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1 Abstract 

 
Public alarm over deforestation from tropical commodity crop expansion has led many 

corporations that handle such commodities to adopt zero-deforestation commitments (ZDCs), 

which are pledges to stop sourcing products produced on recently deforested or currently 

forested lands. Most ZDCs have yet to be implemented and vary in their implementation details 

including forest clearance cut-off date and off-limit land covers. Moreover, region- or supply-

chain specific ZDCs may simply displace deforestation to areas not covered by commitments 

through market or activity leakage. My research aims to investigate the effect of ZDCs on 

tropical land cover by addressing the following questions: 1) How might ZDC implementation 

affect geospatial patterns of soy expansion? 2) How do changes in soy expansion patterns alter 

locations and patterns of non-soy land cover change? 3) How does ZDC implementation date 

affect these outcomes? To answer these questions, I built a land cover change model that 

simulates corporate ZDC implementation in soy producing regions in South America from 2014-

2030. I evaluated land cover outcomes under several future scenarios, including no ZDC 

implementation, fulfillment of currently pledged ZDCs, earlier implementation of these current 

pledges, and a moratorium on soy expansion into natural land covers the Cerrado and Gran 

Chaco ecoregions. In contrast to a future with no ZDCs, the 2025 ZDC scenario reduced natural 

land cover conversion by 3.2% while maintaining projected soy area growth, despite some 

displacement of natural land conversion from the Cerrado and Chaco to the Brazilian Amazon 

and Argentinian Pampas. Compared to the 2025 ZDC scenario, early implementation of ZDC 

pledges (by 2020) resulted in conservation of an additional 357,000 ha (6.7%) of natural land 

cover in BBAP by 2030, while the Cerrado and Gran Chaco moratorium generated just 35,000 

ha (0.6%) of additional conservation. These findings suggest that ZDCs may generate net 

preservation of natural land cover despite intra-country displacement. Earlier ZDC 

implementation appears to be far more effective at conserving natural land cover than increasing 

ZDC market share in later years. 
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2 Introduction 

 

 Demand for agricultural commodities has increased in recent years as a result of population 

growth and greater consumption of meat, oils, fruits, and vegetables driven by increases in 

wealth (Popkin, 1993). In tropical regions, most recent deforestation is associated with the 

production of agricultural commodities including edible oils (Gibbs et al., 2010; Henders, 

Persson, & Kastner, 2015), which has increased sharply since 1990. This expansion of 

agricultural lands at the cost of forested areas generates negative environmental and social 

impacts including the loss of biodiversity, increased rural income inequality, hydrological 

changes, greenhouse gas emissions, and land conflicts (Carlson et al., 2013; Carlson & Garrett, 

2018; Fearnside, 2016; Rachael D. Garrett & Rausch, 2016). 

 

 Soy (Glycine max) harvested area increased by almost 400% from 1970 to 2017 (FAO, 

2019), and by 2014 More than one million km2 of soy was harvested worldwide (FAO, 2019). 

The crop has a 20% oil content, making it useful for cooking oil, and a 40% protein content, 

making it high quality livestock feed, one of the primary uses of soy (Peine, 2013). Increased 

consumption of chicken and pork in domestic and international markets has been identified as a 

major driver of increased soy production in Brazil (Peine, 2013; Rausch & Gibbs, 2016). While 

United States was historically the leader in soy production, since 1950s, production has increased 

especially in tropical regions. In 2017, Brazil, Bolivia, Argentina, and Paraguay had a combined 

soy production of around 178 million metric tons, almost half of the world’s soy production 

(World Agricultural Production, 2018). Since the start of the 2000s, these areas have incurred 

substantial loss of natural ecosystems (le Polain de Waroux et al., 2018; Rausch & Gibbs, 2016; 

Strassburg et al., 2017). Such clearing has been driven largely by increased agricultural 

production, particularly conversion to pastureland for cattle production and cropland for soy or 

corn (Graesser, Aide, Grau, & Ramankutty, 2015). 

 

2.1 Zero-deforestation Commitments 

 

 To address these negative outcomes, many companies that trade tropical commodities 

have adopted Zero-Deforestation Commitments (ZDCs) to reduce or eliminate deforestation 

“embodied” within their supply chains (Lambin et al., 2018). In 2006, the first set of 

commitments, called the Soy Moratorium, was established by soy trading companies operating in 

Brazil to reduce deforestation associated with soy production in the Amazon (Gibbs et al., 2015). 

This “Soy Moratorium” was signed by traders in the Brazilian Association of Vegetable Oil 

Industries and the Association of Cereal Exporters in Brazil, which at the time purchased around 

90% of all soy grown in the Brazilian Amazon (Brannstrom, Rausch, Brown, de Andrade, & 

Miccolis, 2012). The Soy Moratorium resulted from public pressure associated with a 

Greenpeace campaign against major soy trader Cargill that labeled Cargill as a key driver of 

deforestation because of its involvement in the soy trade (Greenpeace, 2006). Since its inception, 

the soy moratorium has been continuously renewed until 2016, when the Soy Moratorium was 

extended indefinitely (Kastens, Brown, Coutinho, Bishop, & Esquerdo, 2017). 

 

Since this benchmark agreement, more sustainability commitments have been made by 

commodity producers such as beef, palm oil, and soy, with more than 750 agreements between 
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more than 400 entities in 2017 (Supply-Change.org, 2018) and some have been effective at 

reducing deforestation (Carlson et al., 2018; Gibbs et al., 2016, 2015; Macedo et al., 2012a; 

Nepstad et al., 2014).  Companies are now being pressured to extend the Soy Moratorium to 

Brazil’s Cerrado ecosystem, which has experienced substantial natural ecosystem loss from soy 

expansion (Prager, 2019; Soterroni et al., 2019; World Wildlife Fund, 2018). Several soy traders 

with pledges to implement ZDCs in the 2020s have significant market shares across South 

America’s soy producing regions (Ermgassen et al., 2019; trase.earth, 2019). 

 

Recent research on ZDCs suggests that they can reduce deforestation within committed 

supply chains (Carlson et al., 2018; Gibbs et al., 2016, 2015; Macedo et al., 2012b; Nepstad et 

al., 2014). However, ZDCs differ in their characteristics and implementation details. Many 

commitments have a “cut-off” date after which deforestation is prohibited and differences may 

affect the success of the commitment (Potts, Lynch, Huppe, Cunningham, & Voora, 2014; 

Romijn et al., 2013). If the selected cut-off date is in the future, producers may increase clearing 

before the target date, creating temporal leakage of deforestation (Carlson et al., 2018). 

Definitions of “forest” and “deforestation” determine the geographic coverage of a commitment 

and delineate which lands are off limits, which differ between commitments (Romijn et al., 

2013).  

 

Implementation of ZDCs is also hypothesized to result in spillover effects, including 

‘leakage’, where deforestation is displaced to different regions, commodities, or actors (Alix-

Garcia & Gibbs, 2017). Studies that focus on areas protected by public policies or private 

agreements have reported varying levels of leakage, with some finding a significant increase in 

deforestation outside of protected boundaries (Alix-Garcia & Gibbs, 2017; Meyfroidt & Lambin, 

2009; Robalino, Pfaff, & Villalobos, 2017) but others not detecting leakage (Heilmayr & 

Lambin, 2016). Thus, when considering the success of ZDCs at preventing deforestation, leakage 

is an important consideration (Aukland, Costa, & Brown, 2003). 

 

However, the variations ZDCs characteristics on their success, as well as the degree to 

which ZDCs lead to leakage, is not well understood (R.D. Garrett et al., 2019; Lambin et al., 

2018). In part, this is because many commitments have yet to be implemented (Ermgassen et al., 

2019; R.D. Garrett et al., 2019). To overcome these issues, a simulation tool can be used to 

compare how different future scenarios of ZDC implementation may alter land cover. 

 

2.2 Modeling the Effects of Zero-Deforestation Commitments on Land Cover 

 

Economic theory suggests that decisions made by individuals regarding land use are 

governed by economic factors, particularly the profits obtained from land use (Walker & 

Solecki, 2004). Changes in technology, infrastructure, policy, and markets incentivize 

individuals to employ land to generate profits (Barbier, 2012). Relationships between 

agricultural land use and the associated profits confirm that agricultural land rents guide human 

decisions about land use le Polain de Waroux et al. (2018). The rents depend on biophysical 

conditions, transport infrastructure, and market dynamics, among other factors (Rachael D. 

Garrett, Lambin, & Naylor, 2013). Because rents help drive agricultural land use decisions, 

accurately representing decision-making in a region where ZDCs are being implemented in a 
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spatially explicit model would ideally include the influence of ZDCs on land rents. Indeed, in 

recent studies, the use of agricultural rents has been favored as the spatial variable for 

representing economic decisions, as it provides a more complete representation of economic 

factors that lead to decisions (Mann et al., 2010, 2014; Walker et al., 2009; Walker & Solecki, 

2004).  

 

A simulation model capable of accurately representing the driving forces and proximate 

causes that affect land cover and land use is a valuable tool for scientists looking to understand 

how policy changes will affect the landscape (Veldkamp & Lambin, 2001).Researchers focused 

on trade analysis tend to use sector-based economics models (e.g., the General Trade Analysis 

Project (GTAP) Model) (Burniaux & Truong, 2002; Hertel & Tsigas, 1997; Siriwardana & 

Yang, 2008) to simulate changes in commodity fluxes between regions. Such a model has been 

applied to study soy expansion in the Brazilian Cerrado under various conservation scenarios 

(Soterroni et al., 2019). This model simulated soy expansion in the biome while and considering 

spillover effects to global markets. However, the model was limited by a 250x250 km spatial 

resolution and considered temporal changes in five-year time steps. Thus, the model was limited 

in the level of detail that observations could have. Simulation of land cover changes due to ZDC 

implementation within and across regions requires high resolution information on land cover and 

land cover change, explicit consideration of farmer profits, and a smaller simulation time scale 

for proper analysis. 

 

 Several software packages are available for developing such spatially-explicit models 

(Camacho Olmedo, Pontius, Paegelow, & Mas, 2015). One of these is Dinamica EGO, which 

was first released in the early 2000s and was developed with the intention of modeling land use 

and land cover changes in the Amazon (B. S. Soares-Filho, Cerqueira, & Pennachin, 2002). 

Since its inception, the platform has been improved to increase its computational capacity. 

