view of the same result in Figure 2.2.6a to emphasize
its behavior is constant regardless of choice of mean.
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a function of cv can better be revealed.

Figure 2.2.6: Total error probability averaged over 500 trials of A2.3 for two sources with µ1 = µ2 as shown, with
σ1 = σ2 computed for the cv as shown. A2.1 and A2.2 are not shown here, but have essentially the same result.
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Figure 2.2.7: We take the result shown in Figure 2.2.6 and only plot the data points for µi = 50. Additionally, we
compare the data for A2.1 and A2.2. Note, in this plot, we used a linear scale for cv instead of the log-scale.
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Figure 2.2.8: Total error probability averaged over 500 trials of A2.3 for two sources with µ1 = µ2 = 50 and with
σ1 = σ2 computed for the cv as shown. A2.1 and A2.2 are not shown here, but have essentially the same result.
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Figure 2.2.9: The is the same experiment as in Figure 2.2.8 but repeated for different mean pairs as shown. Since
µ1 6= µ2, we specify that the x-axis denotes cv,1 and the y-axis denotes cv,2. Again A2.1 and A2.2 are not shown
here, but have essentially the same result as A2.3 except for the µ1 = 10, µ2 = 100 pair. So to compare with Figure
2.2.9c, we also show Figure 2.2.9d which uses A2.2 for µ1 = 10, µ2 = 100. (A2.1 and A2.2 are nearly identical for
this pair)
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Figure 2.2.10: This is a semi-log plot of the cv for the µi used in Figure 2.2.3 where σi = 0.1.
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2.2.3 Effect of signal length

Except in Section 2.2.1 where we assume T → ∞, it was always understood that we would be working with finite
values for T . Note a finite value of T implies a finite value of M . The development of the algorithm(s) were done
under the assumption that there would be enough impulses, but we never addressed: How much is enough? Or:
How much is not enough? For A2.2, we did discuss elimination of low likelihood solution paths (i.e. paths with
STO) which is somewhat related but does not directly tell us how many impulses are needed for our algorithm to
work well (it will operate on any amount of clicks).

Decisions are made on an impulse-by-impulse basis with some memory of the past. This dependence on the
past gives some indication that there is some dependence onM with regards to performance. For example, in the
case where M = 1, the problem is trivial. We can achieve an error rate of 0– it is arbitrary to which source we
say the click belongs. Additionally, we do not even need to use any algorithm. However when M = 2, then more
ambiguity is introduced. Intuition tells us that we should have at least 1 interimpulse spacing from each source,
or 2 impulses from each source. This means at least we should have M ≥ 2K, but let us study this more carefully
through some simulations.

First consider K = 2. We generate 500 pairs of means randomly selected from the range of 0.5 to 2 (i.e. the
neighborhood of sperm whale ICI). With the standard deviation of each source set to 0.1, we generate M = 4000
impulses. For each set of impulses, we consider the subset of impulses listed in Table 2.2.2. A2.2 and A2.3 are
applied to each subset and we compute the error rate Pe. For each Me, effective M value, Pe is averaged for the
500 parameter sets; the result is shown in Figure 2.2.11a and Figure 2.2.12a. Looking at the results for A2.2, for
M < 20, the error rate decreases, then for M > 20 it increases slightly and then settles to a near constant error
rate of approximately 0.092 beginning where Me = 200. The approximate algorithm mimics this behavior, but
it does not appear to approach a limit; it continues to increase, but the rate of increase does slow. As M grows
larger, the number of possible assignments also grows. However, in A2.3, we only maintain a set number of paths
(independent ofM ). Thus the ratio of the number of paths maintained to the total number of possible assignments
decreases asM increases, so it follows that the quality of the approximation also degrades.

Additionally, letP 0
e be the lower bound forPe, computed using (2.1.2) substituting our expression for the lower

bound (2.2.4) for Pe,k. We compute the ρk based off of the total M = 4000 impulses rather than separately for
each of the subset. Averaging over the parameter sets we get P̄ 0

e = 0.0147; this is shown as a green dotted line in
the Figure 2.2.11a. Further, for each sub-click-train length we compute the ratio

Pe
P 0
e

and report the average shown in Figure 2.2.11b. Note, this is not the same as taking the points in Figure 2.2.11a and
dividing by P̄ 0

e . Here we see that the empirical error of A2.2 settles at ≈ 6.3 of the theoretical lower bound (A2.3
is higher at ≈ 8.3 times). In Figure 2.2.2 the empirical error rate was about 5 times that of the theoretical lower
bound. We explore the reason for this difference more in Section 2.2.4, but without going into detail, it is because
when µ1 = µ2, the ratio is higher.

Finally, we repeat the same test forK = 3, but we do not compare with the lower bound (since we do not have
an expression for it). This result is shown in Figure 2.2.11c and Figure 2.2.12b. The results are nearly the same as
forK = 2; just the rates are slightly higher. That is instead of settling to an error rate of 0.092, A2.2 settles to about
0.17. Also for small M , unlike K = 2, it does not jump to a high rate after M = 1, it increases more slowly till
M = 6 and then there is a small decrease. The approximate algorithm again mirrors the behavior but at higher
error rates.

The effect of the number of impulses on performance can be summarized:

• There is a transient regime for approximately M < 50. Error rate is erratic, but the minimal error rate may
occur here.
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• Stable regime, whenM > 50, the error rate slowly increases approaching some maximum rate. A2.3 reaches
its maximal rate later than A2.2.

(Note these values are assuming small values forK, e.g. K = 1, 2, . . . , 10, we expect that ifK is large, e.g. K = 200,
the boundaries for the transient and stable regimes will shift upwards appropriately) Though the best error rate
may occur within the transient, as seen in Figure 2.2.11c, the maximum rate may also occur. Additionally, it is less
meaningful to classify short segments especially if there is more error and/or complexity introduced associating
adjacent short segments. Therefore, based on these results we recommend M ∈ [50, 200] for our algorithms.
This is a very general ball park suggestion, interested users should check the range using their specific problem
parameters.

Table 2.2.2: Subset indexes

First impulse 1 1 1 · · · 1 1 1 1 1 · · · 1 1 1 1 1
Last impulse 1 2 3 · · · 50 75 100 200 300 · · · 1000 1500 2000 3000 4000

Me 1 2 3 · · · 50 75 100 200 300 · · · 1000 1500 2000 3000 4000

25



2.2. KNOWN PARAMETERS CHAPTER 2. IDEAL TIMING-ONLY BASED SEPARATION

0 500 1000 1500 2000 2500 3000 3500 4000

M

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

e
rr

o
r 

ra
te

K = 2

A2

A3

P
e

0

(a)K = 2

0 500 1000 1500 2000 2500 3000 3500 4000

M

0

1

2

3

4

5

6

7

8

9

P
e
 /
 L

B

average fraction of lower bound

A2

A3

X: 500

Y: 6.238

(b) Ratio of error to theoretical lower bound forK = 2.

0 500 1000 1500 2000 2500 3000 3500 4000

M

0

0.05

0.1

0.15

0.2

0.25

e
rr

o
r 

ra
te

K = 3

A2

A3

(c) K = 3, note we do not have an expression for the lower bound
here

Figure 2.2.11: The performance with respect toM is studied by looking at the average error rates of impulse sets of
varying lengths.
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Figure 2.2.12: Figure 2.2.11 zoomed in toM ∈ [0, 500].
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2.2.4 Limitations of the lower bound

In Figure 2.2.2 the actual error rate was about 5 times more than the predicted lower bound, but in Figure 2.2.11b,
we saw that as T →∞ the actual error rate settled to 6.3 times the lower bound. To see why this is the case, we will
explore the limitations of the lower bound derived in Section 2.2.1. This extends results regarding the lower bound
presented/published previously.

The relationship seen in Figure 2.2.2 is that error rate and lower bound is linear with respect to σk. And in other
results we showed this translated to error rate being proportional to cv as illustrated in Figure 2.2.6c and Figure
2.2.7. Importantly, we see that while the error rate is linear for roughly cv ∈ [0.01, 0.20], the behavior is non-linear
on either end of the range. This makes sense, the linear trend cannot continue indefinitely. On the lower end, error
rate is non-negative, so we cannot surpass 0. Thus cv decreases, Pe asymptotically approaches 0. On the upper
end, error rate cannot surpass 1. Thus as cv increases, Pe asymptotically approaches 1. This is seen for when
µ1 = µ2, let us show a few more examples when µ1 6= µ2 to confirm this result.

We repeat the simulation used to generate Figure 2.2.2, but we extend the range of σi to [10−3, 102] in order to
see what happens on the upper end. The result is shown in Figure 2.2.13. Additionally, we record the number of
impulses for each source per each σk to use to estimate ρk and then compute P 0

e . We compare P 0
e with the actual

total error rate shown in Figure 2.2.13b. The total error rate here mirrors what we saw in Figure 2.2.6c and Figure
2.2.7. However, if we look at P 0

e , we note that at σk = 100 its linear trend is loss; it levels out. At the same time in
Pe is close to its maximum value and has begun its asymptotic approach. For two sources, the maximum error is
0.5 (optimizing over labelings), but here Pe → 0.486 roughly. We argue that this is close enough.

More interestingly, looking at the per source errors, Figure 2.2.13a, we see the lower bounds, denoted as P 0
e,k,

behave in the same manner as P 0
e . The error rate corresponding to the larger mean, Pe,2, follows the response

of the total error rate. At σk = 100 it reaches a maximum error of 1 (for Pe,k we do not optimize over labelings).
Whereas Pe,1, at the same point, suddenly decreases, even below the P 0

e,1. Note Pe,2 = 1 implies that all impulses
assigned to source 2 have instead been assigned to source 1. This is a problem since the development of P 0

e.k

assumed a genie would provide the correct decision for all impulses except where we would make the error. When
Pe,2 = 1, this is clearly not the case. For this situation, another model would need to be developed to accurately
predict the behavior. Based on the intuition, it seems like when Pe,2 =1, we end up assigning everything to source
1, and this is why Pe,1 is low. However, this high error regime is not of practical interest, so we do not pursue
further analysis. Though interestingly, with A2.4, Pe,1 does track the asymptotic behavior of Pe,2 unlike the other
algorithms. A2.4 was designed to restart when it detects an error. Perhaps it detects the situation of assigning
everything to only source 1 and “recovers” to the predicted behavior. It is difficult to say whether or not following
the lower bound desirable when the error rate is high, but maybe it is a moot point. Practically, we do not want
results with high error; it is enough to know when that will happen. Also the total error rate behavior is the same
across all algorithms.

To address the point of knowing when high error rates will happen, we take another example to see if we can
identify any commonalities. We consider µ1 = µ2 = 1 and repeat the same test; the results are shown in Figure
2.2.14. Though there is variation at higher σk, Pe,k starts off nearly constant at 0.5 not following the P 0

e,k trend
at all. This is because labeling is arbitrary since µ1 = µ2, but when computing Pe,k we do not optimize over the
different labeling schemes. What is happening is that half of the time we get the labeling correct (i.e. Pe,k ≈ 0)
and half the time we get the labels flipped (i.e. Pe,k ≈ 1); the average of this is Pe,k ≈ 0.5. We confirm this by
looking at Pe, where we do optimize over labelings, and P 0

e (computed from Pe,k with ρi = 0.5); we see that is
similar to Figure 2.2.13b. In the lower bound there is a plateau, or in this case a slight dip before the increase which
corresponds to reaching the maximum Pe of 0.5 and erratic Pe,k. Specifically, the plateau starts at σk = 100, but
there is a slight reduction in the exactly linear trend of the actual error rate at σk = 10−0.5.

In Figure 2.2.14, µi = 1, so σk ≡ cv . Like with Figure 2.2.6, the result is the same with respect to cv when we
use µk = 10, shown in Figure 2.2.15. Though we plot versus cv , we consider the same values of σk, so the cv range
is different. With µi = 10, we shift one power of 10 down in cv giving us further insight on the lower end. Similar
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Figure 2.2.13: Empirical and theoretical error rates for µ1 = 1, µ2 = π and σi as shown. Both per source and total
error rate are shown.

to the error “maxing out” on the upper end, the error also appears to “bottom out” on the lower end. Specifically
we see that cv < 10−3 bottoms out around Pe ≈ 0.005. Theoretically, we should be able to achieve 0 error rate,
but practically one set of errors (i.e. a single swap of 1 ↔ 2 will count as 2 errors) is a reasonable amount. It may
have to do with the difficulty of separating identical sources.

Thus far, the results seem to imply that due to practical constraints of error rate and other sources of error, the
lower bound (2.2.4) is roughly linear and is a good descriptor of the error rate for cv ∈ [10−3, 100] . We confirm
this with a few other examples shown in Figure 2.2.16. In call cases, when cv > 1, the source with the larger
mean will have reached maximum error and the other source will have departed from the trend. However, the
threshold does not appear to be exactly at 100 , and perhaps in general it would be safer to say 10−0.5 is where this
divergent behavior begins. Additionally, we do have a few points below 10−3, that do not appear to be bottoming
out, perhaps that level was only for µ1 = µ2.

Perhaps the this result is best captured in Figure 2.2.17 where we compare the ratio of error rates with their
lower bound. In the case of µ1 6= µ2 we consider Pe,k/P 0

e,k, and when µ1 = µ2 we look at Pe/P 0
e . Though total

error an per source error are fundamentally different, their ratio with their corresponding lower bound are directly
comparable. Consider the following:

Claim 2.1. If

α =
Pe,k
P 0
e,k

,

where α is some number, then
Pe
P 0
e

= α.

Proof. This is a direct result of (2.1.2) which states

Pe =
∑

ρkPe,k.

We have a similar expression for the lower bounds

P 0
e =

∑
ρkP

0
e,k.
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Figure 2.2.14: Empirical and theoretical error rates for µ1 = µ2 = 1 and σi as shown. Both per source and total
error rate are shown.

If we rearrange the claim, we have
Pe,k = αP 0

e,k.

Substituting this into (2.1.2)

Pe =
∑

ρkαP
0
e,k

= α
∑

ρkP
0
e,k︸ ︷︷ ︸

P 0
e

= αP 0
e ⇒

Pe
P 0
e

= α.

So what we see in Figure 2.2.17 is that error rate is indeed approximately 5 times the lower bound whenµ1 6= µ2

when cv < 10−0.5 roughly. Above this cv , ratio jumps for the source with the larger mean and dips for other one.
This corresponds to the divergent behavior we saw once a plateau was reached. When µ1 = µ2, the ratio is much
higher than when the sources are not identical before cv ≈ 10−0.5. After this cv , the behavior follows the trend of
the larger mean when µ1 6= µ2. In short, this implies is that our bound is too conservative when the sources are
identical. Other sources of error need to be modeled to improve accuracy. This further supports the notion that
sources with identical timing distributions are more difficult to separate.

Additionally, this result finally illuminates why we do not see ratio of 5 times the lower bound in Figure 2.2.11b.
For the simulation, we take mean pairs at random; the specific means used were recorded and are shown in Figure
2.2.18. Though there are many points where µ1 6= µ2, there are still few points along the diagonal µ1 = µ2. While
the average Pe/P 0

e for majority of the mean pairs is≈ 5, the few along diagonal are also included in the final average
reported which skews the number higher.
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Figure 2.2.15: Empirical and theoretical error rates for µ1 = µ2 = 10 and cv as shown. Both per source and total
error rate are shown.
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Figure 2.2.16: These are more examples of Pe,i plotted for different mean pairs.
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Figure 2.2.18: These are the 500 mean pairs randomly selected to generate the impulse trains used to get the results
in Figure 2.2.11 forK = 2. The red dotted line indicates µ1 = µ2.
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2.2.5 Practical normalization for likelihood or log-likelihood

At each step of A2.1,2.2,2.3,2.4 it is necessary to compute each path’s or extension’s likelihood or log-likelihood so
we can compare and decide which to keep. However, if there are many points, then there is a high possibility of
running into numerical representation problems during implementation. To this end, in practice, it is prudent to
normalize at each step. To not distract from the theoretical aspects of the method, we omitted this discussion in
the algorithm descriptions as this is only an implementation issue.

Let x1, x2, . . . denote events (e.g. interimpulse spacings) which we want to test. The joint likelihood of all the
events, which we will denote here with a p(·), under our assumption of independence is

p({x1, x2, x3, . . .}) = p(x1)p(x2)p(x3) · · · .

At each step we compare the running likelihood of each path. That is we start comparing

p(x1
1)

p(x2
1)

p(x3
1)

...

where xji indicates the j-th possibility for the i-th event (e.g. assign the i-th impulse to the j-th source). In the next
step we have

p(x1
1)p(x1

2)
p(x2

1)p(x2
2)

p(x3
1)p(x3

3)
...

and so on. In the end we have something like

`1 =
∏M
i=1 p(x

1
i )

`2 =
∏M
i=1 p(x

2
i )

`3 =
∏M
i=1 p(x

3
i )

...

Note, the relationship between items will not change if we divide each by some constant. For example, if

`1 < `2,

then
`1
C
<
`2
C

for any positive constant C. The same is true at each step. That is, we can divide by c1 in the first step, c2 in
the second step, and so on. Then in the end C =

∏
cj . To avoid numerical representation trouble, we choose

cj = maxk p(x
k
j ). This normalizes the best path to 1.0 at each step, this prevents the values from converging

towards 0 or∞ as the number of data points increase.
Another common way to prevent numerical problems is to instead consider the logarithm of the above since

for small numbers the range is widened, e.g. (0, 1] 7→ (−∞, 0].5 Additionally, the log is a monotonic increasing

5It has the opposite effect for larger numbers (i.e. > 1)– it compresses the range. This is clearly seen in a plot, but you can also see it
analytically in the derivative. Consider f(x) = x and g(x) = log(x). f(x) is linear, and f ′(x) = 1. In comparison, g′(x) = 1

x
. When x < 1,

g′(x) > 1; the slope is large, so the spread between numbers is widened. On the other hand when x > 1, g′(x) < 1; the slope is small, so the
difference between numbers is lessened. This second fact is why the logarithm is used to visualize data when there is large disparity between
magnitudes of data points.
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function comparative relationships will be preserved. However, sometimes taking the log by itself is still insuffi-
cient to prevent all numerical issues. In this case, rather than a precision error, we are dealing with an overflow
or underflow. As the log of multiplication/division is addition/subtraction, the exact same argument can be used:
adding the same arbitrary constant at each step to every path will not change the comparative result. Any constant
can be used, but one choice would be to shift the minimum/maximum value to 0 at each step (log(1) = 0).

Even with these modifications, the likelihood of every path can still turn out to be 0 rendering any future deci-
sions random. This may occur either because we are using one of the approximate algorithms and they fail, or the
Tk do no match the data (e.g. in Section 2.3, the parameters estimated are wrong).

2.3 Unknown parameters

So far we have assumed that the distributions Tk are known. We now extend this to the case where we still know
the total number of sources K, but Tk depends on an unknown parameter vector θk (e.g. θk = [µk, σ

2
k] where µk

and σ2
k are the mean and variance of the distribution). We update (2.2.1) to reflect this change

L(D,Θ) =

K∑
k=1

∑
i

log Tk,θ̂k(τSk(i) − τSk(i−1)). (2.3.1)

This is a mixed optimization problem where are trying to find the assignment D which is discrete and parameters
Θ = [θ1,θ2, . . . ,θK ] which are continuous. It is straightforward to optimize for Θ if given the timing assignment
D using standard ML estimation:

θ̂k = argmax
θ

∑
i

log Tk,θ(τSk(i) − τSk(i−1)), (2.3.2)

is computed separately for each distribution Tk. For example, for Tk ∼ N (µk, σ
2
k) we have

µ̂k =
1

Nk

Nk∑
i=1

xi

σ̂2
k =

1

Nk

∑
i

(xi − µ̂k)2, (2.3.3)

where xi = τSk(i) − τSk(i−1) (the interimpulse spacing) and Nk is the number of xi for source k. However, for
Tk ∼ N0(µk, σ

2
k), E[X] 6= µk and E[(X − E[X])2] 6= σ2

k. There is no closed from solution for the ML estimate of
(µk, σ

2
k) for truncated GaussiansN0(µk, σ

2
k), but for σk � µk the solution (2.3.3) is close to the exact ML estimate.

For more discussion of truncated Gaussians, see [35] and Appendix B.1.
In light of this, one might consider a brute-force approach: For each of theKM possible assignment schemes,

compute Θ̂, and then compute L with the parameters. Then D̂, Θ̂ = argmaxL. However, as before, this is
infeasible due to computational complexity;O(KM ) is too much.

Another approach is to cleverly explore a subset of the KM solutions by alternating optimization of D and Θ.
This is the general idea of two methods presented in the following sections.

2.3.1 Alternating maximization

The idea behind alternating maximization is to alternate between between a discrete ML and a continuous ML.
Starting with some Θ[0], run an algorithm from Section 2.2 on the data and get an assignment D[0] which cor-
responds to L(Θ[0],D[0]). Next use (2.3.2) to get a new solution Θ[1] = Θ̂, and then again an algorithm from
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Section 2.2 to get D[1] and so on. For each step we haveL(Θ[i+1],D[i+1]) ≥ L(Θ[i],D[i]), and in principle we can
keep repeating this process until it converges (i.e. the assignments/parameters no longer change). This process is
outlined in Algorithm 2.6, which we will refer to as AM.

Algorithm 2.6 (AM) Alternating maximization timing separation algorithm

Given the observed impulse times τi, i = 1, . . . ,M that we want to assign toK sources

1. Choose some initial parameters Θ[0]. Set t = 0.

2. Assignment: For iteration t, assign each impulse to maximize overall likelihood by using an algorithm from
Section 2.2 with Θ[t] (i.e. find D[t])

3. Update: Given the new assignment, compute Θ[t+1] using (approximate) ML estimation on D[t].

4. If D[t] = D[t−1] (i.e. assignment does not change) or maximum number of iterations reached, then done.

An issue with AM is that we are only guaranteed convergence to some local maximum. This is because the in-
cremental improvements made are only within the neighborhood of the current solution. The process is similar to
gradient ascent/descent methods where steps are taken in what looks like the best direction from current location;
the global optimum can only be guaranteed if there is only one extremum and no local extrema to get stuck on. To
avoid converging to a poor solution, care must to be taken with respect to the choice of Θ[0] which is discussed in
Sec. 2.3.3.

In the ideal case we always have L(Θ[i+1],D[i+1]) ≥ L(Θ[i],D[i]). However, in many applications we might
use an approximate algorithms, A2.3 or A2.4, due to the high computational cost of the alternatives. There are times
when these algorithms do not maximize the likelihood because the corresponding path was pruned at some point.
Furthermore, at the parameter estimation step, we might also use an approximation such as (2.3.3) for a truncated
Gaussian. As a result, the likelihood may not always increase in each step. Though a decrease may occur, the end
result is typically an increase in L, but other times it cycling happens. That is, the assignments/parameters get
repeated. For example, consider D[i] generates Θ[i+1], and Θ[i+1] → D[i+1]. Then D[i+1] generates Θ[i+2], and
Θ[i+2] → D[i+2]. This becomes a two iteration cycle if D[i+2] ≡ D[i]. Longer cycles are possible as well. As far
as we can tell, it is not possible to predict or avoid these cycles (when we are using approximations). Therefore,
to avoid an infinite loop, we enforce a maximum number of iterations (MI) constraint. For the application to
sperm whale clicks, a MI of 50 appears to suffice. We opt for this method rather than simply terminating when the
objective function starts to decrease to allow better exploration of the solution space. Also, we keep track of the
assignment that yielded the highest likelihood, so the result is no worse than if we had terminated.

2.3.2 Expectation maximization approach

A more sophisticated version of alternating optimization is Expectation Maximization (EM). Specifically, we mo-
dify the Expectation Maximization Viterbi (EMV) algorithm presented in [36, 37] to suit the timing separation
problem. The following discussion requires some familiarity with the EM algorithm, e.g. [38]. In this section, we
use ` for likelihood and L for its logarithm.

To start, instead of (2.3.1), consider the complete log-likelihood function Lx(x|Θ). Here x = (y,D) is the
complete data set, where y = {τi}Mi=1, the set of impulse times, are the observations, and D, the assignment of
the impulse times, is the unobservable/missing data (as defined in the EM approach). In this section, we make
it a point to denote exactly what random quantity each (log-)likelihood function is for via a subscript to avoid
confusion. It is not possible to evaluate and maximize LX(x|Θ) directly since it involves the unobservable D, so

instead we maximize the conditional expectation given y and some parameters Θ[t]
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Q(Θ|Θ[t]) , E[LX(x|Θ)|y,Θ[t]], (2.3.4)

where ·[t] denotes the value at the t-th iteration of the algorithm which will be discussed later. As discussed in
[38], improvements in (2.3.4) correspond to improvements in LX(x|Θ). Thus if we make iterative improvements
to (2.3.4), like in the AM approach, we will at least reach a locally jointly optimum solution for the parameters and
assignment. In terms of the timing problem, (2.3.4) becomes

Q(Θ|Θ[t]) =E[Ly|D(y|D,Θ)|y,Θ[t]] + E[LD(D|Θ)|y,Θ[t]]︸ ︷︷ ︸
c

=

KM∑
u=1

Pr{D = Du|y,Θ[t]}Ly|D(y|Du,Θ[t]) + c (2.3.5)

where Du denotes the u-th assignment scheme.6 We replace E[LD(D|Θ)|y,Θ[t]] with a constant c because the
assignment D is independent from the parameter values Θ when there are no observations. That is, let Pr{Du} =
pu then

E[log `D(D|Θ)|y,Θ[t]] = E[log Pr{D}]
=

∑
u

pu log pu , c

is still a constant in the respect that it does not depend on Θ or y (in fact it is the entropy of Pr{Du}). As such it
can be ignored it in subsequent optimization steps. Immediately, we notice a problem with (2.3.5); it requires the
computation of Pr{D = Du|y,Θ[t]} for every possible assignment which is generally computationally infeasible.
In order to have any hope of actually computing this value, we make an approximation based on the observation
that if Du are labeled in order of descending probability (given y,Θ), then for some value U � KM

U∑
u=1

Pr{D = Du|y,Θ[t]} ≈ 1.

That is, any contribution to the expectation from the DU+1, . . . ,DKM

is negligible, so we ignore them and just
calculate (2.3.5) for the top U assignments (later we will discuss how to determine them). These probabilities do
not exactly sum to 1, so we correct this by normalizing over the U paths. This is the Viterbi adjustment to the
typical EM algorithm [36, 37]. For assignmentDu use

Pu =
Pr{D = Du|y,Θ[t]}∑U
v=1 Pr{D = Dv|y,Θ[t]}

(2.3.6)

=
`y|D(y|Du,Θ[t])∑U
v=1 `y|D(y|Dv,Θ[t])

(2.3.7)

as a substitute for Pr{D = Du|y,Θ[t]}; (2.3.6) follows from (2.3.7) using Bayes rule. Note, ifU = KM , then (2.3.7)
is exact. The adjusted objective function is

Q(Θ|Θ[t]) =

(
U∑
u=1

PuLy|D(y|D,Θ)|y,Θ[t])

)
.

6RecallE[f(X)] =
∑
x f(x) Pr{x}whereX is a discrete random variable.
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This is the expectation step or E-step of the EM algorithm.
In the maximization part or M-step of the algorithm, we want to find a new parameter set Θ that improves the

aboveQ. That is, find
Θ[t+1] = arg max

Θ
Q(Θ|Θ[t]). (2.3.8)

We will next solve (2.3.8) for truncated Gaussians. First, ignore the truncation correction; specifically, assume
Tk ∼ N (µk, σ

2
k). Then solving∇Q = 0 gives

µ̂k =

∑U
u=1

(
Pu
∑
i dk(i)(u)

)∑U
u=1 Punk(u)

(2.3.9)

σ̂2
k =

∑U
u=1 Pu

∑
i(dk(i)(u)− µ̂k)2∑U

u=1 Punk(u)
, (2.3.10)

where dk(i)(u) denotes the i-th interimpulse interval for source k in the u-th solution path and nk(u) denotes the
number of interimpulse intervals for the k-th source in the u-th solution path. This is the typical M-step for a col-
lection of Gaussian sources [38]. The truncated distribution can be derived from the non-truncated distribution.
That is, if Tk ∼ N0(µk, σ

2
k), then

Tk(t) =
fk(t)

Pr(t > 0)
=

fk(t)

Q(−µkσk )
,

where fk ∼ N (µk, σ
2
k), the distribution with no truncation, and Q (not to be confused withQ) is the is the com-

plementary CDF the standard Gaussian. Then

Q(Θ|Θ[t]) =

U∑
u=1

Pu

K∑
k=1

∑
i

log Tk(τSk(i) − τSk(i−1)︸ ︷︷ ︸
dk(i)

)

=
∑
u

Pu

K∑
k=1

∑
i

log
fk(dk(i)(u))

Q(−µkσk
)

= −
∑
u

Pu

K∑
k=1

nk(u) logQ(−µk
σk

) +
∑
u

Pu

K∑
k=1

∑
i

log fk(dk(i)(u);µk, σk). (2.3.11)

Note, the second term is theQ if we did not consider any truncation correction. And ifµk � σk orµk is sufficiently
large, then −µkσk is a large negative number (assuming µk > 0; it would be odd if this were not the case) which
makes Q(−µkσk ) ≈ 1 (Q of a large negative number is essentially asking, “what is the probability of the entire
distribution?”). So when µk � σk or µk is large for all sources, any contribution from the first term is negligible
since log(1) = 0. Thus in many applications using (2.3.9) and (2.3.10) will suffice. But if this is not the case, a
numerical solution can be found since the objective function is differentiable: for each source start at (2.3.9) and
(2.3.10) and then use gradient ascent on (2.3.11).

Choosing the top U paths is an important part of this process. The top U paths should be the ones with the
largest Pu. In (2.3.7) the denominator is a nominal scaling factor; the relative size of each Du is determined by the
the numerator

`y|D(y|Du,Θ[t]) = eL

where L here refers to (2.3.1). In each of the algorithms discussed in Section 2.2, this is value we use to pick the
output path out of the final collection of surviving paths. It is natural to use this final collection of surviving paths
as the top U paths. In the case of the approximate algorithms, only the top a paths are maintained, so U = a. For
A2.1 and A2.2, there will be more paths, but a considerable amount will have low likelihood. Since we multiply the
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path variables (e.g. nk(u)) by Pu (and `y|D ∝ Pu), the algorithm naturally disregards this information. However,
we can save on few computations by ignoring those paths withPu under some threshold in the subsequent M-step
(e.g. computation of (2.3.9) and (2.3.10)).

Similar to AM, there is still the problem of cycling which arises from the approximations made, so again an MI is
enforced (50 also seems to work here). The entire EMV methodology for the timing separation problem is outlined
in Algorithm 2.7; in other parts of the paper EMV will refer to this (rather than the generic EMV algorithm).

Algorithm 2.7 EMV timing separation algorithm

Given the observed impulse times τi, i = 1, . . . ,M that we want to assign toK sources

1. Choose some initial parameters Θ[0]. Set t = 0.

2. E-step/Assignment: Use a timing separation algorithm from Section 2.2 with Θ[t]. The top U paths are
collection (or subset) of paths the output of timing separation algorithm picks the final output assignment.
Compute Pu for each using (2.3.7).

3. M-step/Update: Given the survivor paths and their Pu, compute Θ[t+1] using (2.3.8).

4. If D[t] = D[t−1] or maximum number of iterations reached, then done. Otherwise, go to step 2.

(a) Choose the final output D[t] to be the assignment scheme from the top survivor path (i.e. the one with
the largest Pu).

The difference between the AM algorithm and the EMV algorithm is the use of (2.3.2) versus (2.3.8). In the AM
algorithm, the parameter assignment in the next steps is based on only the most likely path, whereas in the EMV
algorithm, it is determined by theU most likely paths. As a consequence, each step in the EMV algorithm is slightly
more complex which may provide more accurate and/or faster convergence.

2.3.3 Initialization

Both the EMV and AM algorithms are quite dependent on a good initial guess of the parameters Θ[0]. Our intuition
is that if we choose Θ[0] close to the actual Θ values, then the unknown parameter algorithms are likely to converge
to it. So now the problem is to get an estimate for the actual Θ from the data. This is actually, a large topic so we
discuss it in Chapter 3.

However, a key point is that instead of finding a single best estimate for Θ, we aim at generating multiple
estimates of Θ. Then for each estimate apply AM or EMV and choose the assignment that results in the largest
(2.2.1). In this manner, at the cost of running the algorithm multiple times, we increase our chances of coming up
with a better result. This is easily paralleled, the result from each Θ can be computed independently.

Furthermore, the methods discussed in Chapter 3 can be very accurate, so sometimes it is unnecessary to
even use AM or EMV. Therefore, another algorithm is to consider the multiple estimates of Θ as described above,
but instead of running AM or EMV, just run a timing separation algorithm (e.g. A2.3). As a subtle point, for the
comparison at the end, (2.2.1) is computed using the ML Θ from the resulting assignment (e.g. (2.3.3)) rather than
the Θ used to generate the assignment. We will refer to this method as the best guess or Θ guessed.

The general process for getting an output from multiple Θ is outlined in Algorithm 2.8.
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Algorithm 2.8 Timing separation starting with multiple parameter sets

Given the observed impulse times τi, i = 1, . . . ,M that we want to assign

1. Based on the data generateK parameter sets: {Θ[0]
1 ,Θ

[0]
2 , . . . ,Θ

[0]
K } using some method (e.g. Algorithm 3.2)

2. For each Θ
[0]
i , run a timing separation algorithm (this can be paralleled):

(a) Best guess: A2.1, A2.2, A2.3, or A2.4

(b) AM use any of (a) internally

(c) EMV use any of (a) internally

3. For theK parameters, record the output assignment and compute (2.2.1). Pick the final output as the assig-
nment that corresponds to the largest (2.2.1).

