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ABSTRACT  
Crash reduction factors are widely  used  by engineers for prioritizing safety investments.  Work zones are 
routinely  analyzed  by  the length and duration of  queues.  Queue detection  warning  technology has been 
growing in  availability and  reliability  in recent years. However, there is sparse literature on the impact of  
freeway queueing on crash  rates.  This paper analyzes three  years of  crash data and crowd-sourced probe  
vehicle data to  classify crashes as being associated with queueing conditions or free flow conditions. In 
2014, only 1.2% of the distanced-weighted hours  of  operation of Indiana interstates operated at or under  
45 MPH.  A three-year  study on Indiana interstates indicates  that commercial vehicles were involved in  
over 87% of back-of-queue fatal crashes compared  to  39% of  all fatal  crashes during free flow conditions. 
A new measure of crash rate was developed to account for the presence and duration of  queues: crashes 
per mile-hour  of congestion.  The congested crash rate on  all Indiana  interstates in 2014  was found to be  
24  times greater than the uncongested crash rate.  These  data were also separated into  both  rural and urban 
categories.  In rural areas, the congested crash rate is 23 times the uncongested crash rate. In urban areas,  
the congested crash rate is 21 times the uncongested  crash rate.  Queues are found to be present for five 
minutes or longer prior to  approximately 90% of congestion crashes in 2014.  Longer term, this  
information shows the importance  in the development of  technology that  can  warn motorists of  traffic 
queues.  

Keywords: Queue, Congestion, Crash Rate, Exposure, Safety, Probe Data  
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INTRODUCTION AND MOTIVATION 
Congestion impacts both safety and mobility  on the roadway. There is a debate  whether congestion 
improves  safety by causing  lower speed or  degrades safety  by increasing the number of potential conflict  
points  or opportunities  for  crashes.  This paper studies historical crash data to  determine  crash rates during  
congested and uncongested traffic conditions on the interstates of Indiana.  The purpose of this paper is to 
provide  better understanding of safety risks due to congestion and help engineers  prioritize  and evaluate 
safety and mobility i mprovements.  

There are two main types of crashes that  occur in association with congestion. First, there are the 
low speed crashes that occur within a queue. It is generally accepted that these crashes are of low severity.  
The second type of congestion-related crash is the back-of-queue crash, which involves a vehicle 
traveling at a higher speed  striking a vehicle traveling at a lower speed.  These crashes are often high  
severity.  Figure 1  is an image of a back-of-queue crash on I-65 near  mile marker  215  on the morning of  
February 2,  2015.  The queue had grown from the initial crash of a jack-knifed trailer and existed for over  
90 minutes before the occurrence of the secondary,  back-of-queue  crash.  The driver  that struck the back  
of the queue was injured with a fractured arm.  

FIGURE 1 Back-of-queue crash on I-65 on February 2, 2015 

This paper discusses different factors prevalent in back-of-queue fatal crashes and compares crash  
rates during congested and uncongested traffic conditions.  A new measure of exposure was developed for  
calculating these crash rates, to be discussed in a later section. Only crashes on the main lanes of  interstate 
travel in Indiana are considered.  

LITERATURE REVIEW  
Agencies are concerned with the effect of the roadway and traffic conditions on safety since these  are 
factors that can  potentially be impacted  via infrastructure improvements and changes.  When  safety is a 
concern, crash rates are the most  common  performance measure used by agencies and researchers.  The 
Highway Safety Manual  (1) defines crash frequency as the number of crashes over a period of time,  
usually a year. Crash rate is defined as the crash frequency of a period of time divided by the exposure in  
that same time period. Exposure is the total of all opportunities for a crash to occur, whether or  not a crash  
actually  occurs. The Highway Safety Manual  refers to exposure as a measure of volume but, over  the  
years, researchers have used a number of different ways to measure exposure, such as induced exposure  
(2-6) and volume-based exposure (7- 20). The volume-based exposure techniques  and variations  on those  
are the most relevant to this study.  

