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Flexible modelling of dependence in volatility

processes

M. Kalli and J. E. Griffin ∗

July 12, 2013

Abstract

This paper proposes a novel stochastic volatility model that draws from the exist-

ing literature on autoregressive stochastic volatility models, aggregation of autoregres-

sive processes, and Bayesian nonparametric modelling to create a stochastic volatility

model that can capture long range dependence. The volatility process is assumed to be

the aggregate of autoregressive processes where the distribution of the autoregressive

coefficients is modelled using a flexible Bayesian approach. The model provides insight

into the dynamic properties of the volatility. An efficient algorithm is defined which

uses recently proposed adaptive Monte Carlo methods. The proposed model is applied

to the daily returns of stocks.
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1 Introduction

Stochastic volatility (SV) models have become a popular method for modelling finan-

cial data. The SV model described in Taylor (1986) and Harvey (1998) assumes that

returns, yt, are modelled by

yt = β exp{ht/2}ǫt, t = 1, 2, . . . , T (1)

where ǫt are i.i.d. draws from some distribution (usually, taken to be normal) and

exp{ht/2} is the volatility on the t-th day which is assumed to follow a stochastic

process. This volatility process can be thought to represent the flow of information to

the market and log volatility is often assumed to follow an AR(1) process

ht = φht−1 + ηt, t = 1, 2, . . . , T (2)

where ηt is normally distributed with mean 0 and variance σ2(1 − φ2). This choice of

distribution for ηt results in the stationary distribution of ht being normal with mean 0

and variance σ2. The autoregressive coefficient of ht−1, φ, is the persistence parameter

measuring the first lag autocorrelation of ht.

The AR(1) assumption has become standard but there are no overriding economic

reasons for its choice. Empirical analyses of financial return series have suggested that

the volatility process is time-varying and mean-reverting with volatility clustering, for

a comprehensive description of these stylized facts (see e.g. Cont, 2001; Tsay, 2005;
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Taylor, 2005). These analyses have also observed that the rate of decay of the sam-

ple autocorrelation function of the squared and absolute returns is much slower than

would be expected with an AR(1) volatility process. The slow decay of the sample

autocorrelation function has been linked to the concept of long range dependence. We

are interested in the case where ht is the aggregate of weakly stationary processes, with

a clearly defined covariance function (and thus spectral density). Then long range de-

pendence occurs when this covariance function is unsummable (see Granger, 1980).

Alternatively, when ht is a stationary process, long range dependence can be defined

in terms of fractional differencing. A process has long range dependence if the spectral

density S(ω) converges to κ|ω|−2d at very low frequencies, i.e as ω → 0, where the

differencing parameter d ∈ (0, 1/2) and ω ∈ [−π, π].

Early evidence of the slow rate of decay of the sample autocorrelation function in fi-

nancial time series can be traced back to Ding et al. (1993), De Lima and Grato (1994),

and Bollerslev and Mikkelsen (1996). Ding et al. (1993) constructed a series of frac-

tional moments using the daily returns of the S&P 500 and found very slowly decaying

autocorrelations for these series, De Lima and Grato (1994) applied some long mem-

ory tests to the squared residuals of filtered daily US stock returns and rejected the null

hypothesis of short memory for these returns. Bollerslev and Mikkelsen (1996) found

slowly decaying autocorrelations for the absolute returns of the S&P 500 and proposed

the Fractionally Intergrated GARCH (FIGARCH) as well as the Fractionally Intergrated

EGARCH (FIEGARCH). In terms of modelling long range dependence in SV models

(LMSV), Harvey (1998) proposed an SV model driven by fractional noise where the

log volatility ht is expressed as a simple Autoregressive Fractionally Integrated Moving

Average, ARFIMA(0, d, 0). Breidt et al. (1998) extended this model by expressing the
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log volatility, ht as an ARFIMA(p, d, q). Generalizations of the LMSV, appear in Arteche

(2004) and Hurvich et al. (2005), where the Gaussianity assumption for ht is replaced

by a linearity assumption in both cases. The authors use the results in Surgailis and

Viano (2002), and confirm that under linearity for ht and other weak assumptions,

powers of absolute returns have long range dependence.

Cross-sectional aggregation of AR(1) processes was introduced in Robinson (1978)

and further explored in Granger (1980) and Zaffaroni (2004). The aggregation of

such processes leads to a class of models with long range dependence which differ

from fractionally integrated models, where the series requires fractional differencing

to achieve a stationary ARMA series.

Suppose that we have m time series hi,1, hi,2, . . . , hi,T for i = 1, . . . ,m of the form

hi,t = φihi,t−1 + ηi,t (3)

where ηi,t ∼ N(0, σ2(1 − φ2i )) are idiosyncratic shocks, and the persistence parameter

φi
iid
∼ Fφ, with support on (0, 1). The aggregate process is

ht =
1

m

m
∑

i=1

hi,t, t = 1, 2, . . . , T. (4)

Granger (1980) studied the effect of the distributional choice of Fφ on the properties

and the dependence structure of the aggregate. He showed that the aggregate has the

spectrum of an ARMA(m,m− 1) if Fφ is discrete on region (−1, 1). If Fφ is continuous

and φ can take on any value on some region, then the spectrum of the aggregate

does not have the form of an ARMA spectrum. He observed that the behaviour of

fφ, the density of Fφ, is important when φ ≈ 1, because it has an effect on long

range dependence. He assumed that Fφ is a beta distribution on (0, 1) with shape

parameters a and b (i.e. Be(a, b)), and confirmed that the key parameter, in terms of
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long range dependence, is b. He showed that when b→ ∞ the autocovariance function

of the aggregate approximates that of an ARMA process. Zaffaroni (2004) generalises

the results of Granger (1980) to distributions with density fφ(φ) ∝ g(φ)(1 − φ)b on

(0, 1) and considers the limit of the process ht

/

√

Var [ht] rather than the limit of its

autocorrelation function. He showed that the process is stationary if b > 0 but non-

stationary if b < 0.

