
IMPACT OF PARASITIC DRAG ON A FAMILY OF OPTIMAL LIFT

DISTRIBUTIONS

by

Austin J. Stewart

A thesis submitted in partial fulfillment

of the requirements for the degree

of

MASTER OF SCIENCE

in

Aerospace Engineering

Approved:

______________________ ____________________

Douglas F. Hunsaker, Ph.D. Thomas H. Fronk, Ph.D.

Major Professor Committee Member

______________________ ____________________

Stephen A. Whitmore, Ph.D. Richard S. Inouye, Ph.D.

Committee Member Vice Provost for Graduate Studies

UTAH STATE UNIVERSITY

Logan, Utah

2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@USU

https://core.ac.uk/display/287626641?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Copyright © Austin Stewart 2020

All Rights Reserved

iii

ABSTRACT

Impact of Parasitic Drag on a Family of Optimal Lift Distributions

by

Austin J. Stewart, Master of Science

Utah State University, 2020

Major Professor: Dr. Douglas F. Hunsaker

Department: Mechanical and Aerospace Engineering

Minimizing drag is a variational problem, and several minimum induced drag

solutions have been found using different design constraints. The elliptic lift distribution

is commonly used to minimize induced drag, but is only the optimal solution under one

set of design constraints. Non-elliptic lift distributions are able to reduce induced drag,

when compared to the elliptic lift distribution, by increasing the wingspan while

maintaining a consistent wing–structure weight. However, these non-elliptic lift

distributions are only optimal if the effects of viscous drag are neglected. In this study,

numerical tools are used to estimate the total drag on rectangular wings that are twisted to

give both elliptic and non-elliptic lift distributions. It is shown that the optimal lift

distribution is described by 𝐵𝑛 = 0 for all 𝑛 ≠ 3 and 𝐵3 = -0.0901 or -0.103 depending on

twist type. These optimal lift distributions reduce total drag by 1.01 or 1.23% respectively

when compared to the elliptic lift distribution. These values are compared to lift

distributions that minimize only induced drag, to understand the effects of using a non-

elliptic lift distribution on the efficiency of an aircraft and the viability of using non-

iv

elliptic lift distributions on aircraft, specifically morphing-wing aircraft.

 (78 pages)

v

ACKNOWLEDGMENTS

I would like to thank my major professor, Dr. Douglas Hunsaker for this

opportunity and the continued support and guidance though the process. I would also like

to thank my committee members Dr. Stephen Whitmore and Dr. Thomas Fronk for the

support and assistance they gave me.

I give special thanks to my family, friends, and colleagues, particularly Jeff

Taylor, for their encouragement, moral support, and patience as I worked through many

twists and turns this research presented. I am especially grateful for my wife for putting

here schooling on hold so I could pursue this opportunity and the support she gave me as

I was while here. I could not have done it without all of help and time you all gave me.

Austin J. Stewart

vi

CONTENTS

Page

ABSTRACT .. iii

ACKNOWLEDGMENTS ..v

LIST OF TABLES ... vii

LIST OF FIGURES .. viii

NOMENCLATURE .. ix

CHAPTER

I. INTRODUCTION ..1

II. PREDICTING DRAG ON AN ARBITRARY WING ..8

III. RESULTS .. 14

 Geometric Twist or Washout ..16

 Aerodynamic Twist or Camber .. 19

 Comparison of Drag Components ...21

IV. CONCLUSIONS ..25

REFERENCES ..27

APPENDICES ...30

vii

LIST OF TABLES

Table Page

 1 𝐵3 values used in study with associated design constraints14

viii

LIST OF FIGURES

Figure Page

 1 Effect of lift distribution, specifically the 𝐵3
 coefficient, on allowable 𝑏 with constant 𝑊𝑠 ...2

 2 Airfoil used for study and visual of twist types. ...9

 3 XFOIL data for lift, drag, and pitching moment

 coefficients as a function of 𝛼 fitted with polynomial equations10

 4 Comparison of lift distributions generated by

 MachUp and Eq. (20) for a B3 = 0.0 ...12

 5 Flow chart showing path of data and method ...13

 6 Wing planforms of various values of 𝐵3 ...15

 7 Lift distributions of various values of 𝐵3 ..16

 8 Reynold’s number changes with respect to the 𝐵3 Fourier coefficient16

 9 Drag values for a variety of root twist and 𝐵3
 values when using washout ..17

 10 Minimum drag value as a function of 𝐵3 using washout18

 11 Drag values for a variety of root camber and 𝐵3
 values when using camber ..19

 12 Minimum drag given a 𝐵3 value using camber ...20

 13 Comparison of minimum drag values for different twist types21

 14 Section drag along semispan, comparing parasitic

 and induced drag for elliptic lift distribution,

 Prandtl’s 1933 lift distribution, the optimal lift

 distribution when only considering induced drag,

 and the optimal lift distribution when regarding total drag.22

 15 Lift distributions of 𝐵3 values corresponding to

 optimal values, the elliptic, and Prandtl’s 1933 ..23

ix

NOMENCLATURE

𝐴 = beam cross-sectional area

𝐵𝑛 = Fourier coefficients in the lifting-line solution for the dimensionless section lift

distribution, Eq. (1)

𝑏 = wingspan

𝐶𝐿 = wing lift coefficient

𝐶𝐷 = wing drag coefficient

𝐶𝛿 = shape coefficient for the deflection-limited design Eq. (15)

𝐶𝜎 = shape coefficient for the stress-limited design Eq. (11)

