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Abstract  42 

Load carriage is seldom completed in isolation, meaning load bearers need to be physically 43 

capable of physical activity after the load carriage task. This study aims to examine changes in 44 

lower limb muscle strength, as measured by torque production across a range of joint angles as 45 

a result of prolonged load carriage. Thirty-four healthy participants underwent two hours of 46 

loaded or unloaded treadmill load carriage, with lower limb muscle function variables assessed 47 

pre and post activity. The loaded group had a mass of (Mean(range)) 76.45 (27.12)kg, stature: 48 

178.56 (17.63)cm, age: 23(6)yrs, and comprised of 13 males and 3 females. While the unloaded 49 

group had a body mass of 73.69(24.19)kg, stature: 178.89(18.49)cm, age: 22(5)yrs and 50 

comprised of 14 males and 4 females. Significant reductions across a range of parameters were 51 

observed. Characterised by reductions at the optimum muscle length for torque output, with all 52 

aspects demonstrating large (knee extension at 180˚·s-1: 0.51 Standardised SD, knee extension 53 

at 60˚·s-1: 0.98 standardised SD) or extremely large individual differences (knee flexion at 54 

180˚·s-1: 2.17 standardised SD). These findings suggest after the completion of the load 55 

carriage task participants are in a significantly reduced physical state, which may have 56 

implications for secondary tasks. 57 

 58 

Key words: 59 

Joint angle, Muscle length, Torque curve, Prolonged exercise, Military  60 

 61 

 62 

Introduction 63 

 64 

The capacity to safely carry external loads is a requirement in many occupational settings, 65 

including the military 1, firefighting and other emergency services 2. In these settings there are 66 

frequently secondary tasks which require substantial exertion, such as moving over obstacles 67 

3, climbing ladders or evacuating casualties 4. Furthermore, load carriage is seldom completed 68 

in isolation, meaning upon completion of the load carriage, the load carrier needs to be 69 

physically capable to undergo occupational tasks such as setting up military positions or to 70 

execute attacks involving high intensity activity, such as sprinting or skilful activities, such as 71 

shooting5, while emergency services personnel may be required to undertake lifesaving 72 
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activities. Consequently, this study will assess the impact of prolonged load carriage on the 73 

torque producing capacity of the major muscle groups associated with locomotion. 74 

 75 

Muscular function is accurately assessed by measuring the ability of a muscle or muscle group 76 

to generate force. While electromyography analysis provides a commentary on muscle fibre 77 

recruitment it cannot directly report the change in force produced by the muscle. Isokinetic 78 

dynamometry is commonly used to study changes in the muscles force producing capability6 79 

as the findings can be related directly to ability to complete real world tasks, making it a 80 

uniquely relevant tool to study load carriage.  81 

 82 

It has previously been demonstrated that externally carried loads cause a number of acute 83 

changes to lower limb muscle torque output, which are cited as markers for injury risk 7. These 84 

alterations are characterised by a reduction in ankle plantarflexion and knee extension and 85 

flexion, as measured by peak torque, following a two hour bout of treadmill load carriage task 86 

7,8. These findings are important, as it has been previously identified that plantarflexion peak 87 

force output is associated with braking impulse and energy cost and knee peak torque output 88 

has been associated with energy cost 9. The use of peak torque as a measure of  force producing 89 

capacity of the muscle could be viewed as an oversimplification, given that previous research 90 

has shown the timing and muscle length (as measured by joint angle) at which peak torque 91 

occurs can change with movement velocity and fatigue, as such if peak torque shifts from the 92 

optimum position it suggests there is a delay in muscle activation suggesting less economical 93 

gait and a greater injury risk 10,11. Therefore, it may be useful to support peak torque assessment 94 

with torque measurements at multiple joint angles. 95 

 96 

This work aims to use an occupationally relevant model of load carriage7 to  assess the torque 97 

output of the knee flexors and extensors and the ankle plantarflexors and dorsiflexors 98 

throughout the torque curve. It is hypothesised that as a result of load carriage peak torque will 99 

be reduced characterised by a reduction of torque across the range of the movement and by a 100 

shift in the angle of peak torque. This will be the first study to conduct an assessment of torque-101 

length relationship following load carriage. This method will provide a greater understanding 102 

of the change in muscle behaviour as a result of an occupationally relevant load carriage task.  103 