2.3.4 Performance with unknown parameters

In the same fashion as Section 2.2.2, we check the algorithms for unknown parameters. Specifically, we will look at
use A2.2 in AM and EMV with parameter initialization through Algorithm 3.2. As in the second half of Section 2.2.2,
we generate a total of 100 impulses from two synthetic sources with mean impulse spacings 1-100 and standard
deviations of 0.1 and report the error averaged over 100 trials. Again, we use Pe as a performance metric. However,
here source numbering is arbitrary for all outputs, so we use the minimum Pe over all permutations of labelings.
We compare the error rates when the parameters are estimated (AM, EMV, and best guess) with the error rates
when the actual parameters are used (Section 2.2.2).

The results are summarized in Figure 2.3.1. Figure 2.3.1a directly compares all of the different cases by mapping
(µ1, µ2) 7→ µ1 − µ2 and averaging the error rate along like indices for ease of interpretation. To be specific, A2.2
with known parameters is the best at P̄e = 0.0025067, while for AM and it is P̄e = 0.0093941 and P̄e = 0.0089238
respectively, which are both slightly better than best guess which has P̄e = 0.011988. As should be expected,
the algorithm that uses the actual Θ does better than when we try to estimate Θ from the data. Fortunately, the
average error rate when it is estimated is still low. Also, as we hoped, AM and EMV show improvement over the best
guess, but the amount is so small that it is not a convincing argument to use AM or EMV. However, this is partially
because the parameter initialization is generally doing a very good job of estimating the actual parameters, so there
is not much improvement to be made. And then when the initialization gives a poor estimate, it is too far off such
that AM and EMV cannot recover. To understand this more, consider Figure 2.3.1b.

Figure 2.3.1b gives a more detailed view of the error rates for AM, but the ones for EMV and the best guess are
very similar. In comparison with Figure 2.2.3, the main difference is elevated error on the edges. More specifically,
the is error is higher approximately where µ1 < 1/2µ2 up to µ1 ≈ 40 and tapering down from its peak till µ1 ≈ 80.
Source numbering is arbitrary, so we also see the same behavior reflected across the µ1 = µ2 line (i.e. 1 ↔ 2).
For simplicity, in the following we will assume µ1 < µ2, but the discussion also applies to µ2 > µ1. Upon closer
inspection, the cause of this error is due suboptimal Θ candidate generations. For example, in a simulation with
Θ = {(9, 0.12), (29, 0.12)}, Algorithm 3.2 lets us pick two distributions from:

(90, 1.09912), (99, 1.10902), (67, 1.25002), (18, 0.68012), (9, 0.58652).

Only the last choice, (9, 0.58652), is close to an underlying distribution. Thus, we do not converge to the proper
parameters or assignments using AM, EMV, or the best guess. For all algorithms, the error rate is 0.11.

This outcome is based on the mechanics of Algorithm 3.2, so refer to Section 3.2 to understand the following
discussion. When µi ≈ 2µj there will be the additive mixing of µi’s peak in the histogram with the first sub-
harmonic ofµj . In efforts to still identifyµi, we came up with the protocol of also picking theK largest peaks above
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the threshold (3.2.3). However, it seems like this is not always good enough when (µ1, µ2) < (40, 20). Potentially,
this is because both sources will have multiple sub-harmonics before Tmax = 100. There will be 7 or more peaks
of which we pick at most 6. The criteria we use may not be sufficient to discern among this many peaks. There is
a drop off from this behavior for µ1 > 40 which can be attributed to a drop in the number of sub-harmonics from
the first source.

This result could mean that either AM and EMV are not effective or we need a better initialization method.
There are many ways to generate Θ[0] as discussed in Section 3. The results here are just from a single method,
and though it proved better than sequential search, Algorithm 3.1, (results not shown) there is still room for im-
provement in the areas mentioned above. These improvements could be made with further heuristics, or we could
consider a different method entirely. In particular, the PRI transform described in Section 3.3 is of interest.
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Figure 2.3.1: Total error probability of AM and EMV (using A2.2) for two sources with sperm whale like impulse
timing.

With regards to the effectiveness of AM and EMV, consider another simulation removing the influence of pa-
rameter initialization. We consider a data set with 100 impulses and Θ = {(20, 0.12), (50, 0.12)} and then check

the outputs of A2.2, AM, and EMV when Θ[0] = {(20, 1.02), (µ̃2, 1.0
2)}) for µ̃2 ∈ [1, 100]. For comparison, we also

compute the error rate for A2.2 given Θ = {(20, 0.12), (50, 0.12)}. This is repeated 100 times for each choice of
µ̃2 and the results are summarized in Figure 2.3.2. As we have seen multiple times already, when given the actual
parameters, the performance is good at an average of 0.0024. There is negligible variation between the different
µ̃2 since we give the actual parameters for every trial and choice of µ̃2. Looking at the other algorithms’ results, we
can see when the parameter estimation breaks down. As expected, all algorithms, do well when µ̃2 = µ2, but they
also approach the known Θ rate for some window around µ̃2 = µ2. Using the best guess, this window is about
−5 < µ2 − µ̃2 < 3; outside of this region, the error is high. Using AM and EMV, we are still able to match known
parameter performance the beyond this to −15 < µ2 − µ̃2 < 12. This window is more than 3× as wide as the
best guess. Though this analysis is just for a specific parameter set, it shows that when the initial parameters are
incorrect, AM and EMV will converge to the right solution more often than the best guess.

In terms of error rate, as noted above, EMV has P̄e = 0.0089238 whereas AM has P̄e = 0.0093941, so we might
conclude that we should always use EMV. However, there is also a difference in the number of iterations required
for convergence. Recall that MI is a constraint enforced to avoid cycling. So for a more thorough investigation, we
repeat the same simulation used to generate Figure 2.3.1, but instead of 50 MI only, we try MI of 20, 50, 100, 200, and
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Figure 2.3.2: For data generated with Θ = {(20, 0.12), (50, 0.12)}, we choose Θ[0] = {(20, 1.0), (µ̃2, 1.0)}) for

µ̃2 ∈ [1, 100]a. With these Θ[0], error rates are for the parameter estimation algorithms compared with best guess
and actual parameter performance and averaged over 100 trials.

500 and count the number of iterations required to converge for each trial. The average number of iterations per
each MI over the entire simulation space are reported in Table 2.3.1. The fact that the average number of iterations
increases (though very slightly in the case of AM) with increasing MI probably indicates that for some parameter
values cycling occurs. AM consistently requires less iterations than EMV, so we recommend using AM when speed
is of greatest importance. Interestingly, the error rates for AM and EMV do not change regardless of MI (the exact
values are listed at the beginning of this paragraph). Thus, when accuracy is the priority, we recommend EMV.
Additionally, this is further evidence that cycling is likely occurring, since although the number of iterations used
is larger, the error rate remains unchanged. This would also indicate that 20 MI would be sufficient to converge to
the best solution, however, we recommend 50 MI to err on the side of caution.

Table 2.3.1: Average number of iterations used for A2.2 over (µ1, µ2) ∈ [1, 100]2, σ = 0.1

MI AM EMV

20 17.4241 18.4211
50 17.4266 19.5757

100 17.4308 21.4983
200 17.4392 25.3435
500 17.4644 36.8791

To show that these algorithms are not limited to separating only two interleaved pulse trains, we also consider
K ∈ {2, 3, 4, 5}. The K means are picked at random form [1, 100] and again σ = 0.1. As before, the interleaved
pulse trains are generated, however, this time,M = 1000. The AM and EMV algorithms are run with A2.3, andPe is
calculated. For each K, this is repeated 100 times (new means generated each time), and the Pe are averaged and

presented in Table 2.3.2. Note this time Algorithm 3.2* is used with σ[0]
k = 1.0. For all algorithms, as K increases,

the error rate also increases. In general, there is more opportunity for error when K is higher. For example, the
only type mistake that can be made with K = 2 is 1 ↔ 2 (i.e. putting a 1 where there should be a 2 or vice versa).
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When K = 3, the types of mistakes are 1 ↔ 2, 2 ↔ 3, and 1 ↔ 3. This is supported by the fact that when the
actual Θ is given, the error rate approximately doubles for every increment ofK.

Table 2.3.2: Average error rates for A2.3 and A3.2* with different numbers of sources with µk ∈ [1, 100], σ = 0.1

K 2 3 4 5

Known 0.0022 0.0044 0.0085 0.0171
Guess 0.0325 0.2257 0.4121 0.4993

AM 0.0306 0.0566 0.1005 0.1355
EMV 0.0307 0.1427 0.3919 0.4538

A second key point here is that forK > 2, the AM greatly out performs the best guess. What this means is that
A3.2* is not generating estimates close enough to the actual parameters for a straight best guess, but AM is able to
converge to the right solution from the poor parameters. Like the results shown in Figure 2.3.2, this is an argument
for using AM. EMV is better than the guess but only marginally so. EMV is suffering from a similar problem to the
best guess, which is contradictory to what we saw in Figure 2.3.2.

To better understand the problem consider we have a single source with T ∼ N (12, 0.12), but we try to model
it with T̂ ∼ N (0.5, 0.12). Suppose τ2 − τ1 = 12, then

T̂ (12) =
1√

2π(0.1)2
exp(− (12− 0.5)2

2(0.1)2
) ≈ 0⇒ log(T̂ (12)) = −∞.

Since we either multiply likelihood or add log-likelihood of subsequent interimpulse intervals, the total computed
likelihood would be 0. The same will hold for multiple sources if the given Θ is a grave mismatch for every source.
Likelihood of all survivor paths will also be 0, this poses a problem for the computation of Pu (2.3.7)

Pu =
0∑

0
=?

It is not well defined what the algorithm should do in this case, however we originally adopted the convention that
it should stop trying to converge to a solution and just output the top path7. As seen in the results, this does not
seem to be the best choice. For the results EMV results in Table 2.3.2, this situation arose 17, 59, and 64 times for
K = 3, 4, 5 respectively which directly corresponds to the increased error. However, this situation is detectable
and AM does not run into the same issue, so when we see that the likelihood of all survivor paths is 0, we can
default to AM. Results for this modified EMV algorithm are shown in Table 2.3.3. The trend is much more similar
to AM except that the rate forK = 5 is higher.

Table 2.3.3: Average error rates for modified EMV with the same setup as Table 2.3.2

K 2 3 4 5

EMV 0.0162 0.0471 0.1178 0.2147

Another alternative is to use a better initialization algorithm to avoid bad Θ[0]. This is the basis for the more
current A3.2. Table 2.3.4 shows some results using the newer method (the experimental setup is the same as be-
fore). Note, the known results are slightly different than the previous table since it is from a different dataset,
however, they are similar enough. As intended, the best guess error rates are much better than the old initializa-
tion. However, AM even with the inferior A3.2* is still better than best guess with the updated version. We would
expect that AM and EMV would be better as well with the new method.

7Since all paths have the same likelihood, the single top or best path could be any of them. We use the first path that is output from the
standard sort function in MATLAB
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Table 2.3.4: Average error rates for A2.4 and A3.2 with different numbers of sources with µk ∈ [1, 100], σ = 0.1

K 2 3 4 5

Known 0.0018 0.0046 0.0076 0.0310
Guess 0.0173 0.0611 0.1211 0.2405

In Section 3.3.4, we present a different initialization method in Algorithm 3.6. A key benefit of this method is
that it also outputs the number of sources, so we delay discussion of its performance until Section 2.4.1.
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2.4 Source number estimation

We next extend our methods to operate when both the number of sources K and Θ is unknown. In fact, in some
applications, knowing the number of sources is as useful as the classification of impulses. For example, PAM single
sensor population density estimation methods, which currently rely on assumptions regarding vocalization rates,
would benefit from a more direct way of counting animals [39].

A standard solution for this type of problem is minimum description length (MDL) [40, 41, 31, 42]. For the
observations y, defineM =(K,Θ,D) as a model. The MDL is the minimum amount of information (e.g. bits)
needed to describe the data using the model. There are many approaches to MDL [41], but in most cases an
asymptotic expression in the number of data pointsM is given by [40]

MDL(M) = −L(y|D,Θ) +
1

2
|Θ| logM, (2.4.1)

where the first term is (2.3.1) and |Θ| denotes the number of parameters Θ contains which is 2K for Gaussians.
Note, Θ and D should be the best estimates from one of the methods in Section 2.3 for a given K, soM is essen-
tially determined just by the number of sourcesK. The model with the lowest MDL can be thought of as the most
efficient or optimal in some sense. Thus we choose the model/number of sources corresponding to the lowest
MDL, that is

M̂ = (K̂, Θ̂, D̂) = arg min
M∈M

MDL(M),

where M is the set of all models. In theory, there can be models forK = 1, 2, . . . ,M , but sometimes, there is some
a priori knowledge of the maximum number of sourcesKmax < M . In such cases, to save on computation time, it
makes sense to test only up toKmax (similarly if there is a minimum there is no need to test below it).

There are other alternatives, to MDL. For example, we can allow AM or EMV to decides how many sources it
needs. That is, try to run AM/EMV withKmax; the resulting assignment may or may not use all the sources allotted.
The number of sources it actually uses can be taken as K̂. We will call this the cluster number method. To see why
this might work, consider if the true Θ = {(30.12), (70, 0.12)}, but we give Θ[0] = {30, 0.12), (70, 0.12), (100, 0.12)}.
It is likely then that the third source given will be ignored and unused. While such a Θ and Θ[0] is a possibility, it
should be noted that none of our algorithms were designed with this cluster number method in mind. A number of
things have to go well for this to work out, namely: How does the initialization (Section 3) behave when given more
than the actual number of sources? However, since we will computeM for Kmax in the process of optimizing via
MDL, it is easy to test cluster number, and for comparative purposes, the results may be interesting.

Additionally, section 3.3.4 describes a parameter estimation method that outputs a Θ̃ from which we can draw
(potentially) multiple Θ[0] from. Each Θ[0] drawn will imply a number of sources K. This K is based on the data,
so it may be larger than the true of sources. Therefore, like with cluster number it is important to keep check
how many sources are actually used in the final classification. Though Θ̃ gives estimates for K directly, the MDL
principle is still used to judge the models generated by the Θ[0] since each will have a different K. That is, for
{Θ[0]} from Θ̃ we apply Algorithm 2.8 but use the negative of (2.4.1) instead of likelihood in step 3.

2.4.1 Performance of MDL

To assess the performance of cluster number and MDL, we consider datasets withK = 1, 2, 3, 4, 5, and then try to
find K̂ with Kmax = 5. Specifically, for each of the values of K, we generate 100 different datasets that each have
1000 impulses. The means of each source are randomly selected from [1, 100] and σ = 0.1 is set. (The setup is
identical to what was used for Table 2.3.2 except for M ) In addition to finding a K̂ for each trial, we also compute

the classification error rate at K̂ and the actual K. Here we use sequential search (Algorithm 3.1) with σ[0]
k = 1.3

for Θ[0] generation and A2.3 inside of AM and EMV. Results are summarized in Table 2.4.1 and Table 2.4.2.
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The source error rate is defined as

EK =

∑
I(K̂ = K)

R
,

where R is the total number of trials. Table 2.4.1, reports this value for eachK for each algorithm and the average
across all values ofK as well (indicated as AVG in the table). For cluster number, atK = 5, we get what we wanted:
given the option to useKmax sources when there are indeedKmax sources and it always usesKmax. However, with
the exception of K = 1, the majority of the time K̂ = Kmax which results in high error rates. For K = 1, Kmax

is not chosen most often, but neither does K̂ = 1 occur with great certainty. Due to its poor performance, we
do not recommend cluster number for source number estimation. Except for K = 5, MDL is always better than
cluster number. And within MDL,EK generally increases withK, though for EMV atK = 5, it curiously decreases
from K = 4. An increase with increasing K is expected. Recall for Table 2.3.2, we discussed how the possibility
for error his higher when K is larger, and more errors typically correspond to a smaller (2.3.1) which reduces the
effectiveness/correctness of MDL. It is difficult to say whether AM or EMV is better with MDL looking at each value
ofK, but considering the average error rate across allK, EMV has a slight edge.

Table 2.4.1: Source number error ratesEK

K = 1 2 3 4 5 AVG

AM: cluster number 0.23 0.82 0.89 0.87 0 0.5620
EMV: cluster number 0.62 0.85 0.93 0.90 0 0.6600
AM: MDL 0 0.05 0.11 0.29 0.25 0.1400
EMV: MDL 0 0.05 0.13 0.24 0.16 0.1160

Table 2.4.2 reports average Pe at the K and K̂ over the trials for the indicated K. Again, AVG indicates the
average across all K. The results here are only for MDL, sinceEK was very high for cluster number. Interestingly,
the error at K̂ is always lower than the error at the actualK. This would seem to indicate that even when we arrive
at the wrong K̂, the number of mistakes is lower than if we had used the proper K. One cause of this is that there
may be a few outlier or problem impulse times. By assigning those impulses to auxiliary sources, the non-outlier
impulses can be assigned without trouble. To support this theory, with the exception of K = 5, most of the K̂
errors are overestimates. In the case of K = Kmax, the only possible error is an underestimate, but even in this
case, we see the same behavior, classification error is lower at K̂ than K. It may be that a source gets hidden
within another. Consider µ1 = µ2 but the impulse times are at 1

2µ1k; the second source started emitting at exactly
halfway between the first two impulses from the first source. Then the data can be modeled as a single source with
µ = 1

2µ1. Another possibility is that there are very few of one or more sources, in which case, there is little to gain
from actually modeling which is also reflected in a low error. For example, if first source has 100 impulses, but the
second only has 3, the and drop in likelihood for not modeling the second source is low.

Furthermore, the assignment error rate is within a reasonable range for all values of K. Note, that the results
are different than Table 2.3.2 because of the initialization method, but the trend is similar. More importantly, the
error rate is low even when EK is elevated (i.e. K = 4, 5). What this means is that in the case of over or under
estimation, only a few impulse are falsely assigned. It is possible that upon closer inspection that these errors could
be corrected, for example by eliminating sources with only a few impulses assigned.

We also repeated the same test using A2.4 instead of A2.3, but have omitted the specific results for simplicity
since the general trends are the same. However, the error is consistently higher for both the K̂ and D̂ using A2.4
(e.g. for AM, the averageEK = 0.14 and Pe = 0.0410 at K̂ using A2.3, whereas using A2.4, the averageEK = 0.24
and Pe = 0.0553 at K̂). Though A2.4 is much better than A2.3 in terms of run time; in our simulations, A2.4
finished the entire test about twice as fast as A2.3. Recall the difference between A2.3 and A2.4 is that when the
best path seems to be converging to a low-likelihood solution (i.e. a path with a STO), A2.4 will stop at that impulse
time and restart assigning sources from the next impulse, whereas A2.3 instead just prunes any paths with STO
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Table 2.4.2: Classification error rates Pe for MDL

K = 1 2 3 4 5 AVG

AM at K̂ 0 0.0061 0.0156 0.0526 0.1305 0.0410

EM at K̂ 0 0.0086 0.0159 0.0579 0.1275 0.0420
AM atK 0 0.0142 0.0338 0.0907 0.1655 0.0608
EM atK 0 0.0114 0.0343 0.0818 0.1399 0.0535

and continues. To some degree, it is expected that A2.3 will take longer than A2.4 since it checks every path for STO
instead of only the best one. The elevated error in A2.4 (which was not seen in Figure 2.2.2) is likely the trade-off it
pays for the increased speed.

We test the method of Section 3.3.4 in a similar way: We consider datasets withK = 1, 2, 3, 4, 5 where the me-
ans of each source are randomly selected from the range [0.5, 3] and σ = 0.1 is set. For this method’s development,
we were more interested in practical results for sperm whales, so here we test on appropriate parameters. Each da-
taset is generated to have M = 100 impulses, and for eachK we consider 100 different trials. For computation of
complex correlation ρ(s) and thresholds we use:

• τj − τj−1 = 0.1; the distance between centers of interimpulse bins

• b = 0.1; the width of the interimpulse bins

• [0.01, 0.5] is the range allowed for estimates of σ

• Pfa = 0.05; the probability of falsely detecting noise

• β = 0.15; user defined scale factor for r(s), regular correlation, threshold

We classify each using AM with A2.3 at a = k3, where use k do denote the number of sources in Θ[0] pulled from
Θ̃. And as mentioned previously, MDL is used to determine which is the best resulting classification from {Θ[0]}.
Here we denote the number of sources used in the assignment output as K̂, and we report the values in Table 2.4.3.
A blank entry indicates 0, and the green entries highlight K̂ = K. Note when K̂ = 0 (denoted with red text), it
means that our method decided that there were no sources with a distinguishable µ. As discussed in Algorithm
3.6, we only make this determination after exhausting the reduction of β. This happens almost only when K = 1
(it happens twice when K = 2). We are unsure as to why this happens, but readjustment of the other tuning
parameters (e.g. Pfa or b) may help. Though examples we check at the same parameters, we note that the peak
corresponding to µ in r(s) is prominent. But considering when we do detect the presence of a source, we note that
K̂ = K is always the majority, though over all theEK is not as good as the MDL method (Table 2.4.1). However, it
is better that the cluster number method. There is room for improvement.

Like with the MDL results, we also look at the average classification error rate Pe as shown in Table 2.4.4. Since
the source number estimation is not as good as MDL, it makes sense that Pe is also higher here than in Table 2.4.2.
Even when we isolate K̂ = K to remove the influence of MDL, the results here are still worse than before. However,
we need to keep in mind the cv for this simulation is higher based on the range of means considered. Another
interesting way to view these results is shown in Figure 2.4.1, the red circles indicate when K̂ = K. Typically the
red dots are at low Pe, and there are more of them when the number of sources are lower.

Overall, Section 3.3.4 initialization does not appear to be as good as MDL. As already mentioned, this is partly
due to the cv being higher. This method has the benefit that it outputs estimates forK, making it much faster than
regular MDL. Perhaps the drop in performance is the trade-off between speed and accuracy. At least, these results
show that the method has some potential to be used with further modifications.
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Table 2.4.3: Source number estimates K̂ for Section 3.3.4 initialization

K = 1 2 3 4 5

K̂ = 0 22 2
1 78 19 5
2 72 27 6 1
3 6 50 12 2
4 9 38 6
5 1 6 20 31
6 1 12 27
7 1 6 18
8 1 4 10
9 2 5
EK 0.22 0.28 0.5 0.62 0.69

Table 2.4.4: Average classification error rate Pe for Section 3.3.4 initialization

K = 1 2 3 4 5 AVG

Pe 0 0.1663 0.2979 0.3479 0.3940 0.2412

Pe when K̂ = K 0 0.0839 0.1418 0.2168 0.2452 0.1375

|{K̂ = K}| 78 72 50 38 31 53.8

Figure 2.4.1: This is the error rate for the different trials using Section 3.3.4 initialization. The location of the circle
indicates K and Pe for the trial. The size of the circle is proportional to the number of trials at the same location.
For reference, a single trial is the size of the circle in the legend. Colors indicate K̂ for the trial as indicated in the
legend.
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2.5 Applications

In the previous sections, we have only presented results from simulated data. Here we would like to provide a few
examples (mentioned in Chapter 1) to demonstrate that the algorithms are effective on real world problems and
data.

2.5.1 Neurons

It is often of interest to extract the activity from a single neuron. This is not possible without extracting a single
neuron from the organism or using very specialized equipment. Even then, such recordings are often not practical
or useful due to the specialized setup. Instead, extracellular methods can be (e.g. an EEG) in which a single elec-
trode picks up all local activity from which individual spikes or action potentials can be identified. The process of
identifying the activity from signal neurons out of the local mixture is referred to as spike sorting [11]. The firing
rate of neurons is how information is communicated between cells. Thus, we hypothesize that the time between
action potentials can be used to sort the spikes. To show that this is possible, we took two intracellular recordings
(from [43]) and extracted the times of of the spikes using a Taeger-Kaiser-based threshold detector (see [44]). Then
we combined the times to create a realistic mixture of extracellular recorded spike times. Specifically, the first neu-
ron has θ = (0.17, 0.022), the second has θ = (0.45, 0.022). The timing mixture of 16 spikes spanning 2 seconds
is shown in Figure 2.5.1. We apply A2.2 given these parameters and achieve the correct assignment. Note that had
we used an actual extracellular measurement, we would have no way of knowing if the resulting classification was
correct or not.
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Figure 2.5.1: (top) A simulated mixture was created using recorded action potentials. (bottom) The assignment
output from A2.2 is exact.

2.5.2 Sperm whales

Recall, separating odontocetes’ click trains is motivation and intended application for this project. Click train ICI
are relatively stable over short periods of time, so they are a good candidate for separation by timing. We will
explore actual click train separation more thoroughly in Chapter 6, but here we present a small example.
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To get a realistic data set for which we had ground truth (which is difficult to obtain in reality) we tested
the algorithm on recordings of a single sperm whale (from [45]) where we mixed the timings (extracted from
the waveform using techniques outlined in [46]) from three different segments. Specifically, the segments with
Θ = {(1.3940, 0.12852), (0.8814, 0.07082), (0.9212, 0.06242)} combined to form a mixture of 116 clicks spanning
roughly 40s shown in Figure 2.5.2. We use the δτ -histogram (Algorithm 3.2) with Tmax = 2.5 and a γ = 0.1; then
we apply AM and EMV (the results are identical) using A2.3. We find there is 8.6% error in the resulting assign-
ment (10 errors out of 116 clicks). Upon closer inspection, the errors are where two clicks very close to each other
their assignments get swapped. This is a reasonable outcome, recall in Section 2.2.2 it was discussed how near
simultaneous emissions can lead to errors.

As a follow up, we also tried A2.2 given the actual Θ. Again the resulting assignment had 8.6% error (10 errors
out of 116 clicks); this is exactly the same error rate as for when we estimated the parameters. While the errors
were not located at the same clicks, they were of the same type. That is, they were when two clicks were nearly
simultaneous. This result is reassuring, it means our parameter estimation algorithm works.

5 10 15 20 25 30 35

mixture

whale 1

whale 2

whale 3

0

1

2

3

s
o
u
rc

e
 n

u
m

b
e
r

estimated assignment

5 10 15 20 25 30 35

time (s)

error

Figure 2.5.2: (top) A simulated mixture was created using recorded sperm whale clicks. (bottom) If the δτ -
histogram is used for initialization, then assignment output from with AM and EMV (the assignments are identical)
using A2.3 has 10 errors which are indicated with a black “x”.

2.5.3 Radar

Unlike the previous two examples, radar pulses and timings are completely generated by humans, therefore if the
right parameters are chosen, any simulation is just as good as a real world recording. Though the choice of PRI and
PRI modulation will depend on the application, PRI is reported in [9] on the order from 1 µs with jitter within 8%
of the PRI. We emulate this by generating 3 sources with Tk ∼ N0(µk, σk) and

Θ = {(50, 0.802), (72, 0.402), (84, 0.042)},

where the values are in µs and µs2. Enough of each source was generated so that when combined, a mixture of
1000 pulses was created.

To show the effectiveness of MDL (Section 2.4), we consider K̂ = 1, 2, 3, 4, 5 and generate models using the
δτ -histogram (Algorithm 3.2 with Tmax = 100 and a γ = 1) and AM with A2.3. We find that K̂ = 3 gives the best
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MDL and the lowest error as shown in Table 2.5.1. More importantly, if we look at the source parameters at K̂ = 3
according to the output assignment at (i.e. calculating ML parameters from the assignment) we get

Θ̂ = {(50.0243, 0.7742), (72.0138, 0.38582), (84.0002, 0.03992)}.

So in addition to detecting the correct number of sources and getting a low classification error rate, we are able to
estimate the parameters within a small margin which. In this sense, the algorithm performs well too.

Table 2.5.1: MDL results for radar example

K = 1 2 3 4 5

MDL 4111.9 2662.1 209.8 379.8 500.9
Pe 0.9990 0.5630 0.0040 0.2210 0.3710
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3
Parameter estimation

As mentioned in Section 2.3.3, our timing separation algorithms require knowledge of Θ (under the assumption
that we at least know the type of Tk) or at least some starting value. Parameter estimation for impulsive sources is
of special interest in Electronic Intelligence (ELINT) where the goal is to secretly determine information of radar
systems based only on the signals they output (like PAM) [5]. This is particularly useful during warfare when op-
posing parties would like to find out what the other is doing with their radars. For example, if the pulse repetition
interval (i.e. interimpulse spacing), PRI , for a radar system is known, the maximum range, Ru, and velocity, Vu,
that system can measure can be determined as

Ru =
PRI

2
c, Vu =

PRI(RF )

2
c,

where c is the speed of light (3× 108 m/s), andRF is the radar carrier frequency in Hz [5].
In this chapter, we will highlight the methods that we have found to be useful for Algorithm 2.8. A difference

from the original formulations is be that we will output multiple Θ rather than just a single best guess. In particular,
the Θ we will extract will be {(µk, σk)}under the assumption of underlying Gaussian timing distributions, but with
some modifications, other parameters can be extracted if needed. Additionally, in this chapter unless otherwise
stated, we will assume that the number of sources K is known. However, some of the methods will not require K
and instead output an estimate forK.

3.1 Sequential search

In the ELINT literature, a sequential search is, given some candidate PRI, going through the impulse times and
removing/assigning all points that are associated with the candidate. This process is repeated for all candidate PRI
or until all points are assigned. Often, this is the final step to validate the PRI candidates generated from some
routine [5, 47, 6]. Our sequential search differs from the typical method in that we also generate the PRI candidates
while we are doing the search. The theory of sequential search is based on assumption of constant PRI modulation;
that is, the interimpulse spacings within each source is exactly µk. When this is not the case, then there are various
heuristic adjustments that can be made. But as we will show, the more the variation, the poorer the performance.
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Our sequential search is based on the assumption that cv is low; that is, there is not a lot of variation, so the
mean is still a very good descriptor of the data. When this is the case, each interimpulse spacing is close to the
mean, and a reasonable estimate for a mean is an actual interimpulse spacing from the data. This is the basis of
how we will generate the PRI candidates.

Without loss of generality assume that the first impulse τ1 is from source 1, then potential interimpulse spa-
cings/mean estimates are µ1,1 = τ2 − τ1, µ1,2 = τ3 − τ1, µ1,3 = τ4 − τ1, . . .where µk,j denotes the j-th potential
mean for source k. To narrow down the list of potential candidates, assume further that a maximum value for inte-
rimpulse spacings Tmax is known, so only consider the interimpulse spacings µ1,j ≤ Tmax. Following the previous
notation in Section 2.2, Tmax = max({Tk}). Furthermore if µ1,j is a good estimate, then we would expect that
there would exist impulse times sn ≈ τ1 + nµ1,j where n = 2, 3, . . .. The theoretical impulse times sn can be
compared with the actual impulse times and extracted if they are within some tolerance. The tolerance should
be related to the average variance, σ̄2. These extracted impulses can then be evaluated using a dummy likelihood
function

Lj(µk,j) =
∑
`=1

log T̃k(τ` − τ`−1),

where we will assume that T̃k is N0(µk,j , σ̄
2). However, this likelihood function only evaluates the fit of the im-

pulses extracted, and the quality of the extraction should also be accounted for. As an example, suppose that we
compute that there should be ten sn for the length of the signal (recall, that if a source has µk, there is approxima-
tely T/µk impulses in time T ), but only two are found/match. The value ofLi(µk,j) may be high, but µk,j does not
fit the data well, so we also consider an extraction completion ratio (ECR)

ECRj =
number of matching impulses

bT/µ1,jc+ 1
,

where 1 is added to the denominator to count the impulse at time 0. The complete mean candidate score (MCS)
is given by

MCSj =
Lj

maxi Li
+ ECRj . (3.1.1)

We normalize Lj by maxLi so that it is on the same scale as the ECR so the contributions are balanced (i.e.
Lj/maxLj ∈ [0, 1] and ECR ∈ [0, 1]). The best candidate is the one with the largest MCS, so it should be chosen
as the candidate µ1. To find a candidate for µ2, remove all the impulse times associated with the first candidate
and repeat the process until K candidates are found. Alternatively, if K is unknown, the process can be repeated
until all impulses have been assigned. It is hard to say which method is better, but ideally, both would occur at the
same time (i.e. find K candidates with all the impulses assigned). Overall performance will depend on the data
and the tuning of tolerance by the user. However, if K is known, using that information should lead to a better
result.

To understand the complexity of this method, note, when we do a sequential search for µ1,j , we need to com-
pare with the remaining M − j impulses. If there is no Tmax, then there are M − 1 mean candidates to check.
So it is an O(M2) operation to get a single mean candidate. We need to do this K times, and though the number
of impulses we need to compare with will decrease with each mean candidate selection, we can still upper bound
the complexity as O(KM2) in the case when K is unknown and we run until every impulse has been assigned).
The take away is that this method is dependent on the number of impulses it has to search, so computational
complexity can be reduced by only considering a portion of the signal. In particular, we choose the time period
[0, 3Tmax]. This range guarantees that there are at least 3 interimpulse spacings per source (under the assumption
that all sources start emitting within [0, Tmax] and do not stop til the end of the recording). A pair of impulses is
needed to form an interimpulse interval, and a third impulse will allow for validation of the interval. If the signal
is not 3Tmax long, the sequential search can still be used, but you can only validate means up to T/3.

So far, we have only discussed how to find candidate means, but for a complete Θ we also need estimates for
σk. One option is that since we actually end up with impulses assigned to sources at the end, to use ML estimation
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(2.3.3) for σk (or any other parameter you might need). However, since we only consider a small portion of the
signal, there may only be a few samples making (2.3.3) inaccurate. Instead, recall we began with the assumption
that σk � µk which means we have some notion of what σk is. For this Gaussian distributions, the variance affects
the scale and the width. If it is overestimated, the distribution essentially becomes a distance measures from the
means, and impulses will be assigned to groups of similar interimpulse spacing (like in k-means clustering). Thus
there is little consequence if the variance is overestimated, so long as we do not flatten the distribution completely.
Therefore we pick σk to be ≈ 10σ̄, where σ̄ = 1

K

∑
k σk or some approximation of this; in simulations, this has

shown to give satisfactory results (discussed in Section 3.1.1).
This method is purely heuristic, so there is no guaranty that even if this process is followed, a suitable Θ will

be generated. To improve our chances, instead of just considering the mean candidate with the top score (3.1.1),
consider b of them to generate multiple starting parameter sets. That is, there will be many potential µ1, generate
a Θ for each of µ1,j corresponding to the top b MCSj . Through experimentation, we found b = 3K to be a
sufficient. The entire process for generating multiple Θ is outlined in Algorithm 3.1.

