EFFECTS OF MIXING RATIO, CONTACT TIME, DO, AND EPS COMPOSITION ON EFFICIENCY OF BIOSORPTION FOR PRIMARY CARBON DIVERSION

A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI'I AT MĀNOA IN PARTIAL FULFULLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

CIVIL AND ENVIRONMENTAL ENGINEERING

DECEMBER 2019

By

Joachim Schneider

Thesis Committee:

Roger Babcock, Chairperson Tao Yan Samir Khanal

Keywords: Biosorption, EPS, Activated Sludge, Carbon Diversion, Enhanced Primary

Abstract:

Wastewater treatment plants are on their way to going from being energy sinks to becoming energy-neutral or even energy-positive utilities. This is possible thanks to improvements in their processes such as primary treatment. Conventional primary wastewater treatment removes a large part of particulate organics but allows the soluble fraction to pass on to secondary treatment. In this paper, the combination of biosorption and solid-liquid separation is tested as an alternative primary treatment method that can remove both particulate and soluble organics. Results show that while the combination of biosorption and fine screens with polymer removes a sizeable amount of particulate (50 to 70 per cent) and soluble (10 to 30 per cent) organic matter, the use of fine screens with polymer without biosorption achieves almost the same removal rates. Further insights were found regarding the isotherm and kinetics of biosorption, oxygen concentration and mixing ratios in the contact tank, and differences between various solid-liquid separation methods.

Extracellular polymeric substances make up most of the organic matter in activated sludge, and therefore strongly influence the sludges properties. This paper aims to draw a connection between the make-up of an activated sludge's extracellular polymeric substances and its ability to conduct biosorption when mixed with raw wastewater. Biosorption is a natural process during which organic matter from a sorbate such as raw wastewater sorbs onto a sorbent such as activated sludge, a process which can be used during primary wastewater treatment. A positive correlation was found between the total concentration of extracellular polymeric substances and the normalized removal of soluble organic matter. It was furthermore postulated that extracellular polymeric substances, specifically proteins, comprised most of the soluble organic matter removed during biosorption. Extraction times of 4 or more hours yielded better identification of extracellular polymeric substances and more consistent ratios between proteins, carbohydrates, humic acids, DNA, and uronic acids than extraction times of 45 minutes.

Table of Contents:

Paper A: Effects of Mixing Ratio, Contact Time, and DO on Efficiency of Biosorption for Primary Carbon Diversion

Paper B: Effects of Activated Sludge EPS Composition on Biosorption

Supplementary Documents

1 Article

2 Effects of Mixing Ratio, Contact Time, and DO on 3 Efficiency of Biosorption for Primary Carbon 4 Diversion

5 Joachim Schneider ¹, Roger Babcock Jr ^{1,*}, Tiow-Ping Wong ¹, and Bing Hu ¹

6 ¹ University of Hawai'i at Mānoa; js73@hawaii.edu

7 * Correspondence: rbabcock@hawaii.edu; Tel.: 808-956-7298

8 Abstract: Wastewater treatment plants are on their way to going from being energy sinks to 9 becoming energy-neutral or even energy-positive utilities. This is possible thanks to improvements 10 in their processes such as primary treatment. Conventional primary wastewater treatment removes 11 a large part of particulate organics but allows the soluble fraction to pass on to secondary treatment. 12 In this paper, the combination of biosorption and solid-liquid separation is tested as an alternative 13 primary treatment method that can remove both particulate and soluble organics. Results show that 14 while the combination of biosorption and fine screens with polymer removes a sizeable amount of 15 particulate (50 to 70 per cent) and soluble (10 to 30 per cent) organic matter, the use of fine screens 16 with polymer without biosorption achieves almost the same removal rates. Further insights were 17 found regarding the isotherm and kinetics of biosorption, oxygen concentration and mixing ratios 18 in the contact tank, and differences between various solid-liquid separation methods.

Keywords: biosorption; carbon diversion; net-zero energy; dissolved air flotation; fine screens;
 primary wastewater treatment; kinetics; polymer

22 1. Introduction

23 During wastewater treatment, energy is both produced and consumed. In 2011, wastewater 24 treatment plants (WWTPs) accounted for 0.8 per cent of the electricity consumption in the USA, half 25 of which was used in secondary treatment for aeration [1]. Anaerobic digestion is commonly used to 26 stabilize treatment sludges and can be a net producer of energy. The goal of primary wastewater 27 treatment must therefore be to divert the carbon-energy contained in the untreated influent from the 28 aeration-bound liquids stream to the solids stream, where it can be harvested by means of anaerobic 29 digestion. Two positive effects are thereby achieved: the oxygen demand and therefore electricity 30 consumption in the secondary treatment is reduced, and the methane production and therefore 31 energy scavenging in the anaerobic digester is increased. It is hypothesized that achieving net-zero 32 energy for a WWTP is possible in this way [2].

33 Conventional primary wastewater treatment by means of gravity sedimentation removes 34 between 40 and 60 per cent of suspended solids (TSS), and between 20 and 30 per cent of biological 35 oxygen demand (BOD) by capturing particulate matter but does not reduce the soluble fraction of 36 raw influent organics. There is a current industry trend toward the use of primary screens, filters, 37 and floatation devices for enhanced capture/diversion of raw solids, which can achieve removals of 38 up to 60-80 per cent of particulate organics, but similarly do not reduce the soluble fraction [3]. 39 Biosorption can be used to remove the soluble fraction. It is used in various industries for the removal 40 of heavy metals [4] and organic pollutants [5], and is a fundamental step in the activated sludge 41 process prior to biochemical oxidation. Primary biosorption is a biochemical process in which waste 42 activated sludge (AS), the adsorbent, is mixed with raw wastewater (RW) in a small contactor where 43 the particulate and soluble organic matter adsorb onto the AS flocs [6]. The amount of sorption is 44 dependent on physiological factors such as dissolved oxygen (DO) concentration, contact time and

45 AS-to-RW ratio.

46 Research has found that the colloidal fraction of organic matter is targeted significantly more 47 during biosorption than the particulate and truly soluble fractions [6]. It is assumed that this is 48 because soluble matter diffuses into the floc matrix while colloidal matter sticks to the outside [7]. It 49 was found that only aerobic sludge is suitable for biosorption because neither primary nor digested 50 sludge yielded positive results [8].

51 Since the biosorption contactor effluent is high in TSS, a solid-liquid separation process is 52 required to harvest the adsorbed materials. Potential separation processes include cloth filters, fine 53 screens, and dissolved air flotation (DAF), the latter two of which were compared here. The 54 combination of biosorption with DAF has been tested on a pilot- and a full-scale, and was found to 55 be capable of high removals of soluble BOD (20 to 30 per cent) and TSS (more than 65 per cent) while

56 generating thick sludge (4 to 6 per cent) in the DAF [9].

57 This study conducted bench-scale evaluations of biosorption for effects of contact time, DO, and 58 AS-to-RW mixing ratio on efficiency and also looked at adsorption kinetics.

59 2. Materials and Methods

60 AS and coarsely screened RW samples were collected no more than two hours before use and 61 stored at ambient temperature during transportation to the lab, not chilled. Samples were taken at a 62 regional treatment plant receiving municipal influent with no industrial component which is 63 designed to treat 13 million gallons per day by means of a trickling filter solid contact system (TF/SC).

64 To simulate the biosorption process on a bench scale, RW and AS were combined in a five-liter 65 Plexiglass tank (contactor) and stirred at room temperature for 10 to 90 minutes on a stir plate by 66 means of a magnetic bar, while DO concentrations were held constant at either 0.5 or 1.0 mg l-1 and 67 measured using Standard Method 4500-O G [10]. RW, AS, and biosorption contactor effluent were 68 characterized via total chemical oxygen demand (tCOD), soluble COD (sCOD), flocculated and 69 filtered COD (ffCOD) and TSS. Experiments were conducted with mixing ratios of five (MX5) or ten 70 (MX10) per cent AS by volume, yielding doses of approximately 1.2 or 2.5 mg of AS TSS per mg of 71 RW sCOD, respectively. MX5 is a similar ratio of AS TSS to RW sCOD that would occur at the subject 72 TF/SC facility if all of the AS and RW were combined in a biosorption contactor (ratio 1.16 to 1.34).

Normalized biosorption was calculated similarly to Jorand et al. [6] by dividing the removed CODby the TSS added (see Equation 1).

Normalized Biosorption
$$[mg_{COD} g_{TSS}^{-1}] = \frac{COD_{RW} [mg] - COD_{EFF} [mg]}{TSS_{AS} [g]}$$
 (1)

75 Colloidal COD (kCOD) was defined as the difference between sCOD and ffCOD (see Equation 2).

$$kCOD [mg l^{-1}] = sCOD [mg l^{-1}] - ffCOD [mg l^{-1}]$$
(2)

In order to find the kinetics governing the biosorption process, replicate experiments were conducted for both 60- and 90-minutes contact time with sampling every ten minutes. These experiments utilized five per cent AS and 1.0 mg l⁻¹ DO concentration. An attempt was made to find an isotherm relationship by running the biosorption experiment five times (with the same RW and AS), each time using five liters of RW mixed with either 100, 200, 300, 400 or 500 ml of AS. Experimental parameters for the isotherm experiment were 30 minutes of contact time and 1.0 mg l⁻¹ DO concentration.

In order to simulate DAF separation, tap water was pressurized to 414 kPa (60 psi) and the pressurized vessel that was vigorously shaken. 150 ml pressurized tap water was added to 850 ml of biosorption effluent in a one-liter graduated cylinder in which a float formed separate from the subnatant. After 3 minutes, the subnatant was sampled for COD and TSS and designated Lab DAF effluent (see Supplementary Document 4). Since DAF processes use pressurized DAF effluent instead of tap water, the DAF separation was conducted a second time using pressurized Lab DAF effluent instead of tap water. DAF was also conducted on RW samples alone.

A second solid-liquid separation method (fine screens) was evaluated by pouring biosorption
 effluent through metal screens with openings of either 200 or 300 μm and sampling the filtrate. In

- 92 some cases, 10 mg l⁻¹ of CEP 414 cationic polymer was added before the filtration process, indicated 93 by the letters PS before the screen size, while experiments without added polymer were labeled with
- by the letters PS before the screen size, while experiments without added polymer were labeled withthe letter S. Screening was also conducted on RW samples alone.
- 95 Total COD (tCOD) was measured by means of Hach method 8000 which is based on Standard
 96 Method 5220D [10]. sCOD was measured by filtering the sample through a 1.5 μm glass fiber filter
 97 and measuring the COD of the filtrate. ffCOD was measured according to the method of Mamais et
 98 http://www.communication.communication.communication.communication.communication.com
- al. [11] using 30 ml of sCOD filtrate and 0.3 ml of zinc sulfate solution. TSS was measured by Standard
 Method 2540B [10].
- 100 Statistical analyses including t-test, r² and ANOVA were conducted in Microsoft Excel using the
- 101 Data Analysis ToolPak Add-in.

102 3. Results and Discussion

- 103 3.1. Biosorption
- Average (± standard deviation) of biosorption contactor influent and effluent concentrations,
 removal percentages and normalized biosorption values for all 53 experiments conducted are shown
- 106 in Table 1. A master table with all biosorption experiment results can be found in Supplementary
- 107 Document 2.a. The data show that truly soluble ffCOD removal is 21% while colloidal kCOD removal
- 108 is much more efficient at 58%, however, this occurs because the amount of kCOD is much lower and
- 109 the normalized removal values show that nearly the same net mass of kCOD and ffCOD are
- biosorbed per gram of adsorbent in 30 minutes contact time.
 Table 1. Average Biosorption Results for all Experimentation
 - Table 1. Average Biosorption Results for all Experiments Conducted, n=53

	Average	Average		Average
	Influent (RW)	Effluent		Normalized
	Concentration	Concentration	Average	Removal
	[mg l-1]	[mg l-1]	Removal [%]	[mg g _{TSS} -1]
sCOD	150±21	103±18	31	178±83
ffCOD	113±19	88±18	21	89±43
kCOD	37±12	15±11	58	90±83

112 3.1.1. DO Concentration Effects

113 The effect of DO on biosorption was evaluated by testing two DO concentrations at 30 minutes 114 of contact time. Average (± standard deviation) biosorption removal efficiencies at 0.5 and 1.0 mg l-1 115 DO are shown in Table 2. The data indicate that within this range of DO values, the net mass of ffCOD 116 and kCOD biosorbed in 30 minutes are approximately equal and differences are not statistically 117 significant at α =0.05 due to variance (see Supplementary Document 3.a.i). It is possible that lower 118 DOs would adversely affect biosorption, and that higher DOs could affect biosorption either 119 positively or negatively. However, providing greater DO than that resulting from the need for 120 adequate mixing to provide contact between adsorbent and adsorbate could facilitate undesirable 121 bioxidation in the contactor.

 Table 2. Average Biosorption Results for Different DO Concentrations at 30 min Contact, n=53

	Average		Average		
	Normalized	Average	Normalized	Average	
	Removal	Removal	Removal	Removal	
	DO = 0.5	DO = 0.5	DO = 1.0	DO = 1.0	P(T<=t) two-
	[mg g _{TSS} -1]	[%]	[mg g _{TSS} -1]	[%]	tail at α =0.05
•COD	172+85	20	180±78	21	0.81
3000	175±65	30	100±70	51	0.01
ffCOD	79±36	30 20	93±45	22	0.23

124 3.1.2 AS Mixing Ratio Effects

125 The effect of the mass of adsorbent on biosorption (the dose) was evaluated by testing two AS 126 mixing ratios; 5% AS by volume (MX5) and 10% (MX10) at 30 minutes contact time. MX5 and MX10 127 are equivalent to adsorbent doses of 1.17 and 2.48 mg_{ISS} mg_{SCOD}⁻¹, respectively. Average (± standard 128 deviation) biosorption removal efficiencies at MX5 and MX10 are shown in Table 3. The data indicate 129 that greater adsorbent addition only slightly improved overall biosorption efficiency in 30 minutes 130 contact time and that mass adsorbed per unit mass of adsorbent decreases, however, these differences 131 are not statistically significant at α =0.05 due to variance (see Supplementary Document 3.a.ii). This 132 phenomenon could be explained as equilibrium not being achieved at the higher dose in 30 minutes 133 contact. In practical terms, the mixing ratio (adsorbent dose) would not be a variable parameter, 134 instead, all of the waste AS would be directed to the contactor followed by a separation/thickening 135 step. While the contact time is a design variable, once the contactor is sized, the time available for 136 adsorption to approach equilibrium is fixed. These results show that it is not significantly beneficial 137 to operate the overall system so as to generate larger adsorbent doses. The effects of contact time are 138 investigated below.

	Average Normalized Removal MX5	Average Removal MX5	Average Normalized Removal MX10	Average Removal MX10	P(T<=t) two-
		[″/0]	[mg grss ⁻¹]	[70]	tall at $\alpha = 0.05$
sCOD	205±88	29	165±78	31	0.11
ffCOD	96±44	19	86±42	22	0.45
kCOD	110±95	63	81±76	55	0.28

Table 3. Average Biosorption Results for Different AS Mixing Ratios, n=53

140 3.1.3 Biosorption Kinetics

141 Zero-order kinetic coefficients were found for sCOD and ffCOD biosorption removals between 142 10 and 90 minutes of contact time, with 3.1 mg of sCOD and 3.0 mg of ffCOD removed on average 143 per minute and gram of TSS added. The quality of the linear fits was indicated by r² values over 144 0.7528 for sCOD and 0.6892 for ffCOD (Figures 1 and 2), and ANOVA Significance F values of less 145 than 0.0104 for sCOD and 0.0191 for ffCOD (see Table 4). No statistically significant fit was found for 146 kCOD (Figure 3). Given that sCOD and ffCOD removal occur at very similar rates, and that kCOD 147 removal seems to be unaffected by time, it is assumed that kCOD sorption occurs almost 148 instantaneously upon the mixing of RW and AS, while ffCOD sorption is a function of time (see 149 Figure 4). Research has also shown that desorption of colloidal material is possible, and that kCOD 150 removal reached equilibrium before ffCOD removal does [7]. It is possible that zero-order kinetics do 151 not apply between zero and ten minutes of contact time, but this was not evaluated here because it is 152 not thought to be practical to use less 10 minutes contact at full-scale. These results indicate that 153 equilibrium is not achieved even at contact times of 90 minutes which is much greater than practical 154 contact times of 15 to 30 minutes.

155

Table 4. Kinetic Coefficients and Regression Information

Exp.	sCOD Kinetic Coefficient [mg g _{TSS} -1min-1]	sCOD r ²	sCOD ANOVA Significance F	ffCOD Kinetic Coefficient [mg g _{TSS} -1min-1]	ffCOD r ²	ffCOD ANOVA Significance F
1	3.7	0.8381	0.0104	3.5	0.7832	0.0191
2	2.4	0.9524	0.0009	2.7	0.8089	0.0147
3	2.4	0.7920	0.0013	1.6	0.6892	0.0056
4	4.0	0.7528	0.0024	4.1	0.8595	0.0003
Reg.	3.1	N/A	N/A	3.0	N/A	N/A

Figure 1. Kinetics of sCOD Removal

Figure 2. Kinetics of ffCOD Removal

161 **Figure 3.** Kinetics of kCOD Removal

162

163 Figure 4. Qualitative Representation of Biosorption Kinetics

164 3.1.4 Isotherm

As AS doses increased, a decrease of normalized biosorption was observed (see Table 3). However, the more sorbent was added in the form of AS, the less normalized sorption increased leading to diminishing returns. It is assumed that the cause of this phenomenon is mass transfer limitations. The observed relationship between equilibrium concentration Ce and amount adsorbed qe did not make the creation of a Freundlich isotherm possible (see Supplementary Document 3.a.iii). No literature was found that was able to fit an isotherm, therefore it was not expected to be found here [7].

175 3.2. Separation

176 The biosorption experiment was run before each separation process, and all removals mentioned 177 here are in comparison to RW. Lab DAF measurements were corrected to account for the added tap 178 water:

Corrected Lab DAF [mg l⁻¹] =
$$\frac{\text{Lab DAF } [mg l^{-1}]}{0.85}$$
 (3)

179 The effluents of the two solid-liquid separation processes, flotation and screening, did not differ 180 significantly in terms of soluble COD removal at α =0.05. On average, between 166 and 208 mg of

181 sCOD, 87 and 108 mg of ffCOD, and 77 and 124 mg of kCOD were removed per gram of added TSS

- 182 (see Supplementary Document 3.a.iv).
- 183 In terms of tCOD and TSS, removal is used referring to percentages:

tCOD Removal Percentage =
$$1 - \frac{tCOD_{EFF} [mg l^{-1}]}{tCOD_{RW} [mg l^{-1}]}$$
 (4)

$$TSS \text{ Removal Percentage} = 1 - \frac{TSS_{EFF} [mg l^{-1}]}{TSS_{RW} [mg l^{-1}]}$$
(5)

By means of using screens without polymer, little to no tCOD and TSS removal was achieved.
Screens with hole sizes of approximately 200 μm (S200) removed six per cent of tCOD and added 36
per cent of TSS, while S300 on average added 28 per cent tCOD and 82 per cent TSS (see Figures 4 and 5).

By means of flotation and using screens with polymer, significant tCOD and TSS removal was achieved. Lab DAF averaged 37 per cent tCOD and 33 per cent TSS removal, while WWTP DAF averaged 40 per cent tCOD and 36 per cent TSS removal. Screens with hole sizes of approximately 200 μm in combination with polymer (PS200) removed 61 per cent of tCOD and 55 per cent of TSS on average while PS300 averaged 61 per cent tCOD and 51 per cent TSS removal (see Figures 4 and 5).

193 It is not surprising that the different solid-liquid separation processes yield similar soluble COD 194 removal rates, because it is assumed that the removal of soluble COD occurs in the biosorption step, 195 and that the separation step does not affect soluble COD removal positively or negatively. The 196 important differences between the separation methods can be found in their ability to reduce total

- 197 COD and TSS. In these categories, screens with polymer and DAF work best, while screens without
- polymer do not yield comparatively good results.
 Table 5. Average Removal Values of

	Table 5. Average Removal Values of Different Separation Methods (n=45)						
-		tCOD	Normalized	Normalized	Normalized	TSS	
		Removal	sCOD Removal	ffCOD Removal	kCOD Removal	Removal	
_		Percentage	[mg g _{TSS}]	[mg g _{TSS}]	[mg g _{TSS}]	Percentage	
	S200	6%	208	118	89	-36%	
	S300	-28%	191	115	77	-82%	
	PS200	61%	211	87	124	55%	
	PS300	61%	204	98	106	51%	
	Lab DAF	47%	166	83	88	33%	
	WWTP DAF	40%	186	102	84	36%	

201

Figure 6. Total COD Removal Efficiencies of Different Solid-Liquid Separation Methods

Figure 7. TSS Removal Efficiencies of Different Solid-Liquid Separation Methods

204 3.3 Is Biosorption Worth It?

205 In order to gauge the value of biosorption, results of biosorption experiments were compared to 206 results of primary treatment methods that do not include a biosorption step, namely fine screens with 207 and without polymer, and DAF. It was found that screens without polymer were only able to reduce 208 tCOD by 30 or 32 per cent and TSS by 42 or 48 per cent, with virtually no effect on soluble organics. 209 Screens with polymer reduced tCOD by 54 or 57 per cent and TSS by 63 or 65 per cent, including 210 sCOD removals of 19 or 20 per cent, but virtually no ffCOD removal. DAF achieved 60 per cent tCOD 211 and 63 per cent TSS removal, also removing 11 per cent of sCOD and 10 per cent of ffCOD (see Table 212 6).

The results of using screen with polymer or DAF on RW are comparable to using screens with polymer on biosorption effluent, therefore it seems as though the extra step of biosorption does not

- 215 add value.
- 216

 Table 6. Average Removal Percentages without use of Biosorption (n=16)

	tCOD	sCOD	ffCOD	TSS
WW S200	32%	1%	4%	48%
WW S300	30%	3%	2%	42%
WW PS200	57%	20%	0%	65%
WW PS300	54%	19%	-2%	63%
WW DAF	60%	11%	10%	63%

217 4. Conclusions

218 Adding AS to RW in order to facilitate better primary treatment seems counterintuitive, but it 219 works. Using biosorption in combination with fine screens and polymer, tCOD removals of 60 per 220 cent can be achieved, removing both soluble and particulate matter. However, similar removal 221 percentages are reached by using biofiltration [3] or fine screens with polymer without biosorption, 222 which means that the extra effort of adding AS does not provide additional carbon diversion. It is 223 noted, however, that biosorption removes a significant portion of ffCOD, while methods without 224 biosorption do not. The next comparison must now be drawn between conventional clarifiers and 225 fine screens with polymer.

226 **Funding:** This research received funding from R.M. Towill.

227 References

228	1.	Kinyua, M.N., et al., The role of extracellular polymeric substances on carbon capture in a high rate activated
229		sludge A-stage system. Chemical Engineering Journal, 2017. 322: p. 428-434.

- H.-B. Ding, M.D., A. Erdogan, R. Wikramanayake, P. Gallagher, *Innovative Use of Dissolved Air Flotation with Biosorption as Primary Treatment to Approach Energy Neutrality in WWTPs.* Water Practice and
 Technology, 2015. 10(1): p. 133-142.
- Onder Caliskaner, G.T., Brian Davis, Javier Rios, Jessica Hazard, Julia Lund, Eric Lawrence, Darin St.
 Germain. *Demonstration of Biofiltration as Advanced Primary Treatment*. in WEFTEC. 2019. Chicago.
- Comte, S., G. Guibaud, and M. Baudu, *Biosorption properties of extracellular polymeric substances (EPS) resulting from activated sludge according to their type: Soluble or bound.* Process Biochemistry, 2006. 41(4):
 p. 815-823.
- Wei, D., et al., *Role of extracellular polymeric substances in biosorption of dye wastewater using aerobic granular sludge*. Bioresource Technology, 2015. 185: p. 14-20.
- 2406.F. Jorand, J.C.B., P. Palmgren, Ph. Nielsen, V. Urbain, J. Manem, *Biosorption of wastewater organics by*241activated sludges. 1995.