A volume  measure of some sort is the most common basis for exposure.  Some studies use traffic 
counts recorded by infrastructure technology. Other studies use annual average daily traffic (AADT).  
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Mensah and Hauer (7) advise caution when using  AADT as a measure of exposure.  AADT is an aggregate 
measure and is not appropriate when considering the traffic conditions at the time of a  crash. Specifically, 
when studying the effect of congestion on safety, an average measure of volume does not adequately  
represent the traffic conditions.  
 Regardless of  the source of the volume data,  there are three types of volume-based measures  that 
are the most common  in safety studies. One study used volume for calculated crash rates for different  
levels of severity, finding that property-damage-only  and injury crash rates were highest when  traffic was 
lightest (8).  Another  study  used AADT-based hourly volumes to estimate the potential for conflicts (9). A 
third study modeled crash severity using flow as a variable in addition to speed and delay caused by  
congestion. (10). Vehicle-miles traveled  (VMT)  is a widely accepted and often  used measure of exposure 
when calculating  crash rates (11, 12, 13, 14). Lastly, density is frequently used in safety studies directly  
concerned with the effects of congestion on crash rates (15, 16, 17, 18). A  common finding amongst  
safety studies using density as exposure is the parabolic, or U-shaped, relationship between density and 
crash rates, where the highest crash rates occur at low densities (mostly single vehicle crashes) and high  
densities (mostly multi-vehicle crashes).  Some less common but no less viable measures of exposure are 
the standard deviation of speed between vehicles (19) and the volume-to-capacity ratio at the time of the 
crash (20).  
 Recently, with the greater availability and reliability  of real-time traffic condition data, queue 
detection and alert systems are becoming more common. One system focused on specific highway  
sections designated as high-crash locations (21).  This detection system used a number of factors, such as 
average speed, different forms of traffic density, headway variability, acceleration noise, etc., to calculate 
the crash likelihood in real-time.  The combination of crash likelihood model and detection algorithm  
succeeded in  detecting 58% of crashes during the study.  Another detection system wa s developed for  the 
Indiana Department of  Transportation (INDOT) and covered the entire interstate system instead of small  
sections (22). This  system  uses only the difference between the space mean speeds of two adjacent  
roadway segments. If the average speed of an upstream segment  is significantly higher than  the average 
speed of the immediate downstream segment, an alert is made visible to dispatchers and emergency  
responders.  
 Of  most relevance to this paper is a study by University of  California-Berkeley’s Transportation 
Research and Education Center (13, 14). In this study, four different traffic states are considered.  The four  
traffic states are based on speeds upstream and downstream of a crash and use 50 MPH as a threshold for  
congestion, using  VMT and vehicle-hours traveled (VHT) as exposure. In this study, the researchers 
found  that crash rates for the three different congestion states were about 5 times greater than the crash  
rate for the free flow state.  

RESEARCH OBJECTIVE 
There is wide interest and need to understand crash rates associated with work zones and queued traffic. 
Historically, it has been very challenging to associate crash data with queued traffic. This paper looks at 
opportunities to fuse new crowd sourced probe data with crash reports to develop improved crash factors. 

DATA SOURCES 
Two different data sources were used in this study. Crowd-sourced probe vehicle data were used as data 
for traffic conditions. Crash data were retrieved from state crash records. 