This paper describes a Bayesian nonparametric approach to estimating the distri-

bution Fφ. Bayesian nonparametric models place a prior on an infinite dimensional

parameter space and adapt their complexity to the data. A more appropriate term is

infinite capacity models, emphasising the crucial property that they allow their com-

plexity (i.e., the number of parameters) to grow as more data is observed; in contrast,

finite-capacity models assume a fixed complexity. Hjort et al. (2010) is a recent book

length review of Bayesian nonparametric methods. The distribution Fφ is assumed to

be discrete which allows us to decompose the aggregate process into processes with

different levels of dependence. This models the effect of uneven information flows

on volatility and can be linked to the differences in effects of different types of infor-

mation. Some information may have a longer lasting effect on volatility than other

pieces of information. A similar approach is discussed in Griffin (2011) using con-

tinuous time non-Gaussian Ornstein-Uhlenbeck processes for the volatility. Inference

is made using Markov chain Monte Carlo (MCMC) methods with a finite approxima-

tion to the well-known Dirichlet process which exploits the relationship between the

Dirichlet and gamma distributions (Ishwaran and Zarepour, 2000, 2002). The offset

mixture representation of the stochastic volatility model (Kim et al., 1998) allows us

to jointly update the volatilities using the Forward Filtering Backwards sampling algo-
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rithm of Frühwirth-Schnatter (1994) and Carter and Kohn (1994). This combined with

recently developed adaptive MCMC methodology enables us to construct an efficient

MCMC algorithm for these models.

The structure of this paper is as follows: in Section 2 we describe in detail the

use of Bayesian nonparametric priors in aggregation models, Section 3 describes our

sampling methodology, in Section 4 we provide illustrations with both simulated and

real data, Section 5 is the discussion.

2 Bayesian nonparametric inference in aggrega-

tion models

The core of Bayesian nonparametrics is placing a prior on an infinite dimensional pa-

rameter space. In our context, the parameter is a probability distribution and the

prior is a stochastic process. We will define a Bayesian nonparametric model for cross-

sectional aggregation models in two stages. Firstly, we construct a suitable limiting

process for a cross-sectional aggregation model as the number of elements tends to

infinity. Secondly, we discuss the use of a Dirichlet process prior (Ferguson, 1973) for

Fφ, the distribution of the persistence parameter φ.

We use the notation ht(φ, σ
2) to represent an AR(1) process with persistence pa-

rameter φ and stationary variance σ2 so

ht(φ, σ
2) = φht−1(φ, σ

2) + ηt

where ηt ∼ N
(

0, σ2(1− φ2)
)

, and so the marginal distribution of ht(φ, σ
2) is N(0, σ2).

We define the aggregate in (4) as:
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Definition 1 A finite cross-sectional aggregation (FCA) process h
(m)
t with parameters m,

σ2 and Fφ is defined by

h
(m)
t =

1

m

m
∑

i=1

hi,t
(

φi, σ
2
)

, t = 1, 2, . . . , T (5)

where φ1, . . . , φm
i.i.d.
∼ Fφ.

The stationary distribution of the FCA process is N(0, σ2/m) and the autocorrelation

function, ρs = Corr
(

h
(m)
t , h

(m)
t+s

)

, has the form ρs = EFφ
[φs] if it exists.

In the introduction we stressed the importance of the persistence parameter dis-

tribution, Fφ, in determining the dependence structure of the FCA process. To find a

suitable limit for h
(m)
t as m → ∞, we will assume that Fφ is discrete with an infinite

number of atoms, such that

Fφ =
∞
∑

j=1

wjδλj , (6)

where w1, w2, w3, . . . are all positive,
∑∞

j=1wj = 1, and δλj is the Dirac measure placing

mass 1 at location λj . This assumption means that no long memory is present, although

arbitrary levels of long range dependence exist.

The values φ1, . . . , φm in the FCA process are sampled from Fφ and, since it is a dis-

crete distribution, each φi must take a value in λ1, λ2, . . . and there can be ties in these

values. We let n
(m)
j be the number of φi’s which are equal to λj . Clearly n

(m)
1 , n

(m)
2 , . . .

will follow an infinite dimensional multinomial distribution which depends on m. It

follows that, with this choice of Fφ, we can write the FCA process as

h
(m)
t =

1

m

∞
∑

j=1

ht

(

λj , n
(m)
j σ2

)

. (7)

The stationary distribution of h
(m)
t is N(0, σ2/m) and standardising h

(m)
t gives

h
(m)
t

√

Var[h
(m)
t ]

=

∞
∑

j=1

ht

(

λj ,
n
(m)
j

m

)

.
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Recall that the sample counts n
(m)
1 , n

(m)
2 , . . . follow a multinomial distribution with

parameters w1, w2, . . . and so

lim
m→∞

n
(m)
i

m
= wj as m→ ∞.

It follows that

lim
m→∞

h
(m)
t

√

Var[h
(m)
t ]

=
∞
∑

j=1

ht (λj , wj) in distribution.

and its stationary distribution is N(0, 1) since this distribution does not depend on m.

It is useful to have a scaled version of this limit for our modelling purposes which we

call an ICA process.

Definition 2 An infinite cross-sectional aggregation (ICA) process h
(∞)
t with parameters

σ2 and Fφ is defined by

h
(∞)
t =

∞
∑

j=1

hj,t
(

λj , σ
2wj

)

, t = 1, 2, . . . , T (8)

where

Fφ =
∞
∑

j=1

wjδλj .

The stationary distribution of h
(∞)
t is N(0, σ2) and the autocorrelation function,

ρs = Corr
(

h
(∞)
t , h

(∞)
t+s

)

, has the form

ρs =
∞
∑

j=1

wjλ
s
j =

∫

λsdFφ(λ).

