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Abstract 

 

Some argue the common practice of inferring multiple processes or 

systems from a dissociation is  flawed (Dunn,  2003).  One  proposed  

solution  is  state-trace  analysis  (Bamber,  1979),  which involves 

plotting, across two or more conditions of interest, performance 

measured by either two dependent variables, or two conditions of the 

same dependent measure. The resulting analysis is considered to 

provide evidence that either (a) a single process underlies performance 

(one function is produced) or (b) there is evidence for more than one 

process (more than one function is produced). This article reports 

simulations using the simple recurrent network (SRN; Elman, 1990) in 

which changes to the learning rate produced state-trace plots with 

multiple functions. We also report simulations using a single-layer error-

correcting network that generate plots with a single function. We argue 

that the presence of different functions on a state-trace plot does not 

necessarily support a dual-system account, at least as typically defined 

(e.g. two separate autonomous systems competing to control 

responding); it can also indicate variation in a single parameter within 

theories generally considered to be single-system accounts. 

 

Keywords: State-trace analysis; Multiple systems; Model evaluation; 

Connectionist network; Dual processes; Computer simulation 

 

 

  



 

1. Introduction 

 

The question of how many psychological processes may be contributing 

to a particular behavior or effect is often central to research in our 

discipline. Are there two routes to visual processing? Do children 

acquire language through a single system? Is there a separate mental  

system  for  the  processing of  faces?  Are there  separate  brain  

regions  for semantic and auditory language processes? Does learning 

occur implicitly as well as explicitly in humans? All these questions 

converge on the common issue of “How many functionally distinct 

psychological processes are we dealing with?”. 

 

The result most often employed to support the presence of multiple 

processes (multiple latent  psychological variables)  is  the  behavioral  

dissociation. The  underlying rationale will be familiar to most 

researchers in two forms: the single dissociation, which occurs when 

one manipulates a given independent variable that affects one 

dependent variable and not another; and the double dissociation, which 

involves two independent variables that produce complementary single 

dissociations on the same two dependent variables. The demonstration 

of such dissociations is often taken to provide evidence for a multiple 

process/systems hypothesis. This inference, however, has been shown 

to be insecure (see Dunn, 2003, for an analysis). Many have argued 

that the use of bounded variables, such as accuracy, may result in floor 

and ceiling effects that can both produce dissociations in the absence of 

multiple processes and may overlook multiple processes in the absence 

of a dissociation (Loftus, 1978). Dunn (2003) makes a case for there 

being more fundamental problems with this approach that go beyond 



 

artifacts  of this kind. He shows that, whilst one can infer that a variable 

has an effect on performance of a given task, one can never infer that a 

variable has no effect on the performance of another task. 

 

State-trace  analysis  (Bamber,  1979),  sometimes  referred  to  as  

dimensional  analysis (Loftus, Oberg, & Dillon, 2004), is one proposed 

solution to these ambiguities. Instead of considering variables in terms 

of their main effects and interactions, it plots them against one another 

and examines the function(s) that the dependent variables follow. If the 

dependent variables follow one, single monotonic function, then we can 

reject the idea of multiple processes. This result is taken to suggest that 

a single latent variable underlies performance, providing confirmation of 

a “simple and elegant” single-function structure (Loftus et al., 2004, p. 

838). However, if there is no single monotonic function produced, one 

must reject the single-function account and infer that more than one 

process underlies performance—where multiple functions are seen on 

the state-trace plot. 

 

Bamber (1979), Dunn and Kirsner (1988), and Loftus (1978) have all 

contributed to the development of state-trace analysis. An exponentially 

increasing number of researchers have been using state-trace analysis 

in place of the traditional dissociation logic in recent times, and the 

method has already been employed in a diverse range of research 

areas, including category learning (Newell, 2012; Newell, Dunn, & 

Kalish, 2010), cognitive  development  (Mayr,  Kleigl,  &  Krampe,  

1996),  the  face  inversion  effect  (Loftus et al., 2004; Prince & 

Heathcote, 2009), remember-know judgments (Dunn, 2008; Heath- 

cote, Bora, & Freeman, 2010), and the neuroscience of recognition 



 

memory (Staresina, Fell, Dunn, Axmacher, & Henson, 2013). 

