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Abstract

The traditional Collaborative Filtering (CF) based recommender system suffers from two key challenges,

namely, the normal assumption is not appropriate, and the penalty terms added on the latent feature

vectors are difficult to set in advance. Hence we propose a hierarchical Bayesian model based CF and the

related inference algorithm. Specifically, we impose a Gaussian-Gamma assumption on the ratings and the

feature vectors, and propose a Gibbs sampler for the inference. We show this procedure is meaningful by

giving a statistical explanation of the inference. We show the performance of the model by experiments with

synthetic datasets and real datasets.

Keywords: template Gaussian-Gamma distribution, recommender system, hierarchical Bayesian model,

Gibbs Sampling, performance evaluation

1. Introduction

The Collaborative Filter (CF) has been widely used in recommender systems. It aims at learning the

latent features of both the users’ and the items’ at the same time. When a rating matrix is given, the task

of CF is to learn the latent features with the observed ratings and predict the unobserved ratings by these

features. It assumes the rating of item j given by user i is a simple inner product of the corresponding latent5

features. Formally, let Ui denote the latent features of user i and Vj denote the latent features of item j,

then the rating Ri,j , i.e. the (i, j)-th value of the rating matrix R, is Ri,j = U ′iVj . This method was first

proposed by [1] in the form of an optimization problem.
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The statistical explanation of CF was proposed by [2]. It proved the ratings of the dataset could be seen

as normally distributed random variables. That is, the rating Ri,j is a normal random variable with mean10

U ′iVj and a fixed variance which is set empirically. However, the normal distribution is sensitive to outliers.

It is widely accepted that when a dataset is contaminated by noise, its mean and standard deviation can be

largely affected because the normal distribution has a light tail. Furthermore, the fixed variance in a model

is also problematic. Since the experiences of users have a large diversity, the variances of the ratings should

be different from one to another. Consequently, fixing a common variance for all ratings is inappropriate.15

With all these facts, the normal distribution is not the best assumption for the random variables of the

ratings.

Another challenge posed to the recommender systems is that the model tends to be over-fitting if the

latent features do not have any constraint. This problem arises in those machine learning systems where the

model is much too flexible than it needs to be. As a result, the training error can be low while the test error20

remains very high. An effective solution is to add some penalty terms to the variables to confine the model’s

flexibility. Surprisingly, this simple method exhibits good performance in reducing over-fitting. However,

deciding how far to regularize the flexibility is important. Because when the penalty term is set to be a

large value exceeding the demand of the model, both the training error and the test error will rise. Hence it

is important to choose appropriate penalty terms. For traditional learning methods, these terms are chosen25

manually through exhaustive training and comparing.

Fortunately, the recent development of probabilistic models shed some light on the above problems.

Probability is a powerful tool to deal with uncertain data. Hence it has been widely used in machine

learning [3, 4, 5], data mining [3, 6] and other relevant areas [7, 8, 9, 10, 11, 12]. Particularly, we use the

hierarchical Bayesian model to solve the mentioned problems. Instead of a Gaussian distribution for Ri,j , we30

substitute it with a Gaussian-Gamma distribution, i.e. we add a Gamma distribution for the precision (the

inverse of the variance) and form a higher hierarchy for the model (see Figure 1). For the penalty terms we

also add higher distributions for them and hence the distribution of the latent features Ui, Vj is distributed

as Gaussian-Gamma distribution as well. The Gaussian-Gamma distribution can be seen as an extension

of the famous T distribution, which is a more robust distribution than the Gaussian distribution. It has35

a heavier tail and a larger kurtosis while the degree of freedom is small, which signifies the mean of the

distribution will be less affected by outliers than the Gaussian distribution. Therefore T , or the extension

Gaussian-Gamma distribution, is a better choice for recommender systems.

The contribution of our work includes the following. Firstly, we construct a hierarchical Bayesian model

for recommender systems, which assumes that the ratings and the latent features are distributed as Gaussian-40

Gamma distribution. We call this model the Gaussian-Gamma CF, or GGCF. Secondly, we present an

inference algorithm for GGCF which is already tested by a multi-stage Gibbs sampling [13] and proves to

be very meaningful. In experiments, we test the model using a synthetic dataset as well as real datasets
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to show that the Gaussian-Gamma assumption indeed grants a heavier tail and as a result, the prediction

errors become lower.45

The rest of the paper is organized as follows. Section 2 introduces the related work including the

traditional CF and the regularized CF in a probabilistic perspective of view. In Section 3, we give the

description of GGCF, the inference procedure, and the way to predict the missing ratings. In Section 4,

we show experiments with the synthetic dataset, the MovieLens dataset, and the Book crossing dataset. In

Section 5, we give an analytic analysis of the proposed model. In Section 6, we discuss the regularizing terms50

in machine learning language. Finally, we conclude the paper in Section 7.