𝐶̃ = generic aerodynamic section coefficient

𝐶̃𝐿 = airfoil section lift coefficient

𝑐 = local wing chord length

𝐷𝑖 = wing induced drag

𝐸 = modulus of elasticity of the beam material

ℎ = height of the beam cross-section

𝐼 = beam section moment of inertia

L = total wing lift

𝐿̃ = local wing section lift

𝑀̃𝑏 = local wing section bending moment

𝑛𝑎 = load factor

𝑛𝑔 = limiting load factor at the hard-landing design limit

𝑛𝑚 = limiting load factor at the maneuvering-flight design limit

𝑅𝐴 = aspect ratio

𝑅𝑒 = Reynold’s number

𝑆 = planform area

x

𝑆𝑏 = proportionality constant between 𝑊̃𝑠(𝑧) and 𝑀̃𝑏(𝑧) having units of length

squared

𝑡𝑚𝑎𝑥 = maximum thickness of the local airfoil section

𝑉∞ = freestream airspeed

𝑉𝑆𝑡𝑎𝑙𝑙 = stall speed of wing

𝑊 = aircraft gross weight

𝑊𝑛 = aircraft net weight (i.e., 𝑊-𝑊𝑠)

𝑊𝑟 = the portion of 𝑊𝑛 carried at the wing root

𝑊𝑠 = total weight of the wing structure required to support the wing bending moment

𝑊̃𝑛 = net weight of the wing per unit span (i.e., total wing weight per unit span less

𝑊̃𝑠)

𝑊̃𝑠 = weight of the wing structure per unit span required to support the wing bending

moment distribution

𝑧 = spanwise coordinate relative to the midspan

𝛼 = geometric twist of airfoil section

𝛾 = specific weight of the beam material

𝛿 = flap deflection of airfoil section

𝛿𝑚𝑎𝑥 = maximum wing deflection

𝜃 = change of variables for spanwise coordinate, Eq. (1)

𝜅𝑊 = weight distribution coefficient, Eq. (12)

𝜌 = air density

𝜎𝑚𝑎𝑥 = maximum longitudinal stress

CHAPTER I

INTRODUCTION

For a wing with no sweep or dihedral immersed in uniform flow, Prandtl’s lifting-

line theory [1,2] relates the section lift distribution to the chord length and the

aerodynamic angle of attack distributions. Additionally, for any wing with no sweep or

dihedral immersed in uniform flow, Prandtl’s lifting-line theory can be used to obtain a

geometric and/or aerodynamic-twist distribution required to produce any desired section-

lift distribution [3-8]. With Prandtl’s lifting-line theory, an arbitrary spanwise-lift

distribution is typically written in a Fourier sine series. Although the Fourier series can

take many forms, the form we will use is [9]

𝑏𝐿̃

𝐿
=
4

𝜋
[sin(𝜃) +∑𝐵𝑛 sin(𝑛𝜃)

∞

𝑛=2

] , 𝜃 ≡ cos−1 (−
2𝑧

𝑏
)

In addition, using classical lifting-line theory, there is also a solution to the induced drag

caused by a wing under the same conditions. This solution can be written in terms of the

𝐵𝑛 coefficients of Eq. (1). In steady level flight, when the total aircraft weight 𝑊 is equal

to the total aircraft lift 𝐿, the induced drag is written as [9]

𝐷𝑖 =
2 (
𝑊
𝑏
)
2

𝜋𝜌𝑉∞2
(1 +∑𝑛𝐵𝑛

2

∞

𝑛=2

)

Equation 2 shows that, with a fixed 𝑊 and 𝑏, the induced drag is minimized

when all 𝐵𝑛 = 0. The lift distribution produced by Eq. (1) with all 𝐵𝑛 = 0 is known as the

elliptic lift distribution, which was introduced by Prandtl [2]. However, Prandtl also made

note that the drag that is produced by the elliptic lift distribution is not an absolute

minimum and that fixing wingspan and weight might not be the best constraints to

(1)

(2)

2

impose on the wing [10]. Some other lift distributions corresponding to different sets of

non-zero 𝐵𝑛 values allow wingspan to increase while maintaining the same wing-

structure weight as that allowed by the elliptical lift distribution and therefore reduce

drag. This increase in wingspan is based on the relationship between wingspan and wing-

structure weight. If the lift distribution created by the 𝐵𝑛 values produces lower wing

section bending moments, then the wingspan can increase while keeping the wing-

structure weight the same. To illustrate, when 𝐵𝑛 = 0 for all 𝑛 ≠ 3 and 𝐵3 is allowed to

vary from -1/2 to 1/5, Fig. 1 shows the relationship between the resulting lift distribution

and wingspan, for a given wing-structure weight. The wing-structure weight is a function

of many variables which makes optimizing the wing-structure weight a variational

problem. Prandtl and others have placed various constraints on these equations and

produced different sets of lift distributions that minimize drag for different cases [11-16].

Fig. 1 Effect of lift distribution, specifically the 𝑩𝟑 coefficient, on allowable 𝒃 with

constant 𝑾𝒔.

In 1933, Prandtl solved the variational problem of minimizing induced drag with

the constraints of fixed gross lift and fixed moment of inertia of gross lift on a rectangular

wing [10]. This constrained problem leads to the dimensionless lift distribution

0.8

0.9

1

1.1

1.2

1.3

-0.5 -0.3 -0.1 0.1
B3

b/bell

3

𝑏𝐿̃

𝐿
=
4

𝜋
[sin(𝜃) −

1

3
sin(3𝜃)]

Comparing Eq. (3) to Eq. (1) we see that this lift distribution requires 𝐵3 = -1/3 and 𝐵𝑛 =

0 for all 𝑛 ≠ 3. Using these Fourier coefficients in Eq. (2) results in

𝐷𝑖 =
8 (
𝑊
𝑏
)
2

3𝜋𝜌𝑉∞2

Prandtl’s 1933 lift distribution doesn’t account for the moments produced by any weight

in the wing, but does allow for a 22.5% increase in the span of the wing, and a 11.1%

decrease in drag compared to the elliptic lift distribution [10]. Phillips, Hunsaker and Joo

[9] relaxed some of the constraints used by Prandtl and included the effects of a weight

distribution in the wing that fit the following form

𝑊𝑛 = 𝑊𝑟 +∫ 𝑊̃𝑛

𝑏
2

𝑧=−
𝑏
2

(𝑧)𝑑𝑧

𝑊̃𝑛 = (𝑊 −𝑊𝑟)
𝐿̃(𝑧)

