
Vol. 14 (2020), pp. 87–107
http://nflrc.hawaii.edu/ldc

http://hdl.handle.net/10125/24916
Revised Version Received: 22 Nov 2019

LingView: A Web Interface for Viewing
FLEx and ELAN Files

Kalinda Pride*
Brown University

Nicholas Tomlin*
Brown University

Scott AnderBois
Brown University

This article presents LingView (https://github.com/BrownCLPS/LingView), a web
interface for viewing FLEx and ELAN files, optionally time-synced with corre-
sponding audio or video files. While FLEx and ELAN are useful tools for many
linguists, the resulting annotated files are often inaccessible to the general public.
Here, we describe a data pipeline for combining FLEx and ELAN files into a single
JSON format which can be displayed on the web. While this software was orig-
inally built as part of the A’ingae Language Documentation Project to display a
corpus of materials in A’ingae, the software was designed to be a flexible resource
for a variety of different communities, researchers, and materials.

1. Introduction In recent decades, language documentation has emerged as both
an interdisciplinary field and as a form of community engaged scholarship wherein
speakers of indigenous and other minority languages can be empowered to create var-
ious kinds of materials of direct use and interest to community members. Language
documentation researchers have been aided by the creation of powerful computer-
based tools such as EUDICO Linguistic Annotator (Wittenburg et al. 2006; Max
Planck Institute for Psycholinguistics 2018) and Fieldworks Language Explorer (SIL
FieldWorks 2018), here referred to as ELAN1 and FLEx2 respectively. Such tools
have allowed for the creation of sizable bodies of language materials, along with
richly structured annotations including transcriptions, translations, and morphologi-
cal analyses.

While these tools are invaluable, they are designed for the production and anal-
ysis of language materials by trained users and therefore are not themselves suited
for presenting these materials to a diverse audience in a user-friendly way. Existing

*Equal contribution between first two authors.
1https://tla.mpi.nl/tools/tla-tools/elan/.
2https://software.sil.org/fieldworks/.

Licensed under Creative Commons
Attribution-NonCommercial 4.0 International

E-ISSN 1934-5275

http://nflrc.hawaii.edu/ldc
http://hdl.handle.net/10125/24916
https://github.com/BrownCLPS/LingView
https://tla.mpi.nl/tools/tla-tools/elan/
https://software.sil.org/fieldworks/


LingView: A Web Interface for Viewing FLEx and ELAN Files 88

means of developing such user-facing outputs (e.g., creating subtitled videos using
ELAN) require one-time choices to be made about what orthography to use, what
translation(s) to include, etc. That is to say, they produce outputs which don’t pass
on much of the rich structure that has been created.

In this paper, we present LingView, a set of tools that allow language documenta-
tion practitioners to present language materials from ELAN and FLEx to a diverse
range of users with different goals and needs. To do this, we provide a pipeline for
converting ELAN and FLEx files into a single JSON format together with a graphic
user interface (UI) that allows users to choose which of these fields are displayed.

The rest of the paper is structured as follows: §2 motivates the system both in
general as well as by describing its application within the documentation of A’ingae,
an understudied language of Ecuador and Colombia also known as Kofán or Cofán
(ISO 639-3 code: con). §3 describes how the system is structured at a general level
(more specific technical documentation can be found at https://github.com/Brown-
CLPS/LingView). §4 describes the recommended workflow for practitioners to use
LingView alongside ELAN and FLEx. Finally, §5 summarizes and presents some
potential directions for future development.

2. Motivating the system Language documentation is a field that typically involves
collaboration between individuals with different goals and differing levels of technical
linguistic expertise. Whether they are native speaker linguists or outsiders, linguists
often have an interest in examining detailed linguistic analyses, such as morphological
analyses with detailed glosses or phonetic transcriptions. On the other hand, these
detailed technical analyses may be unintelligible to community members or simply
may not be relevant to their goals. Furthermore, in the case of endangered languages,
there often will also be community members with limited or no fluency in the lan-
guage being documented, but who nonetheless have a strong interest in the materials
being produced. In short, the audience for language documentation materials both
within the language community and beyond is diverse and varies in many ways across
languages.

Given this diverse audience, language documentation practitioners often face choi-
ces in producing materials of how to balance these diverse goals. In some cases, this
forces potentially quite fraught decisions between the needs of different constituents
within the larger audience. For example, a practitioner may choose a single orthog-
raphy in a context where multiple orthographies are in use, or a single translation
language in a context where there are multiple languages of wider communication in
which translations would be relevant to different groups within the community (e.g.,
an indigenous language spoken by communities in both Brazil and Colombia).

For some materials, their nature may make such choices inevitable. The audience
of an academic article will naturally have a different set of readers with different
goals than elementary school pedagogical materials will. For others, however, such as
audio, video, and written texts, the needs of different audience members are relatively
similar, consisting of the primary media itself possibly along with various annotations
such as transcriptions, translations, or morphological analysis. Different users may

Language Documentation & Conservation Vol. 14, 2020

https://github.com/BrownCLPS/LingView
https://github.com/BrownCLPS/LingView


LingView: A Web Interface for Viewing FLEx and ELAN Files 89

have more or less need for annotations or require different kinds or amounts, but the
needs of different users are to an extent aligned with one another.

While producing audio, video, and written texts to serve a diverse audience is
a challenge, it is one which modern computational tools such as richly structured
databases and web-based interfaces have the potential to greatly reduce. Creating
such platforms may seem a large task, but the reality is that many language documen-
tation practitioners already create richly structured databases of annotated media of
the kind that is needed in the form of ELAN files and databases in FLEx. At present,
however, creating language materials typically involves taking these richly structured
files and selectively removing some of this richness.

By leveraging the complex, structured ELAN and FLEx files practitioners are al-
ready producing, LingView aims to pass along this rich structure to users. In partic-
ular, through a series of scripts, LingView creates a backend database which allows
for ELAN and FLEx files to be stored in a common format retaining most of their
rich structure. Second, the user interface allows for individual users to decide which
of the fields in this database will be displayed, as seen in Figure 1.