- A. Guellil, F.T., J.-C. Block, J.-L. Bersillon, P. Ginestet, *Transfer of Organic Matter between Wastewater and Activated Sludge Flocs.* Wat. Res., 2001. 35(1): p. 143-150.
- 8. Modin, O., et al., Sorption and release of organics by primary, anaerobic, and aerobic activated sludge mixed
 with raw municipal wastewater. PLoS One, 2015. 10(3): p. e0119371.
- 9. N. Antonneau, M.D., B. Johnson, H. El Jerdi, R.W. Babcock Jr., T.P. Wong. *Biologically enhanced primary*treatment: A summary of experience from pilot, demonstration, and full-scale systems. in WEF Residuals and
 Biosolids Conference. 2018. Phoenix, Arizona, USA.
- 249 10. Standard Methods for the Examination of Water and Wastewater. 20th ed. 1999: APHA. 1325.
- Daniel Mamais, D.J., Paul Prrr, A rapid physical-chemical method for the determination of readily biodegradable
 soluble COD in municipal wastewater. Water Research, 1993. 27(1): p. 195-197.

© 2019 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

1 Article

2 Effects of Activated Sludge EPS Composition on 3 Biosorption

4 Joachim Schneider ¹, Roger Babcock ^{1,*}, Tiow-Ping Wong ¹, and Bing Hu ¹

5 ¹ University of Hawai'i at Mānoa; js73@hawaii.edu

6 * Correspondence: rbabcock@hawaii.edu; Tel.: 808-956-7298

7 Abstract: Extracellular polymeric substances make up most of the organic matter in activated 8 sludge, and therefore strongly influence the sludges properties. This paper aims to draw a 9 connection between the make-up of an activated sludge's extracellular polymeric substances and its 10 ability to conduct biosorption when mixed with raw wastewater. Biosorption is a natural process 11 during which organic matter from a sorbate such as raw wastewater sorbs onto a sorbent such as 12 activated sludge, a process which can be used during primary wastewater treatment. A positive 13 correlation was found between the total concentration of extracellular polymeric substances and the 14 normalized removal of soluble organic matter. It was furthermore postulated that extracellular 15 polymeric substances, specifically proteins, comprised most of the soluble organic matter removed 16 during biosorption. Extraction times of 4 or more hours yielded better identification of extracellular 17 polymeric substances and more consistent ratios between proteins, carbohydrates, humic acids, 18 DNA, and uronic acids than extraction times of 45 minutes.

- 19 Keywords: biosorption; extracellular polymeric substances; cation exchange resin; activated sludge;
 20 primary wastewater treatment
- 21

22 **1. Introduction**

Extracellular polymeric substances (EPS) are most commonly defined as a combination of highmolecular-weight secretions from microorganisms, products of cell lysis, hydrolysis of macromolecules, and adsorbed organic matters from activated sludge (AS). They are described as having significant influence on the physicochemical properties of microbial aggregates, affecting their structure, surface charge, flocculation, settling and dewatering properties, and adsorption ability. EPS can furthermore serve as carbon or energy sources during nutrient shortages and accelerate the formation of microbial aggregates by binding cells closely [1].

There is an agreement within literature that more than half of organic matter contained in AS consists of EPS, but there is no consensus about what exactly constitutes EPS or how best to extract them. EPS are often grouped into loosely-bound EPS (LB-EPS), tightly-bound EPS (TB-EPS), and soluble EPS, also referred to as soluble microbial products (SMP). SMP can be extracted by centrifugation alone, but the extraction of bound EPS requires physical or chemical treatment in order to be released from the cell matrix before centrifugation [2].

Biosorption is a biochemical process which occurs naturally when raw, untreated wastewater (WW) is mixed with AS. In this process, particulate and soluble organic matter contained in the WW adsorbs onto the AS flocs [3]. It is hypothesized that EPS contained in the AS have large influence on the biosorption process because of the crucial role that they play in the biosorption of heavy metals [4], and because it has been shown that properties of the sludge have a larger influence on the biosorption than WW properties [3]. Given the "sticky" nature of EPS, it is assumed here that a higher EPS concentration within the AS leads to more biosorption.

43 2. Materials and Methods

44 WW and AS were sampled no more than two hours before use and stored at room temperature

45 during transport. Samples were taken at four different wastewater treatment plants (WWTPs) on the

46 island of O'ahu with varying treatment methods and design capacities. Honouliuli WWTP in Ewa

- 47 Beach uses a trickling filter and solid contact process with a design capacity of 38 million gallons per
- 48 day (mgpd). Wahiawa WWTP utilizes a membrane bioreactor (MBR) and is designed to treat up to
- 49 2.49 mgpd. East Honolulu WWTP in Hawaii Kai and Waimanalo WWTP are both conventional
- 50 activated sludge plants with design capacities of 5.2 and 0.6 mgpd, respectively.

51 The cation exchange resin (CER) method [5] was used to extract EPS from each AS, and 52 extractions were run for 0.75, 4, and 24 hours. The CER method was selected due to its ubiquity in 53 literature and its relatively high yields compared to other extraction methods (see Supplementary 54 Document 2.b).

The extracted EPS were measured using mostly colorimetric methods (see Supplementary Document 4) according to wastewater literature [6] and specific EPS literature [7] for concentrations of proteins [8], carbohydrates [9], humic acids [5], DNA using a Qubit 4 Fluorometer, uronic acids [10], and lipids [11]. See Supplementary Documents 1.b.i-iv for SOPs.

- 59 The biosorption and Lab DAF experiments were conducted in accordance with previous studies 60 [12]. tCOD, sCOD, ffCOD, and TSS were measured based on Standard Methods [13] according to 61 previous studies [12]. Total dissolved solids (TDS) were measured using Standard Method 2540C 62 [13]. Volatile dissolved solids (VDS) were measured using Standard Method 2540E [13]. Normalized
- 63 biosorption and kCOD were calculated according to previous studies [12].

64 3. Results and Discussion

65 3.1. EPS

500 milliliters (ml) of AS yielded between 200 and 450 ml of settled AS depending on the WWTP from which it was sampled. It was observed that between the four WWTPs, settleability was inversely proportional to the TSS concentration of the unsettled AS. 50 ml of settled AS were used in the CER extraction method, which yielded approximately 40 ml of a yellowish, clear liquid made up of extraction buffer and EPS in liquid form. All units here are in terms of milligrams per liter [mg l-1] of this liquid. A master table containing results of all EPS experiments can be found in Supplementary Document 2.c.

73 The lipids assay proved not accurate enough for the small concentrations of lipids contained in 74 the extracted EPS, therefore lipids concentrations were assumed to be negligible as other literature 75 has assumed before [14]. The sum of the concentrations of the other measured fractions, namely 76 proteins, carbohydrates, humic acids, DNA, and uronic acids, was therefore assumed as the total EPS 77 concentration. 45 minutes of CER extraction yielded on average 176.47 mg l-1 of total EPS when AS 78 from Wahiawa WWTP was used, and between 314.43 and 379.07 mg l-1 when AS from one of the 79 other three WWTPs was used (see Supplementary Document 3.b.i). It is unknown why Wahiawa 80 WWTP showed significantly lower total EPS concentrations than the other three treatment plans, but 81 this may be part of the nature of an MBR plant. Further experiments with other MBR plants should 82 be conducted for verification.

83 With EPS from all plants, proteins, carbohydrates, and humic acids made up most of the total 84 EPS, while DNA and uronic acids constituted minor fractions. This is in agreement with other 85 literature [7]. It was found that ratios between the EPS fractions are relatively consistent between 86 different samples of the same plant, and that 4 and 24 hours of extraction yields similar ratios, while 87 45 minutes of extraction leads to slightly different ratios. It appears that protein extraction occurs 88 relatively early, while humic acids are extracted relatively late (see Supplementary Document 3.b.ii). 89 With EPS from all plants, proteins, carbohydrates, and humic acids made up most of the total EPS, 90 while DNA and uronic acids constituted minor fractions. This is in agreement with other literature 91 [7]. It was found that ratios between the EPS fractions are relatively consistent between different 92 samples of the same plant, and that 4 and 24 hours of extraction yields similar ratios, while 45 minutes 93 of extraction leads to slightly different ratios. It appears that protein extraction occurs relatively early, 94 while humic acids are extracted relatively late (see Supplementary Document 3.b.ii).

Figure 1. EPS Ratios for AS from Waimanalo WWTP

97 Literature is not in agreement on how total EPS and therefore the effectiveness of the 98 fractionization of EPS should be measured. While some have proposed using lyophilization [7], 99 others have used COD [3]. It was found here that the results of lyophilization were comparable to the 100 concentrations measured as TDS, usually approximately five times as high as the total EPS 101 concentration. VDS concentrations, however, were found to be always slightly higher than the total 102 EPS, and were therefore chosen to calculate the identification percentage:

$$Identification Percentage = \frac{Total EPS [mg l^{-1}]}{VDS [mg l^{-1}]}$$
(1)

103 It was found that while the identification percentages for Waimanalo WWTP and East Honolulu 104 WWTP were above 80 per cent regardless of the extraction duration, the Wahiawa WWTP and 105 Honouliuli WWTP only reached that threshold for extraction times of four hours and above (see 106 Figures 1 and 2). The 4-hour and 24-hour extractions are better suited for analysis due to their 107 relatively high identification percentages and more consistent EPS fraction-to-fraction ratios.

109 Figure 2. Comparison of Total EPS Concentrations after Different Extraction Times

112 3.2. Correlation

113 When using sludge from Waimanalo WWTP and an AS mixing ratio of five per cent (MX5), 114 several correlations between soluble COD removal and EPS concentrations was found (see Figure 3). 115 Waimanalo sludge was selected due to the high identification percentage at 45 minutes of contact 116 time, and MX5 was chosen due to its similarity to real WWTP mixing ratios. It was found that at 117 ANOVA Significance F levels of 0.05 and below there is a positive correlation between normalized 118 sCOD removal and total EPS concentration as well as protein and humic acid concentration (see Table 119 1). Carbohydrate, uronic acid and DNA concentration also showed a positive correlation to sCOD 120 removal, but not at statistically significant levels. This means that more biosorption of soluble COD 121 takes place the more EPS, especially protein and humic acids, are present. This is in agreement with 122 other literature that found an increase in biosorption when more EPS were present [3].

A statistically significant positive correlation was also found between normalized ffCOD removal and the ratio of uronic acids to total EPS (see Supplementary Document 3biii). Furthermore, statistically significant correlations were found between normalized kCOD removal and the ratio of humic acids to total EPS and carbohydrates (positive) and the ratio of DNA to total EPS (negative) (see Supplementary Document 3biii).

128

Table 1. Correlation of Normalized Removals with EPS Concentrations, n=4

	Correlation with	Positive or Negative	r ²	ANOVA Significance F
sCOD	Protein	Positive	0.9356	0.0327
sCOD	Humic Acid	Positive	0.9046	0.0489
sCOD	Total EPS	Positive	0.9134	0.0443
ffCOD	Uronic Acid/Total	Positive	0.9303	0.0355
kCOD	Humic Acid/Total	Positive	0.9043	0.0491
kCOD	DNA/Total	Negative	0.9369	0.0321
kCOD	Humic Acid/Carbohydrates	Positive	0.9538	0.0224

130 Figure 4. Correlation of Normalized sCOD Removal with EPS Concentrations

131 3.3. Mass Balance

129

132 It is assumed that WW and Lab DAF effluent ("DAF") do not contain relevant amounts of EPS 133 other than in the form of SMP, and that AS and Float contain negligible amounts of SMP. In order to 134 find a mass balance of extracellular polymeric substances for the biosorption experiment, the 135 following equation was used:

$$\frac{4.5 \times WW + 0.5 \times \frac{AS}{2.4}}{5} = \frac{0.97 \times DAF + 0.03 \times Float}{0.85}$$
(2)

136 This equation is applicable for any concentrations measured of the four components, WW, AS, 137 DAF, and Float, the former forming the educts, and the latter being the products. The AS component 138 is divided by 2.4 because this was found to be the TSS ratio between unsettled AS, which was used 139 in the biosorption experiment, and settled AS, which was used for CER extraction and therefore 140 measurements. It was found that the sum of educt and product EPS were 101.67 and 103.70 mg l⁻¹, 141 respectively (see Figure 3). Given that the total EPS of biosorption educts and products were almost 142 identical, it can be assumed that hardly any absorption of EPS into the cells took place during the 143 experiment. While the sCOD of the DAF shows a 26.7 per cent removal compared to the WW, the 144 total VDS was reduced by 31.4 per cent, and the total EPS was reduced by 13.1 per cent. The sCOD 145 removal observed in the mass balance experiment was very similar to the VDS removal which has 146 been shown to be similar to the total EPS removal at higher extraction times. This allows the 147 assumption that, during biosorption, the removed sCOD is made up of mostly EPS. The WW contains 148 a higher combined protein concentration than the DAF, while the opposite is the case for the humic 149 acid concentrations. It is assumed that protein was strongly adsorbed onto the AS flocs, while humic 150 acids were partly desorbed (see Figure 4).

151

154 **Figure 6.** EPS Composition of Biosorption Experiment Products and Educts

155 4. Conclusions

The assumption that a higher total AS EPS concentration leads to higher sCOD removals during biosorption has been confirmed. Most of the sCOD removed during biosorption is assumed to be EPS, specifically protein. Extraction times of four or more hours are encouraged to produce comprehensive results due to higher identification ratios. Protein appears to be extracted later and humic acids earlier.

161 **Funding:** This research received funding from R.M. Towill.

164	1.	Sheng, G.P., H.Q. Yu, and X.Y. Li, Extracellular polymeric substances (EPS) of microbial aggregates in
165		biological wastewater treatment systems: a review. Biotechnol Adv, 2010. 28 (6): p. 882-94.
166	2.	Microbial Extracellular Polymeric Substances. 1 ed. 1999, Germany: Springer. 258.
167	3.	F. Jorand, J.C.B., P. Palmgren, Ph. Nielsen, V. Urbain, J. Manem, Biosorption of wastewater organics by
168		activated sludges. 1995.
169	4.	Comte, S., G. Guibaud, and M. Baudu, Biosorption properties of extracellular polymeric substances (EPS)
170		resulting from activated sludge according to their type: Soluble or bound. Process Biochemistry, 2006. 41(4):
171		p. 815-823.
172	5.	B. Frolund, T.G., P. H. Nielsen, Enzymatic activity in the activated-sludge floc matrix. Applied Microbiology
173		and Biotechnology, 1995. 43 : p. 755-761.
174	6.	Kamma Raunkjaer, T.HJ., Per Halkhaer-Nielsen, Measurement of Pools of Protein, Carbohydrate and Lipid
175		in Domestic Wastewater. Water Research, 1994. 28(2): p. 251-262.
176	7.	Hong Liu, H.H.P.F., Extraction of extracellular polymeric substances (EPS) of sludges. Journal of
177		Biotechnology, 2002. 95: p. 249-256.
178	8.	Jaap Waterborg, H.M., The Lowry Method for Protein Quantitation. Methods in Molecular Biology, 1984.
179		1 : p. 1-3.
180	9.	Gaudy, A.F., Colorimetric Determination of Protein and Carbohydrate. Industrial Water & Wastes, 1962: p.
181		17-22.
182	10.	Paul K. Kintner III, J.P.v.B., Carbohydrate Interference and Its Correction in Pectin Analysis Using the m-
183		Hydroxydiphenyl Method. Journal of Food Science, 1982. 47: p. 756-759.
184	11.	Christopher S. Frings, R.T.D., Improved Determination of Total Serum Lipids by the Sulfo-Phospho-Vanillin
185		Reaction. Clinical Chemistry, 1972. 18(7): p. 673-674.
186	12.	Joachim Schneider, R.B.J., Tiow-Ping Wong, Bing Hu, Effects of Mixing Ratio, Contact Time, and DO on
187		Efficiency of Biosorption for Primary Carbon Diversion. 2019.
188	13.	Standard Methods for the Examination of Water and Wastewater. 20th ed. 1999: APHA. 1325.
189	14.	D'Abzac, P., et al., Extraction of extracellular polymeric substances (EPS) from anaerobic granular sludges:
190		comparison of chemical and physical extraction protocols. Appl Microbiol Biotechnol, 2010. 85(5): p. 1589-99.
191		
	6	© 2019 by the authors. Submitted for possible open access publication under the terms
		(http://creativecommons.org/licenses/bv/4.0/).
100		

Supplementary Documents

- 1. SOPs
 - a. EPS Extraction
 - i. CER
 - b. Characterization
 - i. Carbohydrates
 - ii. Proteins/Humic Acids
 - iii. Uronic Acids
 - iv. Lipids
- 2. Data Tables
 - a. Biosorption Master
 - b. EPS Extraction Efficiencies
 - c. EPS Master
- 3. Graphs
 - a. Paper A
 - i. DO Concentration
 - ii. Mixing Ratios
 - iii. Isotherm
 - iv. Separation
 - v. No Biosorption
 - b. Paper B
 - i. 45min Extraction Totals
 - ii. EPS Ratios
 - iii. Correlation
- 4. Photos

SOP: Cation Exchange Resin (CER)

Materials & Equipment [1]

Chemicals:	-Monosodium phosphate (NaH2PO4) -Trisodium phosphate (Na3PO4) -Sodium chloride (NaCl) -Potassium chloride (KCl) -Cation Exchange Resin, DOWEX 50 × 8, 20-50 mesh in sodium form
Apparatus:	-100ml & 50ml beaker -Centrifuge & 5 cups -Stir plate & mag-bar -500ml brown bottle for buffer -Scale & weighing paper cut into 4 pieces

Method [1]

 Mix 2mM Na₃PO₄, 4 mM NaH₂PO₄, 9 mM NaCl and 1 mM KCl at pH7 in brown bottle, label "Buffer"

(for 500ml: 0.1639g Na₃PO₄, 0.2400g NaH₂PO₄, 0.2630g NaCl, 0.0373g KCl, 500ml water)

- In 100ml beaker, wash CER in Buffer for 1h (for 50ml sample @ 3 g-VS/l, 70g-CER/g-VS: 10.5g CER, submerge in Buffer to total volume 20ml, let sit)
- 3. Settle sample for 1.5 hours at 4°C in sample bottle, decant supernatant, transfer to centrifuge cup

(500ml of WAS, decant approximately 420ml, transfer 50ml)

- 4. Centrifuge sample at 2000g for 15min at 4°C, decant supernatant
- 5. Add pellet to 100ml beaker, suspend to previous volume using Buffer (60.5ml total, accounting for CER)
- Stir for 45min/4h/24h at 600 rpm at 4°C (in fridge, mag-bar stir plate at second lowest setting)
- 7. Centrifuge sample/CER mixture at 12000g for 2min at 4°C to remove CER, capture supernatant
- Centrifuge supernatant twice for 15min at 12000g at 4°C, capture supernatant, change cups in between
- 9. Transfer supernatant to 50ml beaker

References

1. B. Frolund, P.N., R. Palmgren, K. Keiding, *Extraction of Extracellular Polymers from Activated Sludge Using a Cation Exchange Resin.* Water Ressources, 1996. **30**(8): p. 1749-1758.

SOP: EPS Characterization – Carbohydrates

Materials & Equipment [1]

Chemicals:	-Anthrone
	-95% Sulfuric acid (H ₂ SO ₄)
	-Glucose/Dextrose
	-Deionized water (H2O)
Apparatus:	-Vials
	-Spectrophotometer
	-Digestion block
	-Fridge
	-2x 200ml beaker
	-Pipette & tips
	-Scale & weighing paper

Procedure [1]

- 1. 2h before use, dissolve 40mg of anthrone in 20ml of 95% H₂SO₄, bring to 4°C in fridge, label "Reagent"
- 2. Add 10mg Glucose to 100ml H₂O, label "Solution (100 mg/l)"
- 3. Add the following to individual vials and store until ice cold, also store 100ml water in fridge:
 - a. 2.5ml extracted EPS liquid, label "Sample"
 - b. 2.5ml H₂O, label "Blank"
 - c. 1.5ml Solution, + 1ml H₂O, label "Standard (60 mg/l)"
- 4. Add 5ml of Reagent to each vial and shake thoroughly
- 5. Place all vials in a digestion block at 100°C for 15min
- 6. Place all vials in the cold water in the fridge until they reach room temperature
- 7. Read absorbance at 620nm, use Blank to zero, create standard curve, calculate sample concentration

Reference

1. Gaudy, A.F., *Colorimetric Determination of Protein and Carbohydrate*. Industrial Water & Wastes, 1962: p. 17-22.

SOP: EPS Characterization -	Protein & Humic Acids
-----------------------------	-----------------------

Materials & Equipment [1], [2]

Chemicals:	-Sodium carbonate (Na2CO3)
	-Copper sulfate (CuSO4)
	-Potassium sodium tartrate (PST)
	-Sodium hydroxide (NaOH)
	-Folin reagent (FR)
	-Bovine serum albumin, 50 mg/ml (BSA)
	-Humic Acid
	-Deionized water (H2O)
	Cure strength a term at an
Apparatus:	-Spectrophotometer
	-Digestion block
	-2x 100ml beaker
	-50ml beaker
	-Pipette & tips
	-Vials
	-Scale & weighing paper
	-Fridge
	-Brown bottle

Solutions [1], [2]

- 1. Mix the following in a 100ml beaker, label "CFR Total"
 - a. 50ml H₂O
 - b. 1g Na₂CO₃
 - c. 5mg CuSO₄
 - d. 10mg PST
- 2. Repeat step 1, omitting CuSO₄, label "CFR Blind"
- 3. Mix 0.8g NaOH with 9.2ml distilled water, label "NaOH Solution (2N)" (for 500ml: 40g NaOH, 500ml H₂O, store in brown bottle)
- 4. Mix 0.03ml of 50 mg/ml BSA with 1.47ml H2O, label "BSA (1000 mg/l)", store in freezer
- 5. Dilute 0.7ml of 1000 mg/l BSA with 0.35ml H2O, label "Protein Solution (666 mg/l)"
- 6. Mix 10mg of humic acid with 50ml H₂O, label "Humic Acid Solution (200 mg/l)"
- 7. Add the following to two (2) individual vials each
 - a. 0.5ml extracted EPS, label "Sample"
 - b. 0.5ml H₂O, label "Blank"
 - c. 0.5ml Protein Solution, label "Prot 666 mg/l"

- d. 0.5ml Humic Acid Solution, label "Humic 200 mg/l"
- 8. Add 0.5ml NaOH Solution to each vial, place in digestion block for 10min at 100°C
- 9. Cool vials to room temperature in fridge, add 5ml of CFR, let stand at room temperature for 10min
- 10. Add 0.5ml FR and shake vigorously, let mixture stand at room temperature for 45min
- 11. Read absorbance Atotal (where CFR Total was added) at 750nm
- 12. Read absorbance ABlind (where CFR Blind was added) at 750nm

Protein & Humic absorbance [2]

- Aprotein = 1.25 * (Atotal Ablind)
- Ahumic = Ablind 0.2 * Aprotein = 1.25 * ABlind 0.25 * ATotal

References

- 1. Jaap Waterborg, H.M., *The Lowry Method for Protein Quantitation*. Methods in Molecular Biology, 1984. **1**: p. 1-3.
- 2. B. Frolund, T.G., P. H. Nielsen, *Enzymatic activity in the activated-sludge floc matrix*. Applied Microbiology and Biotechnology, 1995. **43**: p. 755-761.