The distribution of Fφ which defines the ICA process has a natural interpretation as wj

is the proportion of the variation in the stationary distribution explained by the j-th

process which is associated with autoregressive parameter λj . The spectral density,

S(ω), can also be expressed as an integral with respect to Fφ,

S(ω) = σ2
∫

1

(1− λ2)(1 + λ2 − 2λ cos(ω))
dFφ(λ)
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where 1
(1−λ2)(1+λ2−2λ cos(ω))

is the spectral density of an AR(1) process with persistence

parameter λ and marginal variance 1.

Our focus is on the estimation of Fφ. To avoid making parametric assumptions

about this distribution, we take a Bayesian nonparametric approach and use a Dirichlet

process (DP) prior for Fφ. The DP prior is often used to define an infinite mixture model

for density estimation by giving the mixing distribution a DP prior. Our approach is

substantially different and uses the Dirichlet process as prior for the distribution Fφ in

the ICA process model. This leads to a nonparametric approach to understanding the

dynamic behaviour of the aggregate h
(∞)
t .

The properties and theory for the DP were developed in Ferguson (1973). We say

that a random distribution F with sample space Ω is distributed according to a DP

if the masses placed on all partitions of Ω are Dirichlet distributed. To elaborate, let

F0 be a distribution over sample space Ω and c a positive real number, then for any

measurable partition A1, . . . , Ar of Ω the vector (F (A1), . . . , F (Ar)) is random since F

is random. The Dirichlet process can be defined as

F ∼ DP(c, F0) if (F (A1), . . . , F (Ar)) ∼ DP(cF0(A1), . . . , cF0(Ar)) (9)

for every finite measurable partition A1, . . . , Ar of Ω.

The distribution F0 is referred to as the centring distribution as it is the mean of the

DP, that is E[F (Ai)] = F0(Ai). The positive number c is referred to as the concentration

(or precision) parameter as it features in and controls the variance of the DP, that is

Var[F (Ai)] = F0(Ai)(1−F0(Ai))/(c+1). One can clearly see that the larger the value of

c, the smaller the variance, and hence the DP will have more of its mass concentrated

around its mean.

We now describe the priors given to the parameters of the ICA process. The distri-
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bution Fφ is given a Dirichlet process prior with precision parameter c and a Be(1, b)

centring distribution. The parameter σ2 ∼ Ga(c, c/ζ) where Ga(α1, α2) represents a

Gamma distribution with density

f(x) =
αα1
2

Γ(α1)
xα1−1 exp{−α2x}, x > 0.

This implies that the prior mean of σ2 is ζ. The choice of a Dirichlet process prior for Fφ

implies that this distribution is a priori discrete with probability 1 and so it is suitable

for use with the ICA process. An alternative parameterization of the Fφ is

Fφ =

∞
∑

j=1

τj
∑∞

k=1 τk
δλj . (10)

where τj = σ2wj . The choice of prior for Fφ and σ2 implies that τ1, τ2, . . . are the

jumps of a Gamma process with Lévy density η(x) = cx−1 exp{−c/ζx}.

A stochastic volatility with ICA volatility process (SV-ICA) model can now be defined

for returns y1, . . . , yT

yt = β exp{h
(∞)
t /2}ǫt

where ǫt ∼ N(0, 1) and h
(∞)
t follows an ICA process. This model allows a flexible form

for the autocorrelation and helps decomposition of the volatility process dynamics. The

model is completed by specifying priors for the parameters β, b, c and ζ. The parameter

µ = log β2 is given a vague improper prior, p(µ) ∝ 1. This makes the prior invariant to

rescaling of the data. The hyperprior of b, the scale parameter for the distribution of

λi, is taken to be an exponential distribution with mean 1/(log 2). This implies that the

prior median of b is 1 and hence places half its mass on processes with long memory

and half its mass on processes with short memory. This choice avoids making strong

assumptions about the dynamic properties of the time series. The parameter c controls

how close Fφ is to the beta centring distribution. We follow Griffin and Steel (2004)
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by defining the prior for c through c
c+n0

∼ Be(ac, ac), where n0 is a prior sample size

for Fφ and ac is a precision parameter (smaller values of ac imply less variability). The

density for c is

p(c) =
nn0Γ(2ac)

Γ(2ac)2
cac−1

(c+ n0)2ac
.

We choose the values ac = 5 and n0 = 3 which place most of the mass on rela-

tively small values of c implying that Fφ is away from the beta distribution. The

parameter ζ represents the prior mean of the overall variability σ2 of the volatility

process. We represent our prior ignorance about this scale by choosing the vague prior

ζ−1 ∼ Ga(0.001, 0.001).

3 Computation

Markov chain Monte Carlo (MCMC) inference in the SV-ICA model is complicated by

the presence of an infinite sum of AR(1) processes and the non-linear state space form

of the model. The first problem is addressed through a finite truncation of Fφ and the

second problem through the offset mixture representation of the SV model discussed

in Kim et al. (1998), Omori et al. (2007), and Nakajima and Omori (2009).

The approximation of the Dirichlet process by finite truncations has been discussed

by many authors including Neal (2000), Richardson and Green (2001), Ishwaran and

Zarepour (2000), and Ishwaran and Zarepour (2002). In the latter paper the au-

thors discuss using Dirichlet random weights to construct a finite-dimensional random

probability measure with n atoms that limits to a Dirichlet process as n → ∞. Their

approach approximates Fφ by

F
(n)
φ =

n
∑

j=1

w
(n)
j δ

λ
(n)
j

(11)
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where
(

w
(n)
1 , . . . , w

(n)
n

)

∼ Dir (c/n, . . . , c/n) 1 and λ
(n)
j

iid
∼ Be(1, b). The relationship

between the Dirichlet distribution and the gamma distribution allows us to further

write

F
(n)
φ =

n
∑

j=1

σ2j
∑n

k=1 σ
2
k

δλj (12)

with σ2j
iid
∼ Ga(c/n, c/ζ). As well as approximating the Dirichlet process prior for Fφ

this also implies that σ2 =
∑n

j=1 σ
2
j ∼ Ga(c, c/ζ), replicating the prior for the infinite-

dimensional model. The idea of using Gamma priors for variances to avoid model over-

complexity has been explored recently in the Bayesian literature on regression models

(see Caron and Doucet (2008) and Griffin and Brown (2010)). The construction of

F
(n)
φ in (11) is intuitive.