Figure 1. LingView UI with time-synced video

Beyond this general motivation, we discuss more specific cases where the cus-
tomizability this user interface provides is useful. We do this first by discussing in
§2.1 the specific project for which LingView was created, the A’ingae Language Doc-
umentation Project (ALDP), and second by discussing in §2.2 the design features for
LingView that emerged from this case, as well as consideration of other language
documentation situations.

2.1 Case study: A’ingae Language Documentation Project In this section, we pro-
vide background on the A’ingae language, its speakers, and the ongoing community
collaborative language documentation project – ALDP – within which LingView was
created. Beyond laying out some of the specific motivations for features of the soft-
ware in more detail, we believe that this case study illustrates a number of the com-

Language Documentation & Conservation Vol. 14, 2020



LingView: A Web Interface for Viewing FLEx and ELAN Files 90

plexities that are common in language documentation and therefore serves as a useful
example of broader patterns potential users are likely to face.

A’ingae is an indigenous language spoken in the northeast of Ecuador and south-
east of Colombia, primarily along the San Miguel and Aguarico rivers (Figure 2).3
The language has approximately 1,500 speakers and is endangered (especially so in
Colombia), but is nonetheless still being learned by children in several communities.
In some towns (e.g., Zábalo and Dureno), A’ingae remains the language of everyday
life across most social settings, while in other towns Spanish is increasingly prevalent
in certain contexts. As is clear from Figure 2, the towns where A’ingae is spoken are
fairly far from one another. They also differ in other ways such as the extent to which
community members rely on a traditional hunter-gatherer lifestyle, access to internet,
interactions with settlers and other outside groups, and prior and ongoing impact of
oil exploration and its secondary consequences (see Cepek 2018 for a detailed exam-
ination).

Figure 2. Map of A’i territories in Ecuador

3Map:
https://library.brown.edu/create/firstreading2014/learn-more/maps-of-ecuador/map-of-cofan-territories/.

Language Documentation & Conservation Vol. 14, 2020

https://library.brown.edu/create/firstreading2014/learn-more/maps-of-ecuador/map-of-cofan-territories/


LingView: A Web Interface for Viewing FLEx and ELAN Files 91

A few short word lists notwithstanding, outside scholarship on A’ingae began in
1955 with the arrival in Dureno of SIL missionaries Marlytte (“Bub”) and Roberta
(“Bobbie”) Borman. The Bormans developed a practical orthography using Latin let-
ters and based in part on Spanish orthography. They produced a few short scholarly
papers on specific grammatical topics such as phonology (Borman 1962) and prag-
matics (Borman 1977), as well as a few community-oriented publications focused on
topics such as health and literacy.

In addition to a Bible translation, the two most sizable works they produced are
a ≈2,500 word A’ingae-Spanish bilingual dictionary with brief grammatical notes
(Borman 1976) and a trilingual (A’ingae-English-Spanish) collection of texts about
cosmology from a single speaker, Enrique Criollo (Borman 1990). While commu-
nity members were aware of these works existing, even teachers and others with an
interest in them reported not having access to them either in physical or digital form.

More recent academic work has included a comprehensive grammatical sketch
(Fischer & Hengeveld to appear), papers covering particular topics in more detail
(Fischer & van Lier 2011; Hengeveld & Fischer n.d.-b; Hengeveld & Fischer n.d.-a;
Repetti-Ludlow et al. n.d.), and community-oriented stories (Blaser & Chica 2008;
Comunidad Cofán de Zábalo & Comunidad Cofán Pakuya 2011).

Aside from mere availability, the dictionary and existing text collections exhibit
several properties which limit their utility to the present-day A’i who might use them
and which are not uncommon for such materials. First, the orthography that they
use is no longer actively used by most A’ingae-speaking communities. In Ecuador, a
community-led process produced a new orthography in the last decade, which mod-
ifies the Borman orthography in several respects.⁴ As far as we have seen, this or-
thography is currently in use by teachers and is the only one with which younger
generations are familiar. In Colombia, materials found online suggest that a slightly
different orthography from either of these has begun to be used, though the details
of the process that produced it and its current usage remain unclear. One of the
challenges that we faced then in producing written content including annotations to
audio and video is that different community members have familiarity with only one
of these orthographies.

Second, with respect to written texts, Borman (1990) illustrates the trade-offs that
traditional print publications require. Will there be translations? What language(s)
will they be in? Will there be morphemic analysis and glossing? As seen in Figure 3, in
this case, the decision was made to include all of the conceivably relevant translations,
analysis, and glosses. The result is a text which has all the information most users
could want, but in a format which is fairly difficult to read for any user.

None of this is to question the decision that the authors made in this case. Leaving
out any of the information they include would have deprived some group of potential
users of necessary information. For example, if the stories had been published only
in A’ingae, they would not be accessible to outsiders and would be less accessible

⁴Key changes include: (i) writing voiceless velar stops with <k> instead of the Spanish-like <c> and <qu>;
(ii) writing the mid/high back vowel as <u> instead of <o> and the high central vowel as <û> instead of
<u>; and (iii) writing aspiration with digraphs ending in <h> rather than doubling of the unaspirated stop
grapheme (i.e., <th> rather than <tt>).

Language Documentation & Conservation Vol. 14, 2020



LingView: A Web Interface for Viewing FLEx and ELAN Files 92

Figure 3. A one-line excerpt from Borman (1990)

to some community members too, since literacy in Spanish often exceeds literacy in
A’ingae. Rather, we believe this example illustrates the impossibility of any one-time
decision like this meeting the needs of all segments of the potential audience for such
materials.

The other major collection of written materials, Blaser & Chica (2008), addresses
this by publishing alternating A’ingae and Spanish language texts, as in Figure 4.
While this of course creates texts that are more accessible to most community mem-
bers, it doesn’t make available any of the analysis. It also omits English translations,
something which several teachers and other participants in community workshops
identified as a desirable feature in a pilot version and which needless to say is of use
to some researchers too.