 104 

Materials and Methods  105 
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Participants 106 

Voluntary, informed consent was collected from 34 healthy participants. Participants were 107 

matched according to gender, body mass, lower limb strength (all measures), stature, and age. 108 

The loaded group had a mass of (Mean(range)) 76.45(27.12)kg, stature: 178.56(17.63)cm, age: 109 

23(6)yrs, and comprised of 13 males and 3 females. While the unloaded group had a body mass 110 

of 73.69(24.19) kg, stature: 178.89(18.49)cm, age: 22(5)yrs and comprised of 14 males and 4 111 

females (Lower limb strength of both groups are presented in table 1). When assessed via t-112 

tests no statistically significant differences were observed between groups.  113 

 114 

Ethical approval was attained from the university ethics committee and all procedures were 115 

performed in accordance with the Declaration of Helsinki (2013). To participate in the 116 

laboratory studies the participants were required to meet the following inclusion criteria: 18-117 

32 years old, be free from musculoskeletal injury and disorders, which may obviously alter 118 

gait, must sufficiently complete a pre-exercise physical activity questionnaire, must be taller 119 

than 163cm and must weigh more than 50kg. These criteria ensured participants reflected 120 

physical characteristics of a military cohort12.  121 

 122 

 123 

Experimental Design 124 

The study was conducted in a parallel controlled group design with both conditions running 125 

concurrently. Participants walked on a level motorised treadmill (Woodway ELG, Birmingham, 126 

UK)(0% gradient) for 120minutes, at 6.5km∙h-1, which is a commonly used speed and duration 127 

as it reflects the pace and task duration used in the British Army annual load carriage task12. 128 

 129 

Participants consumed water with no restrictions during the treadmill protocol, which reflected 130 

the occupational military setting. The bottle from which the water was drunk was not carried 131 

within the load carriage system. 132 

  133 

 (Insert Figure 1 about here) 134 

 135 

The loaded condition consisted of a 32kg external load spread across, webbing (10kg), bergen 136 

(15kg) and a dummy rifle (7kg) (Figure 1), this load was chosen as it reflects the load carriage 137 

system carried during the annual British Army and US Marine Corps load carriage test. 138 
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However the load is heavier than the load carried by Greek Soldiers (17kg) who carry the load 139 

for a longer distance (21km) during their annual load carriage test. During the task, participants 140 

wore their own walking boots, shirt, and shorts. Participants were advised to wear a polo neck 141 

shirt to avoid the rifle sling rubbing the neck causing skin sores. 142 

 143 

Before and after the treadmill protocol, participants underwent isokinetic and isometric testing. 144 

The test order was the same on each occasion and conducted at approximately the same time 145 

of day (early morning) to control for diurnal variation in the force producing capabilities of the 146 

muscles13.  147 

 148 

Lower Limb Strength 149 

 150 

Isokinetic knee assessment was conducted on the right limb using a Biodex System 3 Pro 151 

(Biodex: New York: USA). The right leg was chosen for all measurement to allow comparison 152 

to previous research7. The set up followed BASES guidelines as they were seated in the chair 153 

and secured with straps 5cm above the lateral malleolus, with their hips and knee joints at 154 

approximately 90°, with the inclusion of placing the left leg behind a restraining webbing strap 155 

to limit a countermovement swing. Before testing participants were instructed to undergo the 156 

entire protocol at a submaximal effort (self-perceived 30% effort- confirmed post hoc from a 157 

subsample of five participants) to familiarise the participant with the test protocol. 158 

 159 

For ankle assessment, participants were seated in the chair and secured with straps. The thigh 160 

supporting attachment was used to ensure a hip angle of approximately 80° and a knee angle 161 

of approximately 170°, again the right limb was used.  162 

 163 

The test protocol consisted of a maximal voluntary isometric knee extension and flexion and 164 

then one set of eight maximal contractions of the knee extensors and flexors at speeds of 60°·s-165 

1 and 180°·s-1 . The ankle test protocol consisted of maximal voluntary isometric plantarflexion 166 

contraction followed by one set of eight maximal contractions of the ankle during dorsi and 167 

plantar flexion at speeds of 60°·s-1 and 120°·s-1. These speeds were chosen to ensure relevant 168 

to previous work in the field7,8. 169 

 170 
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The tests were conducted in the order of isometric flexion, 30 second rest, isometric extension, 171 