Dinamica has been used to simulate deforestation in Brazil with a focus on the Amazon and 

Cerrado biomes (Carvalho Lima, Carvalho Ribeiro, & Soares-Filho, 2018; Gibbs et al., 2015), 

and has also been applied in other regions and contexts, including simulation of oil palm 

plantation expansion in Indonesia (Carlson et al., 2013; Thapa, Shimada, Watanabe, Motohka, & 

Shiraishi, 2013) and deforestation associated with resource extraction in the Congo (Galford, 

Soares-Filho, Sonter, & Laporte, 2015). 

3 Research Objective and Questions 

 

Adoption of ZDCs by soy trading companies is likely to affect corporate sourcing behavior, and 

in turn may alter spatial patterns of soy expansion. Yet, outcomes due to ZDC adoption are 

difficult to study empirically since many have not been implemented due to future commitment 

dates and the difficulty of isolating the effects of ZDC implementation from other influences on 

land cover change. Given the potential future importance of ZDC adoption in soy supply chains 

for tropical land cover, and the difficulty of observing ZDCs effects empirically, the goal of this 

study is to investigate the effect of ZDCs on tropical land cover using a land use change 

simulation model. Here, I address the following questions: 
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1. How might ZDC implementation affect geospatial patterns of soy expansion, given a 

fixed trajectory of soy area? 

2. How do these alterations in soy expansion patterns change the locations and patterns of 

non-soy land cover change? 

3. Given that ZDCs vary in their implementation timelines, how does ZDC implementation 

date affect geospatial patterns of soy expansion and resulting changes in land cover? 

 

To answer these questions, I compared land cover change under several scenarios of ZDC 

adoption by soy traders across four countries in South America from 2015-2030 in a spatially 

explicit land cover simulation model. The model, built using Dinamica EGO, simulates ZDC 

implementation in soy producing regions of South America. These regions are particularly 

suitable to address my research questions because they have experienced substantial loss of 

natural vegetation due to soy expansion and are the focus of significant planned implementation 

of ZDCs by soy traders. I compared two scenarios of ZDC implementation to a baseline case in 

which no commitments were implemented. Results prove a better understanding of how 

differences in implementation of ZDCs affect land cover, including forest conservation.  

4 Methods 

 

4.1 Study Area 

 

This research focuses on the countries of Bolivia, Brazil, Argentina, and Paraguay (BBAP) 

in South America, which have a combined surface area of around 1,270 million hectares 

(Graesser et al., 2015). In 2014, around 4.5% of BBAP land area was under soy production 

(World Agricultural Production, 2018) and in 2017, soy production in BBAP totaled around 178 

million metric tons, or almost half of global soy production (FAO, 2019). Major soy producing 

regions in BBAP include the Amazon, Gran Chaco, and Cerrado regions, which have unique 

land cover change histories as described in the following paragraphs (Figure 1).  

 

The Amazon region (2,038 thousand km2) lost 9% of its forest cover to development related 

to agriculture and resource extraction from 2000 to 2017 (“Global Forest Watch,” 2018). From 

2000 to 2006, soy area expanded by about 10,000 km2 and was an important contributor to 

deforestation. However, since the 2006 a combination of the Soy Moratorium, market dynamics, 

and public policies that discouraged deforestation led to substantially reduced soy expansion into 

forests (Macedo et al., 2012b; Morton et al., 2006). Recent deforestation is primarily due to 

pasture expansion for beef cattle (Alix-Garcia & Gibbs, 2017), while continued soy expansion 

has focused on non-forest land covers such as pasture (Graesser et al., 2015). 

 

The Cerrado region (4,154 thousand km2) neighbors the Amazon region on the east and has 

also recently experienced landscape changes caused by colonization efforts and agricultural 

expansion. The Cerrado is a savanna ecosystem and covers almost 25% of Brazil's land area (The 

Nature Conservancy, 2018). It is a global biodiversity hotspot with more than 4,800 endemic 

plant and vertebrate species, yet land cover changes have endangered many of these species 

(Myers, Mittermeier, Mittermeier, Da Fonseca, & Kent, 2000). The Cerrado experienced 
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deforestation rates twice as high as the Amazon region from 2002 to 2011 (Strassburg et al., 

2017). By 2012, around 50% of the region’s original vegetation had been cleared, and less than 

20% remained intact (Ferreira et al., 2012). Remaining intact areas are suitable for more 

agricultural expansion, and while the region is not currently covered by the Soy Moratorium, 

food corporations have recently reached agreements that could protect forests from being cleared 

(Strassburg et al., 2017; World Wildlife Fund, 2018) 

 

The Gran Chaco, also known as the Dry Chaco, is a dry woodland region in South 

America which extends over 70 million hectares including parts of Argentina, Bolivia, and 

Paraguay. Since 1985, the forest clearing in the Gran Chaco has converted 20% of the region’s 

forest to other land cover (Baumann, Piquer-Rodríguez, Fehlenberg, Gavier Pizarro, & 

Kuemmerle, 2016). This deforestation threatens a large number of species in the region including 

145 mammal and over 400 bird species (Torres, Gasparri, Blendinger, & Grau, 2014). In recent 

years, however, deforestation rates have decreased as a result of public policies that inhibit more 

expansion into forested areas (C. Nolte et al., 2018).  

 

4.2 Land Cover Change Model 

 

To simulate the effects of ZDC implementation on land cover, I developed a land cover 

simulation model using the software Dinamica EGO (B. S. Soares-Filho et al., 2002). The model 

was trained or “calibrated” with observed land cover dynamics and other inputs (e.g., elevation, 

soy prices) for 2012-2013 and validated by simulating change and then comparing simulated to 

actual change in 2013-2014. Then, this model was used to simulate future land cover change 

across the study region from 2015-2030. Quantities of future land cover change were set based 

on observed past land cover transitions (for non-soy changes) and on future demand (for soy 

changes).  

 

4.2.1 Land Cover Inputs 

 

To train the land change model and develop an understanding of past changes in land 

cover, I used a 2001-2014 annual timeseries of 250 m resolution classified land cover maps 

(Figure 2) derived from MODIS satellite data for all of South America (Graesser et al., 2015). To 

reduce the number of classes for input into the land change model, these nine land cover types 

were re-categorized into five classes. The original plantation category in this dataset included 

citrus fruits, grapes, and coffee, which are products that government organizations, such as 

Argentina’s Ministry of Production and Employment (Ministerio de Agricultura, Ganaderia y 

Pesca, 2019) and Brazil’s IBGE (Sistema IBGE de Recuperação Automática, 2019), include in 

their cropland statistics. For this reason, I combined the plantation category with croplands. The 

plantation trees category covers non-crop trees such as pines and palms, not included in 

government organizations statistics. Thus, I combined original water, bare and built-up, and 

plantation tree categories into a new “other” category following the approach of Graesser et al., 

(2015) (Table 1). Out of these 5 categories, I considered forests and shrubs to be natural 

landcover areas, while the other 3 (cropland, pastureland, and other) as not, this decision was 

guided by the definitions from Graesser et al., (2015). 
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In Brazil’s Cerrado biome, these reclassified maps resulted in low average cattle stocking 

rates. In 2006, estimates suggest that Cerrado stocking rates ranged from 0.67-1.11 cattle heads 

per hectare (Strassburg et al., 2017). Based on Cerrado Biome pasture area from Graesser et al. 

(2015),and cattle heads data reported by le Polain de Waroux et al. (2017),I estimated stocking 

rates of just 0.21 cattle heads per ha The potential cause of this discrepancy is an overestimate in 

Cerrado pasture area due to misclassification of shrublands as pasture. To address this issue, I 

updated the reclassified maps with data from MAPBIOMAS (Brazilian Annual Land Use and 

Land Cover Mapping Project) in the Cerrado biome in Brazil (Mapbiomas, 2019). I chose the 

MAPBIOMAS dataset because it is specific to Brazil and is available annually from 1985-2018. 

I first resampled the MAPBIOMAS dataset to 250x250 meters. In the Cerrado, I set all pixels 

identified as pasture by MapBiomas as pasture, and set all pixels identified as pasture by 

Graesser et al. (2015)but not as pasture in MAPBIOMAS as shrub. The merged map has average 

stocking densities of 1.31 in year 2006, which is closer to previous estimates. 

 

4.2.2 Spatial Propagation of Change 

 

I determined the locations of change from probability maps generated using the Weights 

of Evidence (WOE) method, which is readily available in Dinamica EGO. The WOE method 

assesses the influence that spatial variables, such as elevation, have on the likelihood of change 

for a particular land cover transition such as forest to pasture (Agterberg, Bonham-Carter, & 

Wright, 1990; Goodacre, Bonham-Carter, Agterberg, & Wright, 1993). In Dinamica, changes are 

allocated according to probability maps using patcher and expander functions. These functions 

operate according to parameters that determine the size and shape of land cover transitions, 

which can be adjacent to other areas of the same type (expander) or where no previous area of 

the same type is present (patcher). Parameters used in the patcher and expander functions were 

calculated at the state level during the 2011-2014 time period.  

 

4.2.3 Spatial Variables 

 

I used both categorical (e.g., ecoregions and protected areas) and continuous variables 

(e.g., distance to deforestation) to generate probability maps using the WOE method (Table 1: 

Original Land Cover Types, Description, and Reclassification. The reclassification is similar to 

the one done by Graesser et al. (2015).
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). I chose variables based on my understanding of the system and prior research that indicates 

that they are likely to influence the spatial pattern of land cover change (Carlson et al., 2013; 

Galford et al., 2015). Some of these variables are dynamic (e.g., distance to deforestation), while 

others are static (e.g., distance to town) across time and scenarios. The WOE method requires 

that continuous variables be converted to categorical variables before running the procedure. All 

variables were re-sampled to 250 m resolution in ArcGIS Pro (ESRI, 2019) so that they had the 

same resolution as the land cover maps.  

 

Dinamica allows the user to measure similarity between spatial variables and test the 

assumption that they are independent of one another. To support such assessment, the program 

produces several coefficients calculated in the Weights of Evidence process. These include 

Crammer’s coefficient (Goodacre et al., 1993) which indicates correlation between spatial 

variables, ranging from 0 (full independence) to 1 (full association). Retaining variables with 

high association may produce results overly influenced by those variables. I calculated 

Crammer’s coefficient at the country level per land cover transition, and removed variables with 

a coefficient higher than 0.45 (Table 3,Table 4,Table 5, and Table 6). Galford et al. (2015) also 

removed variables with a coefficient above 0.45 and the variable with the least independence 

from the entire set was be removed. 