Combining the finite truncation F
(n)
φ of Fφ with the SV-ICA model leads to the

model (where we drop the dependence of the model on the value of n for notational

simplicity)

yt = β exp{ht/2}ǫt, ht =
n
∑

j=1

h⋆j,t

and

h⋆j,t = λjh
⋆
j,t−1 + η⋆j,t, j = 1, . . . , n

where η⋆j,t ∼ N(0, σ2j (1− λ2j )) and σ2j ∼ Ga(c/n, c/ζ).

We proceed to inference using the linearized form of the stochastic volatility model

for MCMC (Kim et al., 1998; Omori et al., 2007; Nakajima and Omori, 2009). This

approach works with y∗t = log(y2t + ξ) where the offset value ξ is introduced to avoid

y∗t from being very negative or even undefined, due to zero returns, see Fuller (1996).

It follows that y∗t can be expressed as a linear function of ht,

y∗t = µ+ ht + ǫ∗t , t = 1, . . . , T (13)

1Dir(α1, α2, . . . , αk+1) represents the k-dimensional Dirichlet distribution
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where µ = log(β2), ǫ∗t = log(ǫ2t ) and ǫ∗t follows a logχ2 distribution. The logχ2 distri-

bution can be approximated by a mixture of 7 normal distributions

p(ǫ∗t ) =

7
∑

i=1

pi N(νi, ψ
2
i ).

Introducing allocation variables s1, s2, . . . , sT where p(st = j) = pj leads to the condi-

tional distribution ǫ∗t |st ∼ N(νst , ψ
2
st).

The SV-ICA model with the finite truncation of Fφ and the linearized form for

the return defines a Gaussian dynamic linear model conditional on s1, s2, . . . , sT and

σ21, σ
2
2, . . . , σ

2
n,

y∗t = µ+ 1Ht + ǫ∗t

Ht = ΛHt−1 + η⋆t (14)

where 1 is a (1× n) dimensional vector of 1’s,

Λ =

























λ1 0

λ2

. . .

0 λn

























,

and

Ht =

























h⋆1,t

h⋆2,t

...

h⋆n,t

























ǫ∗t |st ∼ N(νst , ψ
2
st), and η⋆t follows a zero mean normal distribution with covariance
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matrix

Σ =

























σ21(1− λ21) 0

σ22(1− λ22)

. . .

0 σ2n(1− λ2n)

























,

σ2j ∼ Ga

(

c

n
,
c

ζ

)

, λj ∼ Be(1, b),

p(µ) ∝ 1 and ζ−1 ∼ Ga(αζ , βζ).

The hyperparameters are θ = (σ21, . . . , σ
2
n, s1, . . . , sT , λ1, . . . , λn, µ, b, c, ζ) and let

σ2 =
∑n

j=1 σ
2
j . The model for y∗t and ht is a linear, Gaussian state-space model and so

the marginal likelihood p(y∗1, . . . , y
∗
T |θ) can be calculated analytically using the Kalman

filter and θ updated using Metropolis-Hastings random walk steps. This approach,

however, has some problems. The value of n will often be large and the number of

computations needed to calculate the marginal likelihood will beO(n3) (due to the ma-

trix inversions involved). This makes this scheme only computationally feasible when

n is small (say, less than 10). It would also be difficult to propose a high-dimensional

vector of new parameter values. On the other hand, the parameters can be sampled

using a Gibbs sampler by simulating the hidden states hi,t using a Forward Filtering

Backward Sampling (FFBS) algorithm (Carter and Kohn, 1994; Frühwirth-Schnatter,

1994). However, this sampler is known to mix slowly when λj becomes close to 1.

We propose an algorithm which combines both samplers. The parameters are up-

dated using the Gibbs sampler. Additional steps are added which choose k < n compo-

nents and update parameters conditional on the states of the other components while

marginalising over the states in the k chosen components (we use k = 4 in our ex-

amples). This set up allows us to improve the poor mixing associated with the Gibbs
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sampler whilst controlling the computational cost. The sampler uses adaptive propos-

als, which are allowed to depend on previous values of the sampler, in a Metropolis-

within-Gibbs scheme. These schemes destroy the Markovian structure of the sampler

and so special theory must be developed to prove convergence of these algorithms to

the correct stationary distribution. Convergence of Metropolis-within-Gibbs scheme is

discussed in Haario et al. (2005), Roberts and Rosenthal (2009) and Latuszynski et al.

(2013). In particular, we assume that the parameters σ21, . . . , σ
2
n, c and b are truncated

at large values, which ensures uniform ergodicity of the chain and so ergodicity of the

chain follows from Theorem 5.5 of Latuszynski et al. (2013). It will be useful to define

x(m) to be the value of the parameter x at the start of the m-th iteration. The steps of

the sampler are:

Updating σ2
1, σ

2
2, . . . , σ

2
n

The full conditional distribution of σ2j is

GIG

(

c

n
−

1

2
T, h21,j +

∑T
t=2 (ht,j − λjht−1,j)

2

1− λ2j
, 2
c

ζ

)

where GIG(a1, a2, a3) represents the Generalized Inverse Gaussian distribution which

has density proportional to

ya1−1 exp

{

−
1

2

(

a2
y

+ a3y

)}

.

Updating s1, . . . , sT

The full conditional distribution of st is

p(st = j) ∝ pjψ
−1
j exp

{

−
1

2

(yt − ht − νj)
2

ψ2
j

}

, j = 1, . . . , 7
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Updating λ1, . . . , λn

The full conditional distribution of λj is proportional to

(1− λj)
b−1(1− λ2j )

−(T−1)/2 exp

{

−
1

2

∑T
t=2(ht,j − λjht−1,j)

2

σ2j (1− λ2j )

}

which is updated using a random walk on the logit scale (ı.e. the proposal value at the

m-th iteration λ′j is simulated as log λ′j−log(1−λ′j) ∼ N(log λ
(m)
j −log(1−λ

(m)
j ), σ

2 (m)
λ,j )).