60 second rest, isokinetic knee flexion and extension at 60°·s-1, 30 second rest and isokinetic 172 

knee flexion and extension at 180°·s-1. Ankle testing was conducted in the same order with 173 

120°·s-1 being the final measurement. The testing order was chosen as it has been observed that 174 

when participants who have a limited experience of isokinetic dynamometry are tested, higher 175 

reliability scores are observed when lower rotation speeds are used first14. 176 

 177 

Maximal voluntary contraction score for isometric contractions were considered the single 178 

highest recorded value. For the isokinetic contractions, visual basic code was used to highlight 179 

the start and end of each repetition, then for each repetition the highest torque value registered 180 

was extracted from each of the eight repetitions on the condition that the target velocity was 181 

attained. The highest five out of eight values were averaged to be presented as the peak torque 182 

score. This method of averaging was chosen as it was frequently observed that participants 183 

took three trials to present accurate and reliable results10. However, during data analysis it was 184 

highlighted that a small number of participants achieved higher torques in the first three 185 

repetitions, this method allowed for both events to be accurately portrayed. 186 

 187 

Torque at specific joint angles was extracted at 5° intervals including all measurements at 188 

which the participant achieved target velocity. Knee joint angle was defined as the internal 189 

measurement of the knee angle. For example, if the leg is fully extended the angle would be 190 

180°, while a seated position would present a joint angle of approximately 90°. Joint angles 191 

were derived from the lever position reported by the isokinetic dynamometer, values which 192 

occurred during the target velocity were exported in raw format and were processed in excel. 193 

 194 

Environmental Conditions 195 

Environmental temperature and humidity were monitored (ATP: UK) during all the testing 196 

periods. No statistically significant differences in environmental temperature were observed 197 

during testing (Mean: SD), with a temperature of 18.7:2.8°C and humidity 50.1:9.4%. 198 

 199 

Statistical Analysis 200 

SPSS for windows version 23 (SPSS, Chicago, USA) and Excel (Microsoft: USA) was used 201 

for statistical analyses. Distribution of the data was assessed using the Shapiro-Wilk test for 202 

normality. Subsequently, differences between groups were assessed using independent group 203 
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t-tests with an alpha level set at 0.05. Analysis of the change score enabled normalization to 204 

baseline. Before change scores were compared and normalized to body mass the data was log 205 

transformed and plotted to ensure that it did not violate scaling guidelines15 206 

 207 

Analysis of the torque at joint angles was examined by three way mixed methods ANOVA of 208 

the change scores once normality was confirmed. Post hoc pairwise analysis was conducted to 209 

confirm the significant differences at individual joint angles. Effect sizes were presented as 210 

dGlass. The primary measure of individual differences was conducted using standardised 211 

standard deviations16. Qualitative thresholds were taken from Smith, Hopkins 17. Sample size 212 

was calculated using G*Power18 using means and standard deviations drawn from the live data 213 

to confirm the study was sufficiently powered. The variable examined was taken from previous 214 

work within our lab and recruitment was stopped when sufficient sample size was met for the 215 

variables of knee extension 60◦s-1 (n=9 participants per group). 216 

 217 

Results 218 

Adverse Events 219 

No participants experienced any major injury as a result of this study. However, six participants 220 

experienced blisters on their feet as a result of the load carriage protocol and three participants 221 

noted hotspots due to the load carriage equipment rubbing on their shoulders and hips. 222 

Grannuflex (a hydrocolloid, moisture retentive wound dressing) and zink-oxide tape were 223 

provided to the participants during and after the study, and the participants were advised to 224 

wear polo neck shirts. Participants reported that these were very useful in mitigating the skin 225 

sores. 226 

 227 

Sample Size Profile 228 

Three participants failed to complete the load carriage task, these consisted of two females and 229 

one male. All three participants stated the reason for withdrawal was excessive pain across their 230 

shoulders as a result of the load. 231 

 232 

Lower limb Muscle Strength 233 

 234 

 (Insert Figure 2 about here) 235 

 236 
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Figure 2 presents significant differences in the knee flexors at 180˚·s-1 were observed between 237 