𝐿
− 𝑊̃𝑠(𝑧)

Equations (5) and (6) do not completely specify the weight distribution but provide a

relation between five design parameters. Using Eq. (5), 𝑊𝑛 cannot be found until the

other parameters have also been determined. Accounting for the lift and the weight

carried in the wing, the bending moment takes the form [9]

𝑀̃𝑏(𝑧) = ∫ [𝐿̃(𝑧′) − 𝑛𝑎𝑊̃𝑛(𝑧
′) − 𝑛𝑎𝑊̃𝑠(𝑧

′)](𝑧′ − 𝑧)𝑑𝑧′
𝑏/2

𝑧′=𝑧

 for 𝑧 ≥ 0

The bending moment in the wing will determine the constraining limit at each section of

the wing. The constraining load limit for stress- or deflection-limited designs is reached

in maneuvering flight or during a hard landing. Using Eq. (6), the wing bending moment

in Eq. (7) reduces significantly and can be integrated to give another constraint on the

(5)

(4)

(3)

(7)

(6)

4

wing weight that will produce the optimal weight distribution. This additional constraint

is the weight at the root of the wing, and is written as

𝑊𝑟 =
𝑛𝑔 − 1

𝑛𝑚 + 𝑛𝑔
𝑊

This weight minimizes the bending moment produced at the constraining load limit.

Using both Eqs. (6) and (8) yields a bending moment distribution for hard-landing that is

exactly negative of the bending moment in maneuvering flight.

 If 𝑊𝑟 is larger than the value in Eq. (8), then maneuvering flight becomes the

constraining condition; if 𝑊𝑟 is smaller, then hard-landing becomes the constraining

condition. Using Eq. (8), the bending moment in Eq. (7) reduces to [9]

|𝑀̃𝑏(𝑧)| = 𝜅𝑊𝑊𝑟 ∫
𝐿̃(𝑧′)

𝐿

𝑏
2

𝑧′=𝑧

(𝑧′ − 𝑧)𝑑𝑧′, for 𝑧 ≥ 0

where

𝜅𝑊 =

{

 𝑛𝑚, 𝑊𝑟 ≥

𝑛𝑔 − 1

𝑛𝑚 + 𝑛𝑔
𝑊

(𝑛𝑔 − 1)
𝑊

𝑊𝑟
− 𝑛𝑔, 𝑊𝑟 <

𝑛𝑔 − 1

𝑛𝑚 + 𝑛𝑔
𝑊

If the bending moment is supported by a vertically symmetric beam, for a wing with

fixed maximum stress and spanwise-symmetric wing loading, the wing-structure weight

can be expressed as [9]

𝑊𝑠 = 2 ∫
|𝑀̃𝑏(𝑧)|

𝑆𝑏(𝑧)
𝑑𝑧 ; 𝑆𝑏(𝑧) =

𝐶𝜎 (
𝑡𝑚𝑎𝑥
𝑐) 𝑐

(𝑧)𝜎𝑚𝑎𝑥

𝛾
, 𝐶𝜎 =

2𝐼 (
ℎ
𝑡𝑚𝑎𝑥

)

𝐴ℎ2

𝑏/2

𝑧=0

Where 𝐶𝜎 is a structural property of the beam used by Phillips et. al. [9]. Values for some

common beams are shown in reference [9]. If Eqs. (1), (9), and (11) are combined the

(8)

(10)

(9)

(11)

5

wing-structure weight can be written as [9]

𝑊𝑠 =
𝑘𝑊𝑊𝑟𝑏

2

32𝑆𝑏
(1 + 𝐵3)

Equation (12) shows that although all 𝐵𝑛 coefficients add to the induced drag, only 𝐵3

influences the wing-structure weight for a rectangular wing with all positive lift and a

spanwise-symmetric lift distribution.

Optimizing the wing-structure weight with respect to 𝐵3 will allow an increase in

wingspan and reduction of induced drag. Some examples of optimizing 𝐵3 are given in

references [9,13-16]. Phillips et. al. show several such optimized wing-structure weights

with respect to 𝐵3 [9]. With the constraints of fixed lift, fixed maximum stress, and fixed

wing loading, the optimal 𝑊𝑠 and 𝐵3 are

𝑊𝑠 =
𝛾 (
𝑊
𝑆)

32𝐶𝜎 (
𝑡𝑚𝑎𝑥
𝑐) 𝜎𝑚𝑎𝑥

𝜅𝑊𝑊𝑟𝑏
3

𝑊
(1 + 𝐵3)

𝐵3 = −
3

8
+ √

9

64
−
1

12

This results in a 4.98% increase in wingspan and a reduction of drag of 4.25% as

compared to the elliptic lift distribution on a rectangular wing with the same wing-

structure weight.

In the same paper, Phillips et. al. also introduced a similar derivation for a

deflection-limited case with a fixed maximum deflection, fixed gross weight, fixed

maximum gross weight, fixed lift distribution, and fixed wing loading [9]. This results in

an optimal 𝑊𝑠 and 𝐵3 of

(12)

(14)

(13)

6

𝑊𝑠 =
𝛾 (
𝑊
𝑆)

2

32𝐶𝛿𝐸 (
𝑡𝑚𝑎𝑥
𝑐)

2

𝛿𝑚𝑎𝑥

𝜅𝑊𝑊𝑟𝑏
6

𝑊2
(1 + 𝐵3); 𝐶𝛿 ≡

8𝐼 (
ℎ
𝑡𝑚𝑎𝑥

)
2

𝐴ℎ2

𝐵3 = −
3

7
+ √

9

49
−
1

21

which results in a 1.03% increase in wingspan and a 0.98% reduction in induced drag

when compared to the elliptic lift distribution on a rectangular wing with all positive lift

and a spanwise symmetric lift distribution and the same wing-structure weight.