Figure 4. A brief excerpt from Blaser & Chica (2008)

In terms of audio and video, there is little prior material in the language available
to community members via Youtube. Extant material includes a dubbed film about
the life of Jesus and a number of videos about the A’i people, their culture, land, and
struggles to maintain these in the face of outside pressures such as oil companies and
settlers. Most of these videos are aimed at outsiders and are limited in topic and

Language Documentation & Conservation Vol. 14, 2020



LingView: A Web Interface for Viewing FLEx and ELAN Files 93

genre. While some are subtitled in Spanish, none have transcriptions in A’ingae and
thus are less useful for pedagogical purposes.

As mentioned above, LingView is part of the A’ingae Language Documentation
Project (ALDP) [Proyecto de documentación lingüística del A’ingae]. ALDP is a
community-based language documentation research project started by the third au-
thor together with Wilson Silva, a faculty member at the University of Arizona, and
Hugo Lucitante, an A’i community member and native speaker of A’ingae who is also
an undergraduate student at Brown University. The project aims to create a multi-
media record of the A’ingae language and its use across a variety of different social
and communicative contexts, as well as to use this record to explore aspects of the
language in greater scientific detail and create materials that serve the needs of the
A’i community as they work to maintain and revitalize their language and assert their
right to cultural autonomy more generally. To date, the project has collected approx-
imately 17 hours of high quality video from speakers in Zábalo covering a variety
of topics and genres as chosen by participants. Of this corpus, the majority is tran-
scribed and translated into Spanish and a smaller portion is analyzed morphologically
and translated into English as well.

With this mix of academic and community goals in mind, LingView was devel-
oped as a set of tools to make audio, video, and written materials available to commu-
nity members while allowing for the creation of a linguistically sophisticated database.
This latter part can be achieved to a large extent by existing tools long used by lan-
guage documentation practitioners such as ELAN and FLEx. However, ELAN and
FLEx do not themselves provide user interfaces designed for non-linguists and so do
not themselves serve community needs. While existing options such as creating sub-
titled videos in ELAN and the Institute for Advanced Technology in the Humanities
ELANText-Sync Tool (IATH ETST; Dobrin & Ross 2017) bridge this gap somewhat,
they both still require one-time choices in which fields to display. They therefore do
not fully meet the needs of the diverse community of users described above with
their different interests, goals, language backgrounds, and literacy levels. These sorts
of challenges are quite general ones in language documentation, and LingView was
therefore designed as a more general tool rather than tailored to ALDP specifically.

2.2 Design principles In this section, we outline the four main design principles
we had in mind in creating LingView: (i) multimedia compatibility, (ii) end-user cus-
tomizability, (iii) linguist-friendly input, and (iv) practitioner-friendly pipeline.

(i) Multimedia compatibility

Language documentation practitioners typically collect a mix of audio and video
language materials. While video materials are increasingly common as videography
technology becomes more affordable and widely available, there may be any number
of reasons why audio materials may also be collected. Additionally, legacy materials
are quite likely to exist only as audio or possibly only in written form (e.g., the two
prior story collections in A’ingae). Given the mix of previously existing written mate-

Language Documentation & Conservation Vol. 14, 2020



LingView: A Web Interface for Viewing FLEx and ELAN Files 94

rials and new video materials our project was working with, compatibility with these
different media types was an important feature.

When both formats are available, users may alternate between audio and video
displays by clicking the “show video” button; this may be especially useful when
weak internet connections preclude videos from loading. Alternatively, when audio
and video resources are not available, we allow users to upload text-only materials by
exporting from FLEx or by uploading an ELAN file without providing the associated
audio or video.

(ii) End-user customizability

Language documentation brings together people with a diverse range of interests,
backgrounds, and prior language experience. The consumers of language documen-
tation materials are therefore similarly diverse, and so different end-users will have
different needs in terms of the kind and amount of annotations that accompany pri-
mary media. While it may be obvious that community members and researchers may
differ in this way, we have tried to show that the complex reality of many language
documentation situations means that similar kinds of diversity exist within language
communities, so there is often not a finite set of options for practitioners to choose,
but rather a multiple of different needs for different end-users.⁵

To address this challenge, we designed LingView to allow for end-users themselves
to customize the choices of translations, analysis, orthography, etc. As described
below,we aim to address this challenge through the use of a richly structured database
along with a user interface allowing for the end-user to customize the display at any
moment.

While we expect the current tools to be quite useful, many communities would
benefit from additional features or community-specific alterations (see §5). To sup-
port these cases, we encourage technically-inclined users to improve and customize
the software, and to freely share their improvements. The source code for all LingView
tools is available through GitHub, a platform which both facilitates the creation and
sharing of custom versions of the software, and allows changes to be reincorporated
into the main version. LingView is copyrighted under the permissive MIT License in
order to encourage such innovation.

(iii) Non-proprietary input

Language documentation practitioners already have a set of commonly used tools
at their disposal such as ELAN and FLEx. As such, LingView was designed to be
compatible with these programs, taking advantage of the features they already possess
by using the files they produce as inputs rather than inventing a new proprietary data

⁵Even this is somewhat of a simplification, as there will be cases in which an individual user might have
different goals on different occasions and thus might want correspondingly different settings. For example,
a native speaker linguist might sometimes want to see morphological analysis, but other times only want
monolingual subtitles. Or, a linguistic anthropologist from outside the community might sometimes wish
to see morphological analysis for linguistic purposes, but other times only need bilingual subtitles.

Language Documentation & Conservation Vol. 14, 2020



LingView: A Web Interface for Viewing FLEx and ELAN Files 95

format specific to this purpose. As described in §3.3, creating such compatibility with
both FLEx and ELAN was a challenge since the underlying XML data structures that
they use are quite different.

