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Abstract 

Visual surveillance is playing an ever increasing role in criminal detection due to a rapid deployment 

of surveillance cameras. Motion detection which refers to the process of detecting a change in the 

position of an object in relation to the background or the change in the background in relation to the 

object has become one of the enabling techniques to facilitate visual surveillance. This paper 

parallelizes a motion detection algorithm using a cluster of inexpensive computing devices. Custom 

region of interest is implemented to enhance the performance and accuracy of the motion detection 

algorithm. The performance of the parallelized algorithm is evaluated from both the scalability in 

computation and the accuracy in motion detection. Performance evaluation results show that the 

enhanced algorithm achieves higher accuracy in motion detection with reduced execution times in 

computation.  

 

Keywords: Visual surveillance, motion detection, message passing interface.  

 

1. Introduction 

Surveillance devices have been widely used by government and businesses for crime detection and 

prevention. The intelligent electronic systems perceive and understand the behaviour of people in 

image sequences to provide situational awareness. The importance of computer vision systems is 

gaining a momentum in present day civil and non-civil sectors. Computer vision systems have been 

used to enhance sectors such as traffic control, private and public surveillance, industrial automation 

via visual sensors, medical image analysis, biometric recognition systems, motion capture, Optical 

Character Recognition (OCR), Unmanned Arial Vehicles (UAVs) and Unmanned Ground Vehicles 

(UGVs) [1]. 

In a broad sense, a major application of computer vision is automation in image based systems. 

Automation can be defined as the use or introduction of automatic equipment (e.g. machines, 

information systems and software) in a manufacturing or other process facility. In production 

systems, automation is used to increase system productivity and quality. Similarly, in computer 

vision, automation is used to increase system efficiency and accuracy beyond what is currently 

achievable by human labour capabilities. Some of the means by which automation is achieved in 

computer vision systems include motion detection, object recognition and object tracking. 

Computer vision automation techniques can greatly increase productivity in the visual surveillance 

sector. According to a 2011 survey undertaken by the Deputy Chief Constable of Cheshire (in the 

UK), Graeme Gerrard and the Geographical Information Systems Administrator at the Cheshire 

Constabulary, Mr Richard Thompson estimates the number of CCTV cameras in the UK at a figure 

of 1,737,681 (approximately 1.8 million)  [2]. 

There is currently no substantial research on the ratio of surveillance personnel to the number of 

CCTV or other video surveillance cameras. However, most non-domestic surveillance software 

systems are configured to display a minimum of 4 to 15 cameras per personnel. The accuracy and 

efficiency of such a purely human monitored system is only as reliable as the alertness of the 

personnel. Human alertness varies over time depending on the human factors, ergonomics, and also 

non-ergonomic factors. Motion detection techniques can be used as assistive technology to improve 



the accuracy and productivity of visual surveillance systems. There are a number of algorithms that 

have been developed for motion detection [3, 4, 5]. However, as the number of cameras and the 

video quality is increased, the computational power and consequently the electrical power 

consumption increase. Thus the efficiency of both the motion detection algorithm and the computing 

architecture employed needs to be optimized. The aim of this optimization is to attain a balance 

between ensuring low energy usage and maintaining the performance of the surveillance system. 

This paper parallelizes motion detection in surveillance videos using a cluster of inexpensive 

Raspberry Pi computers. Raspberry Pi is a fully fledged mini-computer in a credit card size. It has 

limited computing power with only 700MhZ-ARM11-processor and 512MB RAM (Model B+) but 

it is cheap, ready to use and meanwhile a large community exists which supports its development. 

Cox et al. [6] presented a 64 Raspberry Pi cluster and argued that such systems should be considered 

in some additional specialist application areas where these unique attributes may prove 

advantageous with a relatively little energy consumption. We build a Raspberry Pi cluster utilizing a 

100Mbps network and employ MPI4Py [7] for parallel execution of motion detection and 

communication among the Raspberry Pi nodes using Message Passing Interface (MPI). 

Experimental results show that the Raspberry Pi cluster speeds up the computation significantly 

compared with the performance of using a single Raspberry Pi computer. 

The rest of the paper is organized as follows. Section 2 gives a review on motion detection in visual 

surveillance. Section 3 presents the design of parallel motion detection using the Raspberry Pi 

cluster. Section 4 evaluates the performance of the parallel motion detection from the aspects of both 

accuracy in detection and efficiency in computation. Section 5 concludes the paper and points out 

some future works.  