2. Related work

For a rating matrix R, CF attempts to find Ui and Vj which minimize the loss function ‖Ri,j−U ′iVj‖2 for

all the observed Ri,j . To prevent over-fitting, [1] added some penalty terms and modified the loss function to

L =
∑
i,j ‖Ri,j −U ′iVj‖+

∑
i λ1,i‖Ui‖+

∑
j λ2,j‖Vj‖, where λ1,i and λ2,j are regularizing weights. Since the55

values λ1,i and λ2,j are difficult to set, [14] used another way to regularize the latent features. They added

upper and lower bounds on the estimated missing ratings. Low rank representation was also introduced

to the recommender systems. Srebro et al. [15] proposed using low rank representation to regularize the

collaborate filtering. Add social relations of the users are also invited to regularize the model, see [16] and

[17] for reference.60

Besides the above example of RCFs, probabilistic explanations are introduced to the traditional CF. Mnih

et al. [2] imposed a normal assumption on the ratings, which states that the rating Ri,js are independent

and are normally distributed with mean U ′iVj and a fixed variance. This probabilistic model is equivalent to

the traditional CF. Since the maximum of the log-likelihood function of this model is equal to minimize the

loss function ‖Ri,j −U ′iVj‖. Moreover, if normal assumptions are imposed on the feature vectors Ui and Vj ,65

the log-likelihood function of this model is equal to the traditional loss function with penalty terms.

However, few works addressed the appropriation of the normal assumption which lies at the foundation of

the model. Meanwhile, hierarchical Bayesian models have been introduced to machine learning community

for a long time, and the properties of hierarchical Bayesian models have been deeply analyzed [18, 19]. One

successful instance of these models is the Bayesian analysis of the regression models [20, 21, 22, 23, 24].70

Instead of normal assumptions, these models assume a T distribution, or, a Gaussian-gamma distribution

on the response variables. Since the T distribution has a complex density function, we always split it

into a Gaussian-Gamma distribution and use sampling methods in the inference. The properties of the

Gaussian-Gamma distribution is left in the next section.

Stochastic Gradient Descent (SGD) [25] is one of the most popular methods in learning the parameters75

of CF. This is because SGD is straightforward and effective. Paterek et al. [26] improved the performance

of SGD by combining matrix factorization with baseline estimate. Alternating Least Squire (ALS) [27] is
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another useful algorithm to compute the feature vectors, and its advantage is that the algorithm can be

implemented on a parallel platform. However, these algorithms are not applicable in a hierarchical Bayesian

model. The reason is the parameters in the latter are considered to be random variables and a full posterior80

analysis is required. However, we can use Gibbs sampling [28, 13] to approximate the posterior of the random

variables. When all the conditional probabilities have closed form, it can be implemented immediately. As

will be shown in the next section, we can give the conditional probabilities for all the involved random

variables.

3. The Hierarchical Collaborative Filter85

3.1. Properties of Gaussian-Gamma distribution

The Gaussian distribution is widely used in statistics and machine learning applications. It contains the

following properties. Firstly, Gaussian distribution is ubiquitous because of the central limit theorem and

the law of large numbers. Secondly, it has a symmetric density and thus its mean equals its median. Thirdly,

the Gaussian distribution belongs to the exponential family. Hence it has conjugate prior and the conditional90

probabilities for the parameters are tractable. Lastly, it has a light tail. The first three properties are the

main reasons why it is applied in most of the models while the last property confines its usage. Because a

light tail means the model is sensitive to outliers.

The T distribution resembles the Gaussian distribution in some way but a heavy tail. We use Kurtosis

to test the distributions whether a distribution has heavy tails or not. If the Kurtosis of a distribution is95

greater than 3, it is called a heavy tail distribution. On the contrary, when the Kurtosis is equivalent to or

smaller than 3, it is said to have a light tail. The Kurtosis of a Gaussian distribution is exactly 3, and thus

it is not a heavy tailed distribution.

The degree of freedom controls the Kurtosis of a T distribution. When the degree of freedom is small,

the Kurtosis of T is large, and when the degree of freedom is large, the Kurtosis is small. Particularly,

when the degree of freedom is greater than 30, the density of the T distribution almost coincides with the

curve of some Gaussian distribution. The T distribution is also symmetrically formed and it can be seen

as an infinite mixture of the Gaussian distributions. That means if X is a Gaussian distributed random

variable with mean µ and precision λ, and if λ is a Gamma distributed random variable with parameters

(ν/2, ν/2), where ν > 0. Then the marginal density of X integrating out the precision λ coincides with the

T distribution with mean µ and degree of freedom ν. Formally, the density of a T distribution with mean

µ and degree of freedom ν coincides with∫
N (X|µ, 1/λ)G(λ|ν/2, ν/2)dλ.

However, one of the disadvantages of the T distribution is that it is not in the exponential family. Hence its

posterior does not have an analytical form whatever prior is added. To overcome this problem, we substitute100
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the T distribution with a Gaussian-Gamma distribution, which means we place a Gaussian distribution for

the observations, and further put a Gamma distribution for the precision of the Gaussian. This substitution

makes all the involved random variables have analytical conditional density. That is because Gaussian and

Gamma distributions both belong to the exponential family. In order to make the model more suitable for

different occasions, we can further relax the parameters of the Gamma distribution to have different values.105

Gaussian-Gamma distribution has been successfully used in the applications when a robust or a sparse

model is required. Typical applications include the regression analysis [20, 22, 24] and the Independent

Component Analysis (ICA) [21]. These models have similar scenarios with our application. In the regression

models, Gaussian-Gamma distribution is utilized instead of a Gaussian prior when the residual is not normally

distributed. And in ICA, it is necessary to select a prior different from Gaussian. Because this is the only110

way we can recover the mixing matrix, where a Gaussian-Gamma distribution works well [21].