 

Spatial variables might have a different influence on land cover across space. For 

example, distance to roads could be very influential in determining areas that are likely to 

experience forest loss in some states, while in other states variables such as distance to rivers or 

to towns might play a bigger role. Thus, WOEs were estimated at the first administrative level 

(e.g., for each state) to account for the variable influence that different variables might have 

across regions. 

 

4.2.4 Crop Area, Yield, and Price Data 

 

Annual timeseries of harvested area and yields for soy and other crops were gathered 

from agricultural institutions and associations from each country in BBAP. In Argentina, data 

were downloaded from their Ministry of Production and Employment (Ministerio de Agricultura, 

Ganaderia y Pesca, 2019) and were available annually from 1970 to 2017 at the municipality 

level. In Brazil, data were downloaded from SIDRA (Sistema IBGE de Recuperação 

Automática, 2019), and were available on an annual basis from 1970 to 2017 at the municipality 

level. For Bolivia these data were available at the municipality level from ANAPO (Asociación 

de Productores de Oleaginosas y Trigo, 2019), the Association of Producers of Oilseeds and 

Wheat. For the years 2010 to 2017 the data was available from their website, and for the years 

1988 to 2009 the data were synthesized from ANAPO reports by le Polain de Waroux et al. 

(2017) For Paraguay, data were sourced from production reports from INBIO (Instituto de 

Biotechnologia Agricola, 2019), the Institute of Agricultural Biotechnology ,(at the provincial 

level from 2010 to 2015.  

For soy prices (USD/ha), I used annual country-level 2001-2014 data provided by le 

Polain de Waroux et al. (2017) synthesized from various data sources including NGOs and 

government institutions in the four countries. 
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4.3 Supply Chain Data 

 

To model soy commodity flows handled by actors with ZDCs, I used data from the online 

platform Trase (trase.earth, 2019). For all BBAP countries, for exported soy, Trase provides 

annual data including quantity of soy produced (tons), the names of traders handling soy, export 

destination (country), and port of export. These data are available for the years 2003-2017 at the 

municipality level in Brazil, for 2013-2017 at the department level in Paraguay, and country 

level in Argentina (2013-2017) and Bolivia (2015-2018). Trase also provides this information for 

soy consumed domestically for Brazil and Paraguay. To estimate annual domestic soy 

consumption from 2016-2018 in Argentina and 2014-2015 in Bolivia, I used reports from the 

USDA Foreign Agricultural Service (Meador & Sandoval, 2018; G. E. Nolte, 2015). This 

information was used to calculate transaction costs associated with ZDCs as part of the soy rent 

model, and to simulate future ZDC implementation by company. 

In some cases, Trase did not report which port received soy for a municipality in Brazil 

and Paraguay. In these municipalities, I used information from neighboring municipalities (i.e., 

municipalities that share a border with the municipality without port data) to estimate sourcing 

patterns, as follows: 

 

1)                                                                    𝑃𝑖,𝑗 =  
∑

𝑉𝑒,𝑗

𝑉𝑒

𝑛
𝑒=1  

𝑛
 

 

Here, P is the proportion of total soy volume exported via port j from municipality i with 

no port data, V is the volume of soy produced in neighboring municipality e and the volume 

exported to port j, and n is the number of neighboring municipalities with port data. 

 

4.3.1 Soy Yields 

To predict soy yields in areas where soy was not grown in the past, I developed a model 

of potential soy yields. For Brazil and Argentina (Figure 3), in regions where yields were not 

available, I modeled soy yields at the municipality level using a linear model with multiple 

biophysical variables associated with soy agriculture. These consist of soil type (Hengl et al., 

2017), precipitation in mm (Fick & Hijmans, 2017), temperature in °C (Fick & Hijmans, 2017), 

and direct normal irradiation in kWh/m (Global Solar Atlas, 2017). To factor in potential 

differences between states, such as technology or fertilizer use, my model incorporated a 

categorical variable representing the first administrative level (i.e., state).. This model was also 

used to predict future yields. 

2)                              𝑌𝑖 = 𝛽0 +  𝛽1𝑆𝑇𝑖 +  𝛽2𝑃𝑃𝑖 + 𝛽3𝑇𝑃𝑖 +  𝛽4𝐷𝐼𝑖 +  𝛽5𝐴𝐷𝑖 

 Here Y is the yield for municipality i, ST is the mode soil type, PP is the mean yearly 

precipitation, TP is the mean yearly temperature, DI is the mean direct normal irradiation, and 

AD is the administrative area (state) the municipality is in. 
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Some Brazilian and Argentinian states reported no soy yields. In Argentina, these states 

produce no other agricultural crops (Viglizzo et al., 2011) and are likely too dry to expect 

production in the near-term (Aramburu Merlos et al., 2015), so I assumed that no soy could be 

grown here in the future and did not predict yields in these areas. In Brazil, these states were in 

the same climate regions and biomes as others that produce soy, so to predict potential yields in 

these states, I first calculated the average yield in neighboring states (i.e., states that share a 

border with the state of interest) and then calculated the potential yield in the state with no soy 

production as follows: 

3)                                                                       𝑌 𝑖 =  
∑ 𝑌 𝑒,𝑖

𝑛
𝑒=1

𝑛
 

  

Here, Y indicates soy yield (kg/ha) for state i, n is the number of states with soy yield data, and e 

is each neighboring state. 

 

 For Bolivia and Paraguay (Figure 4), limited time series data prevented development of a 

robust linear model Thus, in these countries I used the average national soy yield, and soy yields 

for these countries did not change over time. Soy yield was used to calculate soy rent, one of the 

spatial variables used in the WOE method. Yields were also used to calculate annual changes in 

soy production based on simulated changes in soy area. 

 

4.4 Validation 

 

The simulated land cover was compared to actual land cover using a fuzzy comparison 

method, also known as fuzzy similarity test (Hagen, 2003; Power, Simms, & White, 2001). This 

approach compares maps of simulated and observed changes within windows of varying sizes 

surrounding the center cell of interest. A matching cell found within a window takes a value of 1, 

while non-matching cells take a value of 0, then overall map similarity is calculated by averaging 

the similarity scored of all map cells. I compared the simulated map to the observed map and 

vice versa, and then chose the lower score from the two comparisons. 

 

For cropland expansion, the model produced a 56% fit within a 1.75 km window (7 x 7 

cells), which improved to a 69% fit with a 2.75 km window (11 x 11 cells) (Figure 11). The 

similarity between other landcover changes varied between 40% and 80% (Table 9). This is in 

line with other recent studies simulating land change with Dinamica EGO, Galford et al. (2015) 

reached a 78% fit within a 3.5 km search radius (7 x 7 cell window) and 90% fit within a 5.5 km 

search radius (11 x 11 cell window), while Silvestrini et al. (2011) reached a fit between 60-70% 

within a 22 km search radius (11 x 11 cell window). 

 

4.5 Agricultural Rents 

 

All prices were adjusted for inflation and converted to 2015 US dollars (USD), which is 

the amount used for every monetary value used in this project. Potential agricultural rents from 

soy production (R, USD), composed of gross farm-gate revenue (U, USD) minus operation (O, 

USD), transaction (T, USD), and travel (TR, USD) cost, were calculated at for each pixel p, time 
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t, land cover m, and municipality i as follows: 

4)                                                       𝑅𝑝,𝑡 = (𝑈𝑖,𝑡 − 𝑂𝑖,𝑡 − 𝑇𝑖,𝑡 )  ×  𝑇𝑅 

Gross farm-gate soy revenue was estimated for each municipality by multiplying annual 

soy yield (Y, tons/ha) by soy price (P, USD/ton) and pixel area (PA, hectares):  

 5)                                                                𝑈𝑖,𝑡 = 𝑌𝑖,𝑡 × 𝑃𝑡 × 𝑃𝐴 

While soy agriculture incurs several costs including the cost of labor, machinery, and 

fertilizers, information on all relevant costs was not available across BBAP. Thus, I use fertilizer 

cost as a proxy for operational costs. Fertilizer use (FP, kg/ha) was available at the regional level 

(similar to Biome) for Brazil for the year 2006 (FAO, 2006), and country level for Argentina, 

Bolivia, and Paraguay for the year 2010 (Rosas, 2012). Fertilizer price (FU, USD/mt) data was 

sourced from the World Bank Commodity Price Data Index (World Bank, 2019) at the global 

level, for the years 2000-2018 .Past the year 2018 I continued using 2018 prices. Operational 

costs at the pixel level were calculated as follows:  

6)                                                              𝑂𝑖,𝑡 = 𝐹𝑈𝑖 ×  𝐹𝑃𝑡 × 𝑃𝐴 

 I hypothesize that ZDCs generate transaction costs, the cost of compliance or non-

compliance with a ZDC. Such costs may include licensing fees, payments to third-party auditors, 

and/or costs of protecting forests (R.D. Garrett et al., 2019). I assume that these costs depend on 

the degree of ZDC adoption within a region, with higher costs in regions with more committed 

soy volumes such that transaction cost is a function of proportion of soy production (V, tons) 

covered by a ZDC (committed) relative to total soy production:  

The relationship between ZDC adoption and effects on forest land rent may be non-linear 

such that ZDC adoption might not have a substantial effect on soy rents until the volume traded 

under ZDCs is relatively high (R.D. Garrett et al., 2019). To reflect this hypothesized 

relationship between the fraction of soy production under ZDCs to total soy production, I used 

the following logistic relationship: 

 

7)                                                       𝑇𝑅 =  
100

(1 +  𝑒
−100 (

𝑉𝑐𝑜𝑚𝑚𝑖𝑡𝑡𝑒𝑑
𝑉𝑡𝑜𝑡𝑎𝑙

 −0.5)
 )

 

  

To reflect the desirability of different land cover types, in natural vegetation areas (forests 

and shrubs) I multiplied rent by this transaction cost (TR), and for areas not in this category I 

multiplied rent by 1/TR. 

 

4.6 Travel Cost 

 

I calculated soy travel cost from each pixel in BBAP to port (for exports) or location of 

domestic consumption. First, I developed a friction map that represents the cost of moving soy 

through each pixel. To generate this cost estimate, roads (paved and unpaved) sourced from 

OpenStreetMap (“OpenStreetMap,” 2018), and water bodies (rivers and lakes) from Global 
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Surface Water (Pekel, Cottam, Gorelick, & Belward, 2016), were overlaid on the land cover 

map. Then, each class including roads and water bodies was assigned a friction value 

representing the cost (USD) of transporting soy one kilometer through each class. These values 

are adapted from (Vera-Diaz et al., 2008) (Table 7). Travel cost from each pixel to each port was 

then calculated with Dinamica’s “Calculate Cost Map” tool, which calculates the least cost 

pathway to reach a port, using the friction map as the landscape and port and domestic 

consumption locations as destinations. In Brazil, soy destined for domestic consumption was 

routed to Rio de Janeiro, given the large population in this city as well as soy’s known use for 

chicken feed, which is concentrated in the south (Smaling, Roscoe, Lesschen, Bouwman, & 

Comunello, 2008). For Paraguay, Bolivia, and Argentina, domestic consumption was routed to 

national capitals. 