Another place where principle (iii) is manifested is in the ways in which individual
practitioners use ELAN and FLEx in the first place. This is most relevant for ELAN
files, since ELAN allows users significant freedom to create different tier structures
with customized names. Previous tools for displaying ELAN transcriptions in syn-
chrony with media have limited the display to one or two chosen tiers at once. This
holds true for ELAN’s built-in feature for creating subtitled videos, as well as for sepa-
rate tools such as the EthnoER Online Presentation and Annotation System (EOPAS;
Schroeter &Thieberger 2006) and Dobrin & Ross (2017)’s ETST, the latter of which
also requires specific tier names. Unlike these existing tools, LingView accepts any
format of ELAN file and displays whatever tiers a user provides. Beyond merely be-
ing more flexible, this also helps contribute better “backward compatibility” in the
sense that it allows practitioners to use LingView with existing ELAN files without
having to convert them to a specific format or rename tiers to specific names. The
need for such standardization may be a mere annoyance in some cases, but could be
a more fundamental problem for some projects such as collections of texts featuring
multiple languages either across or within files (e.g., cases of code-switching anno-
tated on distinct tiers).

(iv) Practitioner-friendly pipeline

One of the challenges of language documentation is keeping track of the large body
of data of different kinds of primary and secondary files generated in the documen-
tation process. With this in mind, we have designed LingView to have some tools
for managing this. First and foremost, this principle is seen in the inclusion of scripts
which allow for the input of metadata about the files, and from this, automatically
generates an index of the available media.⁶ Beyond this, we include scripts for batch
editing, deleting, and uploading files to LingView sites (see §4). While many lan-
guage documentation practitioners are quite technically adept, the scripts (and the
workflow more generally) are intended to be usable without any particular technical
expertise.

While these four design principles are motivated in part by the particular chal-
lenges we faced in the context of our particular project, we hope it is clear that the
sorts of challenges we faced are fairly typical of community-based language documen-
tation. There is one additional design consideration which falls into this category as
well and does not fit neatly within principles (i–iv): the lack of access to high speed
internet. While some A’i have regular access to internet, many do not. Some towns,
such as Zábalo, have no internet access of any kind, including cellular network cov-
erage. While it is reasonable to think that internet access will only become more
prevalent in coming years, the extent and speed with which this will happen and the

⁶We hasten to point out that despite these indexing and metadata features, LingView should in no way be
considered an alternative to the use of digital archives such as ELAR, AILLA, PARADISEC, etc.

Language Documentation & Conservation Vol. 14, 2020



LingView: A Web Interface for Viewing FLEx and ELAN Files 96

extent to which this will be affordable (and desirable) to potential end-users is unclear.
We therefore designed LingView to be fully usable offline with files locally stored on
an end-user’s computer or on a computer located in a school or community center.
In cases where the computer has inadequate space to store many hours of video, our
software is adaptable using the edit and delete scripts (§4.4–4.5) to selectively remove
files from a particular instance of the site.

3. How does the system work?

3.1 Overview of data pipeline LingView allows users to view the disparate ELAN
and FLEx filetypes in a single web interface. This is accomplished via a multi-step
data pipeline, depicted in Figure 5 below, which allows us to merge ELAN and FLEx
files into a proprietary JSON format. This JSON format is then converted intoHTML
by the front-end ReactJS code.

Figure 5. Data pipeline from FLEx/ELAN to website display

This project can be divided into two major components: the preprocessing work,
which converts .eaf and .xml files into the proprietary JSON format, and the front-
end work, which allows this JSON data to be displayed on the web. While ELAN and
FLEx both use XML-like structures for data storage, the schemata are quite different.
For example, ELAN internally orders data by the tier (e.g., transcription, gloss, trans-
lation), while FLEx orders data by the sentence. The first major component involves
combining these two schemata into a new filetype and will be discussed in §3.3. The
second major component – i.e., displaying the JSON format as an interactive website
– will be discussed in §3.4. Before doing this, we briefly motivate this choice of data
pipeline.

3.2 Motivating the pipeline As mentioned, ELAN and FLEx use different data sche-
mata. This is partly due to the fact that ELAN files (.eaf) are time-aligned, while
FLEx files are not; it is also partly due to quirks in the software which cause data and
metadata to be stored differently. To efficiently display these files on a website, the
data must be rearranged and condensed into a single format.

However, combining these into a single file format is not an easy task. The data
pipeline is constrained by (1) an avoidance of information loss, (2) the ability for the
website to load quickly and correctly on various platforms, and (3) the ability for
the website to run offline. Combined, these constraints present an issue: the data

Language Documentation & Conservation Vol. 14, 2020



LingView: A Web Interface for Viewing FLEx and ELAN Files 97

processing task is computationally expensive, and the user may not be connected to
a server which can perform these computations. To resolve this, we must re-consider
the prototypical client-server model.

Generally, websites are broken into a back-end and a front-end. Back-end code
runs on a server and consequently has a large amount of processing power; front-end
code, however, runs in the browser and has significantly less processing power. Since
this website is meant to run offline (i.e., without a server) on a variety of devices, the
code that runs when a user accesses the website must be relatively lightweight, front-
end code. However, the code to convert ELAN and FLEx files into a single JSON
format is not lightweight, and may require looping through files multiple times to re-
organize the inherent tier structure. If this code were to run in a browser, the website
would be very slow, bordering on unusable. It is for this reason that the conversion
to JSON occurs offline, in a step called “preprocessing”. This step involves running
a suite of Node.js scripts locally to create JSON files which may then be uploaded to
the website. Since this happens offline, it is not constrained by the speed requirements
detailed above.

3.3 Step 1: Preprocessing Asmentioned, the preprocessing code is a suite ofNode.js
scripts that allow the user to convert FLEx and ELAN files into a single JSON for-
mat. Details of how to use these scripts will be discussed in §4. This section will
simply describe how the scripts work and motivate the data schema. The full details
of the preprocessing scripts are too long to explain here, so we will present only a
sampling of the work done in this section.⁷ We’ll explain how preprocessing works
by discussing the JSON data schema, a portion of which is shown in Figure 6.

3.3.1 Metadata The first portion of this schema is the metadata. Inside this section,
we have the timed value. This is set to true for ELAN files (which have timestamps),
and false for FLEx files (which do not). Next, we have media audio and media
video. These will be empty strings for FLEx files, but for ELAN files they will contain
the names of files contained in the media_files directory. When the preprocessing
scripts are run, they will search media_files for matching audio and video files,
which will be linked here.