Crowd-Sourced Probe Vehicle Data 
Speed data from probe vehicles are used in this study to assess traffic conditions when a crash occurs. 
Speed and trajectory information is collected from millions of probe vehicles by a third party vendor and 
aggregated into space mean speeds every minute for specified roadway segments. The vendor has two 
possible segmentation schemes. The first is based on Traffic Message Channels (TMC) and is the older of 
the two segmentation schemes. The TMC segments range from 0.5 to 15 miles in length. The second 
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segmentation scheme, XD,  is proprietary, with segment lengths ranging from 1 to  2 miles. The XD 
scheme has greater resolution but  is only available from  January 2014.  
 To illustrate the foundation of this probe  data,  Figure  2a  shows a sample of speed and trajectory  
data before it is aggregated into space mean speeds. Specifically, these time space  diagrams are for  probe  
vehicles passing through a  section of I-65 Northbound on February 2,  2015, before, during, and after a  
crash  (Figure 1).  The incident began when a trailer jack-knifed due  to slick road conditions at about 8:30 
AM (labeled  i  in  Figure  2). A queue began to form, with vehicles in the queue  moving at 10 to 20 MPH  
until 9:40 AM when lanes were restricted to facilitate clean up. Within this queue, vehicles moved at less  
than 10 MPH, if at all. At approximately  9:55 AM, the queue began  to dissipate quickly and was almost  
cleared when  a passenger vehicle struck a trailer at the back of the queue at  10:16  AM (ii).  Prior to and 
upstream of the crash, the queue existed for more than 90 minutes. The back-of-queue crash  (ii) caused  
the queue to reform with speeds of less than 10 MPH  lasting for more than 2 hours after the crash and 
extending nearly 10 miles behind the crash.  Figure  2b shows the  development  of the queue using the  real-
time  shockwave boundary  detection tool on the  INDOT  web page  (22).  

These new data sets provide the ability to precisely characterize traffic flow regimes with fidelity  
that has historically only been discussed in an academic context.  Figure 3  depicts the shockwave diagram  
(23) developed from the time-space diagram (Figure  2). Before the back-of-queue crash at 10:16 AM, the 
queue had a frontal stationary boundary, a backward forming boundary pr opagating at approximately 1 
MPH, and a backward recovery  boundary with a speed of 12 MPH. Just before the back-of-queue crash  
and because of the lane restrictions, the backward forming boundary speed increased to 3.78  MPH.  
Before the first accident was cleared, the frontal stationary boundary existed at  mile marker  215, the site 
of the initial crash. However, with the back-of-queue crash, a new frontal stationary  boundary  was formed  
at the 213 mile  marker. In addition to backward forming and backward recovering boundaries, the queue  
from the secondary crash also had a rear stationary  boundary for a short time.  Table 1  shows the duration 
and speeds of each of the 7 boundaries of the queue for this incident.  



      
 

 

 
 

  
 

 
 

  
 

   

(a) Time-space diagram created with probe data 

(b) Queue location over time 

FIGURE 2 INRIX trip trace from February 2, 2015, crash on I-65 
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  FIGURE 3 Shock wave diagram from February 2, 2015, crash on I-65 
 

 
 

      

    

    

    

    

    

    

    
  

Class Duration (minutes) Speed (mph) 

ω1 Backward Forming 87 1.03 

ω2 Frontal Stationary 95 --

ω3 Backward Recovery 10 12 

ω4 Backward Forming 115 3.78 

ω5 Frontal Stationary 40 --

ω6 Backward Recovery 50+ 7.2 

ω7 Rear Stationary 15+ --

TABLE 1  Shock Wave Boundaries from February 2, 2015, crash on I-65 
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Crash Database  
Crash data were  retrieved  from  the state crash  database.  Only crashes defined as being within the 
specified time frame (2012-2014) and as having occurred on an interstate were retrieved.  Personal  
information,  such as names an d license plate numbers,  were  omitted. The crash data included the number  
of vehicles involved, the number of trailers involved,  the number of injuries and deaths, whether or not  
construction  was associated with the crash, the primary factor or cause, the manner of collision,  
information on the geometry of the road,  etc. It should be noted that  these crash data did not  use the  
KABCO  (K = fatal, A = incapacitating injury, B = non-incapacitating injury, C = possible injury, O =  
property damage only)  scale of severity.   