 

Next, to account for cases where soy from a single pixel is sent to several ports, the 

weighted average travel cost to all ports per pixel (C, USD/ton) was calculated from the 

proportion of total soy volume (V, tons) produced in each administrative unit i exported from 

that administrative unit to each port (j), as well as the travel cost (T, USD/ton) from the pixel (k) 

to the port: 

 

8)                                                                  𝐶𝑘  ∑ 𝑇𝑘,𝑗

𝑛

𝑗=1

× 
𝑉𝑖,𝑗

𝑉𝑖
 

 

Finally, I converted these per ton costs to total travel cost (Z, USD) based on soybean 

yield (Y, tons/ha) and area (PA, ha) for each pixel k: 

 

9)                                                               𝑍𝑘 = 𝐶𝑘  ×  𝑌𝑘  ×  𝑃𝐴  
 

4.7 Quantity of Land Cover Change 

 

For future scenarios, the methods chosen to predict the quantity of change between land 

cover categories depends on the research question. The amount of land to be converted could be 

derived from future goals (Carlson et al., 2013), from a linear regression using historical data 

(Galford et al., 2015), or simply past observed changes (Gibbs et al., 2015).  

In future simulations, the quantity of soy expansion or contraction was simulated 

according to observed changes in area (for 2015-2017) or projections (2018-2030) at the country 

level. Non-soy land cover transitions were based on the average of the last three years of 

available land cover data (2011-2014) at the state or province level (Figure 8). I chose these 

years because they were the representative years available for all other land cover change. 

Specifically, transition matrices describing the gross rates of change (i.e., the number of pixels 

per year) were calculated at the state or province level and were then used to drive future change 

within those administrative regions. 

 

4.7.1 Cropland Areas and Double Cropping 
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In parts of BBAP, soy is double cropped with other crops such as maize (Zalles et al., 

2019).  Because my model requires crop area without double cropped crops, I calculated this 

“true” crop area by removing double cropped area from the total crop area, the sum of all crop 

harvested area regardless of double cropping. For Bolivia and Paraguay, reports from each 

country differentiated between the first crop (“zafra”) and second crop (“zafrina”), and thus I 

only used the first crop (“zafra”) in my model. For Brazil, I used an approach similar to Zalles et 

al. (2019) who focused on beans, maize, and wheat as they are the main crops known to be 

double cropped in Brazil. SIDRA has data available for double cropped beans and maize 

available, which I then subtracted from total area for each municipality. I also subtracted all 

wheat from the total area, as most wheat in Brazil tends to be a winter crop and is grown with a 

summer crop (Zalles et al., 2019). In Argentina, all barley and wheat are double cropped with 

either soy or another crop (G. Therisold, personal communication, April 2019). Thus, for 

Argentina I subtracted these two from total soy area for each municipality. A comparison of this 

new area calculated from government sources, and total cropland area from land use maps show 

an agreement for both Brazil (Figure 6) and Argentina (Figure 7). 

 

4.7.2 Soy and Non-Soy Crop Transitions 

 

Soy expansion in the model is driven by changes in soy area, yet the land cover maps did 

not differentiate between non-soy crops and soy. To estimate past changes in soy and non-soy 

crops from 2007 to 2014, I quantified the annual gross expansion or contraction (A, hectares) of 

soy (S) and all croplands including soy (C), accounting for double cropped area (D, hectares) at 

the country level from government-reported (G) sub-national (i) cropping information as 

follows: 

 

 10)                                                             ∆𝐴𝑆,𝐺 =  ∑ ∆𝐴𝑆,𝐺,𝑖
𝑛
𝑖=1  

11)                                                            ∆𝐴𝐶,𝐺 =  ∑ ∆𝐴𝐶,𝐺,𝑖 − 𝐷

𝑛

𝑖=1

 

Then, I calculated the annual proportion of total government-reported expansion or 

contraction attributed to soy, and multiplied this by annual gross cropland expansion or 

contraction observed in the land cover dataset (LC) to estimate cropland area change for soy and 

non-soy (NS) crops: 

12)                                                      ∆AS,LC = ∆AC,LC ×
∆AS,G

∆AC,G
 

13)                                                          ∆ANS,LC = ∆AC,LC − ∆AS,LC 

 

  

For future simulations, I used observed country-level soy area from 2014 to 2017 (FAO, 

2019), and global soy area projections from 2018 until 2028 (OECD & FAO, 2018) (Figure 9). I 

used the annual mean global soy expansion rate from 2018 to 2028 to estimate soy area in 2029 

and 2030. Then, to calculate annual soy area (A) for each country (i) in BBAP for each year t 

from 2018 to 2030 from global (g) soy area, I scaled global production based on the fraction of 
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global production from each BBAP country in 2017, the last year of soy data available from 

FAO: 

 

14)                                                             Ai,t =  Ag,t  ×
Ai,2017

Ag,2017
 

 

These annual country-level soy areas were then converted to change in area for use in the 

model. 

 

         One important limitation on future simulations is the lack of expansion for soy areas into 

non-cropland soy areas. Given that the original land cover maps do not reflect these differences 

by categories, this process was not calibrated in the model. Soy contraction was also not 

permitted in the model unless specified in the area harvested expected for that year, to ensure 

model met expected demand.  

 

4.7.3 ZDC Sourcing Behavior Groups 

 

To model future soy expansion under ZDCs, I first grouped soy area added demand into 

domestic and export. Then, exported soy area was further divided into supply chains with an 

implemented ZDC and those with no implemented ZDC, using company market share 

(trase.earth, 2019) and information regarding ZDC adoption (Ermgassen et al., 2019), (Table 8). 

For companies with ZDCs, commitments vary in terms of coverage areas, land cover classes 

protected, commitment start dates, and cutoff date for deforestation (Table 8). To account for 

these differences in commitments, I grouped companies by these commitment characteristics into 

what I have tentatively called “sourcing behavior groups”. The group that a company belongs to 

can change over time if the commitment characteristics change. 

 

4.8 Future ZDC Implementation Framework 

 

Two approaches were applied to implement ZDCs in the model. The first (“soy rent 

modification”) alters the soy agricultural rents in accordance with the assumption that 

compliance or non-compliance with ZDCs alters landholder profits through mechanisms 

including market exclusion, costs of certification, monitoring costs, and credit availability (see 

section Agricultural Rents). This method does not guarantee full compliance from these actors, 

given that agricultural rents are just one of many variables used to create soy expansion 

probability maps. Since this method depends on subnational trader-specific soy sourcing data to 

allow subnational variation in rent maps, it was applied only in Brazil and Paraguay.  

 

The second method is a “probability map modification” that manipulates the probability 

maps such that soy expansion driven by demand in a ZDC supply chain is not developed in 

landcovers that are off-limits according to ZDC rules (i.e., natural land covers such as forest or 

shrublands, including those converted after the ZDC implementation date). This method assumes 

full compliance by traders in such areas and thus does not permit any expansion of ZDC soy into 

off-limits areas. This method was implemented throughout BBAP.  
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Because the Brazil’s Soy Moratorium was already being implemented during the model 

calibration period, its influence on land cover change should already be incorporated into 

probability maps in the Amazon. All companies with future ZDCs are already party to the Soy 

Moratorium. Therefore, my model does not alter probabilities or land rents in the Brazilian 

Amazon. 

 

4.8.1 Future Scenarios  

 

I developed five future scenarios of ZDC implementation across BBAP from 2014-2030. 

Scenario development was based on an assessment of current company commitments as well as 

an understanding of realistic future trajectories developed from recent literature and supply chain 

developments. All scenarios assume the same annual soy supply at the national level (Crop Area, 

Yield, and Price Data). Future projections extend to 2030 because projections of future soy 

demand extend to 2028 (OECD & FAO, 2018), commitments (29%) have a target 

implementation date of 2025 and beyond, and five years should be sufficient time to analyze 

their effects on land cover (R.D. Garrett et al., 2019). I assumed that all commitments were 

implemented as a “zero-gross” deforestation because they were either specified as zero-gross by 

the commitment, or no information was provided about this aspect of the commitment. For all 

scenarios, company market share remains fixed at levels in 2017 year at the country level, but a 

company may shift its sourcing locations freely within a country. Finally, forests and shrublands 

were considered as protected by commitments for all ZDCs in all scenarios because many global 

commitments refer to protecting natural vegetation areas beyond forests (Table 8). Scenarios 

differ in ZDC implementation date, regional coverage (e.g., the Cerrado or the Amazon), the 

number of companies adopting a ZDC, and the method for implementing the ZDC. Each 

scenario is described briefly below. 

 

4.8.1.1 No ZDCs 

 

This scenario represents the future without any company commitment implementation and 

serves as a baseline to understand the potential benefits of 2025 ZDCs. No ZDC mechanism is 

implemented. 

 

4.8.1.2 ZDCs – 2025 – Probability Map 

 

This scenario represents a future in which companies implement their pledges by 2025. The 

only companies that have a stated target implementation date are Bunge (2025), Cargill (halving 

deforestation by 2025), and Denofa (2030). Denofa was not in Trase’s database. Here, ZDCs are 

implemented using probability map modifications.  

 

4.8.1.3 ZDCs – 2025 - Rent Changes 

 

This scenario is equivalent to the 2025 Probability Map scenario, except that ZDC 

implementation occurs by only affecting only soy agricultural rents. It is limited to Brazil and 

Paraguay as they are these only countries with subnational soy sourcing data that allow variation 

in rents across different levels of ZDC implementation. 
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4.8.1.4 ZDCs – Early implementation 

     

This scenario is the same as the “2025 – Probability Map” scenario, except it implements 

all commitments in 2020. I developed this model to understand the effect that earlier ZDC 

implementation may have on regional land cover change. 