Materials & Equipment [1]

Chemicals:

-Sodium tetraborate (Borax) -Sulfuric acid (H2SO4) -m-Hydroxydiphenyl (3-Phenylphenol) -Sodium hydroxide (NaOH) -Glucuronic acid -Distilled water (H2O)

Method [1]

- 1. Mix 0.1668g Borax with 35ml H₂SO₄, label "0.0125M Sulfuric acid/tetraborate (SATB)"
- 2. Mix 0.5g NaOH with 100ml H₂O in brown bottle, label "NaOH (0.5%)"
- 3. Mix 0.15g m-Hydroxydiphenyl, 0.5g NaOH with 100ml H₂O in brown bottle, label "m-Hydroxydiphenyl solution (mH)", keep in fridge
- 4. Add 10mg Glucuronic Acid to 40ml H₂O, label "Standard (250 mg/l)", keep in fridge for up to 1 month
- 5. Add the following to individual tubes and put into cold water
 - a. 0.2ml Standard + 0.8ml H₂O, label "Uronic (50 mg/l)" (x2)
 - b. 1ml EPS, label "EPS" (x2)
 - c. 1ml H₂O, label "Blank"
- 6. After allowing to cool for 5min, add 6ml of SATB to each tube and shake thoroughly
- Heat tubes in a digestion block at 100°C for 5min, then immediately place in ice-water bath for 5min
- 8. Add 0.1ml of mH to one Standard tube and one EPS tube, and 0.1ml of 0.5% NaOH to all others
- 9. Shake thoroughly and let sit for 20min at room temperature
- 10. Zero Spectrophotometer using Blank then measure absorbances Atotal at 520nm
- 11. Subtract Ablank (where NaOH was added) from Atotal (where mH was added) for corrected absorbance

Reference

1. Paul K. Kintner III, J.P.v.B., *Carbohydrate Interference and Its Correction in Pectin Analysis Using the m-Hydroxydiphenyl Method.* Journal of Food Science, 1982. **47**: p. 756-759.

SOP: EPS Characterization - Lipids

Materials & Equipment [1]

Chemicals	-Vanillin
	-Phosphoric acid (H ₃ PO ₄)
	-Olive oil (standard)
	-Ethanol
	-Sulfuric acid (H ₂ SO ₄)
	-Water (H ₂ O)
Apparatus	-Spectrophotometer & tubes
	-11 brown bottle
	-40ml glass bottle
	-Digestion block
	-Water bath

Method [1]

- 1. Dissolve 0.42g vanillin in 70ml H₂O, label "Vanillin Reagent (6 g/l)"
- 2. Combine 70ml Vanillin Reagent and 10ml water, add 120ml concentrated H₃PO₄ with constant stirring
- 3. Label "Phospho-Vanillin Reagent (PVR)", store for up to 2 months in brown bottle at room temperature
- 4. Combine 0.11ml olive oil and 20ml ethanol, mix well
- 5. Label "Olive Oil Solution (6 g/l)", store for up to 1 month in the fridge
- 6. Add 0.1ml concentrated H₂SO₄ to each tube
- 7. Add the following to individual tubes and shake well
 - a. 0.01ml H₂O, label "Blank"
 - b. 0.01ml EPS, label "Sample"
 - c. 0.01ml Solution, label "Standard (6000 mg/l)"
- 8. Place all tubes in digestion block for 10min at 100°C, then cool them in cold water for 5min
- 9. Add 5ml of PVR to each tube, shake well, then incubate at 37°C in water bath for 15min
- 10. Cool tubes in cold water for 5min, measure absorbance at 540nm within 30min

Reference

1. Christopher S. Frings, R.T.D., *Improved Determination of Total Serum Lipids by the Sulfo-Phospho-Vanillin Reaction*. Clinical Chemistry, 1972. **18**(7): p. 673-674.

Date	WWTP	Sample	DO [mg/l]	AS %	Total CC	DD [mg/l] sC	OD [mg/l] ffC	OD [mg/l]	kCOD [mg/l] 1	rss [mg/l] N	ormalized sCOD Removal [mg-sCOD/g-TSS]	Normalized ffCO
Ι	Dec-18 Honouliuli	WAS S100	N/A	N/A		246	60	62	-2	310 N	J/A	N/A
Ι	Dec-18 Honouliuli	WW S100	N/A	N/A		258	130	76	54	66.66666667 N	J/A	N/A
Ι	Dec-18 Honouliuli	Post-Biosorption S100		1.0	10%	523	91	72	19	275.6756757	11	.2.8
Ι	Dec-18 Honouliuli	WAS S200	N/A	N/A		2480	68	64	4	1780 N	J/A	N/A
Ι	Dec-18 Honouliuli	WW S200	N/A	N/A		291	151	110	41	75.51020408 N	J/A	N/A
Ι	Dec-18 Honouliuli	WAS \$300	N/A	N/A		3252	75	69	6	2260 N	J/A	N/A
Ι	Dec-18 Honouliuli	WW S300	N/A	N/A		291	148	97	51	82.60869565 N	J/A	N/A
Ι	Dec-18 Honouliuli	WW	N/A	N/A		385	138	111	27	185 N	J/A	N/A
Ι	Dec-18 Honouliuli	Post-Biosorption		1.0	10%	867	100	89	11	482.6086957	9)1.2
Ι	Dec-18 Honouliuli	WAS	N/A	N/A	N/D		67	57	10	3750 N	J/A	N/A
Ι	Dec-18 Honouliuli	Post-Biosorption S300		1.0	10%	679	93	84	9	363.8888889		108
Г	Dec-18 Honouliuli	Lab DAF		1.0	10%	222.3529412	116.4705882	89.41176471	27.05882353	78.43137255	51.67058	824
21-	Ian-19 Honouliuli	Post-Biosorption S100		1.0	10%	191	101	83	18	47.5	262 11678	883
21-	Jan-19 Honouliuli	WW PS100	N/A	N/A		221	135	130	5	32.5 N	J/A	N/A
21-	Jan-19 Honouliuli	WW \$100	N/A	N/A		246	153	98	55	52.5 N	J/A	N/A
21-	Jan-19 Honouliuli	Post-Biosorption PS200		10	10%	183	95	92	3	45	289 7080	292
21_	Jan-19 Honouliuli	WW PS200	N/A	N/A	1070	226	128	119	9	45 N	1/4	N/A
21	Jan-19 Honouliuli	WW 13200	N/A	N/A		327	155	101	54	40 N	1/4	N/A
21-	Jan 19 Honouliuli	M/W 5200	N/A	N/A		264	133	101	10	55 N		N/A
21-	Jan-19 Honouliuli	MM 2300	N/A	N/A		204	152	113	29	97 E N		
21-	Jan-19 Honouliuli	Past Rissonntian \$200	IN/A	IN/A	109/	323	101	114	30	07.5 N 167 E	060 1167	IN/A
21-	Jan-19 Honouliuli	Post-biosorption 5200	NT/A	1.0 NI/A	10%	582	101	80	21	167.5	202.110/0	565 NI/A
21-	Jan-19 Honouliuli		IN/A	IN/A	100/	546	158	107	51	155 N	I/A	IN/A
21-	Jan-19 Honouliuli	Post-Biosorption		1.0	10%	680	115	83	32	312.5	197.7372	263
21-	Jan-19 Honouliuli	Post-Biosorption PS300	27/1	1.0	10%	197	96	87	9	50	285.10948	391
21-	Jan-19 Honouliuli	WAS	N/A	N/A	N/D		65	56	9	1957.142857 N	I/A	N/A
21-	Jan-19 Honouliuli	Post-Biosorption S300		1.0	10%	449	98	90	8	195	275.91240	J88
21-	Jan-19 Honouliuli	Lab DAF		1.0	10%	281.1764706	128.2352941	78.82352941	49.41176471	108.8235294	136.87419	949
21-	Jan-19 Honouliuli	WWTP DAF		1.0	10%	257	97	70	27	90	280.51094	489
25-	Jan-19 Honouliuli	Post-Biosorption PS200		1.0	10% N/D		92	77	15	67.5	219.33774	483
25-	Jan-19 Honouliuli	Post-Biosorption S200		1.0	10%	343	88	75	13	170	238.4105	596
25-	Jan-19 Honouliuli	WW PS200	N/A	N/A		191	113	93	20	45 N	J/A	N/A
25-	Jan-19 Honouliuli	WW S200	N/A	N/A		289	123	91	32	82.5 N	J/A	N/A
25-	Jan-19 Honouliuli	Post-Biosorption PS300		1.0	10%	174	93	79	14	70	214.56953	364
25-	Jan-19 Honouliuli	WW PS300	N/A	N/A		182	110	97	13	45 N	J/A	N/A
25-	Jan-19 Honouliuli	WW \$300	N/A	N/A		299	123	95	28	97.5 N	J/A	N/A
25-	Jan-19 Honouliuli	WW	N/A	N/A		466	138	91	47	152.5 N	J/A	N/A
25-	Jan-19 Honouliuli	Post-Biosorption S300		1.0	10%	480	92	68	24	227.5	219.33774	483
25-	Jan-19 Honouliuli	Post-Biosorption		1.0	10%	670	105	85	20	350	157.35099	934
25-	Jan-19 Honouliuli	WAS	N/A	N/A	N/D		68	66	2	1887.5 N	J/A	N/A
25-	Jan-19 Honouliuli	Lab DAF		1.0	10%	245.8823529	102.3529412	84.70588235	17.64705882	117.6470588	169.97273	308
25-	Jan-19 Honouliuli	WWTP DAF		1.0	10%	195	101	82	19	102.5	176.42384	411
25-	Jan-19 Honouliuli	WWTP PDAF		1.0	10%	133	84	69	15	65	257.4834	437
28-	Jan-19 Honouliuli	Post-Biosorption PS200		1.0	10%	185	98	88	10	90	123.58208	896
28-	Jan-19 Honouliuli	Post-Biosorption S200		1.0	10%	487	109	86	23	262.5	94.029850	075
28-	Jan-19 Honouliuli	Post-Biosorption PS300		1.0	10%	188	102	84	18	100	112.83582	209
28-	Jan-19 Honouliuli	Post-Biosorption S300		1.0	10%	548	103	86	17	297.5	110.1492	537
28-	Jan-19 Honouliuli	WW PS200	N/A	N/A		202	110	99	11	65 N	J/A	N/A
28-	Jan-19 Honouliuli	WW S200	N/A	N/A		306	142	107	35	85 N	J/A	N/A
28-	Jan-19 Honouliuli	WW PS300	N/A	N/A		207	116	110	6	65 N	J/A	N/A
28-	Jan-19 Honouliuli	WW \$300	N/A	N/A		333	140	110	30	97.5 N	J/A	N/A
28-	Jan-19 Honouliuli	WW	N/A	N/A		421	144	116	28	142.5 N	J/A	N/A
28-	Jan-19 Honouliuli	Post-Biosorption	,	1.0	10%	824	111	103	8	417.5	88.65671	642
28-	Jan-19 Honouliuli	WAS	N/A	N/A	N/D		74	62	12	3350 N	J/A	N/A
28-	Jan-19 Honouliuli	Lab DAF		10	10%	232 9411765	117 6470588	101 1764706	16 47058824	120 5882353	70 79894/	644
28-	Jan-19 Honouliuli	WWTP DAF		1.0	10%	261	113	81	32	135	83 28358	209
30	Jan-19 Honouliuli	WW \$4750	N/A	NI/A	10/0	201	110	90	20	157 5 N	J/A	N/A
20	Jan-19 Honouliuli	WW Lab DAF	N/A	NI/A		272 2520412	124 7058924	118 8725704	5 882352041	58 82252041 N	Ι/Δ	N/A
20	Jan-19 Honouliul		N/A	NI/A		527	124.7 030024	110.0200294	0.002002041	147 E N	1/Δ	N/A
20	Jan-19 Honouliuli		N/A	NI/A		202	110	70	24	147.5 N	1/Δ	N/A
-00- י די	Eeb 19 Honoviiuli	WW \$4750	N/A	NI/A		400	112	120	20	30 N	τ/Δ	N/A
/-1	Tab 10 Har lili	¥¥ ¥¥ 342730 TA/TA/	IN/A	IN/A		400	150	120	30	100 N		
/-]	Teb-19 Fionouliul	Post Rissonntiar	IN/A	IN/A	109/	439	155	9/	28	170 N	1/A	IN/A
/-1		L-h DAE		1.0	10%	200 2252041	90 100 E004140	87 05000050	15	520	403	225
7-1	red-19 Honouliuli	Lad DAF		1.0	10%	268.2352941	123.5294118	87.05882353	36.47058824	94.11/64/06	215.25882	233

DD Removal [mg-ffCOD/g-TSS]	Normalized kCOD Removal [mg-kCOD/g-TSS]
	N/A
	N/A
93.6	19.2
	N/A
52.8	38.4
	N/A
64.8	43.2
51 81176471	-0.141176471
110 3649635	151 7518248
110.0017000	N/A
	N/A
68.07810210	N/A 220 720027
08.97810219	220.729927
	N/A
	N/A
	N/A
	N/A
124.1605839	137.9562044
	N/A
110.3649635	87.37226277
91.97080292	193.1386861
	N/A
78.17518248	3 197.7372263
129.5706312	7.303563761
170.1459854	110.3649635
64.37956204	154.9581863
73 57664234	164 8339537
70.07001201	N/A
	N/A
55 18248175	150 2870547
33.10240173	N/A
	N/A
	N/A
105 500 100	N/A 110 571005
105.7664234	113.5/1325
27.59124088	129.7597525
	N/A
28.94375268	3 141.0289781
41.38686131	135.0369797
101.1678832	156.3155605
128.7591241	-5.177034535
137.9562044	-43.92635363
147.1532847	-34.31746378
137.9562044	-27.80695065
	N/A
59 7810210) 28.87549452
37.7610217	N/A
68 16650511	1 V/1 2 (22251220
100.10039311	. 2.032331339
160.9489051	-77.66532302
	N/A
109.44	294.12
67.99764706	147.2611765

Date WWTP	Sample	DO [mg/l]	AS %	Total C	DD [mg/l] sC	COD [mg/l] ffCO	D [mg/l] kCO	D [mg/l] T	TSS [mg/l] Normal	lized sCOD Removal [mg-sCOD/g-TSS]	Normalized ffCOD Removal [mg-ffCOD/g-TSS] N	ormalized kCOD Removal [mg-kCOD/g-TSS]
7-Feb-19 Honouliuli	WAS	N/A	N/A	N/D		72	55	17	1315.789474 N/A		N/A N	J/A
7-Feb-19 Honouliuli	WWTP DAF		1.0	10%	236	108	93	15	72.5	321.48	27.36	294.12
7-Feb-19 Honouliuli	WWTP PDAF		1.0	10%	173	114	85	29	42.5	280.44	82.08	198.36
27-Mar-19 Honouliuli	Lab DAF		1.0	5%	285.8823529	90.58823529	84.70588235	5.882352941	102.9411765	195.3295207	102.4509804	92.87854031
27-Mar-19 Honouliuli	WW	N/A	N/A		366	135	108	27	135 N/A		N/A N	J/A
27-Mar-19 Honouliuli	Post-Biosorption (not centrifuged)	,	10	5%	667	92	72	20	317.5	189 1203704	158 3333333	30 78703704
27 Mar 19 Honouliuli	Post Biosorption (contributed)		1.0	5%	648	96	87	20	017.0	171 5277778	92 36111111	79 16666667
27 Mar 10 Honouliuli	MAC	NT/A	1.0 NI/A	570 NI/D	040	74	60	14	4220 NI/A	1/1.52////0	72.5011111	1/4
27-Mar-19 Honouliuli		IN/A	1.0	IN/D	220	/4	80	14	4520 N/A	011 111111	IN/A II 140 527027	1/A (1 57407407
27-Mar-19 Honouliuli	WWIP DAF		1.0	5%	230	0/	/4	13	100 04115(5	211.111111	149.537037	61.57407407
29-Mar-19 Honouliuli	Lab DAF		0.5	10%	295.2941176	109.4117647	91.76470588	17.64705882	102.9411765	103.6900751	57.65224151	46.03783364
29-Mar-19 Honouliuli	WW	N/A	N/A		423	153	116	37	132.5 N/A		N/A N	J/A
29-Mar-19 Honouliuli	Post-Biosorption (not centrifuged)		0.5	10%	921	94	84	10	492.5	140.3524229	76.12334802	64.22907489
29-Mar-19 Honouliuli	Post-Biosorption (centrifuged)		0.5	10% N/A		110	89	21 N	N/A	102.2907489	64.22907489	38.06167401
29-Mar-19 Honouliuli	WAS	N/A	N/A	N/D		72	61	11	3783.333333 N/A		N/A N	J/A
29-Mar-19 Honouliuli	WWTP DAF		0.5	10%	275	106	96	10	97.5	111.8061674	47.57709251	64.22907489
1-Apr-19 Honouliuli	Lab DAF		0.5	5%	263.5294118	96.47058824	74.11764706	22.35294118	79.41176471	147.5208474	112.4070318	35.11381564
1-Apr-19 Honouliuli	WW	N/A	N/A		440	137	105	32	200 N/A		N/A N	J/A
1-Apr-19 Honouliuli	Post-Biosorption (not centrifuged)		0.5	5%	784	95	92	3	370	152.8735632	47.31800766	105.555556
1-Apr-19 Honouliuli	Post-Biosorption (centrifuged)		0.5	5% N/A	,01	110	90	20 1	N/A	98 27586207	54 59770115	43 67816092
1 Apr 19 Honouliuli	WAS	NI/A	0.0 N/A	070 N/M		82	74	201	5220 NI/A	70.27300207	N/A	40.07010092
1 Apr 10 Har askisli		IN/A	1N/A	IN/D	255	00	74	2	5220 IN/A	1(2 7021024	N/A 11	//A
1-Apr-19 Honouliuli	WWIP DAF		0.5	5%	200	92	78	14	72.5	103.7931034	96.2/566207	65.51724138
10-Apr-19 Honouliuli	Lab DAF		1.0	10%	257.6470588	85.88235294 N/D	N/L)	100	103.7846837	N/D N	1/D
10-Apr-19 Honouliuli	WW	N/A	N/A		410	147	112	35	140 N/A		N/A N	J/A
10-Apr-19 Honouliuli	Post-Biosorption (not centrifuged)		1.0	10%	1351	82	73	9	675	110.3773585	66.22641509	44.1509434
10-Apr-19 Honouliuli	Post-Biosorption (centrifuged)		1.0	10% N/A		91	83	8 1	N/A	95.09433962	49.24528302	45.8490566
10-Apr-19 Honouliuli	WAS	N/A	N/A	N/D		82	81	1	5300 N/A		N/A N	J/A
10-Apr-19 Honouliuli	WWTP DAF		1.0	10%	233	80	78	2	90	113.7735849	57.73584906	56.03773585
12-Apr-19 East Honolulu	WAS	N/A	N/A	N/D		100	97	3	4616.666667 N/A		N/A N	J/A
12-Apr-19 East Honolulu	WW	N/A	N/A		392	174	154	20	172.5 N/A		N/A N	J/A
12-Apr-19 East Honolulu	Post-Biosorption (not centrifuged)		10	10%	771	138 N/D	N/E)	607.5	70 18050542	N/D N	J/D
12-Apr-19 East Hopolulu	Post-Biosorption (centrifuged)		1.0	10% N/D		160 14,2	153	קיד	N/A	27 29241877	1 949458484	25 34296029
12 Apr 19 East Honolulu			1.0	10%	206	168	155	17	57.5	11 6967509	5 848275451	5 848275451
12-Apr-19 East Honolulu			1.0	10%	200	125 9922520 N/D	151	17	67 64705990	74 20877044	5.04057.5451 N/D	J.04837.3431
17 Apr 10 Line ashiri	Lab DAI	NT/A	1.0	10 /0	212.3329412	133.8823329 N/D	IN/L))	07.04703002	74.30877044		
17-Apr-19 Honouliuli	WW 5180	IN/A	IN/A	N/D		120 N/D	N/L)	65 N/A			1/A
17-Apr-19 Honouliuli	WW 10PS180	IN/A	N/A	N/D		100 N/D	N/L)	27.5 N/A		N/A N	1/A
17-Apr-19 Honouliuli	WW 2PS180	N/A	N/A	N/D		94 N/D	N/C)	52.5 N/A		N/A N	J/A
17-Apr-19 Honouliuli	WW 5PS180	N/A	N/A	N/D		90 N/D	N/C)	40 N/A		N/A N	J/A
17-Apr-19 Honouliuli	WW \$300	N/A	N/A	N/D		114 N/D	N/C)	82.5 N/A		N/A N	J/A
17-Apr-19 Honouliuli	WW 2PS300	N/A	N/A	N/D		107 N/D	N/C)	50 N/A		N/A N	J/A
17-Apr-19 Honouliuli	WW 10PS300	N/A	N/A	N/D		94 N/D	N/C)	32.5 N/A		N/A N	J/A
17-Apr-19 Honouliuli	WW 5PS300	N/A	N/A	N/D		94 N/D	N/C)	40 N/A		N/A N	J/A
17-Apr-19 Honouliuli	WW	N/A	N/A	N/D		104 N/D	N/D)	107.5 N/A		N/A N	J/A
24-Apr-19 Honouliuli	WW S300 1.5/3.5	N/A	N/A	N/D		149 N/D	N/C)	37.5 N/A		N/A N	J/A
24-Apr-19 Honouliuli	WW \$300.1.5/5	N/A	N/A	N/D		137 N/D	N/E)	37.5 N/A		N/A N	J/A
24-Apr-19 Honouliuli	WW \$300.1.5/7	NI/A	N/A	N/D		134 N/D	N/D)	37.5 N/A		N/A N	J/A
24-Apr-19 Honouliuli	WW \$300 3 0/5	N/A	N/A	N/D		134 N/D	N/C	,)	25 N/A			1/1
24-Apr-19 Honouliuli	WW 5500 3.0/3 E	N/A	N/A	N/D		133 N/D 120 N/D	N/D)	20 N/A			
24-Apr-19 Honouliul	WWW 5500 5.0/5.5	IN/A	IN/A	N/D		130 N/D	N/L	,	52.5 N/A			
24-Apr-19 Honouliuli	WW S300 3.0/7	IN/A	N/A	N/D		124 N/D	N/L)	30 N/A		N/A N	1/A
24-Apr-19 Honouliuli	WW	N/A	N/A	N/D		159 N/D	N/L)	77.5 N/A		N/A N	I/A
25-Apr-19 East Honolulu	WAS	N/A	N/A	N/D		50	76	-26	5250 N/A		N/A N	J/A
25-Apr-19 East Honolulu	WW	N/A	N/A		545	149	132	17	225 N/A		N/A N	J/A
25-Apr-19 East Honolulu	Post-Biosorption 1		1.0	5%	814	118	117	1	477.5	112.1904762	54.28571429	57.9047619
25-Apr-19 East Honolulu	Lab DAF 0.5		0.5	5%	281.7647059	130	104.1176471	25.88235294	114.7058824	68.76190476	100.907563	-32.14565826
25-Apr-19 East Honolulu	WWTP DAF 1		1.0	5%	239	128	107	21	107.5	76	90.47619048	-14.47619048
25-Apr-19 East Honolulu	Lab DAF 1		1.0	5%	273.5294118	130	127.6470588	2.352941176	102.9411765	68.76190476	15.7535014	53.00840336
1-May-19 East Honolulu	WAS	N/A	N/A	N/D		93	114	-21	4900 N/A		N/A N	J/A
1-May-19 East Honolulu	WW	N/A	N/A		352	113	105	8	152.5 N/A		N/A N	J/A
1-May-19 East Honolulu	Post-Biosorption 0.5	,	0.5	10%	1029	83 N/D	N/E)	655	55 10204082	N/D N	J/D
1-May-19 East Hopolulu	Post-Biosorption 1		1.0	10%	1120	99	92	7	700	25 71428571	23 87755102	1 836734694
1-May-19 East Honolulu	Lab DAF 1		1.0	10%	158 23529/1	94 70588235	93 52941176	1 176470588	52 94117647	23.71420071	23.07703102	10 52201221
1 May 10 East Honolulu			0.5	10%	166 4705992	00 N/D	>>.52741170	1.170470300	52.7117.01/	42.24490704	21.00042/3/	12.0001021
2 Mars 10 LL 1'		NI/A	0.0	10 /0	100.4/03882	90 N/D	IN/L	, 	JO.02332941	42.24489796		
3-May-19 Honouliuli	WW 5300 1.5/3.5	N/A	N/A	N/D		139 N/D	N/L	,	50 N/A		N/A N	I/A
3-May-19 Honouliuli	WW 5300 1.5/5	N/A	N/A	N/D		130 N/D	N/C)	50 N/A		N/A N	J/A