This increase in popularity may in part be due to the simplicity of state-

trace analysis, which provides a compelling visual representation of 

dimensionality. Each state-trace analysis requires two dimensions, 

representing either  one dependent variable measured under two 

different conditions, or two different dependent variables. As a concrete 

example, one could plot recognition accuracy for upright and inverted 

faces on the x and y axes.  Performance is plotted  across the  trace  of  

the  experiment,  that  is,  across some continuous measure of time or 

number of blocks to produce the function of interest. In our example, this 

would correspond to plotting the points representing mean recognition 

accuracy for upright and inverted faces in each block of an experiment 

run over several blocks. These plots can then be made for two or more 

independent variables of interest– these are the states. Here, an 

example of a state manipulation would be making plots for (a) 

performance on faces drawn from one very familiar ethnic group; and 

(b) performance on faces from another less familiar ethnic group. The 

points in the scatter plot are usually given two-dimensional error bars to 

aid visual assessment of the case for overlap. The analysis consists of 

determining whether our two plots are best described as part of one 

continuous function or require two distinct functions to capture each 

trace. 

 

Four idealized state-trace plots are shown in Fig. 1, which are based on 

hypothetical data for the purposes of exposition. Fig. 1C illustrates a 

single function plot and Fig. 1D a multiple function plot, the latter of 

which implies a multiple process account of what- ever task domain is 

being investigated. The top two graphs (Fig. 1A and 1B) show situations 



 

in which state-trace analysis cannot be used, because of the 

assumptions and requirements of the method. State-trace analysis 

assumes that latent psychological variables  have  a  monotonic  effect  

on performance.  Thus, a  nonmonotonic state-trace plot (Fig. 1A) 

cannot be used to infer dimensionality. Further, if both traces are 

monotonic, they must overlap at some point on the x or y dimension; 

otherwise one cannot establish whether they follow the same function or 

not. Therefore, there may be four possible outcomes to your analysis: 

nonmonotonic; no overlap; single function; or multiple functions. 

 

While an  increasing  number  of  researchers are  discovering state-

trace  analysis and applying its framework to their research questions, 

what is not clear is what the status of the processes discovered might 

actually be. What counts as dissociable processes within the framework 

of state-trace analysis? Must they be two functionally separate 

processing systems? If indeed a single function on a state-trace plot 

suggests a single latent psycho- logical variable underlies performance, 

does this mean that in perceiving, learning, and recalling faces (not to 

mention the other motor skills involved in such a task) there is only one 

cognitive or neurological process or set of processes? And are multiple 

functions produced only when functionally different processes/systems 

are evident between states? Newell, Dunn, and Kalish (2011, p. 198) 

point out that “The dimensionality of the state-trace plot reveals the 

number of underlying latent variables but says nothing about their 

nature.” Our intention here is to try casting some light on the possible 

relationships between the dimensionality of the state-trace plot and the 

nature of the processes involved by analyzing examples where we are 

entirely certain of the nature of the system in question—because it is 



 

one we have specified. 

 

Thus, to attempt to answer these questions, this paper will consider the 

performance of computational models, whose processes we can both 

quantify and manipulate. The simple recurrent network (SRN; Elman, 

1990) will be used to simulate a two-choice sequence learning task. 

Learning will be varied by altering a parameter that controls the rate of 

change of the connection weights between units (the learning rate 

parameter). This will result in a number of networks that differ only in 

this parameter, the rationale being that simply speeding up or slowing 

down learning in the network (as long as we do not move into regions of 

parameter space where the learning algorithm exhibits pathological 

behavior) should not alter the basic nature of the network. As such, it 

should produce simulations  that   are   characteristic   of   a   single  

system.  This is   a   novel  application   of computational modeling to 

this area (though there are parallels in the work of Bullinaria, 

2007), and the point of doing this is that our understanding of state-trace 

logic predicts that running the same model with different values of this 

one parameter would not be thought to be the sort of manipulation that 

would produce multiple functions on a state- trace plot (e.g. McCarley & 

Grant, 2008; Reinitz, S'eguin, Peria, & Loftus, 2012; Staresi- na et al., 

2013). 