 

4.8.1.5 ZDCs – 2025 Probablity Map + Cerrado and Gran Chaco Moratorium 

 

This optimistic scenario represents a future that combines the 2025 Probability Map 

scenario with a moratorium on soy expansion into natural land cover in the Cerrado and Gran 

Chaco ecoregions starting in 2022 (i.e., a cutoff date of 2022). A Cerrado moratorium is of 

interest (Soterroni et al., 2019), and recent supply chain initiatives reduce deforestation caused 

by their operations in the region (Prager, 2019). While there are no specific ZDCs for the Gran 

Chaco, the idea of implementing a soy moratorium in both regions has been proposed in the past 

(Rainforest Action Network, 2008), and public pressure to reduce deforestation associated with 

soy in the region is mounting (Gonzales, 2018). 

5 Results 

 

5.1 Land Cover Change 2001-2014 

 

 From 2001 to 2014, net natural land cover area in BBAP declined at a rate of -0.29% yr-1, 

while agricultural land expanded by +0.53% yr-1 (Figure 10). However, these net rates mask 

variable trends across time and land covers. Forest area declined throughout the study period (-

0.52% yr-1). Croplands expanded rapidly from 2001 to 2008 (+4.75% yr-1) but changed little 

from 2009 to 2014 (+0.35% yr-1). Pastureland area increased from 2001 to 2005 (+0.64% yr-1) 

then declined slightly from 2006 to 2014 (-0.03% yr-1). Shrubland area declined from 2001 to 

2009 (-0.95% yr-1) and increased by +3.19% yr-1 from 2010 to 2014. The ‘other’ category 

expanded by +0.08% yr-1 from 2001 to 2014. By 2014, the study region was 46% forest, 14% 

shrubland, 28% pasture, 7% cropland, and 5% other. 

 

 From 2011-2014, forest loss was largely attributed to pasture expansion (62% of total 

forest loss), shrub expansion (26%), and crop expansion (8%, Figure 8). Shrublands regrew to 

forest (58%) or were converted to pasture (33%). Pasture regrew to forest (38%) and shrubs 

(28%), while loss of cropland areas was typically due to pasture expansion (61%), forest 

regrowth (21%) and shrubland expansion (16%).  

 

5.2 ZDC Implementation Method Comparison 

 

 Comparison of ZDC implementation methods indicated relatively small inter-method 

differences in the locations of soy expansion and rates of land cover conversions. In Paraguay, 

compared to the soy rent modification, the probability map approach generated 2% and 0.75% 

more soy expansion into the Wet Chaco and Atlantic Forest ecoregions, respectively, and a 

reduction of soy expansion in the Gran Chaco. In Brazil, compared to soy rent modification, the 
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probability map model led to a 0.4% increase in soy expansion into the Cerrado ecoregion, and 

1.7% less soy expansion into the Amazon ecoregion. 

 

Compared to the soy rent modification,  the probability map modification, method 

resulted in 0.2% less soy expansion into natural land cover areas across Brazil and Paraguay 

(Figure 15). Specifically, altering agricultural rents rather than changing probabilities increased 

soy expansion into shrub areas by 0.7% and decreased expansion into pastureland and forests by 

0.1% and 0.2%, respectively. The largest relative increases in soy expansion were 0.7% 

additional expansion into shrubland in Brazil, and 1.4% more expansion into pastureland in 

Paraguay. The greatest relative decreases were a 0.05% decline of soy expansion into forests in 

Brazil and a 1.7% decrease into forests in Paraguay. Because of these relatively small differences 

between ZDC implementation methods, the remainder of the results presents only the 2025 ZDC 

scenario using the probability map modification. 

 

5.3 Spatio-temporal patterns of soy expansion  

 

 Under the No ZDC scenario total soy expansion across BBAP from 2015-2030 was 

12,075,819 ha (Figure 16). Soy expansion was stable across all scenarios, just 0.0013% less 

under the 2025 ZDC scenario and 0.0017% less under the Gran Chaco and Cerrado Moratorium 

scenarios (Figure 18). 

 

Regions with high ZDCs implementation rates, including the Cerrado and Gran Chaco, 

tended to experience reduced soy expansion (Figure 13). In Brazil’s Cerrado ecoregion, soy 

expanded by 3,993,000 ha under the No ZDC Scenario, with relative expansion declines of 

2.22% and 3.16% in the 2025 ZDC and Gran Chaco and Cerrado moratorium scenarios, 

respectively. This soy expansion was displaced to other Brazilian biomes. When compared to the 

No ZDC scenario, in other scenarios soy expansion increased in the Amazon by 3.35% (2025 

ZDC) and 4.89% (Gran Chaco and Cerrado moratorium) and in the Atlantic forest by 0.50% 

(2025 ZDC) and 0.88% (Gran Chaco and Cerrado moratorium). 

 

 In Argentina’s Gran Chaco, soy expanded by 841,000 ha in the No ZDC scenario but 

decreased by 0.71% in the 2025 ZDC scenario and by 2.62% in the Gran Chaco and Cerrado 

moratorium scenario. In the Paraguayan Gran Chaco, the No ZDC scenario generated 19,000 ha 

of soy expansion, with 8.39% and 16.19% less soy expansion in the 2025 ZDC and Gran Chaco 

and Cerrado moratorium scenarios, respectively. In Bolivia’s Gran Chaco region, soy expanded 

by only 5,000 ha in the No ZDC scenario and increased by 3.02% in the 2025 ZDC scenario and 

decreased by 1.39% in the Gran Chaco and Cerrado moratorium scenario.  

 

5.4 Land use conversion for soy expansion 

 

Across BBAP, in the No ZDC scenario, about 5,515,000 ha of natural vegetation (i.e., 

forest and shrubland) was converted for soy expansion. The 2025 ZDC scenario reduced natural 

vegetation clearing, with 2.6% less forest conversion and 4.1% less shrubs conversion, while the 

Gran Chaco and Cerrado Moratorium Scenario led to a 2.9% less forest conversion and 5.2% 

less shrubs conversion (Figure 12). 
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The 2025 ZDC scenario, in comparison with no ZDCs, predicted that soy would expand 

by an additional 2.5% into pastureland and 10% into other, with reduced expansion into forest (-

2.6%) and shrubland (-4.1%). These general trends held across all countries in BBAP. In Brazil, 

large relative changes included increased expansion into pastureland (+3.3%) and reduced 

clearance of forests (-2.0%) and shrubland (-4.0%). In Argentina and Paraguay, expansion into 

pastureland increased (+1.4% and +3.8%, respectively), and forest conversion to soy decreased 

(-4.7% and -4.0%, respectively). Bolivia had the least projected future soy expansion among 

BBAP countries and has smallest market share of ZDC commitments in BBAP (Figure 5). Thus, 

Bolivia experienced small relative changes across scenarios (+0.48% expansion into pastureland, 

-2.04% expansion into forests). 

 

Under the Gran Chaco and Cerrado moratorium, compared to the no ZDC scenario, soy 

expanded by an additional 3.2% into pastureland and 3.6% into other, with reduced expansion 

into forest (-2.9%) and shrubland (-5.2%, Figure 12). These changes mainly occurred in Brazil’s 

Cerrado region, where expansion increased into pastureland (+4.5%), and decreased into forests 

(-4.8%) and shrubland (-5.5%). In the other three countries, this scenario produced results similar 

to those of the 2025 ZDC scenario, with overall changes in in soy expansion into any land cover 

totaling <1,000 ha per country from 2014 to 2030. This is due to the relatively small projected 

soy expansion into the Gran Chaco ecoregion, as well as the relatively small cropland area in the 

Gran Chaco compared to total agricultural areas in Argentina, Paraguay, and Bolivia.  

 

5.5 Changes with an earlier implementation date  

 

 Implementing global commitments in 2020 instead of 2025 would have led to a 

substantial decrease in soybean expansion into the Cerrado and Gran Chao regions (Figure 12). 

Compared to the 2025 ZDC scenario, the Earlier ZDC scenario reduced soy expansion into 

Brazil’s Cerrado ecoregion by 3.5%, and into Argentina’s Gran Chaco by 1.1%. In Brazil, there 

was a 1.6% increase in soy expansion into the Amazon when comparing the same two scenarios.  

 

Earlier implementation also reduced conversion of natural land cover areas by about 

6.7% compared to 2025 implementation, instead pushing soy expansion into already-cleared 

areas (Figure 12). In Brazil, earlier implementation produced substantial changes in soybean 

expansion into pastureland (+8.3% compared to 2025 scenario), forests (-6.3%), and shrubland (-

6.8%). In Argentina and Paraguay, soy expansion into pastureland increased (+0.8% and +6.5%, 

respectively), and expansion into forests decreased (-3.3% and -7.6%, respectively). For Bolivia, 

soy expansion into forests decreased (-5.16%) while expansion into the ‘other’ land cover class 

increased (+3.06%). 

 

5.6 Natural Landcover Conservation 

 

Relative to the no commitment scenario, by 2030 the 2025 ZDC scenario produced 

0.04% more remaining forest (242,606 ha), and the Cerrado and Gran Chaco moratorium 

scenarios resulted in 0.03% more forest (153,825 ha, Table 10). Changes in shrublands followed 

a similar pattern, with 0.06% more shrublands remaining under the 2025 ZDC scenario (133,288 
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ha additional shrublands), and 0.05% more shrublands under the Gran Chaco and Cerrado 

moratorium scenario (113,781 ha). While these results seem unusual, inherent randomness in the 

model as well as the multiple land cover changes simulated that aren’t soy (Figure 8) could 

account for this result. A future recommendation for further projects would be to run simulations 

multiple times to obtain means and standard deviations, to account for inherent model 

randomness.  

 

  This natural land cover conservation was distributed across all major ecoregions. In the 

Amazon ecoregion, compared to the No ZDC Scenario, the 2025 ZDC scenario generated 0.04% 

(126,137 ha) more forest and the Gran Chaco and Cerrado Moratorium scenario led to 0.03% 

(87,168 ha) additional forest (Table 10). The Cerrado had a 0.16% (187,262 ha) increase in 

natural land cover in the 2025 ZDC scenario, and a 0.12% (91,093 ha) increase in the Gran 

Chaco and Cerrado moratorium scenario compared to the No ZDC scenario. Finally, the Gran 

Chaco had a 0.05% (17,575 ha) increase in natural land cover in the 2025 ZDC scenario, and a 

0.09% percent (32,500 ha) increase in the Gran Chaco and Cerrado moratorium scenario, 

compared to the No ZDC scenario. 

6 Discussion 

 

 By developing a land change model with a mechanism for simulating the implementation 

of corporate zero-deforestation commitments in the South American soy sector, I investigated 

how ZDCs may affect soy expansion and natural land cover areas. My results indicate that ZDC 

implementation reduces net loss of natural land cover, despite displacement of soy expansion 

from regions where ZDCs are implemented to other areas with less protection. These model-

based results support findings from previous empirical studies that suggest ZDC implementation 

does lead to reduced natural land cover conversion (Gibbs et al., 2015), and also provide 

suggestions of where intra-country leakage may occur. 