Then, we have other metadata like the author, title, date, and so on. This will
be displayed in the sidebar that appears alongside each story. Some of this metadata
appears in ELAN and FLEx files, and the scripts gather this data. However, additional
data can be entered by running the edit.js script, which allows the user to edit a
variety of metadata fields. Once again, usage will be discussed in §4.

Finally, we have the lists of speaker and tier IDs. Speaker IDs give a short abbre-
viation like “S1” and “S2,” as shown in Figure 7. Meanwhile, the tier ID list is used
to generate tier checkboxes which allow the end-user to show or hide certain tiers.
For example, an end-user may opt not to view the translation tier, or the gloss tier.
These tier names are generated based on the tier names in corresponding FLEx/ELAN

⁷Full details can be found in the in-line documentations of the preprocess_eaf.js and prepro-
cess_flex.js files, both of which can be found in the preprocess directory.

Language Documentation & Conservation Vol. 14, 2020



LingView: A Web Interface for Viewing FLEx and ELAN Files 98

files, but they may be changed.⁸ Finally, these tiers may either be subdivided or not
subdivided.

Figure 6. Selections from the JSON data schema

⁸The simplest way to do this would be to change tier names in the original ELAN and FLEx
files. However, tier names may also be edited during the preprocessing stage, by modifying
preprocessing/preprocess_eaf.js or preprocessing/preprocess_flex.js. Finally, they may be
edited on the client side by modifying the TierCheckboxList.jsx file.

Language Documentation & Conservation Vol. 14, 2020



LingView: A Web Interface for Viewing FLEx and ELAN Files 99

Figure 7. Sample glossed display

3.3.2 Aside: Tier subdivision Understanding tier subdivision is crucial to knowing
how this software works. Each sentence is broken into a number of tiers, such as the
transcription, gloss, and translation. The transcription tier is normally not subdivided
– i.e., a single string represents the entire sentence. However, a gloss tier is normally
subdivided. That is, the gloss tier contains a list of separated strings corresponding
to each word in the text. We use data from FLEx and ELAN to determine if a given
tier is subdivided or not.

Based on the subdivided tiers, each sentence is broken into some integer number of
slots. For example, say a sentence is broken into 3 slots. A non-subdivided tier would
span all 3 slots, however, a subdivided tier would contain a list of values, perhaps one
from slot 0–1, another from slot 1–2, and another from slot 2–3. This allows us to
represent each gloss as an HTML table in Step 2 (§3.4).

In ELAN, some subdivided tiers come with specific timing information, while
some ELAN tiers and all FLEx tiers do not. To simplify the user interface, LingView
displays timestamps only for the beginning of each sentence.

3.3.3 Sentences We’ll now move on to the sentences from Figure 6 (§3.3). This is
a list, generated either from independent ELAN annotations or from FLEx sentences.
Each sentence has some associated data, such as the speaker, tier, and start/end time.
As discussed above, each sentence also has a parameter num_slots, as well as the
high-level text (usually a transcription).

Each sentence also has a number of dependent tiers, which, as discussed, may or
may not be further subdivided. If they are subdivided, the start_slot and end_slot
parameters will be used to store slot values. Either way, they will contain some list
of values, where the actual text is stored in value. A single sentence from this
sentences list will be rendered into a gloss resembling that in Figure 7 (§3.3.1).

Within each sentence, tiers are displayed in the same order as in FLEx or ELAN. In
FLEx, tiers are ordered based on their function (transcription first, then morphemes
and their glosses, then free glosses). ELAN, however, allows its users to hide or re-
order tiers at will, and it stores the current configuration in a separate .pfsx prefer-
ences file. Practitioners may omit this file to use a default order, or they may edit the
tier configuration in ELAN, which automatically creates or updates the preferences
file. The default order is reasonable for many ELAN files, but not for ELAN files
which were exported from FLEx. Exporting from FLEx to ELAN does not lose in-
formation, but it produces additional unwanted tiers, some of which are parents of
wanted tiers. Thus, for audio/video files annotated using FLEx’s computer-assisted

Language Documentation & Conservation Vol. 14, 2020



LingView: A Web Interface for Viewing FLEx and ELAN Files 100

glossing or multiple-orthography tools, the ability to hide tiers is particularly impor-
tant.

3.3.4 The database.json file All texts, represented in the schema described in Fig-
ure 6 above (§3.3), will be stored in the database.json file. This file simply contains
a list of stories, represented as above, along with an index that is used to generate
the index of stories. This file is also used to generate the site. The individual JSON
representations may be viewed in data/json_files.

3.4 Step 2: The web display The website frontend is built with ReactJS,⁹ which
is a component-based Javascript library for building user interfaces. Similar to a
templating language, ReactJS excels at converting documents (in our case, the JSON
files) into HTML representations. Being component-based means that we can write
code for separate components, such as the metadata sidebar, the tier checkboxes, and
a glossed sentence. Given the abstract code for each of these components, we can
read the JSON documents and create the specifically required components as desired.
Some of these components are shown in Figure 8, which demonstrates how a sentence
is broken down into a LabeledTimeBlock, TimeBlock, etc.

Figure 8. Example components

With a few exceptions, each file inside the jsx directory corresponds to one
such component. A component may contain either another component, a list of
components, or no components at all. For example, the TimedTextDisplay com-
ponent, which is used when displaying ELAN files, is broken down into numer-
ous LabeledTimeBlocks. Each of these contains a timestamp and some number of
LabeledSentences. The highest level component, AppContainer, handles retrieving
the JSON data from the database.json file. This data is passed from component to
subcomponent until it is displayed on the site. Finally, these JSX files are converted
into Javascript with Webpack,1⁰ a bundling tool that converts the dozens of JSX files
into a single bundle.js file.

⁹https://reactjs.org/.
1⁰https://webpack.js.org/.