Date	WWTP	Sample	DO [mg/l]	AS %	Total CC	DD [mg/l]	sCOD [mg/l] f	fCOD [mg/l]	kCOD [mg/l]	TSS [mg/l] Normal	ized sCOD Removal [mg-sCOD/g-TSS]	Normalized ffCO
3-Mav-1	9 Honouliuli	WW \$300 1.5/7	N/A	N/A	N/D		129 N	N/D	N/D	60 N/A		N/A
3-May-1	9 Honouliuli	WW \$300.3.0/3.5	N/A	NI/A	N/D		122 N	.,	N/D	42.5 N/A		N/A
2 May 1	0 Honouliuli	WW 5500 5.0/5.5	NI/A	NI/A	N/D		122 I 110 N		N/D	42.5 N/A		
3-May-		WW 5300 3.0/7	IN/A	IN/A	N/D		110 1	N/D	N/D	47.5 N/A		IN/A
3-May-1	9 Honouliuli	WW \$300 3.0/5	N/A	N/A	N/D		109 N	N/D	N/D	45 N/A		N/A
3-May-1	9 Honouliuli	WW	N/A	N/A	N/D		149 N	N/D	N/D	180 N/A		N/A
17-May-1	9 East Honolulu	WAS	N/A	N/A	N/D		54	19	35	4328.571429 N/A		N/A
17-May-1	9 East Honolulu	Lab DAF 0.5		0.5	10%	99.41176471	60.58823529	17.05882353	43.52941176	64.70588235	90.2620850)3
17-May-1	9 East Honolulu	WWTP DAF 0.5		0.5	10%	114	83	58	25	60	43.6633663	34
17-May-1	9 East Honolulu	WW	N/A	N/A		306	104	89	15	137.5 N/A		N/A
17 May 1	9 East Honolulu	WWTP DAE 1	14/11	1.0	10%	148	40	36	10	75	133.06930	59
17-Way-1				1.0	10%	140	40	50	4	75	135.009500	-0
17-May-1	9 East Honolulu	Post-Biosorption 1		1.0	10%	764	61	49	12	672.5	89.4059403	19
17-May-1	9 East Honolulu	Post-Biosorption 0.5		0.5	10%	906	71	67	4	657.5	68.6138613	<i>;</i> 9
17-May-1	9 East Honolulu	Lab DAF 1		1.0	10%	138.2352941	57.05882353	55.88235294	1.176470588	67.64705882	97.6004659	13
22-May-1	9 East Honolulu	WAS	N/A	N/A	N/D		76	82	-6	5320 N/A		N/A
22-May-1	9 East Honolulu	WW	N/A	N/A		378	184	142	42	141 N/A		N/A
5-Jun-1	9 Honouliuli	WW	N/A	N/A		375	119	106	13	127.5 N/A		N/A
5-Jun-1	9 Honouliuli	Post-Biosorption (not contributed)	,	0.5	5%	732	77	74	3	330	173 478260	19
5-Jun-1		NAC	NT/A	0.5	570 N/D	752	77	74	1	4600 NI/A	175.476200	
5-Jun-J	9 Honouliuli	WAS	IN/A	IN/A	IN/D		/3	/4	1	4600 N/A		IN/A
7-Jun-1	9 East Honolulu	WAS	N/A	N/A	N/D		99	110	-11	4920 N/A		N/A
7-Jun-1	9 East Honolulu	Lab DAF		0.5	5%	180.5882353	102.9411765	71.17647059	31.76470588	61.76470588	46.5686274	45
7-Jun-1	9 East Honolulu	WW	N/A	N/A		407	115	107	8	122.5 N/A		N/A
7-Jun-1	9 East Honolulu	Post-Biosorption (not centrifuged)		0.5	5%	701	77	66	11	352.5	146.747962	75
10-Jun-1	9 Honouliuli	Lab DAF		0.5	5%	308 2352941	92 94117647	88 23529412	4 705882353	94 11764706	230 80403	76
10-Jun-1	9 Honouliuli		NI/A	N/A	0.10	404	134	103	31	130 N/A	200001007	N/A
10-Juli-1			IN/A	1N/A	E0/	404	104	103		130 IN/A	155 206 4 4	11/21
10-Jun-1	9 Honouliuli	Post-Biosorption (not centrifuged)		0.5	5%	670	106	88	18	320	157.396449	<u>'/</u>
10-Jun-1	9 Honouliuli	WAS	N/A	N/A	N/D		103	79	24	3380 N/A		N/A
10-Jun-1	9 Honouliuli	WWTP DAF		0.5	5%	296	111	97	14	75	129.289940)8
13-Jun-1	9 East Honolulu	WAS	N/A	N/A	N/D		53	18	35	6420 N/A		N/A
13-Jun-1	9 East Honolulu	WWTP DAF		1.0	10%	218	130	121	9	72.5	36.448598	13
13-Jun-1	9 East Honolulu	WW	N/A	N/A		373	156	129	27	167.5 N/A		N/A
13-Jun-1	9 East Honolulu	Post-Biosorption (not contrifuged)	14/11	1.0	10%	874	140	59	81	557.5	22 429906	54
10 J 1		L DAF 10		1.0	10%	074	00.00050041	00 4115(451	0.4117(470)	557.5	22.429900	24 24
19-Jun-	9 Honouliuli	Lab DAF 10		1.0	10%	231./64/059	98.82352941	89.411/64/1	9.411/64/06	67.64705882	202.593793	,4
19-Jun-1	9 Honouliuli	WW	N/A	N/A		310	156	105	51	95 N/A		N/A
19-Jun-1	9 Honouliuli	Post-Biosorption 5		1.0	5%	523	108	103	5	215	359.055118	31
19-Jun-1	9 Honouliuli	WAS	N/A	N/A	N/D		76	85	-9	2540 N/A		N/A
19-Jun-1	9 Honouliuli	WWTP DAF 10		1.0	10%	251	116	70	46	80	141.732283	35
2-Jul-1	9 Wahiawa	Lab DAF W		0.5	5%	381 1764706	154 1176471	127 0588235	27 05882353	126 4705882	238 735494	42
2_Jul_1	9 Wabiawa			0.5	5%	342	150	121.0000200	19	117.5	252.04081	
2-Jul-1				0.5	5%	1107	130	100	19	117.5	202.040810	13
2-Jul-	9 waniawa	Post-Biosorption W		0.5	5%	1127	146	128	18	760	264.965986	<i>1</i> 4
2-Jul-1	9 Wahiawa	WWW	N/A	N/A		677	228	155	73	225 N/A		N/A
2-Jul-1	9 Wahiawa	WAS	N/A	N/A	N/D		33	58	-25	5880 N/A		N/A
9-Jul-1	9 Honouliuli	WW	N/A	N/A		353	140	118	22	130 N/A		N/A
9-Jul-1	9 Honouliuli	Post-Biosorption 200		1.0 200 ml a	added	554	101	100	1	277.5	304.682	75
9-Jul-1	9 Honouliuli	Post-Biosorption 400		1.0.400 ml a	added	704	97	96	1	295	167 968	75
9 Jul 1	9 Honouliuli	Post-Biosorption 500		1.0.500 ml	added	859	07	90	10	480	124.2	75
-jui-1				1.0 200 1	11 1	650	10(07	10	400	104.3. 50.01/(///	
9-Jul-	9 Honouliuli	Post-Biosorption 300		1.0 300 ml a	aaea	654	126	90	36	285	72.916666	<i>3/</i>
9-Jul-1	9 Honouliuli	WAS	N/A	N/A	N/D		80	82	-2	3200 N/A		N/A
19-Jul-1	9 Wahiawa	WWTP DAF W 10		1.0	10%	536	186	142	44	200	93.1578942	′4
19-Jul-1	9 Wahiawa	Post-Biosorption W 10		1.0	10%	1142	169	153	16	547.5	12	20
19-Jul-1	9 Wahiawa	Lab DAF W 10		1.0	10%	637.6470588	162.3529412	148.2352941	14.11764706	276.4705882	130.49535	56
19-Jul-1	9 Wahiawa	Lab DAF W 5		1.0	5%	510 5882353	196 4705882	145 8823529	50 58823529	179 4117647	161 76470	59
10 Jul 1	9 Wahiawa	Post Biosorption W 5		1.0	5%	010.0002000	190.17 00002	160	12	205	212 22222	22
10 T 1 1	0 Wahi	1050 - prost prior W = 3		1.0	570	240	101	109	12	1(0 5	210.00000	22
19-Jul-1	y vvaniawa	WWWIPDAFW 5		1.0	5%	4/2	178	145	33	162.5	223.33333	10
19-Jul-1	9 Wahiawa	WW W	N/A	N/A		646	245	180	65	215 N/A		N/A
19-Jul-1	9 Wahiawa	WAS	N/A	N/A	N/D		114	186	-72	5700 N/A		N/A
22-Jul-1	9 Honouliuli	Post-Biosorption 5 S180		1.0	5%	518	115	101	14	202.5	236.127162	/6
22-Jul-1	9 Honouliuli	Post-Biosorption 10 S300		1.0	10%	679	92	84	8	357.5	171.676300)6
22-Jul-1	9 Honouliuli	Post-Biosorption 5 S300		1.0	5%	537	110	91	19	225	263 5838	15
22_Jul 1	9 Honouliuli	Lab DAE 10		1.0	10%	238 8235294	87 05882352	87 05882252		100	184 52007	17
22-jul-	0 Hon1:- 1'			1.0	E0/	250.0255294	102 5004110	07.00002000	7 059999569	20 25204110	104.32907	477
22-Jul-1	> rionouliuli			1.0	5%	257.64/0588	103.5294118	96.47058824	7.058823529	82.33294118	299.11594	:/
22-Jul-1	9 Honouliuli	Post-Biosorption 10 Sett 5		1.0	10%	366	102	77	25	155	145.664739	19
22-Jul-1	9 Honouliuli	Post-Biosorption 5 Sett 10		1.0	5%	349	121	102	19	115	203.179190)8
22-Jul-1	9 Honouliuli	Post-Biosorption 5 Sett 5		1.0	5%	501	110	107	3	200	263.5838	15

DD Removal [mg-ffCOD/g-TSS]	Normalized kCOD Removal [mg-kCOD/g-TSS]
	N/A
140 500000	N/A ====================================
149.5806639	-59.31857892
64.45544554	-20.79207921
110 1000100	N/A
110.1980198	22.8/128/13
83.16831683	6.237623762
45./425/426	22.8/128/13
68.85847408	28.74199185
	N/A
	N/A
100 170010	IN/A 41.00404700
132.173913	41.30434/83
	N/A
100 0400001	IN/A 01.77407060
138.3428981	-91.77427068
150 000000	IN/A 11 5050/505
158.3333333	-11.38536585
82.99686739	147.80/1/02
04.01050((0	N/A
84.31952663	73.07692308
22 E2E 010/E	N/A
33.72781065	95.56213018
11 01 405 205	N/A
11.21495327	25.23364486
	N/A
98.13084112	-75.70093458
55.23390459	147.3598888
	N/A
14.96062992	344.0944882
	N/A
124.015748	17.71653543
90.28611445	148.4493798
77.55102041	174.4897959
87.24489796	177.7210884
	N/A
	N/A
	N/A
140.625	164.0625
85.9375	82.03125
96.875	37.5
145.8333333	-72.91666667
	N/A
60	33.15789474
42.63157895	77.36842105
50.15479876	80.34055728
113.7254902	48.03921569
36.66666667	176.66666667
116.6666667	106.6666667
	N/A
	N/A
137.283237	98.84393064
109.2485549	62.42774566
192.1965318	71.38728324
101.2920775	83.23699422
162.1557293	136.9602176
127.4566474	18.20809249
131.7919075	71.38728324
104 2252601	159 2485549

Data Tables: Biosorption Master

Date	WWTP	Sample	DO [mg/l]	AS %	Total CC	DD [mg/l] sC	COD [mg/l] ffC	OD [mg/l] k0	COD [mg/l] T	SS [mg/l] Normal	lized sCOD Removal [mg-sCOD/g-TSS]	Normalized ffCOD Removal [mg-ffCOD/g-TSS]	Normalized kCOD Removal [mg-kCOD/g-TSS]
22-Ju	l-19 Honouliuli	WW	N/A	N/A		440	158	126	32	142.5 N/A		N/A	N/A
22-Ju	l-19 Honouliuli	Post-Biosorption 10		1.0	10%	870	102	75	27	477.5	145.6647399	132.6589595	13.00578035
22-Ju	l-19 Honouliuli	WAS	N/A	N/A	N/D		81	83	-2	3460 N/A		N/A	N/A
22-Ju	l-19 Honouliuli	WWTP DAF 10		1.0	10%	262	86	70	16	105	187.283237	145.6647399	41.61849711
22-Ju	l-19 Honouliuli	WWTP DAF 5		1.0	5%	267	113	99	14	87.5	247.1098266	148.265896	98.84393064
24-Ju	l-19 Wahiawa	WW W	N/A	N/A		698	232	182	50	225 N/A		N/A	N/A
24-Ju	l-19 Wahiawa	Lab DAF W		0.5	10%	404.7058824	136.4705882	101.1764706	35.29411765	173.5294118	78.16042781	66.12834225	12.03208556
24-Ju	l-19 Wahiawa	Post-Biosorption W		0.5	10%	1646	141	108	33	1020	74.45454545	60.54545455	13.90909091
24-Ju	l-19 Wahiawa	WAS	N/A	N/A	N/D		43	54	-11	11000 N/A		N/A	N/A
26-Iu	l-19 Waimanalo	WWTP DAF		1.0	10%	310	141	98	43	97.5	208.2857143	231.4285714	-23.14285714
26-Ju	l-19 Waimanalo	Lab DAE		1.0	10%	308 2352941	131 7647059	108 2352941	23 52941176	97.05882353	243 907563	191 9495798	51 95798319
26-Ju	1-19 Waimanalo		NI/A	N/A	1070	500.2002.941	191.7 047 095	100.2002/41	37	222.5 NI/A	243.707.700	N/A	N/A
20-Ju 26-Ju	1-19 Waimanalo	Post-Biosorption (not contrifuged)	11/11	1.0	10%	1109	111	97	14	475	32/	235 28571/3	88 71/28571
20-Ju 26 Ju	1 19 Waimanalo	WAS	NI/A	1.0 N/A	10 /0 N/D	1109	20	57	24	4/J	524	N/A	00.71420371 N/A
20-Ju 20 Ju	1-19 Waimanaio	WAS Dest Rissermtion (not contrifuzed)	IN/A	1.0		676	105	04	-34	2000 E	100 4627004	IN/A 67 10022754	IN/A 62.22428486
29-Ju		Post-biosorption (not centrifuged)	NT/A	1.0	5%	676	105	99	6	302.5	129.4637224	07.12933734	02.33438480
29-Ju		WAS	IN/A	IN/A	IN/D	10/	67	67	0	3962.3 N/A		N/A	N/A
29-Ju	I-19 Honouliuli	WW	N/A	N/A		426	132	113	19	115 N/A		N/A	N/A
1-Aug	g-19 Waimanalo	WW	N/A	N/A		519	229	160	69	125 N/A		N/A	N/A
1-Aug	g-19 Waimanalo	Post-Biosorption (not centrifuged)		1.0	5%	675	207	138	69	282.5	163.4636872	163.4636872	0
1-Aug	g-19 Waimanalo	WAS	N/A	N/A	N/D		48	69	-21	2557.142857 N/A		N/A	N/A
2-Aug	g-19 Honouliuli	WAS	N/A	N/A	N/D		80	68	12	3111.111111 N/A		N/A	N/A
2-Aug	g-19 Honouliuli	WW	N/A	N/A		404	151	120	31	120 N/A		N/A	N/A
2-Aug	g-19 Honouliuli	Post-Biosorption 100		1.0 100ml a	dded	463	121	104	17	190	482.1428571	257.1428571	225
2-Aug	g-19 Honouliuli	Post-Biosorption 200		1.0 200ml a	dded	642	102	90	12	237.5	393.75	241.0714286	152.6785714
2-Aug	g-19 Honouliuli	Post-Biosorption 300		1.0 300ml a	dded	678	113	86	27	330	203.5714286	182.1428571	21.42857143
2-Aug	g-19 Honouliuli	Post-Biosorption 400		1.0 400ml a	dded	825	104	91	13	357.5	188.8392857	116.5178571	72.32142857
2-Aug	z-19 Honouliuli	Post-Biosorption 500		1.0 500ml a	dded	902	97	81	16	462.5	173.5714286	125.3571429	48.21428571
5-Aug	2-19 Honouliuli	WAS	N/A	N/A	N/D		108	113	-5	3840 N/A		N/A	N/A
5-Aug	z-19 Honouliuli	WW	N/A	N/A	11/2	452	161	139	22	140 N/A		N/A	N/A
5-4110	19 Honouliuli	Post-Biosorption 60min	14/21	10	5%	728	87	80	7	315	366 1458333	201 0270833	74 21875
5-Aug	2-19 Honouliuli	Post Rissonntian 20min		1.0	5%	720	07	04	2	212 5	216 666665	291.9270833	04.01041667
5-Aug	-19 Honouliuli	Post-Biosorption Somm		1.0	5% N/D	764	97	94	1(210	272 125 41 (5	222.00023	20.007
5-Aug		Post-Biosorption 40min		1.0	5%	764	106	90	16	310	272.1334167	242.4479167	29.0875
5-Aug	g-19 Honouliuli	Post-Biosorption 20min		1.0	5%	805	121	111	10	325	197.9166667	138.541666/	59.3/5
5-Aug	g-19 Honouliuli	Post-Biosorption 10min	/ -	1.0	5%	700	123	121	2	320	188.0208333	89.0625	98.95833333
7-Aug	g-19 Wahiawa	WW	N/A	N/A		660	227	163	64	187.5 N/A		N/A	N/A
7-Aug	g-19 Wahiawa	WAS	N/A	N/A	N/D		41	48	-7	6444.44444 N/A		N/A	N/A
8-Aug	g-19 Waimanalo	WW	N/A	N/A		619	257	182	75	160 N/A		N/A	N/A
8-Aug	g-19 Waimanalo	Post-Biosorption (not centrifuged)		0.5	5%	811	240	157	83	317.5	88.49315068	130.1369863	-41.64383562
8-Aug	g-19 Waimanalo	WAS	N/A	N/A	N/D		43	61	-18	3650 N/A		N/A	N/A
12-Aug	g-19 Honouliuli	WAS	N/A	N/A	N/D		75	73	2	3733.333333 N/A		N/A	N/A
12-Aug	g-19 Honouliuli	WW	N/A	N/A		377	143	109	34	117.5 N/A		N/A	N/A
12-Aug	g-19 Honouliuli	Post-Biosorption 50min		1.0	5%	602	94	91	3	262.5	249.375	91.60714286	157.7678571
12-Aug	g-19 Honouliuli	Post-Biosorption 60min		1.0	5%	710	95	90	5	270	244.2857143	96.69642857	147.5892857
12-Au	g-19 Honouliuli	Post-Biosorption 200		1.0 200ml a	dded	712	110	85	25	245	220.9821429	160.7142857	60.26785714
12-Aug	z-19 Honouliuli	Post-Biosorption 40min		1.0	5%	606	101	93	8	277.5	213.75	81.42857143	132.3214286
12-Au	g-19 Honouliuli	Post-Biosorption 30min		1.0	5%	666	108	94	14	420	178 125	76.33928571	101.7857143
12-A110	z-19 Honouliuli	Post-Biosorption 300		1.0 300ml a	dded	672	105	88	17	300	169 6428571	93 75	75 89285714
12-4110	r-19 Honouliuli	Post-Biosorption 20min		10	5%	672	111	112	_1	262.5	162 8571420	-15 26785714	178 125
12-Aug	10 Honouliuli	Post Biosorption 400		1.0 400ml a	ddad	820	95	86	-1	202.5	162.0371422	77 00892852	82 70525714
12-Aug	r 10 Honouliuli	Post Biosorption 500		1.0 400ml a	ddad	725	93	92	0	380	122 0285714	42 85714286	91.07142857
12-Aug	-19 Honouliuli	Post-Biosorption 500		1.0 500111 a	50/	733	93	93	0	360 252 F	133.9203714	42.03/14200	91.0/14283/
12-Aug		Post-biosorption fomin		1.0 100 1	5%	629	11/	115	2	202.0	132.3214280	-30.33371429	162.63/1429
12-Aug	g-19 Honouliuli	Post-Biosorption 100	N T/A	1.0 100ml a	aaea	486	136	109	2/	185	93.75		93.75
14-Aug	g-19 Wahiawa	WW	N/A	N/A		685	297	197	100	172.5 N/A		N/A	N/A
14-Aug	g-19 Wahiawa	Post-Biosorption (centrifuged)		0.5	10%	1585	164	116	48	1007.142857	194.8604651	118.6744186	76.18604651
14-Aug	g-19 Wahiawa	WAS	N/A	N/A	N/D		36	58	-22	6142.857143 N/A		N/A	N/A
15-Aug	g-19 Waimanalo	WW	N/A	N/A		581	240	169	71	157.5 N/A		N/A	N/A
15-Aug	g-19 Waimanalo	Post-Biosorption (not centrifuged)		0.5	10%	742	156	121	35	397.5	312.3966942	178.5123967	133.8842975
15-Aug	g-19 Waimanalo	WAS	N/A	N/A	N/D		22	47	-25	2420 N/A		N/A	N/A
19-Aug	g-19 Honouliuli	WAS	N/A	N/A	N/D		103	111	-8	3133.333333 N/A		N/A	N/A
19-Aug	g-19 Honouliuli	WW	N/A	N/A		410	165	140	25	125 N/A		N/A	N/A
19-Aug	g-19 Honouliuli	Post-Biosorption 10min		1.0	5%	652	124	110	14	262.5	248.6170213	181.9148936	66.70212766
19-Aug	g-19 Honouliuli	Post-Biosorption 20min		1.0	5%	660	124	118	6	237.5	248.6170213	133.4042553	115.212766
19-Aug	g-19 Honouliuli	Post-Biosorption 30min		1.0	5%	659	126	105	21	247.5	236.4893617	212.2340426	24.25531915