 

My results suggest soy expansion patterns similar to a recent study that also implemented 

ZDCs in a spatial modeling framework. Soterroni et al. (2019) investigated the effects of a 

potential soy moratorium in the Cerrrado and found that such a moratorium would result in 

reduced regional natural land cover loss (Soterroni et al., 2019). Their results indicated soy 

expansion in the Cerrado would decrease by 10% (0.34% yr-1) under a 2020 to 2050 Cerrado 

moratorium scenario when compared to the baseline. My Gran Chaco and Cerrado scenario 

indicates a 3% (0.19% yr-1) decrease in the Cerrado by the year 2030. Compared to my results 

that indicated more relative leakage of forest clearing for soy into the Amazon biome, Soterroni 

et al. (2019) reported more leakage into other Brazilian biomes, such as the Atlantic Forest 

biome. This difference might be the result of not incorporating Amazon Soy Moratorium ZDCs 

into my model (section 4.8). To better account for the Amazon Soy Moratorium, future model 

versions should include these commitments in the model calibration process. 

 

By creating different scenarios differing only in ZDC implementation details, I was able 

to produce model-based results that indicate how these differences may alter soy expansion into 

diverse land covers. Other variables remained constant throughout the scenarios, including the 

total annual soy expansion area, which was simulated at the country level. While earlier 

implementation dates are expected to reduce natural land cover conversion (R.D. Garrett et al., 
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2019), my approach was able to measure not only the effect of such accelerated timelines, but 

also compare these outcomes with alternate regional moratorium scenarios. My results indicate 

that earlier ZDC implementation resulted in more conservation of natural land cover than 

regional moratoriums in the Cerrado and Chaco. While this is not a perfect comparison, because 

the earlier ZDCs were implemented in 2020 and the moratoriums were put in place in 2022, they 

do illustrate a previously unexplored comparison of what implementation characteristics have a 

bigger impact. Future comparisons not included in this study could revolve around the number of 

global ZDCs adopted by companies, which in my study remained unaltered. 

 

My model was designed to allocate annual soy expansion at the country level, which 

allowed intra-country leakage (see section Crop Area, Yield, and Price Data). While leakage was 

forced by the model’s design, the distance over which soy expansion ‘leaked’ was substantial. 

My model only limits conversion of natural land cover areas. While I expected some expansion 

to be displaced, I expected most of it would remain within the same region where ZDCs were 

implemented, given no biophysical scarcity of already cleared areas in these regions (e.g., the 

Cerrado). Instead, soy expansion was displaced to locales distant from ZDC implementation 

(e.g., the Amazon). 

 

My research builds upon findings from major previous investigations of the effects of 

ZDC implementation on deforestation, as well as spatially explicit models focused on policy 

interventions attempting to control deforestation. When compared other recent work focusing on 

ZDC implementation (Soterroni et al., 2019), my model had both a smaller spatial (250 meter) 

and temporal (1 year) resolution (compared to 50km and 5 years), as well as larger geographical 

extent which covered four countries. This increases the frequency of observations that can be 

made, by being yearly, and the detail of these, as my model has a 40,000 times finer resolution. 

By covering a larger geographical region, my model also has increased flexibility of scenarios, as 

they can be altered at the country level. While the use of agricultural rents has been a previous 

feature (le Polain de Waroux et al., 2018; M. del C. Vera-Diaz, Kaufmann, Nepstad, & 

Schlesinger, 2008; Walker & Solecki, 2004), the way I used rents to model ZDCs is novel. To 

my knowledge, my model is the first to include the idea of “transaction costs” specific to the type 

of land cover, to reflect the potential for conservation efforts to make development of already 

cleared land more profitable and natural areas less profitable. Furthermore, while other works 

have used yield models to estimate potential soy revenues across space (M. del C. Vera-Diaz et 

al., 2008), using the Trase dataset to create a rent map from observed soy sourcing patterns 

created more realistic transport cost estimates that accounted for the variability observed in soy 

export patterns across time in model calibration, and the fact that soy was often exported via 

distant rather than nearby ports. 

 

The results of my research indicate the potential for current global ZDCs, if implemented, 

to reduced soy expansion into natural land cover areas. While I did not conduct a per company 

analysis, implementation of commitments from six companies by 2025 resulted in 2% (110,000 

ha) less natural land cover conversion for soy in the BBAP region. This information could be 

used by companies to showcase the positive effect their adoption of ZDCs will have not only in 

their supply chains, but in the soy sector. Critically, I found that the implementation date of these 

commitments may be more important than their spatial coverage, which suggests that civil 
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society should not only campaign for more companies to adopt ZDCs, but also focus on 

advocating already committed companies to accelerate implementation. 

7 Limitations 

 

The results presented here are limited in several ways. First, while the model was able to 

endogenously simulate intra-country leakage by allocating annual soy expansion areas at the 

country level, I was unable to incorporate inter-country leakage. Potentially, increased domestic 

ZDC implementation could reduce soy supply from that country by limiting areas suitable for 

soy expansion. This may lower market prices which could alter patterns of soybean expansion 

elsewhere (Morton et al., 2006). Because I did not incorporate these market effects into my 

model, the model likely overestimates domestic soy expansion at the country level and does not 

consider international leakage. Coupling the regional Dinamica EGO model with a global 

economic model could allow for such international leakage (Soterroni et al., 2019). 

 

Second, because my research questions focused on the effects of ZDC implementation in 

the soy sector, my model is driven by future projected changes in soy area. Rates of land cover 

change for other croplands and land covers were derived from the observed changes from 2011-

2014. As the past is not always a good predictor of the future, incorporating future projections 

for these other land covers could provide a more realistic future outcome. 

 

Third, the land cover maps I used did not differentiate between different types of crops 

and simply has a broad “cropland” category. This lack of differentiation prevented analysis of 

past locations of soybean expansion and contraction. As a result, I was unable to calibrate the 

model to realistically simulate the spatial pattern of soy vs other crop land use change, which 

may have resulted in lower accuracy of future maps if these patterns were significantly different. 

Moreover, I was forced to estimate soy (and non-soy crop) expansion and contraction rates and 

locations for model calibration and validation process. To address this problem, I used sub-

national crop areas reported by institutional and government sources to differentiate between soy 

and other crops (See section Soy and Non-Soy Crop Transitions). This approach resulted in 

agreement between remotely sensed and reported area (Figure 6 & Figure 7), suggesting that 

these data sources are appropriate to determine soy and non-soy cropland expansion and 

contraction. Satellite-derived products that differentiate between different crop types may be one 

way to overcome this problem in the future. 

 

Finally, soy trading company commitments lack specificity in their details (e.g., forest 

definition, cut-off date of deforestation). Few companies provided the start date of the 

commitment, or what land cover type would be protected under their commitment (Table 8). 

Because of this I had to make assumptions about the implementation details, and thus my results 

might not reflect actual impacts. Actual impacts on the region will depend on the level of ZDC 

implementation, as well as the implementation details. This type of information critical for civil 

society campaigns to hold companies accountable to their promises (R.D. Garrett et al., 2019). 

For instance, recent actions by Cargill indicate a lack of intention to implement their 

commitments (Yaffe-Bellany, 2019), and cause worry of when these ZDCs will be implemented 

globally if at all. My model assumes 100% compliance, as well as no changes in company 

market share in the soy market for the region and the same export patterns (such as ports used) 



24 
 

that have been observed in the past. Global commitment market share and export patterns could 

change in the future, and while a mechanism for simulating changes in these could be created, 

the intricacies of simulating decision making by such companies is outside of the scope of my 

project. 

8 Conclusions 

 

 My results suggest that implementation of ZDCs by soy supply chain actors will result in 

less soy expansion into natural land cover, even if leakage of soy expansion to other domestic 

regions takes place. This indicates ZDC implementation by companies may not only reduce the 

“embodied” conversion of natural landcover in their supply chain but is also likely to have a net 

benefit for environmental protection overall. Furthermore, different scenarios indicated that 

while regional moratoriums in endangered ecoregions further reduced the conversion of natural 

landcover areas beyond what is expected if current company pledges are implemented, earlier 

implementation dates of these company pledges had a bigger effect on natural land conservation. 

These findings, as well as observations on the lack of specificity of commitments, indicate that 

companies should be encouraged to specify implementation dates in the near future and then act 

to implement those pledges well before these public deadlines.  

9 Acknowledgements 

 

My research could have not been possible without the help from many people who helped 

and guided me along the way. My advisor Kimberly Carlson and committee members Rachael 

Garrett and Linda J. Cox have been of great help and guidance throughout this project. Hermann 

Rodrigues was also integral in me learning Dinamica EGO, which was used to creating this 

simulation model. Other collaborators that helped me include Sam Levy, Florian Gollnow, 

Nelson Villoria, Yann Le Polain de Waroux, and Jordan Graesser. Fellow students at the 

University of Hawaii, including Tanya Torres, Charlotte Smith, Sita Ekaputri, Cole Hendrickson, 

Patrica Laporte, Bradley Weiss and Hi’ilei Casco, also provided invaluable support. This work 

was supported by the National Socio-Environmental Synthesis Center (SESYNC) under funding 

received from the National Science Foundation DBI-1052875, and by the National Science 

Foundation Geography and Spatial Sciences Program (Award #1739253). 