95˚-125˚, while knee extensors demonstrate reductions between 95˚-105˚ at 60˚·s-1 and 95˚-238 

125˚ at 180˚·s-1. 239 

 240 

Seventeen participants completed the unloaded protocol and 16 completed the loaded protocol, 241 

however some participants (n presented in table 1) were not able to achieve the target velocity 242 

so were excluded from the analysis. Large effect sizes were observed for all significant 243 

variables. 244 

 245 

 (Insert Table 1 about here) 246 

 247 

 248 

 (Insert Table 2 about here) 249 

 250 

 251 

 A statistically significant change was observed in the angle of peak torque in the knee flexors 252 

at 60˚·s-1 (Table 2), despite no change in torque at individual joint angles or peak toque 253 

magnitude. 254 

 255 

(Insert table 3 about here) 256 

Table 3 presents individual differences observed for knee flexion. 257 

 258 

Discussion 259 

This is the first study to demonstrate an overall reduction in torque across multiple joint angles 260 

in both the knee extensors and flexors, as a result of two hours of treadmill load carriage (fig.2). 261 

This can be further characterised by a reduction in peak torque and a statistically significant 262 

shift in the position of peak torque from a number of variables in the knee but none in the ankle, 263 

suggesting that load carriage instigates a reduction in torque output, while table 3 explains that 264 

individual differences were observed in these findings. As such it is possible to accept the 265 

hypothesis that peak torque is reduced in the knee extensors and flexors and ankle 266 

plantarflexors as a result of two hours of load carriage. This can be defined by changes in the 267 

position of peak torque and the profile of the curve from multiple triangulatory measurements. 268 

 269 
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Peak Torque 270 

Reductions in peak torque (table 1) were observed for most measures of knee flexion and knee 271 

extension for both isometric and isokinetic contractions supported by large effect sizes, the 272 

observed changes across a range of velocities and contraction types provides strong 273 

triangulatory support for the changes. Furthermore, while reductions of peak torque between 274 

9% and 15.1% in the load carriage group were observed for knee flexion in alignment with 275 

previous work19, and increases from baseline were observed for the unloaded group, which 276 

suggests  greater decrements than previously documented.  277 

 278 

When the joint angle of torque was assessed and presented in table 2, this study observed that 279 

peak torque occurred at a larger angle in the load carriage group compared to unloaded control 280 

at both baseline and for change scores, for both knee flexion (p=0.03) and extension at 60˚·s-1 281 

(p=0.008) with a trend for knee extension at 180˚·s-1 (p=0.08). These results suggest that while 282 

peak torque is reduced during load carriage, the working muscle also requires a greater distance 283 

to achieve peak torque suggesting a shift from optimal muscle length. It is noteworthy that the 284 

angle of peak torque changed in knee flexion at 60˚·s-1, while no differences were observed in 285 

peak torque or the torque profile curve, highlighting a change in torque producing capacity 286 

which would have been missed by peak torque testing. Due to reduced specificity of isokinetic 287 

dynamometry it is unclear what impact this shift in angle of peak torque will have on the 288 

participant’s locomotive ability.  289 

 290 

Significant reductions in ankle plantarflexor peak torque across all parameters were observed 291 

as a result of the load carriage in agreement with previous work8, which were supported by 292 

moderate to large effect sizes (Table 1). As previous work has shown that the ankle 293 

plantarflexors provide propulsive force to propel the body forwards during locomotion20, it is 294 

likely that this reduction in muscle strength will increase the energy cost of the task. Moreover, 295 

a number of muscles such as the peroneus longus that are involved in plantarflexion have 296 

secondary roles providing mediolateral support for the ankle protecting against ankle inversion 297 

injury. However, further research is required to examine this in more depth. 298 

 299 

Torque angle relationship 300 

The examination of knee extension and flexion at multiple joint angles is novel to load carriage 301 

study. It is clear that the faster joint movements displayed reduced torque output over a larger 302 
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proportion of the joint angle (Fig.2). In all instances, the peak torque values occurred during 303 

the optimal muscle length for force, displayed by a flattening of the curve around its peak of 304 

the loaded post-test measurements. It is notable that these are muscle lengths (95°-125°) which 305 