Algorithm 3.1 Sequential search parameter initialization algorithm

Given the observed impulse times {τi ∈ [0, 3Tmax]} for K sources, to generate b Θ, starting with k = 1 do the
following

1. Assume that τ1 is from source k and compute the interimpulse spacing to the other impulses (i.e. τi − τ1,
∀i > 1 ). Consider all interimpulse spacings< Tmax as mean candidates {µk,j}.

2. For each mean candidate µk,j

(a) Compute {sn = τ1 + nµk,j}, and

(b) Starting from the first τn select the τi such that |τi− sn| < ε, where ε is some user-defined tolerance. If
no τi can be found, stop and collect the values found into {τ∗i }.

i. Compute Lj(µk,j) on {τ∗i } andECRj = |{τn}|
|{τ∗

i }|
, where here | · | denotes the cardinality of the set.

3. Compute (3.1.1) for each candidate.

(a) If at the actual first impulse, save the top b candidates as µk for each of the respective b starting points.
Proceed to the next step with just one of the b starting points.

(b) Otherwise, just save the top candidate as µk.

4. Remove {τ∗i } corresponding to µk and increment k. Renumber the remaining impulses so that the first one
is τ1.

5. Go back to step 1.

(a) Keep repeating until k reachesK, this will complete one Θ[0].

(b) After a starting parameter set is completed, go on to complete the next set until all b are generated.

3.1.1 An example sequential search

Figure 3.1.1 shows a mixture of two impulse trains with Tk ∼ N (µk, σ
2
k) = (10, 0.12) and (30, 0.12). We will use

these impulse times to illustrate the sequential search. The next step is to identify the candidates; Figure 3.1.2
shows the first few candidate µ1 (there may actually be more than shown depending on Tmax). Then, we test the
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first candidate µ1,1 = 1.77 to see if there are any clicks at the multiples of it. As shown in Figure 3.1.3, we do not
find any beyond the 2 impulses that generated µ1,1 so,

ECR1 =
2⌊

61.74
1.77

⌋
+ 1

=
2

35
= 0.06.

To be complete, we should compute the entire MCS1, but already we see that ECR1 is very low, which indicates
of a poor match/candidate.
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Figure 3.1.1: Impulse times from a sources with (µk, σ
2
k) = (10, 0.12) and (30, 0.12).
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Figure 3.1.2: First 5 mean candidates identified out of the impulse times.

To contrast, we will do the same for the next candidate µ1,2 = 10.02. The results of the check are shown in
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Figure 3.1.3: We check kµ1,1 ± ε sequentially for k = 2, 3, . . . to see if there are any clicks corresponding to this
mean. The values of kµ1,1 ± ε are indicated by boxes. No match is found at 2µ1,1, so we stop the search.

Figure 3.1.4. In this case we find 5 additional impulses that match µ1,2, so

ECR2 =
2 + 5⌊

61.74
10.02

⌋
+ 1

=
7

7
= 1.0.

This is the best ECR possible, so even without computing MCS2, µ1,2 seems like much a better candidate than
µ1,1. According to the algorithm, from here we would get the MCSj for the other µ1,j . But when we come back
to µ1,2, we would remove all the green pulses and just be left with the red ones to extract another value using the
same process.

Based on these 10 impulses with Tmax = 100, ε = 1 andK = 2, the 3K sets of means output are

µ1, µ2 =



10.02, 29.98

20.17, 29.98

30.10, 29.98

50.29 29.98

60.30, 29.98

61.74, 58.53

We see that the first choice is quite close to the actual means of 10, 30; it is well within the range AM and EMV can
safely operate in (Figure 2.3.2).

Through this example, to some degree, we have shown that this method has the potential to work. Since we do
not need to find the means exactly for successful separation, measuring the difference from the actual parameters
for each candidate set is only partially instructive. Instead, it is better to observe its performance in conjunction
with the methods in Chapter 2. In particular, recall Table 2.4.2 where we used A2.3 and AM and EMV on data sets
withK = 1, 2, 3, 4, 5, and we were able to to achieve low error rates.
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Figure 3.1.4: We check kµ1,2 ± ε sequentially for k = 2, 3, . . . to see if there are any clicks corresponding to this
mean. The values of kµ1,1 ± ε are indicated by boxes. Several matches are found.

3.2 δτ -histogram

Here we will describe, the δτ -histogram [5] with some adjustments for our application/system model. For a set of
impulse times of interleaved impulse trains, consider every possibly pairing and compute the interimpulse spacing
for each. This is anO(M2) operation. In application, the maximum spacing is usually known, making it anO(M)
operation. Forming a histogram of interimpulse spacings, peaks emerge at the actual interimpulse spacings for
each source (and their multiples). We can extract an estimate for Θ from these histogram peaks.

Conveniently, it can be shown that this histogram is equivalent to the integral over the histogram bins of the
autocorrelation of the impulse time function [5]. As a consequence of working on a digital system, we will form the
autocorrelation on a sampled impulse time function and get the same result as if we computed the autocorrelation
and then integrated. Specifically, for the set of impulse times {τi}Mi=1, the impulse time function is

f(t) =
∑
i

δ(t− τi), (3.2.1)

a signal with an impulse at each impulse time. Its autocorrelation is

r(s) =

∫
f(t)f(t− s)dt

=

∫ ∑
i

δ(t− τi)
∑
j

δ(t− τj − s)dt.

The integrand is only non-zero when the difference between impulse times i, j is equal to the lag s

s = τi − τj .

So we can rewrite
r(s) =

∑
i

∑
j

δ((τi − τj)− s). (3.2.2)
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Each r(s) is effectively a count of the number of pairs of impulse times with spacing s. If we define the start and
end points of the n-th bin as (xn, yn), then we can write the histogram as

h[n] =

∫ yn

xn

r(s)ds.

The sampled version of f(t) is defined as

f [n] =

∫ (n+1)γ

nγ

f(t),

where γ is the chosen sampling interval. That is, f [n] is the number of impulses that lie in [nγ, (n + 1)γ]. The
corresponding autocorrelation is calculated using sums instead of integrals

r[s] =
∑
n

f [n]f [n− s]

Note the n and the lag s here are sample indexes and not time. Multiplying the index by γ gives time. Since a
binning operation was done when f [n] was generated, a lag of s refers not only to a difference of sγ, but actually
encompasses the range of differences (s− 1)γ to (s+ 1)γ. That is

r[n] = h[n] =

∫ (n+1)γ

(n−1)γ

r(s)ds.

In general, r[s] should be computed for s = 1, 2, . . . , bT/γc. If a maximum possible interimpulse interval, Tmax, is
known then r[s] only needs to be computed up to the corresponding index. The same applies for a lower bound
if a minimum possible interval is known. The choice of γ is an important topic discussed after the method is
completely described.

A large histogram peak indicates that the interimpulse interval repeats many times. However, sub-harmonics
(i.e. integer multiples of the actual pulse spacing) also show up as peaks, so picking the highest peaks for the µk
is not always the best choice. Instead, we should pick peaks that are closest to the expected histogram height. In
general, the height of a histogram is the total number of samples multiplied by the probability a sample falls within
the range of a bin. LetF(τ) describe the mixture of distributions. For example,

F(τ) = α1T1(τ) + α2T2(τ) + · · · ,

where αk are the mixing proportions. Then the theoretical height of bin swould be

Γ(s) = M

∫ (s+1)γ

(s−1)]γ

F(τ)dτ.

But we do not know the Tk(τ) or the αk,so instead we make the simplifying assumption that the Tk(τ) are uni-
modal (e.g. Gaussian) with disjoint peaks (i.e. they do not overlap). This means that if there is a peak in bin s, we
assume that a µk occurs at the center (i.e. µk = sγ). Then the theoretical height of this peak is

Γ(s) =
T

sγ

∫ (s+1)γ

(s−1)]γ

Tk(τ)dτ. (3.2.3)

The factor before the integral is the approximate number of impulses from source with µk during a time period
of T from 2.2. In the case that two or more Tk(τ) overlap at s, then (3.2.3) would underestimate the height of the
histogram. However, a conservative estimate is preferable. To compute (3.2.3), we need to know Tk. We already
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assume µk = sγ but we also need σk if Tk are Gaussian. Variance is a measure of the spread of the data, and
therefore is related to the width of the peaks. We measure peak width as the distance between its boundaries at
half its height1 and use this as an estimate of σk (it is better to overestimate σk slightly than to underestimate it).
Given a (µk, σk), the integral in (3.2.3) can be computed.

Since we pick a conservative Γ(s), we expect that the actual µk should have peaks that are near but surpass
it. Thus, we consider the peaks that are greater than Γ(s), and then pick the K peaks that are closest to Γ(s) as
our estimates. This gives some protection against sub-harmonics. Sub-harmonics occur because the n-th order
difference of an impulse train with interimpulse spacing µk will generate T/µk − n interimpulse spacings of nµk.
The threshold at the same point s = nµk

γ is Γ(nµkγ ) ≤ T
nµk

. Under most circumstances T
µk
≥ 1, so T/µk−n� T

nµk
.

That is, the height of a sub-harmonic peak is much greater than Γ(s). Thus picking the peaks closest to Γ(s) (using
a simple difference measure) excludes most sub-harmonics. For example, Figure 3.2.1a shows a histogram and
threshold for a source with µ = 5. We see the most prominent peaks occurs at µ and its sub-harmonics, but peaks
at sub-harmonics are much farther away from Γ(s) than the peak at µ is.
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(a) Histogram and threshold for a single source T ∼ N 0(5, 0.12).
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(b) Histogram and threshold for 2 sources: T1 ∼ N0(5, 0.12) and
T2 ∼ N0(10, 0.12).

Figure 3.2.1: Example δτ -histograms with γ = 0.5 and Tmax = 20 for M = 100. The black arrows indicate the
distance between the peaks and Γ(s).

It is possible to have a µj that happens to be an integer multiple of µk. In this case, contribution from µj
would add to the peak corresponding to a sub-harmonic of µk. This is illustrated in Figure 3.2.1b which has two
sources: µ1 = 5 and µ2 = 10. As before, the sub-harmonics of µ1 are far from Γ(s), but this time the peak at
τ = 10 is especially high (higher than the original sub-harmonic value) due to the addition of the impulses from
the second source. To avoid ignoring the potential conflation between µj and the sub-harmonic of a µk, we pick
theK farthest from Γ(s) in addition to theK closest peaks. Thus, we have 2K potential peaks and extract µk and
σk from their position and width, respectively. We consider every combination without replacement as a potential
Θ. If there are < K peaks that surpass Γ(s), multiple sources might have the same µ. In this case we consider
all combinations with replacement for the potential Θ. The entire process for generating multiple Θ from the
observed impulse times is outlined in Algorithm 3.2, which we refer to as A3.2.

If γ is too large, then all data points will fall into the same bin and there will be either one or no peaks. On the
other hand, if γ is too small, data from the same distribution will be fractured into many bins and there will be

1Please refer to width (half height)
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Algorithm 3.2 δτ -histogram parameter initialization algorithm

Given the observed impulse times {τi} for K sources and Tmax, to generate multiple Θ with precision γ, do the
following

1. Form a impulse time series f [n] that has 1’s at the impulse times and 0’s everywhere else

(a) The corresponding time indexes are bτ1/γc to bτM/γcwith each point being γ apart.

2. Compute the autocorrelation, r[s], of f [n] for 0 < s <
⌊
Tmax

γ

⌋
.

3. Find the peaks of r[s] and their widths.

4. For each peak compute Γ(s) according to (3.2.3) using the corresponding lag of each peak as µk and the
width as σk. This (µk, σ

2
k) for the peak are the parameters collected into Θ if the peak is chosen.

5. Compare the height of the peaks with Γ(s). Considering the subsets that are greater than Γ(s):

(a) If there are no peaks that pass, adjust γ and start again.

i. Increase γ if there were many small peaks that did not pass

ii. Decrease γ if there were very few peaks that did not pass (or no peaks at all)

(b) If there< K peaks, then take all combinations with replacement of these peaks as the output.

(c) Otherwise, consider the difference r[s]− Γ[s]. Choose theK peaks that have the lowest difference and
the K peaks that have the highest difference. Take all combinations without replacement of these 2K
peaks as the output.

many small peaks (e.g. Figure 3.2.2). Literature suggests setting γ to the approximate jitter (i.e. σk) [5, 22]; this is
consistent with our simulation observations. In practice, σk are unknown and γ is tuned to the observations. One
possibility is to consider many values of γ, apply A3.2 and a timing separation algorithm for each of the generated
Θ, and choose the result with largest (2.2.1) as the final output. However, this can be extremely computationally
costly. An alternative is to judge a candidate histogram and adjust γ if not satisfactory. For example in Figure 3.2.2,
even though γ is too small, we can clearly see that there are 4 significant peaks of which one probably corresponds
to µ (if we increase γ, we will get something like Figure 3.2.1a). Therefore, we suggest starting with a small γ and
increasing it until the number of peaks that pass Γ(s) is approximately

K∑
k=1

⌊
Tmax

µ̂k

⌋
,

where µ̂k are the locations of peaks greater than Γ(s) indexed in ascending order (i.e. µ̂1 < µ̂2). If {σk} do not
vary much between observations, then there is no need to tune γ every time.

As we saw, the δτ -histogram approach is complicated by the occurrence of sub-harmonics as peaks [23]. We
minimize this complication by picking peaks based on their distance from Γ(s). Our estimates serve as input to the
pulse-separation algorithms, which will likely reject the sub-harmonics. Consequently, although computational
cost is increased, performance is not compromised by incorrectly picking sub-harmonics.

3.2.1 Alternate peak picking (*)

Before the Algorithm 3.2 was developed, there was an earlier version which we used to generate some of the results
presented in this paper. Ideally, we everything would use the more current δτ -histogram method but did not redo
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Figure 3.2.2: δτ -histogram with γ = 0.01 and Tmax = 20 for a single source T ∼ N 0(5, 0.12) andM = 100.

simulations for everything (since we were focused on finding better alternatives). The method is very similar to
the one just described, the main difference is in the selection of candidate peaks and the σk are set to 10σ̄ rather
than being extracted from the peak widths.

The difference in peak selection is that instead of the heuristics used in step 5 of Algorithm 3.2 to avoid sub-
harmonics, we just consider the top b, a user defined integer, unique sets of highest peaks. Specifically, if there are
c peaks each at a height of v1, v2, . . . , vc. There are

(
c
K

)
possible combinations. For each combination, the score is

sum of the peaks values. For example, if the combination of peaks are {1, 2, 10}, then the score is v1 + v2 + v10.
We choose the b combinations with highest scores. Through experimentation, we found b = 3K to be a sufficient
just like with the sequential search.

When referring to this method we will use Algorithm 3.2* to distinguish it from the more current version des-
cribed above.

As far as performance goes, there are a few tables in Section 2.3.4 that present results from Algorithm 3.2* with
acceptable error rates, but for direct comparison with Algorithm 3.2, consider Table 3.2.1. The table compares Pe
averaged over 100 trials using best guess for the two initialization methods for K = 2, 3, 4,5 with µk ∈ [1, 100],
σ = 0.1. As intended, Algorithm 3.2 is much better than Algorithm 3.2* in every instance.

Table 3.2.1: Average error rates over 100 trials for best guess with A2.4 and A3.2* and A2.4 with different numbers
of sources with µk ∈ [1, 100], σ = 0.1.

K 2 3 4 5

Algorithm 3.2* 0.0241 0.1233 0.2225 0.3377
Algorithm 3.2 0.0173 0.0611 0.1211 0.2405

3.2.2 CDIF and SDIF

As mentioned previously, there are ways to deal with the sub-harmonics more directly. We would be remiss if we
did not mention the cumulative difference (CDIF) histogram [47] and the sequential difference (SDIF) histogram
[6]. There are a number of details to CDIF and SDIF, but essentially there are three steps:
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1. Form a difference histogram or histograms and identify a candidate interimpulse interval

2. Remove all impulses associated with candidate using a sequential search (something like Algorithm 3.1)

3. If impulses remain, go back to step 1 and repeat with the remainder.

There are two main problems with this method. First, it requires a sequential search which, as discussed earlier,
is designed for exactly periodic sources and does not fair well with large variance or jitter. Second, also due to
the sequential searching, the end result of CDIF and SDIF is a complete assignment of impulses in addition to the
source interimpulse intervals. Applying Chapter 2 after these methods would be redundant. For this reason we did
not explore their use for parameter estimation.

3.2.3 Complex autocorrelation

Another option for reducing (sub)harmonics2 is using the magnitude of complex autocorrelation [5, 23] in place
of (3.2.2). The complex autocorrelation of function f(t) is defined as

ρ(s) =

∫
f(t)f(t− s) exp(2πj

t

s
)dt, (3.2.4)

where j =
√
−1. It is just r(s) with a complex exponential factor, but this factor will help to reduce the harmonics.

Again let f(t) be the time signal (3.2.1), so we can write

ρ(s) =

∫ ∑
i

δ(t− τi)
∑
j

δ(t− s− τj) exp(2πj
t

s
)dt.

The product of the sums are only non-zero when

t = τi ∩ t = s+ τj ,

so

t− τi = t− s− τj
τi = s+ τj ⇔ s = τi − τj .

Thus we can rewrite
ρ(s) =

∑
i

∑
j

δ(s− (τi − τj)) exp(2πj
τi
s

),

where we have been a bit sloppy with notation by dropping the integral and are substituting

δ(x) =

{
1 x = 0

0 x 6= 0
(3.2.5)

which is something like the Kronecker delta function.
To see why this reduces the peaks of harmonics, let us first reconsider (3.2.2) and the size of its peaks. The

following argument is adapted from [22, 23]. Let

f(t) =

M−1∑
n=0

δ(t− nµ). (3.2.6)

2Technically speaking, we mean sub-harmonics, but we may use harmonics in its place for succinctness.
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That is, there is an impulse at every; we have a signal with single periodic source with no jitter. Then we have

r(s) =

M−1∑
n=0

n−1∑
m=0

δ(s− (nµ−mµ)).

In the more general case, the second sum would go from 0 to M − 1 as well, but for this problem we do not care
about s ≤ 0, so we just omit those terms from the summation. Furthermore define ` = n−m so

r(s) =

M−1∑
n=0

n−1∑
m=0

δ(s− (n−m)µ)

=

M−1∑
`=0

(M − `)δ(s− `µ). (3.2.7)

Note that this function is only non-zero at s = `µ. To see how this expression is derived, note that ` = n−m = 1
corresponds to the first order difference. (` = 0 ⇔ s = 0 is trivial and not interesting; it corresponds to a
difference of 0 and just gives the total count of impulses r(0) = M ) That is, the difference between adjacent
impulses is exactly µ, and there are exactly M − 1 first order differences (you need a pair of impulses per each
difference). Following the same logic, ` = 2 corresponds to the second order difference of 2µ, the first harmonic,
of which there areM−2. In general, for the `-th order difference/`−1-th harmonic, there areN−` corresponding
interimpulse intervals. Recall, we talked about this earlier (but not so precisely) when we reasoned to picking peaks
closest and farthest from the threshold.

Now let us contrast this with the the complex autocorrelation for the same source (3.2.6).

ρ(s) =

M−1∑
n=0

n−1∑
m=0

δ(s− (nµ−mµ)) exp(2πj
nµ

s
)

=

M−1∑
n=0

n−1∑
m=0

δ(s− (n−m)µ) exp(2πj
n

n−m
). (3.2.8)

In the second line, due to δ(s−(n−m)µ), we may comfortably substitute s = (n−m)µ. Then again let ` = n−m,
where every value of ` indicates the level of the difference or harmonic level. We want to rearrange the sum in terms
of ` like (3.2.7), but the added complex exponential is not only in terms of ` making direct simplification difficult.
Recall (3.2.5), so the sum is essentially the sum of the complex exponential for them,n 7→ `, n. Therefore consider
Table 3.2.2, where we compute the complex exponentials for ` = 1, 2, 3. For each `, there are exactlyM − ` unique
pairs of m,n. Notice for ` = 1, the complex exponential is always 1, so ρ(µ) = M − 1 just like (3.2.7). This is
means that peak/count of the true interimpulse interval is unchanged. The situation is more complex for ` > 1.
For ` = 2, observe that all terms are 1 or -1, so the sum is either 1 ifM is even or 0 ifM is odd. That is

ρ(2µ) =

{
1 mod (M, 2) = 0

0 mod (M, 2) = 1
,

where mod (a, b) evaluates to the remainder of a/b. Something similar hold for ` = 3, but instead of 2 terms, it
requires 3 to sum to 0. That is,

ρ(3µ) =


1 mod (M, 3) = 0

1 + exp( 2π
3 j) mod (M, 3) = 1

0 mod (M, 3) = 2

.
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This is all due to the periodic nature of the complex exponential. In fact, we can generalize the result to the follo-
wing

ρ(`µ) =



1 mod (M, `) = 0

1 + exp(2πj 1
` ) mod (M, `) = 1

1 + exp(2πj 1
` ) + exp(2πj 2

` ) mod (M, `) = 2
...

...

1 + exp(2πj 1
` ) + exp(2πj 2

` ) + · · ·+ exp(2πj `−2
` ) mod (M, `) = `− 2

0 mod (M, `) = `− 1

=

mod (M,`)∑
n=0

exp(2πj
n

`
).

To better understand this quantity, consider Theorem 3.1 and its Corollary 3.1.

Theorem 3.1. 3Let pn = e2πj nN for n = 0, 1, 2, . . . , N − 1 be a set of N evenly spaced points around the unit circle
in the complex plane (i.e. the primitive roots of unity on the complex plane). For any N > 1, the sum of N evenly
spaced points in the complex plane around the unit circle is 0. That is

N−1∑
n=0

e2πj nN = 0.

Proof. Let r = e
2πj
N , then realize we have a geometric series with a well known result for the sum of the first N

terms:
N−1∑
n=0

rn =
1− rN

1− r
.

Then if we plug in our r,

N−1∑
n=0

e2πj nN =
1− (e

2πj
N )N

1− e 2πj
N

=
1−

1︷︸︸︷
e2πj

1− e 2πj
N

=
0

1− e 2πj
N

= 0.

Note, we can be sure that the denominator is non-zero since it is requiredN > 1.

Corollary 3.1. The maximum magnitude of the sum of the first 0 < M < N points occurs whenM = N
2 . That is

arg max
M

∣∣∣∣∣
M−1∑
n=0

e2πj nN

∣∣∣∣∣ =
N

2
,

and correspondingly

max
M

∣∣∣∣∣
M−1∑
n=0

e2πj nN

∣∣∣∣∣ =

∣∣∣∣∣∣
N
2 −1∑
n=0

e2πj nN

∣∣∣∣∣∣ =
2√

2− e−2πj 1
N − e+2πj 1

N

.

Note,M is an integer so ifN is odd, then the maximum will occur atM =
⌊
N
2

⌋
and/orM =

⌈
N
2

⌉
.

3This is not a novel result, but I could not find a suitable reference, so I restated it here.
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Proof. Use the same geometric sum result

M−1∑
n=0

e2πj nN =
1− (e

2πj
N )M

1− e 2πj
N

=
1− e2πjMN

1− e2πj 1
N

.

The magnitude of a numberA is defined
|A| =

√
AA∗,

but since the square root is a monotonic function, maximizing its argument, AA∗, is the same as maximizing the
square root. Therefore, we wish to maximize(

1− e2πjMN

1− e2πj 1
N

)(
1− e2πjMN

1− e2πj 1
N

)∗
=

(
1− e2πjMN

1− e2πj 1
N

)(
1− e−2πjMN

1− e−2πj 1
N

)

=
1− e−2πjMN − e+2πjMN + 1

1− e−2πj 1
N − e+2πj 1

N + 1

=
2− e−2πjMN − e+2πjMN

2− e−2πj 1
N − e+2πj 1

N

as a function of M for a given N > 1 under the constraint that M < N . Then note, the denominator does not
depend onM , so we can just consider the numerator for our objective function

J(M) = 2− e−2πjMN − e+2πjMN .

Note M is also restricted to integers, but let us first try to solve it without constraints. With this relaxation, we will
take the derivative and set to 0 to find the critical points.

J ′(M) = −(−2πj
1

N
)e−2πjMN − (2πj

1

N
)e+2πjMN

= (2πj
1

N
)(e−2πjMN − e+2πjMN ).

Then solving for zero

J ′(M) = 0 = (2πj
1

N
)(e−2πjMN − e+2πjMN )

0 = e−2πjMN − e+2πjMN

e+2πjMN = e−2πjMN . (3.2.9)

Taking the natural log of both sides we get

2πj
M

N
= −2πj

M

N

which can only be satisfied if M = 0. This is a trivial and uninteresting result, as this corresponds to summing no
terms, resulting in a sum of 0. For magnitude 0 is the lowest value, so this is a minimum. However, this is not the
only solution to (3.2.9). The complex exponential is periodic on the interval θ ∈ [0, 2π); that is,

ej(θ+2kπ) = ejθ

for any integer k (positive, negative, or zero). This means we can multiply by either side of (3.2.9) by ej2πk without
invalidating the equality. First multiply the LHS by ej2π(1), this gives

e+2πjMN = e−2πjMN ej2π = ej(2π−2πMN ).
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Equating the exponents (i.e. we take the natural log of both sides)

j2π
M

N
= j(2π − 2π

M

N
)

M

N
= 1− M

N
2M

N
= 1

M =
N

2
.

Next we compute the second derivative and plug the value in to see if it is a maximum or a minimum.

J ′′(M) = (2πj
1

N
)((−2πj

1

N
)e−2πjMN − (+2πj

1

N
)e+2πjMN )

= −(2πj
1

N
)2(e−2πjMN + e+2πjMN )

= −j2 4π2

N2
(e−2πjMN + e+2πjMN )

=
4π2

N2
(e−2πjMN + e+2πjMN ).

Now plug inM = N
2

J ′′(
N

2
) =

4π2

N2
(e−2πj

N
2
N + e+2πj

N
2
N )

=
4π2

N2
(e−πj + e+πj)

=
4π2

N2
(−2) = −8π2

N2
.

Recall, the second derivative test states that if we have function f(x) and a critical point c such that f ′(c) = 0,
then the critical point corresponds to a local maximum if f ′′(c) < 0 or a local minimum if f ′′(c) > 0. This
follows directly from the result that a function is concave down if f ′′(x) < 0 and concave up if f ′′(x) > 0. When
f ′′(x) = 0, there is a change in concavity, an inflection point. Above we see that J ′′(N2 ) < 0, so it corresponds to
a local maximum. Furthermore, we can verify thatM = 0 is also a minimum since

J ′′(0) =
4π2

N2
(e0 + e0) =

8π2

N2
> 0.

These two solutions cover the points within our range (i.e. M < N and N > 1), but to be sure consider the
general case where we multiply the LHS of (3.2.9) with ej2πk. After taking the natural logarithm of both sides we
have

2πj
M

N
= 2πkj − 2πj

M

N
M

N
= k − M

N
2M

N
= k

M =
kN

2
.
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Then for k = 2,M = N which violates the condition (and also takes us back to Theorem 3.1). Since the solution is
obviously monotonically increasing with respect to k, k = 3, 4, . . . will also violate the condition. To be complete,
the negative values of k can also be ignored since they will giveM < 0 which is not of any interest.

These two results give us the bounds for the sum∣∣∣∣∣∣
mod (M,`)∑
n=0

exp(2πj
n

`
)

∣∣∣∣∣∣ ∈
[

0,
2√

2− e−2πj 1
` − e+2πj 1

`

]
.

It is not easy to understand how the maximum behaves as a function of `, so we plot it for a some values of ` in
Figure 3.2.3. It is approximately linear with a slope of 0.3147. That is,

2√
2− e−2πj 1

` − e+2πj 1
`

≈ 0.3147`.

Note, this does not come from the linear regression line on these 100 points. Instead we notice the intercept
appears to be 0, so we simply compute the slope as the mean of difference between adjacent points (points are all
exactly 1 unit apart). When actually computed, regression line is

0.3175`+ 0.0661

withR2 = 0.99998. The crude approximation hasR2 = 0.9994. The difference in accuracy is very marginal, so we
use the simpler approximation, 0.3147`, in further discussions.
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Figure 3.2.3: Plot of the worst case harmonic height for different values of `. The red dotted line has a height of `.

To clarify further, consider the complete expression for the complex autocorrelation is then

ρ(s) = (M − 1)δ(s− µ) +

M−1∑
`=2

mod (M,`)∑
n=0

δ(s− µ`) exp(2πj
n

`
). (3.2.10)
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(Again ` = 0⇔ s = 0 is trivial and ρ(0) = M , but we omit it in the sum as it follows a different form) We compare
this to (3.2.7) with some slight rearrangement

r(s) = (M − 1)δ(s− µ) +

M−1∑
`=2

(M − `)δ(s− `µ).

As noted earlier, in both cases, the first term is the same. However in r(s) the height of the `-th harmonic isM − `,
whereas with ρ(s), the height is |

∑ mod (M,`)
n=0 exp(2πj n` )| which is approximately bounded with 0.3147`. The

heights of harmonics for r(s) are decreasing with `, and the heights of harmonics for ρ(s) are decreasing with `.
They intersect at approximately

0.3147` = M − `

` =
M

1.3147
≈ 0.7606M.

That is, the harmonics in ρ(s) will be lower than harmonics in r(s) for ` < 0.7606M . Above this threshold, there is
no guaranty. But due to the nature of mod (M, `), the values above the threshold are close toM − `. To see this,
consider Figure 3.2.4 which displays the heights of peaks for regular correlation in red and complex correlation in
blue (the worst case for the complex correlation is also shown as a green dotted line). Only when ` > 0.7606M ,
then |ρ(s)| ≈ r(s), otherwise |ρ(s)| � r(s). Furthermore when ` > 0.7606M , r(`µ) < 0.2394M . For most
interesting datasets, this will be considerably less than r(µ) = M − 1; meaning that if present, these harmonic
peaks will be insignificant in comparison to the true mean impulse spacing. Additionally, it is unusual to care
about very high order harmonics. For example, if the true interimpulse interval is 10 andM = 1000, the 0.7606M
harmonic corresponds to an interimpulse interval of 760. In most experiments, interesting values would be around
the same scale (e.g. perhaps interimpulse spacings of 1-100 for this example).
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Figure 3.2.4: This is the expected heights of the `-th harmonics for r(s) (red) and ρ(s) (blue) at the listed M for a
purely periodic source.Worst case harmonic height shown as green dotted lines for the different `.

Note for (3.2.6), we made the assumption that the source started emitting at t = 0, for a single source, there is
no problem with this assumption since we can always shift the time origin to where the first impulse is. However,
the same cannot be said if there are multiple sources; under the assumption of no overlap, they will not all start at
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the same time, and thus the first click from all sources cannot be adjusted back to time 0. Therefore, we need to
assert that the claims made above will hold for the more general case of (3.2.6)

fφ(t) =
∑
n

d(t− (nµ+ φ)),

where here φ > 0 is some arbitrary delay (often called phase). Using this, we recompute (3.2.7)

r(s) =

M−1∑
n=0

n−1∑
m=0

δ(s− ((nµ+ φ)− (mµ+ φ)))

=

M−1∑
n=0

n−1∑
m=0

δ(s− (nµ−mµ)).

The φ cancel out, and then substituting ` = n −m, we get the same result as before. Similarly for (3.2.8) we plug
in fφ(t)

ρ(s) =

M−1∑
n=0

n−1∑
m=0

δ(s− (nµ+ φ)− (mµ+ φ))) exp(2πj
nµ− φ
s

)

=

M−1∑
n=0

n−1∑
m=0

δ(s− (n−m)µ) exp(2πj
nµ− φ

(n−m)µ
)

=

M−1∑
n=0

n−1∑
m=0

δ(s− (n−m)µ) exp(2πj
n

n−m
) exp(2πj

−φ
(n−m)µ

).

This is the same as before, but with the added delay factor

exp(2πj
−φ

(n−m)µ
).

Realize that for a given ` = n−m, this quantity is constant with respect to n. Therefore, we have

ρ(`µ) =

mod (M,`)∑
n=0

exp(2πj
n

`
) exp(−2πj

φ

`µ
)

= exp(−2πj
φ

`µ
)

mod (M,`)∑
n=0

exp(2πj
n

`
).

Since | exp(−2πj φ`µ | = 1, the delay φwill only adjust the direction in the complex plane, but not the magnitude of
the harmonics. Therefore, the claims above will hold regardless of the first impulse time.

Figure 3.2.4 shows the values for a purely periodic source, but we are interested in sources that have some jitter
(i.e. τi − τi−1 ∼ T ). As discussed in Section 3.2, jitter has the direct effect of lowering the bin height. More
specifically, if the interimpulse interval is denoted by the random variable X ∼ T , then the second harmonic is
actually the random variable

Y = X +X,

where Y ∼ T ∗ T where ∗ denotes convolution [29]. If X ∼ N (µ, σ2), then Y ∼ N (2µ, 2σ2). Going further, let
the `-th harmonic be Y = `X , then, again assuming X ∼ N (µ, σ2), Y ∼ N (`µ, `σ2). For a jittered source, if we
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look at r(s), the harmonic peaks will be shifted to `µ, but the peaks will also be flattened (i.e. wider and shorter)
because of the increased variance. With ρ(s), harmonic peaks will be attenuated due to the cancellation from the
summing of the complex exponential. However, cancellation only occurs when terms collect at a particular lag s.
Many terms will collect at the s near the `µ, but it will not be perfect at each s as it was with the purely periodic
case. When more terms collect at an s, the propensity for cancellation is greater. Thus the amount of cancellation
will be less at larger ` because there will be less terms collecting at each s.