 

 

 

  



25 
 

10 Figures and Tables 

 

Figure 1: Brazilian Amazon, Gran Chaco, and Cerrado regions in the countries of Brazil, 

Bolivia, Argentina and Paraguay. These three are of importance because of their ecological value 

and have experienced loss of natural areas in recent years. Source: (“The Nature Conservancy,” 

2018)  
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Figure 2: 2014 Land cover map for the region of Brazil, Bolivia, Argentina, and Paraguay 

(BBAP). The map was recategorized from nine original categories to five. Source: (Graesser et 

al., 2015) 
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Figure 3: a) Past Brazil soy yields per municipality. Each dot represents a record of soy yield for 

the given year, and line representing linear regression. Source: (Sistema IBGE de Recuperação 

Automática, 2019) b) Past Argentina soy yields per municipality. Each dot represents a record of 

soy yield for the given year, and line representing linear regression. Source: (Ministerio de 

Agricultura, Ganaderia y Pesca, 2019) 
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Figure 4: a) Past Paraguay soy yields per municipality. Each dot represents a record of soy yield 

for the given year, and line representing linear regression. Source: (Asociación de Productores de 

Oleaginosas y Trigo, 2019) b) Past Bolivia soy yields per municipality. Each dot represents a 

record of soy yield for the given year, and line representing linear regression. Source: (Instituto 

de Biotechnologia Agricola, 2019) 
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Figure 5: Percent of Zero Deforestation Commitment market share in Brazil, Bolivia, Argentina, 

and Paraguay (BBAP) by countries. Source: (Ermgassen et al., 2019; NYDF Global Platform, 

2018; trase.earth, 2019) Note: Excludes Amazon Soy Moratorium 
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Figure 6: Brazil Cropland Areas By State (2007-2014). Each dot represents a state during a 

given year. Both datasets are in agreement on area. Source: Remotely sensed area:(Graesser et 

al., 2015; Mapbiomas, 2019) Reported area: (Sistema IBGE de Recuperação Automática, 2019) 
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Figure 7: Argentina Cropland Areas By State (2007-2014). Each dot represents a state during a 

given year. Both datasets are in agreement on area Source: Remotely sensed area:(Graesser et al., 

2015) Reported area: (Ministerio de Agricultura, Ganaderia y Pesca, 2019) 
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Figure 8: Land cover changes between categories in Brazil, Bolivia, Argentina, and Paraguay 

(BBAP). (2011-2014). Significant changes not including cropland involve forest to shrubs 

changes, as well as pastureland to forests and vice versa. Source: (Graesser et al., 2015; 

Mapbiomas, 2019).  
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Figure 9: Soy Area Harvested in Brazil, Bolivia, Argentina, and Paraguay (BBAP) during 2000-

2030. Areas past the year 2018 are projected. Source: (FAO, 2019; OECD & FAO, 2018) 
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Figure 10: Areas in Brazil, Bolivia, Argentina, and Paraguay (BBAP) combined by land use 

type between 2001-2014. Trends indicate forest reduction, while an increase in Shrubs and 

Cropland. Source: (Graesser et al., 2015; Mapbiomas, 2019) 
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Figure 11: Cropland expansion similarity at multiple window sizes. For cropland expansion, the 

model produced a 56% fit within a 1.75 km window (7 x 7 cells), which improved to a 69% fit 

with a 2.75 km window (11 x 11 cells). This is in line with other recent studies simulating land 

change with Dinamica EGO, see section: Validation. 
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Figure 12: Relative Difference in Landcover Converted Soybean Expansion Between 2015 and 

2030 in Brazil, Bolivia, Argentina, and Paraguay (BBAP) by Scenario. All scenarios indicated a 

reduction of forests and shrubs, and an increase in pastureland conversion, for soy expansion. 
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Figure 13: Difference in Regions of Soybean Agricultural Expansion Between 2015 and 2030 

in Brazil, Bolivia, Argentina, and Paraguay (BBAP). Reduced expansion was observed in the 

Cerrado and Gran Chaco across all scenarios.  
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Figure 14: Difference in Landcover Converted Soybean Expansion Between 2015 and 2030 in 

Brazil, Bolivia, Argentina, and Paraguay (BBAP) by country. All countries experienced a 

reduction of forests and shrubs (if present), and an increase in pastureland conversion, for soy 

expansion.  
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Figure 15: Comparison relative difference of land cover converted for soy expansion between 

“probability map” and “rent” methods to simulate ZDC adoption. Similarity between results 

indicate both methods are appropriate.  
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Figure 16: Soy Expansion (2015-2030) in the No ZDC Scenario. Regions of significant 

expansion include the Cerrado and Atlantic forest ecoregions, as well as the Argentinian portion 

of the Gran Chaco and the Argentinian Pampas. 
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Figure 17: Difference in Soy Expansion (2015-2030) Between No ZDC Scenario and 2025 ZDC 

Scenario. Regions of significant difference match those of large expansion in the No ZDC 

scenario, the Cerrado and Atlantic forest ecoregions, as well as the Argentinian portion of the 

Gran Chaco and the Argentinian Pampas. 
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Figure 18: Difference in Soy Expansion (2015-2030) Between No ZDC Scenario and Grand 

Gran Chaco and Cerrado Moratorium Scenario. Regions of significant difference match those of 

large expansion in the No ZDC scenario, the Cerrado and Atlantic forest ecoregions, as well as 

the Argentinian portion of the Gran Chaco and the Argentinian Pampas. 
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Table 1: Original Land Cover Types, Description, and Reclassification. The reclassification is 

similar to the one done by Graesser et al. (2015).  

Original Land Cover Class Description Reclassified Land Cover 
Built-Up Structures Other 

Cropland Row crop agriculture (e.g., maize, soy, wheat, 
sugarcane) 

Cropland 

Shrubs Sparse vegetation <2 meters, typically in dry 
habitats 

Shrubs 

Trees Natural tree cover Forest 

Pastureland Grazing land or natural grassland Pasture 

Bare Bare soil, ice, snow, rock, sand dunes. Other 

Plantation Citrus, vineyard, coffee, etc. Other 

Water Water Bodies Other 

Plantation Trees Tree plantations (e.g., pine, eucalyptus, banana, 
citrus, olives, palms) 

Other 
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Spatial Variable Type Source 
Categorical 
(yes/no) 

Distance to 
deforestation 

Dynamic 
Calculated from input land cover maps (Grasser et al. 2014). Calculated 
from previous year’s land cover map, defined as areas where forest was 
converted to different land cover type. 

no 

Distance to lost 
cropland 

Dynamic 
Calculated from input land cover map (Grasser et al. 2014). Calculated from 
previous year’s land cover map, defined as areas where cropland was lost.  

no 

Distance to lost 
shrubland 

Dynamic 
Calculated from input land cover map (Grasser et al. 2014). Calculated from 
previous year’s land cover map, defined as areas where shrubland was lost.  

no 

Distance to lost other Dynamic 
Calculated from input land cover map (Grasser et al. 2014). Calculated from 
previous year’s land cover map, defined as areas where other was lost. 

no 

Distance to lost 
pastureland 

Dynamic 
Calculated from input land cover map (Grasser et al. 2014). Calculated from 
previous year’s land cover map, defined as areas where pastureland was 
lost. 

no 

Distance to new 
cropland 

Dynamic 
Calculated from input land cover map (Grasser et al. 2014). Calculated from 
previous year’s land cover map, defined as areas where cropland was 
added. 

no 

Distance to new 
shrubland 

Dynamic 
Calculated from input land cover map (Grasser et al. 2014). Calculated from 
previous year’s land cover map, defined as areas where shrubland was 
added. 

no 

Distance to new forest Dynamic 
Calculated from input land cover map (Grasser et al. 2014). Calculated from 
previous year’s land cover map, defined as areas where forest was added. 

no 

Distance to new other Dynamic 
Calculated from input land cover map (Grasser et al. 2014). Calculated from 
previous year’s land cover map, defined as areas where other was added.  

no 

Distance to new 
pastureland 

Dynamic 
Calculated from input land cover map (Grasser et al. 2014). Calculated from 
previous year’s land cover map, defined as areas where pastureland was 
added. 

no 

Mean Annual 
Precipitation 

Static 
Calculated from mean monthly precipitation from worldclim.org (Fick & 
Hijmans, 2017) 

no 

Mean Annual 
Temperature 

Static 
Calculated from mean monthly precipitation from worldclim.org (Fick & 
Hijmans, 2017) 

no 

Elevation Static (Jarvis, Reuter, Nelson, & Guevara, 2008) no 

Slope Static Calculated from Elevation (Jarvis et al., 2008) No 

Soils Static Sourced from (Hengl et al., 2017) yes 

Distance to 
Slaughterhouses 

Static Calculated from Slaughterhouse locations from Moore Foundation no 

Distance to Processing 
facilities 

Static Calculated from Processing facilities locations from Moore Foundation no 

Protected Areas Static (“Protected Planet,” 2018) yes 

Ecoregions Static (The Nature Conservancy, 2018) yes 

Brazilian Biomes Static (“Global Forest Watch,” 2018) yes 

Distance to Towns Static (“Populated Places | Natural Earth,” 2018) no 

Agricultural Rents Dynamic 
Calculated from multiple sources: (Graesser et al., 2015; Jarvis et al., 2008; 
le Polain de Waroux, Garrett, Heilmayr, & Lambin, 2016; “OpenStreetMap,” 
2018; Pekel et al., 2016) 

no 

Ports Static 
Compiled from multiple government and company documents and 
websites, as well as news. 

yes 

Soy Suitability Static (B. Soares-Filho et al., 2016) yes 

Table 2: Spatial Variables Used in Simulation Model. These were picked as they are expected to 

influence land cover change in the region.   
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Table 3: Weights of Evidence variables removed from Argentina. These were removed since 

they had a crammer coefficient higher than 0.45. See section: Spatial Variables 

  

Country Transition From  Transition To Variable Removed 

Argentina Cropland Pastureland Lost Crop 

Argentina Cropland Shrubs Temperature 

Argentina Forest Cropland Precipitation 

Argentina Forest Other Precipitation 

Argentina Non-Cropland Cropland Precipitation 

Argentina Other Forest Precipitation 

Argentina Other Pastureland Ecoregions 

Argentina Pastureland Forest Ecoregions 
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Country Transition From Transition To Variable Removed 
Bolivia Cropland Forest Elevation 

Bolivia Cropland Other Elevation 

Bolivia Cropland Pastureland Processing Facilities 

Bolivia Cropland Shrubs Ecoregions 

Bolivia Cropland Shrubs Lost Crop 

Bolivia Forest Cropland Elevation 

Bolivia Forest Other Temperature 

Bolivia Forest Other Elevation 

Bolivia Forest Pastureland Deforestation 

Bolivia Forest Pastureland Processing Facilities 

Bolivia Forest Pastureland Elevation 

Bolivia Forest Shrubs Elevation 

Bolivia Non-Cropland Cropland Elevation 

Bolivia Other Cropland Temperature 

Bolivia Other Forest Temperature 

Bolivia Other Pastureland Temperature 

Bolivia Pastureland Cropland Elevation 

Bolivia Pastureland Forest Elevation 

Bolivia Pastureland Forest Lost Pasture 

Bolivia Pastureland Other Elevation 

Bolivia Pastureland Shrubs Elevation 

Bolivia Shrubs Cropland Ecoregions 

Bolivia Shrubs Forest Ecoregions 

Bolivia Shrubs Other Temperature 

Bolivia Shrubs Pastureland Elevation 

Table 4: Weights of Evidence variables removed from Bolivia. These were removed since they 

had a crammer coefficient higher than 0.45. See section: Spatial Variables 
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Country Transition From  Transition To Variable Removed 
Brazil Cropland Forest Protected Areas 