In order to analyze multiple cases of 𝐵3 and compare the resulting wing against a

wing with an elliptic lift distribution and the same wing-structure weight, Eq. (12) for the

non-elliptic lift distribution is set equal to Eq. (12) for the elliptic lift distribution (𝐵3 =

0). This new equation is rearranged to solve for the wingspan of the non-elliptic lift

distribution

𝑏𝑛𝑜𝑛 = 𝑏𝑒𝑙𝑙 ∗ √
𝑆𝑛𝑜𝑛

𝑆𝑒𝑙𝑙(1 + 𝐵3)

3

Since we consider only cases of constant 𝑆, this term drops out of the equation and the

resulting equation is only a function of 𝑏𝑒𝑙𝑙 and the 𝐵3 coefficient of the non-elliptic lift

distribution that is being analyzed.

All of the optimal wing-structure weights and Fourier coefficients discussed up to

this point describe lift distributions that minimize induced drag with a given set of

constraints. However, these lift distributions only minimize induced drag, not total drag.

In these solutions, induced drag is only considered because it can be found analytically

for a rectangular wing with all positive lift and a spanwise symmetric lift distribution.

Total drag includes both induced and viscous drag terms and cannot be determined

(16)

(15)

(17)

7

analytically. At lower speeds or high lift coefficients, induced drag is the dominant part

of total drag. However, total drag is important to consider when trying to minimize drag

over a flight envelope in order to achieve better efficiency, as there are points of flight

where viscous drag is the dominant contributor for total drag.

One approach that has been taken to account for viscous effects is that of McGeer

[17]. McGeer did account for some effects of parasitic drag analytically, but his work

uses the parasitic drag as a constraint on the optimization of the wing. He constrains the

parasitic drag to be equal to the parasitic drag that occurs on the elliptic wing during his

optimization. He also focuses on using the sweep and chord distribution of the wing as

well as airfoil thickness to chord ratio to achieve the different lift distributions. This study

will use a numeric approach to find parasitic drag as well as constrain sweep, chord

distribution, and airfoil thickness-to-chord ratio to be constant.

Morphing wing aircraft are beginning to be more viable as manufacturing

technology improves. Modern morphing wing aircraft are capable of changing the lift

distribution on the wing during flight, more precisely than a standard aircraft. Aircraft

such as the U.S. Air Force Research Laboratory’s variable camber compliant wing

(VCCW) [18-22] and the FlexSys Mission Adaptive Compliant Wing [23] are examples

of aircraft that are able to change the lift distribution that the wing produces in flight.

This morphing technology would allow the optimal lift distribution for each different part

of a flight envelope to be implemented at every point of the flight and increase the

efficiency of the aircraft. However, to understand which lift distribution is truly optimal

the total drag must be analyzed, and not just induced drag.

8

CHAPTER II

PREDICTING DRAG ON AN ARBITRARY WING

Given values of 𝐵𝑛, a lift distribution can be described using Prandtl’s lifting-line

theory. In order to achieve this lift distribution, a rectangular wing must be twisted. In

order to determine the aerodynamic properties of a twisted wing section, airfoil properties

are needed for a variety of twisted airfoil shapes.

In this study the aerodynamic properties of airfoils are found using XFOIL, a 2D

flow simulation tool [24]. XFOIL uses a two equation integral boundary layer method

described by Drela and Giles [25] to determine viscous effects on an airfoil. In order to

get the aerodynamic properties for the range of aerodynamic and geometric twist, a

NACA 0015 airfoil shape is used as a base. This airfoil is analyzed at a variety of angles

of attack to replicate geometric twist or washout. The same airfoil is also warped to

simulate aerodynamic twist or camber. This is done by placing a parabolic flap on the

airfoil, with the hinge point of the flap on the leading edge of the airfoil, and then

deflecting that parabolic flap [26-27]. The airfoil with the parabolic flap is rotated until

the chord line is horizontal to the flow and then resized to ensure that the flap deflection

and rotation doesn’t change the chord length of the airfoil. This process creates

aerodynamic twist on the wing. Aerodynamic twist is commonly referred to as camber

and percentage values are commonly used to describe the amount of twist produced by

the camber. Our process is measured in degrees of flap deflection but will also be called

camber. The base airfoil and resulting airfoils with 10° of washout or camber are shown

in Fig. 2.

9

XFOIL gives lift, drag, and moment data for the airfoil shape at each specified

washout and camber combination. The XFOIL data is taken at many points, but to have a

continuous function for geometric and aerodynamic twist, a function must be fit to the

results. This curve fit also helps relieve some of the problems that are common with

XFOIL, like discontinuous or poorly behaved results. The drawbacks of the curve fit are

that the curve fit equations will only be valid within the design space that was used in

XFOIL. For this study, that design space is limited to ± 15° washout and ± 20° flap

deflection to simulate camber. There is also some error associated with the curve fit.

However, for each of the fits used in this study the error is small compared to the

accuracy of XFOIL. The curve fits were obtained using a custom-built least squares best

fit of the form [26]

𝐹(𝛿, 𝛼) = 𝑓(𝛼)𝑔(𝛿)

where 𝑓 and 𝑔 are both polynomial functions of a single variable with polynomial orders

𝑁 and 𝑀 respectively. The polynomials in Eq. (18) can be used to give a more useful

form of [26]

(18)

-0.5

-0.3

Aerodynamic twist or camber

Geometric twist or washout

Untwisted

Fig. 2 Airfoil used for study and visual of twist types.

10

𝐶̃ = ∑ ∑𝑎𝑛𝑚𝛿
𝑚𝛼𝑛

𝑁

𝑛=0

𝑀

𝑚=0

where 𝑎 is the array of the polynomial coefficients, 𝐶̃ is one of the aerodynamic

coefficients of interest (lift, drag, or moment) and 𝛿 and 𝛼 are flap deflection and angle of

attack respectively. A derivation of this least squares best fit routine is given in [26],

Appendix B.