Language Documentation & Conservation Vol. 14, 2020

https://reactjs.org/
https://webpack.js.org/


LingView: A Web Interface for Viewing FLEx and ELAN Files 101

3.4.1 Time-alignment for ELAN files The web display also features time syncing
between the displayed text and any associated audio/video. Since ELAN provides
timestamps for each annotation, we highlight the corresponding LabeledTimeBlock
whenever it matches the current media timeslot. This is done in js/txt_sync.js.
Additionally, whenever a user clicks on a timestamp in the text, the media scrubber
jumps to that time value.

4. Workflow for using the system This section describes the workflow for build-
ing and maintaining a collection of texts in LingView. Additional guides and trou-
bleshooting may be found at https://github.com/BrownCLPS/LingView/wiki.

4.1 Installing the software

4.1.1 Download LingView To use the software, begin by downloading the repository
stored at https://github.com/BrownCLPS/LingView.git and extracting the zip file. You
may place the extracted file anywhere on your computer, but to follow along with
these instructions, we recommend extracting to your Desktop and renaming the ex-
tracted directory from“LingView-master” to simply“LingView”. Open the extracted
directory in File Explorer (on Windows) or Finder (on Mac). At this point, you will
be able to view sample files by opening the index.html file with your browser.11 The
LingView download comes with two sample files, named “Intro” and “Singo a’i”.
The former was imported from ELAN and has associated audio/video, while the lat-
ter was exported from FLEx and therefore does not have any attached media.

4.1.2 Download Node.js and NPM packages If you do not have Node.js installed,
you will need it to run the preprocessing scripts. Instructions for downloading Node
can be found at http://blog.npmjs.org/post/85484771375/how-to-install-npm. Once
you have installed Node.js and NPM (both of which are included in the previously
linked download), you will need to install some packages. These are listed in the
package.json file. Simply navigate to the root LingView directory, as described in
§4.6, and run:

npm install

This will read the required packages from the package.json file and install them for
you. It is preferable to use NPM version 4.6.x for this process.

4.2 Adding files This section describes the steps for displaying your own ELAN and
FLEx files using the LingView software.

11As of this writing, Google Chrome’s same-origin policy will prevent the website from loading with-
out a server. To get around this, you may choose to run a Python SimpleHTTPServer (https://-
docs.python.org/2/library/simplehttpserver.html), or equivalent, from the root LingView directory. Alter-
natively, the website will run offline without a server in Firefox or Safari.

Language Documentation & Conservation Vol. 14, 2020

https://github.com/BrownCLPS/LingView/wiki
https://github.com/BrownCLPS/LingView.git
http://blog.npmjs.org/post/85484771375/how-to-install-npm
https://docs.python.org/2/library/simplehttpserver.html
https://docs.python.org/2/library/simplehttpserver.html


LingView: A Web Interface for Viewing FLEx and ELAN Files 102

4.2.1 Export and place files For ELAN, the program automatically generates .eaf
files. Simply copy these files to the data/elan_files directory. For FLEx, you must
export the files into the correct XML format. To do so, open the file in FLEx, go to
the “Analyze” tab, and select “File > Export Interlinear > Verifiable generic XML”.
Save the resulting .xml file in the data/flex_files directory.12

Place any corresponding media files (WAV, MP3, or MP4) into the data/media_
files directory. Ensure that media files use web-friendly encoding – e.g., the H.264
codec for MP4 files. Note that, for large collections, copying all media files into the
web directory may be inefficient. Instead, we recommend creating symbolic links to
these files and ensuring they are placed in a web-accessible directory. Symbolic links
may also be used for FLEx and ELAN files but web-accessibility of the original files
is not required.

To avoid unintended behavior, confirm that all filenames are unique.

4.2.2 The rebuild script Once the ELAN, FLEx, and media files are in place, run
the following command as described in §4.6:

node preprocessing/rebuild.js

This will run both ELAN and FLEx preprocessing scripts on every available file. For
ELAN files, the script will attempt to find matching audio or video files. Importantly,
this script is also responsible for rebuilding the site index. Therefore, we recommend
running the rebuild script after deleting or editing any files.

After this process, when you open the index.html file with your browser, you will
see your ELAN and FLEx files included in the index. You may repeat this process
whenever you wish to add additional ELAN, FLEx, or media files.

4.3 Editing files To update files, make the desired changes using ELAN or FLEx,
save the result to the corresponding data/elan_files or data/flex_files direc-
tory, and then run the rebuild script as described in §4.2.2.

4.4 Editing metadata The website can show metadata for each story, including ti-
tle, author, description, and other fields. This data, which is displayed on the story
index and on the individual story pages, can be added or changed using the edit.js
script. To use this script, first open index.html in your browser, navigate to the story
you want to edit, and locate the unique ID associated with that story. This is a 36-
character string found at the end of the story URL. For example:

https://brownclps.github.io/LingView/#/story/97b8ab3b-d2a5-428a-aa68-0aa304ba1c44

12An alternative approach would involve running preprocessing scripts directly on the original FLEx
database, rather than exporting FLEx files as described above. However, our chosen method offers users
the flexibility to choose which files they wish to display and simplifies the preprocessing code.

Language Documentation & Conservation Vol. 14, 2020

https://brownclps.github.io/LingView/#/story/97b8ab3b-d2a5-428a-aa68-0aa304ba1c44


LingView: A Web Interface for Viewing FLEx and ELAN Files 103

With this unique ID copied to your clipboard, return to your terminal and type the
following command:

node preprocessing/edit.js unique_id

where unique_id is replaced with the 36-character string described above. This script
will offer a number of prompts, allowing you to edit the story title, description, etc.
Repeat this process with any other stories whose metadata you wish to edit. After
making these changes, run the rebuild script again so that they will appear on the
LingView site.

4.5 Removing files To remove an ELAN or FLEx file, first locate its unique ID as
described in §4.4. With this unique ID copied to your clipboard, return to your ter-
minal and type the following command from the root project directory:

node preprocessing/delete.js unique_id

where unique_id is replaced with the 36-character ID. If the file has associated media,
you will be prompted to delete or retain the associatedmedia files. Repeat this process
for any other stories you wish to delete. Finally, run the rebuild script described in
§4.2.2 so that your changes will appear in the index.