3.2. Model description

Let R ∈ RM×N denote a rating matrix with M users rating for N items, where its element Ri,j is the

rating given to item j by user i. Let matrices U ∈ RK×M and V ∈ RK×N , respectively, characterize the

users and the items. We model and formalize the relationship between R and U, V as follows115

Ri,j ∼ N (U ′iVj , λ
(−1)
i,j ),

λi,j ∼ G(a, b), i = 1, ...,M, j = 1, ..., N,
(1)

where N and G denote the normal distribution and Gamma distribution respectively; while U ′iVj is the inner

product of the vectors Ui and Vj which are the i -th column of matrix U and j -th column of matrix V , and

λi,j is the reciprocal of variance and is known as the precision. The parameters aλ and bλ represent the

shape and rate of a Gamma distribution respectively. The relationship of these variables are shown in Figure

1.120

In fact, this normal-Gamma prior of the ratings is technically equal to a T prior. By integrating out the

precision λi,j , we can easily obtain the density of Ri,j as∫ ∞
−∞
N (Ri,j |U ′iVj , λi,j) · G(λi,j |aλ, bλ)dλ

=
baλλ Γ(1/2 + aλ)

Γ(aλ)
√

2π

(
1

2
(Ri,j − U ′iVj)2 + bλ

)−(1/2+aλ)
.

(2)

If we set aλ = bλ, the term on the right side of equation 2 is just the density of the T distribution with

freedom 2aλ and mean U ′iVj .

Hence the ratings are independently distributed as a Gaussian-Gamma distribution which enjoys the125

heavy tail property. It is known to us that most of the probabilities are held in the interval centered at

the expectation with radius 3 times the standard deviation for a Gaussian distribution. Hence if there are

any observation far from the mean, say, distant from the mean greater than 3 times the standard deviation,
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then the mean of the Gaussian distribution will be strongly changed just because of these outliers. This

means the Gaussian distribution is sensitive to outliers. However, In a recommender system, most of the130

ratings are missing in real datasets, and some of the ratings are given casually, outliers exist for most of

the cases. Furthermore, since the variances of the ratings for the users change from one to another, it is

obviously inappropriate to fix a common variance for the whole data set. These problems are solved for the

Gaussian-Gamma distribution obviously. Firstly, it is a heavy tail distribution, and hence it is robust to

outliers. Secondly, as shown in equation (1), there is a precision λi,j associated with every rating Ri,j , the135

diversity for the users is achieved.

This hierarchical structure also allows a simple two-stage Gibbs sampler for the sampling of the Gaussian-

Gamma distribution. The implementation is the iteration of the following two steps repeatedly.

• Sample λ from G(a, b), and

• Sample x from N (µ, λ−1),140

where µ represents the mean of the T distribution.

Besides the user-item ratings, the latent features Ui and Vj are assumed to be distributed as Gaussian-

Gamma distributions as well. The conditional distributions are shown as

Ui ∼ N (0, λ−1Ui I),

λUi ∼ G(aU , bU ), i = 1, ...,M,

Vj ∼ N (0, λ−1Vj I),

λVj ∼ G(aV , bV ), j = 1, ..., N,

(3)

where I ∈ RK×K is an identity matrix. The precisions λUi and λVj in GGCF play the role of penalty term

in RCF, and they are used to prevent the model from over-fitting. However, in RCF, the values of these145

parameters are set empirically, and it requires a heavy time overhead and needs several times of trying and

comparing to set. Here, we impose a simple prior on these parameters so that they can be set automatically

in the training phase of the model.

3.3. Inference

The Gibbs sampling is applied in GGCF as the basic tool in inference. It requires the analytical form of150

the conditional distributions for all the parameters involved. In the following, we need symbols Si denoting

the set of the items rated by user i and S′j denoting the set of the users who give ratings to item j. Gener-

ally speaking, we need the following conditional distribution p(λi,j |a, b, Ri,j), p(Ui|Ri,j , λUi), p(Vj |Ri,j , λVj ),

p(λUi |Ui, aU , bU ), p(λVj |Vj , aV , bV ).
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Figure 1: The proposed Bayesian CF model

We summarize the conditional distributions here and explain the meaning of them in the following sequel.155

λi,j ∼ G(a+ 1/2, b+ (Ri,j − U ′iVj)2/2),

Ui ∼ N (µ̃Ui , Σ̃Ui),

Vj ∼ N (µ̃Vj , Σ̃Vj ),

λUi ∼ G(aU + 1/2, bU + U ′iUi/2),

λVj ∼ G(aV + 1/2, bV + V ′jVj/2),

(4)

where

Σ̃Ui =

∑
j∈Si

λi,jVjV
′
j + λUiI

−1 ,
µ̃Ui = Σ̃Ui

∑
j∈Si

λi,jRi,jVj ,

Σ̃Vj =

∑
i∈S′

j

λi,jUiU
′
i + λVjI

−1 ,
µ̃Vj = Σ̃Vj

∑
i∈S′

j

λi,jRi,jUi.

(5)

The above conditional distributions can describe the real situation well. In fact, the conditional distri-

butions of the latent features Ui and Vj have strong connections with the regularized least square solutions

of the linear equations

FiUi = ri,
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where

ri =


Ri,j1

Ri,j2
...

Ri,j|Si|

 , Fi =
[
Vj1 , · · · , Vj|Si|

]
.