The tables in Appendices A-G show the polynomial fit coefficients for each

aerodynamic coefficient at each Reynold’s numbers of interest. The curve fits are done

with the flap deflection and angle of attack in radians, so when using the tables and

coefficients 𝛿 and 𝛼 must both be radian values. The range of Reynold’s numbers used to

obtain XFOIL data is 500,000 ≤ 𝑅𝐸 ≤ 1,100,000. Each of the XFOIL results was

compared to the resulting polynomial coefficient function using the coefficient of

determination (𝑅2). These 𝑅2 values were all ensured to be above 0.97 but where

typically higher than 0.999. Figure 3 shows a series of polynomial fits using this method

for a Reynold’s number of 1,100,000 and a parabolic flap deflection of 3°.

Fig. 3 XFOIL data for lift, drag, and pitching moment coefficients as a function of 𝜶

fitted with polynomial equations.

The polynomial fit 𝑅2 values for this case are all above 0.99 and match the XFOIL data

(19)

0.01

0.02

0.03

-15 -5 5 15

-0.06

-0.04

-0.02

0

-15 -5 5 15

XFOIL Data

Polynomial Fit

 (°)

-1.5

-1

-0.5

0

0.5

1

1.5

-15 -5 5 15
 (°) (°)

Cm
CDCL

11

well. These results are similar to results for other Reynold’s numbers and flap

deflections.

 To get the polynomial fit coefficients for a Reynold’s number that is not specified

by the tables, linear interpolation was used between the given polynomial coefficients.

The polynomial coefficients in each of the tables are well-behaved between each

Reynold’s number, allowing analysis of airfoils at any Reynold’s number, 𝛿, and 𝛼 in

the design space.

Using the airfoil properties for each wing section, the lift distribution given by the

entire wing is determined using MachUp. MachUp is an in-house design tool that uses a

numeric lifting-line algorithm developed by Phillips and Snyder [28] to solve for

aerodynamic properties of an aircraft [29]. MachUp is an open source code available

through github3. MachUp is given a wing with 𝑏𝑛𝑜𝑛 and 𝑐 obtained using Eq. (17) and a

starting twist guess. This guess consists of a wing angle of attack and a set of twist values

(either washout angles or camber values). The twist is specified at points clustered along

the semispan according to the change of variables in Eq. (1). MachUp linearly

interpolates between these control point twists, assigning a section washout and camber

for each point along the wing. MachUp then outputs the section aerodynamic values

along the entire wing using the airfoil values given by the polynomial coefficients

defined in Eq. (19). The section lift coefficients generated by MachUp are compared to

the analytic section lift coefficients. The analytic section lift is based on Eq. (1), but this

equation is nondimensionalized in an unconventional way, so it is converted to a typical

lift coefficient using

3 https://github.com/usuaero/MachUp

12

𝐶̃𝐿 =
𝑏𝐿̃

𝐿

𝑊

𝑏

2

𝜌𝑉∞2𝑐
=

𝐿̃

1
2 𝜌𝑉∞

2𝑐

The section lift given by MachUp is compared directly to Eq. (20).

In order to match the lift distribution given by Eq. (20), the RMS is calculated

between the MachUp lift distribution and Eq. (20). The RMS value is then minimized

using an in-house gradient based optimization tool called Optix. Optix utilizes the BFGS

method to minimize the objective function [30-33]. Optix loops through the MachUp

calculations varying the angle of attack and washout and/or camber values along the span

of the wing, while keeping the root twist of the wing constant until the RMS is

minimized. The final twist and angle of attack values are then run through MachUp once

more to find the lift, drag, and moment generated by the wing that now has a lift

distribution that matches the analytic lift distribution created with the given 𝐵𝑛 values.

Figure 4 shows the analytic lift distribution using Eq. (20) and the lift distribution that is

achieved using the prescribed method with five control points along the semi-span, with

one of those points being the root twist. Results are shown for the lift distributions

obtained by varying only the camber and by varying only the washout.

Fig. 4 Comparison of lift distributions generated by MachUp and Eq. (20) for

B3 =0.0.

(20)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 0.1 0.2 0.3 0.4 0.5

Analytic

Aerodynamic Twist

Geometric Twist

z/b

CL

~

13

In order to better understand the process and flow of data, a flow chart is shown in

Figure 5. This shows the beginning steps where the user inputs design values for the

baseline elliptic lift distribution wing. The information is used to create the geometry of a

wing with a given non-elliptic lift distribution and given wing-structure weight. This

wing is given to Optix and Optix passes this wing to MachUp which calculates the lift

distribution. The lift distribution is compared to the analytic lift distribution and a RMS

value is returned to Optix. Optix chooses a new twist profile based on the results from

MachUp and iterates through this process until the RMS value is minimized. The

minimized twist profile that is generated by Optix is then passed to a final version of

MachUp that outputs the total drag value produced by the wing with the matching lift

distribution.

Fig. 5 Flow chart showing path of data and method.

User Inputs
(𝐶𝐿, 𝐵3, 𝑅𝐴,

etc.)

MachUp
Aerodyna

mic
Analysis

MachUp
Aerodyna

mic
Analysis

Optix
Gradient

Optimizatio
n

Twist
Profile, 𝛼

RMS

Twist

Profile, α
Total Drag

14

CHAPTER III

RESULTS

The optimized lift distributions given in Eqs. (14) and (16), as well as the elliptic

lift distribution and a few additional lift distributions defined by 𝐵3 are presented in Table

1 with the associated design constraints.

Table 1 𝑩𝟑 values used in study with associated design constraints.

𝐵3 Design Constraints

-0.333 Fixed 𝑊𝑛, 𝜎𝑚𝑎𝑥, and 𝑉𝑠𝑡𝑎𝑙𝑙

-0.177 Fixed 𝑊𝑛, 𝛿𝑚𝑎𝑥, and 𝑉𝑠𝑡𝑎𝑙𝑙

-0.136 Fixed 𝑊𝑛, 𝜎𝑚𝑎𝑥, and 𝑊/𝑆

-0.060 Fixed 𝑊𝑛, 𝛿𝑚𝑎𝑥, and 𝑊/𝑆

0.000 Fixed 𝑏 and 𝑊

0.050 Only for Study

0.100 Only for Study

These 𝐵3 values are the values that were tested to show the trends in the drag. For this

study the wing with the elliptic lift distribution that will be used for comparison and

wing-structure weight has an 𝑅𝐴 = 8 and 𝑏 = 8 and is flying at standard sea level with 𝑅𝐸

= 1,000,000 and 𝐶𝐿 = 0.5. Figure 6 shows the wing planforms for each of the chosen 𝐵3

values. The change in aspect ratio will change the 𝑅𝐸 for each 𝐵3. The minimal changes

in the span between each 𝐵3 value is what allow for changes in induced drag according to

Eq. (2).