Date WWTP	Sample	DO [mg/l]	AS %	Total COD [mg	:/l] sC	COD [mg/l] ffCOD	[mg/l] kCC	DD [mg/l] T	SS [mg/l] Normalized sC	OD Removal [mg-sCOD/g-TSS] Normalized ffCO
19-Aug-19 Honouliu	li Post-Biosorption 40min		1.0	5%	646	110	92	18	260	333.5106383
19-Aug-19 Honouliu	li Post-Biosorption 50min		1.0	5%	630	118	108	10	257.5	285
19-Aug-19 Honouliu	li Post-Biosorption 70min		1.0	5%	593	101	96	5	275	388.0851064
19-Aug-19 Honouliu	li Post-Biosorption 80min		1.0	5%	638	96	90	6	267.5	418.4042553
19-Aug-19 Honouliu	li Post-Biosorption 90min		1.0	5%	671	101	84	17	287.5	388.0851064
20-Aug-19 East Hon	olulu WAS	N/A	N/A	N/D		89	130	-41	5536 363636 N/A	N/A
20-Aug-19 East Hon	alulu WW	N/A	N/A		353	166	166	0	132.5 N/A	N/A
20-Aug-19 East Hon	olulu Post-Biosorption (not centrifuged)		0.5	5%	686	135	107	28	365	106 3875205
20 Aug 19 East Hon	Post Biosorption (contributed)		0.5	10%	1720	154	107	33	1032 258065	178 7234043
21-Aug-19 Wahiawa	WW	NI/A	0.5 N/A	1070	712	294	192	102	257.5 N/A	N/A
21-Aug 10 Wahiawa		N/A	N/A	NI/D	/12	E2	172 EE	2	70E0 N/A	
21-Aug-19 Walliawa		IN/A	IN/A	IN/D	500	32	150	-3	7050 N/A	N/A
23-Aug-19 Waimana		IN/A	N/A	=0/	533	246	152	94	117.5 N/A	N/A
23-Aug-19 Waimana	lo Post-Biosorption (not centrifuged)		0.5	5%	630	214	149	65	252.5	266.1279461
23-Aug-19 Waimana	lo WAS	N/A	N/A		3524	30	44	-14	2284.615385 N/A	N/A
29-Aug-19 Waimana	lo WW	N/A	N/A		557	273	186	87	140 N/A	N/A
29-Aug-19 Waimana	lo Post-Biosorption (not centrituged)		0.5	5%	628	225	154	71	242.5	506.6666667
29-Aug-19 Waimana	lo WAS	N/A	N/A		2684	46	54	-8	1800 N/A	N/A
5-Sep-19 Waimana	lo WW	N/A	N/A		589	248	148	100	170 N/A	N/A
5-Sep-19 Waimana	lo Post-Biosorption (not centrifuged)		1.0	5%	696	189	130	59	287.5	501.9402985
5-Sep-19 Waimana	lo WAS	N/A	N/A		3396	43	50	-7	2233.333333 N/A	N/A
9-Sep-19 Honouliu	li WAS	N/A	N/A		4080	89	75	14	2450 N/A	N/A
9-Sep-19 Honouliu	li WW	N/A	N/A		366	158	107	51	110 N/A	N/A
9-Sep-19 Honouliu	li Post-Biosorption 5		0.5	5%	612	102	96	6	235	434.2857143
9-Sep-19 Honouliu	li Post-Biosorption 10		0.5	10%	778	128	96	32	380	110.2040816
11-Sep-19 Waimana	lo WW	N/A	N/A		482	223	164	59	127.5 N/A	N/A
11-Sep-19 Waimana	lo Post-Biosorption (not centrifuged)		0.5	10%	805	159	102	57	337.5	250.4347826
11-Sep-19 Waimana	lo WAS	N/A	N/A		3388	38	52	-14	2300 N/A	N/A
13-Sep-19 Wahiawa	Post-Biosorption (centrifuged)		1.0	5%	1114	245	166	79	422.5	206.2040134
13-Sep-19 Wahiawa	WAS	N/A	N/A		7780	43	50	-7	5436 363636 N/A	N/A
13-Sep-19 Wahiawa	WW	N/A	N/A		744	304	175	129	182.5 N/A	N/A
18-Sep-19 Waimana		19/21	10	10%	255	96	91	5	60	471.0591133
18 Sop 19 Waimana		NI/A	1.0 N/A	1070	502	221	1/9	72	152.5 N/A	4/1.039/1135 N/A
18 Sop 19 Waimana		IN/A	1.0	10% 277	6470588	110 5882252	107.0588225	2 520/11765	64 70588225	/16 0927/29
18 Sep 10 Waimana	lo Bost Biosometion (not contrifuged)		1.0	10% 277	.0470300	110.3002333	107.0308233	3.329411703	202 5	276.8473006
18 Sep-19 Walinana		NT/A	1.0 NI/A	10 %	029	121	64	3/	392.3	576.64/2900
18-Sep-19 Waimana		IN/A	IN/A	100/	3472	44	60	-16	2388.233294 N/A	
23-Sep-19 Honouliu	li Post-Biosorption (not centrifuged)	N T/A	0.5	10%	857	74	66	8	385	335.5029586
23-Sep-19 Honouliu	li WAS	N/A	N/A		5080	59	64	-5	2816.666667 N/A	N/A
23-Sep-19 Honouliu		N/A	N/A		484	179	117	62	110 N/A	N/A
26-Sep-19 Waimana	lo Post-Biosorption (not centrifuged)		1.0	5%	715	161	120	41	302.5	641.25
26-Sep-19 Waimana	lo WWTP DAF		1.0	5%	290	216	150	66	65	257.8940217
26-Sep-19 Waimana	lo Lab DAF		1.0	5% 336	.4705882	145.8823529	135.2941176	10.58823529	61.76470588	746.6216432
26-Sep-19 Waimana	lo WW	N/A	N/A		564	253	165	88	162.5 N/A	N/A
26-Sep-19 Waimana	lo WAS	N/A	N/A		4550	58	70	-12	2725.925926 N/A	N/A
3-Oct-19 Wahiawa	Post-Biosorption (not centrifuged)		0.5	5%	1109	191	139	52	467.5	411.738149
3-Oct-19 Wahiawa	WAS	N/A	N/A		8400	74	47	27	5537.5 N/A	N/A
3-Oct-19 Wahiawa	WW	N/A	N/A		688	311	178	133	185 N/A	N/A
3-Oct-19 Wahiawa	Lab DAF		0.5	5% 470	.5882353	216.4705882	154.1176471	62.35294118	126.4705882	324.3447085
3-Oct-19 Wahiawa	WWTP DAF		0.5	5%	428	188	153	35	110	422.0316027
17-Oct-19 Wahiawa	Post-Biosorption (centrifuged)		1.0	10%	1496	243	115	128	900	31.44104803
17-Oct-19 Wahiawa	WAS	N/A	N/A		8330	83	57	26	5725 N/A	N/A
17-Oct-19 Wahiawa	WW	N/A	N/A		675	263	165	98	207.5 N/A	N/A
17-Oct-19 Wahiawa	Lab DAF		1.0	10% 323	.5294118	140	101.1764706	38.82352941	108.8235294	193.3624454
17-Oct-19 Wahiawa	WWTP DAF		1.0	10%	322	122	109	13	107.5	221.6593886
23-Oct-19 Honouliu	li Lab DAF		1.0	10% 269	4117647	172 9411765	165 8823529	7 058823529	52 94117647	205 3915966
23-Oct-19 Honouliu			1.0	10%	267	171	161	10	60	211 7142857
23-Oct-19 Honouliu		N/A	1.0 NI/A	10 /0	5250	59	61	2	2763 157895 NI/A	211./ 14203/ N/A
23-OCI-17 HOROUIIU		IN/A	IN/A		5230		102	-3	2/05.15/095 IN/A	IN/A
23-Oct-19 Honouliu		IN/A	IN/A		4/7	236	193	43	127.5 N/A	N/A
24-Oct-19 Honouliu		IN/A	N/A		4140	64	55	9	2006.6666667 N/A	N/A
24-Oct-19 Honouliu		N/A	N/A	100/	383	137	124	13	135 N/A	N/A
24-Oct-19 Honouliu	II Post-Biosorption (not centrifuged)		1.0	10%	698	88	81	7	315	175.9308511
25-Oct-19 Honouliu	li WAS	N/A	N/A		3788	58	70	-12	2291.666667 N/A	N/A
25-Oct-19 Honouliu	li WW	N/A	N/A		391	112	92	20	125 N/A	N/A
25-Oct-19 Honouliu	li Post-Biosorption (not centrifuged)		1.0	10%	698	86	71	15	330	102.1090909

DD Removal [mg-ffCOD/g-TSS]	Normalized kCOD Removal [mg-kCOD/g-	TSS]
291.0638298		42.44680851
194.0425532		90.95744681
266.8085106		121.2765957
303.1914894		115.212766
339.5744681		48.5106383
	N/A	
	N/A	
202.4794745		-96.09195402
90.63829787		88.08510638
	N/A	
	N/A	
	N/A	
24.94949495		241.1784512
	N/A	
	N/A	
337.777778		168.8888889
	N/A	
150 10 1000 1	N/A	240.0050501
153.1343284	X T/A	348.8059701
	N/A	
	N/A	
05 00/100/5	N/A	240.0505010
85.30612245		348.9795918
40.40816327	NT/A	69.79591837
242 6086057	IN/A	7 926096057
242.6086937	NI/A	7.826086937
21 4548405	IN/A	174 7401620
31.4346493	N/A	174.7491039
	N/A	
218 5714286		252 4876847
210.5714200	N/A	232.4070047
158 0541872	14/11	258 0295567
244.9507389		131.8965517
	N/A	
162.9585799		172.5443787
	N/A	
	N/A	
313.6548913		327.5951087
104.5516304		153.3423913
207.0532289		539.5684143
	N/A	
	N/A	
133.8148984		277.9232506
	N/A	
	N/A	
81.94396494		242.4007436
85.77878104		336.2528217
78.60262009		-47.16157205
	N/A	
	N/A	
100.3339327		93.02851272
88.0349345		133.6244541
88.32605042		117.0655462
104.2285714	NT/A	107.4857143
	N/A	
	N/A	
	IN/A	
154 200000	IN/A	21 54255210
154.3882979	NI/A	21.04200319
00 47070707	11/73	19 62626264
02.4/2/2/2/		19.05050504

Data Tables: Biosorption Master

Date	WWTP	Sample	DO [mg/l]	AS %	Total CC	OD [mg/l] s	COD [mg/l]	ffCOD [mg/l]	kCOD [mg/l]	TSS [mg/l]	Normalized sCOD Removal [mg-sCOD/g-TSS]	Normalized ffCOD Removal [mg-ffCOD/g-TSS]	Normalized kCOD Removal [mg-kCOD/g-TSS]
31-0	Oct-19 Honouliuli	Lab DAF		1.0	10%	268.2352941	104.7058824	97.64705882	2 7.058823529	70.58823529	179.844290	7 56.98961938	122.8546713
31-0	Oct-19 Honouliuli	WWTP DAF		1.0	10%	222	94	83	3 11	60	222.352941	2 115.1470588	107.2058824
31-0	Oct-19 Honouliuli	WAS	N/A	N/A		3584	75	71	1 4	2266.666667	N/A	N/A	N/A
31-0	Oct-19 Honouliuli	WW	N/A	N/A		399	150	112	2 38	3 113	N/A	N/A	N/A
31-0	Oct-19 Honouliuli	Post-Biosorption (not centrifuged)		1.0	10%	856	101	84	4 15	7 330	194.558823	5 111.1764706	83.38235294

Date Tables: EPS Extraction Efficiencies

Author	Year Extraction Method	EPS Source	Sludge Type	Proteins	Carbohydrate	s/Polysaccharides	P/C	Hum	ic Acids		Lipids	Nuclei	ic Acids/E	DNA	Uron	ic Acids		U/C	Unkn	iown	Sum	Unit
				[mg/g] % of Sun	n Method	[mg/g] % of Sum	, -	[mg/g]	% of Sum	[mg/g]	% of Sum	Method	[mg/g]	% of Sum	Method	[mg/g]	% of Sum	[mg/g] %	of Sum		
Park	2007 Base	WWTP	Aerobic	42.90 N/D	Dubois, 1956	17.90 N/D	2.40	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D N	/D	N/D	mg/g-VS-Sludge
Park	2007 Base	WWTP	Aerobic	42.40 N/D	Dubois, 1956	16.60 N/D	2.55	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D I	N/D N	/D	N/D	mg/g-VS-Sludge
Park	2007 Base	WWTP	Aerobic	40.70 N/D	Dubois, 1956	15.90 N/D	2.56	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D I	N/D N	/D	N/D	mg/g-VS-Sludge
Park	2007 Base	WWTP	Aerobic	31.10 N/D	Dubois, 1956	11.40 N/D	2.73	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D 1	N/D N	/D	N/D	mg/g-VS-Sludge
Park	2007 Base	WWTP	Aerobic	49.70 N/D	Dubois, 1956	15.30 N/D	3.25	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D I	N/D N	/D	N/D	mg/g-VS-Sludge
Park	2007 Base	WWTP	Aerobic	47.40 N/D	Dubois, 1956	11.40 N/D	4.16	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D I	N/D N	/D	N/D	mg/g-VS-Sludge
Park	2007 Base	WWTP	Aerobic	40.40 N/D	Dubois, 1956	9.60 N/D	4.21	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D I	N/D N	/D	N/D	mg/g-VS-Sludge
Liang	2010 Base	Lab-Scale Reactor	Aerobic	64.00 58.66	% Gaudy, 1962	18.00 16.50%	3.56	25.00	22.91%	N/D	N/D	Picogreen	2.10	1.92%	N/D	N/D	N/D	N/D I	N/D N	/D	109.10	mg/g-VSS-Biofilm
Park	2008 Base	WWTP	Aerobic	68.70 N/D	Dubois, 1956	22.40 N/D	3.07	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D I	N/D N	/D	N/D	mg/g-VS-Sludge
Park	2008 Base	WWTP	Aerobic	42.40 N/D	Dubois, 1956	12.80 N/D	3.31	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D I	N/D N	/D	N/D	mg/g-VS-Sludge
Park	2008 Base	WWTP	Aerobic	41.30 N/D	Dubois, 1956	12.10 N/D	3.41	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D I	N/D N	/D	N/D	mg/g-VS-Sludge
Park	2008 Base	WWIP	Aerobic	47.40 N/D	Dubois, 1956	11.40 N/D	4.16	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D I	N/D N	/D	N/D	mg/g-VS-Sludge
Park	2008 Base	WWIP	Aerobic	31.00 N/D	Dubois, 1956	8.40 N/D	3.69	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D I	N/D N	/D	N/D	mg/g-VS-Sludge
Comte (a)	2006 Centrifuge	WWIP	Aerobic	317.00 51.05	% Dubois, 1956	170.00 27.38%	1.86	63.00	10.14%	32.00) 5.15%	Burton, 1956	39.00	6.28%	Blumenkrantz, 1973	21.00) 3.38%	0.121	N/D N	/D	621.00	mg/g-VS-Sludge
Comte (a)	2006 Centrifuge	WWIP MAATD	Aerobic	249.00 42.06	% Dubois, 1956	157.00 26.52%	1.59	149.00	25.17%	25.00	4.22%	Burton, 1956	12.00	2.03%	Blumenkrantz, 1973	59.00) 9.97%	0.381	N/D N		592.00	mg/g-VS-Sludge
Comte (b)	2006 Centrifuge		Aerobic	224.00 20.42	% Dubois, 1956	207.00 28.36%	1.00	201.00	10.55%	22.00	3 3.34%	Burton, 1956	22.00	0.01% 0.15%	Blumonkrantz, 1973	25.00) 0.42%	0.121	N/D N		730.00 847.00	mg/g-VDW-EF5
Conne (D)	2002 Contrifugo	Municipal WWTP	Aerobic	7 90 31 40	% Caudy 1962	7 70 30 60%	1.03	201.00	25.75%	N/D	N/D	Sup 1999	09.00	0.13%	Vintnor 1982	0.00	1 00%	0.361	3 10	12 22%	047.00 25.16	mg/g-VDW-Er5
Liang	2002 Centrifuge	Lab-Scale Reactor	Aerobic	6.00 45.11	% Gaudy, 1962	3.00 22.56%	2.00	4.00	20.44%		N/D	Picogreen	0.00	2.24%	N/D	0.50 N/D	N/D		5.10 N/D N	12.52 /0	13 30	mg/g-VSS-Biofilm
Comte (a)	2006 CER	WWTP	Aerobic	301.00 51.45	% Dubois 1956	132.00 22.56%	2.00	107.00	18 29%	21.00	359%	Burton 1956	24.00	4 10%	Blumenkrantz 1973	47.00	1 8 03%	0.361	N/D N		585.00	mg/g-VS-Sludge
Comte (a)	2006 CER	WWTP	Aerobic	322.00 52.44	% Dubois, 1956	126.00 20.52%	2.56	129.00	21.01%	21.00	342%	Burton, 1956	16.00	2.61%	Blumenkrantz, 1973	54.00) 879%	0.301	N/D N	/D	614.00	mg/g-VS-Sludge
Comte (h)	2006 CER	WWTP	Aerobic	381.00 45.36	% Dubois, 1956	162 00 19 29%	2.35	224.00	26.67%	22.00	2.62%	Burton, 1956	51.00	6.07%	Blumenkrantz, 1973	71.00) 845%	0.101	N/D N	/D	840.00	mg/g-VDW-EPS
Comte (b)	2006 CER	WWTP	Aerobic	365.00 46.26	% Dubois, 1956	149.00 18.88%	2.45	182.00	23.07%	20.00	2.53%	Burton, 1956	73.00	9.25%	Blumenkrantz, 1973	69.00) 8.75%	0.461	N/D N	/D	789.00	mg/g-VDW-EPS
Park	2007 CER	WWTP	Aerobic	41.00 N/D	Dubois, 1956	21.30 N/D	1.92	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D I	N/D N	/D	N/D	mg/g-VS-Sludge
Park	2007 CER	WWTP	Aerobic	41.00 N/D	Dubois, 1956	21.30 N/D	1.92	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D I	N/D N	/D	N/D	mg/g-VS-Sludge
Park	2007 CER	WWTP	Aerobic	58.70 N/D	Dubois, 1956	29.20 N/D	2.01	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D I	N/D N	/D	N/D	mg/g-VS-Sludge
Park	2007 CER	WWTP	Aerobic	49.10 N/D	Dubois, 1956	23.20 N/D	2.12	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D I	N/D N	/D	N/D	mg/g-VS-Sludge
Park	2007 CER	WWTP	Aerobic	51.30 N/D	Dubois, 1956	20.80 N/D	2.47	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D I	N/D N	/D	N/D	mg/g-VS-Sludge
Park	2007 CER	WWTP	Aerobic	64.50 N/D	Dubois, 1956	25.40 N/D	2.54	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D I	N/D N	/D	N/D	mg/g-VS-Sludge
Park	2007 CER	WWTP	Aerobic	73.40 N/D	Dubois, 1956	26.10 N/D	2.81	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D I	N/D N	/D	N/D	mg/g-VS-Sludge
Park	2007 CER	WWTP	Aerobic	36.70 N/D	Dubois, 1956	13.00 N/D	2.82	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D I	N/D N	/D	N/D	mg/g-VS-Sludge
Frolund	1996 CER	Traditional WWTP	Aerobic	243.00 58.27	% Gaudy, 1962	48.00 11.51%	5.06	126.00	30.22%	N/D	N/D	N/D	N/D	N/D	Kintner, 1982	6.10	1.46%	0.13 1	N/D N	/D	417.00	mg/g-VS-Sludge
Liu	2002 CER	Municipal WWTP	Aerobic	17.60 31.07	% Gaudy, 1962	12.70 22.42%	1.39	16.40	28.95%	N/D	N/D	Sun, 1999	0.14	0.25%	Kintner, 1982	1.20	2.12%	0.09	9.80	17.30%	56.64	mg/g-VS-Sludge
Wilen	2003 CER	WWTP	Aerobic	78.00 45.61	% Gaudy, 1962	15.00 8.77%	5.20	67.00	39.18%	N/D	N/D	Brunk, 1979	11.00	6.43%	Kintner, 1982	3.00	1.75%	0.20 1	N/D N	/D	171.00	mg/g-VSS-EPS
Liang	2010 CER	Lab-Scale Reactor	Aerobic	49.00 58.13	% Gaudy, 1962	14.00 16.61%	3.50	20.00	23.72%	N/D	N/D	Picogreen	1.30	1.54%	N/D	N/D	N/D	N/D I	N/D N	/D	84.30	mg/g-VSS-Biofilm
Park	2008 CER	WWTP	Aerobic	74.00 N/D	Dubois, 1956	33.40 N/D	2.22	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D I	N/D N	/D	N/D	mg/g-VS-Sludge
Park	2008 CER	WWTP	Aerobic	70.00 N/D	Dubois, 1956	36.80 N/D	1.90	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D I	N/D N	/D	N/D	mg/g-VS-Sludge
Park	2008 CER	WWTP	Aerobic	59.70 N/D	Dubois, 1956	22.80 N/D	2.62	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D I	N/D N	/D	N/D	mg/g-VS-Sludge
Park	2008 CER	WWTP	Aerobic	73.40 N/D	Dubois, 1956	26.10 N/D	2.81	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D I	N/D N	/D	N/D	mg/g-VS-Sludge
Park	2008 CER	WWIP Municipal MUM/TD	Aerobic	70.00 N/D	Dubois, 1956	21.90 N/D	3.20	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D Kinta an 1092	N/D	N/D		N/D N	/D 10.259/	N/D	mg/g-VS-Sludge
Liu	2002 Formaldehyde	Municipal WWTP	Aerobic	12.30 23.32 54.60 22.00	% Gaudy, 1962	15.90 52.74%	1.25	10.90 50.40	22.44 %		N/D	Sun, 1999	0.07	0.14%	Kintner, 1982	1.10	2.20%	0.07	9.40	0.21%	40.57	mg/g-v5-Sludge
Liu	2002 Formaldehyde + NaOH	Municipal WWTP	Aerobic	20.40 26.80	% Gaudy, 1962	40.50 25.21%	1.35	18.90	31.37 % 24.82%		N/D	Sun, 1999	0.35	0.22%	Kintner, 1982	4.20	2.01%	0.10	7.80	9.21%	76.13	mg/g-v5-Sludge
Comte (a)	2006 Heat	WWTP	Aerobic	20.40 20.80	% Dubois 1956	183.00 32.91%	1.62	57.00	24.00 % 10 25%		180%	Burton 1956	10.00	1.80%	Rhumenkrantz 1973	30.00	5 - 2.30%	0.00	7.00 N/D N	10.23 %	556.00	mg/g-VS-Sludge
Comte (a)	2006 Heat	WWTP	Aerobic	278.00 54.31	% Dubois, 1956	166.00 23.85%	2.28	126.00	18 10%	9.00	1.00%	Burton 1956	17.00	1.00 % 2.44%	Blumenkrantz 1973	37.00	5 - 5.40%	0.101	N/D N		696.00	mg/g-VS-Sludge
Liang	2010 LB-EPS	Lab-Scale Reactor	Aerobic	9 20 50 27	% Gaudy, 1962	4 00 21 86%	2.20	4.30	23.50%	N/D	N/D	Picogreen	0.80	4.37%	N/D	N/D	N/D		N/D N	/D	18.30	mg/g-VSS-Biofilm
Liang	2010 Pellets	Lab-Scale Reactor	Aerobic	78.00 56.12	% Gaudy, 1962	29.00 20.86%	2.60	26.00	18 71%	N/D	N/D	Picogreen	6.00	4.32%	N/D	N/D	N/D		N/D N	/D	139.00	mg/g-VSS-Biofilm
Liang	2010 SMP	Lab-Scale Reactor	Aerobic	5.00 45.87	% Gaudy, 1962	2.50 22.94%	2.00	3.00	27.52%	N/D	N/D	Picogreen	0.40	3.67%	N/D	N/D	N/D	N/D	N/D N	/D	10.90	mg/g-VSS-Biofilm
Guibaud	2005 Sonication	Domestic WWTP	Aerobic	343.00 58.14	% Dubois, 1956	140.00 23.73%	2.45	61.00	10.34%	N/D	N/D	Burton, 1956	46.00	7.80%	Blumenkrantz, 1973	15.00) 2.54%	0.11	N/D N	/D	590.00	mg/g-DW-EPS
Comte (a)	2006 Sonication	WWTP	Aerobic	343.00 56.23	% Dubois, 1956	140.00 22.95%	2.45	61.00	10.00%	20.00) 3.28%	Burton, 1956	46.00	7.54%	Blumenkrantz, 1973	16.00) 2.62%	0.11	N/D N	/D	610.00	mg/g-VS-Sludge
Comte (a)	2006 Sonication	WWTP	Aerobic	337.00 49.63	% Dubois, 1956	136.00 20.03%	2.48	177.00	26.07%	18.00) 2.65%	Burton, 1956	11.00	1.62%	Blumenkrantz, 1973	55.00	8.10%	0.40	N/D N	/D	679.00	mg/g-VS-Sludge
Liang	2010 Sonication	Lab-Scale Reactor	Aerobic	79.00 65.07	% Gaudy, 1962	18.00 14.83%	4.39	23.00	18.95%	N/D	N/D	Picogreen	1.40	1.15%	N/D	N/D	N/D	N/D I	N/D N	/D	121.40	mg/g-VSS-Biofilm
Comte (a)	2006 Sonication + CER	WWTP	Aerobic	266.00 45.39	% Dubois, 1956	113.00 19.28%	2.35	156.00	26.62%	16.00) 2.73%	Burton, 1956	35.00	5.97%	Blumenkrantz, 1973	50.00	8.53%	0.44	N/D N	/D	586.00	mg/g-VS-Sludge
Comte (a)	2006 Sonication + CER	WWTP	Aerobic	252.00 48.46	% Dubois, 1956	103.00 19.81%	2.45	126.00	24.23%	14.00	2.69%	Burton, 1956	25.00	4.81%	Blumenkrantz, 1973	47.00	9.04%	0.46	N/D N	/D	520.00	mg/g-VS-Sludge
Park	2007 Sulfide	WWTP	Aerobic	37.10 N/D	Dubois, 1956	12.80 N/D	2.90	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D N	/D	N/D	mg/g-VS-Sludge
Park	2007 Sulfide	WWTP	Aerobic	16.00 N/D	Dubois, 1956	4.60 N/D	3.48	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D N	/D	N/D	mg/g-VS-Sludge
Park	2007 Sulfide	WWTP	Aerobic	34.00 N/D	Dubois, 1956	9.70 N/D	3.51	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D I	N/D N	/D	N/D	mg/g-VS-Sludge
Park	2007 Sulfide	WWTP	Aerobic	18.90 N/D	Dubois, 1956	5.00 N/D	3.78	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D N	/D	N/D	mg/g-VS-Sludge