To demonstrate this fact, consider Figure 3.2.5 which shows r(s) and |ρ(s)| forM = 1000 samples from a single
source with T ∼ N (10, 0.12). Note that the harmonics do not exactly follow any of the lines in Figure 3.2.4; this is
effect of jitter. The peak corresponding to the mean interimpulse interval is highest in both, but the peaks of the
harmonics in r(s) are clearly much larger than those in ρ(s).
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Figure 3.2.5: This is δτ -histogram computed using both the regular autocorrelation, r(s), and the complex auto-
correlation, ρ(s), forM = 1000 samples from a single source with T ∼ (10, 0.12).
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Table 3.2.2: The complex exponentials in (3.2.8)

(a) ` = 1

` n m exp(2πj n` )

1 1 0 exp(2πj) = 1
... 2 1 exp(2πj2) = exp(4πj) = 1
...

...
...

...
1 M − 1 M − 2 exp(2(M − 1)πj) = 1

(b) ` = 2

` n m exp(2πj n` ) mod (n, `)

2 2 0 exp(2πj 2
2 ) = 1 0

... 3 1 exp(2πj 3
2 ) = exp(3πj) = −1 1

... 4 2 exp(2πj 4
2 ) = exp(4πj) = 1 0

... 5 3 exp(2πj 5
2 ) = exp(5πj) = −1 1

...
...

...
...

2 M − 1 M − 3 exp((M − 1)πj) mod (M − 1, 2)

(c) ` = 3

` n m exp(2πj n` ) mod (n, `)

3 3 0 exp(2πj 3
3 ) = exp(2πj) = 1 0

... 4 1 exp(2πj 4
3 ) = exp(8π

3 j) = exp( 2π
3 j) 1

... 5 2 exp(2πj 5
3 ) = exp( 10π

3 j) = exp(1π
3 j) 2

... 6 3 exp(2πj 6
3 ) = exp(4πj) = exp(2πj) 0

... 7 4 exp(2πj 7
3 ) = exp( 14π

3 j) = exp(2π
3 j) 1

... 8 5 exp(2πj 8
3 ) = exp( 16π

3 j) = exp(1π
3 j) 2

...
...

...
...

3 M − 1 M − 4 exp(2πjM−1
3 ) mod (M − 1, 3)
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3.3 PRI/ICI map

The PRI or ICI4 map described in [48, 22] is a method that applies the complex autocorrelation (3.2.4) at different
sections of time to produce a map of when different interimpulse intervals are present. It is like Short Time Fourier
Transform (STFT) where the frequency content of a signal is displayed as a function of time. However in terms of
implementation, it is more similar to the wavelet transform since the size of interval bins and time period where
ρ(s) is computed varies.

More specifically,

D(t, τ) =

∫
s∈W (t,τ)

f(s)f(s− τ) exp(2πj
s

τ
)ds (3.3.1)

denotes the PRI map value at a time t and PRI τ , whereW (t, τ) denotes the time window over which we compute
the complex autocorrelation. Again in this case, the function f is the impulse time function (3.2.1). The time
window W (t, τ) is a window centered around t with width vτ , where v ∈ N is the desired number of PRI for each
bin (it is a user defined parameter). That is

W (t, τ) = [t− v

2
τ, t+

v

2
τ ].

A duration of vτ has exactly enough time for v successive interimpulse spacings of length τ . In other words, if
there is a source with a PRI of τ , we should expect to see approximately v of them in the window W (t, τ) ; this
normalizes the intensity by giving each τ -bin an equivalent amount of data.

D(t, τ) is a continuous function, but when we implement we need to discretize. That is, we must select some
set values for t and τ to evaluate. For t, evenly spaced values will suffice, however, the spacing should be that such
that there is some overlap, or at least no gaps between the successiveW (t, τ). To ensure this, one should consider
the minimum value of τ and compute the window width in time. In the τ direction, how the windows are spaced
depend on the system model. Let τn denote the n-th occurring ICI. In [48, 22, 23], the assumed model for the ICI is

τn = µ+ εnµ, (3.3.2)

where εn denotes the relative deviation from the mean ICI, µ. That is, it is a realization of the uniformly distributed
random variable on the range [− εmax

2 ,+ εmax

2 ]. The total deviation from µ is εnµ, so the variation is proportional
to µ. For this reason, they recommend τ -windows of width εmaxτ . That is,

[(1− εmax

2
)τ, (1 +

εmax

2
)τ ].

With windows proportional to τ , the jitter will more accurately be captured and the µ more correctly identified.
For a similar reason, [22] recommends spacing the range of τ by a geometric progression (e.g. the center of the i-th
bin is given by τi = ri−1τ1, where r > 1 is some constant) rather than uniform spacing. However, our model is
quite different; instead we claim that the ICI are iid realizations of T ∼ N (µ, σ2). To put this into the same form
as (3.3.2), letX ∼ N (0, 1) and let xn be the n-th iid realization ofX . Then our model is for ICI is

τn = µ+ σxn.

Unlike (3.3.2), note that the total deviation from µ is not proportional to µ. Therefore, there is no reason to make
windows proportional to τ ; a uniform width of b should suffice. That is, we consider windows

[τ − b

2
, τ +

b

2
].

4In this section we will use PRI, ICI, and interimpulse spacing interchangeably. They all mean the same thing.
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Similar to time, we will also use uniform spacing for τ bin centers values. Also again, it is important to ensure that
the bins overlap or at least do not leave any gaps in the range. Like discussed in Section 3.2, choice of b is important
in terms of being able to discern the ICI present. According to our jitter model, b ≈ 3σ would be appropriate to
center the impulses from the same timing source in the same bin.

Then the discretized PRI map value at spacing τj and at time ti is

D(ti, τj) =

∫
τ∈[τj− b2 ,τj+

b
2 ]

∫
s∈W (ti,τj)

f(s)f(s− τ) exp(2πj
s

τj
)dsdτ. (3.3.3)

Pay close attention to the quantities labeled τ and τj . To be more clear, Algorithm 3.3 lists the steps to implement
the computation of (3.3). This should be computed for the all the predetermined {ti} and {τj} . Note, as with ρ(s)
in Section 3.2.3, for analysis, we look at |D(ti, τj)| rather than its complex value.

Algorithm 3.3 PRI map value computation

Given an impulse time signal f(t), a time ti, interimpulse spacing τj , and parameters v, b, the discretized PRI map
valueD(ti, τj) is evaluated as follows:

1. Extract the window [ti − v
2 τj , ti + v

2 τj ] from the signal f(t). Call this fe(t).

2. Compute the adjusted complex correlation

ρe(τ) =

∫
fe(s)fe(s− τ) exp(2πj

s

τj
)ds.

Note the complex exponential is computed with τj and not τ . This is a continuous unbounded function in
τ , however because of fe(s)fe(s− τ), it only has non-zero values at a few values of τ .

3. Compute

D(ti, τj) =

∫
τ∈[τj− b2 ,τj+

b
2 ]

ρe(τ)dτ

To say this another way, from ρe(τ) extract only the values corresponding to the PRI window [τj − b
2 , τj + b

2 ]
and integrate/sum. (Alternatively, in the previous step, we can omit computation of lags outside this range)

For analysis, take the magnitude ofD(ti, τj).

3.3.1 Noise floor

In this section, we will to re-derive the noise floor found in [48, 22] but adjusted for our jitter model.
In the PRI map, we look at all possible interimpulse spacings, many of which probably do not correspond to

spacings within a single source. These spurious spacings between sources are what we are referring to as the noise
in the transform. Based on a few assumptions, we can estimate the expected height of the PRI transform bin due
to this noise.

First let L denote the number pulse pairs that is counted for an arbitrary bin in the PRI transform. For the
noise, we will be assuming a uniform distribution for the pulse spacings, so let ρ denote the pulse density of the
signal. That is,

ρ =
total number of pulses

total length of the signal
.

Without loss of generality, let τk be the spacing the arbitrary bin is centered on; though no indexing is given, ρ
should be computed for this bin. Then the signal extracted for the bin is given by the window W (t, τk) and has
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length vτk. This means that there on average ρvτk pulses the signal extracted. In this bin, we only count the pulses
pairs that have spacing in [τk − b

2 , τk + b
2 ], a window that is b-wide centered on τ . Again following the uniform

assumption, ρb of the pulse pairs will have this spacing. We can combine these two quantities to give the expected
value for L as product of the expected number of pulses for the time window and the expected portion of pulse
pairs that should fall in the τ window. That is,

E[L] = ρvτk × ρb = ρ2bvτk = λ.

For convenience, we denote this value with λ. Recall that the PRI map value is given by (3.3.1), so we can estimate
the noise level as

DN =

L∑
i=1

ejθi ,

where θi are iid random values uniformly distributed in [0, 2π] (i.e. spurious spacings will have random phase).
However we actually look at the magnitude of the PRI map, so we should consider

IN =
√
E[|DN |2],

where
|DN |2 = DND

∗
N ,

and where D∗N is the complex conjugate of DN . Recall the the complex conjugate of a sum is the sum of the
complex conjugates, so

D∗N =

L∑
i=1

e−jθi .

Thus we have

I2
N = |DN |2 =

L∑
i=1

ejθi
L∑
`=1

e−jθ`

=

L∑
i=1

L∑
`=1

ej(θi−θ`).

But note, we can rewrite this sum as follows

|DN |2 =
∑
i=`

ej(θi−θ`) +
∑
i 6=`

ej(θi−θ`)

=
∑
i=`

1 +
∑
i6=`

ej(θi−θ`)

= L+
∑
i 6=`

ej(θi−θ`).

Since there are exactly L times that i = `. Now we want to compute the expectation of this. Recall

E[f(X)] =

∫
f(x)p(x)dx.

But in this case, we have 2 random variables L and θi − θ`, so we need to consider p(L, θi − θ`); this is actually
an interesting distribution containing both continuous and discrete values. We claim that L and θi − θ` are inde-
pendent. That is, the number of pulse pairs will do not have influence on the random phases of each pair. Under

74



3.3. PRI/ICI MAP CHAPTER 3. PARAMETER ESTIMATION

uniform distribution assumptions, we get thatL is Poisson with λ = ρ2bvτ . We also can compute p(θi− θ`) as the
convolution of

pΘ(θ) =

{
1

2π 0 ≤ θ ≤ 2π

0 otherwise

and if we let ω = −θ, then

pΩ(ω) =

{
1

2π −2π ≤ ω ≤ 0

0 otherwise
.

Let φ = θi − θ` = θ + ω. Then

pΦ(φ) =

∫
pΘ(φ− ω)pΩ(ω)dω

=

∫
pΩ(φ− θ)pθ(θ)dθ

=
1

2π

∫ 2π

0

pΩ(φ− θ)dθ.

In order to compute this, it useful to clearly define pΩ(φ − θ). It is pΩ(ω) flipped (this actually gives pΘ(θ)) and
then shifted to the right by φ. That is,

pΩ(φ− θ) =

{
1

2π φ ≤ θ ≤ φ+ 2π

0 otherwise
.

This means we have 2 cases where the integral is non-zero. First, when φ < 0 ∩ φ+ 2π > 0⇒ −2π < φ < 0,

pΦ(φ) =
1

2π

∫ φ+2π

0

1

2π
dθ

=
1

4π2
θ|φ+2π

0

=
1

4π2
φ+

1

2π
.

Second when φ > 0 ∩ φ < 2π ⇒ 0 < φ < 2π,

pΦ(φ) =
1

2π

∫ 2π

φ

1

2π
dθ

=
1

4π2
θ|2πφ

= − 1

4π2
φ+

1

2π
.

It is 0 elsewhere; this forms a triangle of height 1
4π2 centered at 0. The complete expression is

pΦ(φ) =


1

4π2φ+ 1
2π −2π < φ ≤ 0

− 1
4π2φ+ 1

2π 0 < φ < 2π

0 otherwise

.
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Now we can continue to compute the expectation. The expectation of a sum is the sum of the expected values of
its terms (expectation is a linear operation), so let us focus on the terms in sum first

E[ej(θi−θ`)] = E[ejφ]

=

∫
ejφpΦ(φ)dφ

=

∫ 0

−2π

ejφ(
1

4π2
φ+

1

2π
)dφ+

∫ 2π

0

ejφ(− 1

4π2
φ+

1

2π
)dφ.

Recall, ∫
ecxdx =

1

c
ecx + C,

where c is some constant, andC is the constant of integration. Also∫
xecxdx = ecx(

cx− 1

c2
).

Thus

E[ejφ] =
1

4π2

∫ 0

−2π

φejφ +
1

2π

∫ 0

−2π

ejφdφ

+
−1

4π2

∫ 2π

0

φejφ +
1

2π

∫ 2π

0

ejφdφ

=
1

4π2
ejφ(

jφ− 1

j2
)|0−2π +

1

2π

1

j
ejφ|0−2π

+
−1

4π2
ejφ(

jφ− 1

j2
)|2π0 +

1

2π

1

j
ejφ|2π0

=
1

4π2
ejφ(1− jφ)|0−2π +

1

2π

1

j
(e0 − e−2πj)

+
−1

4π2
ejφ(1− jφ)|2π0 +

1

2π

1

j
(e2πj − e0)

=
1

4π2

(
e0(1− j(0))− e2πj(1− j(−2π))

)
+
−1

4π2

(
e2πj(1− j(2π))− e0(1− j(0))

)
=

1

4π2
(1− 1− 2πj)− 1

4π2
(1− 2πj − 1)

=
−2πj

4π2
+

2πj

4π2
= 0.

Then we have

E[|DN |2] = E[L+
∑
i 6=`

ej(θi−θ`)]

= E[L] +
∑
i 6=`

E[ej(θi−θ`)]

= ρ2bvτ +
∑

0

= λ.
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Therefore
IN =

√
λ.

Any threshold related to the noise floor should be proportional to IN .
Note when working with actual data, we do not typically know ρ a-priori, thus we must estimate it. LetMW (t,τk)

denote the number of pulses found in the windowW (t, τk). Then we estimate

ρ ≈
MW (t,τk)

vτk
.

This makes

λ ≈
(
MW (t,τk)

vτk

)2

bvτk =
b

vτk
M2
W (t,τk).

[48, 22] relates this term to the probability of false alarm using the threshold Γ

Pfa = Pr{|DN | > Γ} = 1− Γ

∫ ∞
0

J1(Γs) exp(λ(J0(s)− 1))ds, (3.3.4)

where J0 and J1 are Bessel functions of order 0 and 1 respectively. The complete derivation can be found in
Appendix A of [48]; as a brief summary, it uses the characteristic functions to get an expression for the pdf of |DN |
again assuming the number of arrivals is Poisson as above. Though our values for λ are computed differently,
(3.3.4) requires no modification for our use. Importantly, we want to be able to determine Γ, but (3.3.4) cannot be
solved for Γ directly. Instead we build a table of Pfa for values λ, Γ, which we can use later to look up Γ for λ at the
desiredPfa. Values for Γ ∈ [0, 10] and λ ∈ [0.20] are shown in Figure 3.3.1. The general trend is as Γ increases,Pfa
decreases, and Γ must be higher for the same Pfa as λ increases. That is, let P ∗fa be the probability of false alarm
for λ∗,Γ∗, then for λ > λ∗, we require Γ > Γ∗ to achieve P ∗fa for λ,Γ.
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Figure 3.3.1: This is a plot of the Pfa for λ and Γ values as shown.

Note for Figure 3.3.1, we needed to compute the integral in (3.3.4). We approximated the integral using the
rectangular approximation ∫

f(x)dx ≈
∑
i

f(xi)∆x,
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where ∆x = xi − xi−1. Furthermore, the bounds of integration are (0,∞), but this is okay since it works out that
there exists some b such that ∫ ∞

b

J1(Γs) exp(λ(J0(s)− 1))ds = 0

because Bessel functions are decreasing functions. That is there exists some b such that
∫∞
b
Jv(z) = 0. In practice,

we found b = 2000 to be abundantly sufficient for the values we considered (also we used ∆x = 0.01). A typical
example of the integrand can be seen in Figure 3.3.2. For λ = 20 and Γ = 0.5, there is no change in the function
value is essentially 0 when s > 1, and so there would be benefit in those terms.

0 1 2 3 4 5 6 7 8 9 10

s

-0.01

0

0.01

0.02

0.03

0.04

0.05

 = 20;  = 0.5

Figure 3.3.2: This is a plot of J1(Γs) exp(λ(J0(s)− 1)).

Finally, we show an example of the threshold Γ for Pfa = 0.05 applied to a PRI map on simulated data in
Figure 3.3.3. It cleans up the map to the point we can clearly see where there sources of different ICI are present.
This is where the methods of [22, 48] stop, the presence of sources is known, but the total number of sources (e.g.
there may be multiple at a detected ICI), amount of jitter (i.e. timing distribution parameters other than µ), and
which impulses belong to each source is unknown. This is our novel contribution; we extract the multiplicity and
parameters and then we can classify the segments using our timing separation algorithms.
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(a) This is a plot of the actual ICI for the example.
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(b) This is the PRI map computed using regular autocorrelation.
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(c) This is the PRI map.
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(d) This is the PRI map after thresholding with Γ for Pfa = 0.05.

Figure 3.3.3: This is an example of the ICI map for two sources with Θ = {(0.7, 0.012), (2.3, 0.012)} at times as
shown in Figure 3.3.3a. We take the mixture of impulse times and generate the PRI map according to Algorithm 3.3
using b = 0.1 and τj − τj−1 = 0.1 and ti − ti−1 = 1. The result is shown in Figure 3.3.3b. Also for comparison, we
present Figure 3.3.3b which is the same as Figure 3.3.3b but we use r(s) instead of ρ(s). Using ρ(s) clearly reduces
the harmonics, but there is still some noise. In Figure 3.3.3d, we show final result after thresholding the map with
Γ for Pfa = 0.05.
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3.3.2 Extracting Θ

Recall the goal is to find a set(s) of parameters Θ[0] to use for Algorithm 2.8. In this section we will discuss how to
do this for |D(ti, τj)| for a single ti, and in the Section 3.3.3 we will discuss how to process the different time steps
together.

For a single ti, extracting parameters from |D(ti, τj)| is analogous to the problem Algorithm 3.2 is trying to
solve. We approach it in a similar manner: find a threshold based to identify candidates from peaks across τj .
While it is numerically different, the PRI map is designed to be an estimate for the histogram of only the true
interimpulse intervals. We model this by

|D(ti, τj)| ≈MW (ti,τj) Pr{x ∈ [τj −
b

2
, τj +

b

2
]} , D̂(ti, τj), (3.3.5)

where MW (ti,τj) is the true number of ICI5 in window W (ti, τj) and x is an ICI (e.g. using notation from Section

2.1, τk,i − τk,i−1, ). Note we do not include | · | on D̂(ti, τj) to simplify notation, but it is the estimate for the
magnitude ofD(ti, τj). In the following, we will expand (3.3.5) and use it to help with finding Θ.

If we assume that all sources are Gaussian, then in actuality, the pdf for seeing an interimpulse spacing x is
given by the general Gaussian mixture model

f(x) =
∑
k

φkTk(x),

whereφk is the mixing proportion and as beforeTk ∼ N (µk, σ
2
k). Note, In order to conserve the rules of probability

0 ≤ φk ≤ 1 and
∑
k φk = 1. Recall then, that probability over the interval [τj − b

2 , τj + b
2 ] is given by.

Pr{x ∈ [τj −
b

2
, τj +

b

2
]} =

∫ τj+
b
2

τj− b2
f(x)ds

=

∫ τj+
b
2

τj− b2

(∑
k

φkTk(s)

)
ds

=
∑
k

φk

(∫ τj+
b
2

τj− b2
Tk(s)ds

)
. (3.3.6)

For the timing problem φk are greatly influenced by Tk. Loosely, as mentioned in Section 2.2, for a time period T ,
the number of impulse from a source with mean µk is approximately T

µk
. This means

M ≈
∑
k

T

µk

and correspondingly

φk ≈
T/µk

M
.

However, as in Algorithm 3.2, it makes sense to evaluate the peaks in |D(ti, τj)| individually to determine their
validity as candidates for Θ. But the above expressions require knowing all distributions at once. To overcome
this difficulty, we will make a few simplifying assumptions and then prove that we get a more conservative but still
valid threshold.

5Only the ICI arising from individual whales’ click trains, not between clicks in trains from different whales.
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First we develop an expression for (3.3.5) assuming a single source at with µk = τj ; a peak in the PRI map
indicates a PRI. The probability (3.3.6) becomes

Pr{x ∈ [τj −
b

2
, τj +

b

2
]} =

∫ τj+
b
2

τj− b2
Tk(s)ds =

∫ τj+
b
2

τj− b2

1√
2πσ2

k

e
−

(s−τj)
2

2σ2
k ds. (3.3.7)

Given a σk, this could be evaluated exactly, but we do not know it. Previously in Section 3.2, to determine σk we
considered using the average value or estimating it from the width of the peak. An average σk may not be known
or appropriate in all cases, and for the PRI map relation peak width to σk is unclear due to the variable sized bins.
So instead we develop an entire expression for D̂(ti, τj) which we can then optimize for σk based on |D(ti, τj)|.

We approximate MW (ti,τj) with E[MW (ti,τj)] under the assumption that the source is emitting for the entire
time [ti − v

2 τj , ti + v
2 τj ] denoted by the duration

T = (ti +
v

2
τj)− (ti −

v

2
τj) = vτj .

That is, we need to find how many interimpulse spacings we can fit in T on average. Let xk,i ∼ Tk be the iid
interimpulse spacings from source k. Since we let Tk = N (µk, σ

2
k), then a duration of Lk interimpulse spacings is

the sum
Lk∑
i=1

xk,i ∼ N (Lkµk, Lσ
2
k). (3.3.8)

(it is a well known result that the sum of Gaussian random variables is also a Gaussian random variable where the
first and second moments are summed) Recognize,MW (ti,τj) = Lk, so we find

E[MW (ti,τj)] = E[Lk] =

∞∑
Lk=1

Lk Pr{T − ε <
Lk∑
i=1

xk,i ≤ T},

where ε is some value. We consider durations in the range (T − ε, T ) to allow for some variation– the last emission
from a source may not be exactly at the end of the bin (similarly, the first impulse may not be right at the beginning
of the bin). That is, the duration of the click train is approximately Lkµk, but it is not guaranteed that there exists
a Lk such that T = Lkµk exactly. Since T is a real finite number there will exist some integer Lk for which

Lkµk ≤ T ≤ (Lk + 1)µk.

Subtracting µk
Lµk − µk ≤ T − µk ≤ (Lk + 1)µk − µk
(L− 1)µk ≤ T − µk ≤ Lkµk.

It follows then that
T − µk ≤ Lkµk ≤ T. (3.3.9)

In other words, there exists a Lk for which the duration of the click train falls in this interval. Thus, we set ε = µ =
τj .

Continuing, using (3.3.8), we can write

E[Lk] =

∞∑
Lk=1

Lk

∫ T

T−ε

1√
2πLσ2

k

e
− (s−Lkµk)2

2Lkσ
2
k ds. (3.3.10)

This does not have an analytical expression, but can easily solved numerically given a σk. Though it is an infinite
sum, there exists some L∗k such that for Lk ≥ L∗k, Pr{T − ε <

∑Lk
i=1 xk,i ≤ T} ≈ 0. This is not a rigorous
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proof: As Lk grows, the center of the distribution moves more to the right, and eventually the entire mass of the
distribution will be outside of the range (T − ε, T ). By monitoring the probability (i.e. the integral in (3.3.10))
during calculation, we can determine L∗k, and stop computation.

Combining (3.3.7) and (3.3.10), we get a function of σk. We can find σk by solving

J(σk) = ||D(ti, τk)| − E[Lk]

∫ τj+
b
2

τj− b2
Tk(s)ds| = 0. (3.3.11)

We do not have an analytical expression for this, and typical numerical optimization methods will not work since
the objective function is not convex. Rather than going through a rigorous proof to show that it is not convex, we
provide a counter example shown in Figure 3.3.4; clearly, Figure 3.3.4b is not strictly convex. If a single example is
not strictly convex, then that is enough to conclude that (3.3.11) is not strictly convex. Another important result
shown in Figure 3.3.4b, is that (3.3.11) may never be 0.

0 0.2 0.4 0.6

/

19.5

19.6

19.7

19.8

19.9

20

20.1

20.2
E[L];  = 5

0 0.2 0.4 0.6

/

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pr{x [
i
-b/2,

i
+b/2]}

0 0.2 0.4 0.6

/

2

4

6

8

10

12

14

16

18

20
product

X: 0.7082

Y: 20

(a) We evaluate the functions (left) (3.3.10), (center) (3.3.7), and
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(b) We compute (3.3.11) using the result in 3.3.4a for values of
|D(ti, τj)| as shown in the legend.

Figure 3.3.4: Here we show an example of (3.3.11) for µ = 5, σ ∈ [0.01, 4], and T = 100 to show that it is not
convex. In 3.3.4a, we show the intermediate parts. Since the parts are not strictly convex, the final result is not
strictly convex either.

Lack of convexity means the usual gradient descent methods will not work well. However if the range for σk
are known, a grid search can work. For example, in Figure 3.3.4b, we just evaluated J(σk) for many values σk; it is
easy to pick a minimum out of these results. A more robust method is the Golden Section Search (GSS); it imposes
no restrictions on the function other than that an extremum exists [49]. The basic idea of GSS is to find an interval
that contains the extremum and then successively make it smaller by testing values within the interval.

Next we extend the result to multiple identical sources. First suppose that we have 2 iid sources with µk = τj
at time ti. Then we have

E[MW (ti,τj)] = E[L1 + L2] = 2E[L1]

as the expected value of the sum of independent random variables is the sum of their expectations and L1 and L2

are identical. This generalizes; if there areK identical sources,

E[MW (ti,τj)] = E[KL1] = KE[L1].
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In the case of identical sources, (3.3.6) actual remains the same as (3.3.7). This is because

φk ≈
E[Lk]

E[MW (ti,τj)]
=

E[L1]

KE[L1]
=

1

K
.

That is, the mixing proportions are uniform, so

Pr{x ∈ [τj −
b

2
, τj +

b

2
]} =

K∑
k=1

φk

(∫ τj+
b
2

τj− b2
Tk(s)ds

)
=

K∑
k=1

1

K

(∫ τj+
b
2

τj− b2
Tk(s)ds

)
=

∫ τj+
b
2

τj− b2
Tk(s)ds.

Under this framework, we have

J(σk,K) = ||D(ti, τk)| −KE[L1]

∫ τj+
b
2

τj− b2
Tk(s)ds|. (3.3.12)

Given a K, we can optimize this for a σk as done for (3.3.11). Similarly, given a σk, we can optimize this for a K.
Figure 3.3.5 shows how the function behaves as both a function of σk andK. Let

D̂K(ti, τk) = KE[L1]

∫ τj+
b
2

τj− b2
Tk(s)ds. (3.3.13)

An important feature shown is that even though D̂K(ti, τk) increases asK increases,

lim
σ1→∞

D̂K(ti, τk) = 0 (3.3.14)

no matter the value ofK and µ1 (i.e. τj). The larger, the σ1, the flatter the distribution becomes, until it eventually
becomes 0 (i.e. K × 0 = 0 ).
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(a) We evaluate the functionK× (3.3.10)× (3.3.7). For (3.3.10). The
values ofK are shown in the legend.
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(b) We compute (3.3.12) using the result in 3.3.5a for the values ofK
shown in the legend.

Figure 3.3.5: Here we show an example of (3.3.12) for µ = 5, σ ∈ [0.01, 4], and T = 100. We arbitrarily set
D(ti, τj) = 50. In 3.3.5a, we show the intermediate part to show it monotonically increases withK.
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On the other end, the maximum predicted height for the binW (ti, τj) forK identical sources with µ = τj is

D̃K(ti, τj) = lim
σ1→0

KE[L1]

∫ τj+
b
2

τj− b2
Tk(s)ds.

Since,

δ(t) = lim
σ→0

1√
2πσ2

e−
t2

2σ2 (3.3.15)

where δ(t) is the Dirac-delta function [50]. That is

δ(t) =

{
∞ t = 0

0 t 6= 0

and ∫ t2

t1

δ(t) =

{
1 0 ∈ [t1, t2]

0 otherwise
.

Using the product rule for limits we can expressE[L1] and
∫ τj+ b

2

τj− b2
Tk(s)ds as σ1 → 0 then get exact expression for

D̃(ti, τj). First

lim
σ1→0

E[L1] = lim
σ1→0

∞∑
L1=1

L1

∫ T

T−ε

1√
2πL1σ2

1

e
− (s−L1µ1)2

2L1σ
2
1 ds.

Even though the standard deviation of our Gaussian is σ1

√
L1, (3.3.15) can still be used as

σ1 → 0⇒ σ1

√
L1 → 0

for any given L1. Therefore we have

lim
σ1→0

E[L1] =

∞∑
L1=1

L1

∫ T

T−ε
δ(s− L1µ1)ds.

Going from the definition of the Dirac-delta function∫ T

T−ε
δ(s− L1µ1)ds =

{
1 L1µ1 ∈ [T − ε, T ]

0 otherwise
.

Letting ε = µ1

lim
σ1→0

E[L1] =

⌊
T

µ1

⌋
.

This result is tied closely to the discussion for (3.3.9). Further

lim
σ1→0

Pr{x ∈ [τj −
b

2
, τj +

b

2
]} = lim

σ1→0

∫ τj+
b
2

τj− b2

1√
2πσ2

1

e
−

(s−τj)
2

2σ21 ds

=

∫ τj+
b
2

τj− b2
δ(s− τj)ds

= 1.
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Therefore

D̃K(ti, τj) = K

⌊
T

τj

⌋
which follows our intuition. This leads to the following result:

Fact 3.1. If

|D(ti, τj)| < D̃K(ti, τj) = K

⌊
T

τj

⌋
there exists a σ1 such that

D̂K(ti, τj) = |D(ti, τj)|.

Proof. As stated, D̃K(ti, τj) is the maximum value for a givenK for D̂K(ti, τj). Coupling this with (3.3.14) and the

understanding that D̂K(ti, τj) is continuous in σ, there must exist some σ for which |D(ti, τj)| is reached.

This can be applied to understand why some values ofK reach 0 while others do not in Figure 3.3.5b.
So far we can compute D̂K(ti, τj), but in order to use it as a threshold like in Algorithm 3.2, we need to argue

that relevant |D(ti, τj)| values will surpass it. Consider the following:

Claim 3.1. Let

D̂1(ti, τj) = E[L1]

∫ τj+
b
2

τj− b2
Tk(s)ds =

( ∞∑
L1=1

L1

∫ T

T−ε

1√
2πLσ2

1

e
−

(s−L1τj)
2

2L1σ
2
1 ds

)(∫ τj+
b
2

τj− b2

1√
2πσ2

1

e
−

(s−τj)
2

2σ21 ds

)
,

denote the predicted bin height D̂(ti, τj) assuming a single source with µ = τj . Then, assuming that there are a total
ofK sources

D̂1(ti, τj) ≤ D̂(ti, τj),

where D̂(ti, τj) is the estimate for the bin height assuming a source withµ = τj and using all of theK−1 additional
sources.

Proof. In the case of only iid sources this is straightforward from ((3.3.13))

D̂1(ti, τj) ≤ D̂K(ti, τj)

E[L1]

∫ τj+
b
2

τj− b2
Tk(s)ds ≤ KE[L1]

∫ τj+
b
2

τj− b2
Tk(s)ds

1 ≤ K.

However if there non-identical sources (i.e. sources with µ 6= τj), then we need to compute

D̂(ti, τj) = E[MW (ti,τj)] Pr{x ∈ [τj ±
b

2
]}.

Under the assumption of independence,

E[MW (ti,τj)] = E[

K∑
k=1

Lk] =
∑
k

E[Lk].

Also from ((3.3.6))

Pr{x ∈ [τj ±
b

2
]} =

∑
k

φk

∫ τj+
b
2

τj− b2
Tk(s)ds.
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The mixing proportions are unknown, but we can estimate them

φ̂k =
E[Lk]∑
j E[Lj ]

.

Substitute this into the above equations and we get

D̂(ti, τj) =

(∑
n

E[Ln]

)(∑
k

E[Lk]∑
nE[Ln]

∫ τj+
b
2

τj− b2
Tk(s)ds

)

=
∑
k

E[Lk]

∫ τj+
b
2

τj− b2
Tk(s)ds

= E[L1]

∫ τj+
b
2

τj− b2
T1(s)ds︸ ︷︷ ︸

D̂1(ti,τj)

+

K∑
k=2

E[Lk]

∫ τj+
b
2

τj− b2
Tk(s)ds. (3.3.16)

Note the second term
∑K
k=2E[Lk]

∫ τj+ b
2

τj− b2
Tk(s)ds ≥ 0 since all of its parts are non-negative. Therefore it is trivial

to see that indeed

D̂1(ti, τj) ≤ D̂1(ti, τj) +

K∑
k=2

E[Lk]

∫ τj+
b
2

τj− b2
Tk(s)ds = D̂(ti, τj).

0 ≤
K∑
k=2

E[Lk]

∫ τj+
b
2

τj− b2
Tk(s)ds

Corollary 3.2. Let D̂N (ti, τj) denote ((3.3.13)) forN iid sources. ThenK ≥ N ,

D̂N (ti, τj) ≤ D̂(ti, τj).

Proof. Assume that the sources are numbered such that k = 1, 2, . . . , N all have µk = τj , and the sources have
µk 6= τj for k = N + 1, . . . ,K. Consider again (3.3.16)

D̂(ti, τj) =
∑
k

E[Lk]

∫ τj+
b
2

τj− b2
Tk(s)ds

=

N∑
n=1

E[L1]

∫ τj+
b
2

τj− b2
T1(s)ds+

K∑
k=N+1

E[Lk]

∫ τj+
b
2

τj− b2
Tk(s)ds

= NE[L1]

∫ τj+
b
2

τj− b2
T1(s)ds︸ ︷︷ ︸

D̂N (ti,τj)

+

K∑
k=N+1

E[Lk]

∫ τj+
b
2

τj− b2
Tk(s)ds.