 

2. SRN simulation  details 

 

2.1. Model construction 

 

The SRN (Elman, 1990) is a recurrent, feed-forward connectionist 



 

network (see Fig. 2A) that starts with an input layer of units that are set 

to either a value of 0 (off) or 1 (on). When on, these units feed activation 

forward (using the logistic activation function: Rumelhart, Hinton, & 

Williams, 1985) into a hidden layer, which in turn feeds activation to an 

output layer. The hidden unit activations are also copied into a set of 

context units at the input layer, whose activations are then fed back into 

the hidden layer as input on the next trial. This produces a recurrent 

loop, feeding the internal representation of the model back into itself and 

enabling the model to learn contingencies that do not occur on the same 

trial (e.g., sequences). The model learns through back propagating error 

correction, comparing output activations to an expected response and 

updating the weights between all units within the model appropriately. 

Performance is calculated by comparing the output activations to their 

expected values, taking the difference, squaring and averaging to give a 

mean squared error (MSE). Following the human behavioral experiment 

(Yeates, Jones, Wills, McLaren, & McLaren, 2013) on which this 

simulation is based, 128 networks were run for each simulation, 32 

networks for each group (as described below). 

 

The model comprised two input units and two output units, which 

represented the two “stimuli” that formed the sequence that the model 

was trained on. The hidden layer comprised 20 units; and hence 20 

context units as input. The initial connection weights were uniformly 

distributed  to  random values between -0.5  and  0.5  for  each  

network. The model’s learning rate was the only parameter 

manipulated—running networks with different values. The learning rate 

parameters used (0.15 and 0.4) were the values given in previous work 

by Cleeremans and McClelland (1991) and Jones and McLaren (2009). 



 

 

2.2. Sequence learning task 

 

The task was a two-choice serial reaction time (SRT) task whereby one 

of two locations on either the right or left of the screen flash and this 

requires a spatially compatible key press response. These flashes follow 

a sequence—which in the case of this task has a probabilistic structure. 

Four groups of networks were run to simulate this task—two 

experimental and two controls. The control groups were trained on 

blocks that contained 40 subsequence “triplets” of all  the  eight possible 

combinations in a  two-choice task: XXX, XXY, XYX, XYY, YYY, YYX, 

YXY, YXX. An equal number (5) of each triplet were randomly ordered 

and concatenated (e.g., XXYXYYYYYYXX...) within a block so that 

there was no obvious delineation of the triplets. In the case of control 

networks, no part of the trial order is predictive as any subsequent trial 

type is equally likely. The two experimental groups were trained on 

blocks that contained 40 subsequence “triplets” of half of the possible 

combinations so that they followed a rule: Group Different—first trial in 

triplet is opposite to the last trial, XXY, XYY, YYX, YXX; and Group 

Same— first trial in triplet is same as the last trial, XXX, XYX, YYY, 

YXY. An equal number of each (10) were randomly concatenated within 

a block, and thus when one considers the trial  sequence (e.g., 

XXXXYXYXYYYYXXX.. .etc.),  two-thirds of  experimental  trials are  

predictive.  This is  because  every third  trial  is  100% predictable,  as  

the  trial  that occurred two trials previously signals what the third trial 

will be for that group in every instance. On every first and second trial it 

is equally likely that the trial either follows this rule or not; thus, the 

overall probability of any given trial following the rule is two- thirds. 



 

Networks were trained on 35 blocks (4,200 trials) and tested over 5 

blocks (600 trials) after training, where all groups received 

pseudorandom sequences containing all possible triplets. This trial 

number was chosen to match that used in our previous work in order to 

ensure that the models learned the sequences (Yeates et al., 2013). We 

chose this task as we knew the SRN could simulate it well, and as such 

it is (in slightly modified form) our best current model for human 

performance on this type of sequence learning (Jones & McLaren, 2009; 

Yeates et al., 2013). As we will see, it also lends itself well to state-trace 

analysis. 