15

The lettering corresponding to each value of 𝐵3 shown in Fig. 5 will be

consistent throughout the remainder of the document. These planforms were all generated

in MachUp and then twisted to achieve the desired lift distribution. The lift distributions

created using the planforms shown in Fig. 6 and the 𝐵3 values given in Table 1 are shown

in Fig. 7. The higher the value of 𝐵3, the more lift is carried near the wing tips. This

creates a larger bending moment along the span and, in turn, shortens the wing, as shown

in Fig. 6. The longer wingspan creates more parasitic drag, due to decrease in Reynold’s

number, but less induced drag. At some point there is a minimum location of total drag.

This minimum 𝐵3 value is very useful to know for improved efficiency of aircraft.

Fig. 6 Wing planforms of various values of 𝑩𝟑.

B3 Letter

-0.333 a

-0.177 b

-0.136 c

-0.060 d

0.000 e

0.050 f

0.100 g

1 2 3 40
b/2 (m)

16

Fig. 7 Lift distributions of various values of 𝑩𝟑.

 As the wing planform changes due to the ability of the lift distribution to carry the

load more or less toward the root, the Reynold’s number also changes due to the change

in chord. Figure. 8 shows the Reynold’s number as a function of 𝐵3. This change in

Reynold’s number is part of the reason that the parasitic drag varies between different

cases.

Geometric Twist or Washout

When only using geometric twist or washout to replicate a lift distribution on a

rectangular wing with no sweep or dihedral, the airfoil shape is fixed. Here we use a

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5

a
b

c d

e

g

fCL

~

z/b

700000

800000

900000

1000000

1100000

-0.5 -0.3 -0.1 0.1

RE

B3Fig. 8 Reynold’s number changes with respect to the 𝑩𝟑 Fourier coefficient.

17

NACA 0015. In order to achieve a desired lift distribution, the twist profile will always

be the same regardless of what root twist is used. This is because the overall angle of

attack of the wing is one of the parameters that Optix is allowed to vary. To match the

desired lift distribution, the root of the wing must produce a certain amount of lift. To get

this lift, the root airfoil will have to be positioned at a certain angle of attack relative to

the incoming flow. The root airfoil achieves this angle of attack through a combination of

the root geometric twist and the wing angle of attack. The same is true for each location

along the span of the wing. This means that the drag values for a given value of 𝐵3, with

camber held constant, will be independent of the root geometric twist. Figure 9 shows the

total drag values as a function of root twist for several 𝐵3 values.

Fig. 9 Drag values for a variety of root twist and 𝑩𝟑 values when using washout.

The changing root twist values have no impact on the drag the wing experiences as

shown by the nearly horizontal 𝐶𝐷 values. The minimal deviations from horizontal are

within the bound of precision that the process can reproduce. This validates that the code

is working as expected and reveals important aspects of the design space. Figure 9 shows

that there is a minimum 𝐶𝐷 value somewhere between 𝐵3 = -0.06 and 𝐵3 = -0.136. To

find this minimum 𝐶𝐷 value a fourth order polynomial was fit to the drag as a function of

0.0212

0.0216

0.0220

0.0224

0.0228

-3 -1 1 3

Root Twist ()

g
a

b

c
d

f

e

CD

18

𝐵3. Figure 10 shows the resulting polynomial fit in grey with the data overlaid on it as

grey circles.

Fig. 10 Minimum drag value as a function of 𝑩𝟑 using washout.

This polynomial fit predicts a minimum 𝐶𝐷 value at 𝐵3 = -0.103. This minimum 𝐵3

values is shown in Fig. 10 as a triangle. Using this 𝐵3 value in the process described in

Chapter II results in a 1.232% reduction of drag as compared to the elliptic lift

distribution on a rectangular wing with no sweep or dihedral and the same wing-structure

weight. Figure 10 also shows that not all of the lift distributions that were described in

Table 1 produce less drag than the elliptical lift distribution. There is a region where the

reduction in induced drag is greater than the increase in parasitic drag due to increased

span. For all 0.0 > 𝐵3 ≥ -0.2170 there is a reduction of 𝐶𝐷 as compared to the elliptic lift

distribution. However, outside this range the reduction in induced drag is outweighed by

the increase in parasitic drag. This equivalent 𝐵3 value is shown in Fig. 10 as a diamond.

The optimal lift distribution when only induced drag is considered is close to the optimal

valued shown in Fig. 10. This means that doing the analytic optimizations neglecting

parasitic drag does result in near optimal results. To further investigate the region of

reduced total drag, camber is considered.

0.0094

0.0098

0.0102

0.0106

0.011

0.0215

0.0218

0.0221

0.0224

0.0227

0.0230

-0.4 -0.3 -0.2 -0.1 0.0 0.1

a

B3

CD CDi

CD

CDi
Equivalent CD

Optimum CD

b
c d

e

f

g

19

Aerodynamic Twist or Camber

When using aerodynamic twist or camber and angle of attack of the wing to

produce the desired lift distribution, the total drag produced by the wing varies depending

on root camber. This means that if washout is held constant along the wing, there will be

at least one minimum total drag value for each value of 𝐵3. For each value of 𝐵3, the

simulation was run with a unique range of root camber. The values of root camber for

each 𝐵3 value were chosen to be around the minimum total drag for that 𝐵3 value. They

range from camber values related to -4° to 16° of flap deflection. Figure 11 shows total

drag for the different 𝐵3 values as a function of root camber. There is a minimum for

each of the different 𝐵3 values, and this minimum occurs at lower root camber as 𝐵3 goes

up.