Again, the second term
∑K
k=N+1E[Lk]

∫ τj+ b
2

τj− b2
Tk(s)ds is non-negative, so it is trivial to see that indeed

D̂N (ti, τj) ≤ D̂(ti, τj).
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That is, ignoring contributions from other possible sources with µ 6= τj we will underestimate D̂(ti, τj). Going

back to (3.3.5), we assume D̂(ti, τj) ≈ |D(ti, τj)|. Then it follows D̂N (ti, τj) ≤ |D(ti, τj)|, so it can be used as a
threshold. To avoid confusion from here on, we will use N to indicate the multiplicity of the source with µ = τj ,
and K will denote the total number of sources as usual. This is why the subscript on (3.3.13) is N instead of K in
the previous inequality.

Note, underestimation also means in practice when we optimize (3.3.12) we might use a smaller σk or largerK
to match |D(ti, τj)|. To overcome this ambiguity caused by the double jeopardy, we will output up to two sets of

(µ, σ), N for each τj . There are three possibilities for the relationship of D̂N (ti, τj) and |D(ti, τj)|:

1. D̂N (ti, τj) < |D(ti, τj)|; the PRI map value passes the threshold

2. D̂N (ti, τj) = |D(ti, τj)|; the PRI map value and the threshold are the same

3. D̂N (ti, τj) > |D(ti, τj)|; the PRI map value is below the threshold

We save at most one parameter set from cases 1 and one from case 2 since they are the cases that “satisfy” the
threshold D̂N (ti, τj). Importantly, there may be many values of N that fall in case 1, and similarly for case 2. For

example, see Figure 3.3.5. When N = 1, 2, D̂N (ti, τj) < |D(ti, τj)| for all σ. Intuition is that we should save
parameter set that gets closest to |D(ti, τj)| which usually (if not always) corresponds to the larger N . This covers

case 1. We are in the second case when N > 2; there exists a σ such that D̂N (ti, τj) = |D(ti, τj)|, a realization of
Fact 3.1. In order to pick which N to save parameters from, we apply the intuition that simpler is better and pick
the smallestN . This is analogous to the use of MDL. In total this means we can test each |D(ti, τj)|with D̂N (ti, τj)
with increasingN and we should encounter case 1 and/or case 2 to get the set(s) of parameters. Case 3, where the
PRI map value is below D̂N (ti, τj), indicates there is no source with µ = τj in the signal, and increasingN will not
change this. So testing higherN is frivolous (i.e. we should stop). The processed is outlined in Algorithm 3.4.

Algorithm 3.4 Method for extracting parameter sets and multiplicities from |D(ti, τj)|
To extract parameters (θ1, N1), (θ2, N2) from a source with µk = τj exists considering |D(ti, τj)|, setN = 1

1. Find σk by optimizing (3.3.12) atN over the predefined range [σLB , σUB ] (e.g. use golden section search)

2. Use σk to compute D̂N (ti, τj)

3. CheckDt = |D(ti, τj)| − D̂N (ti, τj)

(a) IfDt > 0, it means we pass the threshold. SaveN1 = N and θ1 = (τj , σk).

(b) IfDt ≤ 0, the predicted value is at or below the threshold

i. If |Dt| < ε, where ε is some arbitrary small number, we say that the threshold is met. SaveN2 = N
and θ2 = (τj , σk)

ii. Stop looking for terms

4. N + + and go back to 1. (we only reach this point if case (a) in previous step).

At the end (θ1, N1) and/or (θ2, N2) may have been unassigned.

Again Algorithm 3.4 will be applied to peaks values of |D(ti, τj)|. For a given ti, if p is the total number of
peaks, there will be at most 2p sets of parameters to test. At each p, we need to choose one set or the other– a
binary decision. For an n-length binary word, there are 2n possible words (leaves of the binary tree). These binary
words corresponds exactly to our parameter sets. Let Θ̃ denote the super parameter set which is the collection of at
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most 2 estimates parameter sets for each peaks found in the PRI map (this is more clearly defined in Section 3.3.3).
We output the Θ[0] from the p-length binary words (removing empty sets).

Finally, we can improve performance (i.e. reduce the number of peaks we need to evaluate) by first considering
the threshold Γ based on the noise floor from [48, 22] described in Section 3.3.1 before applying Algorithm 3.4.

3.3.3 Partitioning the PRI map

In the previous section we discussed how to generate the super parameter set Θ̃i for time ti, but it would not make
sense to apply our timing separation algorithms to the impulses at just time ti (or even ti− ti−1)– there might only
be one impulse to classify! It would make more sense to consider at least the impulses contained in the window
W (ti, τj), but this is also ambiguous since we have multiple τj to consider (though perhaps we could just use the
largest window). Even if we could use W (ti, τj), there will only be on the order of v impulses (e.g. 10). As seen in
Section 2.2.3, the performance of our algorithms is unpredictable with very short segments. Furthermore, trying
to make sense of many short segments of assignments is almost as troublesome as assigning the impulses in the
first place. Instead, the goal is to process as many ti together as possible; in this section we will discuss how to
determine which ti should be associated based on their Θ̃i.

First let us introduce the notation. Let Θ̃ denote the set of super parameters. That is

Θ̃ =
[
Θ̃1 Θ̃2 · · · Θ̃NT

]
,

whereNT is the number of total number of time steps for the duration of the map T (i.e. T = tNT − ti) and each

Θ̃i =
[
θ

(pk)
i,1 θ

(pk)
i,2 · · · θ

(pk)
i,Mi

]
,

whereMi is the number of peaks that pass Algorithm 3.4 at ti, and then each

θ
(pk)
i,j =

[
θ̂i,j,1|θ̂i,j,2

]
corresponds to the parameter sets and multiplicities at µk = τj . That is,

θ̂ijk =
{

(µijk, σ
2
ijk), Nijk

}
where we have dropped the commas from the subscript for brevity andNijk denotes the multiplicity of the source
with parameters (µijk, σ

2
ijk). Note it is possible for

θ̂ijk = ∅,

however if θ̂ij1 = ∅, θ̂ij2 6= ∅ and vice versa (when both are empty, that peak’s entry is pruned).
First we will check Θ̃i sequentially in increasing i and check to see if Θ̃i ≡ Θ̃i−1. That is, if Θ̃i−1 contain all of

θ̂ijk (but perhaps at different j, k) and no other parameters, then we say that Θ̃i completely matches the previous
time step Θ̃i−1 and are a part of the same segment or partition. In the end, we will process each segment as one
set of of mixed impulse trains. Note in practice, we adopted the notion of only comparing µ andN , since they take
set values. Whereas σ can be any value (within a range) making finding equality difficult. Also as noted in other
parts of this chapter, supplying the wrong σ is not very detrimental especially if it is overestimated.

However, completely matching segments alone may not give enough segments that are long enough to get
meaningful results from our classification algorithms. So we introduce the concept of a partial match. We say Θ̃i is
a partial match of Θ̃i−1 if in Θ̃i−1 there exists at least one θ̂ijk. This concept is extended to the more useful partial
matching segment. We say that two completely matching segments

S1 = {Θ̃i, Θ̃i+1, . . . , Θ̃i+L1
}
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and
S2 = {Θ̃j , Θ̃j+1, . . . , Θ̃j+L2},

of length L1 and L2 respectively are partial matching segments if:

• They are non-overlapping. Without loss of generality assume i < j, then segments are non-overlapping if
ti+L1 < tj .

• Θ̃j is a partial match of Θ̃i+L1 .

For this partial matching segment, we define union super parameter set, Θ̃U , to be the union of parameter sets
and multiplicities from the completely matching segments. This is what we will draw Θ[0] from later. Also we
define Θ̃I , the minimum matching parameters set, as the intersection of parameter sets and multiplicities from
the completely matching segments. The minimum matching parameter set is used to determine if the partial
matching segment can be extended with the next segment. Specifically, when all sources are different from the
initial partial match even if the last segments contain a partial match, we should just start a new segment instead.
Figure 3.3.6 illustrates the what qualifies as a partial match. This is the best we can do if we make sequential
decisions about segments, but perhaps there are better segmentation schemes (e.g. try to optimize the average
length of partial matching segments). We outline the entire process of segmenting the PRI map into these partial
matching segments, ζ , in Algorithm 3.5.

At the end of Algorithm 3.5, we will have a set of partial matching segments {ζn} for which we have represen-

tative parameters Θ̃Un . As mentioned previously we utilize Θ̃Un to generate the Θ[0] for the segment to be used in
Algorithm 2.8. It is difficult to quantify the performance of this algorithm without looking at actual data and the
resulting classification error rates. For this we direct you to Section 6.1.

On an important note, this segmentation algorithm is based on the notion that the timing separation algorithm
is able to handle missing impulses especially in long durations. Consider Figure 3.3.6 again. There are parameters
inS1 that are missing for the entire time ofS2 that show up again inS3. This corresponds to a gap or drop out of the
sources corresponding to these parameters. Furthermore, while it is implied in the figure, there is no requirement
that Si, Si+1 are adjacent. Any amount of non-zero time may pass between the ending of Si and the beginning of
Si+1.

While the methods of Chapter 2 can tolerate some missing impulses (e.g. Section 6.2), they were not designed
to handle them directly. Though, perhaps A2.4 has some potential to work on gaps. The idea for the PRI map was
to use it for practical applications in Chapter 6. However, it is interesting to and illustrative to consider how this
method works on the ideal timing data. For more on this see Section 3.3.4.
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(a) This is an example of ζ = {S1, S2, S3, S4}.

(b) This is an example of ζ = {S1.S2, S3}; S4 is not included since Θ̃I ∩ S4 = ∅.

Figure 3.3.6: Here we illustrate what qualifies as a partial matching segment and show how Θ̃U and Θ̃I . Let the
horizontal direction indicate time, increasing left-to-right, and let the vertical direction indicate unique parameter
sets. That is, if two segments occupy the same vertical height, then they have the corresponding parameter set in
common. The solid lined boxes indicate completely matching segments and the dotted lined boxes indicate Θ̃U

and Θ̃I as labeled.
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Algorithm 3.5 PRI map segmentation for partial segments

Given Θ̃ for a PRI map, we partition the times into matching segments Sj , and then partial matching segments ζj .
First to find matching segments, set segment index j = 1 and initialize segment 1 as S1 = {Θ̃1} with representa-
tive super parameter Θ̃S1 = Θ̃1. Also set time index i = 2.

1. Check Θ̃i ≡ Θ̃Sj

(a) if true, then add Θ̃i into Θ̃Sj

(b) if false, then we start a new segment

i. j + +

ii. Initialize Sj = {Θ̃i}with representative Θ̃Sj = Θ̃i

2. i+ + and repeat until no more Θ̃i to process

If the durations of Sj are satisfactory, then you do not need to proceed. But if the segments are too short, we merge
the completely matching segments into partial matching segments. By:
Initialize the first partial matching segment as ζ1 = {S1} with representatives union match Θ̃U1

= Θ̃S1
and

minimum match Θ̃I1 = Θ̃S1
. We reuse the index variables j as the partial segment match index and i as the

complete match segment index. Set j = 1 and i = 2.

1. Compare Θ̃Si with Θ̃Ij

(a) If they are a partial match

i. Add Si to ζj

ii. Update Θ̃Uj = Θ̃Uj ∪ Θ̃Si

iii. Update Θ̃Ij = Θ̃Ij ∩ Θ̃Si

(b) Otherwise start a new partial segment

i. j + +

ii. Θ̃Uj = Θ̃Si

iii. Θ̃Ij = Θ̃Si

2. i+ + and repeat until no more Θ̃Si to process

91



3.3. PRI/ICI MAP CHAPTER 3. PARAMETER ESTIMATION

3.3.4 Direct application to ρ(s)

The complex autocorrelation ρ(s) was discussed at length in Section 3.2.3, however a method to extract Θ[0] was
never established. Though since it is analogous to the δτ -histogram, Algorithm 3.2 or any of its variants could be
used. In this section we discuss the adaptation of the method in Section 3.3.2 to give an alternative for parameter
estimation using ρ(s).

Algorithm 3.4 is based on (3.3.5) which is the idealization of |D(ti, τj)| as a histogram of the only the true
interimpulse spacings. We can say the same for ρ(s) and apply Algorithm 3.4 directly. We define bins around τj in
the same manner (i.e. [τj − b

2 , τj + b
2 ]) to compute

ρ[τj ] =

∫ τj+
b
2

τj− b2
ρ(s)ds

which is used as the substitute of |D(ti, τj)|. Here we use [·] to differentiate the value in the bin centered at the
distinct τj from the continuous evaluation of ρ(s).

Additionally, we can also apply the threshold from the noise floor (3.3.4) to reduce the number of peaks in ρ[τj ]
we need to process. Previously,

E[L] , λ = ρvτj × ρb = ρ2bvτj

where ρ, the impulse density, is estimated as

ρ ≈
MW (ti,τj)

vτj
.

While we still have b, we no longer have v or W (ti, τj). Instead in this case we are using the entire duration of the
signal T (rather than vτj ), so we adjust

ρ ≈ M

T
,

and
λ = ρT × ρb = ρ2Tb.

Due to our uniform definition of bins for τj , λwill be the same value for every τj . That is, we get the same threshold
value for every bin. Note, sometimes ρ will be a small number (most impulsive signals are sparse) which makes λ
also small and Γ small in turn. When Γ is too low, it does not reject any values.

To improve results (especially in the case of low Γ), we add in a third criterion from [23] based on the normal
autocorrelation (3.2.4) which we discretize to

r[τj ] =

∫ τj+
b
2

τj− b2
r(s)ds.

Due to the complex exponential in (3.2.4), it is clear that

|ρ[τj ]| ≤ r[τj ].

However, in Section 3.2.3 we argued that almost always

|ρ(`µ)| � r(`µ)

for the ` > 1 harmonics, but
|ρ(µ)| ≈ r(µ).
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This means we can use r[τj ] as a threshold for |ρ[τj ]| to further help isolate fundamental PRI by eliminating peaks
from harmonics. Specifically, we use the threshold

βr[τj ], (3.3.17)

where β is a user defined constant. Like in [23], we found β = 0.15 to be generally satisfactory though experi-
mentation. Though in some situations (e.g. a single source), we needed to reduce β in order to find any peaks. We
incorporate this modification into the total process listed in Algorithm 3.6. The resulting Θ̃ can be used to generate
the Θ[0] from the allowable binary words. An example of the application of Algorithm 3.6 is shown in Figure 3.3.7.

Algorithm 3.6 Parameter estimation for ρ[τj ]

Given the autocorrelation r[τj ] and complex autocorrelation ρ[τj ], for a time signal of length T containing M
impulses with user defined Pfa and β

1. Find the noise threshold Γ

(a) Compute ρ = M
T

(b) Compute λ = ρ2Tb

(c) For the choice of Pfa look up Γ for the associated λ (e.g. Figure 3.3.1)

2. Apply Γ. That is, define

ρN [τj ] =

{
ρ[τj ] ρ[τj ] > Γ

0 ρ[τj ] ≤ Γ
.

(a) If ρN [τj ] = 0∀τj , we cannot differentiate the signals from random arrivals given Pfa, so stop here.

3. Apply autocorrelation threshold

(a) Define

ρβ [τj ] =

{
ρN [τj ] ρ[τj ] > βr[τj ]

0 ρ[τj ] ≤ βr[τj ]

(b) If ρβ [τj ] = 0∀τj and β > 0, β is too large. According to step 2, some source should exist. Reduce β (we
use β = β − 0.1) and repeat previous step.

(c) If ρβ [τj ] = 0∀τj and β = 0, there is some sort of error, stop here.

4. Find peaks in ρβ [τj ]

5. For each peak in ρβ [τj ] apply Algorithm 3.4 and collect the results into Θ̃
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Figure 3.3.7: (Left) This is an example of the application of Algorithm 3.6 applied to a set of 100 mixed impulses with
Θ = {(0.7, 0.12), (1.4, 0.12)}. The threshold Γ for Pfa = 0.05 is shown as a dotted red line. We use β = 0.15 and

the black dots which represent the peaks in ρβ [τj ]. To compute D̂N (ti, τj) we optimize σ in the range [0.01, 0.5].

In this case from Θ̃ we only get one possible Θ[0] = {(0.7, 0.12262), (1.4, 0.08782)} . This Θ[0] used with AM and
A2.3 results in a 0.04 classification error rate. (Right) For comparison we present the corresponding δτ -histogram
for the same parameters.

3.4 Hough transform

As discussed in [51], the Hough transform can be used to identify PRI from waterfall or raster plots of the observed
impulse times. First we will discuss the transform and then its application to extracting PRI.

The Hough transform is an image processing technique used to find straight lines in a binary image. The details
of the transform can be found in most image processing texts, such as [52], but this is a brief overview: Assuming
that the image is made up of straight lines, every point of brightness is comes from a line. A line can be described
completely with two parameters (e.g. point and slope), so for each point, we can collect the parameters for the set
of lines it could have come from. Once this is done for every point, count how many times each parameter pair
is found (similar to a histogram). The ones with the highest counts correspond to the lines found in the image
(essentially the peaks in a histogram).

For an illustrative example, consider an image made up of points from a single line described by

y = x+ 1, (3.4.1)

where y corresponds to the vertical position (e.g. pixel number) and x corresponds to the horizontal position in
the image. Specifically, consider the points (x, y) = (0, 1), (−1, 0), (1, 2); these are shown as the black squares
in Figure 3.4.1. Visually, it is clear that these points form the line, but we can use the Hough transform to con-
firm. Here we will consider the parameters m, slope, and b, intercept. Recall that a line can be described with the
following equation

y = mx+ b.

Similarly, any point (x, y) can be described by a “line” in the (m, b) parameter space

b = y −mx.
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Figure 3.4.1: A simple image made up of three points, shown as black squares, from a line, shown in green but not
a part of the image.

If we plug in the points in the image, we get the parameter lines in parameter space (i.e. b = 1, b = m, b = 2−m)
as shown in Figure 3.4.2. Note that all of the lines converge at (m, b) = (1, 1) which exactly corresponds to (3.4.1).
In terms of parameter accumulation, (m, b) = (1, 1) would have a count of 3, whereas everywhere else would have
a count of 1 or 0. Thus we would conclude that the image is composed of the single line (3.4.1). Where there are
even more points, the count would even be higher.

In practice, there are some modifications from the methods as described above due to the nature of pixels and
to allow for some variation from a perfectly straight line of points. Also the parameters (m, b) are not typically
used since it is not possible to describe a vertical line with it; we used them in the example since the point-slope
equation is very familiar to most people.

The connection to finding lines in an image and finding the PRI from impulse times lies is the waterfall plot
or raster display. Raster displays are how radar pulses are sometimes viewed. In such a display the brightness
indicates presence of an impulse and horizontal axis represents time as usual, but in this case the vertical axis
also represents time in steps of the width of the display. That is, if all the impulse detection times are on a line,
chop the line into segments of length τ (not to be confused with the τi denoting impulse time) and stack them
sequentially to get the raster display. A scaled waterfall plot with τ = 5.5 for a mixture of sources with PRIs of 5.0
and 5.7 is shown Figure 3.4.3. To be more specific, these sources follow the model as described in Section 2.1, with
T1 ∼ N0(5.0, 0.012) and T2 ∼ N0(5.7, 0.012). Upon inspection, a human would recognize that there are a number
of lines, but there are only two different slopes. [51] discusses the exact relationship between PRI and the slopes of
the lines.

However, similar to sequential search, when the σ is large, the lines in the waterfall plot breakdown. Consider
Figure3.4.4a which is the same as Figure 3.4.3 but with with T1 ∼ N0(5.0, 0.22) and T2 ∼ N0(5.7, 0.22); the
variance is much higher. Some sort of lines are recognizable, but there is considerably more variation. Figure
3.4.4b shows the same plot but with the ideal straight lines overlaid to better see the discrepancies. It is possible
that this method could be adapted to work better, but our efforts thus far have not been fruitful.

95



3.4. HOUGH TRANSFORM CHAPTER 3. PARAMETER ESTIMATION

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

m

-2

-1

0

1

2

3

4

b

parameter space

(0,1)

(-1,0)

(1,2)

Figure 3.4.2: The (m, b) plot for the points in Figure 3.4.1.
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Figure 3.4.3: This is a waterfall plot for two sources with PRIs 5.0 and 5.7 and Gaussian jitter with σ2 = 0.012.
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(b) Same as 3.4.4a, but with

Figure 3.4.4: This is a waterfall plot (not evenly scaled) for two sources with PRIs 5.0 and 5.7 and Gaussian jitter
with σ2 = 0.22.
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4
Detection

Recall that the main motivation of this work is to separate mixtures of sperm whale clicks, but in the previous
chapters, we discussed separation of impulses based solely on their timing. This is because the duration of a
sperm whale click is very short so a click can be approximated as an impulse, and the time of a click is very easy to
pick out just by looking at the amplitude. Identifying clicks and their times is the focus of this chapter.

Since clicks are recognizable just based off of their amplitude, the one idea is to apply a threshold to pick out
the spikes. There are many variations and improvements on this idea such as taking the envelope, root mean
square (RMS), or a Taeger-Kaiser measure (TK) of the signal or doing a Page test (see Appendix D)[44]. While
these methods work rather well (and are what we have used in other sections of this paper), they are generally just
picking out high energy points. We would like to see if we can get improved results by combining our classification
algorithm with the detection step.

We cast the joint detection-classification problem as a Bayesian detection problem. Consider this system mo-
del for the received signal

S(t) =

K∑
k=1

Nk−1∑
i=0

hk(t− τk,i) +W (t),

whereK is the total number of sources ,Nk is the number of clicks sent out per source k, hk is the repeated signal
from source k (e.g. the click or the pulse), τk,i is the time the i-th signal from source k is emitted, and W (t) is
noise. Again we assume the interimpulse spacing τk,i − τk,i−1 > 0 is distributed according to some prior known
distribution Tk(t). Further we assume that the support of the signals are much shorter than the pulse spacing, so
there is no overlap of pulses. For simplicity, we will assume that the noise is Gaussian; W (t) ∼ N (0, n0). And as
in our timing algorithm we assume that the interimpulse distributions are Gaussian also Tk ∼ N (µk, σ

2
k)– ignore

the truncation factor for now.
From this signal, we want to estimate the transmitted signals hk(t), and the times at which they are transmitted

τ k = {τk,i}.
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4.1 Single source

If there are multiple sources, we have to use the timing algorithm to classify the detected clicks. Let us first try to
develop a detector based on this model for a single source. Consider the received signal

S(t) =

N−1∑
i=0

h(t− τi) +W (t),

with τi − τi−1 ∼ N (µ, σ2). From this signal, we want to estimate the transmitted signal h(t), and the times at
which they are transmitted τ = {τi}.

Random processes are difficult to work with, so instead let us consider the sampled version of this signal. That
is

S[k] = S(k∆) =
∑
i=0

h[k − `i] +W [k]

for k = 0, . . . ,K0 (we useK0 to distinguish fromK which we have been using for total number of sources) where
we have substituted t = k∆ and τi = `i∆ for integer k, `i. The assumption is that ∆ is small enough such that
|τi − `i∆| is negligible. Note 1

∆ is the sample rate. When we sample the random processW (t), we get the random
vector W [k] where each sample is iid ∼ N (0, n0)⇒W ∼ N (0, n0I) where W is the vector of W [k] for all k.
Sampling makes the interimpulse distribution

T (τi − τi−1) = T (∆`i −∆`i−1) =
1√

2πσ2
exp(− (∆`i −∆`i−1 − µ)2

2σ2
).

We just have to be careful to multiply `i by ∆ before using T .
Let h denote {h[k]} and ` denote the collection of impulse indexes. Then it makes sense to choose h and ` to

maximize

Pr{h, `|S} =
Pr{S,h, `}

Pr{S}
.

But note when we maximize over h and `, the actual value of the denominator becomes irrelevant. Thus we are
mainly concerned with maximizing

Pr{S,h, `} = Pr{h, `}Pr{S|h, `}
= Pr{h}Pr{`}Pr{S|h, `}

Here we assume that h and ` are independent. In terms of sperm whales, the shape h is a function of individual’s
anatomy, direction with respect to the hydrophone, and the water properties. The timing of clicks is mostly de-
pendent on the activity the animal is engaging in (e.g. foraging or navigation). Animals may change click shape
depending on activity as well (e.g. make it louder), but for now we will ignore this relationship– we would need a
considerable amount of knowledge to form a joint pdf. Something similar could be said for radars. In any case, let
us analyze these three terms individually.

For the first term, we let Pr{h} be uniform for all possible impulses. Here all possible impulses means h can
be any waveform that adheres to the known constraints. This can be quite involved (e.g. frequency characteristics,
interpulse interval, max amplitude), but for now we will only enforce that the length of an impulse is Tmax =
∆H � τi − τi−1.

The second term is given by the assumption that interimpulse intervals are iid according to T . Hence

Pr{`} =
∏
i=1

T (∆`i −∆`i−1).
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This is essentially the objective function we were maximizing in Chapter 2.
For the last term, Pr{S|h, `}, since

W [k] = S[k]−
∑
i

h[k − `i],

we have

Pr{S|h, `} = (2π)−
K0
2 |n0I|−

1
2 exp(− 1

2n0

K0∑
k=1

(S[k]−
∑
i

h[k − `i])2)

= (2πn0)−
K0
2 exp(− 1

2n0

K0∑
k=1

(S[k]−
∑
i

h[k − `i])2)

As the log is monotonic increasing, it is common practice to maximize the log-likelihood function. That is we
choose h, ` to maximize

log Pr{S,h, `} = log Pr{h}+ log Pr{`}+ log Pr{S|h, `}

In terms of maximization, the first term falls away, except for the fact that it restricts h to only the impulses we
expect. The second term becomes

log Pr{`} =
∑
i=1

log T (∆`i −∆`i−1)

=
∑
i=1

log

(
1√

2πσ2
exp(− (∆`i −∆`i−1 − µ)2

2σ2
)

)
=

∑
i=1

−1

2
log 2πσ2 − (∆`i −∆`i−1 − µ)2

2σ2

=

(
− 1

2
log 2πσ2

∑
i=1

1︸ ︷︷ ︸
N some constant, but dependent on `

)
− 1

2σ

∑
i

(∆`i −∆`i−1 − µ)2

And the last term is

log Pr{S|h, `} = log

(
(2πn0)−

K0
2 exp(− 1

2n0

K0∑
k=1

(S[k]−
∑
i

h[k − `i])2)

)

= −K0

2
log(2πn0)− 1

2n0

K0∑
k=1

(S[k]−
∑
i

h[k − `i])2

Note that the first term of the last term is just a constant not dependent on h or `, so we can ignore it in terms of
the maximization. Thus the objective function to maximize is

p , −1

2
log 2πσ2(N − 1)− 1

2σ

N−1∑
i=1

(∆`i −∆`i−1 − µ)2 − 1

2n0

K0∑
k=1

(S[k]−
N−1∑
i=0

h[k − `i])2 (4.1.1)

Note N = f(`) is the number of impulses. A common technique to maximize a function is to take its derivati-
ve/gradient and set it to 0 and solve– needs to be a concave function to get a global maximum. Rewrite the last
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sum

K0∑
k=1

(S[k]−
N−1∑
i=0

h[k − `i])2 =

K0∑
k=1

(Sk −
N−1∑
i=0

hk−`i)
2

=

N−1∑
i=0

H−1∑
k=0

(Sk+`i − hk)2 +

`0−1∑
k=0

S2
k +

`1−1∑
k=`0+H

S2
k +

`2−1∑
k=`1+H

S2
k + · · ·

+

`N−1−1∑
k=`N−2+H

S2
k +

K0∑
k=`N−1+H

S2
k

=

N−1∑
i=0

H−1∑
k=0

(Sk+`i − hk)2 +

`0−1∑
k=0

S2
k +

N−1∑
i=1

`i−1∑
k=`i−1+H

S2
k +

K0∑
k=`N−1+H

S2
k

Now taking the the partial derivative of the objective with respect to hq where q ∈ {0, 1, 2, . . . ,H − 1}

∂p

∂hq
=

∂

∂hq

(
−1

2
log 2πσ2(N − 1)− 1

2σ

N−1∑
i=1

(∆`i −∆`i−1 − µ)2 − 1

2n0

K0∑
k=1

(S[k]−
N−1∑
i=0

h[k − `i])2

)

=
∂

∂hq

(
− 1

2n0

K0∑
k=1

(S[k]−
N−1∑
i=0

h[k − `i])2

)

= − 1

2n0

∂

∂hq

N−1∑
i=0

H−1∑
k=0

(Sk+`i − hk)2 +

`0−1∑
k=0

S2
k +

N−1∑
i=1

`i−1∑
k=`i−1+H

S2
k +

K0∑
k=`N−1+H

S2
k


= − 1

2n0

∂

∂hq

(
N−1∑
i=0

(Sq+`i − hq)2

)

= − 1

2n0

N−1∑
i=0

∂

∂hq

(
S2
q+`i − 2Sq+`ihq + h2

q

)
= − 1

2n0

N−1∑
i=0

(−2Sq+`i + 2hq)

= +
1

n0

N−1∑
i=0

(Sq+`i − hq)

Setting this to 0 and solving

0 =
1

n0

N−1∑
i=0

(
Sq+`i − ĥq

)
0 =

N−1∑
i=0

Sq+`i −Nĥq

ĥq =
1

N

N−1∑
i=0

Sq+`i (4.1.2)
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As expected, the estimate for the impulse is the mean of all occurrences of the impulse in the received signal. Since
the noise is zero mean, it gets canceled out through averaging. Plugging (4.1.2) back into (4.1.1)

p = −1

2
log 2πσ2(N − 1)− 1

2σ

N−1∑
i=1

(∆`i −∆`i−1 − µ)2 − 1

2n0

K0∑
k=1

(S[k]−
N−1∑
i=0

ĥ[k − `i])2

= −1

2
log 2πσ2(N − 1)− 1

2σ

N−1∑
i=1

(∆`i −∆`i−1 − µ)2

− 1

2n0

N−1∑
i=0

H−1∑
k=0

(Sk+`i − ĥk)2 +

`0−1∑
k=0

S2
k +

N−1∑
i=1

`i−1∑
k=`i−1+H

S2
k +

K0∑
k=`N−1+H

S2
k


Now we need to optimize over {`i} and N . Here it is not easy to take the derivatives with respect to N and `i. Let
us go term by term again to see if we can develop any intuition. Recall we are trying to maximize p.

The first term is linear and decreasing with respect to only N , so we want N as small as possible. In fact, the
best value would be N̂ = 0, but this may cause the last terms to blow up as we will see later.

For the second term assume that N̂ ≥ 2, otherwise the sum is 0. Then we can take the derivative and set to 0.
Consider optimization for `r for r ∈ {1, 2, . . . , N − 1}

∂

∂`r

− 1

2σ

N−1∑
i=1

(∆`i −∆`i−1︸ ︷︷ ︸
L

−m)2

 = − 1

2σ

∂

∂`r

(
N−1∑
i=1

L2 − 2Lµ− µ2

)

= − 1

2σ

∂

∂`r

(
N−1∑
i=1

(∆`i −∆`i−1)2 − 2(∆`i −∆`i−1)µ

)

= − 1

2σ

∂

∂`r

(
N−1∑
i=1

∆2(`2i − 2`i`i−1 + `2i−1)− 2∆µ(`i − `i−1)

)

= − 1

2σ

(
∆2(2`r − 2`r−1)− 2∆µ+ ∆2(−2`r+1 + 2`r)− 2∆(−1)µ

)
(4.1.3)

= − 1

2σ
2∆2 (`r − `r−1 + `r − `r+1)

= −∆2

σ
(2`r − `r−1 − `r+1) .

Note last two terms in the fourth line arise from the fact that `r shows up when i = r ⇒ `i = `r and i = r + 1⇒
`i−1 = `r. Now set the derivative to 0

0 = −∆2

σ

(
2ˆ̀
r − `r−1 − `r+1

)
0 = 2ˆ̀

r − `r−1 − `r+1

ˆ̀
r =

`r−1 + `r+1

2
. (4.1.4)

This means the `r should be evenly spaced. The derivative for `0 is different since it only shows up if i = 1 in
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i− 1 = 0. Substituting this into (4.1.3) from the previous derivative

∂

∂`0

(
− 1

2σ

N−1∑
i=1

(∆`i −∆`i−1 −m)2

)
= − 1

2σ

(
∆2(−2`1 + 2`0)− 2∆(−1)µ

)
= − 1

2σ
2∆ (∆(−`1 + `0) + µ)

= − ∆

2σ
(∆(`0 − `1) + µ) .

Setting this to 0

0 = − ∆

2σ

(
∆(ˆ̀

0 − `1) + µ
)

−µ = ∆(ˆ̀
0 − `1)

− µ
∆

= ˆ̀
0 − `1

ˆ̀
0 = `1 −

µ

∆
.

Note, we have been sloppy with notation in that `i are integer valued so when we take ratios we must round. This
result means that ˆ̀

0 should be one mean spacing prior to the next transmission time. Coupling this with (4.1.4),
we get that the optimum choice for impulse times, ignoring any shape information, is to have them each spaced
exactly µ apart. This is not too surprising.

Now for the last term (i.e. the shape information)

p3 = − 1

2n0

N−1∑
i=0

H−1∑
k=0

(Sk+`i − ĥk)2 +

`0−1∑
k=0

S2
k +

N−1∑
i=1

`i−1∑
k=`i−1+H

S2
k +

K0∑
k=`N−1+H

S2
k


= − 1

2n0

N−1∑
i=0

H−1∑
k=0

(Sk+`i −
1

N

N−1∑
j=0

Sk+`j )
2 +

`0−1∑
k=0

S2
k +

N−1∑
i=1

`i−1∑
k=`i−1+H

S2
k +

K0∑
k=`N−1+H

S2
k

 .

It is a function of bothN and `. First, considerN = 0⇒ ` = ∅

p3(N = 0) = − 1

2n0

K0∑
k=0

S2
k, (4.1.5)

essentially the autocorrelation of the received signal multiplied by a factor involving n0. Typically, n0 is unknown,
but one option is to use the root mean square of the entire signal

n̂0 =

√√√√ 1

K0

K0∑
k=0

S2
k. (4.1.6)

Since the signals will be included, n0 will be overestimated. However, assuming that the the number and length
of impulses are small in comparison to the total length of the signal, the amount over should be inconsequential.
In fact with N = 0, the over all objective function value would just be (4.1.5). The first two terms disappear since
they originate from

log

N−1∏
i=1

T (τi − τi−1),
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the log-likelihood of the interimpulse intervals. If there are no interimpulse intervals (or impulses), this term
should not contribute to the total in any way.