 

Learning was measured by taking the difference between performances 

on trials that do not follow the rule (Inconsistent Trials) minus 

performance on trials that follow the rule (Consistent Trials). As lower 

MSE represents better performance, higher values of the Inconsistent-

minus-Consistent measure denote better learning of the trained 

sequences. Control networks were not trained to a particular rule but are 

assigned one as a dummy variable and the equivalent difference 

calculated. These control groups are needed to control for sequential 

effects (see Anastasopoulou & Harvey, 1999; Jones & McLaren, 2009; 

Yeates  et al.,  2013)  as  performance  on  a  particular  subsequence  

may  be  easier  than another; thus, our Inconsistent-Consistent 

measure alone does not adequately index learning, and it needs to be 

evaluated by comparison with the appropriate control differences. A 

difference between the difference scores for Experimental and Control 

networks is therefore calculated, and this is used to demonstrate how 

much the networks have learned about the sequential structure they 

have been exposed to. 



 

 

2.3. Results 

 

An ANOVA  was run in order to demonstrate whether learning had 

occurred, comparing experimental and control groups across training. 

The training data for Groups Different and Same were analyzed 

separately, with the factor of condition (experimental vs. control) 

alongside the repeated measure block. The SRN exhibited learning for 

both experimental groups’ sequences at both learning rates as 

demonstrated by the main effect of condition in all cases (experimental 

> control). For the SRN with a learning rate of 0.15, a main effect of 

condition was found for Group Different, F(1,  62) = 237.1, p < .001, and 

Group Same, F(1, 62) = 217.8, p < .001. Learning was also evident in 

the SRN with a learning rate of 0.4 in Group Different, F(1, 62) = 354.7, 

p < .001, and Group Same, F (1, 62) = 537.5, p < .001. 

Using the simulation data, a state-trace analysis was then conducted.  

 

This involved plotting the learning scores of the  networks across 7 

epochs of training (1 epoch = 5 blocks), containing 600 trials each (the 

trace).  Performance on the two sequence learning tasks (Group 

Different and Group Same) form the two dimensions on the x and y 

axes, respectively. Performance at each learning rate was plotted 

separately as one of two states.  Following McCarley and Grant (2008), 

a visual inspection of the plot was carried  out.  The  state-trace  plot  

can  be  seen  in  Fig. 3A,  which  on  visual  inspection clearly shows 

two separate functions, rather than one single monotonically increasing 

function. This suggests that state-trace analysis is sensitive to the 

differences between the two sets of simulations, and therefore that a 



 

purely parametric manipulation (speeding up learning) can lead to 

multiple processes being inferred if one employs the state- trace 

methodology. 

 

The plot (Fig. 3A) could be analyzed in a variety of ways, from visual 

inspection (McCarley  &  Grant, 2008), to  Spearman’s Rho (Loftus et 

al.,  2004; Prince &  Heathcote, 2009), maximum likelihood estimation 

(MLE, Newell & Dunn, 2008), hierarchical linear regression (Yeates, 

Wills, Jones, & McLaren, 2012), and Bayesian models (Prince, Hawkins, 

Love, & Heathcote, 2012). We settled on a hierarchical linear regression 

as the preferred  method  to  examine  the  number  of  functions within  

the  plots.  Group  Different scores were used to predict Group Same 

performance. The learning rate was then added as a predictor and a 

statistically significant change in R-square taken as evidence for 

multiple  functions. The  hierarchical  multiple  regression demonstrates 

that  the  addition  of learning rate to the model significantly improves 

the R2 value from 94.6% to 98.1%, ΔR2: F(1, 11) = 23.6, p = .001. This 

model, Group Different = 0.79(Group Same) + 0.97 (Learning Rate)—

0.007, showed significant fit between model and data, F(2, 11) = 343.1, 

p < .001.  This  provides  good  evidence  against  the  state-trace  plot  

being  adequately described as one monotonic function. 