The tuning parameter σ
2 (m)
λ,j is updated in the sampler so that the acceptance rate

converges to 0.3 (following the advice of Roberts and Rosenthal (2009)) using the

method of Atchadé and Rosenthal (2005). This involves setting

σ
2 (m+1)
λ,j = ρ

(

σ
2 (m)
λ,j +m−0.6 (α− 0.3)

)

where α is the acceptance probability from the update at the m-th iteration and

ρ(x) =































L if x ≤ L,

x if L < x < U,

U if x ≥ U.

where L and U are user-defined values which are respectively very small and very

large. The function ρ is introduced to ensure the stability of the adaptive method.

Updating µ

The full conditional of µ is N
(

ȳ⋆, σ⋆ 2
)

where ȳ⋆ =
∑T

t=1(y⋆t −
∑n

j=1 h
⋆
t,j)/ψ2

st∑T
t=1 1/ψ

2
st

and σ⋆ 2 =

1∑T
t=1 1/ψ

2
st

.

Updating ζ

The full conditional distribution of ζ−1 is Ga(c+ αζ , c
∑n

j=1 σ
2
j + βζ).
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Updating b and c

The full conditional distribution of b is proportional to

p(b)bn





n
∏

j=1

(1− λj)





b

and the full conditional distribution of c is proportional to

p(c)
(c/ζ)n

Γ(c/n)n





n
∏

j=1

σ2j





c/n

exp







−
c

ζ

n
∑

j=1

σ2j







.

These parameter can be updated one-at-a-time using a Metropolis-Hastings random

walk with normal increments on the log scale. For example, b is updated using a pro-

posal of the form log b′ ∼ N
(

log b, σ
2 (m)
b

)

. The variances of the proposal are updated

using the adaptive scheme described in the update of λ1, . . . , λn.

Acceleration steps

At the m-th iteration, k components are selected without replacement with the prob-

ability of choosing the j-th component being proportional to 5/n +
∑m

k=1 σ
2 (k)
j . Let

the indices of the chosen components be I. We define hI = {ht,j |j ∈ I} and h−I =

{ht,j |j /∈ I}. In each step, parameters are updated marginalizing over hI and condi-

tioning on h−I (and any other parameters). This leads to the likelihood p(y∗1, . . . , y
∗
T |h−I , θ)

which can be efficiently computed using the Kalman filter. We also define λI = {λi|i ∈

I} and σ2I = {σ2i |i ∈ I}. The steps involve updating

Acceleration step 1: Updating µ

The parameter µ is updated using a Metropolis-Hastings random walk with a normal

increment whose variance is tuned using the adaptive algorithm of Atchadé and Rosen-

thal (2005), described in the update of λ1, . . . , λn.

17



Acceleration step 2: Updating σ2
I

The elements of σ2I are updated in a block conditional on
∑

j∈I σ
2
j using a Metropolis-

Hastings random walk. Let wh =
σ2
Ih∑

j∈I
σ2
j

then w1, . . . , wk ∼ Di
(

c
n , . . . ,

c
n

)

. Let zi =

log(wi+1)− log(w1) for i = 1, . . . , k − 1 and calculate the covariance

C
(2)
i,j =

1

m− 2

[

m−1
∑

h=1

logw
(h)
i logw

(h)
j −

∑m−1
h=1 logw

(h)
i

∑m−1
h=1 logw

(h)
j

m− 1

]

from the previous samples. A proposed value z′ can be generated using a random walk

proposal where the increment is multivariate normal with the covariance matrix being

a scaled version of C(2). This can be used to derive proposed values w′ and σ2
′

I . The

Metropolis-Hastings acceptance probability is

max

{

1,
p(y∗1, . . . , y

∗
T |h−I , θ

′)
∏

j∈I w
′
j
c/n−1|M ′|

p(y∗1, . . . , y
∗
T |h−I , θ)

∏

j∈I wj
c/n−1|M |

}

where M ′ and M are (k − 1)× (k − 1)-dimensional matrix with entries

M ′
ij =















1
w′

I1

i 6= j

1
w′

I1

+ 1
w′

Ii−1

i = j

and Mij =















1
wI1

i 6= j

1
wI1

+ 1
wIi−1

i = j

.

Acceleration step 3: Updating λ

Each element of λI is updated separately using a Metropolis-Hastings random walk on

the logit scale. Let j ∈ I then the proposed value is log λ′j − log(1 − λ′j) ∼ N(log λj −

log(1 − λj), σ
2
f,j) where σ2f,j is the variance of the increments for λj . The proposed

value is accepted according to the Metropolis-Hastings acceptance probability

max

{

1,
p(y∗1, . . . , y

∗
T |h−I , θ

′)λ′j(1− λ′j)
b

p(y∗1, . . . , y
∗
T |h−I , θ)λj(1− λj)b

}

.

and σ2f,j is tuned using the adaptive algorithm of Atchadé and Rosenthal (2005).
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4 Examples

We illustrate the use of the SV-ICA model on one simulated example and two real data

examples: the returns of HSBC plc and Apple Inc. Our main focus is inference about

the distribution Fφ since this represents the decomposition of the volatility process in

terms of AR(1) processes with different first-lag dependences.

The SV-ICA model fit by our MCMC sampler uses the truncation F
(n)
φ (see equations

(11) and (12)), of Fφ. As n → ∞ the posterior of the SV-ICA model using F
(n)
φ should

converge to the posterior of the SV-ICA model using Fφ. To assess the convergence of

F
(n)
φ to Fφ we inspect the posterior expectation of F

(n)
φ ([0, x]) for x ∈ (0, 1), the cumu-

lative distribution function, at different values of n. Informally, we can be happy that

the posterior is converging if there are only small changes in the posterior summaries

(posterior expectation and 95% credible interval) for n larger than some n0. We have

found that running n = 30, n = 50 and n = 70 were sufficient to judge convergence in

our three examples.