Further considerN = 1⇒ ` = {`0}

p3(N = 1, `0) = − 1

2n0

(
H−1∑
k=0

(Sk+`0 − Sk+`0)2 +

`0−1∑
k=0

S2
k +

K0∑
k=`0+H

S2
k

)

= − 1

2n0

(
`0−1∑
k=0

S2
k +

K0∑
k=`0+H

S2
k

)
.

This makes the complete objective function

p = − 1

2n0

(
`0−1∑
k=0

S2
k +

K0∑
k=`0+H

S2
k

)
.

Again the first two terms are lost since there is no interimpulse interval with just one impulse. Recall we are trying
to maximize, to see how, rearrange the sum

p = − 1

2n0

K0∑
k=0

S2
k +

1

2n0

H−1+`0∑
k=`0

S2
k (4.1.7)

The first term is constant for any given received signal and any choice of `0, and the n0 factor in the second term
can be ignored with respect to optimization. Thus choice `0 in this case is just dependent on the last sum. This
can be computed for every `0; there areK0 −H values to check.

Furthermore considerN = 2⇒ ` = {`0, `1}

p3(N = 2, {`0, `1}) = − 1

2n0

2−1∑
i=0

H−1∑
k=0

(Sk+`i −
1

2

1∑
j=0

Sk+`j )
2 +

`0−1∑
k=0

S2
k +

1∑
i=1

`i−1∑
k=`i−1+H

S2
k +

K0∑
k=`1+H

S2
k


= − 1

2n0

(H−1∑
k=0

(Sk+`0 −
1

2
(Sk+`0 + Sk+`1))2 +

H−1∑
k=0

(Sk+`1 −
1

2
(Sk+`0 + Sk+`1))2

+

`0−1∑
k=0

S2
k +

`1−1∑
k=`0+H

S2
k +

K0∑
k=`1+H

S2
k

)

= − 1

2n0

(H−1∑
k=0

(
1

2
Sk+`0 −

1

2
Sk+`1)2 +

H−1∑
k=0

(
1

2
Sk+`1 −

1

2
Sk+`0)2 +

`0−1∑
k=0

S2
k +

`1−1∑
k=`0+H

S2
k

+

K0∑
k=`1+H

S2
k

)

= − 1

2n0

(
1

4

H−1∑
k=0

(
(Sk+`0 − Sk+`1)2 + (Sk+`1 − Sk+`0)2

)
+

`0−1∑
k=0

S2
k +

`1−1∑
k=`0+H

S2
k

+

K0∑
k=`1+H

S2
k

)
.
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Now note for any a, b ∈ R
(a− b)2 = a2 − 2ab+ b2 = (b− a)2.

So we rewrite the above equation

= − 1

2n0

(
1

4

H−1∑
k=0

(
2(Sk+`0 − Sk+`1)2

)
+

`0−1∑
k=0

S2
k +

`1−1∑
k=`0+H

S2
k +

K0∑
k=`1+H

S2
k

)

= − 1

2n0

1

2

H−1∑
k=0

(Sk+`0 − Sk+`1)2 +

`0−1∑
k=0

S2
k +

`1−1∑
k=`0+H

S2
k +

K0∑
k=`1+H

S2
k︸ ︷︷ ︸

L

 ,

where we use L to denote the “leftovers” from whatever we choose to be `. Again we want to maximize, but there
is a negative factor in the very front, so actually we want to minimize all the sums. To minimize the leftovers, we
should choose ` to pick out the highest energy points in the signal. To minimize the first term, we want to choose
`0 and `1 such that the points that they pick out are very similar. That is we want matching parts of the signal so
that the sum of their squared difference is small.

We observe something curious though if we expand out the sum

H−1∑
k=0

(Sk+`0 − Sk+`1)2 =

H−1∑
k=0

S2
k+`0 − 2Sk+`oSk+`1 + S2

k+`1

= −2

H−1∑
k=0

Sk+`oSk+`1 +

H−1∑
k=0

S2
k+`0 +

H−1∑
k=0

S2
k+`1

= −2

H−1∑
k=0

Sk+`oSk+`0+(`1 − `0︸ ︷︷ ︸
x

)
+

H−1∑
k=0

S2
k+`0 +

H−1∑
k=0

S2
k+`1

The first term is something like the correlation function with time lag x = `1 − `0, and we want to maximize (due
to the−2) the sum/correlation function over all lags. What is strange is that we also want the energy (i.e. last two
terms) to be low. However, if we include those two terms in with the leftovers we almost get a full autocorrelation of
the received signal, there is just a 1

2 on the parts of the signal where we say there is an impulse. Consider Proposition
4.1; it tells us we should apply the reducing factor to the largest term if we want to minimize. This is in agreement
with our earlier intuition: the location of impulses should correspond to the highest energy parts of the signal.
However, we still need to account for p1 and p2 which can no longer be ignored.

Proposition 4.1. For a, b ∈ R where a < b and some α > 1⇒ 1
α < 1,

1

α
a+ b > a+

1

α
b.

That is, the largest term in the sum should have the factor if the goal is minimization. This can be generalized to
more terms and factors.

Proof. First multiply a < b by 1− 1
α

(a < b)× (1− 1

α
)

a− 1

α
a < b− 1

α
b. (4.1.8)
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Then note

a− 1

α
a = a+ b− (

1

α
a+ b)

b− 1

α
b = a+ b− (a+

1

α
b).

Plugging this into (4.1.8)

a+ b− (
1

α
a+ b) < a+ b− (a+

1

α
b)(

− (
1

α
a+ b) < −(a+

1

α
b)

)
×−1

1

α
a+ b > a+

1

α
b.

In summary, the objective function is

p = −1

2
log 2πσ2(2− 1)− 1

2σ

2−1∑
i=1

(∆`i −∆`i−1 −m)2

− 1

2n0

1

2
(−2

H−1∑
k=0

Sk+`oSk+`0+(`1 − `0︸ ︷︷ ︸
x

) +

H−1∑
k=0

S2
k+`0 +

H−1∑
k=0

S2
k+`1) +

`0−1∑
k=0

S2
k +

`1−1∑
k=`0+H

S2
k +

K0∑
k=`1+H

S2
k


= −1

2
log 2πσ2 − 1

2σ
(∆`1 −∆`0 −m)2

− 1

2n0

−H−1∑
k=0

Sk+`oSk+`0+(`1 − `0︸ ︷︷ ︸
x

)
+

1

2

H−1∑
k=0

S2
k+`0 +

1

2

H−1∑
k=0

S2
k+`1 +

`0−1∑
k=0

S2
k +

`1−1∑
k=`0+H

S2
k +

K0∑
k=`1+H

S2
k


= −1

2
log 2πσ2 − 1

2σ
(∆`1 −∆`0 −m)2

+
1

2n0

H−1∑
k=0

Sk+`oSk+`0+(`1 − `0︸ ︷︷ ︸
x

)
−

(
1

2

H−1∑
k=0

S2
k+`0 +

1

2

H−1∑
k=0

S2
k+`1 +

`0−1∑
k=0

S2
k +

`1−1∑
k=`0+H

S2
k +

K0∑
k=`1+H

S2
k

)
(4.1.9)

Given an `0 and `1, we can easily compute this value– the problem is we need to check for each `0, `1. Proposition
4.2 explains that this will requireO(K2

0 ) comparisons which is often feasible.

Proposition 4.2. For K0 elements {0, 1, 2, . . . ,K0 − 1}, there are 1
2 (K2

0 −K0) unique pair combinations without
replacement.

Proof. Without loss of generality, we can cover all unique pair combinations without replacement (i, j), where i, j
are the index of the elements, if we consider all pairs for which i < j. Consider a K0 × K0 matrix where each
element ij corresponds to a comparison between time indexes i, j. The points where i < j corresponds to the
upper triangle right above the diagonal. The diagonal hasK0 − 0 elements; the next layer up hasK0 − 1 elements
and so forth until we reach the top which hasK0 − (K0 − 1) = 1 elements. There areK0 − 1 layers excluding the
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diagonal. Summing these terms

K0 − 1 + · · ·+ 2 + 1 =

K0−1∑
n=1

n =
1

2
(K0 − 1 + 1)(K0 − 1)

=
1

2
(K2

0 −K0).

This is a typical arithmetic series.

For N = 3 ⇒ ` = {`0, `1, `2}, we can come up with a similar expression, though it will not simplify as nicely.
Also, in the same manner as N = 2, we would have to consider all `0 < `1 < `2 which is like the upper pyramid
(3D) of a K0 cube. Like with Proposition 4.2, the precise number of comparisons can be found, but it will be
O(K3

0 ). It follows then for arbitraryN , we will need to compare all `0 < `1 < · · · < `N−1 which isO(KN
0 ).

Finally, we must compare all amountsN to make the detection decision. Doing this will require

O(1) +O(K0) +O(K2
0 ) +O(K3

0 ) + · · ·+O(KNmax
0 ) = O(KNmax

0 ).

TypicallyK0 is quite large (e.g. high sample rate) andNmax (which theoretically should beK0/H but more is more
realistically around ∆K0/µ) is often large too. So doing it exactly is computationally infeasible. With this in mind,
we consider the greedy approximation in the following.

4.1.1 Sequential estimation

The first greedy approach we will call sequential estimation. Rather than trying to process the entire signal at once,
we will detect each impulse sequentially (i.e. an online vs a batch method). Though it will not guarantee optimality,
it makes the problem feasible. As discussed before, we will assume we know H,n0, T ∼ N (µ, σ2). However for
n0, we can use (4.1.6) as discussed previously.

First we must find a suitable `0. According to (4.1.7), we just need to pick the highest energy section that is
H long. In order to prevent us from just picking noise, we compare our maximum with the noise energy over the
length of an impulse

H−1∑
k=0

W 2[k] ≈
H−1∑
k=0

n0 = Hn0. (4.1.10)

If the energy does not surpass this, we should not declare an impulse. In such cases, we should move the window
over and keep going until we either find one or reach the end.

Assuming a first impulse is found, we have an `0. Then with that first impulse identified, we look at the rest
of the signal for another one. That is we just evaluate (4.1.9) with the given `0 for each `1 and pick the maximum.
Note, `1 ∈ [`0 +H+ 1,K0] since `1 cannot come before `0; this means we only need to checkO(K0) values which
is very feasible. However, like when finding `0, we should not just accept any maximum; the maximum should
exceed the threshold of just a single detection. That is (4.1.7) evaluated for the entire signal. We will refer to this
value as the single detection threshold (SDT). Note to make computations easier, once we have identified `0, we
can ignore everything prior to make things simple. This simplification makes the SDT just the energy of the signal
after the impulse

K0∑
k=`0+H

S2
k.

Once we find `1, we can treat this new impulse as the new “first” impulse and repeat the process of finding a
“second” impulse `3. We keep going repeating this until we reach the end of the signal. Algorithm 4.1 gives an
outline for the method.
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Algorithm 4.1 Sequential estimation algorithm

Given a signalS(t) containing noise with powern0, sampled to {Sk} at a rate of 1/∆, which contains impulses from
a single source according toH, T ∼ N (µ, σ2), the shape of the source impulse h, and the times of impulses ` can
be approximated with the following procedure:

1. Find `0

(a) Set the detection window widthW = µ∆.

(b) ComputeD(`) =
∑H−1
k=0 S2

k+` for ` ∈ [0,W − 1]

(c) Find maxD(`)

i. If maxD(`) < Hn0, slide the window over oneW and start again

ii. Otherwise, ˆ̀
0 = arg maxD(`)

2. Use last identified impulse at `i (initially `0) to find next impulse `i+1 (initially `1)

(a) Ignore all signal prior to `i

(b) Compute (4.1.9) for all remaining indexes using `i as “`0” and find the maximum

(c) Compare the maximum with the SDT, (4.1.7), evaluated for this new truncated signal.

i. If the maximum is not greater than the SDT, say that there are no more impulses and terminate

ii. Otherwise, set the index of the maximum to `i+1

3. Repeat previous step using the newly found impulse `i+1 as the new last identified impulse

To show that this works, consider the recording from a single sperm whale from [45] (the same data set used
in Section 2.5.2). Specifically, we consider a 10 second segment that contains 6 clicks. One of the prerequisites for
our detection algorithm is we need to know T and H . Under the assumption that H = 2400 (with 1/∆ = 48000,
this means each impulse is 0.05 seconds long), we use [44]’s simple SNR threshold detector to extract times, and
we compute T ∼ N (1.5738, 9.5384 × 10−4). The signal, and detection times from both the simple detector and
Algorithm 4.1 are shown in Figure 4.1.1. Our sequential estimator finds the same number of impulses as the simple
threshold detector. The times are very similar, but simple detector’s times are just 153-155 samples (≈ 0.0032
seconds) later than Algorithm 4.1. This is well within an acceptable range.

Note, the smaller impulses are actually paired with the larger impulses. The smaller ones are either the result
of multi-path from the larger, or are actually the initial muted click1. In any case, we are adopting the convention
that the time of the larger ones are what we are interested in, and appending the smaller impulses (if present) after
the larger ones.

Though we are getting promising results on actual impulses, a major weakness of Algorithm 4.1 is that it requi-
res knowledge of T which is typically not the case. Previously we were able to overcome this problem of parameter
estimation in Section 2.3, but this required the knowledge of the detection times. Let us consider to multiple source
problem to see if we can find any clues to help with this.

1It is understood that sperm whales produce their clicks at the front of their head (via the “monkey lips”) projecting sound backwards, then
reflecting the sound back forward through a focusing lens. Though the “click” is the emission that gets focused, sometimes the sound generated
at the front of the head also is picked up in recordings [53].
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Figure 4.1.1: Except of a recording from a single sperm whale. Green squares indicate the detection times from
Algorithm 4.1, and the red x mark the detection times from [44]’s simple SNR threshold detector.

4.2 Multiple source

The method in Section 4.1.1 can be extended to multiple sources. The general idea is to again step through the
signal sequentially assigning impulses, but at each for assignment, consider one of the K sources and maintain
multiple solution paths as in Chapter 2 outputting the one with the highest objective function in the end.

As with the signal source case, we first will discretize the signal

S(t) =

R∑
r=1

Nr−1∑
i=0

hr(t− τr,i) +W (t)⇒ S(∆k) = S[k] =

R∑
r=1

Nr−1∑
i=0

hr[k − `r,i] +W [k]

for k = 0, . . . ,K0 where we have substituted t = k∆ and τr,i = `r,i∆ for integer k, `r,i. Note r ∈ {1, 2, . . . , R}
denotes the source. Again, the assumption is that ∆ is small enough such that |τr,i − `r,i∆| is negligible. Note 1

∆
is the sample rate. When we sample the random process W (t), we just get the random vector W [k] where each
sample is iid∼ N (0, n0)⇒W ∼ N (0, n0I) where W is the vector ofW [k] for all k. This makes the interimpulse
distribution

Tr(τr,i − τr,i−1) = T (∆`r,i −∆`r.i−1) =
1√

2πσ2
exp(− (∆`r,i −∆`r,i−1 −m)2

2σ2
).

We just have to be careful to multiply `r,i by ∆ before using Tr. Up till now, this is almost exactly like the single
source case, except now we have multiple sources. Note, it is assumed that the impulses from either source will
not overlap.

What we want to find is H = {h1,h2, . . . ,hR} and L = {`1, `2, . . . , `R}, that is the impulses shape for each
source and their associated timings. As in the previous case, we wish to choose these values as to maximize

Pr{H,L|S} =
Pr{S,H,L}

Pr{S}
.

But when we maximizing over H and L, the value of the denominator becomes irrelevant. Thus we are mainly
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concerned with maximizing

Pr{S,H,L} = Pr{S|H,L}Pr{H,L}
= Pr{S|H,L}Pr{H}Pr{L}. (4.2.1)

As before, we assume that the impulse shapes and timings are independent. Further, we assume that the sources
are independent from each other. So we can write

Pr{H} = Pr{h1}Pr{h2} · · ·Pr{hR}

Pr{L} =

R∏
r=1

Pr{`r} =

R∏
r=1

∏
i=1

T (∆`r,i −∆`r,i−1).

We make the assumption that Pr{hr} are all identically distributed as uniform over all impulse shapes of length
Tmax = ∆H . This is the same as before, this just restricts our impulse shapes to a given length, and then we can
ignore this term. And as noted, Pr{L} is constructed based on our assumptions of source independence and iid
interimpulse spacings within sources (this was the heart of the timing algorithm). Once again we will have that
Pr{S|H,L} = Pr{W}, since

W [k] = S[k]−
R∑
r=1

Nr−1∑
i=0

hr[k − `r,i],

and W ∼ N (0, n0I), so

Pr{S|H,L} = (2πn0)−
K0
2 exp(− 1

2n0

K0∑
k=1

(S[k]−
R∑
r=1

Nr−1∑
i=0

hr[k − `r,i])2).

This is very similar to single source case, so many results will be the same. Again, to make things easier we will
consider maximizing the log of (4.2.1), so

log Pr{L} =

R∑
r=1

Nr−1∑
i=1

log Tr(∆`r,i −∆`r,i−1)

=

R∑
r=1

Nr−1∑
i=1

log

(
1√

2πσ2
r

exp(− (∆`r,i −∆`r,i−1 −mr)
2

2σ2
r

)

)

=

R∑
r=1

((
− 1

2
(Nr − 1) log(2πσ2

r)

)
− 1

2σ2
r

Nr−1∑
i=1

(∆`r,i −∆`r,i−1 −mr)
2

)
.

Note,Nr, the number of impulses from source r, is a function `r. Also

log Pr{S|H,L} = log

(
(2πn0)−

K0
2 exp(− 1

2n0

K0∑
k=1

(S[k]−
R∑
r=1

Nr−1∑
i=0

hr[k − `r,i])2)

)

= −K0

2
(2πn0)− 1

2n0

K0∑
k=1

(S[k]−
R∑
r=1

Nr−1∑
i=0

hr[k − `r,i])2.
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The first term above is just a constant not dependent on H or L, so we can ignore it in terms of the maximization.
Thus the objective function to maximize is

p ,
R∑
r=1

((
− 1

2
(Nr − 1) log(2πσ2

r)

)
− 1

2σ2
r

Nr−1∑
i=1

(∆`r,i −∆`r,i−1 −mr)
2

)

− 1

2n0

K0∑
k=1

(
S[k]−

R∑
r=1

Nr−1∑
i=0

hr[k − `r,i]

)2

. (4.2.2)

Again if we want to find ĥr,q , an estimate for the q-th value in the impulse of source r, we take the partial
derivative again with respect to it and set to 0. The result will be essentially the same as (4.1.2) since all terms
unrelated to source rare ignored

ĥr,q =
1

Nr

Nr−1∑
i=0

Sq+`r,i . (4.2.3)

It is a simple average.
As before, there exists no easy way maximize for L or `r. However, we can evaluate p for a given L. Though

it is computationally infeasible to try and compute this the p for every L, if we could, we could just pick L cor-
responding to the the largest p. Instead, we consider a greedy approximation like Section 4.1.1 in the following
section.

Note, (4.2.2) can be rewritten as

p =

(∑
r

∑
i

log Tr(∆`r,i −∆`r,i−1)

)
+

(
K0∑
k=1

log f

(
S[k]−

R∑
r=1

Nr−1∑
i=0

hr[k − `r,i]

))
, (4.2.4)

where f ∼ N (0, n0)

f(x) =
1√

2πσ2
e−

x2

2σ2 ,

and hr[k] = 0 for k ≤ 0 and k > H (i.e. it is bounded). So the term S[k]−
∑R
r=1

∑Nr−1
i=0 hr[k − `r,i] is really just

the signal minus the impulses.

4.2.1 Greedy approach

In the timing algorithms of Chapter 2, the assumption was that the assignment of the current point only depends
on the timing of the previous point. In the same manner let us make the simplifying approximation that the de-
tection of the next point only depends on the previous. That is, we will do the classification sequentially.

In Section 4.1.1, we start with a single impulse and then try to detect the next one based on the first detection.
At each time point after `i +H − 1, the end time of the most previous impulse, we compare the objective function
values for

• No other impulses assigned (i.e. we are at the end of the signal)

• We say there is impulse at the time point

If the second value is greater then an impulse should be detected. This idea will work for the multiple sources as
well.

First, assume we are given the first impulse (time) `0 but do not know which source it belongs too. For example,
we use some simple SNR/energy detector (we did this for the single source case too). Similar to how we do the
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timing separation algorithms in Chapter 2, we can assume it belongs to each possible source and extend from
there choosing the best output of the choices in the end. But for simplicity of we describe the algorithm assuming
that the first impulse belongs to the first source.

So we start checking for new detections at v = `0 +H , where v is the current index of where the algorithm has
worked up to. For simplicity, define `0 = 0. As we assign each time point we also declare an assignment

zk =

{
r S[k] is from r

0 o.w.
.

A zk = 0 indicates that S[k] is just the noise. Let z(v) = [zv, zv+1, . . . , zv+H−1] be the assignment of the next
H time points. We determine if z(v) belongs to source r or is noise by comparing the associated values of p(v)
from (4.2.4). Depending on z−1(v) = [z0, z1, z2, . . . , zv−1] (i.e the assignment of points leading up to v), p(v) is
computed differently.

• Assuming z(v) is all noise

p(v) =

R∑
s=1

Ns−1∑
i=0

log Tr(∆`s,i −∆`r,Ns−1) +

v+H−1∑
k=0

log f

(
S[k]−

R∑
s=1

Ns−1∑
i=0

ĥs[k − `s,i]

)

• Assuming z(v) belongs to source r and r ∈ z−1(v)

p(v) =

R∑
s=1

Ns−1∑
i=0

log Tr(∆`s,i −∆`r,Ns−1) +

v+H−1∑
k=0

log f

(
S[k]−

R∑
s=1

Ns−1∑
i=0

ĥs[k − `s,i]

)

= log Tr(∆v −∆`r,Nr−1) +

R∑
s=1

Ns−1∑
i=1

log Tr(∆`s,i −∆`s,i−1)

+

v+H−1∑
k=0

log f

(
S[k]− ĥr[k − v]−

R∑
s=1

Ns−1∑
i=0

ĥs[k − `s,i]

)

Note before computing the above ĥr is updated with the new points according to (4.2.4).

• Assuming z(v) belongs to source r but r 6∈ z−1(v)

p(v) =

R∑
s=1

Ns−1∑
i=0

log Tr(∆`s,i −∆`r,Ns−1) +

v+H−1∑
k=0

log f

(
S[k]−

R∑
s=1

Ns−1∑
i=0

ĥs[k − `s,i]

)

=
∑
s6=r

Ns−1∑
i=1

log Tr(∆`s,i −∆`s,i−1) +

v+H−1∑
k=0

log f

S[k]− ĥr[k − v]−
∑
s 6=r

Ns−1∑
i=0

ĥs[k − `s,i]


Again, here the second line is formatted the same as the previous case. There is no addition to the timing
term and the estimate for ĥr is just the added points

We assign z(v) to the r that maximizes p(v) and then increment v = v + H . Though in the case p(v) for noise is
higher, we only increment v = v + 1. We stop looking for detections when v +H > K0.

To test this methodology we generate two sources with Θ = {(1.5, 0.132), (1.3, 0.132)} and arbitrary shapes;
we set the SNR to 10. We seed the algorithm above with the first impulse time, and the result is shown in Figure
4.2.1. Unfortunately, what happens is that while we do detect every impulse, we assign every impulse to source 1.
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Figure 4.2.1: Detection algorithm directly applied to a 2 source problem

We do have some detections for source 2, but it corresponds to noise immediately preceding all impulses except the
first. Our first detection for source 2 is the block of noise after the seeded impulse. This happens since assignment
to a source reduces p(v), and then once a source is assigned to noise, it will continue to detect noise blocks.

One problem is that we are making detection decisions based on [0, v + H − 1], we should also consider the
rest of the signal. Like with single source, we can compute the p(v) values above for rest of the signal (or at least an
extended time) and choose the maximum amongst the results. for the next detection. However this only improves
the accuracy on detection times, we still are unable to determine which impulses belong to the second source.
However, if we provide the first impulse from the second source as well, we get results like Figure 4.2.2. There is
one flip-flop error, but otherwise, each impulse is detected and assigned to the right source.
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Figure 4.2.2: Detection algorithm directly applied to a 2 source problem with peak searching
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What this means is that we have a problem with initialization. For this method to work, we need to know:

• The timing parameters Θ

• Locations of the first impulse for each of theR sources

In a practical problem these are unlikely to be given. Perhaps, we could take a portion of the signal run a regular
detector (Appendix D) and use the methods in Chapter 3 to get Θ and then Chapter 2 to assign the impulses, but
then we could also just do that for the whole signal. It seems doubtful that using the detection method described
in this section would provide any improvement over doing the detection and classification separately (especially
if we need to initialize by first doing them separately). To this end, rather than pursuing this detection algorithm
further, we focus our efforts in improving the methods in Chapter 3 Chapter 2. Though we were unable to find a
suitable detection method, the work in this Chapter greatly influenced the methods in Section 6.3.
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5
Working with sperm whale clicks

Separating sperm whale click trains is the intended application of this research. In this chapter, we take a closer
look at techniques to extract the information used in other parts of the paper (e.g. impulse times and assignments)
and analyze some of that data.

5.1 Detection

All the algorithms of Chapters 2 and 3 operate on click times. Detection is the practice of extracting click times
(and sometimes click shape) from the recorded signal. Sperm whale clicks can be approximated as impulses, and
this are easy to recognize based on their amplitude. Therefore, as pointed out in Chapter 4, threshold detectors are
often used. Algorithm 5.1 outlines a simple detector, for more details consult [44].

Algorithm 5.1 A single channel threshold detector adapted from [44].

For a signal y

1. Find the envelope using the Hilbert transform: y → yH (see Appendix D)

2. Take magnitude of result: |yH |

3. Run a peak detector on result (e.g. in MATLAB use findpeaks)

(a) Threshold: 5× |yH |, where |yH | is the mean of |yH |
(b) Minimum peak distance: 24 ms (this is the approximate length of a usual (sperm whale) click)

The locations of the peaks are the detection times
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5.1.1 Preprocessing

While the detection methods can be applied directly to the recorded signals, it never hurts to do some preproces-
sing to make the detection easier. For our application, it means remove things that are not sperm whale clicks.

It is well known and documented that sperm whale clicks have energy between 2-20 kHz [54, 55]. Therefore, as
a first step we apply a band-pass filter to all recordings. Figure5.1.1 shows an example filter that is applied to the
recordings.
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Figure 5.1.1: This is a 4-th order Butterworth filter with a 2-15 kHz passband.

Related to filtering the spectrum, another helpful thing to do is to remove tonals. Tonals are constant tones that
arise as an artifact due to things such as ship noise or the undulation of the cable in the case of a towed hydrophone
array. They show up as large vertical lines in the spectrum. One mitigation procedure is to flatten the spectrum by
normalizing each frequency by its magnitude. That is, let Y (ω) be the Fourier transform of y(t). Then we get the
normalized signal ỹ by

ỹ(t) = F−1

{
Y (ω)

|Y (ω)|

}
,

whereF−1 represents the inverse Fourier transform.

5.2 Ground truthing

In order to verify timing separation algorithms (e.g. compute the classification error rate), it is important to know
which clicks actually belong to which whale. That is, we need to know the ground truth. For many of the previous
results, we simulated click times, so we knew the actual assignment. However, this is much more difficult obtain
on actual sperm whale clicks. In the case we have recordings from a single animal, we can create pseudo-mixtures
by overlaying different parts of the signal (e.g. Section 2.5.2). However, this information is rare, and we can only do
so many experiments with the data we have. Thus it is necessary to be able to identify a ground truths in recordings
of multiple animals. We describe two methods in this section: TDOA and multipath.
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5.2.1 TDOA method

In the case that there are multiple receivers, each receiver is physically separated by some distance. Let a be the
distance in meters from the source to the first receiver and b be the distance from the source to the second receiver.
Assume that the speed of sound is c = 1500 m/s.1 Then a click will take a/c s to arrive at the first receiver, and b/c s
to arrive at the second receiver. If τ is the time of the click, then we will see the click recorded in the first channel
at τ + a/c and in the second channel at τ + b

c . If we take the first receiver as reference, the time difference of arrival
(TDOA) is the difference in time that the click arrives at the second receiver as opposed to the first. That is, the
TDOA is

(τ +
b

c
)− (τ +

a

c
) =

b− a
c

.

Here a negative value would imply that it arrives at the second receiver before the first. For a physical illustration
of this, see Figures 5.2.1c and 5.2.1a.

Above, we have described a near field model, but sources in different locations will also exhibit a similar dif-
ference in TDOA even if we assume a far field model as shown in Figure 5.2.1b. In this situation, there is a simple
trigonometric transform to go from TDOA to Angle of Arrival (AOA or θ)

θ = cos−1(
c

d
TDOA).

Note, it is possible that two sources have the same TDOA if they are at the same θ but at different distances. Ho-
wever, in that case, perhaps amplitude can help to distinguish sources. Regardless, the conclusion here is that
signals with different TDOA are in different locations, and therefore, assuming stationary sources and receivers,
are different sources.

Even though sperm whales and towed arrays are not stationary, over short periods of time the assumption of
stationary sources and receivers is generally acceptable. Thus, we will develop a classification method based on
this theory.

There are a number of methods that are used to estimate TDOA from an array of receivers; for example, MUSIC
is an eigenvector method that exploits the orthogonality of the signal and noise subspaces [56]. However, generally,
this requires that a noise subspace exists; that is, we have more receivers than sources. With PAM monitoring for
sperm whales, this is a rare occurrence. However, since we are dealing with clicks, we can determine TOA of each
vocalization in each channel with precision and then compute TDOA between channels of associated clicks. We
more formally outline this process in Algorithm 5.2.

At the end of Algorithm 5.2, we can aggregate all TDOA plot against time. For example, see Figure 5.2.2 which
comes from recordings off a towed array.2 There are a number of curves that are indicative of different sources
slowly moving over time. In this case they are likely whales, but the detection method used also picked up some
non-whale impulses. A clear artifact are the detections corresponding to TDOA = 0; these are almost surely sounds
from the boat or the towed line itself. Therefore we need to further verify which detections are actually whale clicks
(e.g. manually look at the detection).

We do not need to check every detection, just the ones we think could be whales. As we just mentioned, these
are the detections seen as curves of slowly varying TDOA. For humans, it is relatively easy for us to recognize
these patterns, but would also be helpful and interesting to automate or at least semi-automate this the process of
finding curves and selected data.

1This is a very rough approximation, but it is sufficient for our motivating example. The speed of sound varies quite a bit in the actual ocean
depending on the temperature, pressure, and salinity of the water. See: https://dosits.org/tutorials/science/tutorial-speed/

2Thank you to Yvonne Barkley for sharing data from the HICEAS 2010 survey of the Northwest Hawaiian islands.
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(a) Near field model (b) Far field model

(c) Receiver channels

Figure 5.2.1: This is an illustration of TDOA for near and far field situations.
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Algorithm 5.2 TDOA extraction from a pair of channels

Given a recordings from pair of channels y1(t), y2(t) we compute TDOA
1. Find the clicks in each channel (e.g. Section 5.1). Let the collection of click times for source k be τ k = {τk,i},

where τk,i is the i-th click in the k-th channel

2. Compute TDOAmax = D
c , where D is the physical distance between the hydrophones and c is the speed of

sound.

3. Remove associated clicks

(a) Collect T = {τ 1, τ 2} and sort based on amplitude

(b) Let τA be the time of the largest click with the largest amplitude. Find all τk,i ∈ T such that

τA − TDOAmax < τk,i < τA + TDOAmax

and remove them from T , note τA should not be removed.

(c) Find the next largest amplitude, get τA and repeat b. Stop when no more τA can be found.

4. Sort the pruned T now by click time. Let τi be the i-th time in T .

5. Starting with i = 1, Compute TDOA for τi

(a) Extract signals

ỹ1(t) =

{
y1(t) t− 1.2TDOAmax < t < t+ 1.2TDOAmax

0 otherwise

ỹ2(t) =

{
y2(t) t− 1.2TDOAmax < t < t+ 1.2TDOAmax

0 otherwise

we consider slightly longer than TDOAmax just in case any detections are on the edge

(b) Compute r(t) = ỹ1(t) ∗ ỹ2(t), where ∗ denotes correlation.

(c) Find the estimate for TDOA, ŝ = arg maxs r(s)

6. Use TDOA to infer associated click time for other channel. Let k(τi) denote the channel which τi came from.
Define τ̂ 1, τ̂ 2 as the impulse times inferred by TDOA. Initially they are empty.

(a) If k(τi) = 1

i. add τ1,i = τi to τ̂ 1

ii. add τ2,i = τi − ŝ to τ̂ 2

(b) If k(τi) = 2

i. add τ1,i = τi + ŝ to τ̂ 1

ii. add τ2,i = τi to τ̂ 2

7. Increment i, and then repeat steps 5 and 6 until a TDOA for all impulses in T have been found.
Step 6 can be omitted if finding TDOA is the only interest. For our application, knowing the times of impulses
corresponding to each TDOA is important.
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Figure 5.2.2: This is a plot of a TDOA over time for the 1641.A326.S242 survey from HICEAS 2010. Note, TDOA is
shown in sample number, fs = 192000 samples per second.
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5.2.2 Multipath as a second source

Multipath is a well known phenomena that occurs as a result of multiple propagation paths (hence the name multi-
path). A simple example is an echo; first the original sound is heard and then a slightly distorted copy is heard after
a slight delay (i.e. the echo). Any echo is a multipath arrival, and the original sound is the direct arrival. Multiple
propagation paths occur since we do not live in an infinite space without obstructions. In the case of wireless
telecommunications, the signal will bounce off of the ground, walls, buildings, and the like. With underwater
communication (e.g. radar or sperm whale clicks), the signals bounce off the ocean bottom and the surface of the
water as shown in Figure 5.2.3.