 

2.4. Discussion 

 

The state-trace plot (Fig. 3A) demonstrates that increasing the learning 

rate of the SRNs increases the amount of learning of Group Same 

relative to Group Different sequences. This suggests that there are 

multiple processes that underlie the performance of SRNs on the two 



 

tasks. These simulations demonstrate that state-trace analysis is 

sensitive to the effect that variations in the rate of learning can have on 

a simple recurrent network. Our result may be analogous to one that 

could be obtained by assessing task performance as a function of 

individual differences or by manipulating differences in attention, 

context, or indeed any number of exogenous factors. How are we to 

interpret this result in terms of multiple processes or systems, given that 

the SRN embodies what would often be considered to be a single 

(associative) process account of learning? Obtaining multiple functions 

on the state-trace plot in these circumstances came as a surprise to us, 

and, we imagine, will surprise many researchers with an interest in this 

methodology. We predicted that varying the learning rate would simply 

vary the rate of acquisition of the problems, but that the different plots 

would nevertheless form a smooth, coherent function. These predictions 

have been roundly disconfirmed, and now we have to ask ourselves 

why this is so, and what are the implications for state-trace analysis? 

 

3. Single-layer  network 

 

To enable us to investigate further to what extent the state-trace plot is 

sensitive to differences in model parameters, we chose to simulate the 

same task on a conceptually simpler model—a single-layer error-

correcting network (see Fig. 2B). The idea is that this model will act as a 

“control” for the SRN simulations we have just reported. This model 

lacks any further, more complex component (e.g., recurrence, multiple 

layers of weights) but still learns through error correction. In this case 

then, it is hard to see how a state- trace plot with multiple functions 

could occur when one varies the learning rate parameter. If this turns 



 

out to be the case, and we obtain a single (unidimensional) plot in this 

case, then we will have evidence that it is the greater complexity of the 

SRN that led to the multiple function plot in our previous simulations. 

 

3.1. Simulation details 

 

To obtain a single-layer network, we modified the SRN from the 

description above so that (a) the context units were always set to zero, 

eliminating recurrence; and (b) each input unit had just one fixed weight 

to a corresponding hidden unit, with the weight of all such connections 

set to a fixed value of 0.5. This effectively reduces the SRN to a single-

layer, error-correcting network; albeit one that is still using a nonlinear 

activation function and otherwise operates in a similar fashion to the 

earlier SRN. To enable the network to learn the sequences presented to 

it, we included two additional input units that provided trial n-1  as input 

(as well as the existing units already providing trial n as input) to predict 

trial n + 1 as output. 

 

3.2. Sequence learning task and procedure 

 

Both the sequence learning task and procedure followed were the same 

as described above for the SRN. 

 

3.3. Results 

 

An ANOVA  was conducted as before to investigate whether learning 

had occurred. The single-layer networks demonstrated learning 

(experimental better than control) on both groups of sequences with 



 

both learning rates. The single-layer network with a learning rate   of 

0.15  demonstrates  a  main  effect  of  condition  for  Group  Different,  

F(1,62) = 441.3, p < .001, and Group Same, F(1, 62) = 637.6, p < .001. 

The main effect of condition was also significant in the single-layer 

networks with a learning rate of 0.4 in Group Different,  F(1,  62) = 

2,719.8,  p < .001,  and  Group  Same,  F(1,  62) = 3285.2, p < .001. 

We constructed  the  equivalent  state-trace  plot  to  the  SRN  networks  

(Fig. 3A)  for the single-layer networks, and this is shown in Fig. 3B. 

Visual inspection immediately reveals that this time the plots seem to lie 

on a single function, though changing the learning rate has obviously 

had a substantial impact on performance. Analysis of these plots 

revealed  that  there  was  no  evidence  that  adding  learning  rate  as  

a  factor improved  the  regression,  F(1,  11) = 1.13,  p = .3  for  the  

change,  confirming  that  a single  linear  function  adequately  

describes  the  data  from  these  simulations.  This model, Group  

Different = 1.12(Group  Same)—0.002,  demonstrated  a  significant  fit 

between the  model  and data,  F(2,  11) = 2283, p < .001, and 

accounted  for  99.4% of the variance. 