To gain more insight into our decomposition of the persistence in returns, we calcu-

late the proportion of processes for which the dependence is small by lag κ. We choose

to define this measure by

γκ = F
(n)
φ ({λ |λκ < ε}) (15)

for some small value ε (we take ε = 0.01).

The parameters c and ζ have clear interpretation in the SV-ICA model. Recall from

Section 2 that the concentration parameter c controls the variability of the Dirichlet

process. This is also the case for F
(n)
φ . The variance of F

(n)
φ , Var

[

F
(n)
φ

]

, is affected

by changes in the value of c. It becomes smaller as the value of c increases, hinting

that F
(n)
φ is close to its centering distribution. This gives a simple interpretation of c.
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Since σ2 ∼ Ga(c, c/ζ), the value of ζ is of interest as it directly affects the scale of the

distribution. For both c and ζ we present tables of their posterior medians together

with the 95% credible intervals.

All MCMC algorithms were run for 80 000 iterations with 20 000 discarded as burn-

in which was sufficient for convergence of the Markov chain. The offset parameter was

set to ξ = 10−5.

4.1 Simulated data

The simulated data series are based on the stochastic volatility model of equation (1)

and the volatility process, ht, is the aggregation of 50 AR(1) processes, that is

yt = β exp {ht/2}ǫt, ht =
1

50

50
∑

i=1

hi,t, t = 1, . . . , T

where hi,t is an AR(1) process with persistence parameter φi and increments ηi,t ∼

N(0, σ2(1 − φ2i )). The parameter β = 1, σ2 = 1 and φi
iid
∼ Be(1, 0.7). The length of the

time series is T = 2000.

The plots of the posterior expectation of F
(n)
φ together with the 95% credible inter-

val, for each value of n are shown in Figure 1. Following referee advice we also display

the estimate of the posterior density of φ under a simple SV model for comparison.

The posterior expectation of F (n) becomes closer to the true generating cumulative

distribution function as n increases; the credible interval also becomes narrower. A

closer look at the plots reveals a bi-modal distribution for n = 30 which changes to

unimodal for n = 50 andn = 70. These results indicate that F
(n)
φ begins to converge

around n = 50, which is not surprising since the data are generated with 50 underlining

AR(1) processes. The median of φ for n = 50 andn = 70 appears to be within (0.7, 0.8).
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The posterior density of φ under the simple SV model also hints to a median within

(0.7, 0.8).

n = 30 n = 50
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n = 70 Posterior of φ under simple SV
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Figure 1: Simulated data: The true cumulative distribution function (dashed line) with the pos-

terior expectation of F
(n)
φ (solid line), and 95% credible interval (dot-dashed lines) for n = 30, n =

50, andn = 70. The x-axis is φ and the y-axis is the posterior expectation of F
(n)
φ . The bottom,

right-hand graph is the posterior density of φ under the simple SV model.

Table 1 displays the posterior median and 95% credible intervals for the precision

parameter c and ζ. The median of c increases substantially as n increases. From

4.4 at n = 30 to 934.6 at n = 50. Given the properties of the Dirichlet process,

the Var
[

F
(n)
φ

]

becomes smaller and smaller showing that F
(n)
φ is close to the centring

distribution. This indicates the correct data generating mechanism. The median of ζ
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changes from 1.1 to 1.2 when n increases to 50 and settles at 1.2 even with n = 70,

which is consistent with our choice of σ2.

n = 30 n = 50 n = 70

c 4.4 (2.9, 6.8) 934.6 (377.4, 2619.1) 2168.4 (1034.1, 5695.2)

ζ 1.1 (0.5, 3.7) 1.2 (1.0, 1.5) 1.2 (1.0, 1.4)

Table 1: Simulated data: The posterior median and 95% credible interval for c and ζ for n =

30, n = 50, andn = 70.

4.2 Real data

The real data series used to illustrate our method are: the daily returns of HSBC plc

from May 16th 2000 to July 14th 2010, and the daily returns of Apple Inc. from January

1st 2000 to July 26th 2010.

The plots of these returns are shown in Figure 2. The returns of HSBC appear more

volatile than those of Apple. There is a period of relatively low volatility for HSBC

from March 2003 till February 2008, with two periods of high volatility, one from

October 2000 to November 2002 (the biggest dip in returns occurring around 9/11),

and another from January 2008 to March 2009. This latter period is due to the collapse

of the banking sector following the collapse of the US subprime mortgage market. In

March 2009 HSCB incurred a loss of $17 billion due to its exposure to US mortgage

market. The returns of Apple Inc are not as volatile as those of HSBC plc. It operates

in the technology sector where large spikes in returns are related to the effectiveness

of the company in keeping up with the speed of technical advances and in launching

innovative products. The period of high volatility around September 2000 is due to the

introduction of the OS X operating system and the iMac which led to a 30% increase in
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revenue. The next high volatility period around September 2008 is due to the increase

in net revenue by 50% caused by the introduction of the iPhone 3G earlier in the year.

4/1/00 31/12/01 24/12/03 19/12/05 14/12/07 9/12/09
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0.2
Apple

16/5/00 15/4/02 15/3/04 13/2/06 7/5/08 2/2/10
−0.25
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−0.15

−0.1
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0.1

0.15
HSBC

Figure 2: The returns for Apple and HSBC

As with our simulated example we focus our attention on the convergence of F
(n)
φ

as n increases. For each data series and value of n, we provide plots of the posterior

expectation of F
(n)
φ together with 95% credible intervals, as well as a plot of the es-

timated density of φ under the simple SV model. We also provide the value of the

posterior median (together with 95% credible intervals) of c and ζ.