Brazil Cropland Other Protected Areas 

Brazil Cropland Pastureland Protected Areas 

Brazil Cropland Shrubs Protected Areas 

Brazil Forest Cropland Protected Areas 

Brazil Forest Other Protected Areas 

Brazil Forest Pastureland Protected Areas 

Brazil Forest Pastureland New Pasture 

Brazil Forest Shrubs Protected Areas 

Brazil Non-Cropland Cropland Protected Areas 

Brazil Other Cropland Protected Areas 

Brazil Other Forest Precipitation 

Brazil Other Pastureland Protected Areas 

Brazil Pastureland Cropland Protected Areas 

Brazil Pastureland Cropland Protected Areas 

Brazil Pastureland Forest Protected Areas 

Brazil Pastureland Other Elevation 

Brazil Pastureland Shrubs Protected Areas 

Brazil Shrubs Cropland Protected Areas 

Brazil Shrubs Forest Protected Areas 

Brazil Shrubs Other Protected Areas 

Brazil Shrubs Pastureland Protected Areas 

Table 5: Weights of Evidence variables removed from Brazil. These were removed since they 

had a crammer coefficient higher than 0.45. See section: Spatial Variables 
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Country Transition From  Transition To Variable Removed 
Paraguay Cropland Forest Temperature 

Paraguay Cropland Pastureland Ecoregions 

Paraguay Cropland Shrubs Temperature 

Paraguay Forest Other Ecoregions 

Paraguay Forest Pastureland Cattle Heads 

Paraguay Forest Pastureland Ecoregions 

Paraguay Forest Shrubs Precipitation 

Paraguay Forest Shrubs Temperature 

Paraguay Non-Cropland Cropland Precipitation 

Paraguay Other Forest Precipitation 

Paraguay Other Pastureland Precipitation 

Paraguay Pastureland Cropland Precipitation 

Paraguay Pastureland Cropland Cattle Heads 

Paraguay Pastureland Forest Cattle Heads 

Paraguay Pastureland Forest New Forest 

Paraguay Pastureland Forest Temperature 

Paraguay Pastureland Forest Temperature 

Paraguay Pastureland Other Cattle Heads 

Paraguay Pastureland Other Temperature 

Paraguay Pastureland Shrubs Precipitation 

Paraguay Pastureland Shrubs Processing Facilities 

Paraguay Shrubs Forest Ecoregions 

Paraguay Shrubs Other Ecoregions 

Paraguay Shrubs Other Processing Facilities 

Table 6: Weights of Evidence variables removed from Paraguay. These were removed since 

they had a crammer coefficient higher than 0.45. See section: Spatial Variables 
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Classification Cost per kilometer (US$/ton) 

Paved road 0.05 

Unpaved road 0.15 

Agricultural field 0.20 

Grasslands and Savannas 0.30 

Forest 3.00 

Flooded Forest 3.00 

Water Bodies 3.00 

Table 7: Transport Cost for Soy Derived by (Vera-Diaz et al., 2008). While these are for 

2008 dollars, these were adjusted for inflation to 2015 values.  
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Company Pledge 
year 

Cut off/ 
Target 
Date 

Deforestation 
Measurement   

Forest definition Source 

ADM 2015 n/a Zero-Gross No definition given (Ermgassen et al., 2019; 
NYDF Global Platform, 
2018) 

Cargill 2014 2030 Ambiguous Cargill adopt the FAO definition of forest - 
"Land with tree crown cover of more than 10 
% and area of more than 0.5 ha^3" . Their 
policy also commits to "protect native 
vegetation beyond forests. This includes the 
Cerrado, Gran Chaco and Llanos." 

(Ermgassen et al., 2019; 
NYDF Global Platform, 
2018) 

Bunge 2015 2025 Zero-Gross No definition given (Bunge, 2019; Ermgassen 
et al., 2019; NYDF Global 
Platform, 2018) 

Amaggi 2017 as soon as 
possible 
(stated in 
plan as 
2025) 

Zero-Gross "Our commitment applies to all locations 
where I operate, in and outside Brazil, 
including the Cerrado and Amazon biomes." 

(Amaggi, 2019; Ermgassen 
et al., 2019; NYDF Global 
Platform, 2018) 

Denofa 2015 2030 Zero-Gross Denofa is committed to 100% sustainability 
certification of all imports of soy from South 
America  

(Ermgassen et al., 2019; 
NYDF Global Platform, 
2018) 

Louis 
Dreyfus 

2018 n/a Zero-Gross Commitment includes eliminating 
"conversion of native vegetation in the 
Cerrado biome" 

(Ermgassen et al., 2019; 
NYDF Global Platform, 
2018) 

Glencore 2019 n/a n/a n/a (Glencore, 2019) 

Table 8: Global ZDC Commitments. All of these are yet to be implemented by companies in 

their respective supply chain. 



51 
 

From To Similarity With 2.25 km window Similarity with 3.25 Km window 

Other Shrubs 
67.01 73.72 

Other Pastureland 
53.84 63.50 

Other Forest 
49.74 56.91 

Shrubs Other 
58.26 64.29 

Shrubs Pastureland 
62.01 71.38 

Shrubs Forest 
55.55 65.69 

Cropland Other 
52.57 58.01 

Cropland Shrubs 
51.70 59.44 

Cropland Pastureland 
67.92 76.68 

Cropland Forest 
47.17 55.12 

Pastureland Other 
55.39 64.62 

Pastureland Shrubs 
60.73 69.51 

Pastureland Forest 
59.63 67.92 

Forest Other 
40.61 49.42 

Forest Shrubs 
70.79 76.20 

Forest Pastureland 
58.68 68.20 

Table 9: Non-Cropland Expansion Similarities. Cropland similarities can be found in Figure 11 

and they fall in line with previous studies (see section Validation ). 
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Category 2014 Areas (ha) 2030 - No ZDC 
Scenario Areas (ha) 

2030 - 2025 ZDC 
Scenario Areas (ha) 

2030 - Gran Chaco and Cerrado 
Moratorium Scenario Areas (ha) 

Forests 579,006,213   537,909,563   538,152,169   538,063,388  

Pastureland 357,480,875   334,612,800   334,317,025   334,405,000  

Cropland 91,662,438   119,402,988   119,404,431   119,405,138  

Shrubs 180,116,356   213,713,663   213,846,950   213,827,444  

Other 63,153,656   65,721,544   65,639,981   65,659,588  

Table 10: 2014 and 2030 Land Cover Area in Brazil, Bolivia, Argentina, and Paraguay (BBAP). 

Scenarios with ZDC implementation result in more remaining forests and shrubs and less 

remaining pastureland and other. 
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Country  Category 2014 Areas (ha) 2030 - No ZDC 
Scenario  Areas (ha) 

2030 - 2025 ZDC 
Scenario  Areas (ha) 

2030 - Gran Chaco and 
Cerrado Moratorium 
Scenario Areas (ha) 

Argentina Forests 27,768,663   25,544,344   25,571,731   25,568,375  

Argentina Pasture 119,297,275   116,873,594   116,838,000   116,835,175  

Argentina Cropland 35,428,331   38,537,000   38,536,969   38,536,950  

Argentina Shrubs 63,266,988   67,963,700   67,970,131   67,976,450  

Argentina Other 31,595,075   28,437,694   28,439,500   28,439,381  

Bolivia Forests 59,922,200   63,095,844   63,095,925   63,096,794  

Bolivia Pasture 33,093,563   30,646,100   30,645,900   30,644,994  

Bolivia Cropland 706,431   1,015,775   1,015,744   1,015,725  

Bolivia Shrubs 1,138,831   1,689,306   1,689,306   1,689,306  

Bolivia Other 12,581,419   10,936,438   10,936,588   10,936,644  

Brazil Forests 473,451,488   432,440,844   432,639,088   432,558,488  

Brazil Pasture 186,701,938   168,836,575   168,593,600   168,679,875  

Brazil Cropland 52,117,244   75,339,306   75,340,850   75,341,575  

Brazil Shrubs 115,708,281   144,059,988   144,186,844   144,161,056  

Brazil Other 18,624,681   25,926,919   25,843,250   25,862,638  

Paraguay Forests 17,863,863   16,828,531   16,827,606   16,839,731  

Paraguay Pasture 18,388,100   18,256,531   18,229,563   18,244,956  

Paraguay Cropland 3,410,431   4,510,906   4,538,863   4,510,888  

Paraguay Shrubs 2,256   669   619   631  

Paraguay Other 352,481   420,494   420,481   420,925  

Table 11: 2014 and 2030 Land Cover Area By Country across different scenarios. Scenarios 

with ZDC implementation result in more remaining forests and shrubs and less remaining 

pastureland and other. 
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Region  Category 2014 Areas (ha) 2030 - No ZDC 
Scenario Areas (ha) 

2030 - 2025 ZDC 
Scenario Areas (ha) 

2030 - Gran Chaco and 
Cerrado Moratorium 
Scenario Areas (ha) 

Amazon Forests 342,743,588   338,384,988   338,511,125   338,472,156  

Amazon Pastureland 61,550,881   58,651,719   58,536,325   58,511,419  

Amazon Cropland 2,661,825   8,341,338   8,405,700   8,451,800  

Amazon Shrubs 654,194   350,619   351,219   354,988  

Amazon Other 7,314,619   9,186,175   9,110,469   9,124,475  

Cerrado Forests 54,151,769   47,016,119   47,077,156   47,051,938  

Cerrado Pastureland 51,347,550   41,367,063   41,314,125   41,356,550  

Cerrado Cropland 23,580,969   36,110,931   35,984,538   35,997,894  

Cerrado Shrubs 72,754,750   77,102,356   77,228,581   77,193,450  

Cerrado Other 1,911,394   2,149,963   2,142,031   2,146,600  

Gran Chaco Forests 37,735,550   30,158,088   30,178,044   30,186,463  

Gran Chaco Pastureland 28,283,788   35,955,738   35,948,669   35,947,706  

Gran Chaco Cropland 5,327,806   6,076,231   6,063,794   6,052,563  

Gran Chaco Shrubs 5,275,781   4,808,488   4,806,106   4,812,613  

Gran Chaco Other 2,042,281   1,665,400   1,667,331   1,664,600  

Table 12: 2014 and 2030 Land Cover Areas by Ecoregion across different scenarios. Scenarios 

with ZDC implementation result in more remaining forests and shrubs and less remaining 

pastureland and other. 
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