 

3.4. Discussion 

 

With a single-layer network, relative performance on Group Same to 

Group Different sequences was consistent, regardless of the learning 

rate. Thus, with these networks, a single function was visualized on the 

state-trace plot (Fig. 3B) when we varied the learning rate. This is 

consistent with a single process account for this learning system as we 

expected. In the single-layer network, only one set of weights can 

change, and the rate of change is influenced by the parameter we 



 

varied. In the SRN, however, there are two layers of weights, and in 

addition there are recurrent connections that, though they are them- 

selves fixed, nevertheless have a strong influence on the learning that 

takes place in the system by virtue of supplying much of the input that 

drives that learning. The conclusion we are pushed toward, then, is that 

the state-trace methodology is sensitive to these differences between 

our two specimen networks, and that it is capable of making process 

distinctions at a much finer grain than may have hitherto been 

suspected by researchers employing this methodology. 

 

4. General  discussion 

 

When changing the learning rate parameter of the SRN, a multiple 

function state-trace plot  (Fig. 3A)  is  produced,  suggesting the  

existence  of  multiple  processes  within  the model. This result went 

against our intuitive predictions about state-trace analysis, leading us  to  

question  the  requirements  for  a  multiple  function  plot.  A  higher  

learning  rate increases the amount of learning of Group Same 

sequences relative to those in Group Different for the SRN, but a simple 

single-layer network performs consistently on Group Same relative to 

Group Different sequences, regardless of the learning rate. Therefore, 

the multiple functions observed in the SRN simulations are reduced to a 

single function when the model is altered to a simple single-layer 

network. This suggests that there are no multiple processes at work in 

this case, even though this network, like the SRN, uses nonlinear 

activation functions and a number of parameters that could be varied to 

influence learning. Given that when one of these parameters (the 

learning rate parameter) is varied, the plots obtained indicate that a 



 

single latent variable or process is responsible for performance on our 

task in this case, we have an existence proof that simply adding layers 

and recurrence to a connectionist network is enough to transform it from 

a single- process to a multi-process system in state-trace terms. 

 

As suggested above, this indicates that state-trace analysis is sensitive 

to the presence of process differences at a much finer level than was 

perhaps initially realized. One implication of this result is that state-trace 

analysis can reveal multiple processes within what might be considered 

to be a single system. When we take into account the single function 

obtained with the single-layer network simulations, a corollary is that 

state-trace analysis might not only be capable of distinguishing at a 

relatively gross level between, for example, an associative system and 

another system based on a different kind of computation, but it could 

also distinguish between varieties of associative network. 

 

We are not usually in the situation of knowing exactly what the 

computational specification of the system that we are dealing with is, as 

was the case here. When we apply state-trace analysis to data derived 

from humans or other animals, the aim is to tease out the processes 

involved in task performance so that we are then able to construct better 

models of human or infra-human learning. Here, we were able to 

manipulate our models so as to help us interpret the results of our state-

trace analysis. What are the implications now for the application of 

state-trace analysis to experimental data where the underlying 

processes are unknown? 

 

We believe that our findings compel us to qualify the conclusions that 



 

can be drawn from a state-trace plot that reveals multiple functions. 

Clearly, as Newell et al. (2011) acknowledge, one cannot securely infer 

the presence of two functionally dissociable systems from a two-function 

state-trace plot. We have demonstrated in a concrete way that it could 

simply reveal that performance is based on a single, multi-process 

system, if variation in the state variable differentially affected those 

processes, and altered their relative contributions to performance. This 

possibility, in turn, makes it somewhat harder to interpret a plot with a 

single function as well. The reason is that, if multiple functions can be a 

consequence of parametric variation altering the relative contributions 

made by different processes, then a single function could be produced 

by the change in the state variable affecting these processes equally. If 

their relative contributions are not changed, then we might expect state-

trace analysis to indicate a single, monotonic function, suggesting that 

only one process need be invoked. The fact is, however, that this result 

might be due to a single process or to a set of (in this case) correlated 

processes. We find ourselves with the possibility of one state-trace 

analysis suggesting that a multi-process explanation is required for task 

performance, whereas another on the same system might indicate that 

a single process would suffice. Given that this could, in principle, be the 

case, how then are we to proceed? 