The above linear equation means when the latent features of the users and the items are given, the rating

Ri,j is an inner product of the latent features of the corresponding user and item. This is just the assumption

of the collaborative filtering. However, because of the sparsity of the rating matrix, this linear equation may

not have analytical solutions, hence the least square solution is required. Moreover, the regularized terms

in the least square method are used to guarantee that the least square solution exists uniquely. Since the

least square solution requires a computation of the inverse of a matrix, we need to make sure it is invertible.

Hence the regularized terms are inserted. Formally, let Ax = b be a linear equation then it has the least

square solution

x̂ = (A′A)−1A′b.

However, since the matrix A′A is not always non-singular, we usually add a fixing term εI. Therefore the

solution is changed to

x̂ = (A′A+ εI)−1A′b.

This kind of fixing is originally proposed by [29] and ε is called the regularity term. The intuition of this

fixing method is motivated by the fact that any diagonal dominated matrix is non-singular, and thus we can

insert εI in with ε large enough so the fixed matrix is non-singular.160

From equation (5) we know that when we update Ui, Fi plays the role of A, ri plays the role of b and

the regularity term is

√
Λi =



√
λj1

√
λj2

. . .
√
λj|Si|

 ,

which is a diagonal matrix constituted by the square root of the precisions. The update of Vj has a similar

explanation. We only need to switch the role of U and V , and form the linear equation like

F ′jVj = r′j ,

where

r′j =


Ri1,j

Ri2,j
...

Ri|S′
j
|,j

 , F ′i =
[
Ui1 , · · · , Ui|S′

j
|

]
.
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Correspondingly, the regularity terms are constituted by the precisions of the user latent features

√
Λj =



√
λi1

√
λi2

. . .
√
λi|Sj |

 .

The update of λUi in equation (4) shows that the norm of Ui has an inverse relationship with the precision

λUi . For a Gamma distributed random variable, its expectation is the quotient of the shape over the rate.

Hence the expectation of λUi is (aU + 1/2)/(bU + U ′iUi/2). This effect is the same of the regularity terms

in the traditional RCF. For this model, when the regularity is large, the norm of the parameters will be

small and when the regularity is small, the norm of the parameters is large. Similarly, we can give the165

explanation of the update of λVj . The meaning of the update of λi,j is quite obvious. By the property of

the Gamma distribution, the precision λi,j is inversely proportional to the error (Ri,j − U ′iVj)2, and this is

just the meaning of the word “precision”.

3.4. The estimation of the parameters in GGCF

In the model of GGCF, it is essential to set the parameters of the Gamma distribution aλ, bλ, λU and170

λV in advance. A traditional empirical method of setting is to set them to be small positive numbers such

as 0.01, because a smaller degree of freedom in a T distribution leads to a heavier tail and a more robust

model. On the contrary, when the freedom approaches 30, the density is approximately normal. In fact, the

T distribution converges to a normal distribution is almost definitely when the freedom goes to be infinite.

Taking this into account, we here set these parameters to be a small number like 0.01 to encourage the priors175

of Ri,j , U, V to be a more robust one. From a more straight way, the mean of a Gamma distribution is a/b

and the variance is a/b2, therefore, a small number like 0.01 will keep the mean of the precisions to be 1 and

a large variance 100 and thus the precisions can be chosen from a broad range.

There also exists methods that choose the parameters automatically. For instance, the empirical Bayes

parameter estimator and the hierarchical Bayesian estimator. Since the empirical Bayes estimator involves180

a lot of complicated computations, we adopt the hierarchical Bayesian estimator. We further put a prior on

the Gamma distribution, and then sample these parameters from the posterior distribution.

Assume that the prior for aλ, bλ is π(aλ, bλ), and the estimation is got by a two-stage gibbs sampler.

Note that for given aλ, we have bλ as a Gamma distribution with shape aλL and rate
∑
i,j λi,j , where L is

the number of ratings. The only difficulty lies in the sampling of aλ from posterior. Conditional on the prior

π(aλ, bλ), and all other variables, the full conditional of aλ is

π(aλ, bλ)
∏
i,j

baλλ
Γ(aλ)

λaλ−1i,j exp(−bλλi,j).
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The sampling of aλ requires a Metropolis-Hastings random walk. For this specific situation, we first sample

a proposal a′λ from U(aλ − ε, aλ + ε), where U denotes the uniform distribution and ε is a small positive

number. Then accept this proposal a′λ with probability

ρ = min

π(a′λ, bλ)

π(aλ, bλ)
·
b
a′λL
λ (

∏
i,j λi,j)

a′λΓ(aλ)

baλLλ (
∏
i,j λi,j)

aλΓ(a′λ)
, 1

 .

It can be proved that the accepted a′λ has the same distribution with the required one. The tuning parameter

ε is chosen to set the average acceptance rate at 50% − 70%. Similar procedures can be implemented for

aU , bU , aV , bV .185

3.5. Prediction

Suppose y = f(x|θ) is the likelihood function with predictor x and the parameter θ, and if π(θ) is the

density function of θ, then the predicted value ŷ of y is

ŷ =

∫
f(x|θ)π(θ)dθ.