do not occur during load carriage. So when the muscle is at lengths which are reflective of 306 

locomotion (130°-180° 21) there appears to be no significant change between loaded and 307 

unloaded groups. These findings suggest that while changes in torque and peak torque can be 308 

observed by isokinetic dynamometry of the whole muscle action, it is unclear whether this loss 309 

will have a pronounced effect on the muscle's ability to produce force at muscle lengths relevant 310 

to walking with or without external load. 311 

 312 

This study assessed lower limb strength as a result of a two hour occupational load carriage 313 

task to highlight that the reduction in peak torque (Table 1), change in the torque profile (Fig2) 314 

and that the position of peak torque shift as a result of load carriage (Table 2). These findings 315 

suggest a delay in muscle fibre recruitment, potentiating the body’s ability to mitigate the effect 316 

of the load suggesting the participant may be exposed to greater injury risk and reduced 317 

movement economy. Interestingly, large inter individual responses were observed for most 318 

isokinetic dynamometry testing with large standard deviation. This suggests that there is merit 319 

in future research examining the profile of the torque curve, both in an experimental design 320 

study supporting load carriage and in a clinical setting. These findings suggest that the load 321 

carrier may be exposed to reduced ability to produce for in the low limb suggesting they are 322 

less able to move economically and are exposed to increased injury risk. Further studies 323 

examining impact forces are required to confirm this.  324 

Limitations 325 

This study highlights the benefit of assessing knee torque output at specific joint angles. 326 

However, it was not possible to evaluate ankle torque output in the same manner due to the 327 

limited range of movement of the ankle joint. Future work could be conducted at a lower 328 

velocity and would increase the range of movement for which the participants are at the target 329 

velocity.  330 

 331 

Perspectives 332 

This paper analyses torque output of the knee extensors and flexors at multiple joint angles 333 

which highlighted that reductions in torque output occur at muscle lengths not typically used 334 

during locomotion. This suggests that the change in output is likely to be greater than 335 
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previously thought. Future research should focus on analysis of torque at specific joint angles, 336 

to provide comprehensive assessment of the muscle action. In an applied setting, load carriage 337 

instigates significant alteration to lower limb strength which could influence injury risk through 338 

changes in impact forces and energy cost of the task to the participants. 339 

 340 

 341 

 342 

 343 

 344 

 345 

 346 

 347 

 348 

 349 

 350 

 351 

 352 

 353 

 354 

 355 

 356 

 357 

 358 

 359 

 360 

 361 

 362 

 363 

 364 

 365 

 366 

 367 

 368 
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 452 

 453 

Table 1 Means and change scores for knee and ankle peak torque 454 

 455 

 456 

Table presents means with standard deviation in brackets. * highlights significance to P<0.05. 457 

 458 

 459 

Variable Condition n 
Baseline        

(N·M-1) 

Change          

(%) 
P-Value 

Effect 

Size          

(dGlass) 

Knee Flexion 180°·s-1 Unloaded 13 72.0 (27.5) 4.5 (17.2) 
0.008* 1.10 

  Loaded 16 92.0 (39.3) -10.9 (15.6) 

Knee Flexion 60°·s-1 Unloaded 13 86.7 (30.1) -4.9 (13.9) 
0.154 

  

  Loaded 16 105.8 (38.2) -12.2 (13.1)   

Knee Flexion 0°·s-1 Unloaded 14 90.1 (29.5) 0.3 (10.2) 
0.248 

  

  Loaded 16 101.3 (32.7) -5.8 (13.7)   

              

Knee Extension 180°·s-1 Unloaded 13 130.2 (33.1) 2.1 (10.6) 
0.009* 1.06 

  Loaded 16 146.5 (41.8) -9.1 (11.6) 

Knee Extension 60°·s-1 Unloaded 13 172.8 (40.0) -2.2 (9.5) 
0.022* 1.04 

  Loaded 16 195.0 (75.7) -12.1 (12.8) 

Knee Extension 0°·s-1 Unloaded 14 225.2 (70.9) 0.8 (14.6) 
0.005* 1.25 

  Loaded 16 269.9 (110.7) -11.9 (14.1) 

              

Ankle Dorsiflexion 120°·s-1 Unloaded 13 10.8 (24.1) -2.9 (30.5) 
0.224 

  