Before being used in this study, the raw crash data had to be cleaned,  which required extensive 
reading of the narrative to verify and correct  database attributes. Any crash with an unknown or  unreliable  
location was eliminated from the study da ta. Any crash that did not occur in the  interstate travel lanes,  
such as ramps,  was also eliminated. Lastly, only crashes that occurred on interstates  of the Interstate 
Highway System in Indiana were used, which includes I-265, I-465, I-469, I-64, I-65, I-69, I-70, I-74, I-
80, I-865, I-90, and I-94. Interstate 275 was not included in this study due  to lack of  probe vehicle data 
and that its length in Indiana is only 3 miles.  

INTERSTATE CRASHES 
This crash analysis was conducted in two parts. For the first part of this study, only fatal crashes that 
occurred in 2012 through 2014 were considered. The second part of the study looked in more detail at the 
2014 crashes. This paper looked at the data in two cohorts. The longitudinal analysis of fatal crashes from 
2012-2014 used the legacy TMC probe data that was available from 2012 onwards. Automated 
classification of 2014 crashes as occurring during congested or uncongested conditions was done using 
the newer, higher fidelity XD data with segment lengths approximately 1 mile in length. 

Fatal Crashes 
There were 230 fatal crashes total over this three year period on Indiana interstates. For each fatal crash, 
speed data from the crowd-sourced probe vehicles prior to and upstream of the crash were analyzed to 
ascertain whether or not the crash occurred at the back of a queue. The probe data were augmented by the 
crash report narratives. Using this method, 30 of the fatal crashes were determined to be back-of-queue 
crashes. Figure 4 shows a Pareto chart of the durations of queues as seen in the probe vehicle data before 
each of the 30 fatal back-of-queue crashes. The durations range from not seen in the data at all (5 crashes) 
to 6 hours. The chart also shows which back-of-queue crashes were associated with construction and 
which involved commercial vehicles (trucks with trailers). 



      
 

 

 
 

    FIGURE 4 Duration of queue before fatal back-of-queue crash 
 
 Figure  5  shows the total fatal crashes and number of fatal back-of-queue crashes by  year. The 
number of back-of-queue crashes increases over the three year period but the total number of fatal crashes 
does not.  This  could be  attributed to the  randomness in crash occurrence  or perhaps influenced by  
increasing congestion.  However, with only a three year sample, there is insufficient data to reach a 
conclusion.   

In this part of the study,  different possible trends in back-of-queue fatal crashes were considered  
and evaluated. For example, a larger percentage of back-of-queue crashes than non-back-of-queue were 
associated with construction. This trend  is perhaps influenced by the fact that work zones cause queueing  
more so  than non-work zones. The most  significant trend found in fatal back-of-queue crashes is the 
involvement of one or more trucks with trailers (Figure 6). Out of all fatal back-of queue crashes over the 
three year period, 87% involved at least one truck. In  comparison, only 39%  of the non-back-of-queue  
fatal crashes involved at least one truck.  
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   FIGURE 5 Number of fatal crashes on Indiana interstates by year 
 

 

   FIGURE 6 Percent of fatal crashes that involved trucks, 2012-2014 
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All Interstate Crashes in 2014 
In the second portion of this study, crashes of all severities in 2014 were analyzed. Crash rates in 
congested and uncongested traffic conditions were the focus. In 2014, over 15,000 crashes occurred in the 
main lanes of travel on interstates in Indiana. Of these crashes, 3,448 were designated as being involved 
in a queue. The following subsection will describe how a new unit of exposure was developed in order to 
define crash rate. Then, the process for determining whether a crash was associated with a queue is 
discussed. Lastly, the different crash rates will be discussed. 