To remove a media file from the LingView site while leaving its ELAN file in place,
delete the media file from the data/media_files directory and then run the rebuild
script for the changes to appear on the site.

4.6 The terminal The text commands in this section must be run from a terminal,
a text-based interface, which comes preinstalled on all Mac, Windows, and Linux
computers. On Mac, the Terminal app can be found using Spotlight search. On
Windows, the relevant app is called Windows PowerShell,13 and it can be found by
tapping theWindows key to bring up the start menu, and then searching for the app’s
name. After opening the terminal, navigate to the root LingView directory using the
“cd” command. For example, if you saved the LingView directory on your Desktop
with the name “LingView”:

cd ∼/Desktop/LingView

After typing any command in the terminal, tap the Enter or Return key to execute
the command.

4.7 ReactJS and Webpack Most of the JavaScript code that runs on the site is stored
in js/bundle.js. This code was automatically generated by Webpack (https://web-
pack.js.org/), a module bundler which converts the ReactJS files (in .jsx format) into

13Not Windows PowerShell ISE.

Language Documentation & Conservation Vol. 14, 2020

https://webpack.js.org/
https://webpack.js.org/


LingView: A Web Interface for Viewing FLEx and ELAN Files 104

a single JavaScript file. To make edits to the front-end/UI code, we recommend edit-
ing the ReactJS files which are contained in the jsx/ directory. However, since the
website reads from the bundle.js file, this will not cause immediate changes on the
site. Rather, you will need to re-bundle with the following command:

npm run webpack

This will update the bundle.js file and modify the site accordingly.

5. Future directions In this paper, we have presented LingView, a web interface
for viewing annotated linguistic materials from ELAN and FLEx, along with a set
of scripts for managing an installation of LingView. In developing LingView, we
aimed to follow four design principles, discussed in §2.2: (i) multimedia compatibility,
(ii) end-user customizability, (iii) linguist-friendly input, and (iv) practitioner-friendly
pipeline. The resulting system relies on non-proprietary linguist-friendly inputs from
FLEx and ELAN, but is flexible in terms of the specific ways in which those inputs
are structured (e.g., no specific tier names or structures are required in ELAN).

While this flexibility is necessary, it does have some undesirable consequences,
at least as presently constituted. Since LingView imposes no constraints on the tier
names or their structure, it also does not “understand” tier names or relationships
between them which may be obvious to a human user. For example, if an ELAN file
has two tiers named “S1_SpanishTranslation” and “S2_SpanishTranslation” respec-
tively, the software will not recognize their commonality in any way. So, while an
end-user would presumably never wish to see the Spanish translation of one speaker
but not the other, there will still be separate checkboxes for the two tiers. This can
create a cluttered appearance in the UI for texts with many speakers. An individual
installing a LingView site could add additional code to address this for their particu-
lar tier-naming scheme, but no general solution exists at present and so better support
for media with multiple speakers is an area ripe for future development.

While such data could potentially be extracted from the tier type fields, we found
this information was frequently missing or incorrect in practitioners’ existing ELAN
files. Automatically simplifying the UI based on inconsistent or incorrect tier infor-
mation would lead to confusing results and, on some ELAN files, would remove
important flexibility from the user interface. For example, if the Speaker 1 Spanish
gloss is accidentally given the same tier type as the Speaker 2 English gloss, then the
UI would make it impossible to show either of them while hiding the other. To avoid
such problems, the current version of LingView ignores tier type fields and treats each
tier individually.

This example of unused metadata is representative of a whole suite of possible
extensions which leverage additional metadata information. Synthesizing informa-
tion from metadata formats such as IMDI (Broeder & Wittenburg 2006) and CMDI
(Broeder et al. 2012) would be one such promising approach, but would require in-
terface modifications to display the new metadata fields.

Language Documentation & Conservation Vol. 14, 2020



LingView: A Web Interface for Viewing FLEx and ELAN Files 105

Two other potential future directions are worth mentioning, but would require
significant additional effort to achieve. First, for many projects, it will be important
to incorporate a system of permissions/access restrictions for materials to which ac-
cess is to be restricted, similar to archives such as ELAR. Second, for many projects,
concordance and other search features are ones which would be of great use to lin-
guists and community members alike. While the single unified JSON format lays
groundwork for this in some sense, there also is a fundamental tension between the
need for uniformity which advanced search features require and the flexibility to dif-
ferently structured files, which we have considered a design feature in the creation of
LingView.

Finally, one common question we have received is the possibility for use on mobile
devices such as tablets and phones. Since the site is run in a browser window, it should
in principle work on any device with a suitable browser, especially since navigating
LingView sites is done primarily through links rather than via typing. For phones,
however, the smaller screen size means that the site’s functionality is significantly
diminished. While development of a dedicated mobile version (or an app) would
be a worthy future endeavor, such development appears at present to be separate
enough from the present incarnation of LingView that it might be better regarded as
a separate project than a future direction for LingView per se.

References

Blaser, Magdalena & Enma Chica. 2008. Mitos del pueblo cofán: A’indeccu can-
qque’sune condase’cho. Centro Cultural de Investigaciones Indígenas Ecuador,
Padre Ramón López.

Borman, Marlytte Bub. 1962. Cofán phonemes. In Studies in Ecuadorian Indian lan-
guages I, 45–59. Norman, Oklahoma: Summer Institute of Linguistics of the Uni-
versity of Oklahoma.

Borman, Marlytte Bub. 1976. Vocabulario cofán: Cofán-castellano, castellano-cofán.
Quito, Ecuador: Instituto Lingüístico de Verano (Summer Institute of Linguistics).
https://www.sil.org/resources/archives/10958.

Borman, Marlytte Bub. 1977. Cofán paragraph structure and function. In Lon-
gacre, Robert (ed.), Discourse grammar: Studies in indigenous languages of
Colombia, Panama, and Ecuador, 289–338. Summer Institute of Linguistics.
https://www.sil.org/resources/archives/8678.