 

2. Motion Detection 

Motion detection refers to the process of detecting a change in the position of an object in relation to 

the background or the change in the background in relation to the object. In visual systems, motion 

detection can be achieved by a multi-stage image processing and background subtraction approach. 

There are mainly two stages in motion detection in computer vision systems - object detection  and 

background subtraction. 

 

2.1 Object Detection 

Object detection is a technology widely used in computer vision that entails the detection of 

instances of objects belonging to a certain category (e.g. humans, cars, or text) in digital images and 

videos. According to [8] edge detection is the first task in object detection. Thus, it is crucial to have 

a firm understanding of what edge detection is, how it has been implemented over the years, and 

how the information obtained by detecting the edges can be used to identify objects in the scene. 

Edge detection is a term which describes a group of mathematical techniques for identifying points 

in a digital image at which the image intensity or colour changes abruptly. The identified points are 

grouped into line segments referred to as edges. Edge detection is an essential technique in image 

processing, machine vision and computer vision, particularly in the areas of feature detection and 

feature extraction. Edge detection simplifies an image by extracting only the relevant features of the 

image thereby making it easier to analyse the image further. Ideally, when edge detection is 

performed on an image, it should detect the edges that represent the object’s outer edges 

(boundaries), the boundaries of markings such as text which exist on surfaces, and changes in the 

orientation of the object surface. 

Sharify et al. [9] presented a comparative study on edge detector and explicitly classified edge 

detectors into 5 broad categories: 

 

 Gradient edge detectors 

 Zero Crossing 

 Laplacian of Gaussian  

 Gaussian Edge Detectors 



 Coloured Edge Detectors 

 

2.1.1 Gradient Edge Detectors 

       

This category includes classical operators and uses the first directional derivative (i.e. the gradient) 

operation from which the name is derived. Generally, the points with higher gradient magnitudes are 

regarded as strong edges. These algorithms may use a threshold value to select which magnitudes 

are valid edges. 

 

2.1.2 Zero Crossing 

 

This category includes edge detectors that use the Laplacian operator and second derivative 

operation to differentiate and identify the likely edges. The likely edges are the points where the 

magnitude of the second derivative operation is zero (hence the name zero-crossing). Edge detectors 

based on the second-derivative expression have a low tolerance to noise. This led to the invention of 

the ‘Laplacian of Gaussian’ (LoG) edge detectors. 

 

2.1.3 Laplacian of Gaussian (LoG) 

 

This category of edge detectors was invented by Marr and Hildreth in 1980. The LoG detectors use a 

Gaussian filtering for noise reduction and a Laplacian operation for finding the edges. Due to the 

development of more noise tolerant methods, this category of algorithms has seen less frequent 

usage in computer vision. 

 

2.1.4 Gaussian Edge Detectors 

 

This category of edge detectors utilizes functions that are symmetric along the edge. They are 

synonymous for having high tolerance to noise because they reduce the noise by smoothing the 

image. The major algorithms in this category are the Canny algorithm [9] and the ISEF (Shen-

Castan) which convolve the image using a kernel [10]. 

 

2.1.5 Coloured Edge Detectors 

 

This category includes edge detectors which operate on coloured images. They are divided into three 

sub-categories: output fusion methods, multi-dimensional gradient methods, and vector methods. 

 

2.2 Background Subtraction 

Background subtraction is a common approach for identifying moving object(s) in a video by 

differentiating them from the background. Background subtraction detects moving objects by 

subtracting the current frame from a reference frame generated by a background modelling 

algorithm. The reference frame must be kept up-to-date to compensate for variations in the scene. 

Most background modelling algorithms require that the camera be static [11]. Modern background 

modelling algorithms have extended the concept of “background subtraction” beyond its literal 

meaning and employ a range of techniques from simple ones, which aim to maximise speed and 

limit the memory usage, to more sophisticated ones which aim to achieve the highest possible 

accuracy under any possible circumstances [12]. All background modelling algorithms aim for real-

time performance; hence there is a lower bound on speed. These models include: 

 

 Running Gaussian average 

 Temporal median filter 

 Mixture of Gaussians 

 Kernel density estimation (KDE) 

 Sequential KD approximation 

 Co-occurrence of image variations 



 Eigen backgrounds 

 

In this work, the Running Gaussian Average algorithm is employed for background 

subtraction due to its advantage of speed and low memory requirement which makes it 

highly scalable when used in large scale surveillance systems. 
      