Author	Year Extraction Method	EPS Source	Sludge Type	Protei	ns	Carbohydrate	es/Polysacch	arides	P/C	Humic	Acids	I	Lipids	Nuclei	c Acids/D	NA	Uroni	ic Acids		U/C	Unknown	Sum Unit
				[mg/g] % (of Sum	Method	[mg/g] %	of Sum	[r	ng/g] %	6 of Sum [[mg/g]	% of Sum	Method	[mg/g]	% of Sum	Method	[mg/g]	% of Sum	[]	mg/g] % of Sum	
Park	2007 Sulfide	WWTP	Aerobic	15.50 N/	D	Dubois, 1956	3.70 N/	/D	4.19 N	/D N	J/D I	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	J/D N/D	N/D mg/g-VS-Sludge
Park	2007 Sulfide	WWTP	Aerobic	12.40 N/	D	Dubois, 1956	2.90 N/	/D	4.28 N	D N	J/D I	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D N	J/D N/D	N/D mg/g-VS-Sludge
Park	2007 Sulfide	WWTP	Aerobic	11.60 N/	D	Dubois, 1956	2.70 N/	/D	4.30 N	D N	J/D I	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D N	J/D N/D	N/D mg/g-VS-Sludge
Park	2007 Sulfide	WWTP	Aerobic	13.60 N/	D	Dubois, 1956	2.80 N/	/D	4.86 N	D N	J/D I	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D N	J/D N/D	N/D mg/g-VS-Sludge
Park	2008 Sulfide	WWTP	Aerobic	22.20 N/	D	Dubois, 1956	10.60 N/	/D	2.09 N	D N	I/D I	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D N	J/D N/D	N/D mg/g-VS-Sludge
Park	2008 Sulfide	WWTP	Aerobic	33.00 N/	D	Dubois, 1956	9.70 N/	/D	3.40 N	D N	I/D I	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D N	J/D N/D	N/D mg/g-VS-Sludge
Park	2008 Sulfide	WWTP	Aerobic	11.10 N/	D	Dubois, 1956	2.90 N/	/D	3.83 N	D N	J/D I	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D N	J/D N/D	N/D mg/g-VS-Sludge
Park	2008 Sulfide	WWTP	Aerobic	15.50 N/	D	Dubois, 1956	3.70 N/	/D	4.19 N	D N	J/D I	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D N	J/D N/D	N/D mg/g-VS-Sludge
Park	2008 Sulfide	WWTP	Aerobic	13.10 N/	D	Dubois, 1956	3.50 N/	/D	3.74 N	D N	J/D I	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D	N/D N	J/D N/D	N/D mg/g-VS-Sludge
Liang	2010 Base	Lab-Scale Reactor	Biofilm	51.00	65.98%	Gaudy, 1962	8.00	10.35%	6.38	16.00	20.70% 1	N/D	N/D	Picogreen	2.30	2.98%	N/D	N/D	N/D	N/D N	J/D N/D	77.30 mg/g-VSS-Biofilm
D'Abzac	2010 Centrifuge	Paper-Mill WW	Anaerobic Granular	68.18	20.13%	Dubois, 1956	70.45	20.81%	0.97	190.89	56.38% <	<8	N/D	Burton, 1956	9.09	2.68%	Blumenkrantz, 1973	6.82	2.01%	0.10 N	J/D N/D	338.60 mg/g-DW-EPS
D'Abzac	2010 Centrifuge	Distillery WW	Anaerobic Granular	77.27	37.78%	Dubois, 1956	31.82	15.56%	2.43	68.18	33.33% <	<8	N/D	Burton, 1956	27.27	13.33%	Blumenkrantz, 1973	4.55	2.22%	0.14 N	J/D N/D	204.53 mg/g-DW-EPS
D'Abzac	2010 Centrifuge	Sulfate/Ethanol-Rich WW	Anaerobic Granular	9.09	3.57%	Dubois, 1956	31.82	12.50%	0.29	177.26	69.64% <	<8	N/D	Burton, 1956	36.36	14.29%	Blumenkrantz, 1973	9.09	3.57%	0.29 N	J/D N/D	254.52 mg/g-DW-EPS
D'Abzac	2010 Centrifuge	Brandy Vinasse WW	Anaerobic Granular	9.09	10.26%	Dubois, 1956	2.27	2.56%	4.00	77.27	87.18% <	<8	N/D	Burton, 1956	0.00	0.00%	Blumenkrantz, 1973	4.55	5.13%	2.00 N	J/D N/D	88.63 mg/g-DW-EPS
Liu	2002 Centrifuge	Municipal WWTP	Acidogenic	4.40	12.25%	Gaudy, 1962	23.70	65.98%	0.19	1.90	5.29% 1	N/D	N/D	Sun, 1999	0.02	0.06%	Kintner, 1982	1.00	2.78%	0.04	5.90 16.43%	35.92 mg/g-VS-Sludge
Liang	2010 Centrifuge	Lab-Scale Reactor	Biofilm	7.00	56.91%	Gaudy, 1962	2.00	16.26%	3.50	3.00	24.39%	N/D	N/D	Picogreen	0.30	2.44%	N/D	N/D	N/D	N/D N	J/D N/D	12.30 mg/g-VSS-Biofilm
Liu	2002 Centrifuge	Municipal WWTP	Methanogenic	5.80	37.35%	Gaudy, 1962	4.10	26.40%	1.41	3.10	19.96% 1	N/D	N/D	Sun, 1999	0.03	0.19%	Kintner, 1982	0.30	1.93%	0.07	2.50 16.10%	15.53 mg/g-VS-Sludge
D'Abzac	2010 CER	Paper-Mill WW	Anaerobic Granular	93.17	32.54%	Dubois, 1956	74.99	26.19%	1.24	109.08	38.10% <	<8	N/D	Burton, 1956	9.09	3.17%	Blumenkrantz, 1973	6.82	2.38%	0.09 N	J/D N/D	286.34 mg/g-DW-EPS
D'Abzac	2010 CER	Sulfate/Ethanol-Rich WW	Anaerobic Granular	47.72	29.58%	Dubois, 1956	65.90	40.85%	0.72	43.18	26.76%	<8	N/D	Burton, 1956	4.55	2.82%	Blumenkrantz, 1973	13.64	8.45%	0.21 N	J/D N/D	161.35 mg/g-DW-EPS
D'Abzac	2010 CER	Distillery WW	Anaerobic Granular	140.90	65.61%	Dubois, 1956	9.09	4.23%	15.50	59.09	27.51% <	<8	N/D	Burton, 1956	5.68	2.65%	Blumenkrantz, 1973	3.41	1.59%	0.38 N	J/D N/D	214.75 mg/g-DW-EPS
D'Abzac	2010 CER	Brandy Vinasse WW	Anaerobic Granular	61.36	42.19%	Dubois, 1956	13.64	9.38%	4.50	70.45	48.44%	<8	N/D	Burton, 1956	0.00	0.00%	Blumenkrantz, 1973	6.82	4.69%	0.50 N	J/D N/D	145.44 mg/g-DW-EPS
Liu	2002 CER	Municipal WWTP	Acidogenic	6.20	11.04%	Gaudy, 1962	38.70	68.89%	0.16	3.00	5.34% 1	N/D	N/D	Sun, 1999	0.08	0.14%	Kintner, 1982	2.20	3.92%	0.06	8.20 14.60%	56.18 mg/g-VS-Sludge
Jahn	1995 CER	Sewer	Biofilm	351.00	54.50%	Gaudy, 1962	46.00	7.14%	7.63	221.00	34.32%	N/D	N/D	Brunk, 1979	26.00	4.04%	Kintner, 1982	11.00	1.71%	0.24 N	J/D N/D	644.00 mg/g-TOC-EPS
Jahn	1995 CER	Sewer	Biofilm	154.00	32.70%	Gaudy, 1962	12.00	2.55%	12.83	293.00	62.21%	N/D	N/D	Brunk, 1979	12.00	2.55%	Kintner, 1982	6.00	1.27%	0.50 N	J/D N/D	471.00 mg/g-TOC-EPS
Liang	2010 CER	Lab-Scale Reactor	Biofilm	43.00	60.39%	Gaudy, 1962	9.00	12.64%	4.78	18.00	25.28%	N/D	N/D	Picogreen	1.20	1.69%	N/D	N/D	N/D	N/D N	J/D N/D	71.20 mg/g-VSS-Biofilm
Liu	2002 CER	Municipal WWTP	Methanogenic	10.60	36.36%	Gaudy, 1962	7.90	27.10%	1.34	5.50	18.87%	N/D	N/D	Sun, 1999	0.05	0.17%	Kintner, 1982	0.90	3.09%	0.11	5.10 17.50%	29.15 mg/g-VS-Sludge
Comte (a)	2006 EDTA	WWTP	Aerobic	N/D N/	D	Dubois, 1956	24.00	64.86%	N	/D N	J/D	5.00) 13.51%	Burton, 1956	8.00	21.62%	Blumenkrantz, 1973	6.00	16.22%	0.25 N	J/D N/D	37.00 mg/g-VS-Sludge
Comte (a)	2006 EDTA	WWTP	Aerobic	N/D N/	D	Dubois, 1956	31.00	81.58%	N	/ DN	J/D	5.00) 13.16%	Burton, 1956	2.00	5.26%	Blumenkrantz, 1973	19.00	50.00%	0.61 N	J/D N/D	38.00 mg/g-VS-Sludge
D'Abzac	2010 EDTA	Distillerv WW	Anaerobic Granular	11.36	40.00%	Dubois, 1956	3.41	12.00%	3.33	11.36	40.00% <	<8	N/D	Burton, 1956	2.27	8.00%	Blumenkrantz, 1973	0.00	0.00%	0.00 N	J/D N/D	28.41 mg/g-DW-EPS
D'Abzac	2010 EDTA	Paper-Mill WW	Anaerobic Granular	4.55	6.25%	Dubois, 1956	11.36	15.63%	0.40	54.54	75.00% <	<8	N/D	Burton, 1956	2.27	3.13%	Blumenkrantz, 1973	2.27	3.13%	0.20 N	J/D N/D	72.72 mg/g-DW-EPS
D'Abzac	2010 EDTA	Brandy Vinasse WW	Anaerobic Granular	22.73	39.22%	Dubois, 1956	7.95	13.73%	2.86	27.27	47.06% <	<8	N/D	Burton, 1956	0.00	0.00%	Blumenkrantz, 1973	3.41	5.88%	0.43 N	J/D N/D	57.95 mg/g-DW-EPS
Liu	2002 EDTA	Municipal WWTP	Acidogenic	6.50	6.33%	Gaudy, 1962	41.70	40.64%	0.16	15.90	15.49% 1	N/D	N/D	Sun, 1999	0.22	0.21%	Kintner, 1982	2.30	2.24%	0.06	38.30 37.32%	102.62 mg/g-VS-Sludge
Liu	2002 EDTA	Municipal WWTP	Aerobic	22.90	15.83%	Gaudy, 1962	12.40	8.57%	1.85	59.20	40.92%	N/D	N/D	Sun, 1999	0.47	0.32%	Kintner, 1982	2.10	1.45%	0.17	49.70 34.35%	144.67 mg/g-VS-Sludge
Liang	2010 EDTA	Lab-Scale Reactor	Aerobic	73.00	67.41%	Gaudy, 1962	6.00	5.54%	12.17	29.00	26.78%	N/D	N/D	Picogreen	0.30	0.28%	N/D	N/D	N/D	N/D N	J/D N/D	108.30 mg/g-VSS-Biofilm
Liang	2010 EDTA	Lab-Scale Reactor	Biofilm	88.00	74.20%	Gaudy, 1962	7.00	5.90%	12.57	23.00	19.39%	N/D	N/D	Picogreen	0.60	0.51%	N/D	N/D	N/D	N/D N	J/D N/D	118.60 mg/g-VSS-Biofilm
Liu	2002 EDTA	Municipal WWTP	Methanogenic	12.00	16.75%	Gaudy, 1962	6.80	9.49%	1.76	24.30	33.91%	N/D	N/D	Sun, 1999	0.26	0.36%	Kintner, 1982	1.20	1.67%	0.18	28.30 39.49%	71.66 mg/g-VS-Sludge
D'Abzac	2010 Ethanol	Paper-Mill WW	Anaerobic Granular	202.25	39.21%	Dubois, 1956	149.99	29.07%	1.35	149.99	29.07% <	<8	N/D	Burton, 1956	13.64	2.64%	Blumenkrantz, 1973	18.18	3.52%	0.12	J/D N/D	515.86 mg/g-DW-EPS
D'Abzac	2010 Ethanol	Distillery WW	Anaerobic Granular	122.72	47.79%	Dubois, 1956	54.54	21.24%	2.25	45.45	17.70%	<8	N/D	Burton, 1956	34.09	13.27%	Blumenkrantz, 1973	13.64	5.31%	0.25 N	J/D N/D	256.79 mg/g-DW-EPS
D'Abzac	2010 Ethanol	Brandy Vinasse WW	Anaerobic Granular	45.45	26.32%	Dubois, 1956	18.18	10.53%	2.50	109.08	63.16%	<8	N/D	Burton, 1956	0.00	0.00%	Blumenkrantz, 1973	15.91	9.21%	0.88	J/D N/D	172.71 mg/g-DW-EPS
Liu	2002 Formaldehyde	Municipal WWTP	Acidogenic	5.90	10.68%	Gaudy, 1962	39.40	71.35%	0.15	2.50	4.53%	N/D	N/D	Sun, 1999	0.02	0.04%	Kintner, 1982	1.70	3.08%	0.04	7.40 13.40%	55.22 mg/g-VS-Sludge
Liu	2002 Formaldehyde	Municipal WWTP	Methanogenic	11.90	37.50%	Gaudy, 1962	9.70	30.57%	1.23	4.60	14.50%	N/D	N/D	Sun, 1999	0.03	0.09%	Kintner, 1982	0.80	2.52%	0.08	5.50 17.33%	31.73 mg/g-VS-Sludge
D'Abzac	2010 Formaldehyde + Heat	Distillery WW	Anaerobic Granular	306.79	43.83%	Dubois, 1956	52.27	7.47%	5.87	318.15	45.45%	<8	N/D	Burton, 1956	22.73	3.25%	Blumenkrantz, 1973	4.55	0.65%	0.09 N	J/D N/D	699.93 mg/g-DW-EPS
D'Abzac	2010 Formaldehyde + Heat	Paper-Mill WW	Anaerobic Granular	127.26	24.26%	Dubois, 1956	87.26	16.64%	1.46	263.61	50.26%	<8	N/D	Burton, 1956	46.36	8.84%	Blumenkrantz, 1973	18.18	3.47%	0.21 N	J/D N/D	524.49 mg/g-DW-EPS
D'Abzac	2010 Formaldehyde + Heat	Sulfate/Ethanol-Rich WW	Anaerobic Granular	81.81	15 72%	Dubois, 1956	188.62	36 24%	0.43	188.62	36.24%	<8	N/D	Burton, 1956	61.36	11 79%	Blumenkrantz, 1973	72 72	13 97%	0.391	J/D N/D	520 40 mg/g-DW-EPS
D'Abzac	2010 Formaldehyde + Heat	Brandy Vinasse WW	Anaerobic Granular	31.82	19.72%	Dubois, 1956	25.00	15.49%	1.27	77.27	47.89%	<8	N/D	Burton, 1956	27.27	16.90%	Blumenkrantz, 1973	18.18	11.27%	0.73 N	J/D N/D	161.35 mg/g-DW-EPS
Comte (a)	2006 Formaldehyde + NaOH	WWTP	Aerobic	73.00	37.06%	Dubois, 1956	43.00	21.83%	1.70	74.00	37.56%	1.00	0.51%	Burton, 1956	6.00	3.05%	Blumenkrantz, 1973	52.00	26.40%	1.21 N	J/D N/D	197.00 mg/g-VS-Sludge
Comte (a)	2006 Formaldehyde + NaOH	WWTP	Aerobic	107.00	42 13%	Dubois, 1956	53.00	20.87%	2 02	83.00	32.68%	2 00	0.79%	Burton, 1956	9.00	3.54%	Blumenkrantz, 1973	85.00	33 46%	1.60 N	J/D N/D	254 00 mg/g-VS-Sludge
D'Abzac	2010 Formaldehyde + NaOH	Distillery WW	Anaerobic Granular	97 72	66 15%	Dubois, 1956	11.36	7 69%	8.60	36.36	24.62%		N/D	Burton 1956	2 27	1 54%	Blumenkrantz 1973	0.00	0.00%	0.00	J/D N/D	147 71 mg/g-DW-EPS
D'Abzac	2010 Formaldehyde + NaOH	Paper-Mill WW	Anaerobic Granular	190.89	42 00%	Dubois, 1956	45.45	10.00%	4 20	215.89	47.50%	~0 <8	N/D	Burton, 1956	2.27	0.50%	Blumenkrantz, 1973	9.09	2.00%	0.001	J/D N/D	454 50 mg/g-DW-EPS
D'Abzac	2010 Formaldehyde + NaOH	Brandy Vinasse WW	Anaerobic Granular	81.81	52 94%	Dubois 1956	13.64	8 82%	6.00	59.09	38.24%	-8	N/D	Burton 1956	0.00	0.00%	Blumenkrantz 1973	9.09	5.88%	0.67	J/D N/D	154 53 mg/g-DW-EPS
Liu	2002 Formaldehyde + NaOH	Municipal WWTP	Acidogenic	25.80	14 87%	Gaudy, 1962	110.90	63 94%	0.23	15.10	8 71%	N/D	N/D	Sun, 1999	0.00	0.00%	Kintner, 1982	5.50	3 17%	0.05	21.50 12.40%	173.45 mg/g-VS-Sludge
Liu	2002 Formaldehyde + NaOH	Municipal WWTP	Methanogenic	42.10	42 10%	Gaudy 1962	19.10	19 10%	2.20	23.30	23.30%	N/D	N/D	Sun, 1999	0.19	0.19%	Kintner 1982	2 10	2 10%	0.11	15.30 15.30%	99 99 mg/g-VS-Sludge
Liu	2002 Formaldehyde + Sonication	Municipal WWTP	Acidogenic	10.80	11.08%	Gaudy, 1962	71.60	73 47%	0.15	5.00	5 13%	N/D	N/D	Sun, 1999	0.05	0.15%	Kintner, 1982	2.10	2.10%	0.03	10.00 10.00%	97 45 mg/g-VS-Shidge
Liu	2002 Formaldehyde + Sonication	Municipal WWTP	Methanogenic	13.10	36.55%	Gaudy, 1962	12.00	33 48%	1.09	5.60	15.63%	N/D	N/D	Sun, 1999	0.04	0.11%	Kintner, 1982	1.00	2 79%	0.08	5 10 14 23%	35.84 mg/g-VS-Shidge
D'Abzac	2010 Heat	Distillery WW	Anaerobic Granular	204 53	43.06%	Dubois 1956	40.91	8 61%	5.00	202.25	42 58%	<8	N/D	Burton 1956	27.27	5 74%	Blumenkrantz 1973	4 55	0.96%	0.11	J/D N/D	474 95 mg/g-DW-EPS
D'Abzac	2010 Heat	Paper-Mill WW	Anaerobic Granular	116.35	27.21%	Dubois 1956	56.81	13.28%	2.05	240.89	56.32%	<8	N/D	Burton 1956	13.64	3 19%	Blumenkrantz 1973	9.09	2 13%	0.16	J/D N/D	427.68 mg/g_DW_FPS
D'Abzac	2010 Heat	Sulfate/Ethanol-Rich WW	Anaerobic Granular	25.00	8 27%	Dubois, 1956	45.45	15.20%	0.55	188.62	62 41%	<8	N/D	Burton 1956	43.18	14 29%	Blumenkrantz 1973	9.09	3.01%	0.20	J/D N/D	302 24 mg/g-DW-EPS
D'Abzac	2010 Heat	Brandy Vinasse WW	Anaerobic Granular	34.09	22.39%	Dubois, 1956	9.09	5.97%	3 75	109.02	71 64%	<8	N/D	Burton 1956	0.00	0.00%	Blumenkrantz 1973	6.82	4 48%	0.75	J/D N/D	152 26 mg/g-DW-EPS
			Orunaldi	01.07			2.02	0.01 /0	0.70	207.00	11.01/0	-		- 41001, 1900	0.00	5.0070	, 1970	0.02	1.1070	0.7011	.,, D	