Borman, Marlytte Bub. 1990. La cosmología y la percepción histórica de los cofanes
de acuerdo a sus leyendas. Quito, Ecuador: Instituto Lingüístico deVerano (Summer
Institute of Linguistics). https://www.sil.org/resources/archives/17586.

Language Documentation & Conservation Vol. 14, 2020

https://www.sil.org/resources/archives/10958
https://www.sil.org/resources/archives/8678
https://www.sil.org/resources/archives/17586


LingView: A Web Interface for Viewing FLEx and ELAN Files 106

Broeder, Daan, Menzo Windhouwer, Dieter Van Uytvanck, Twan Goosen, &
Thorsten Trippel. 2012. CMDI: A component metadata infrastructure. Describ-
ing LRs with metadata: Towards flexibility and interoperability in the documen-
tation of LR workshop programme, vol. 1. 1–4. http://www.lrec-conf.org/proceed-
ings/lrec2012/workshops/11.LREC2012%20Metadata%20Proceedings.pdf.

Broeder, Daan & Peter Wittenburg. 2006. The IMDI metadata framework, its current
application and future direction. International Journal of Metadata, Semantics &
Ontologies 1(2). 119–132.

Cepek, Michael. 2018. Life in oil: Cofán survival in the petroleum fields of Amazonia.
Austin: University of Texas Press.

Comunidad Cofán de Zábalo & Comunidad Cofán Pakuya. 2011. La gente del río –
naensu ai. Quito, Ecuador: Imprenta Rimana.

Dobrin, Lise M. & Douglas Ross. 2017. The IATH ELAN Text-Sync Tool: A simple
system for mobilizing ELAN transcripts on-or off-line. Language Documentation
& Conservation 11. 94–102. http://hdl.handle.net/10125/24726.

Fischer, Rafael & Eva van Lier. 2011. Cofán subordinate clauses in a typology of sub-
ordination. In van Gijn, Rik, Katharina Haude,& Pieter Muysken (eds.), Subordina-
tion in Native South American languages, 221–249. Amsterdam, The Netherlands:
John Benjamins Publishing Company.

Fischer, Rafael & Kees Hengeveld. To appear. Cofán (A’ingae). In Epps, Patience &
Lev Michael (eds.), Amazonian languages: Smaller language families and isolates,
vol. 1. Berlin: de Gruyter Mouton.

Hengeveld, Kees & Rafael Fischer. n.d.-a.A’ingae (Cofán/Kofán) as a transparent lan-
guage. Unpublished manuscript.

Hengeveld, Kees & Rafael Fischer. n.d.-b. A’ingae (Cofán/Kofán) operators. Unpub-
lished manuscript.

Max Planck Institute for Psycholinguistics. 2018. ELAN. The Language Archive, Ni-
jmegen, The Netherlands. Version 4.1.2. http://tla.mpi.nl/tools/tla-tools/elan/.

Repetti-Ludlow, Chiara, Hugo Lucitante, Haoru Zhang, Scott AnderBois, & Chelsea
Sanker. n.d.A’ingae (Kofán). Unpublished manuscript.

Schroeter, Ronald & Nicholas Thieberger. 2006. EOPAS, the EthnoER online repre-
sentation of interlinear text. In Linda Barwick and Nicholas Thieberger. (eds.) 2006.
Sustainable Data from Digital Fieldwork Sydney: Sydney University Press. 99–124.
http://repository.unimelb.edu.au/10187/2137.

SIL FieldWorks. 2018. FieldWorks Language Explorer. https://software.sil.org/field-
works/.

Wittenburg, Peter, Hennie Brugman, Albert Russel, Alex Klassmann, & Han Sloetjes.
2006. ELAN: A professional framework for multimodality research. Proceedings of
the Fifth International Conference on Language Resources and Evaluation (LREC
2006). http://www.lrec-conf.org/proceedings/lrec2006/pdf/153_pdf.pdf.

Language Documentation & Conservation Vol. 14, 2020

http://www.lrec-conf.org/proceedings/lrec2012/workshops/11.LREC2012%20Metadata%20Proceedings.pdf
http://www.lrec-conf.org/proceedings/lrec2012/workshops/11.LREC2012%20Metadata%20Proceedings.pdf
http://hdl.handle.net/10125/24726
http://tla.mpi.nl/tools/tla-tools/elan/
http://repository.unimelb.edu.au/10187/2137
https://software.sil.org/fieldworks/
https://software.sil.org/fieldworks/
http://www.lrec-conf.org/proceedings/lrec2006/pdf/153_pdf.pdf


LingView: A Web Interface for Viewing FLEx and ELAN Files 107

Kalinda Pride
kalinda.pride@gmail.com

orcid.org/0000-0001-7955-2366

Nicholas Tomlin
nicholas_tomlin@berkeley.edu

orcid.org/0000-0001-7322-808X

Scott AnderBois
Scott_AnderBois@brown.edu

orcid.org/0000-0001-5546-9082

Language Documentation & Conservation Vol. 14, 2020

mailto:kalinda.pride@gmail.com.com
https://orcid.org/0000-0001-7955-2366
mailto:nicholas_tomlin@berkeley.edu
https://orcid.org/0000-0001-7322-808X
mailto:Scott_AnderBois@brown.edu
https://orcid.org/0000-0001-5546-9082

	Introduction
	Motivating the system
	Case study: Aâ•Žingae Language Documentation Project
	Design principles

	How does the system work?
	Overview of data pipeline
	Motivating the pipeline
	Step 1: Preprocessing
	Metadata
	Aside: Tier subdivision
	Sentences
	The database.json file

	Step 2: The web display
	Time-alignment for ELAN files


	Workflow for using the system
	Installing the software
	Download LingView
	Download Node.js and NPM packages

	Adding files
	Export and place files
	The rebuild script

	Editing files
	Editing metadata
	Removing files
	The terminal
	ReactJS and Webpack

	Future directions