2.2.1 Running Gaussian Average 

 

According to [12], the Running Gaussian Average background modelling algorithm is based on 

fitting a Gaussian probability density function on the last n pixel values. In order to avoid fitting the 

probability density function from scratch at each new frame time t, a running (or on-line cumulative) 

average is computed instead as: 

 
µt = αIt + (1 - α) µt-1         (1) 

In the equation (1), It is the pixel’s current value and µt-1 is the previous average; α is an empirical 

weight often selected to attain a balance between model stability and the model being up-to-date. 

The standard deviation σt of the current pixel value can be computed appropriately. In addition to 

high evaluation speed, the main advantage of the running average lies in its low memory 

requirement. Only two parameters (the average µt, and the standard deviation σt) are stored instead 

of buffering the last n pixel values. 

At each frame time t, the It pixel's value can then be classified as a foreground pixel if the following 

inequality holds:  

|It - µt| > kσt             (2) 

Otherwise, It pixel value will be classified as part of the background. In equation (2), k is the kernel 

and specifies how much a pixel’s value may deviate from the standard deviation to be considered as 

part of the foreground. The name background subtraction is popularly used to indicate this set of 

techniques and is derived from equation (2). 

Koller et al. [13] remarked that the background model in equation (1) is unduly updated also at the 

occurrence of such foreground values. For this reason, they proposed a modification to the way the 

background model is updated. In their modified model shown in equation (3), the binary value M is 

1 in correspondence of a foreground value, and 0 otherwise. This approach is also known as 

selective background update. 

µt = Mµt-1 + (1 - M)( (1 - α) µt-1)      (3) 

In their research, Wren et al. [14] proposed a model for intensity images; extensions can be made for 

multiple-component colour spaces such as (RGB colour format), (YUV colour format), and others. 

Moreover, if real-time requirements constrain the computational load, the update rate of either µ or σ 

can be set to less than that of the frame (sample) rate. However, it should be noted that the lower the 

update rate of the background model, the less a system will be able to respond quickly to the actual 

background dynamics. This may render the background model inaccurate when computational 

resources are low and the scene background is very dynamic. 

Further research done to enhance background subtraction include [15] which proposed an approach 

based on neuronal mapping for segmentation of targets with hybrid background subtraction and 

adaptive mean shift jittering. With this method, scenes containing moving backgrounds and varying 

illumination changes can be considered effectively. 

Gangodkar et al. [16] revealed that many of the proposed segmentation algorithms work well for the 

visible spectrum but fail to work for night vision thermal videos primarily due to the halo effect 

surrounding the object of interest. To solve this, they presented an approach that makes use of block 

matching algorithm for differentiating between background and moving objects. The full search or 

the exhaustive search being computationally expensive, they proposed a threshold based strategy 

that reduces the computational complexity to a large extent to make the solution suitable for real-



time applications. The reduced computational complexity makes it suitable for deploying on any low 

cost desktop computer and expanded in scale using a multi-threaded approach. 

 

3. Parallel Motion Detection  

In this section we present the design of the parallel implementation of motion detection using a 

Raspberry Pi cluster. First we give a brief introduction to MPI4Py which is employed for parallel 

execution of the motion detection algorithm.  

 

3.1 MPI4Py 

MPI for Python provides an object oriented approach to message passing which is based on the 

standard MPI-2 C++ bindings. The main package of MPI4Py which contains the core functionality 

of the MPI4Py is the MPI package. The core classes are described below. 

 

 Datatype 

This class matches and handles different data types. 

 Exception 

This class manages exceptions e.g. converting error codes into error messages. 

 Group 

This class manages the groups of processes e.g. comparing a group or making an union out of two 

groups. 

 Status 

This class represents a status of a request. 

 Op 

This class provides methods to create user-defined operations, which can be applied on data. 

 Errhandler 

This class is a simple error handler. 

 File 

This class provides methods for manipulating files. 

 Info 

This class provides methods to store an unordered set of key-value pairs. 

 Win 

This class provides methods to create a window object. Window object is a space in the memory of 

an intracommunicator group, which can be accessed by remote processes. 

 Request 

This class provides methods for managing requests e.g. cancel a request or wait for a request. 

 Grequest 

This class initiates a communication with a user-defined request. 

 Prequest 

This class initiates a communication with a persistent request. 

 Comm 

This class provides a communicator for communication between the processes e.g. distribute and 

gathering data between processes. 