Figure 5.2.3: The arrows indicate the multiple propagation paths the can occur in underwater settings. The direct
arrival is in dark green. In lighter shades, we have the multipath arrivals that typically include the bottom reflection
or surface reflection, and also sometimes the bottom-surface or the surface-bottom reflections.

Typically, multipath is regarded as a form of unwanted interference and efforts are taken to remove it from
the signal for further processing. However, multipath arrivals can also be used to help with classification and/or
localization of sources. [46] For our purpose, if we have a recording of a single animal with direct and multipath
arrivals, we can just regard the direct and multipath arrivals as two separate sources. Sometimes it is easy to
distinguish between the direct and multipath; a good example of this can be found in the [45] data set. Figure
5.2.4 illustrates this.

More formally, we can use Algorithm 5.1 with a low threshold to pick out all arrival times. Then we can manually
go through the signal and annotated what we observe (i.e. direct arrival, multipath, false detection). These labeled
times can serve as a sample dataset.
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Figure 5.2.4: Direct and multipath arrivals are clearly distinguishable in [45].

5.3 The nature of click trains

In order to develop some intuition about how click trains should behave, we take a look at a sample recording
from [45] where a solely a single whale vocalizing has been identified (just as we have been doing in previously);
henceforth we will refer to this as the recording. The first 5 minutes of the recording is shown in Figure 5.3.1.
Previously, the clicks and times were identified an extracted in [46] which we will use for our analysis. In total there
are 1102 clicks spanning just under 25 minutes.

5.3.1 ICI

Since we want to understand the timing of impulses, let us consider the ICI. Since this recording is just from a
single whale, we can compute the ICI by taking the difference between adjacent clicks (i.e. τi − τi−1). The ICI for
the entire recording is shown in Figure 5.3.2. We see that a majority of the values are under 2 seconds, but there
are a few that are much larger. As was noted in [14] and corroborated by [19], ICI for sperm whales ranges from
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Figure 5.3.1: First 5 minutes of a recording from [45].

0.5-2 seconds, so what we are seeing makes sense. Here the larger ICI correspond to gaps in the recording. These
gaps can be clearly seen in Figure 5.3.1, and like mentioned before, the gaps may be due to the whale turning its
head or stopping to do something. Using 2 seconds as a cutoff, we will lose 65 “ICI” which means≈ 0.04 clicks are
missed every second. And the average length of the gaps (> 2 seconds) is 6.98 with a standard deviation of 6.95.
The spread is rather large; the range is 2.04− 29.66. This is just a sample size of one as well, so we need to take any
generalizations with a grain of salt.

0 500 1000 1500

time (s)

0

5

10

15

20

25

30

IC
I 
(s

)

2 seconds
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Figure 5.3.2: ICI for the recording

The pruned ICI are shown in Figure 5.3.3. There appears to be at least 2 distinct modes or T that this whale is
switching between; there are distinct differences in time and values. The main one is shorter with µ = 0.87 and
more compact than the larger one which is more spread out with a median around 1.5.

To further support this hypothesis consider Figure 5.3.4 which shows the 1-step difference in ICI. That is

(τi − τi−1)− (τi−1 − τi−2).
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This measure gives us some idea about the consistency of the ICI. We see that most values are close to 0 (within
±0.2), but then there are a few larger ones around ±0.8 which is roughly the difference in the means we see in
Figure 5.3.3. This is promising, if we can just identify the different sections where different T are present, then
we can apply Chapter 2 methods to the appropriate segments. Recall, that the PRI/ICI map (Section 3.3) gives us
exactly the times when different ICI are present.
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Figure 5.3.3: ICI< 2 for the recording
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(b) Histogram of 1-step difference of ICI

Figure 5.3.4: 1-step difference of ICI< 2 for the recording

5.3.2 Click shape

In addition to impulse spacings, we also want to analyze the shape characteristics of clicks and how they evolve
over time. Figure 5.3.5 shows waterfall plots for the extracted clicks in the recording. These waterfall plots are not
the same as the waterfall plots discussed in Section 3.4. Here a waterfall plot is where we take the information
of a single click (e.g. the time series directly or its Fourier transform) and plot its values via a color in a vertical
line. These lines are ordered horizontally with respect to their time of occurrence. With these plots, we are able to
see how the shape of clicks vary over time. While there is some general similarity for all click shapes, like we saw
with the ICI, there appear to be some distinct sections for different shapes. It is likely the sections correspond to
the different ICI sections, but we need to more carefully cross reference. Furthermore within sections, adjacent
clicks are generally very similar, but we do note slow variations over time which are visualized as smooth curves in
the waterfall plots. This slow variation of shape is what is exploited in most other click classification methods. In
Section 6.3 we show one way to incorporate this information with our methods.
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Figure 5.3.5: Waterfall plots for the clicks in the recording
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6
Practical timing separation for sperm whales

The majority of this paper assumes an ideal timing impulse separation problem. The outline of this problem is
described in Section 2.1, but we will list the main points again here

• All sources emit impulses according to interimpulse distributions Tk, and each interimpulse spacing is in-
dependent with respect to the others.

• All sources emit continuously for the entire duration of the recording.

For most situations these are not practical considerations, but adjustments can be made to handle more realistic
scenarios (like we did in Section 2.3). The initial motivation for the research was to improve PAM for marine
mammals; specifically we focus on sperm whale click trains and with hopes that the results can extend to other
echolocating species.

As seen in Section 5.3, for sperm whales, we need to make concessions for the following:

• Tk cannot be considered stationary over long periods of time

• Some clicks get missed in the recording

Furthermore, historically, the shape of clicks have played a large role in the classification of click trains. That is,
clicks that look similar are purported to come from the same animal, and there are a number of methods that take
advantage of this [13, 14, 15, 16, 17]. Previously, we were arguing that timing information can separate clicks, but
we would be remiss to completely ignore shape information. In this chapter we will also discuss how to incorporate
click shape information.

6.1 Using the PRI map

As seen in Section 5.3, sperm whale click trains appear to be stable about some mean ICI over short periods of time.
This leads to the idea that if we can identify these short periods and their parameters, we can apply the methods
of Chapter 2 to classify the clicks at those times. As discussed at length in Section 3.3, this can be done using the
PRI map of [48, 22]. In this section we provide a few examples to illustrate its use.
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6.1.1 A good simulation

First we would like to show the method work on an ideal case. Consider three sources with

Θ = {(0.7, 0.012), (2.3, 0.012), (1.5, 0.012)}

at times as shown in Figure 6.1.1. We take the mixture of impulse times and generate the PRI map according to
Algorithm 3.3 using v = 10, b = 0.1 and τj − τj−1 = 0.1 and ti − ti−1 = 1 and apply the threshold Γ for
Pfa = 0.05.. The result is shown in Figure 3.3.3b with the true ICI overlaid. By all accounts, the map is a good
representation of the underlying ICI. This makes parameter extraction and segmentation easy. In this case, we get
three ζi shown in Figure 6.1.3 with where the means in Θ̃i can be easily inferred by looking at the map. That is they
are the correct means. Using AM and A2.2, the classification error rate for ζ1 is 0.0182, 0.0204 for ζ2, and 0 for ζ3.
This is an excellent result, as it was designed to be.
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Figure 6.1.1: These are the simulated ICI for the example in Section 6.1.1.
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PRI map with actual ICI
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Figure 6.1.2: This is the PRI map for the impulse times in Figure 6.1.1 Note that the y-axis is has been flipped. The
true ICI values are plotted above the map in the same colors as before.

PRI map with actual ICI
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Figure 6.1.3: This is the PRI map for the impulse times in Figure 6.1.1 where the times of the 3 ζi are also mapped
out.
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6.1.2 A not so good simulation

The example in Section 6.1.1 was very good because the ICI were very close to their mean values. That is, σk was
small. Such a small σk are not as realistic with sperm whales, σk ≈ 0.1 would give a better model. So we repeat the
same test, but this time with Θ = {(0.7, 0.12), (2.3, 0.12), (1.5, 0.12)}. The ICI are shown in Figure 6.1.4. There is
a definitely a lot more variation.
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Figure 6.1.4: These are the simulated ICI for the example in Section 6.1.2.

Figure 6.1.5 shows the computed map (using the same parameters as before). There is agreement with the
actual ICI of sources, but this means the larger variation is also translated in the map. Correspondingly, we estimate
many different source parameters. So unlike the previous example, we get many ζi of which many are deemed too
short to classify. Only 19 of the 72 ζi contain a significant number of clicks (for clarification we say the ζi should
contain v sources). These are the segments shown in Figure 6.1.6. While these ζi cover most of the time, there are
some significant gaps.

Additionally, Pe for each of these ζi is plotted as a function of its segment start time in Figure 6.1.7. The error
rate is less than 0.1 except for 3 segments. So even though the segments are fractured, the classification of those
segments is mostly satisfactory.

Perhaps we can improve the results for this example if we increase b and τj − τj−1 to better capture the larger
variation due to an increased σk. However, this would reduce the resolution of the parameter estimates.
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PRI map with actual ICI
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Figure 6.1.5: This is the PRI map for the impulse times in Figure 6.1.4 Note that the y-axis is has been flipped. The
true ICI values are plotted above the map in the same colors as before.

PRI map with actual ICI
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Figure 6.1.6: This is the PRI map for the impulse times in Figure 6.1.4 where the times of the 19 ζi that are long
enough to classify are also mapped denoted by different colored lines.
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Figure 6.1.7: This is a plot of the error rate for each segment shown in Figure 6.1.6. Each dot’s horizontal position
indicates the start time of its associated segment. The color of the dot also corresponds to the color of the segment.
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6.1.3 On multipath

Recall in Section 5.2.2, we discussed how to use multipath to create a test dataset from single animal recordings.
We use that method to the dataset found in [45], and then apply the PRI map and classification methods of the
previous examples. Refer to Section 5.3.1 to see how the ICI for the direct arrivals behaves. The ICI behavior of
the multipath arrivals is nearly the same since they occur about the same amount of time after the direct arrival,
though sometimes they are unable to be detected.

The resulting PRI map generated using the same parameters as the previous sections is shown in Figure 6.1.8.
To reinforce that the map illustrates the true ICI, we do overlay the actual ICI on the map in Figure 6.1.9 though it
is a little difficult to see the map beneath them.
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Figure 6.1.8: These are the PRI map for direct and multipath arrivals in [45].

When we estimate parameters and then segment this map, we generate many ζi, and like Section 6.1.2, many
contain less than v clicks, so we do not attempt to classify. For the ones that contain v or more clicks, we classify
and compute the error rate shown in Figure 6.1.10. Though there are a number of high error rate segments, most
of the error rates are very good. This is even more impressive when we recognize that a combination of a multipath
and direct arrival is corresponds to µ1 = µ2 in Section 2.2.2. It is the hardest mixture to separate, so perhaps the
higher error segments are inevitable.
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PRI map with actual ICI
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Figure 6.1.9: This is the PRI map in Figure 6.1.8 true ICI values are plotted above the map (Note that the y-axis is
has been flipped). The blue dots are the direct arrivals, and the red dots are the multipath arrivals. It is hard to see
the blue dots since there is a red dot that almost always immediately follows it. In this scale, this means the red
dots usually overlaps the blue.
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Figure 6.1.10: This is a plot of the error rate for each segment found extracted from the map in Figure 6.1.8. Each
dot’s horizontal position indicates the start time of its associated segment.
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6.2 Missing impulses

For timing-only deinterleaving, [57] addressed problems with PRI jitter and missing pulses by using clustering,
whereas [58] and [59] used the square sine wave transform and Fourier transform respectively. [60] used fuzzy
adaptive resonance theory to help with this problem as well. However, without going into detail, these algorithms
can be summarized as follows:

1. Get a candidate PRI (using clustering, sine wave transform, etc.).

2. Use candidate PRI in a sequential search (SS). If a sequence is found, assign it to the PRI and then remove it.

Repeat these steps until all impulses have been removed.
Similarly we can summarize our method as follows:

1. Estimate timing parameters (Chapter 3)

2. Using timing parameters for timing separation algorithm (Chapter 2)

A major difference is that we do not sequentially estimate timing parameters, but find them all at once. However,
we can remove the influence of PRI/timing parameter estimation if supplant the estimation with the actual values
in step 1. We can then focus on the step 2s and compare the difference.

For the SS, we use the method outlined in [7] which [57] refers to in their paper. In our implementation of SS, a
pulse is said to be at target time x if τ , the time of arrival of the pulse, is within x± ε. This tolerance, ε, should be a
function of the jitter to prevent loss, so we let ε = 3σ. Also, because we are giving the actual PRI, a sequence with
the given PRI exists, so we simply accept any sequence greater than 3 impulses rather than comparing the total
(weighted) count with a threshold.

We repeat the simulation from Section 2.2.2, with A2.2 and SS. We reportPe extend the range ofσk to [10−3, 101]
and average over 100 trials. The results are shown in Figure 6.2.1. A2.2 outperforms SS throughout, but both
algorithms break down at higher values of jitter.
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Figure 6.2.1: Error rates averaged over 100 trials as a function of σk for the SS algorithm and A2.2 with µ1 = 1, µ2 =
π .

Missed impulses do happen in practice and complicate classification. The algorithms of Chapter 2 were not de-
signed to handle this directly yet, but could be adjusted to include likelihood factors for missed impulses. Without
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getting into this, we assess the performance of the current algorithms in the presence of missed detections. We re-
peat the experiment from Figure 6.2.1 using σk = 10−1 and a rate of missing impulses, ζ , increasing from 0 to 0.5.
In each trial,M = 100 impulse times are generated, and ζM impulses are removed at random. Results are shown
in Figure 6.2.2. Even without modification to handle missing impulses, our algorithm matches or outperforms SS
(which has built-in concessions for missing impulses).
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Figure 6.2.2: Error rates over 100 trials between SS algorithm and A2.3 with µ1 = 1, µ2 = π and σk = 0.1 for
different missing impulse rates.

6.3 Inclusion of click shape

In this section, we will discuss how to incorporate the impulse/click shape with the timing information. Consider
the same model as in Chapter 4 (some of this discussion will be repeated from the chapter)

s(t) =

K∑
k=1

Nk−1∑
i=0

hk(t− τk,i) +W (t), (6.3.1)

where again we say that W (t) noise. In Chapter 2, we only looked at the timing, τk,i, but now we also want to
consider the pulse shape, hk(t). We assume hk(t) are different for each source, and the differences in structure
can be used for classification. For example, in our main application, sperm whale clicks, the impulses or clicks are
known to have a multipulse structure that varies due to differences in physiology between individuals and on the
positioning of the receiver in relation to the whale [61].

The signal s(t) is almost always processed as the sampled version s[n], so we will develop our algorithms for
the sampled signal. Thus hk(t) is replaced by a discrete time version hk[n]. Similarly, the noise is replaced by
W [n]. The problem is now to find the best classification D̂ and impulse shapes {ĥk}, where hk is{hk[n]}Hn=1, the
impulse shape for the k-th source. What is “best” depends on the context, but in one sense, we can maximize

Pr{D, {hk}|s, {τi}}, (6.3.2)
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where s = {s[n]} and {τi} are the detected click times.1 to find the best assignment and pulse shapes. To be clear
we assume

• The click times {τi } have been detected and the associated clicks at each τi have been extracted

• We know the number of sourcesK

• We know the timing distributions Tk
As in Chapter 2, we hope to relax these assumptions later. With this in mind, we can take the log of (6.3.2) and use
the definition of conditional probability2 to write

log Pr{D, {hk}|s, {τi}} = log

(
Pr{D, {hk}, s, {τi}}

Pr{s, {τi}}

)
.

With respect to maximization, the numerator is just a scaling factor so we can ignore it. Thus we have

log (Pr{D, {hk}, s, {τi}}) = log (Pr{s|D, {hk}, {τi}}Pr{D, {hk}, {τi}})
= log

(
Pr{s|D, {hk}, {τi}}Pr{D, {τi}|���{hk}}�����Pr{{hk}}

)
= log (Pr{s|D, {hk}, {τi}}Pr{{τi}|D}����Pr{D})
= log Pr{s|D, {hk}, {τi}}+ log Pr{{τi}|D} (6.3.3)

To get here we just used the definition of conditional probability. In the second line, we drop the conditioning on
{hk} in the second factor since the joint probability of the impulse times and assignments is independent of the
impulse shapes.3 Furthermore, as in Chapter 4, Pr{{hk}} can be ignored with respect to optimization if we do
not place any constraints on the impulse shapes. That is, Pr{{hk}} is assumed to be uniform over its universe.
Similarly, in the following line, Pr{D} can be ignored. In the absence of any other information, all D are equally
likely (i.e. Pr{D} is assumed to be uniform over its universe). Our final objective function (6.3.3) contains two
terms. Realize the second term log Pr{{τi}|D} is actually the log-likelihood of the timing, (2.2.1), and it appears
then that the first term the log-likelihood of the impulse shape (we will confirm this shortly). This indicates that
the problem is somehow separable between shape and timing.

Since we have discussed the second term and its optimization at length already in Chapter 2, let us inspect the
first one more closely. First we will assume that the noise W [n] is white Gaussian, W [n] ∼ N (0, n0) where n0 is
known4. Furthermore, we assume that all hk[n] has finite support [T1, T2], i.e., hk[n] = 0 for n /∈ [T1, T2], where in
general T1 ≤ 0 (the pulse detection will usually find the peak of the pulse). Then

log Pr{s|D, {hk}, {τi}} ≡ log `(D, {hk}, {τi}; s) , L(D, {hk}, {τi}; s),

1We are being loose with the Pr{}, probability of an event, notation. Some of the arguments are discrete, for which this makes sense, but
some are continuous. If X is a continuous random variable and x is some realization of it, Pr{X = x} = 0. We do not actually mean this,
instead when we say Pr{x}we are actually referring to Pr{X ∈ [x− δ/2, x+ δ/2]}where δ is an infinitesimally small number; such a quantity
is not necessarily 0.

2For eventsA,B,

P (A|B) ,
P (A,B)

P (B)
⇔ P (A,B) = P (A|B)P (B) = P (B|A)P (A).

3AssumingA,B are independent events
P (A,B) = P (A)P (B).

Then

P (A|B) =
P (A,B)

P (B)
=
P (A)P (B)

P (B)
= P (A),

and similarly
P (B|A) = P (B).

4The noise power n0 can be easily estimated from the impulse free part of the signal.
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where

L(D, {hk}, {τi}; s) = −
K∑
k=1

∑
i

1

2n0

T2∑
n=T1

(s[n−∆τSk(i)]− hk[n])2 + C, (6.3.4)

where C is a constant that can be ignored with respect to optimization (it depends on n0 and the length of the
signal, but does not change for a given recording), ∆ is the inverse of the sampling frequency, and we have used
the assumption that pulses do not overlap.

Putting everything together, the solution is finding D, {hk} such that they maximize the log-likelihood (6.3.3)
= (2.2.1) + (6.3.4). That is,

D̂, {ĥk} = arg max
D,{hk}

−
K∑
k=1

∑
i

1

2n0

T2∑
n=T1

(s[n−∆τSk(i)]− hk[n])2 +

K∑
k=1

∑
i

log Tk(τSk(i) − τSk(i−1)). (6.3.5)

As in Section 2.3 this is an optimization over the discrete D and the continuous {hk}. Given an assignment D,
only the first term of (6.3.5) depends on {hk} as (6.3.4); this is a standard ML problem (or least square problem)
with the likelihood maximizing solution

ĥk[n] =
1

Nk

Nk∑
i=1

s[n−∆τSk(i)]. (6.3.6)

This confirms what we said before, the first term measures shape information.
On the other hand if an {hk} is given, there is no simple analytical solution for D. However, we know how

to deal with (2.2.1) via Section 2.2. Recall, we discussed how the optimum assignment for the impulse τi is only
dependent on the optimum path for each unique K-tuple. Now we will show the same is still true for (6.3.5) for
given {hk}. The difference now is we have the extra term (6.3.4). Again assume we have an optimum path leading
to impulse τi, and we need to decide which source to assign it to. Ignoring the (2.2.1) part, the best decision would
be to choose

k̂ = arg min
k

T2∑
n=T1

(s[n−∆τi]− hk[n])2.

That is, choose the source whose impulse shape matches the signal around τi closest. Here, the key point is that
this decision has no dependence on any previous or future impulse times. This is less restrictive than timing part,
so it adds no additional dependance to the total objective function. That is, (6.3.5) will depend optimum path for
each unique K-tuple. To illustrate this, we revisit the same example in Section 2.2 which we used to originally
motivate our algorithms (refer back to there for notation). First, let

fk(τi) = − 1

2n0

T2∑
n=T1

(s[n−∆τSk(i)]− hk[n])2, (6.3.7)

this is the amount added to the objective function from (6.3.4) if the impulse at τi is assigned to source k. Consider
P100 = [. . . , 3, 1, 1, 2, 1, 2, 2], then (d1(P100), d2(P100), d3(P100)) = (2, 0, 6). When impulse 101 is assigned to
each of the three sources, one of the following terms is added to the log-likelihood

f1(τ101) + log T1(τ101 − τ98) ifD101 = 1

f2(τ101) + log T2(τ101 − τ100) ifD101 = 2

f3(τ101) + log T3(τ101 − τ94) ifD101 = 3
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Whereas ifP100 = [. . . , 3, 2, 2, 1, 1, 2, 2], theK-tuple is still (2, 0, 6), and terms potentially added are still the same

f1(τ101) + log T1(τ101 − τ98) ifD101 = 1

f2(τ101) + log T2(τ101 − τ100) ifD101 = 2

f3(τ101) + log T3(τ101 − τ94) ifD101 = 3

With regards to the assignment of the 101st impulse these two paths are identical. On the other hand if P100 =
[. . . , 3, 2, 1, 1, 2, 1, 2, 2], theK-tuple is (2, 0, 7)], and we get the following modified terms

f1(τ101) + log T1(τ101 − τ98) ifD101 = 1

f2(τ101) + log T2(τ101 − τ100) ifD101 = 2

f3(τ101) + log T3(τ101 − τ93) ifD101 = 3

Even with the added term, it is clear that these terms do not depend on what happened in the part of the path
before the 3, indicated by . . .. Thus, the likelihood for the decision at time i+1 only depends on the tail of the path,
and this is exactly characterized by K-tuple. Therefore, given an {hk}, we optimize using the same algorithms as
before, A2.1, A2.2, A2.3, A2.4, but with the (6.3.5) as the objective function instead of (2.2.1).

Since we have optimization methods that work given a D or given a {hk}, we consider an alternating maxi-
mization approach again. That is, from an initial D[0], find {hk}[1]. Then use {hk}[1] to find D[1]. Then use D[1]

to find {hk}[2], and so on until the D, {hk} converge or some maximum number of iterations is reached. Note
·[i] indicates the i-th iteration. Making incremental improvements, to (6.3.5) does not guarantee we will find the
global maximum, but we should at least be able to find a local max. Whether or not the local max is the global one
will largely depend on where the algorithm is started. We decided to generate D[0] using a Section 2.2 algorithm
on the data ignoring impulse shape information, and it has shown good results. We will refer to this method as
the batch method, and it is summarized in Algorithm 6.1. It should be noted that if we use a sub-optimal timing
separation algorithm, we cannot say that (6.3.5) will always improve through the iterations. However, we can keep
track of the objective function values and then output the D, {hk} corresponding to the highest.

Algorithm 6.1 The batch method using timing information and impulse shape

Given the signal s[n], sampling width ∆, noise power n0,K sources, distributions Tk, impulse times {τi}Mi=1,

1. Get D[0]

(a) Use a timing separation algorithm (e.g. A2.1, A2.2, A2.3, A2.4) on {τi}withK and Tk
(b) i = 0

2. Using D[i], find {hk}[i+1] with (6.3.6)

3. Using {hk}[i+1], find D[i+1]

(a) Use a timing separation algorithm but replace (2.2.1) with (6.3.5) as the objective function

4. Check for convergence

(a) If D[i+1] = D[i], then stop

(b) Otherwise i = i+ 1 and go to step 2.

Alternatively, use the shape-only algorithm for step one to generate {hk}[0] and use to find D[1], alternating ap-
propriately through iterations.
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Algorithm 6.2 is another method to approximately maximize (6.3.5). The idea of the approach is use the same
structure as Section 2.2 algorithms with (6.3.5), but to update the estimates for hk as we try to assign each impulse.
That is, when computing fk(τi), the hk[n] is first computed by

ĥk[n] =
1

Ñk

∑
τk,i∈[0,τi]

s[n−∆τk,i], (6.3.8)

where τk,i indicates the i-th are the impulse assigned to source k (here not necessarily the true assignment), Ñk is
the number of impulses assigned to source k up to τi

Ñk =
∑

τk,i∈[0,τi]

1.

These estimates are only optimal if the signal ended at τi, as opposed to using (6.3.6) which gives the ML estimates
for shapes using the entire signal. Thus using (6.3.8) will not guarantee a maximized output. However, it has the
benefit that it does not need go through the data over multiple iterations until it converges, and in simulations,
its results are promising. We will refer to Algorithm 6.2 as the online method. Note, the online method can be
modified in the same ways we modified A2.1 (i.e. removing STO paths, or only maintaining a survivor paths); we
just need to make sure in step 2b we use (6.3.5) as the objective function.

Algorithm 6.2 Online method using timing information and impulse shape

Given the signal s[n], sampling interval ∆, noise power n0,K sources, distributions Tk, and impulse times {τi}Mi=1

1. Initialize the assignment of τ1 such that in the firstK paths, τ1 is labeled 1, . . . ,K

(a) Additionally, for each path k, set hk to the first impulse shape (this is actually applying (6.3.8))

(b) Set i = 1

2. For each path consider the extensions where τi+1 is assigned to source k = 1, . . . ,K

(a) Update (d1(Pi), . . . , dK(Pi)) for each extended path as follows: if the extension is D̂i+1 = k then

dk(Pi) = 0

dj(Pi) = dj(Pi) + 1

(b) Taking into account the assignment of τi to source k, recompute hk according to (6.3.8)

(c) Compute (6.3.5) using the above information for each extended path

3. Put the paths with same (d1(Pi), . . . , dK(Pi)) into a group

4. In each group, eliminate all paths except the one with largest objective function

5. Check if finished

(a) If i = M , finished, choose the most likely path as the assignment

(b) Otherwise, increment i and go to step 2

One more important modification is the shape-only algorithm. As the name implies shape-only algorithm
classifies the impulses based on shape information only. To do this, just use Algorithm 6.2, but instead of using
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(6.3.5) as the objective, use

−
K∑
k=1

∑
i

1

2n0

T2∑
n=T1

(s[n−∆τSk(i)]− hk[n])2.

That is, (6.3.5) without timing information. Again, this is a greedy approach, and optimality is not guaranteed, but
it also has shown good results. Also as an alternative, the shape-only algorithm can be used to initialize the batch
method with a shapes instead of an impulse assignments. A key benefit of the shape-only algorithm is that it does
not require any knowledge of Tk.

6.3.1 Parameter estimation

In practice, the noise W [n] and the timing distribution Tk are unknown. Here we have been assuming that they
are known to be Gaussian, but the parameters are unknown. That is

W [n] ∼ N (0, n0)

Tk ∼ N0(µk, σ
2
k).

For a given recording, assuming we know know the detection times τi and the length of an impulse H , we can
easily extract the impulse free parts of the signal– call this w[n]. There are gaps in w[n] (where the impulses are
extracted from), but the areas outside of the gaps are just samples ofW [n]. Therefore we can use them estimate n0

using standard ML estimation. That is

n0 =
1

N

N∑
i=1

w[i]− 1

N

N∑
j=1

w[j])2

2

,

whereN is the total number of samples inw[n]; we have been loose with indicating the indices and gaps.
It is more difficult to find the parameters of Tk, and is not realistic to assume that they are known. This is the

topic of Section 2.3 and Chapter 3, but these these methods are only based on the impulse times. Now we have
access to shape information. A simple idea to make use of shape is to use the shape-only algorithm to generate an
initial assignment which we then can use to get an ML estimate for Θ. However, such an estimate is only based
on impulse shapes, and is a greedy estimate at that. As with AM, we can improve the estimate over iterations by
recomputing Θ every time we get a new assignment. This application is straightforward for the online-method,
the algorithm is just re-run many times with recomputed Θ till convergence. For the batch-method, we iterate
already, so Θ should either be recomputed either immediately preceding step 3 or right after.

6.3.2 Results for impulse shape algorithms

There are situations where classification by impulse shape is sufficient (e.g. very clear and different impulse
shapes), and there are situations where classification only by timing is a better choice (e.g. the impulse shapes
are unclear or vary over time). There are also cases in between. In this section, we evaluate the error probability of
the batch method, online method, and shape-only algorithm in various signal-to-noise ratios (SNRs) and timings.

The original motivation of this project was to separate sperm whale click trains, so we will use sperm whale
clicks as our example impulses. Actual sperm whale clicks are extracted from the dataset mentioned in Section 5.3.
We select clicks from two different sections, and then we align and average them to give a two different represen-
tative clicks. Specifically, the final clicks have H = 0.024 s (1154 samples at rate fs = 48 kHz) and are normalized
to unit power. They are shown in Fig. 6.3.1.

Similar to Figure 2.3.2, we will fix one timing distribution and vary the other. That is, impulse times are genera-
ted with parameters Θ = {(0.5, 0.132), (µ2, 0.132)}using the data generation algorithm (Algorithm 2.5). However,
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Figure 6.3.1: These are the normalized clicks for (top) source 1 and (bottom) source 2.

care is taken to ensure that times do not result in overlapping impulses (i.e. each impulse time is at least H apart,
datasets that violate this are discarded). Enough impulses are generated such that they span approximately 10
seconds; a typical set will contain 25-40 impulse times total.

With the impulse shapes and times, we construct the entire signal in two steps. First, we make the noise-free
signal

sp[n] =

K∑
k=1

Nk−1∑
i=0

hk[n−∆τk,i].

Then a noise sequence w̃[n] ∼ N (0, 1) of the same length is also generated. With sp[n] and w̃[n], a signal of
arbitrary SNR α can be made according to √

αsp[n] + w̃[n]. (6.3.9)

The datasets considered have µ2 from 0.5 to 2.0 (parameters are chosen to mimic actual sperm whale timings)
and α from 0.5 to 3. For each µ2, α pair 100 different timings and signals are generated. The error rate is computed
for each signal, and the rate averaged across all 100 trials is reported and shown in Figure 6.3.2. For these results,
we use the techniques in Section 6.3.1 to give n0 and Tk (including iterating up to 50 times to improve Θ). The STO
variant of the algorithms are used to save on computation time.

As expected, and seen in previous results where only timing information is used, performance is poor when
µ2 is close the µ1 and improves as their distance grows. Also as expected, the shape-only algorithm does better
at higher SNR. However, its performance also exhibits some dependence with the timing mean which is most
apparent when the SNR< 1. Recall that the estimates for the pulse shapes are made sequentially, so the order of
the pulses, which is dependent on the timing parameters, affects the final result. Specifically, we see a degradation
in performance when µ2 ≈ 2.5µ1. So when there are ≈ 2.5 pulses from one source before the other, the greedy
scheme makes the wrong decisions. If timing information is added to the shape-only algorithm (i.e. the online
method), we see that there is only a very marginal improvement (P̄e = 0.0429 versus P̄e = 0.0444 for shape-only).
Whereas, the batch method shows significant improvement– almost everything is classified correctly. This is not
completely surprising, the online method is a greedy approximation, so it should perform worse than the more
optimal batch method.

The results indicate that the batch method is the best choice, and that the online method is not really useful.
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If the interest is just in speed, the shape-only method appears to suffice. However it should be noted that we
constructed a simulation that matched our assumptions (i.e. white noise and a pulse shapes that do not vary)
exactly. In the ocean, the noise is not white and pulse shapes from sperm whales vary slightly between clicks (as
shown in Figure 5.3.5). So when applied to real data, the results will be different. We would need to improve our
simulation model to get more accurate results and/or update the system model (6.3.1) to develop a better method.
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(b) This is the average error probability of the shape-only algorithm
for µ1 = 0.5 with µ2 and SNR as shown
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µ1 = 0.5 with µ2 and SNR as shown

Figure 6.3.2: Average error rates of a time-only method (A2.3), shape-only algorithm, online method, and batch
method for sperm whale like timing (Θ = {(0.5, 0.132), (µ2, 0.132)}) and clicks at varied SNR are shown here.
Parameter estimation is done as in Section 6.3.1.
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7
Conclusion

In this thesis we explored the use of timing to separate sources with the intention of separating sperm whale click
trains. To begin, we started with the idealized timing separation problem outlined in Section 2.1 where the number
and Gaussian timing distributions of sources are known. Brute force separation is computationally infeasible, but
with inspiration from the Viterbi algorithm, we developed a feasible method to separate mixtures optimally. To
further improve computational performance, we made made simplifying approximations and showed that the
classification error rate of the simplified algorithms are close to optimal one. Under the assumption of truncated
Gaussian timing distributions, a lower bound was found for mixtures of two sources. This lower bound was tested
verified through simulations, and it was found that the cv = σ/µ of sources is related to error rate. The actual
relationship is complex, but generally, error rates are higher when cv is higher. The important result here is that
the amount of relative jitter, cv , determines the viability of separation by timing. That is if cv is too high, a different
method should be considered. Though it is also important to note that even in the presence of jitter, our timing
separation algorithms still perform better than other methods, like sequential search, that do not handle jitter
optimally.

Additionally, we relaxed the assumption of knowing the timing distribution parameters and presented methods
to jointly estimate parameters and separate impulses. For this mixed optimization problem, we considered AM
and EMV, and they were shown to be reliable around a certain range about the true parameters. That is, they are
somewhat sensitive to the initialization point. So next we focused efforts in developing heuristics to get good initial
estimates for the parameters of timing distributions. In particular, methods based on the δτ -histogram seemed to
be the most useful. Equipped with parameter estimation, we relaxed the assumption of also knowing the number
of sources. Then we showed using the minimum description length principle was able to discern the number of
sources.