			1		1		1	I		1			1					і I		1
Author	Year Extraction Method	EPS Source	Sludge Type	Proteins	Carbohydrat	es/Polysacch	arides	P/C	Humic	Acids	Ι	Lipids	Nuclei	c Acids/DN	A Uroni	c Acids		U/C	Unknown	Sum Unit
				[mg/g] % of Su	m Method	[mg/g] %	of Sum		[mg/g] %	of Sum	[mg/g]	% of Sum	Method	[mg/g] %	of Sum Method	[mg/g]	% of Sum	[]	ng/g] % of Sum	
Liang	2010 LB-EPS	Lab-Scale Reactor	Biofilm	7.20 63.	2% Gaudy, 1962	2.60	23.01%	2.77	0.70	6.19%	N/D	N/D	Picogreen	0.80	7.08% N/D	N/D	N/D	N/D N	J/D N/D	11.30 mg/g-VSS-Biofilm
Liang	2010 Pellets	Lab-Scale Reactor	Biofilm	132.00 67.3	5% Gaudy, 1962	28.00	14.29%	4.71	15.00	7.65%	N/D	N/D	Picogreen	21.00	10.71% N/D	N/D	N/D	N/D N	J/D N/D	196.00 mg/g-VSS-Biofilm
Liang	2010 SMP	Lab-Scale Reactor	Biofilm	1.30 24.	3% Gaudy, 1962	1.1	20.75%	1.18	2.20	41.51%	N/D	N/D	Picogreen	0.7	13.21% N/D	N/D	N/D	N/D N	J/D N/D	5.30 mg/g-VSS-Biofilm
D'Abzac	2010 Sonication	Paper-Mill WW	Anaerobic Granular	86.36 24.3	6% Dubois, 1956	68.18	19.23%	1.27	190.89	53.85%	<8	N/D	Burton, 1956	9.09	2.56% Blumenkrantz, 1973	4.55	1.28%	0.07 N	J/D N/D	354.51 mg/g-DW-EPS
D'Abzac	2010 Sonication	Distillery WW	Anaerobic Granular	99.99 46.	1% Dubois, 1956	34.09	15.96%	2.93	59.09	27.66%	<8	N/D	Burton, 1956	20.45	9.57% Blumenkrantz, 1973	4.55	2.13%	0.13 N	J/D N/D	213.62 mg/g-DW-EPS
D'Abzac	2010 Sonication	Brandy Vinasse WW	Anaerobic Granular	9.09 11.4	3% Dubois, 1956	6.82	8.57%	1.33	63.63	80.00%	<8	N/D	Burton, 1956	0.00	0.00% Blumenkrantz, 1973	3.41	4.29%	0.50 N	J/D N/D	79.54 mg/g-DW-EPS
Liang	2010 Sonication	Lab-Scale Reactor	Biofilm	94.00 71.4	3% Gaudy, 1962	14.00	10.64%	6.71	21.00	15.96%	N/D	N/D	Picogreen	2.60	1.98% N/D	N/D	N/D	N/D N	J/D N/D	131.60 mg/g-VSS-Biofilm
Guibaud	2003 Sonication + CER	WWTP	Aerobic	261.00 39.	3% Dubois, 1956	142.00	21.29%	1.84	245.00	36.73%	13.00) 1.95%	6 Burton, 1956	6.00	0.90% Blumenkrantz, 1973	184.00	27.59%	1.30 N	J/D N/D	667.00 mg/g-DW-EPS
Guibaud	2003 Sonication + CER	WWTP	Aerobic	229.00 35.	6% Dubois, 1956	143.00	22.20%	1.60	206.00	31.99%	12.00	1.86%	6 Burton, 1956	54.00	8.39% Blumenkrantz, 1973	188.00	29.19%	1.31 N	J/D N/D	644.00 mg/g-DW-EPS
Guibaud	2003 Sonication + CER	Lab-Scale Plant	Aerobic	293.00 35.0	4% Dubois, 1956	187.00	22.75%	1.57	275.00	33.45%	23.00	2.80%	6 Burton, 1956	44.00	5.35% Blumenkrantz, 1973	267.00	32.48%	1.43 N	J/D N/D	822.00 mg/g-DW-EPS
Guibaud	2003 Sonication + CER	WWTP	Aerobic	261.00 32.	9% Dubois, 1956	199.00	25.00%	1.31	241.00	30.28%	19.00	2.39%	6 Burton, 1956	76.00	9.55% Blumenkrantz, 1973	377.00	47.36%	1.89 N	J/D N/D	796.00 mg/g-DW-EPS
Guibaud	2003 Sonication + CER	Lab-Scale Plant	Aerobic	171.00 38.	8% Dubois, 1956	94.00	21.32%	1.82	151.00	34.24%	7.00) 1.59%	6 Burton, 1956	18.00	4.08% Blumenkrantz, 1973	247.00	56.01%	2.63 N	J/D N/D	441.00 mg/g-DW-EPS
Guibaud	2003 Sonication + CER	WWTP	Aerobic	95.00 35.3	2% Dubois, 1956	70.00	26.02%	1.36	76.00	28.25%	5.00	1.86%	6 Burton, 1956	23.00	8.55% Blumenkrantz, 1973	272.00	101.12%	3.89 N	J/D N/D	269.00 mg/g-DW-EPS
D'Abzac	2010 Sonication + CER	Paper-Mill WW	Anaerobic Granular	95.45 34.4	3% Dubois, 1956	59.09	21.31%	1.62	113.63	40.98%	<8	N/D	Burton, 1956	9.09	3.28% Blumenkrantz, 1973	6.82	2.46%	0.12 N	J/D N/D	277.25 mg/g-DW-EPS
D'Abzac	2010 Sonication + CER	Distillery WW	Anaerobic Granular	188.62 68.	0% Dubois, 1956	13.64	4.96%	13.83	63.63	23.14%	<8	N/D	Burton, 1956	9.09	3.31% Blumenkrantz, 1973	2.27	0.83%	0.17 N	J/D N/D	274.97 mg/g-DW-EPS
D'Abzac	2010 Sonication + CER	Brandy Vinasse WW	Anaerobic Granular	59.09 38.2	4% Dubois, 1956	13.64	8.82%	4.33	81.81	52.94%	<8	N/D	Burton, 1956	0.00	0.00% Blumenkrantz, 1973	9.09	5.88%	0.67 N	J/D N/D	154.53 mg/g-DW-EPS

Date	WWTP	Sample	Extraction Time [h]	P [mg/l]	P/T	P/C	C [mg/l]	С/Т	H [mg/l]	н/т	н/с	D [mg/l]	D/T	D/C	U [mg/l]	U/T	U/C	T [mg/l]	VDS [mg/l]	T/TVDS	Comment
9-Jul-1	Honouliuli	EPS	(.75 252.0938	0.600402024	6.604293289	38.1712	0.090910866	115.1203	0.274177553	3.015894182	9.24	0.02200655	0.242067318	5.2497	0.012503007	0.137530389	419.875 -	-		-
16-Jul-1	Honouliuli	EPS	(.75 268.8442	0.54303282	5.498567294	48.8935	0.098758966	160.7914	0.324779212	3.288604825	10.4	0.021006744	0.212707211	6.15	0.012422257	0.125783591	495.0791 -	-		Lipid absorption 0.004
17-Jul-1	Wahiawa	EPS	(.75 33.5008	0.385652237	2.568981251	13.0405	0.150118744	29.0692	0.334636845	2.229147655	6.2	0.07137274	0.475441893	5.0574	0.058219434	0.387822553	86.8679 -	-		-
18-Jul-1	East Honolulu	EPS	(.75 232.8308	0.485131681	3.426900258	67.9421	0.141565743	149.359	0.311207893	2.198327694	23	0.047923336	0.338523537	6.8013	0.014171347	0.100104354	479.9332 -	-		Lipid absorption -0.005, used old carb standard
22-Jul-1	Honouliuli	EPS	(.75 270.5193	0.568704481	5.145104416	52.578	0.110533127	136.2934	0.286525461	2.592213473	10.4	0.021863603	0.197801362	5.8857	0.012373328	0.111942257	475.6764 -	-		Lipid absorption -0.002
23-Jul-1	East Honolulu	EPS		.75 208.5427	0.516032712	4.557822222	45.7549	0.11321914	128.8793	0.318907996	2.816732197	14.7	0.036374713	0.321277065	6.25	0.015465439	0.136597392	404.1269 -	_		Lipid absorption 0.002
24-Jul-1	Wahiawa	EPS	(.75 134.0034	0.601064665	5.777951208	23.1922	0.1040273	55.516	0.249013875	2.393735825	6.6	0.029603926	0.284578436	3.6318	0.016290233	0.156595752	222.9434 -	-		Lipid absorption -0.006
29-Jul-1	Honouliuli	EPS	(.75 180.067	0.456593946	4.758566196	37.8406	0.095952	161.9048	0.410540251	4.278600234	9.96	0.025255464	0.263209357	4.5977	0.011658338	0.121501773	394.3701 -	-		Lipids not measured, total from lyophilization: ~2000 mg/l
30-Jul-1	East Honolulu	EPS	(.75 177.1357	0.568028099	4.410387095	40.1633	0.128793253	77.5261	0.24860603	1.930272164	9.76	0.03129778	0.24300792	7.2581	0.023274838	0.180714732	311.8432 -	-		Extraction & Characterization performed in duplicate
31-Jul-1	Wahiawa	EPS		.75 105.5276	0.471852316	5.97988338	17.6471	0.078906608	82.6087	0.369373571	4.681148744	13.2	0.059022005	0.747998255	4.662	0.020845499	0.264179384	223.6454 -	-		Total from lyophilization: 1440 mg/l
1-A110-1	Waimanalo	EPS		75 168 3417	0 698871703	6 990121581	24 0828	0 099979907	36 4444	0 151299173	1 513295796	8.76	0.036367199	0.363745079	3 2475	0 013482018	0 134847277	240 8764 -	_		Total from lyophilization: 1060 mg/l
6-Aug-1	East Honolulu	EPS		.75 153.2663	0.536785604	5.006870034	30.6112	0.107209814	85,9406	0.300990347	2.807488762	8.68	0.030400023	0.283556345	7.028	0.024614212	0.22958917	285.5261 -	-		Total from lyophilization: 2100 mg/l
7-A110-1	Wahiawa	EPS		75 123 9531	0 656423469	7 643028031	16 2178	0.085885262	31 0791	0 164586853	1 916357336	11.7	0.061960165	0 72142954	5 881	0.031144251	0.36262625	188 831 -	_		-
14-Aug-1	Wahiawa	EPS		75 96 3149	0 781903083	11 81763414	8 1501	0.066164096	8 033	0.065213456	0.985632078	7 14	0.057963908	0.87606287	3 5421	0.028755456	0.434608164	123 1801 -			_
15-Aug-1	Waimanalo	EPS		75 210 2178	0.644842647	7 606169811	27 6378	0.084778892	74 5973	0.228827056	2 699104126	8.98	0.027546131	0.324917323	4 5657	0.014005275	0.165197664	325 9986 -			-
21 Aug 1	Wahiawa	EDC		75 189 2797	0.60605557	11 08101604	15 7982	0.050584652	02 0020	0.200956212	5.949557864	7	0.022412222	0.442085648	4.3037	0.019990122	0.20518176	212 2141			
21-Aug-1	Waimanala	EDC		75 104 2040	0.664272024	6 561520475	20.6127	0.1012526	53.5525	0.20025208	1.077766206	6.94	0.022413535	0.220081077	2 120	0.01072206	0.106001817	202.4626	-		-
20 Aug 1	Waimanalo	EFS		75 194.3049	0.664372934	4.820275211	29.0127	0.1012326	76 1905	0.20023398	2.445905179	7.42	0.023367326	0.230981977	2 1425	0.011607014	0.100001817	292.4030 -	-		-
29-Aug-1	Waimanaio	EFS		.75 150.7558	0.501155657	4.039373311	51.1515	0.115952122	152 4242	0.265596501	2.445805178	7.42	0.027010720	0.238190777	5.1425	0.010242124	0.100877987	440.77750	-		-
30-Aug-1	Waimanaio	EPS		4 221.943	0.503527983	4.373286936	50.7497	0.11513/193	152.4242	0.345808834	3.003450267	11.1	0.025182865	0.218/20505	4.559	0.010343124	0.089833043	440.7759 -	-		-
30-Aug-1	Waimanalo	EPS		.75 176.7169	0.577739948	5.282542672	33.453	0.109367777	85.1515	0.278385504	2.545406989	6.64	0.021708129	0.19848743	3.9148	0.012798642	0.117023884	305.8762 -	-		Humic blind standard not measured
5-Sep-1	Waimanalo	EPS		.75 221.1055	0.667105056	7.178400403	30.8015	0.092932272	67.54	0.203777272	2.192750353	7.58	0.02286988	0.246091911	4.4133	0.01331552	0.143281983	331.4403 -	-		-
11-Sep-1	Waimanalo	EPS		.75 199.33	0.632762515	6.237795414	31.9552	0.101440088	72.0351	0.228671605	2.254252829	7.52	0.023871841	0.235329461	4.1752	0.013253951	0.130657921	315.0155 -	-		-
13-Sep-1	Wahiawa	EPS		4 209.3802	0.557767122	5.467145718	38.2979	0.102021631	102.1157	0.272025627	2.666352463	19.5	0.051945976	0.509166299	6.0962	0.016239644	0.159178441	375.39	490	0.766102041	-
13-Sep-1	Wahiawa	EPS		24 297.3199	0.574568402	5.463099445	54.4233	0.105172605	130.0423	0.251305737	2.389460029	30.2	0.058361266	0.554909386	5.481	0.01059199	0.100710541	517.4665	625	0.8279464	-
13-Sep-1	Wahiawa	EPS		.75 111.3903	0.729136311	10.36902612	10.7426	0.070318688	19.9158	0.13036443	1.853908737	5.68	0.037180026	0.52873606	5.0415	0.033000546	0.469299797	152.7702	260	0.587577692	-
16-Sep-1	Honouliuli	EPS		.75 146.5662	0.641854819	6.71579584	21.8241	0.095573903	51.5625	0.225806762	2.362640384	4.54	0.019881943	0.208026906	3.8551	0.016882573	0.176644169	228.3479	310	0.736606129	-
16-Sep-1	Honouliuli	WW (<1.5µm)	-	26.8007	0.22985025	3.546473468	7.557	0.064810932	81.25	0.696822575	10.75162101	0	0	0	0.993	0.008516244	0.13140135	116.6007 -	-		DNA too low to measure
16-Sep-19	Honouliuli	EPS		4 249.5812	0.527856801	7.159385784	34.8607	0.073729342	179.375	0.37937278	5.145479006	4.86	0.010278755	0.139412003	4.143	0.008762322	0.118844429	472.8199	570	0.829508596	Humic standards not measured
16-Sep-19	Honouliuli	EPS		24 446.3987	0.47980735	5.153207951	86.6254	0.093108478	367.1875	0.394667953	4.238797166	24.2	0.026011137	0.279363789	5.9591	0.006405081	0.068791602	930.3707	1075	0.865461116	Humic standards not measured
18-Sep-19	Waimanalo	EPS		4 304.8576	0.632119801	5.637597594	54.0758	0.11212574	98.6737	0.20459913	1.824729361	18.9	0.039188999	0.349509392	5.7711	0.01196633	0.106722416	482.2782	565	0.853589735	-
18-Sep-1	Waimanalo	EPS		24 557.7889	0.516416741	3.309045359	168.5649	0.156062152	291.2467	0.269644433	1.727801577	55.2	0.051105721	0.32747031	7.3134	0.006770953	0.043386257	1080.1139	1325	0.815180302	-
18-Sep-1	Waimanalo	EPS	(.75 144.8911	0.551645615	4.926291488	29.4118	0.111979897	77.8736	0.296489087	2.647699223	6.56	0.024975966	0.223039732	3.916	0.014909434	0.13314384	262.6525	275	0.9551	Carb standard not measured
20-Sep-1	East Honolulu	EPS	(.75 177.5544	0.557661141	4.070481431	43.62	0.137001274	82.0265	0.257628037	1.880479138	7.82	0.02456098	0.179275562	7.3703	0.023148567	0.168966071	318.3912	385	0.82699013	- Humic standards not measured, Carb out of
20-Sep-1	East Honolulu	EPS		24 544.3886	< 0.391827420158 ·	<2.276062379797	>239.18	>0.172151441734	524.7126	<0.377665484514 <	2.193797976419	63.6 <	0.045776535221 <	0.265908520779	17.4769 <	0.012579118371 <	0.073070072748 >1	389.3581	1520 >0	91405138157894	bounds
20-Sep-1	East Honolulu	EPS		4 305.6951	0.511419544	3.335822418	91.6401	0.153311382	167.5287	0.280270935	1.828115639	22.4	0.037474588	0.244434478	10.4745	0.017523552	0.114300399	597.7384	655	0.91257771	Humic standards not measured
23-Sep-1	Honouliuli	EPS		.75 168.3417	0.604557298	5.915942732	28.4556	0.102191202	72.2861	0.259597529	2.540311925	4.94	0.01774078	0.17360379	4.4311	0.015913192	0.155719788	278.4545 -	-		TDS & TVDS negative
23-Sep-1	Honouliuli	EPS		4 278.057	0.616204542	5.337703722	52.093	0.115443751	106.5463	0.236118184	2.045309351	10.2	0.022604309	0.195803659	4.3451	0.009629214	0.083410439	451.2414 -	-		TDS & TVDS negative
23-Sep-1	Honouliuli	EPS		24 422.9481	0.548751386	4.457542233	94.8837	0.123106267	231.8284	0.300784318	2.443290049	14.6	0.018942679	0.153872583	6.4861	0.00841535	0.068358422	770.7463 -	-		TDS & TVDS negative
26-Sep-1	Waimanalo	SMP	-	5.8626	0.194387801	1.252317683	4.6814	0.155222436	19.0058	0.630180409	4.05985389	0.214	0.007095655	0.045712821	0.3955	0.0131137	0.084483274	30.1593	65	0.463989231	-
26-Sep-1	Waimanalo	EPS		4 358.459	0.619171821	5.994367827	59.7993	0.103292264	134.5223	0.232362467	2.249563122	18.6	0.03212807	0.31104043	7.5524	0.013045378	0.126295793	578.933	685	0.845157664	-
26-Sep-1	Waimanalo	EPS		24 690.9548	0.486676792	3.733203806	185.0836	0.130364378	483.8217	0.34078176	2.614071155	48.8	0.034372476	0.263664636	11.0805	0.007804595	0.059867541	1419.7406	1770	0.802113333	-
26-Sep-1	Waimanalo	EPS	(.75 277.2194	0.632055896	5.730692824	48.3745	0.110293103	97.3684	0.221998429	2.012804267	9.14	0.020839057	0.188942521	6.4972	0.014813514	0.134310432	438.5995	480	0.913748958	-