 Intercomm 

This class provides an intercommunicator, which is used for communication within two or more 

groups of processes. 

 Intracomm 



This class provides an intercommunicator, which is used for communication within a single group of 

processes. 

 Cartcomm 

This class provides a cartesian topology intracommunicator. 

 Distgraphcomm 

This class provides a distributed graph topology intracommunicator. 

 Graphcomm 

This class provides a general graph topology intracommunicator. 

 

3.2 Parallel Motion Detection 

The Canny edge detector [9] is implemented for edge detection due to its high accuracy even in 

noisy conditions. To further improve efficiency in computation, an enhanced Canny with Region of 

Interest (ROI) is implemented which facilitates the objects which are within the custom ROI will be 

detected. The Running Gaussian Average algorithm is implemented for background subtraction. 

This is due to its advantage of speed and low memory requirement which makes it highly scalable 

when used in large scale surveillance systems.  

The Canny edge detection detects edges at pixels where the intensity or colour changes the most. For 

grayscale images, the intensity is used while, for coloured images, the colour value for each channel 

is used. The edges are detected by determining the gradients in the image using the Sobel operator. 

The gradients are approximated in the horizontal and vertical directions by applying the following 

kernels: 

 

      
    
    
    

    - applied for the horizontal gradient 

      
   
   
      

    - applied for the vertical gradient 

 

The strength of the edge is determined by finding the magnitude of the gradient. This is achieved by 

applying the Pythagoras law or the Manhattan distance to reduce the computational complexity. 

 

        
    

   - by Pythagoras law 

                - by the Manhattan distance 

where    and   are the respective gradients in the horizontal and vertical directions and     is 

the edge strength. 

By overlaying the computed edge on the smooth image, the edges are well detected. However, the 

detected edges are broad and do not give sharp indications of where the edges are. In order to 

sharpen the edges, the direction of the edges can be determined and used to make the edge trace 

more precise. The direction of the edges can be determined as the angle of the edge as obtained from 

the equation (4). 

 

        
    

    
                                                         



Figure 1 shows the software architecture of the parallel implementation of the motion detector.  

 

 
 

Figure 1: The software architecture of the motion detection system. 

 

The desktop PC works as a master node using the scatter function in MPI4Py to distribute the video 

frames to Raspberry Pi (RPi) worker nodes and the gather function to collect the results. Figure 2 

shows the workflow of the parallel motion detection algorithm. 

 

 
 

Figure 2. The workflow of motion detection. 

 

 

4. Performance Evaluation 

To evaluate the performance of the parallel motion detection algorithm, two experiments were 

conducted. The first experiment was conducted to measure the algorithm efficiency and compare it 

with that of two other algorithms. In this experiment, the accuracy of the algorithm was also 

compared with the accuracies of the other algorithms. The second experiment was conducted to 

measure the scalability of the algorithm using 10 Raspberry Pi Model B+ nodes. The desktop PC has 

an Intel Pentium Dual-Core CPU (T4200 @ 2 GHz) and 1.87 GB usable RAM running Ubuntu 
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12.04. MPI4Py was used for the desktop to communicate with the Raspberry Pi nodes using MPI. A 

video of 2400 frames was taken for testing purpose. Figure 3 shows a snapshot of video frame with 

detected objects. 

 

 
 

Figure 3: The snapshot of a video frame with detected objects. 

 

4.1 Computation Efficiency 

In this test, the number frames that were fed to the motion detection algorithm was increased in steps 

of 200 frames till a total number of 2400 frames was reached. At each step, the total time taken by 

the algorithm to process the frames was recorded. The computation efficiency of the Canny with 

custom ROI algorithm was compared with that of the Absolute Difference algorithm, the Canny 

without custom ROI algorithm and the Laplacian algorithm respectively as shown in Figure 4. 

 

 
Figure 4: Computation efficiency. 

 
As seen from the graphs in Figure 4, the execution times of all the four algorithms increase linearly 

with as the number of image frames is increased. It can also be observed that the disparity between 

the execution times of the algorithms increases as the number of image frames increase. The Canny 

with the custom ROI algorithm is faster in computation than the Canny without the custom ROI. This 

performance gain is achieved due to the fact that only the selected rectangular section(s) of a video 

frame is processed.  
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4.2 Scalability in Parallelization 

A number of tests were conducted to evaluate how the motion detection algorithm scales in 

computation. It can be seen from Figure 5 that the execution time consumed by each video frame 

decreases with an increasing number of Raspberry Pi (RPi) nodes in the four scenarios using 500 

frames, 1000 frames, 1500 frames and 2000 frames respectively. However, the parallelization 

achieves the best performance in scalability in the scenario of using 500 frames, whereas it achieves 

the worst scalability in the scenario of using 2000 frames. This is mainly because that more video 

frames are used in the detection process, a higher overhead in communication among the RPi nodes 

will be incurred. 