Fig. 11 Drag values for a variety of root camber and 𝑩𝟑 values when using camber.

Just like in the geometric twist case, there is a minimum 𝐶𝐷 between 𝐵3 = -0.06

and 𝐵3 = -0.136. A fourth order polynomial was fit to each of the 𝐶𝐷 curves and the

minimum expected drag value was found for each 𝐵3 value. The minimum drag value for

each 𝐵3 was used to create an additional fourth order polynomial fit of 𝐶𝐷 as a function

of 𝐵3. The resulting polynomial fit and the minimum drag points are shown in Fig. 12 as

Root Twist ()

0.0215

0.022

0.0225

0.023

0.0235

-4 1 6 11 16

CD

a

b

c
d

e

f

g

20

the grey line and circles, respectively.

Fig. 12 Minimum drag given a 𝑩𝟑 value using camber.

The minimum of this polynomial fit occurs at 𝐵3 = -0.0901. Using this value in the

process described in Chapter II results in a 1.013% reduction in drag, when compared to

the elliptic lift distribution on a rectangular wing with no sweep or dihedral with the same

wing-structure weight. This minimum 𝐶𝐷 point is marked in Fig. 12 with a triangle. The

range of 𝐵3 values that produce less drag than the elliptic lift distribution is 0.0 > 𝐵3 ≥ -

0.1865. The lower bound is indicated in Fig. 12 with a diamond. Once again the total

optimum is near the induced drag only optimum, which validates using analytic

approaches to solve for optimal solutions.

Figure 13 compares the minimum drag values from Fig. 10 and 12. The grey line

comes from Fig. 12 and represents the minimum drag values when using camber and the

black line comes from Fig. 10 represents the minimum drag values when using washout.

0.0094

0.0098

0.0102

0.0106

0.011

0.0215

0.0218

0.0221

0.0224

0.0227

0.023

-0.4 -0.3 -0.2 -0.1 0 0.1
B3

CD CDi

CD

CDi
Equivalent CD

Optimum CD

a

b
c d

e

f

g

21

Figure 13 shows that the range of 𝐵3 values that results in a reduction of drag is larger

when using washout than when using camber to achieve the lift distributions.

Additionally, the lift distribution described by the optimal value of 𝐵3 for washout case

gives a greater reduction of drag than the optimal lift distribution obtained using camber.

In fact, the 𝐶𝐷 values obtained using washout were smaller for all values of 𝐵3 than those

obtained using camber. This indicates that using washout to match lift distributions will

provide a greater range of drag reducing options when compared to the elliptic lift

distribution and will have less drag regardless of which lift distribution is used.

Comparison of Drag Components

The optimized lift distributions given in Table 1 provide solutions for the

minimum induced drag along a wing. This is mainly due to the ability to increase the

span as shown in Fig. 1 and Fig. 6. However, these optimized lift distributions were

found without taking parasitic drag into account. Figure 14 shows the comparison of the

section drag broken down into the drag components for the elliptic lift distribution with

𝐵3 = 0.0, Prandtl’s 1933 lift distribution described in Eq. (14) with 𝐵3 = -1/3, the optimal

0.0215

0.0218

0.0221

0.0224

0.0227

0.023

-0.35 -0.25 -0.15 -0.05 0.05
B3

CD

a

b
c d

e

f

g

Fig. 13 Comparison of minimum drag values for different twist types.

22

lift distribution when only considering induced drag described by Eq. (14) with 𝐵3 = -

0.136, and the optimal lift distribution found when using camber with 𝐵3 = -0.0901.

Fig. 14 Section drag along semispan, comparing parasitic and induced drag for

elliptic lift distribution (upper left), Prandtl’s 1933 lift distribution (upper right), the

optimal lift distribution when only considering induced drag (lower left), and the

optimal lift distribution when regarding total drag (lower right).

The section parasitic drag for all cases is nearly constant along the entire span,

which is expected on a rectangular wing. The section parasitic drag for each section is

similar between all cases, but the additional span that results from using the non-elliptic

lift distributions means that the summation of the section drag results in an overall

increase in parasitic drag. The parasitic drag makes up more than half of the total drag for

all cases, with 54.47% of total drag for the elliptic lift distribution and 56.03% of the total

drag for Prandtl’s 1933 lift distribution. Therefore, the minor reductions in induced drag

that Prandtl’s lift distribution achieves are outweighed by the increases in parasitic drag

~

-0.001

0.000

0.001

0.002

0.003

0.004

0.005

0.0 0.1 0.2 0.3 0.4 0.5

Parasitic

Induced

Total

0.000

0.001

0.002

0.003

0.004

0.005

0.0 0.1 0.2 0.3 0.4 0.5

z/bz/b

CD

~
CD

-0.001

0.000

0.001

0.002

0.003

0.004

0.005

0.0 0.1 0.2 0.3 0.4 0.5

0.000

0.001

0.002

0.003

0.004

0.005

0.0 0.1 0.2 0.3 0.4 0.5

z/b z/b

23

caused by increasing the span and twisting the wing to create this lift distribution.

However, for both the optimal induced drag case and the optimal total drag case

the increase in parasitic drag is made up for in the reduction of induced drag. When only

using camber to obtain the optimal lift distribution given in Fig. 12, the tradeoff between

parasitic and induced drag results in a 1.365% increase in parasitic drag but a 4.010%

decrease in induced drag when compared to the elliptic lift distribution. This is why this

lift distribution produces 1.013% less total drag than the elliptic lift distribution on a wing

with the same wing-structure weight. To compare the optimal lift distribution when only

considering induced drag to the optimal lift distribution for total drag, Fig. 15 shows all

four lift distributions from Fig. 14 as well as the optimal lift distribution when using

washout shown in Fig. 10.

Fig. 15 Lift distributions of 𝑩𝟑 values corresponding to optimal values, the elliptic,

and Prandtl’s 1933.