The results for HSBC are shown in Figure 3, and Tables 2 and 3. The plots in Figure

3 show that the posterior expectation of F
(n)
φ and its 95% credible intervals are similar

across the three values of n considered. Focusing on n = 70, we observe that much of

its mass is placed close to one. This is similar to the fit of a simple SV model with a

single AR(1) process for ht, the volatility process. We fitted the simple SV model using

the priors of Kim et al. (1998) and found that φ has a posterior median of 0.984 with a

95% credible interval (0.976, 0.992); the last plot in Figure 3 confirms these findings.

However, from our plots of the posterior expectation of F
(n)
φ we can see that there is

23



also mass at much smaller and much larger values of φ. This implies that values of

φi are more spread out within the interval (0.5, 1), compared to what the simple SV

model suggests.
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Figure 3: HSBC data: Posterior expectation of F
(n)
φ (solid line) with 95% credible interval (dot-

dashed lines) for n = 30, n = 50, andn = 70. The x-axis is φ and the y-axis is the posterior

expectation of F
(n)
φ . The bottom, right-hand graph is the posterior density of φ under the simple

SV model.

Table 2 provides values for the posterior median and the 95% credible intervals

for the precision parameter c and ζ for the three different values of n. The median

values for c, though they increase as the value of n increases, they are relatively small

in comparison to the values we had in our simulated example. This finding means

that the Var
[

F
(n)
φ

]

is large, which provides evidence to support the argument that the
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n = 30 n = 50 n = 70

c 5.3 (3.3, 8.4) 9.1 (6.3, 13.4) 14.3 (10.5, 19.6)

ζ 1.2 (0.5, 3.8) 1.0 (0.5, 2.5) 0.9 (0.5, 1.9)

Table 2: HSBC data: The posterior median and 95% credible interval for c and ζ for n = 30, n =

50, andn = 70.

beta distribution (which has been the popular choice for the distribution of φ) is not

a particularly good fit for the distribution of φ for the HSBC returns, for the sample

period we have analysed.

1 week 2 weeks 8 weeks 1/2 year 1 year 2 years 5 years

0.10 0.16 0.26 0.38 0.45 0.54 0.81

Table 3: HSBC data: Values of γκ at various lags when n = 70

Table 3 displays the values of γκ for various values of κ when n = 70. Recall that

γκ is the proportion of processes with small levels of dependence less than 0.01 after

k lags. The lags are displayed in terms of trading weeks and trading years 2. The first

entry for γκ in Table 3 indicates that 10% of the variation in volatility is explained

by processes which decay after 1 week (decay quickly). Moving along the table we

see that 45% of the variation is explained by processes that decay after one year. The

posterior median estimate of the persistence parameter for the simple AR(1) model

suggests that autocorrelation falls below 0.01 by the 286th lag. This is roughly a little

over one trading year. This is an interesting point because under our model we observe

that a higher proportion of the variation in volatility is placed on processes that take

2A trading week has 5 days and a trading year approximately 252.
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two to five years to decay. This is clearly seen in Table 2 where the autocorrelation of

19% of processes has not decayed below 0.01 after 5 years, providing evidence of very

long persistence in the data.

n = 30 n = 50

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

n = 70 Posterior of φ under simple SV

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0.85 0.9 0.95 1
0

10

20

30

40

Figure 4: Apple data: Posterior expectation of F
(n)
φ (solid line) with 95% credible interval (dot-

dashed lines) for n = 30, n = 50, andn = 70. The x-axis is φ and the y-axis is the posterior

expectation of F
(n)
φ . The bottom, right-hand graph is the posterior density of φ under the simple

SV model.

The results for Apple are displayed in Figure 4, Table 5, and Table 4. The plots

of the posterior expectation of F
(n)
φ in Figure 4 are very similar for all three values of

n. The 95% credible interval for n = 30, however, is wider than those for n = 50

and n = 70 (which have similar credible intervals). This implies that F
(n)
φ converges
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around n = 50. Regardless of the value of n all of these plots imply that F
(n)
φ for Apple

is quite different to that of HSBC. With HSBC more mass was placed at higher values

of φ whereas with Apple we see that much more mass is placed at smaller values

of φ. This difference becomes clearer when we focus on the values of γκ, based on

n = 70, displayed in Table 5. The values of γκ are larger for all lags when compared to

HSBC. In Apple’s case 85% of the variation in volatility is explained by processes with

autocorrelation decaying below 0.01 before one year. In contrast, this occurs after

five years (or more) with the HSBC returns series. With Apple the autocorrelation

of only 4% of the processes has decayed below 0.01 after five years. This implies

that the behaviour of persistence in volatility is quite different between the two return

series. This could be due to the two different sectors the stocks belong to and the

investors belief of the riskiness not only of the two sectors but also of the two stocks.

Table 4 provides values for the posterior median and the 95% credible intervals for the

n = 30 n = 50 n = 70

c 7.7 (4.6, 13.3) 445.8 (146.2, 1088.9) 3822.7 (1697.7, 9858.5)

ζ 0.6 (0.3, 1.6) 0.7 (0.6,0.9) 1.0 (0.8, 1.3)

Table 4: Apple data: The posterior median and 95% credible interval for c and ζ for n = 30, n =

50, andn = 70.

concentration parameter c and ζ for n = 30, n = 50, andn = 70. The median value of

ζ marginally increases across the three values of n, and the 95% credible intervals are

narrower for the higher values of n. The median values for c increase as the value of

n increases, and in this case they are in line with the values we had in our simulated

example. The median value of c increases to 445.8 and 3822.7 for n = 50 and n = 70
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respectively, hinting to a small variance for F
(n)
φ . This implies that F

(n)
φ is close to a

beta distribution, unlike the results with the HSBC returns series, which hinted that

the distribution for φ may not be a beta.