 

 
Figure 5: Scalability in computation. 

 

4.3 Accuracy in Motion Detection 

In motion detection, the detection accuracy is a measure of the correctness of the decision making 

ability of the motion detection algorithm. For every video frame processed, three decisions can be 

made which are true positive, false positive and false negative.  

It is important that the total number of detections made by an algorithm is limited to only the 

relevant instances of moving objects. If a large number of irrelevant detections are made, the amount 

of storage available to store the detected images will be inefficiently used. Figure 6 shows the total 

number of detections achieved by the four algorithms . 

 

 
Figure 6: Total detections. 
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It can be observed that the total number of detections increased generally as the number of frames 

was increased for all the four algorithms. From 1200 frames till 2400 frames, the number of 

detections obtained for the Canny algorithm with custom ROI was less than the total detections 

obtained for the other algorithms. The Absolute difference, Laplacian and Canny without custom 

ROI produced generally about the same number of detections, although Canny without custom ROI 

returned slightly less detections from 1800 to 2400 frames. 

The Absolute Difference algorithm yields the highest number of detections. This is so because the 

Absolute Difference algorithm obtains the absolute value of the result of the subtraction of the pixels 

in the current image frame from the corresponding pixel in the previous one. The operation of the 

Absolute Difference algorithm is given by equation (5) 

 

                          (5) 

 

Where: 

o      is the absolute difference. 

o And    is the pixel value of a pixel in the current image. 

o And      is the pixel value of a pixel in the previous image. 

 

Any change in pixel values due to factors such as noise will yield a difference which will be detected 

as motion by the Absolute Difference algorithm. Thus, this algorithm is highly affected by noise and 

yields the most number of detections (including false detections). Despite its low noise tolerance, the 

Absolute Difference algorithm is simple and thus requires minimal computation and minimal 

memory. 

The Laplacian algorithm is more complex than the Absolute Difference algorithm because it uses a 

Laplacian of Gaussian (LoG) operation to find the areas of rapid change (i.e. the edges) in a video 

frame. The LoG operation is a two-step process that first performs a smoothing operation on the 

image using a Gaussian filter to reduce noise and then performs the Laplacian operation. The 

Laplacian operator is essentially a derivative in the x and y pixel directions. In the LoG, a video 

frame        is convolved by applying the Gaussian kernel using equation (6). 

         
 

   
    

                                          

The kernel is applied at a given scale   to give the scale space representation in equation (7). 

 

                                                        
 

Then, the Laplacian operator is computed with equation (8). 

                                                          (8) 

 

The above form of the Laplacian operator usually results in strong edges for dark blobs and weak 

edges for bright blobs of similar size. Thus, it can be said that it is partial to extreme intensities. A 

major challenge faced when applying the Laplacian operator at a fixed scale, however, is that its 

detection depends on the size of the BLOB structures in the image with respect to the size of the 

Gaussian kernel used for pre-smoothing process. In order to automate the detection of BLOBs of any 

size in the image domain, a multi-scale approach is, therefore, necessary. A straightforward way to 

obtain a multi-scale blob detector with automatic scale selection is to consider the scale-normalized 

Laplacian operator: 

                                                     

 

The Laplacian algorithm is more tolerant to noise than the Absolute Difference algorithm also and 

yields less false detections than the Absolute Difference algorithm. Thus, the Laplacian algorithm 

would yield slightly less detections than the Absolute Difference algorithm when the images contain 

minimal noise. However, the difference in the number of detections between both algorithms will 



increase as more noise is introduced to the images. The complexity of the Laplacian algorithm 

makes it slower and more memory demanding than the Absolute Difference algorithm. Figure 7 

shows the performance of the four algorithms in terms of true positives. It is worthy to note that all 

the four algorithms yielded an equal number of true positives. No algorithm was found to yield a 

higher number of detections of images containing actual moving objects than the other. However, 

the Canny with custom ROI algorithm produced less false detection than the other algorithms as 

shown in Figure 8. 