Date	WWTP	Sample	Extraction Time [h]		P [mg/l]	P/T	P/C	C [mg/l]	C/T	H [mg/l]	н/т	H/C	D [mg/l]	D/T	D/C	U [mg/l]	U/T	U/C	T [mg/l]	VDS [mg/l]	T/TVDS	Comment
1-Oct-19	East Honolulu	EPS		0.75	168.3417	0.622408936	4.394713553	38.3055	0.141626736	50.6866	0.187403316	1.323219903	6.64	0.024550039	0.173343254	6.4942	0.024010974	0.169537012	270.468	295	0.916840678	-
1-Oct-19	East Honolulu	EPS		24	439.6985	0.433732595	2.171539354	202.4824	0.199735084	310.9114	0.3066929	1.535498394	46.6	0.045967723	0.230143459	14.0625	0.013871698	0.069450481	1013.7548	1240	0.817544194	-
1-Oct-19	East Honolulu	SMP	-		6.7002	0.539238489	1.485401379	4.5107	0.36302544	0	0	0	0	0	0	1.2144	0.097736071	0.269226506	12.4253	171.4286	0.072480905	Humic negative, DNA too low to measure
1-Oct-19	East Honolulu	EPS		4	256.2814	0.534446458	3.692044169	69.4145	0.144756247	125.8023	0.262346755	1.812334599	19.1	0.039830933	0.275158648	8,9286	0.018619606	0.128627304	479.5268	560	0.856297857	-
3-Oct-19	Wahiawa	EPS		0.75	103.0151	0.68631528	7.90132462	13.0377	0.086860788	23.0978	0.153883975	1.771616159	5.92	0.039440688	0.454067819	5.0282	0.033499268	0.385666183	150.0988	265	0.566410566	Blind Humic standard not measured
3-Oct-19	Wahiawa	FPS		24	394 4724	0 485890214	3 381318558	116 6623	0 143698444	231 9149	0 285660494	1 987916405	57.8	0 071194979	0 495447115	11 0054	0.013555869	0 094335531	811 855	1015	0 799857143	-
3-Oct-19	Wabiawa	EPS			180.067	0 598164253	5 318881206	33 85/3	0 11246054	62 6478	0.208109617	1 850512343	15.7	0.052153803	0.46375202	8 7636	0.029111788	0.258862242	301.0327	380	0.792191316	
7.0+10	Linearlink			т	22 ((22	0.395104233	4.2745205570	55.0045	0.000050015	42 7252	0.200103017	E 057266700	15.7	0.032133003	0.4037 3202	0.0246	0.011021252	0.1251(0084	84.7009	280	0.20205(420	DNA too low to measure, Carbohydrate stardard
7-Oct-19	Honouliuli	ww (<1.5μm)	-		32.6633	0.385181333	4.3/45295/8	7.4667	0.088050915	43.7352	0.515/46499	5.857366708	0	0	0	0.9346	0.011021252	0.125169084	84.7998	280	0.302856429	DNA too low to measure, Carbohydrate stardard
7-Oct-19	Honouliuli	WWTP DAF (<1.5µm			19.263	0.291438842	4.069676547	4.7333	0.071612286	40.8983	0.618769309	8.640546764	0	0	0	1.2016	0.018179563	0.253860943	66.0962	215	0.307424186	not measured Blind Humic standard and blind humic/protein
8-Oct-19	Waimanalo	SMP	-		4.1876	0.198252109	0.932318105	4.4916	0.212644277	11.809	0.559069433	2.629129931	0	0	0	0.6344	0.030034181	0.141241428	21.1226	57.1429	0.369645223	absorbance not measured, DNA too low to
8-Oct-19	Waimanalo	EPS		4	332.4958	0.55879055	4.08863787	81.3219	0.136669123	152.0639	0.255557725	1.869900974	22.2	0.037309194	0.272989195	6.946	0.011673408	0.085413646	595.0276	725	0.820727724	-
8-Oct-19	Waimanalo	EPS		24	579.5645	0.414213289	2.521094142	229.8861	0.164299017	504.9268	0.360869913	2.196421619	74.4	0.053173493	0.323638532	10.416	0.007444289	0.045309395	1399.1934	1930	0.724970674	-
8-Oct-19	Waimanalo	EPS		0.75	218.593	0.602640621	5.15930392	42.3687	0.116806575	88.191	0.243134405	2.081513004	8.44	0.023268297	0.199203657	5.1326	0.014150102	0.121141314	362.7253	520	0.697548654	Blind Humic standard not measured
15-Oct-19	East Honolulu	EPS		0.75	177.5544	0.557037256	4.031360048	44.0433	0.138176013	84.472	0.265012025	1.917930764	6.08	0.019074641	0.138045968	6.5981	0.020700064	0.149809392	318.7478	400	0.7968695	Blind Humic/protein absorbance not measured
15-Oct-19	East Honolulu	EPS		4	272.1943	0.540763323	3.387034677	80.3636	0.15965686	126.3775	0.251071815	1.572571413	17.5	0.034766923	0.21776028	6.9166	0.01374108	0.086066329	503.352	690	0.729495652	-
15-Oct-19	East Honolulu	SMP	-		18.4255	0.609212162	1.849225705	9.9639	0.329441755	0	0	0	0.1	0.003306353	0.010036231	1.7554	0.058039729	0.176175995	30.2448	205	0.14753561	Blind Humic/protein absorbance not measured
15-Oct-19	East Honolulu	EPS		24	505.8626	<0.438592052703 <	<1.987317002264	>254.5455	>0.220695567040	331.0668	<0.287040922562 <	1.300619339175	45.8 <	<0.039709431007 <	<0.179928539298	16.1035 >	0.013962026686	>0.063263738702 >3	1153.3784	1615 >0.	71416619195046	Carb out of bounds
17-Oct-19	Wahiawa	EPS		0.75	79.5645	0.623596087	5.997309052	13.2667	0.103979315	24.4944	0.191977729	1.846306919	6.14	0.048122969	0.462812908	4.1242	0.0323239	0.310868566	127.5898	235	0.542935319	Carb standard not measured
17-Oct-19	Wahiawa	SMP	-		5.8626	0.325343929	1.46565	4	0.221979278	7.4157	0.411532933	1.853925	0	0	0	0.7414	0.041143859	0.18535	18.0197	71.4286	0.252275699	Carb standard and humic/protein blind absorbance not measured, DNA too low to
17-Oct-19	Wahiawa	EPS		4	178.392	0.550153149	4.65162123	38.3505	0.11827127	80.454	0.248116628	2.097860523	19.7	0.060753941	0.513683003	7.3623	0.022705012	0.191974029	324.2588	370	0.876375135	-
17-Oct-19	Wahiawa	EPS		24	313.2328	0.491634534	3.649681269	85.8247	0.134706156	165.9521	0.260470115	1.933617012	63.8	0.100137289	0.743375741	8.3157	0.013051907	0.096891687	637.1253	795	0.801415472	-
21-Oct-19	Honouliuli	EPS		0.75	173.3668	0.60664406	4.621943774	37,5095	0.131253016	65.9091	0.230628725	1.75713086	5.12	0.017915873	0.136498754	3.8747	0.013558327	0.103299164	285.7801	390	0.732769487	Blind Humic standard not measured
21-Oct-19	Honouliuli	SMP	-		11.7253	0.483200706	3.272298504	3,5832	0.147664006	8,5859	0.353825739	2.396154276	0	0	0	0.3715	0.01530955	0.103678276	24.2659	65	0.373321538	Blind Humic standard not measured
21_Oct_19	Hopouliuli	EPS		4	267 1692	0 574357444	5 216161813	51 2195	0 110111125	123 7584	0 266054464	2 416236004	18.6	0.039986078	0 363142944	4 4148	0 009490889	0.086193735	465 1619	625	0 74425904	
21 Oct-19	Hopouliuli	EPS		24	515 9129	0.475055774	4 168551854	123 7621	0.113961825	380 7097	0 3589290/14	3 149555077	10.0	0.045671985	0.400765654	6 9302	0.005450005	0.055995689	1086 0049	1450	0 748968897	-
22-Oct-19	Honouliuli	EDS		0.75	242 0426	0.521082822	4.00551004	57 0702	0.125802275	142 2515	0.212872120	2 485217172	49.0	0.019957947	0.149792222	4.7296	0.010202016	0.082552282	454.022	1150	0.057858047	
25-Oct-19	The sector is	EF5		0.75	242.0436	0.551983832	4.2200/0149	57.2793	0.142170171	142.3515	0.0128/2129	2.40321/1/3	8.58	0.025051/04/	0.147/92333	4.7286	0.010520210	0.072(01(1)	404.983	4/5	0.75/85894/	The model and the second second second
23-Oct-19	Honouliuli	Float EPS		0.75	206.8677	0.581012501	4.057940112	50.9785	0.143179171	85.2086	0.239318472	1.671461498	9.24	0.025951637	0.181252881	3.7521	0.010538218	0.073601616	356.0469	465	0.765692258	Fiarvesting of float not ideal
23-Oct-19	Honouliuli	WW (<1.5μm)	-		34.3384	0.373632543	4.244181591	8.0907	0.088034062	48.2933	0.525474353	5.968989086	0.308	0.003351316	0.0380684	0.8738	0.009507727	0.108000544	91.9042	240	0.382934167	Blind absorption not measured
23-Oct-19	Honouliuli	Diluted Lab DAF (<1			0	0	0	6.0143	0.075309129	72.8192	0.911818586	12.1076767	0	0	0	1.028	0.012872285	0.17092596	79.8615	140	0.570439286	DNA too low to measure

	Normalized s	COD Removal	Normalized ff	COD Removal	Normalized k	COD Removal		COD R 1
ave	172.7709489	179.5617621	78.67142286	93.14338368	94.09952607	88.46640752		sCOD Removal
σ	94.66198879	78.49844349	36.10917961	44.86490252	81.07690779	84.4009071	500	
	DO Conc. = 0.5 mg/l	DO Conc. = 1.0 mg/l	DO Conc. = 0.5 mg/l	DO Conc. = 1.0 mg/l	DO Conc. = 0.5 mg/l	DO Conc. = 1.0 mg/l	450	•
	140.3524229	91.2	76.12334802	52.8	64.22907489	38.4	100 HO	•
	111.8061674	51.67058824	47.57709251	51.81176471	64.22907489	-0.141176471	g 350 -	•
	103.6900751	280.5109489	57.65224151	170.1459854	46.03783364	110.3649635	0 SI	
	102.2907489	197.7372263	64.22907489	110.3649635	38.06167401	87.37226277	0 250	
	163.7931034	136.8741949	98.27586207	129.5706312	65.51724138	7.303563761	s O so	
	152.8735632	176.4238411	47.31800766	41.38686131	105.5555556	135.0369797	zilen 700	* * *
	147.5208474	169.9727308	112.4070318	28.94375268	35.11381564	141.0289781	150	
	98.27586207	157.3509934	54.59770115	27.59124088	43.67816092	129.7597525	Z 100	
	173.4782609	88.65671642	132.173913	59.7810219	41.30434783	28.87569452	50	
	230.8040376	83.28358209	82.99686739	160.9489051	147.8071702	-77.66532302	0	
	157.3964497	70.79894644	84.31952663	68.16659511	73.07692308	2.632351339		DO Conc0.5 mg/l DO Conc1.0 mg/l
	129.2899408	403.56	33.72781065	109.44	95.56213018	294.12		Do Conc 0.5 mg/
	434.2857143	321.48	85.30612245	27.36	348.9795918	294.12		(COD D 1
	110.2040816	215.2588235	40.40816327	67.99764706	69.79591837	147.2611765		ffCOD Removal
	335.5029586	211.1111111	162.9585799	149.537037	172.5443787	61.57407407	500	
		195.3295207		102.4509804		92.87854031	g 450	
		189.1203704		158.3333333		30.78703704	E 400	
		171.5277778		92.36111111		79.16666667	0801 SS 350	
		113.7735849		57.73584906		56.03773585	B 300	
		110.3773585		66.22641509		44.1509434	Q 0 250	
		103.7846837		49.24528302		45.8490566	1 Pos 200	
		95.09433962		14.96062992		344.0944882	ilg <u>E</u> 150 —	
		359.0551181		55.23390459		147.3598888	Log 100	
		202.5937934		124.015748		17.71653543	50	
		141.7322835		162.1557293		136.9602176	0	
		299.115947		148.265896		98.84393064		DO Conc 0.5 mg/l DO Conc 1.0 mg/l
		247.1098266		145.6647399		41.61849711		
		187.283237		101.2920775		83.23699422		kCOD Removal
		184.5290717		132.6589595		13.00578035	100	KCOD Kelioval
		145.6647399		67.12933754		62.33438486	400	
		129.4637224		88.32605042		117.0655462	350	• •
		205.3915966		104.2285714		107.4857143	300 J	
		211.7142857		154.3882979		21.54255319	usy 250	
		175.9308511		82.47272727		19.63636364	0 200	
		102.1090909		111.1764706		83.38235294	00 150 T	
		194.5588235		56.98961938		122.8546713	hizen by-Br	
		179.8442907		115.1470588		107.2058824	E 50	
		222.3529412]		0 N	
							-50	
							-100	
								DO Conc. = 0.5 mg/l

	Normalized	sCOD Removal	Normalized f	fCOD Removal	Normalized	kCOD Removal			
ave	205.2677162	1 164.5933338	95.66569985	85.71598975	109.6020162	80.6147341			sCOD Removal
σ	87.64649942	7 77.81450686	44.21433809	42.19744595	95.07265086	5 75.64976864		500	
	MX5	MX10	MX5	MX10	MX5	MX10		450	
	163.7931034	4 140.3524229	98.27586207	76.12334802	65.51724138	64.22907489	val	400 -	
	152.8735632	2 111.8061674	47.31800766	47.57709251	105.5555556	64.22907489	ioun	350	T
	147.5208474	4 103.6900751	112.4070318	57.65224151	35.11381564	46.03783364	J Re-	300	
	98.27586202	7 102.2907489	54.59770115	64.22907489	43.67816092	38.06167401	COI	250	
	173.4782609	9 110.2040816	132.173913	40.40816327	41.30434783	69.79591837	ed s sCC	200	
	230.8040376	335.5029586	82.99686739	162.9585799	147.8071702	2 172.5443787	aliz mg-	200	
	157.3964492	7 91.2	84.31952663	52.8	73.07692308	3 38.4	ormo	150 -	
	129.2899408	51.67058824	33.72781065	51.81176471	95.56213018	-0.141176471	Z	100	
	434.2857143	3 280.5109489	85.30612245	170.1459854	348.9795918	3 110.3649635		50	
	211.111111	1 197.7372263	149.537037	110.3649635	61.57407407	87.37226277		0	
	195.3295202	7 136.8741949	102.4509804	129.5706312	92.87854031	7.303563761			MX5 MX10
	189.1203704	4 176.4238411	158.3333333	41.38686131	30.78703704	135.0369797			
	171.5277778	8 169.9727308	92.36111111	28.94375268	79.16666662	7 141.0289781			(COD D D
	359.055118	1 157.3509934	14.96062992	27.59124088	344.0944882	2 129.7597525			ffCOD Removal
	299.115942	7 88.65671642	162.1557293	59.7810219	136.9602176	6 28.87569452		500	
	247.1098266	6 83.28358209	148.265896	160.9489051	98.84393064	-77.66532302	-	450	
	129.4637224	4 70.79894644	67.12933754	68.16659511	62.33438486	5 2.632351339	iova	400	
		403.56		109.44	:	294.12	Rem SS]	350	
		321.48		27.36		294.12	L-g/	300 -	
		215.2588235		67.99764706	,	147.2611765	1900	250	
		113.7735849		57.73584906	i i	56.03773585	zed 3-ffC	200	
		110.3773585		66.22641509		44.1509434	[mg	150	
		103.7846837		49.24528302		45.8490566	Nor	100	
		95.09433962		55.23390459	1	147.3598888		50	
		202.5937934		124.015748	i	17.71653543		0	
		141.7322835		145.6647399		41.61849711			
		187.283237		101.2920775	i	83.23699422			MAS MAIO
		184.5290717		132.6589595	i	13.00578035			LCOD B1
		145.6647399		88.32605042		117.0655462			KCOD Removal
		205.3915966		104.2285714	:	107.4857143		400	
		211.7142857		154.3882979		21.54255319	al	350	
		175.9308511		82.47272727	7	19.63636364	nou	300	•
		102.1090909		111.1764706	,	83.38235294	TSS	250	
		194.5588235		56.98961938	i	122.8546713	005-B/C	200	
		179.8442907		115.1470588	i	107.2058824	d kc COI	150	
		222.3529412					ulize ng-k	100	
							n In	50	
							No	0	
								-50	
								-100	

📕 MX5 📕 MX10

Graphs: Isotherm

sCOD

Supplementary Documents

ave	207.6711007	191.4432544	210.8759557	204.1716155	166.4786099	185.8332038		COD Romoval
	S200	S300	PS200	PS300	Lab DAF	WWTP DAF		scod kemoval
	236.1271676	108	289.7080292	285.1094891	195.3295207	211.1111111	350	
	262.1167883	275.9124088	219.3377483	214.5695364	147.5208474	163.7931034	300	T
	238.410596	219.3377483	123.5820896	112.8358209	230.8040376	129.2899408	Te	
	94.02985075	110.1492537			51.67058824	280.5109489	250	
		263.583815			136.8741949	176.4238411	Ren ISS]	
		171.6763006			169.9727308	83.28358209	CO \$ 200	
					70.79894644	321.48	d sC	
					215.2588235	111.8061674	ng-s 120	
					103.6900751	113.7735849	щ <u>п</u> 100	
					103.7846837	211.7142857	No	
					205.3915966	222.3529412	50	
					179.8442907	141.7322835		
					202.5937934	187.283237	0	
					184.5290717	247.1098266		📕 S200 📕 S300 📕 PS200 📕 PS300 📕 Lab DAF 📕 WWTP DAF
					299.115947			

ffCOD

ave	118.2441669	114.6904828	87.37226277	98.10218978	83.2853495	101.7155298			
	S200	S300	PS200	PS300	Lab DAF	WWTP DAF			ffCOD Removal
	137.283237	64.8	68.97810219	91.97080292	102.4509804	149.537037	3	350	
	124.1605839	78.17518248	64.37956204	55.18248175	112.4070318	98.27586207		300	
	73.57664234	105.7664234	128.7591241	147.1532847	82.99686739	33.72781065	val		
	137.9562044	137.9562044	ŀ		51.81176471	170.1459854	emc SS]	250	
		109.2485549)		129.5706312	41.38686131	B-T-g	200	
		192.1965318	3		28.94375268	160.9489051	fcC	200	T T
			_		68.16659511	27.36	f Diff.	150	
					67.99764706	47.57709251	ilar [mg	100	
					57.65224151	57.73584906	Tio	100	
					88.32605042	104.2285714	2	50	
					56.98961938	115.1470588			
					55.23390459	124.015748		0	
					101.2920775	145.6647399			📕 S200 📕 S300 📕 PS200 📕 PS300 📕 Lab DAF 📕 WWTP DAF
					162.1557293	148.265896			

84.11767403 89.42693377 76.75277159 123.5036929 106.0694257 87.67139794 ave

S200	S300	PS200	PS300	Lab DAF	WWTP DAF
98.84393064	43.2	220.729927	193.1386861	92.87854031	61.57407407
137.9562044	197.7372263	154.9581863	159.3870547	35.11381564	65.51724138
164.8339537	113.571325	-5.177034535	-34.31746378	147.8071702	95.56213018
-43.92635363	-27.80695065			-0.141176471	110.3649635
	62.42774566			7.303563761	135.0369797
	71.38728324			141.0289781	-77.66532302
				2.632351339	294.12
				147.2611765	64.22907489
				46.03783364	56.03773585
				117.0655462	107.4857143
				122.8546713	107.2058824
				147.3598888	17.71653543
				83.23699422	41.61849711

	Total COD							
ave	6%	-28%	61%	61%	37%	40%		tCOD Born
	S200	S300	PS200	PS300	Lab DAF	WWTP DAF		tCOD Remo
	-18%	-76%	66%	64%	42%	53%	100%	
	30%	18%	56%	63%	49%	58%	500/	
	26%	-3%		55%	47%	38%	age 00%	
	-16%	-30%			45%	46%	cent	
		-54%			39%	37%	Per	
		-22%			22%	35%	-50%	
					30%	42%	Kem	
					40%	43%	0.00%	
					37%	27%	9 -150%	
					24%	19%		
					25%	40%	-200%	
					46%	39%		5 200 5 300 5 200 5 200
					41%			

136.9602176

ave

East Honolulu	Honouliuli	Wahiawa	Waimanalo
479.9332	419.875	86.8679	240.8764
404.1269	495.0791	222.9434	325.9986
311.8432	475.6764	223.6454	292.4636
285.5261	394.3701	188.831	268.6583
318.3912	228.3479	123.1801	305.8762
270.468	278.4545	312.3141	331.4403
318.7478	285.7801	152.7702	315.0155
	454.983	150.0988	262.6525
		127.5898	438.5995
			362.7253
341.2909143	379.0707625	176.4711889	314.43062

Date	WWTP	Extraction Time [h]	P [mg/l]	P/T	P/C	C [mg/l] C/T	H [mg/l] H	H/T	H/C	D [mg/l]	D/T	D/C	U [mg/l]	U/T	U/C			
А	Wahiawa	0.75	111.3903	73%	10.36902612	10.7426 7%	19.9158	13%	1.853908737	5.68	4%	0.52873606	5.0415	3%	0.469299797			
А	Wahiawa	4	209.3802	56%	5.467145718	38.2979 10%	102.1157 2	27%	2.666352463	19.5	5%	0.509166299	6.0962	2%	0.159178441	80	%	
А	Wahiawa	24	297.3199	57%	5.463099445	54.4233 11%	130.0423 2	25%	2.389460029	30.2	6%	0.554909386	5.481	1%	0.100710541	Sdi 70	%	
В	Wahiawa	0.75	103.0151	69%	7.90132462	13.0377 9%	23.0978	15%	1.771616159	5.92	4%	0.454067819	5.0282	3%	0.385666183	H 60	%	×
В	Wahiawa	4	180.067	60%	5.318881206	33.8543 11%	62.6478 2	21%	1.850512343	15.7	5%	0.46375202	8.7636	3%	0.258862242	°L 50	%	
В	Wahiawa	24	394.4724	49%	3.381318558	116.6623 14%	231.9149 2	29%	1.987916405	57.8	7%	0.495447115	11.0054	1%	0.094335531	0 40 30	%	
С	Wahiawa	0.75	79.5645	62%	5.997309052	13.2667 10%	24.4944 1	19%	1.846306919	6.14	5%	0.462812908	4.1242	3%	0.310868566	00 enta	%	-25-
С	Wahiawa	4	178.392	55%	4.65162123	38.3505 12%	80.454 2	25%	2.097860523	19.7	6%	0.513683003	7.3623	2%	0.191974029	o 20	% vo/	<u> </u>
С	Wahiawa	24	313.2328	49%	3.649681269	85.8247 13%	165.9521 2	26%	1.933617012	63.8	10%	0.743375741	8.3157	1%	0.096891687	- 10	70	**
А	Honouliuli	0.75	146.5662	64%	6.71579584	21.8241 10%	51.5625 2	23%	2.362640384	4.54	2%	0.208026906	3.8551	2%	0.176644169	0	70	0.75
А	Honouliuli	4	249.5812	53%	7.159385784	34.8607 7%	179.375	38%	5.145479006	4.86	1%	0.139412003	4.143	1%	0.118844429			
А	Honouliuli	24	446.3987	48%	5.153207951	86.6254 9%	367.1875 3	39%	4.238797166	24.2	3%	0.279363789	5.9591	1%	0.068791602			
В	Honouliuli	0.75	168.3417	60%	5.915942732	28.4556 10%	72.2861 2	26%	2.540311925	4.94	2%	0.17360379	4.4311	2%	0.155719788			
В	Honouliuli	4	278.057	62%	5.337703722	52.093 12%	106.5463 2	24%	2.045309351	10.2	2%	0.195803659	4.3451	1%	0.083410439			
В	Honouliuli	24	422.9481	55%	4.457542233	94.8837 12%	231.8284	30%	2.443290049	14.6	2%	0.153872583	6.4861	1%	0.068358422			
С	Honouliuli	0.75	173.3668	61%	4.621943774	37.5095 13%	65.9091 2	23%	1.75713086	5.12	2%	0.136498754	3.8747	1%	0.103299164	80% -		
С	Honouliuli	4	267.1692	57%	5.216161813	51.2195 11%	123.7584 2	27%	2.416236004	18.6	4%	0.363142944	4.4148	1%	0.086193735	70%		
С	Honouliuli	24	515.9129	48%	4.168551854	123.7631 11%	389.7987 3	36%	3.149555077	49.6	5%	0.400765656	6.9302	1%	0.055995689	60% -		V
А	Waimanalo	0.75	144.8911	55%	4.926291488	29.4118 11%	77.8736	30%	2.647699223	6.56	2%	0.223039732	3.916	1%	0.13314384	50%		
А	Waimanalo	4	304.8576	63%	5.637597594	54.0758 11%	98.6737 2	20%	1.824729361	18.9	4%	0.349509392	5.7711	1%	0.106722416	40% -		
А	Waimanalo	24	557.7889	52%	3.309045359	168.5649 16%	291.2467 2	27%	1.727801577	55.2	5%	0.32747031	7.3134	1%	0.043386257	30% -		
В	Waimanalo	0.75	277.2194	63%	5.730692824	48.3745 11%	97.3684 2	22%	2.012804267	9.14	2%	0.188942521	6.4972	1%	0.134310432	20% -		X
В	Waimanalo	4	358.459	62%	5.994367827	59.7993 10%	134.5223 2	23%	2.249563122	18.6	3%	0.31104043	7.5524	1%	0.126295793	10% -		*
В	Waimanalo	24	690.9548	49%	3.733203806	185.0836 13%	483.8217 3	34%	2.614071155	48.8	3%	0.263664636	11.0805	1%	0.059867541	0%		** *
С	Waimanalo	0.75	218.593	60%	5.15930392	42.3687 12%	88.191 2	24%	2.081513004	8.44	2%	0.199203657	5.1326	1%	0.121141314			0.75
С	Waimanalo	4	332.4958	56%	4.08863787	81.3219 14%	152.0639 2	26%	1.869900974	22.2	4%	0.272989195	6.946	1%	0.085413646			
С	Waimanalo	24	579.5645	41%	2.521094142	229.8861 16%	504.9268	36%	2.196421619	74.4	5%	0.323638532	10.416	1%	0.045309395			
А	East Honolulu	0.75	177.5544	56%	4.070481431	43.62 14%	82.0265 2	26%	1.880479138	7.82	2%	0.179275562	7.3703	2%	0.168966071			
А	East Honolulu	4	305.6951	51%	3.335822418	91.6401 15%	167.5287 2	28%	1.828115639	22.4	4%	0.244434478	10.4745	2%	0.114300399			
В	East Honolulu	0.75	168.3417	62%	4.394713553	38.3055 14%	50.6866 1	19%	1.323219903	6.64	2%	0.173343254	6.4942	2%	0.169537012			
В	East Honolulu	4	256.2814	53%	3.692044169	69.4145 14%	125.8023 2	26%	1.812334599	19.1	4%	0.275158648	8.9286	2%	0.128627304			
В	East Honolulu	24	439.6985	43%	2.171539354	202.4824 20%	310.9114	31%	1.535498394	46.6	5%	0.230143459	14.0625	1%	0.069450481			
С	East Honolulu	0.75	177.5544	56%	4.031360048	44.0433 14%	84.472 2	27%	1.917930764	6.08	2%	0.138045968	6.5981	2%	0.149809392			
С	East Honolulu	4	272.1943	54%	3.387034677	80.3636 16%	126.3775 2	25%	1.572571413	17.5	3%	0.21776028	6.9166	1%	0.086066329			

Graphs: Correlation

Photos

Photo 1: Biosorption Experiment Setup (Top View)

Photo 2: Biosorption Experiment Setup (Front View)

Photo 3: Pressure Vessel

Photo 4: Fine Screens

Photo 5: After DAF

Photo 6: Colorimetric Assay Tubes