1 week 2 weeks 8 weeks 1/2 year 1 year 2 years 5 years

0.24 0.40 0.65 0.78 0.85 0.90 0.96

Table 5: Apple data: The values of γκ with n = 70 for various lags

In Figure 5 we compare the posterior median volatility (together with 95% credible

interval) for HSBC and Apple under our model with n = 70, to that of an SV model with

a single AR(1) volatility process. The peaks and the day to day jumps in volatility are

more evident under our model than the simple model. For HSBC we can identify two

big jumps in volatility, one from September 2001 to November 2001(due to 9/11) and

another from September 2008 to March 2009 (due to the start of the financial crisis

following the collapse of the US subprime mortgage market). In the case of Apple there

is one big surge in volatility around the end of September 2000 beginning of October

2000 which was due to the introduction of the OS X operating system and the iMac

leading to a 30% boost of sales revenue. Since then Apple had been performing very

well, with steady volatility, until September 2008 when sales revenue went up by 50%

due to the introduction of the iPod touch and the iPhone 3G earlier that year.

The SV-ICA model expresses the volatility process in terms of sub-processes with

different levels of dependence. It is difficult to interpret each individual sub-process

and so we decompose into short term, medium term and long term components which

aggregate some of these sub-processes according to their dependence. We define the

components as:
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Figure 5: Posterior median volatility for HSBC and Apple (solid line) with 95% credible interval

(dashed lines) for n = 70 - (top panel) for the simple SV model - (bottom panel)

hshortt =
∑

{i|λi<ǫ1/126.5} ht,i,

hmedt =
∑

{i|ǫ1/126.5<λi<ǫ1/506} ht,i,

hlongt =
∑

{i|λi>ǫ1/506} ht,i.

This decomposition into components links to the quantity γκ defined in equation 15.
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The short term component includes all processes whose dependence decays below ǫ

by half a year, the medium term component includes all processes whose dependence

decays below ǫ between half and two years, and the long term component includes all

processes whose dependence decays below ǫ after two years.
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Figure 6: The posterior mean of the low, medium and high frequency components of the volatility

process for HSBC and Apple.

In Figure 6, we decompose the aggregate volatility process of Apple Inc and HSBC

plc, for n = 70, into short, medium and long term components. The two stocks show

different evolutions of their long-term component. The long-term component of Apple

has an overall decreasing trend, whereas there is no clear overall trend for HSBC. The

effect of the financial crisis also has a very different effect on the volatilities with a

much larger effect on HSBC compared to Apple, as we would expect. The unusual
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observation of Apple around September and October 2000 is included in the short-

term volatility component with the volatility in that component leaping to around 2.5

and quickly decaying and with no effect on the long term component. This shows a

robustness of the SV-ICA model to unusual observations.

4.3 Predictive performance

The predictive performance of our model is compared to a simple SV model with an

AR(1) process for the log volatility and normal return distribution and a Bayesian semi-

parametric model proposed by Jensen and Maheu (2010). They develop a stochastic

volatility model with a Dirichlet process mixture model for the return distribution and

an AR(1) process for the log volatility process. The comparison contrasts two ways of

constructing a semiparametric stochastic volatility model. Our model nonparametri-

cally models the dependence in the volatility process but retains a normal return dis-

tributions whereas Jensen and Maheu (2010) use a nonparametric return distribution

with a parametric volatility process.

To access predictive performance we use the log predictive score (LPS) (Gneiting

and Raftery, 2007) at different prediction horizons τ . In this case, the LPS is

LPS(τ) = −
1

T − τ − ⌊T/2⌋+ 1

T−τ
∑

i=⌊T/2⌋

log p (yτi | y1, . . . , yi−1)

where τ is a positive integer and yτi = yi+τ−yi is the log return over τ days. The results

are presented for time horizon up to 150 days. The LPS is a strictly proper scoring rule

with smaller values indicating a model giving better predictions. Figure 7 displays

the LPS as a function of the forecasting horizon. Our SV-ICA model dominates the

model with a nonparametric return distribution at all time horizons for the Apple data

and at longer time horizons for the HSBC data. In both cases, the difference become
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Figure 7: Log predictive score LPS(τ) as a function of forecasting horizon (τ). For the SV-

ICA model with n = 70 (solid line), the simple SV model (dot-dashed line) and the Bayesian

nonparametric model (dashed line) for HSBC and Apple.

larger at longer time horizons. The simple SV model performs well on the HSBC data

(with a similar predictive performance to the other models) but is outperformed by

the SV-ICA model in the Apple data. These findings suggest flexible modelling of the

volatility dynamics results in better predictive performance when compared to flexibly

modelling the return distribution.

5 Discussion

The SV-ICA model is described to flexibly model the dependence of the volatility pro-

cess in financial time series. It is assumed that the volatility process is modelled using

an ICA process which is formed as the limit of the aggregation of a finite number of

AR(1) processes where the persistence parameter of each AR(1) process is indepen-

dently drawn from a distribution Fφ. The distribution Fφ is given a Bayesian non-

parametric prior. The infinite-dimensional prior for Fφ allows our model to adjust its
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complexity as more data is observed. The model can be interpreted as either providing

a flexible prior for persistence or, alternatively, as modelling the inhomogeneity in the

information flow driving the volatility by assuming that the effect of different informa-

tion decays at different rates which can be modelled by an AR(1) process. Inference

is made using a finite approximation to the Dirichlet process prior for Fφ with n ele-

ments. Convergence can be checked by looking at the posterior distribution for various

values of n. An MCMC scheme to simulate from the posterior distribution of the finite

approximation is proposed which uses adaptive MCMC ideas to provide an efficient

sampler.

The method is illustrated on both simulated data, where the distribution used to

generate the data can be accurately estimated, and two daily returns series (HSBC plc

and Apple Inc.). The results in the real returns series show very different distributions

for the persistence in volatility, with HSBC plc having much more mass on persistence

which decayed more slowly than Apple Inc. This suggests the information related to

the value of HSBC plc has much longer lasting effect.

The decomposition of the volatility process into multiple AR(1) processes allows

us to better understand the dependence in the volatility process and conclude that a

flexible model for persistence is more appropriate. This is so because the volatility

of daily returns of stocks belonging to different sectors is affected by different flows

of information. We plan in future work to consider the application of these methods

to multiple returns series which will allow us to consider the amounts of information

shared by different assets. More insight on the dependence between return series is

crucial for investment, risk and portfolio managers.
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