If we have a sample {θ1, ..., θn} of θ, the prediction can be approximately as

ŷ =
1

n

n∑
i=1

f(x|θi),

by law of large number. In this way, the predicted rating R̂i,j is approximated as

R̂i,j =
1

T

T∑
t=1

U ′i,tVj,t, (6)

where T is the size of the sample generated by the Gibbs sampling.

4. Experiments

4.1. Synthetic data190

To verify the performance of our proposed model, we generate a matrix R ∈ R100×100 in MATLAB as

follows: First we generate two matrices X,Y ∈ R100×5 with values from a normal distribution with mean 0

and standard deviation 3, then construct R = XY ′. Hence R is a matrix with dimension 5. Then we add

noise to the elements of the matrix and randomly hide 80% of the them as test data. The remaining values

are selected as training data. We repeat the experiments for 5 times with different noises. The mean of the195

noises are set to 0 but the standard deviations are different, which are 0.01, 0.25, 0.5, 0.75, 1. We aim at

showing that our model GGCF can catch it, however the standard deviation changes. The predictor Ui and

Vj are all set as with dimension 5.
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Table 1: The means of the residuals detected by the model.

deviation 0.01 0.25 0.5 0.75 1

round 1 2.2078e-4 -1.5191e-4 -1.7415e-4 -2.4138e-4 -2.9674e-4

round 2 -8.3260e-4 0.0010 -0.0011 -2.4846e-4 -0.0021

round 3 0.0294 0.0326 0.0303 0.0271 0.0280

round 4 0.0458 0.0425 0.0345 0.0398 0.0428

round 5 0.0436 0.0384 0.0351 0.0355 0.0306

Table 2: The kurtosis of residuals of rsvd and bsvd.

deviation 0.01 0.25 0.5 0.75 1

RCF 3.2945 2.9878 3.5490 3.1095 3.2671

GGCF 4.8770 5.0173 5.0251 4.7892 4.9045

The residual of a model is the difference between the real and the predicted ratings. In our experiment,

let Ri,j denote the rating given by the user i to the movie j and R̂i,j = U ′iVj represent the corresponding200

predicted rating, the residual for this specific rating is

erri,j = Ri,j − R̂i,j . (7)

We show the means of the residuals of all different noises in Table 1, in which it can be seen that all

of them are around 0. For every deviation, the experiment is repeated 5 times to rule out opportunity. In

Figure 2 we show the standard error of the residual goes hand in hand with the standard deviation of the

noise. The residual of GGCF (Figure 3(a)) and RCF (Figure. 3(b)) are presented to show that the different205

effects of the these model assumptions.

To demonstrate that the GGCF provides stronger robustness than RCF, we would show that the kurtosis

of the residual of GGCF is greater than that of RCF. Assume that the kurtosis of a normal distribution is 3,

in Table 2 we show that the kurtosis of RCF is around 3 while the kurtosis of GGCF is significantly greater

than 3, and it is around 5.210

4.2. MovieLens data set

To test the accuracy of the prediction ratings of GGCF, we use the MovieLens data set (www.movielens.org)

for training and testing. The MovieLens data set contains about 1 million ratings from 6,040 users for 3,952

movies with about 95% sparsity. We randomly select 100,000 ratings with 943 users for 1682 movies as our

data set and split it into a training set of size 80,000 and a test set of size 20,000. The number of ratings215

given by different users diverse in a large range from 4 to 685, and similarly the number of ratings got by
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Figure 2: The captured standard errors by GGCF. The blue plus signs represent the standard errors of the residual for different

levels of noise. The true standard deviations of the noise imposed on the data set are on the horizontal axis, and the standard

errors of the residual are on the vertical axis.

(a) The histogram of the residual of GGCF (b) The histogram of the residual of RCF

Figure 3: The histograms of the residual of the synthetic data. (a): The histogram of the residuals of GGCF, its tail is heaver

than that of RCF. (b): The histogram of the residuals of RCF, it looks like a normal distribution.

different movies also has a large range which is from 1 to 484. The above information means that the penalty

given to different feature vectors Ui and Vj should be different.

To train the model of GGCF, we set the parameters aλ = bλ = aU = bU = aV = bV = 0.01 for simplicity,

and iterate the Gibbs sampling 100 times. We test the data set by using dimension 2, 3, 5, 10 and 30.220

In Figure 4, the plots are the results when we set the dimension to be 5 because all the other dimensions

produce similar figures. Note that we ignore the plots for all the other dimensions, in that they all produce

similar figures. As shown in Figure 4(a), the algorithm of GGCF converges in 5 iterations, which is pretty

fast. Figure 4(b) shows the histogram of the residual for the training set. This figure shows that the residual

is centered at 0 and has a range (−3, 3). It is worth mentioning that the RMSE in Figure 4(a) seems to225
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(a) The RMSE of GGCF in every iteration (b) The histogram of the residual of GGCF

(c) The RMSE of RCF in every iteration (d) The histogram of the residual of RCF

Figure 4: The results of MovieLens data set. (a): RMSE for the training set of GGCF in each iteration, this figure shows the

algorithm converges within 5 iterations. (b): The histogram of the residual of GGCF. (c): RMSE for the training set of RCF

in each iteration, this figure shows the convergence rate is similar with GGCF. (d): The histogram of the residual of RCF.

be above 1 but the actual RMSE of the this model is indeed below 1. The reason is that equation 6 works

like the ensemble of different models and it will rule out some of the unreasonable predictions. For instance,

some of the predicted ratings given by only one sampled feature vectors U ′i,tVj,t might be greater than 5 or

smaller than −5, but the mean of all the predictions will be always in (−5, 5).