Mile-Hours as Unit of Exposure 
As discussed in the literature review, the vast majority of crash rates use volume, or some form of 
volume, as the unit of exposure. Many safety studies use AADT to derive volume. However, an aggregate 
measure of volume would be insufficient is this case since congested conditions are not adequately 
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represented by average measures. Some safety studies use count data as measured  by ITS (intelligent 
transportation system) infrastructure, such as detector loops. However, no agencies have statewide 
coverage, particularly in work zones  or rural areas. Count stations are located infrequently enough that  
any vol ume  measure would still be too  aggregated. Also,  even if ITS devices are installed near work  
zones, the temporary lane use patterns often degrade the quality of  data.  Therefore, a new unit of exposure  
was developed for this study  that uses crowd sourced  probe data.  
 A mile-hour  of congestion  is a  measure  of exposure that combines  the duration of a condition  
with the length of roadway t hat the  condition covered.  For this study, the probe vehicle data were used in 
calculations of mile-hours of exposure.  As described  above, each segment has a length and an average 
speed every m inute. A threshold of 45 MPH was used for defining congestion.  The sum  of hours when 
the se gment operated at or under 45 MPH  multiplied by the segment’s length is  defined as the exposure of  
that segment  to congestion.  For example, a queue of 1 mile in length that lasted for 1 hour would equate  
to 1 mile-hour of congestion.  
 Following this idea, the crash rate is defined by the number of crashes that occurred during a 
certain condition and the mile-hours of exposure to that condition. In this case, the uncongested crash rate  
(Equation 1) uses  mile-hours of uncongested conditions and the congested crash rate (Equation 2) uses 
mile-hours of congested conditions.  

Number of crashes in uncongested traffic conditions Uncongested crash rate =  N           (1)  
 ∑    Segment length ×   Number of uncongested hours 

n=1 

Number of crashes in congested conditions Congested crash rate =  N            (2)  

∑   Segment length ×   Number of congested hours 
n=1 

 
 Figure  7a  shows the total number of congested mile-hours on Indiana interstates  in 2014.  
Congested conditions make up only 1.2% of the total possible mile-hours  of operation.  Figure  7b  shows 
the percent of mile-hours operating under uncongested and congested conditions for each interstate.  
Interstates in  Indiana experience congested conditions for a very small portion of  yearly operation.   
 Differences  between rural  and urban crash rates and traffic conditions were also  considered.  
Using the metropolitan statistical  areas,  based on the  United States Census, of Chicago, Indianapolis, and 
Louisville, the interstate segments  and crashes were designated as either rural or  urban. Four interstates 
were contained entirely in  urban areas: I-265, I-465, I-865, and I-90. Interstate 469 was the only interstate 
that was entirely  defined as rural.  Figure  8  shows the mile-hours of congestion as seen in Figure  7a split 
between rural and urban interstate segments.  



      
 

 

 
(a) Mile-hours of congested conditions  (speed  ≤ 45 MPH)  by interstate in  2014 




 

 
(b) Percent  of congested vs. uncongested mile-hours
 
 
  

 
FIGURE 7   Summary  of congested conditions by interstate in 2014 
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*Has only urban roadway segments 
**Has only rural roadway segments 

FIGURE 8 Mile-hours of rural vs. urban congested conditions by interstate in 2014 
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Queue Duration Algorithm 
In the first part of this study, the speed data and crash  reports were analyzed in-depth manually. However,  
this process proved to be time-consuming and would  not be feasible for the 15,000+ crashes that were 
considered for the second part of the study. Therefore, an algorithm  was developed that would  analyze the 
speed data from a large number of crashes and provide the duration of a queue in the data as an output.   

The algorithm  needs only the date, time, and location (roadway,  direction, and mile  marker)  of 
each crash. It takes into account the movement of a shock wave boundary between interstate segments,  
which may cause minor fluctuations in average speed. For example, as a shock wave enters a segment, the 
average speed of that segment could vary between  50 MPH and 40 MPH. While 50 MPH is above the  
congestion threshold, it does not mean that the queue  has disappeared. A buffer period of  10 minutes is  
used to account for shock  waves passing between segments and allows the algorithm to see a queue that  
exists across several segments. In summary, the algorithm evaluates the speed  prior to a crash in the 
segment that  the crash occurred. If a queue is found,  the algorithm evaluates consecutive roadway  
segments upstream of the crash until the  origin time and location  is found. The difference between the 
origin time of the queue and the time of  the crash is taken as the queue duration.  As stated above, 3,448 
crashes were found to have been involved in a queue.  Figure  9a  shows a Pareto chart of the queue 
durations  for  all crashes in 2014, similar  to  Figure  4  for the fatal back-of-queue crashes.  Of the  15,117 
total crashes,  3,448 or 22.8% were associated with congestion prior to the crash itself.  Figure 9b is a 
cumulative frequency di agram of the duration of congestion prior  to crash for each of the 3,448 
congestion crashes.  Approximately  90% of congestion crashes have a queue duration of 5 minutes or  
longer and 75% have a queue duration of 14 minutes or longer.   