  Loaded 16 14.7 (5.4) -12.2 (33.8)   

Ankle Dorsiflexion  60°·s-1 Unloaded 13 17.8 (5.8) 7.2 (24.6) 
0.617 

  

  Loaded 16 21.9 (5.0) 2.2 (19.6)   

              

Ankle Plantarflexion 120°·s-1 Unloaded 13 46.8 (20.9) -1.6 (9.1) 
0.052 

  

  Loaded 16 45.5 (17.3) -11.0 (13.4)   

Ankle Plantarflexion 60°·s-1 Unloaded 13 67.2 (4.7) 2.8 (18.9) 
0.045* 0.62 

  Loaded 16 70.6 (16.9) -14.6 (14.9) 

Ankle Plantarflexion 0°·s-1 Unloaded 14 77.6 (28.4) 7.0 (26.5) 
0.004* 0.89 

  Loaded 16 113.4 (37.3) -19.9 (6.6) 
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 460 

 461 

 462 

 463 

 464 

Table 2 The position of peak torque for knee extension and flexion 465 

Action Group 
Baseline      

(Degrees) 

Post           

(Degrees) 

Change 

score (%)  

P-

Value 

Effect 

Size          

(dGlass) 

Knee Flexion 180°·s-1 Unloaded  130.3 (12.5) 132.8 (16.4) 1.2 (45.9) 
0.65   

  Loaded 123.9 (17.1) 131.2 (10.8) 8.1 (27.7) 

Knee Flexion 60°·s-1 Unloaded  129.4 (11.6) 127.2 (17.7) -6.3 (36.4) 
0.03* 0.64 

  Loaded 122.0 (13.5) 134.6 (7.8) 19.1 (17.3) 

              

Knee Extension 180°·s-1 Unloaded  108.3 (8.6) 108.6 (7.8) 0.0 (12.3) 
0.08   

  Loaded 109.6 (7.5) 104.6 (7.2) -7.8 (12.4) 

Knee Extension 60°·s-1 Unloaded  105.0 (7.7) 103.5 (8.1) -2.4 (10.1) 
0.008* 0.19 

  Loaded 106.4 (5.0) 97.5 (5.8) -12.9 (11.2) 

              

Ankle Dorsiflexion 120°·s-1 Unloaded  11.1 (14.2) 12.1 (15.3) 2.2 (2.1) 
0.88 

  
  Loaded 13.7 (17.5) 14.9 (19.2) 4.1 (7.4)   

Ankle Dorsiflexion  60°·s-1 Unloaded  5.7 (17.8) 9.8 (13.0) 7.8 (18.1) 
0.35 

  
  Loaded 5.3 (31.1) 16.2 (21.4) 23.2 (55.3)   
              

Ankle Plantarflexion 120°·s-1 Unloaded  22.2 (11.4) 21.3 (7.2) -2.5 (2.9) 
0.76 

  
  Loaded 19.5 (5.0) 19.9 (3.6) 5.2 (9.2)   

Ankle Plantarflexion 60°·s-1 Unloaded  38.7 (18.5) 31.8 (7.0) -10.0 (2.1) 
0.07 

  

  Loaded 27.9 (6.2) 36.2 (19.8) 35.2 (42.1)   
 466 

 467 

Table presents means with standard deviation in brackets. * highlights significance to P<0.05. 468 

 469 
 470 
 471 
 472 
 473 
 474 
 475 
 476 
 477 
 478 
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 479 
 480 

 481 
 482 

 483 
 484 
 485 
Table 3 Individual differences, SD confidence intervals and standardised standard deviations 486 

 487 

 488 

Table presents individual differences with qualitative description 489 

 490 

 491 

 492 

 493 

 494 

 495 

 496 

 497 

 498 

 499 

 500 

 501 

 502 

 503 

 

Variable Sdir 
SD     

Upper CI 

SD    

Lower CI 
Standardised SD 

Qualitative 

Description 

Knee Flexion 180°s-1 9.23 10.28 -4.83 2.17 Extremely Large 

Knee Extension 180°s-1 4.62 0.51 -9.26 0.51 Large 

Knee Extension 60°s-1 8.64 13.70 -6.21 0.98 Large 