For RCF, it is unnecessary to implement the Gibbs sampling since a simple gradient based unbounded230

optimization algorithm (e.g., the steepest gradient descent) is enough. To train the model, the penalty term

is set to be 0.3 and the learning pace is set to be 0.01. Figure 4(c) shows the RMSE of every iteration of

RCF for the training set and the residual plot is shown in Figure 4(d). Figure 5 shows the qq-plots of the

residuals indicating that the residual of RCF is not normally distributed.
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(a) The qq-plot of the residual against the standard normal

for the training data

(b) The qq-plot of the residual against the standard normal

for the test data

Figure 5: The residual plots of RCF for MovieLens data set.

Table 3: RMSE and MAE on test set of the MovieLens dataset.

GGCF RCF

RMSE MAE RMSE MAE

2 0.9700 0.7606 1.0283 0.8318

3 0.9635 0.7560 1.0372 0.8388

5 0.9575 0.7509 1.0314 0.8336

10 0.9508 0.7435 1.0299 0.8320

30 0.9574 0.7453 1.0293 0.8320

The results for test set of GGCF and RCF is shown in Table 3. By comparing the RMSE and MAE of235

the two models, we show that GGCF is slightly better than RCF in every dimension.

4.3. Book crossing dataset

The BookCrossing (BX) dataset was collected by Cai-Nicolas Ziegler in a 4-week crawl (August / Septem-

ber 2004) from the Book-Crossing community with kind permission from Ron Hornbaker, CTO of Humankind

Systems. It contains 1,149,780 ratings given to 271,379 books from 278,858 users. The ratings have a scale240

from 1 to 10. We randomly select half of the ratings as training data and the rest are used as test data.

Note we do not need to use 80% of the observations as training data since the size this dataset is much

larger than the movieLens dataset. As a result, half of the observations contain most of the information. So

we can test the model with more data just to give a more robust test error. The sparsity of this data set
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Table 4: RMSE and MAE on test set of the Book crossing dataset.

GGCF RCF

RMSE MAE RMSE MAE

2 0.8908 0.6226 1.109 0.8522

3 0.8989 0.6220 1.002 0.8212

5 0.8684 0.6109 0.9321 0.7801

10 0.8312 0.6135 0.9211 0.7821

30 0.8321 0.6053 0.9212 0.7324

(a) The parameters for λi,j . (b) The parameters for Ui. (c) The parameters for Vj .

Figure 6: The parameters versus iterations of GGCF for Book crossing dataset.

is obvious, because the observed ratings has a fraction less than 1% out of the possible ratings. Hence the245

Gaussian-Gamma distribution is a more reasonable assumption for both the ratings and the latent features.

In this experiment, we do not fix the parameters in the model but let them to be settled in the algorithm.

The hierarchical Bayesian estimator is applied in the algorithm to set the parameters. We run the Gibbs

sampling for 100 times for the parameters to settle down. In Figure 6 we show the values of the parameters

in different iterations. It can be seen that the algorithm converges in about 10 iterations. In Figure 7 we250

show the residuals for the Book crossing dataset. In this dataset, GGCF also exhibits the heavy tail effect.

Compared with the residual of RCF, the residual of GGCF clearly has more probabilities around 0. We also

give the RMSE and the MAE for the Book crossing dataset of the two models and they are shown in Table

4. Again, GGCF outperforms RCF a bit.

5. Analytic analysis of the performance of GGCF255

5.1. Convergence analysis of GGCF

In this subsection we give a theoretical analysis on the performance of GGCF which reflects the exper-

imental results presented in Section 4. The purpose of the collaborative filtering model is to predict the
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(a) The residual for RCF. (b) The residual for GGCF.

Figure 7: The residuals for Book crossing dataset.

unknown ratings with the inferred latent features. Hence, we need to show why the predicted value R̂i,j

converges to its true value. In Figure 4(a), we have seen the RMSE converges in some iterations. In this260

section, we want to give the reason by probability and statistical theory. Moreover, we have seen in Table 3

and Table 4 that GGCF has lower RMSE and MAE in both data sets, and we will give an explanation in

this subsection.

Basically, we need to show the following statements. Firstly, the sample of the variables {λi,j , Ui, Vj , λUi , λVj :

i = 1, ...,M, j = 1, ..., N} provided by the inference part (Subsection 3.3) are drawn from their true distri-265

bution. Secondly, the predicted value R̂i,j provided by equation (6) converges to the true value when T is

large enough. Thirdly, we need to show that the proposed model GGCF always has better, or at least the

same performance as the normal distribution based model, for example, the RCF.

The first statement holds by the convergence analysis of the Gibbs sampling method. To make things

easier, we denote {λ,U ,V ,λU ,λV } = {λi,j , Ui, Vj , λUi , λVj : i = 1, ...,M, j = 1, ..., N} and R = {Ri,j :

i = 1, ...,M, j = 1, ..., N}. We further use θ to represent the parameters in the model. Concretely, θ =

{a, b, aU , aV , bU , bV }. Since the true distribution

P (λ,U ,V ,λU ,λV |R, θ)

of the concerned variables is intractable. We can only sample these variables one by another using the condi-

tional distributions provided by equation (4). That is, with some initial values of {λ(1),U (1),V (1),λ
(1)
U ,λ

(1)
V },270

we sample λ
(2)
1,1 conditional on {λ(1)

−(1,1),U
(1),V (1),λ

(1)
U ,λ

(1)
V }, where λ

(1)
−(1,1) denote the set λ(1) \ {λ1,1}.