      
 

 

 
   (a) All crashes (n = 15,117) 

 

 
  

 
  

(b) Congestion crashes (n = 3,448) 

FIGURE 9  Distribution of congestion duration before crashes on all interstates in 2014 
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Crash Rates 
Using Equations 1 and 2, uncongested and congested crash rates were calculated for each interstate and 
overall in 2014. Figure 10a shows both crash rates side-by-side for each interstate. The dotted lines 
represent the overall crash rates. Figure 10b and Figure 10c show the crash rates segmented by rural and 
urban interstate segments, respectively. 



      
 

 

 
 

 
 

 
 

 
   

(a) All segments 

(b) Rural segments 

(c) Urban segments 

FIGURE 10 Uncongested vs. congested crash rates by interstate in 2014 
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The ratios between the uncongested and congested crash rates are significant. In this paper, the 
crash rate ratio is defined as the congested crash rate divided by the uncongested crash rate. Figure 11a 
shows the crash rate ratios for each interstate in 2014. The ratios range from 6 for I-865 to 69 for I-265. 
The overall congested crash rate is 24.1 times the overall uncongested crash rate. Figure 11b and Figure 
11c show the crash rate ratios for rural and urban segments, respectively. For rural interstate segments, the 
congested crash rate is 23.8 times the uncongested crash rate. For urban interstate segment, the congested 
crash rate is 20.7 times the uncongested crash rate. The total crash rate ratio is higher than both the urban 
and rural crash ratios due to the congested crash rate being influenced heavily by urban conditions, while 
the uncongested crash rate is equally influenced by urban and rural conditions. This is expected because 
congested conditions are primarily located in urban environments, while uncongested conditions are 
shared in both urban and rural environments. 



      
 

 

 
 

 

 
 

 

 
     

(a) All segments 

(b) Rural segments 

(c) Urban segments 

FIGURE 11 Congested/uncongested crash rate ratios by interstate in 2014 
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CONCLUSIONS AND RECOMMENDATIONS 
The impact of  congestion on crashes is quite evident  from the data  presented in this paper. Using crash  
and probe  vehicle data, the following trends were found:  
 
 Over the 3 years  studied, 13% of fatal crashes  occurred at the back of a queue.  
 87% of fatal back-of-queue crashes involved at least one commercial vehicle.  
 Only  1-2% of the total mile-hours of interstate operated under congested conditions.   
 90% of  congested crashes  in 2014 had a  queue  duration ≥  5 minutes  
 75%  of  congested crashes  in 2014 had a  queue  duration ≥  14 minutes  
 Overall congested crash rate was 24.1  times greater than the uncongested crash rate  
 Rural congested crash rate was 23.8 times greater than the rural uncongested crash rate  
 Urban congested crash rate was 20.7 times greater than the urban uncongested crash rate  

 
The data reported in this paper  may be useful to designers in performing alternative analysis of  

mobility enhancements  and work  zone  traffic management designs. S pecial consideration should also be 
given to congestion- and queue-management in the design of work zones. Though this study i s specific to 
interstates in  Indiana, it can be assumed that similar results would be found for interstates across the 
country.  Longer term, this information is important to communicate to decision makers on the importance  
of advancing connected vehicle technology that warn motorists of  queued traffic on the interstate.  
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