We explored the use of timing to improve detection methods. Using a Bayesian framework and assuming that
the impulse shape does not change between emissions we got an objective function to maximize that consists
of the timing log-likelihood function plus a likelihood function related to the shapes of impulses detected. This
optimization problem is harder than timing-only separation; knowledge of the impulse shapes from each source
is necessary but impossible to estimate without knowing all the detections. We took a greedy approach to come up
with an approximate method, but we still needed to assume we knew the timing parameters and at least the first
detection times for each source. Due to these assumptions, these methods are impractical. However, the analysis
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for the detection problem inspired a classification method using impulse shape and timing. Also using the same
idea, we proposed a method for classification using impulse shape only that could be used as an initialization point
for AM or EMV.

This inclusion of impulse shape was related to the goal of adapting our timing based separation methods for
sperm whale click train separation. In addition to utilizing shape, we needed to account for the non-ideal timing
problem where we assume that all whales constantly emit for the entire duration of recordings. The PRI map was
used to help segment recordings into times where we can assume the idealized model. We also developed methods
based on the PRI model to extract timing parameters and and estimate the number of sources. It is still a work in
progress, but the results so far are promising. Existing detection methods are not always perfect and whales might
skip clicks for one reason or another, so missing impulses are a concern as well. However even without any change
in the timing separation algorithm, we outperformed a sequential search method which has concessions built in
to handle a missed impulses.

7.1 Future directions

There is still more work to be done with regards to a practical implementation for sperm whale click trains. The
PRI map segmentation and parameter extraction works, but it needs improvement in producing longer segments.
This might be accomplished by adjusting map parameters, adding in some post filtering operation to average
the map values, or averaging of parameters during the segmentation operation. One likely reason for short PRI
map segments is missed clicks in a train showing up as gaps in the map. We can achieve longer segments by
closing these gaps, but then we will likely need to account for these missed clicks more directly. For this, A2.4 is
one approach that we can expand upon. Additionally, the number of sources output for a PRI map segment may
overestimate the actual number of sources. The use of MDL has been useful in preventing overestimation, but it
is worth exploring if there are any modifications to the separation algorithm itself that can be made to discourage
the use of extra sources.

With both missed clicks and extra sources, the real issue is management of outlier ICIs. In the ideal timing
separation problem, we assumed that these outliers do not exist; this is why we discounted solution paths with
STO. However, in real mixtures, true outliers show up, and these outliers can lead to very low likelihood values
which would normally eliminate the solution even though it is the true assignment. One solution would be to
adjust the penalty an outlier incurs on the overall likelihood, but exactly how to adjust the value so that to avoid
false outliers needs to be ascertained.

We did present a method where we married timing separation with impulse shape classification, but there is
more room to grow here too. The method is based on the assumption that click shape for each source is constant
which is not necessarily true (e.g. as the whale moves, the channel changes). Rather we should allow for slow
variations click-to-click. Perhaps the online method presented is a step in the right direction, but it needs to be
expanded upon. Another approach would be to impose distributions on a feature (or sets of features) as we did
with the timing. However, this presents the challenge of deciding which features to use and determining their
distribution.

In this paper we were focused on developing an optimal method for the separation of renewal processes. While
there are other methods that separate based on timing only, many assume a different model, and then those that
do, use heuristics to modify a method that assumes no jitter to handle the jitter. It would be easy to simulate
data for which our algorithms do better and vice versa. To this end, we felt that it was unfair and unnecessary
to compare with these methods, at least in order to prove that our proposed method works in theory. However,
when tackling the problem of separating actual sperm whale clicks, comparisons are needed to provide evidence
that we can do better or at least provide some benefit over existing algorithms. While we could try to assert that
our assumed model is the correct one via analysis of verified data, in the end it comes down to which method
produces the best result regardless of the assumptions made. Regrettably, as discussed above, we did not reach a
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final method for practical separation and so were not able to compare yet.
Finally, we have always been assuming a single sensor, it would be interesting to see how timing be used in a

multiple sensor problem. With more information, we should be able to achieve even better separation. An initial
approach might be to do the separation on each sensor and then cross validate the results. Also, though the timing
is considered is the time between the same click in different channels and not ICI, we used pairs of hydrophones
to do manual separation by TDOA. Finding a way to automate this process would be very valuable. It is possible
ICI regularity could be exploited to help in the automation as well.
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A
Generating samples from distributions

In order to validate performance of algorithms, we need to be able to generate controlled sampled data. An im-
portant step in this process is drawing samples from some specified distribution. Typically there will always be
some utilities in software to pull a (pseudo)random number from a uniform distribution on the interval [0, 1] (e.g.
rand() in C) 1 and often also from the standard normal distribution N (0, 1) (e.g. randn() in MATLAB). In this
Appendix, we will describe how to pull samples from any specified distribution under the assumption that these
utilities exist. Appendix A.1 will discuss the method for an arbitrary Gaussian, whereas Appendix A.2 will present
methods for any pdf specified by an f(x).

A.1 Arbitrary GaussianN (µ, σ2) fromN (0, 1)

Assume we have a method to get draw samples x form X ∼ N (0, 1). We can generate the samples y from Y ∼
N (µ, σ2) using the following transformation

y = σx+ µ. (A.1.1)

Proof. The above transformation corresponds to Y = σX + µ. If this Y has the proper moments, then we verify
the operation. First note

E[X] = 0

E[X2] = 1.

Then consider

E[Y ] = E[σX + µ]

= σE[X] + µ

= 0 + µ = µ

1Getting a good (pseudo)random number is not a trivial process and is of particular interest itself. However, this is outside the scope of this
paper.
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This is correct, we want the expected value of Y to be µ. Now let us check the second moment

E[(Y − E[Y ])2] = E[Y 2 − 2Y E[Y ] + E[Y ]2]

= E[Y 2]− 2E[Y ]2 + E[Y ]2

= E[(σX + µ)2]− 2µ2 + µ2

= E[σ2X2 + 2µσX + µ2]− µ2

= σ2E[X2]︸ ︷︷ ︸
1

+2µσ E[X]︸ ︷︷ ︸
0

+µ2 − µ2︸ ︷︷ ︸
0

= σ2.

A.1.1 Arbitrary truncated GaussianNa(µ, σ2) fromN (µ, σ2)

In our notation,Na(µ, σ2) indicates a Gaussian distribution with mean µ and variance σ2 that has been cut off on
the left at a (distributions can also be truncated from above too). More specifically, ifX ∼ Na(µ, σ2), then

Pr{X < a} = 0.

And importantly the following is not necessarily true

E[X] = µ

E[(X − E[X])2] = σ2. (A.1.2)

Importantly, µ and σ2 are the mean and variance of the distribution that is truncated, not the moments of the
truncated distribution. However note, in some cases µ � a and σ2 is not large, so the effect of truncation is
negligible and (A.1.2) ends up being essentially true. See Appendix B.1 for more info.

Getting samples from a truncated distribution is simple if a method to draw samples from the underlying (i.e.
non-truncated) distribution exists. Let x̃ be a sample drawn from the underlying distribution, keep it as a sample
from X if x̃ > a. Otherwise, reject x̃ and draw another one. This can be repeated as many times as desired. Note,
the same process can be used to truncate from above as well – just throw away any samples > b if b is the upper
bound.

A.1.2 Arbitrary Gaussian to standard Gaussian

Similar to the first transformation, we can go the other way to transform an arbitrary Gaussian Y ∼ N (µ, σ2) to
the standard oneX ∼ N (0, 1) using the following transformation

x =
1

σ
(y − µ).

Proof. This is the inverse of (A.1.1), so the proof is just the opposite. We simply evaluate the moments of the
transform to verify that indeed has mean 0 and variance of 1.

E[X] = E[
1

σ
(Y − µ)]

=
1

σ
(E[Y ]− µ)

=
1

σ
(µ− µ) = 0.

149



A.2. ARBITRARY DISTRIBUTION APPENDIX A. SAMPLE GENERATION

And similarly

E[(X − E[X])2] = E[(
1

σ
(Y − µ)− 0)2]

=
1

σ2
E[(Y − µ)2]︸ ︷︷ ︸

,σ2

=
1

σ2
σ2 = 1.

A.2 Arbitrary distribution from a random number generator

In this section we will briefly describe Gibbs sampling [62] and the Metropolis-Hastings algorithm [63] which are
methods draw samples from an arbitrary pdf specified by p(x).

Metropolis (Appendix A.2.1) and Gibbs (Appendix A.2.2) are two ways to get the “same” result. Which one is
better will depend on your application. For example, Gibbs sampling a 1D function can be immediately paralleled
for efficiency, but the same cannot be said for Metropolis. However, for multiple dimension problems, it is not
possible to parallel the procedure for either Gibbs or Metropolis since the next sample always depends on the
previous one. With Metropolis, there is also a lot more fine tuning and user-set variables than Gibbs.

A.2.1 Metropolis-Hastings

Algorithm A.1 describes a produce to samples from an arbitrary pdf p(x).2 It assumes we are sampling a continu-
ous value, but the procedure directly generalizes to discrete values (just replace any integrals with sums and skip
any “function sampling” steps). It is written to get samples x, 1D values, but it is exactly the same for a multidi-
mensional x.

While the algorithm will work as is, there are a few more things to consider. First, we might choose a bad
starting value way out of the range of the function. Then it would take some time for the jumps to get into the
functions range. In other words, it would take some time before the samples started to actually be relevant, so the
use of a “burn-in” period is advised. That is, throw away the first set of samples (e.g. the first 1000).

Another source of error is that Metropolis tends to produce correlated samples. This can pose a problem if
we want to produce independent samples – if samples are correlated, they are not independent. The correlation
occurs because, to some degree, the current sample is generated from the previous. For example, Figure A.2.1
shows the absolute value of the first 1000 autocorrelation coefficients (a measure of the level of correlation, see Ap-
pendix A.2.3) from a 106 sample generation run. Ideally, it would be low everywhere, but until the lag reaches 200,
the correlation coefficient is not small. A simple solution is just take every 200th sample; this is called “thinning,”
and the improved result is also shown in Figure A.2.1. However, the act of thinning presents another problem:
when we thin, we lose samples. In the example shown we go from 106 samples down to 5000, 0.5% of the original
amount. To overcome this, we can just generate more samples. Say we only keep every L-th sample, and we want
N total samples, then we must use the algorithm to generate LN samples which may not be feasible if N and/or
L is large.

2If we are given an arbitrary positive function (i.e. f(x) ≥ 0∀x ) instead, we can convert it to a valid pdf by scaling it. That is use p(x) =
f(x)∫
f(x)dx

.
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Figure A.2.1: (Left) Using J1, these are the absolute value of the first 1000 correlation coefficients after removing the
burn in period. (Right) After removing every 200 samples (out of a 106 sample generation run), we get a different
set of coefficients.
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Algorithm A.1 Metropolis-Hastings algorithm

Given a distribution p(x) to draw samples from:

1. Pick a starting value x(0) . Result should be independent of the choice. Set t = 1.

2. Pull a sample from the jumping/proposal distribution J(x∗|x(t−1)).

(a) This distribution should be symmetric. That is J(x1|x2) = J(x2|x1)

(b) Typically, we define an auxiliary random variable

Y = X1 − x2

where Y ’s distribution is even (i.e. pY (y) = pY (−y)). For example, Y ∼ N (0, 1), or Y is uniform on
the symmetric interval [−0.5, 0.5]. This distribution should be “easy” to sample from in the sense that
the system/code has some built-in capability to do so (e.g normal or uniform distributions). Using this
auxiliary variable we can also write

X1 = Y + x2

Now it is clear that p(X1|x2) (i.e. J) is simply pY (y). Thus we conclude that J is symmetric since
p(X1|x2) ≡ pY (x1 − x2) = pY (−(x1 − x2)) = pY (x2 − x1) ≡ p(X2|x1).

i. Many systems can pull a value from Z ∼ N (0, 1). To get Z ′ ∼ N (µ, σ2), use

Z ′ = µ+ σZ

Indeed you can check
E[Z ′] = E[µ+ σZ] = µ+ σ E[Z]︸ ︷︷ ︸

0

= µ

E[(Z ′ − µ)2] = E[(µ+ σZ − µ)2]

= σ2E[Z2]︸ ︷︷ ︸
1

E[Z2] = 1 because E[(Z − 0)2] = 1 ⇒ E[Z2] = 1. We are mainly interested in changing the
width of the distribution (σ) for this application– moving the mean would make the distribution
unsymmetrical.

ii. Many systems can pull a value U ∼ Uniform([0, 1]). To change this to a sample on the interval
[−b, b], we just need to scale and shift. First note, the interval is b − (−b) = 2b long, so we stretch
our interval by multiplying the samples with 2b. This gives us 2bU ∼ Uniform([0, 2b]). To center,
shift to the left by subtracting b giving us (2bU − b) ∼ Uniform([−b, b]). It is possible that you
could run into numerical issues with the scaling if b is particularly large or the system does not pull
samples with fine enough granularity, but for most cases you should not have to worry.

(c) To generate the sample x∗ from the distribution, pull a sample ofY from the system and add it to x(t−1)

(d) The choice of J does not matter so much as long as it is symmetric. However some J will converge
faster than others.

Continued in Algorithm A.1.
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Algorithm A.1 Metropolis-Hastings algorithm (continued)

3. Evaluate the probability of the candidate sample p(x∗)

(a) If p(x∗) > p(x(t−1)), then set x(t) = x∗.

(b) If p(x∗) ≤ p(x(t−1)), pull a sample u from a uniform distribution on [0, 1] (system should have this
built in).

i. If u < r = p(x∗)
p(x(t−1))

, set x(t) = x∗

ii. If u ≥ r, set x(t) = x(t−1). That is, we reject this new sample

4. Increment t and go to step 2.

We stop when some specified maximum number of samples is reached or we meet some convergence criteria. For
example, if the statistics of the first half of the samples match the second half. That is, take all of the samples,
split them in half and compute the mean for each. If the means match, then we have enough samples. Another
approach would be to start multiple sampling chains at once, and compare the statistics between them. The idea
is the same as comparing the first half of samples with the second half; stop when the statistics match.
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A.2.2 Gibbs sampling

Suppose we want to draw samples from an arbitrary unscaled pdf (i.e. improper; does not sum to 1) which is
specified by some sampled values

{p(xi) : xi}NXi=1

where xi is the value of the event sorted such that xi−1 < xi and p(xi) is the probability of the event. Typically
these values arise from sampling a function f(x) atxi (usually regularly spaced) or perhaps if there was a histogram
of events that needed to be replicated/simulated. The values are bounded in [x1, xNX ], and assume that outside
of these specified values it the probability is 0.

The idea of Gibbs sampling is to pull a random number from [0, 1] and find its corresponding value on the CDF
to take as the sample. The exact procedure is described in Algorithm A.2. Note, if you are given a proper pdf, just
skip the first step. Furthermore if instead a continuous function is given, one option is to simply sample it to get to
get to the starting point. Alternatively, just use it directly and ignore any approximations given.

Gibbs does not have the same issue with correlated samples like Metropolis since each sample is generated
without any dependence on the previous ones. Additionally, this means this process can be directly paralleled;
that is, we can run the procedure then combine the results to maximize efficiency.

Multiple dimension Gibbs

Above is a method to sample from a pdf via Gibbs sampling. It is only 1D, but it can be generalized in the following
manner. Consider we have some (unscaled) multivariate pdf given by f(x), where x is an M × 1 vector and M is
the number of variables. Note, f : RM → R. For example, x = [x, y]T and

f(x) =
[
1 0

] [x
y

]
+
[
0 1

] [x
y

]
= x+ y

Equivalently, we could have specified the function

f(x, y) = x+ y

but we opt for the vector notation to keep it more general. We want to sample f(x), and to do so we will simply
apply our 1D sampling method multiple times. The procedure is outlined in Algorithm A.3.
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Algorithm A.2 Gibbs sampling algorithm

Given a set of values non-negative values {p(xi) : xi}NXi=1 approximating some distribution, draw a samples from
it using the following procedure

1. Make the pdf proper

p̃(xi) =
p(xi)∫ xNX

x1
p(x)dx

,

where p̃(xi) so ∫ xNX

x1

p̃(x)dx =

∫ xNX

x1

p(x)∫ xNX
x1

p(y)dy
dx

Note, we only have a few discrete values for xi and p(xi) so we cannot actually compute the integral. So
instead, we approximate the integral with the area of trapezoids. That is∫ xNX

x1

p(x)dx ≈ 1

2

NX∑
i=2

(xi − xi−1)(p(xi) + p(xi−1)

2. Create the CDF

F (xi) =

∫ xi

x1

p̃(x)dx

≈ 1

2

i∑
j=2

(xj − xj−1)(p̃(xj) + p̃(xj−1)

This function takes values [0, 1] from [x1, xNX ].

3. Pull a sample u from U ∼ uniform([0, 1]).

4. Get sample x from X (the arbitrary random variable) by finding the value x such that F (x) = u. In the
case that u does not refer to an exact F (xi), we linearly interpolate from its nearest neighbors. That is, if
F (xj) < u < F (xk), then form a line F̂ (x) between the two points to estimate the CDF. Without loss of
generality, assume xj < xk, so we can use the point-slope equation for a line

F̂ (x)− F (xj) =
F (xk)− F (xj)

xk − xj
(x− xj)

F̂ (x) =
F (xk)− F (xj)

xk − xj︸ ︷︷ ︸
m

(x− xj) + F (xj)

Then we choose the sample as x such that F̂ (x) = u. That is

u = m(x− xj) + F (xj)

u− F (xj) = m(x− xj)
u− F (xj) +mxj = mx

x =
1

m
(u− F (xj) +mxj)

An alternative here would just be to round.
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Algorithm A.3 Multidimensional Gibbs sampling

Given some f(x) representing a distribution, draw samples from it with the following:

1. Choose some initial starting value x(0) which likes within the range of possible values for x. Set t = 1.

2. Visit each component of x and sample

(a) Get sample x(t)
1 from p(x1|x(t−1)

2 , x
(t−1)
3 , . . . , x

(t−1)
M ) ≡ f(x1, x

(t−1)
2 , x

(t−1)
3 , . . . , x

(t−1)
M ).

i. Plug in x(t−1)
2 , x

(t−1)
3 , . . . , x

(t−1)
M into f(x) to get a 1D function where x1 is the variable. Call this

function f̃(x1).

ii. Evaluate f̃(x1) at sufficiently many points along x1’s effective range (i.e. the values where the
function is mostly located) to get {x1(i), f̃(x1(i))}. For example if f̃(x1) ∼ N (µ, σ2), then we
would choose many points on [µ−3σ2, µ+3σ2] since 99.7% of a normal distribution’s density lies
on this range.

iii. Pull a sample from {x1(i), f̃(x1(i))} using Algorithm A.2

(b) Get sample x
(t)
2 from p(x2|x(t)

1 , x
(t−1)
3 , x

(t−1)
4 , . . . , x

(t−1)
M ) ≡ f(x

(t)
1 , x2, x

(t−1)
3 , x

(t−1)
4 , . . . , x

(t−1)
M ).

Here we use the new sample for x(t)
1 rather than the previous one.

(c) Get samplex(t)
3 from p(x3|x(t)

1 , x
(t)
2 , x

(t−1)
4 , x

(t−1)
5 , . . . , x

(t−1)
M ) ≡ f(x

(t)
1 , x

(t)
2 , x

(t−1)
4 , x

(t−1)
5 , . . . , x

(t−1)
M ).

(d) . . .

(e) Get sample x(t)
M from p(xM |x(t)

1 , x
(t)
2 , . . . , x

(t)
M−1) ≡ fx(t)

1 , x
(t)
2 , . . . , x

(t)
M−1, xM ).

3. Increment t, then repeat the sweep (i.e. Step 2).

We stop generating new samples when reach some maximum number of samples or we can set up some conver-
gence criteria. One typical criterion is if the statistics of the first half of the samples match the second half. For
example, take all of the samples, split them in half and compute the mean for each. If the means match, then we
have enough samples. Another approach would be to start multiple sampling chains at once, and compare the
statistics between them.
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A.2.3 Correlation vs correlation coefficient

In this appendix we talk about the correlation coefficient ρ(X,Y ) = E[(X−E[X])(Y−E[Y ])]√
E[(X−E[X])2]E[(Y−E[Y ])2]

which is somew-

hat related correlation r(X,Y ) = E[XY ].3 In both quantities, the higher the value the more the correlated (i.e.
similar) the variables. are. We can say that the process is wide sense stationary (WSS)4 since we are sampling from
the same distribution each time. Thus we can generalize the autocorrelation coefficient to

ρ(τ) =
E[(Xt − µX)(Xt+τ − µX)]

σ2
X

where µX and σ2
X denote the mean and variance of the process X respectively. (Similarly we could write the

correlation r(τ) = E[XtXt+τ ]) To compute this for our samples, we use the formula to estimate

ρ̂(k) =
1

s2
X

1

N − |k|

N−k∑
i=1

(xi −mX)(xi+k −mX) (A.2.1)

where xi denotes the i-th sample generated, N denotes the total number of samples, and mX and s2
X are the

sample mean and variance of all the samples. That is

mX =
1

N

N∑
i=1

xi

s2
X =

1

N

N∑
i=1

(xi −mX)2

In MATLAB, we can easily compute (A.2.1) using the built in xcorr function with the 'unbiased' flag. xcorr

actually computes an estimate of r(k) = E[XiXi+k], so it outputs
∑N−k
i=1 xixi+k. With the 'unbiased' flag, it

multiplies the previous result with 1
N−|k| . This is almost what we want, we just need to divide by s2

X and subtract
mX from all the samples first. Thus the script is:

[ r , lags ]= xcorr (X−mean(X ) , ’ unbiased ’ ) ;
r=r /cov (X ) ;

lags contains indexes k, the sample lags, and r contains the correlation coefficients.

3In statistics, it appears as if correlation is defined by the correlation coefficient. However, in signal processing correlation is defined as the
second non-central moment.

4Basically, this means that the process does not change over time.
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B
Effect of truncation

B.1 Gaussian

Let Y ∼ N (µ, σ2), so that its pdf is

fY (y) =
1√

2πσ2
e−

(y−µ)2

2σ2 .

Let X be a random variable that is Y but truncated from above by B and below by A. That is, Pr{X < A ∪X >
B} = 0. As discussed in [35], to find the pdf forX , we just need to normalize by the remaining values. That is, if

fX(x) =

{
fY (x) A < x < B

0 otherwise
,

then ∫
fX(x)dx 6= 1,

which makes fX(x) an invalid pdf. This is easy to prove; since∫
fY (y)dy = 1,

then ∫ B

A

fY (y)dy ≤ 1.

IfA,B are finite, then the inequality is strict.
In general, the the pdf of a Y truncated to (A,B) is given by

fX(x) =

{
fY (x)∫B

A
fY (x)dx

A < x < B

0 otherwise
.
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That is, the truncated distribution is simply re-normalized to the truncated range. So for our random variable:

fX(x) =
fY (x)∫ B

A
fY (s)ds

=
1√

2πσ2
e−

(x−µ)2

2σ2

(
1√

2πσ2

∫ A

B

e−
(s−µ)2

2σ2 ds

)−1

for A < x < B. This does not always result in a nice expression, however in the case of Gaussians, it can worked
out [35, 64]. Furthermore, analytical expression for the moments have also been derived [35].

In this paper, we are particularly interested inN0(µ, σ2), that is

A = 0

B =∞.

The corresponding moments are

E[X] =µ+ σλ(α)

E[(X − E[X])2] =σ2(1− δ(α)),

where α = −µσ and

λ(α) =
φ(α)

Q(α)

δ(α) =λ(λ(α)− α),

where φ and Q are the pdf and complementary CDF of the standard normal distribution respectively. In Figure
B.1.1, we compare the actual moments ofX with µ and σ2. Specifically, we look at µ = 0, 0.1, 0.2, 0.3, . . . , 10, and
σ2 = 10−6, . . . , 100 (on a log-scale). The difference between the actual moments andµ, σ increases asµ decreases
and σ2 increases. For σ2 < 1, the estimation error for µ is very small. Except for very low µ ≈ 0, the difference for
σ2 is also very small if σ2 is roughly less than 10−1. For larger variances, the value of µk comes in to play.
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Figure B.1.1: For X ∼ N0(µ, σ2), we compute its mean and variance and compare with the input parameters µ
and σ2 (shown as thick black dashed lines).
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C
Complex numbers

Let z denote a complex number which can be represented in two forms. First, we can express it in real and imagi-
nary parts

z = a+ jb,

where a is the real part, b is the imaginary part, and j =
√
−1 is the imaginary number. Sometimes we will write

<{z} = a and={z} = b. Alternatively, we can use polar form

z = rejθ,

where r is the magnitude (which is also denoted as |z|)and θ is the phase. This is best illustrated with an image of
the complex plane as shown in Figure C.0.1. We can convert between these two forms easily

r =
√
a2 + b2

θ = tan−1 b

a

a = r cos θ

b = r sin θ.
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Figure C.0.1: The complex number z in the plane

C.1 Complex conjugate

The complex conjugate of z is defined as

z∗ , a− jb
, re−jθ.

Fact C.1. Let z1 and z2 be complex numbers and z3 = z1 + z2. Then z∗3 = z∗1 + z∗2 .

Proof. Simply compute z∗3 .

z∗3 = (z1 + z2)∗

= <{z1 + z2} − j={z1 + z2}.

Let

z1 = a1 + jb1

z2 = a2 + jb2,

where ai, bi denote the real and imaginary component of zi. Then

z1 + z2 = a1 + jb1 + a2 + jb2

= a1 + a2 + j(b1 + b2).

This means
<{z1 + z2} = a1 + a2,
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and
={z1 + z2} = b1 + b2.

Thus

z∗3 = a1 + a2 − j(b1 + b2)

= a1 − jb1︸ ︷︷ ︸
z∗1

+ a2 − jb2︸ ︷︷ ︸
z∗2

.

Fact C.2. Let z1, z2 be complex numbers and z3 = z1z2. Then z∗3 = z∗1z
∗
2 .

Proof. In this case it is useful to consider the exponential notation. That is,

zk = rke
jθk .

So we have
z3 = r1e

jθ1r2e
jθ2 = r1r2e

j(θ1+θ2).

And then

z∗3 = r1r2e
−j(θ1+θ2)

= r1e
−jθ1r2e

−jθ2

= z∗1z
∗
2 .

Fact C.3. Let z1, z2 be complex numbers and z3 = z1
z2

. Then z∗3 =
z∗1
z∗2

.

Proof. This result follows almost exactly the same argument as the previous. Again, using exponential notation

z3 =
r1e

jθ1

r2ejθ2
=
r1

r2
ej(θ1−θ2).

So

z∗3 =
r1

r2
e−j(θ1−θ2)

=
r1

r2
e−jθ1+jθ2

=
r1

r2
e+(−jθ1)e−(−jθ2)

=
r1e
−jθ1

r2e−jθ2
=
z∗1
z∗2
.
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D
Energy functions for thresholds

As a brief summary, the detection algorithms consists of two steps: First, the signal/waveform needs to be conver-
ted into some non-negative form to which we can apply the threshold. After the conversion, we set a threshold to
and say that any values above it constitutes a detection.

This appendix is dedicated to discussing the functions used to transform the signal in the first step. This in-
formation can be found in [44] and many other books, but we felt it was important enough to at least include a
summary of the different methods here. There are many different non-negative transformations that we can use,
but they all sort of stem from the notion that the transmitted signal is modulated to some carrier frequency. That
is

s(t) = x(t) cos(ωct+ φ)

where s(t) is the transmitted signal, x(t) is the message signal and cos is the frequency modulation to ωc. This
oscillation does not provide any information with regards to message, so we actually want to ignore it. Here is a
short list:

• absolute value: x̂(t) =

{
s(t) s(t) ≥ 0

−s(t) s(t) < 0

– The signal is still messy and the oscillations are still there

– Not a great choice, but it is a starting point

• Root mean square (rms): x̂(t) =

√
1
T

∫ t+T
2

t−T2
s2(t)

– The idea here is that if we average just the noise, we should get 0

• Teager Kaiser (TK): x̂(t) =
√

max(0, s2(t)− s(t− dt)s(t+ dt))

– Assume dt is a small quantity such that x(t + dt) ≈ x(t − dt) ≈ x(t) ≈ x0. Then we have the
trigonometric identity

cos(α− β) cos(α+ β) = cos2 α− sin2 β,
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so

s(t− dt)s(t+ dt) = (x0 cos(ωct)︸ ︷︷ ︸
s(t)

)2 − x2
0 sin2(ωcdt)

x2
0 sin2(ωcdt) = s2(t)− s(t− dt)s(t+ dt).

And for small x, sin(x) ≈ x since the Taylor series expansion is sin(x) = x− x3

6 + x5

120 + · · · . Thus

x2
0(ωcdt)

2 = s2(t)− s(t− dt)s(t+ dt).

Note ωcdt is some constant, so we can say that the RHS is proportional to x2
0, and then just take the

square root to get x̂0.

– Typically dt is chosen to be the sample rate

• Envelope: x̂(t) = F−1{WCF{s(t)}}whereWC =

{
1 ω ≥ 0

0 ω < 0

– We can go into a lot of math here, and there are other methods to capturing the envelope (e.g. full wave
rectifier and low pass filter, Hilbert transform), but throwing away the negative frequency components
gives the analytic signal.

We compare these methods on x(t) as a linear increasing function (i.e. s(t) is a chirp); the result is shown in Figure
D.0.1. Except for absolute value, they all perform relatively the same. In practice, we typically use TK since the
computational burden is small.
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Figure D.0.1: Comparison between the different non-negative transformations on a chirp. For RMS T = 5, and in
TK dt is the sampling interval.
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E
Miscellaneous theorems and proofs

Theorem E.1. For any distribution f(x) and arbitrary number ε, there exists a valueX such that

∫ ∞
X

f(x)dx < ε.

Proof. For every probability density function f(x) there is an associated cumulative distribution function F (x) =∫∞
−∞ f(x)dxwhich satisfies the following properties:

1. monotonic increasing

2. right continuous

3. limx→−∞ F (x) = 0

4. limx→+∞ F (x) = 1

If we express the last property using the formal definition of a limit we for every ε > 0 there exists a value c such
that

|F (x)− 1| < ε

for every x > c. Note, the first, third and forth property implies F (x) ∈ [0, 1] so F (x)− 1 ≤ 0 always. Thus

|F (x)− 1| = −(F (x)− 1)

so

|F (x)− 1| < ε

1− F (x) < ε∫ ∞
−∞

f(s)ds−
∫ x

−∞
f(s)ds < ε∫ ∞

x

f(s)ds < ε
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Now since f(x) ≥ 0 (a property of density functions), clearly f(x) < ε for all x > c, what we originally postulated.
Realize that this means that for every ε > 0 there exists a value c such that |f(x) − 0| < ε for all x > c, or
limx→∞ f(x) = 0.

Theorem E.2. Let T > 0 be an exponentially distributed random variable with parameter λ. Then

Pr{T > t+ s|T > s} = Pr{T > t} (E.0.1)

for all t, s ≥ 0. That is, the exponential distribution is memoryless. This is a well known result (e.g. [65]), but we
repeat it here for completeness.

Proof. This is easily shown since we know

F (t) = Pr{T ≤ t} =

{
1− e−λt t ≥ 0

0 t < 0

is the cdf for T , and we can denote the survival function (a.k.a. complementary cumulative distribution function)
as

G(t) = Pr{T > t} = 1− F (t) =

{
e−λt t ≥ 0

0 t < 0
.

Then using the definition of conditional probability

Pr{T > t+ s|T > s} =
Pr{T > t+ s ∩ T > s}

Pr{T > s}

=
Pr{T > t+ s}

Pr{T > s}
=
e−λ(t+s)

e−λs
= e−λt = Pr{T > t}.

Note, it is easy to see that T > t+ s ∩ T > s ≡ T > t+ s by drawing a simple picture like Figure E.0.1.

Figure E.0.1: This is an illustration of the events in (E.0.1).

Theorem E.3. Let T and ti ≥ 0 be a iid random variables with a memoryless distribution T . For any {ti} such that

T =
∑
i

ti,

it can be said that
T (T ) = T (

⋂
i

ti).
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In other words, no matter how the interval T is partitioned into {ti}, the joint likelihood of {ti} is just equivalent to
the likelihood of T .

Proof. Applying the definition of conditional probability to the LHS of (E.0.1), we have for any t, s ≥ 0

Pr{T > t+ s|T > s} =
Pr{T > t+ s ∩ T > s}

Pr{T > s}
=

Pr{T > t+ s}
Pr{T > s}

.

Again refer to Figure E.0.1 to understand T > t + s ∩ T > s ≡ T > t + s. If we substitute this back into (E.0.1),
then we have

Pr{T > t+ s}
Pr{T > s}

= Pr{T > t} ⇒ Pr{T > t+ s} = Pr{T > t}Pr{T > s}. (E.0.2)

Note this result stems directly from the definition of memoryless, so then that implies that if a random variable
exhibits (E.0.2), then the random variable is memoryless. And also that if the random variable is memoryless, then
it exhibits this property. (i.e. (E.0.2) is necessary and sufficient) Furthermore (E.0.2), can be easily extended to
sums of more than 2 terms (e.g. let t = u+ v).

So (E.0.2) is essentially the result that we want to show, except that it is for the probability of T > t + s, T >
t, t > s, we need to show the same result for the likelihoods of T = t + s, T = t, T = s. For continuous random
variables, the likelihood is given by the pdf. We also know that the exponential distribution is the only continuous
distribution that is memoryless [65]. Therefore, letT be exponentially distributed with parameterλ, and we denote
the distribution as T . The likelihood of T is then

T (T ) = λeλT .

Then consider times ti ≥ 0 such that
T =

∑
i

ti.

Assuming that the times ti are iid with T , then

T (
⋂
i

ti) =
∏
i

T (ti)

=
∏
i

λeλti

= λeλ
∑
ti = λeλT = T (T ).
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