Next, we sample λ
(2)
1,2 conditional on {λ(2)1,1,λ

(1)
−(1,1:2),U

(1),V (1),λ
(1)
U ,λ

(1)
V }, and then λ

(2)
1,3, and · · · . The first

iteration finishes when we reach the sample {λ(2),U (2),V (2),λ
(2)
U ,λ

(2)
V }. This procedure is just the Gibbs

sampling inference, and its convergence analysis can be found in [30]. Hence when the number of iterations is

set to be large enough, the empirical distribution formed by the sample approximates the true distribution.275
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In Figure 4(a) we show the Gibbs sampling converges after a few iterations. So we can use the converged

sample to give an empirical distribution of the concerned variables.

The above analysis also justifies Figure 2. In the synthetic dataset, the observations are in fact the normal

random variables with unknown standard deviations. When we add noise with different standard deviations,

we expected the model has the ability to capture them in all cases. That is, we want the mean of the sampled280

λi,j (the vertical coordinates) to be similar with the true setting (the horizontal coordinates). Shown in the

previous paragraph, the sampled λi,j by our algorithm converges to its true distribution. Hence its statistic

(the mean) can be approximated by the mean of the sampled λi,j .

The second statement follows from the law of large numbers. In equation (6), Ui,t and Vj,t are sampled

by the Gibbs sampling which produces a Markov chain. By the Monte Carlo Markov Chain (MCMC) version285

of the law of large numbers [31], R̂i,j converges to its true value with probability 1 as T goes to infinity.

That means when we have a sample of size large enough, the probability of R̂i,j to not converge to its true

value is 0. Hence the second statement follows.

Now we focus on the third statement that GGCF always beats RCF. This claim is clear when we notice the

relationship between the T distribution and the normal distribution. It is well known that the T distribution290

converges to the normal distribution when the degree of freedom of the T distribution goes to infinite. In fact,

when the degree of freedom is equal to or greater than 30, the density of the T and the normal distributions

almost coincide. Hence we can resemble the normal distribution using a T distribution by adapting the degree

of freedom. Since our approach, the Gaussian-Gamma distribution is in fact a two-parameters extension of

the T distribution, it can also resemble the normal distribution by choosing the “right” parameters. In our295

model, the parameters of the Gaussian-Gamma distributions are a, b, aU , bU , aV , bV (see Figure 1). So when

the data is normally distributed, GGCF can still capture its properties by adjusting the parameters to the

desired values.

Moreover, when the data is not normally distributed, the Gaussian-Gamma distribution can still capture

some of the properties while the normal distribution cannot. For example, Figure 5 shows the qq-plot of the300

MovieLens data set. Since the plot curves off in extreme values, we know that the underlying distribution is

surely not a normal distribution. And it is most likely to be a heavy tail distribution. Hence we use a heavy

tail distribution as the basic assumption of the observations. By adding a higher hierarchy in the precision,

a Gaussian-Gamma distribution surely offers this opportunity to model the data which is more complex.

That is the reason we use GGCF instead of RCF.305

In the traditional RCF, the rating Ri,j is assumed to follow the following distribution

Ri,j ∼ N (U ′iVj , λ
−1
i,j ).
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And in GGCF, the distribution of Ri,j is changed to

Ri,j ∼ N (U ′iVj , λ
−1
i,j ),

λi,j ∼ G(a, b).
(8)

This distribution is demonstrated in the left part of Figure 1. Equivalently, by integrating out λi,j , the

rating Ri,j follows

Ri,j ∼ GG(a, b),

where GG represents the Gaussian-Gamma distribution. By the analysis mentioned in the previous para-

graph, the model of GGCF surely has a better performance comparing to RCF when the parameters a and b

are set to be the right values. Hence it is essential to give the right values of the parameters a, b. Fortunately,

we do not need to set these parameters manually. Subsection 3.4 gives the details of how to adjust these310

parameters automatically. From Table 3 and Table 4, we can see that GGCF has lower average errors in

both RMSE and MAE, which is compatible with our analysis.

5.2. A proof of the robustness of GGCF

In this subsection, we want to include a mathematical proof of the robustness of GGCF. Concretely, we

want to show that GGCF is more robust than the Gaussian based collaborative filtering. In [32], the authors315

defined the word “robustness” in the following way. Let yi be observations indexed by i (1 ≤ i ≤ n), and

they have mean µ and covariance matrix Σ, where µ is a v × 1 vector and Σ is a v × v positive definite

matrix. The estimation of µ is robust in the sense that outlying cases with large Mahalanobis distance

δ2i = (yi − µ)′Σ−1(yi − µ) are downweighted.

In the collaborative filtering, the rating Ri,j is assumed to be the inner product of the latent features Ui320

and Vj . Now we fix the item features Vj and show GGCF is more robust in the estimation of Ui. We define

the index set Ci = {j : Ri,j is observed} for later use.

Property 1. The estimation of Ui is more robust in GGCF than the Gaussian based collaborative filtering

when Vj (j ∈ Ci) is fixed.