  

 

Our tentative answer to this question is to abandon the one function = 

single system, multiple functions = multiple system dichotomy, and 

instead adopt an approach couched in terms of sets of processes that 

can act like a single system/process in some circumstances, but reveal 

their multiple process nature in others. If a state-trace plot reveals 



 

multiple functions, then there are multiple processes involved. If, 

another analysis using a different state variable but otherwise employing 

the same paradigms now produces a single function, then this should 

not be taken to contradict the earlier finding, but simply indicates that in 

these circumstances the multiple processes are equivalent to one single 

process because the state variable affects them in a nondifferential 

fashion. We can never be sure that there is only one process in play, 

given a single function on a state-trace plot, as on our analysis, the 

definitive result is always the one with multiple functions. But multiple 

functions do not necessarily signify functionally separable processes at 

a gross level (i.e., completely different types of computation). Instead, 

we can allow that there might be different subtypes of the same 

computational process as in our SRN example, where recurrence and 

learning of the nonlinear mappings from the input to the hidden units 

and the hidden to the output units were the processes differentially 

affected by changing the learning rate. 

 

To further clarify our new understanding of what we mean by “process,” 

another, illustrative example can be extrapolated from the work of Wills 

and McLaren (1997) and Jones, Wills, and McLaren (1998). Both these 

papers make the case for a competitive process that translates the 

categorical outputs of a network into a real-time response using a 

winner-take- all approach. This could be added to the simple single-

layer network considered here and would constitute another process 

that could be discovered by means of state-trace analysis, without 

actually being a qualitatively different kind of computation. Hence, one 

interpretation of a “process” is that it can refer to part of the architecture 

of a model that performs a certain computation, as in this case. Another, 



 

equally valid possibility is that it could be just what it says, a process, 

that acts within a model architecture but is governed by its own 

parameters so that it can decouple from other processes that are also at 

work. For an example of what we mean by this, see McLaren and 

Dickinson’s (1990) discussion of how Hebbian and anti-Hebbian 

processes might interact within a connectionist network. 

 

With these caveats in mind, we conclude that state-trace analysis still 

has something to offer our discipline. It allows us to test the hypothesis 

that two functionally separable sets of processes contribute to 

performance on a given task (analysis must produce a multiple function 

plot to be consistent with this assumption as long as steps are taken to 

ensure that these processes do not co-vary). It also enables us to detect 

multiple processes within single systems, allowing a more detailed 

analysis of that system’s components. Thus, we believe that state-trace 

analysis can still be a valuable methodological tool in the behavioral 

scientist’s armory. 
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Figure 1.  Hypothetical state-trace plots showing four possible outcomes of a state-
trace analysis of Dimension 1 against Dimension 2 for State 1 and State 2. The top 

two state-trace plots demonstrate instances where no conclusions regarding 
dimensionality may be made, as the states are either nonmonotonic (A) or do not 
over- lap (B). The bottom two plots demonstrate hypothetical single function (C) 
and multiple function (D) out- comes. 

 



 

 

Figure. 2.  Model architectures for both the SRN (top panel, A) and the single layer network 

(bottom panel, B). Circles  represent units within the  model  with three  black  dots 

representing further units not shown. The SRN has two input units, representing the two 

stimuli that make up the sequence the networks are trained on at time t. The single layer 

network requires these units as well as a further two input units in order to learn these 

sequences, which provide information about the two stimuli on the previous trial, at time 

t-1. Both models have two output units and twenty hidden units. The SRN has a further 

twenty context units, whose activations are constantly set to zero in the single layer 

network, effectively removing them from the model architecture (shown here for illustrative 

simplicity). Weighted connections that update through error correction are shown by dotted 

lines. Fixed connections, whose weights do not alter, are shown by solid lines. 

 

 



 

Figure 3.  Top panel (A): state-trace plot of mean performance of Group Different against mean 

performance of Group Same by 128 SRN networks with a learning rate of 0.15 and 128 SRN 

networks with a learning rate of 0.4 across 7 epochs of training (1 epoch = 5 blocks). Error bars give 

1 SE. Bottom panel (B): Similar plot for single layer networks run with the same learning rate 

parameters (see text for additional detail). 

 
 