 

Figure 7: True positives. 

From figure 8 it can be observed that the Canny with custom ROI algorithm produced zero false 

positives while the other three algorithms produced significantly a high number of false positives. It 

can also be observed that the number of false positives detected remained constant at zero for the 

Canny with custom ROI algorithm. However, for the other three algorithms, the number of false 

positives increased gradually as the number of frames is increased. 

 

Figure 8: False positives. 

A false negative is a video frame which contains a moving object, but which was not detected by the 

motion detection algorithm. It is important to determine the number of false negatives (if any) made 

by the Canny with custom ROI algorithm and compare it with the other three algorithms. Figure 9 

shows the false negatives for all four algorithms. 
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Figure 9: False negatives. 

From Figure 9, the most obvious observation that can be made is that the numbers of false negatives 

returned by all the four algorithms were quite low (about 1 to 2 occurrences) between 200 to 600 

frames. Beyond 600 frames, the numbers of false negatives increases rapidly and eventually settle at 

about an average of 200 occurrences at 1400 frames. The number of false negatives remains mostly 

unchanged till 2400 frames. 

It can also be observed that the introduction of the custom ROI had no effect on the number of false 

negatives. Thus the Canny with custom ROI algorithm and the Canny without custom ROI algorithm 

both produced an equal number of false negatives. The Absolute Difference and the Laplacian 

algorithms produced the least number of false negatives. 

 

4.4 Precision and Recall in Motion Detection 

The precision (also called positive predictive value) is the fraction of detected video frames that are 

relevant. A high precision implies that an algorithm retrieves substantially more relevant detections 

than irrelevant ones. In classifying the detections, the precision for a group of detections is the 

number of true positives (i.e. the number of detections which contain moving objects that are of 

interest) divided by the total number of detections which contain moving objects which are relevant 

or irrelevant (i.e. the sum of true positives and false positives, which are video frames incorrectly 

detected as containing moving objects) [17]. 

 

Thus the precision is given by the equation (10). 

           
                        

                                                   
         (10) 

Figure 10 shows the precision results of the four algorithms from which it can be observed that the 

precision was highest when the custom ROI was applied to the Canny algorithm. However, without 

the custom ROI, the precision of the Canny algorithm was significantly lower. Low precision values 

were recorded for both the Absolute Difference and Laplacian algorithms. It should be noted that the 

lowest precision was obtained for the Absolute Difference algorithm. It can also be observed that the 

precision remains stable at a value of 1 regardless of the number of frames when the custom ROI 

was applied to the Canny algorithm. However, there was a general decline in the precision for other 

three algorithms as the number of frames was increased.  
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Figure 10: Precision in motion detection. 

The recall (also known as sensitivity) is the fraction of relevant detections that are made. It is also a 

measure of completeness or quantity of the obtained results. A high recall means that an algorithm 

detectes most of the relevant moving objects in the scene. Recall in this context is defined as the 

number of true positives divided by the total number of detections that actually belong to the 

positive class (i.e. the sum of true positives and false negatives, which are video frames which were 

not detected as containing moving objects , but actually do) [17]. Thus the recall is given by the 

equation (11). 

 

       
                        

                                                  
            

 

Figure 11 shows the recall results of the four algorithms from which it can be observed that the 

recall values are slightly higher when the custom ROI is applied to the Canny algorithm. However, 

this margin is just about 0.15. It was also observed that there was a gradual decline in the recall 

values for all the four algorithms. The lowest algorithm recall values were obtained at 1400 frames. 

The recall values increase gradually but eventually settle at about 0.86 at 1800 frames. 

 

 
 

Figure 11: Recall in motion detection. 
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5. Conclusion 

In this paper, we have presented a parallel implementation of the Canny algorithm for high 

performance motion detection in surveillance videos. The parallel motion detection system run on a 

cluster of inexpensive computing devices. Custom region of interest was implemented to enhance 

the performance and accuracy of the Canny algorithm. Performance evaluation results showed that 

the enhanced algorithm achieved higher accuracy in motion detection with reduced execution time 

in computation.  

In order to further automate the system, a learning algorithm can be developed to dynamically 

generate which parts of the scene need to be excluded without a need for a manual custom region of 

interest selection. Since most of the unwanted detection are likely to be caused by trees, the 

algorithm may be designed to identify and exclude regions containing high concentration of green 

pixels. This may add to the overheads but will certainly reduce the time required to deploy the 

motion detection system. 
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