Proof. In the Gaussian based collaborative filtering, the rating Ri,j is assumed to have the distribution

Ri,j ∼ N (U ′iVj , λ
−1). Hence the likelihood function of Ui is

L1(Ui) =
∏
j∈Ci

(
λ

2π

)1/2

exp

[
−λ

2
(Ri,j − U ′iVj)2

]
.

Taking gradient of the logarithm of L1(Ui) gives

∂ logL1(Ui)

∂Ui
= −λ

∑
j∈Ci

(Ri,j − U ′iVj)Vj .
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Consequently, the estimation of Ui should satisfy the equation325 ∑
j∈Ci

(Ri,j − U ′iVj)Vj = 0. (9)

In GGCF, Ri,j is assumed to have the distribution shown in equation (8), and thus the joint distribution

of Ri,j for j ∈ Ci is

L({Ui, λi,j : j ∈ Ci}) =
∏
j∈Ci

(
λi,j
2π

)1/2

exp

[
−λi,j

2
(Ri,j − U ′iVj)2

]
ba

Γ(a)
λa−1i,j exp(−bλi,j).

Since we are only interested in the estimation of Ui, we marginalize out the latent variables λi,j and produce

L2(Ui) =
∏
j∈Ci

(
1

2π

)1/2
ba

Γ(a)

Γ(1/2 + a)

[b+ 1/2(Ri,j − U ′iVj)2]1/2+a
.

Here we use the equality
∫
ba/Γ(a)xa−1e−bxdx = 1. Taking gradient of the logarithm of L2(Ui) gives

∂ logL2(Ui)

∂Ui
= −

(
1

2
+ a

) ∑
j∈Ci

(Ri,j − U ′iVj)Vj
b+ 1/2(Ri,j − U ′iVj)2

.

So the estimation of Ui should satisfy the equation∑
j∈Ci

wi,j(Ri,j − U ′iVj)Vj = 0, (10)

where wi,j = [b + 1/2(Ri,j − U ′iVj)2]−1 is the weight assigned to the rating Ri,j . Obviously, wi,j decreases

with δi,j increases. Comparing equation (10) with (9) we can see that the outlying cases with large distance

δi,j are downweighted. Furthermore, we can also see from equation (10) that a smaller parameter b gives a

more robust model. This concludes the property.330

Similarly, we can fix the user features Ui and show GGCF is more robust in the estimation of Vj . From

this property we can see that the unusual large (or small) rating Ri,j has less influence on GGCF than on

Gaussian based models.

6. Discussion

In the previous section, we give a detailed analysis of the performance of the Gaussian-Gamma distribu-335

tions, which is imposed on Ri,j . That analysis is based on the theoretical probabilistic perspective of view.

In this section, we want to discuss the effect of the variables λUi and λVj in the language of machine learning.

In machine learning community, λUi and λVj are called the penalty terms, or the regularity terms. They

represent our belief or expectation about the model. From equation (5) we can see that when λUi (or λVj )

approaches ∞, the matrix Σ̃−1Ui (or Σ̃−1Vj ) will be a constant multiplies an identity. It implies that we believe340

the components of Ui (or Vj) are independent and every component are highly concentrate on the mean. In
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some applications, this assumption can improve the generalization ability of the model, because it punishes

the so called “over-fitting” effect. But by how much we should regularize the model changes case by case.

So we need to adjust their values in the experiments.

However, in our model, λUi and λVj are updated by equation (4). Hence GGCF has the ability of345

avoiding the time consuming empirical setting procedure. Moreover, in RCF, since the penalty terms are set

in advance, it is impossible to give every Ui a λUi because there are so many of them. Thus the only possible

setting is to give all of them the same value. But in GGCF, instead of the simplistic equal assumption, the

precisions are different. That is because in the inference phrase, the precisions λUi and λVj are updated in

each iteration with the last two conditional probabilities provided in (4) until convergence. This is another350

advantage of GGCF over RCF.

We also want to list a limitation of the GGCF in this section. It lies in the fact that both the normal

distribution and the Gassian-Gamma distribution are symmetric. So when the distribution of the data is

skewed, both GGCF and RCF are not appropriate. In that case, it should be better to impose a skewed

distribution on the observations. For example, the Gamma distribution is a famous skewed continuous355

distribution and the Poisson distribution is a famous skewed discrete distribution. In real applications, if we

observe skewness in the concerned data set, these distributions should be applied.

7. Conclusion

In this paper, we propose a Bayesian treatment of the traditional CF. By adding priors to the precisions

of noise, the feature vectors, the model has shown to be more robust than a simple normal assumption.360

Moreover, by using these priors, the precisions no longer need to be set in a simplistic way by assuming

that they are equal and known in advance. We also discuss how to set the parameters of the model. The

method is to set them empirically by using small positive numbers to employ a large support or to set

automatically using the hierarchical Bayes estimator. For inference, we give a multi-stage Gibbs sampler

and demonstrate the statistical meaning of the conditionals of the variables. In our extensive experiments,365

we verify that the model is a more robust distribution in both the synthetic data set and the real datasets

from the demonstration of the residual plots. The RMSE and MAE of GGCF and RCF for MovieLens and

Book crossing datasets have been given to validate that our model is better than RCF. Our future work

aims to develop an inference algorithm that can be implemented on a parallel platform.
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