The dashed black line in Fig. 15 represents the lift distribution described by 𝐵3 = -0.103

and the solid black line represents the lift distribution described by 𝐵3 = -0.0901. The two

optimal values regarding total drag are almost identical along the entire span. The optimal

with respect to only induced drag is close to the optimal regarding total drag but carries

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5

CL

~

z/b

a

e

c

24

slightly more weight toward the center of the wing. Prandtl’s 1933 lift distribution carries

significantly more weight toward the center and the elliptic cares weight more evenly

across the span.

25

CHAPTER IV

CONCLUSIONS

When only considering induced drag on a rectangular wing in uniform flow with

no sweep or dihedral, the elliptic lift distribution is not necessarily ideal. Using Prandtl’s

lifting-line theory, a lift distribution can be described by Eq. (1) and the induced drag

from the same lift distribution can be described by Eq. (2). Minimizing the induced drag

in Eq. (2) is a variational problem that can be solved several ways. The elliptic lift

distribution is one solution to the problem. If different design constraints are used to

solve the problem, non-elliptic lift distributions are the solution. These other non-elliptic

optimal lift distributions reduce induced drag, when compared to the elliptic lift

distribution, by moving the bending moment inboard on the wing. Moving the bending

moment allows for larger wingspans, while maintaining the same wing-structure weight.

Equation (12) shows that the only Fourier coefficient that influences the wing-structure

weight of rectangular wings with the non-structural weight distribution given by Eqs. (5),

(6) and (8) is 𝐵3. Several optimized values of 𝐵3 are shown in Eqs. (14) and (16) as well

as in Table 1. These optimal lift distributions were found without taking parasitic drag

into account. As such, they do not minimize total drag experienced by a wing. In this

paper, a numerical approach using a numeric lifting-line tool called MachUp and a

gradient based optimizer called Optix is used to generate lift distributions that matching

analytic lift distribution created using Eq. (20) with the values of 𝐵3 shown in Table 1.

The total drag of a rectangular wing having the lift distributions described in

Table 1, is found by twisting a wing using either washout or camber and using a numeric

lifting-line tool called MachUp on the resulting wing. The total drag values obtained

26

using this method are presented in Chapter III. The results indicate that when considering

total drag on a rectangular wing with no sweep or dihedral immersed in uniform flow, the

minimum drag is not obtained using the elliptic lift distribution or any of the optimized

lift distributions when considering only induced drag. Instead the optimal value is around

𝐵3 = -0.1 and depends on the way the wing is being twisted to produce the lift

distribution described by this 𝐵3 value. This lift distribution balances the parasitic and

induced drag components along a rectangular wing optimally to minimize drag and

maximize efficiency. This lift distribution is close to the optimal lift distribution when

only considering induced drag, but does distribute slightly more weight along the span.

Some modern morphing wing aircraft have rectangular wings. Therefore, the optimal lift

distribution shown in this paper can be used to reduce the total drag experienced by the

wing by 1.01%-1.23% depending on the twist type. Using only geometric twist will result

in lower total drag, regardless of which lift distribution is used and result in the greatest

benefit if the optimal lift distribution of 𝐵3 = -0.103 is used. Some of the lift distributions

described in Table 1 also result in less drag and could also be used to reduce drag, while

meeting additional design requirements like load or deflection alleviation.

27

REFERNECES

[1] Prandtl, L., “Tragflügel Theorie,” Nachricten von der Gesellschaft der

Wissenschaften zu Güttingen, Ges-chäeftliche Mitteilungen, Klasse, 1918, pp.

451-477

[2] Prandtl, L., “Applications of Modern Hydrodynamics to Aeronautics,” NACA

TR-116, June 1921

[3] Phillips, W. F., “Lifting-Line Analysis for Twisted Wings and Washout-

Optimized Wings,” Journal of Aircraft, Vol. 41, No. 1, 2004, pp. 128-136.

(doi:10.2514/1.262)

[4] Phillips, W.F., Alley, N. R., and Goodrich, W. D., “Lifting-Line Analysis of Roll

Control and Variable Twist,” Journal of Aircraft, Vol. 41, No. 5, 2004, pp. 1169-

1176. (doi:10.2514/1.3846)

[5] Phillips, W. F., “New Twist on an Old Wing Theory,” Aerospace America,

January, 2005, pp. 27-30.

[6] Phillips, W. F., Fugal, S. R., and Spall, R. E., “Minimizing Induced Drag with

Wing Twist, Computational-Fluid-Dynamics Validation,” Journal of Aircraft,

Vol. 43, No. 2, 2006, pp.437-444. (doi:10.2514/1.15089)

[7] Phillips, W. F., and Alley, N. R., “Predicting Maximum Lift Coefficients for

Twisted Wings Using Lifting Line Theory,” Journal of Aircraft, Vol. 44, No. 3,

2007, pp. 898-910. (doi:10.2514/1.25640)

[8] Phillips, W. F., “Incompressible Flow over Finite Wings,” Mechanics of Flight,

2nd ed., Wiley, Hoboken, NJ, 2010, pp. 46-94

[9] Phillips, W. F., Hunsaker, D. F., and Joo, J. J., “Minimizing Induced Drag with

Lift Distribution and Wingspan,” Journal of Aircraft, Vol. 56, No. 2, 2019.

(doi:10.2514/1.C035027)

[10] Prandlt, L., “Über Tragflügel kleinsten induzierten Wilderstandes,” Zeitschrift für

Flugtechnik und Motorluftschiffahrt, Vol. 24, No. 11, 1933, pp. 305-306.

[11] Jones, R. T., “The Spanwise Distribution of Lift for Minimum Induced Drag of

Wings Having a Given Lift and Given Bending Moment,” NACA TR-2249, Dec.

1950.

[12] Klein, A., and Viswanathan, S. P., “Minimum Induced Drag of Wings with Given

Lift and Root-Bending Moment,” Zeitschrift für Angewandte Mathematik und

Physik, Vol. 24, No. 6, 1973, pp. 8889-892. (doi:10.1007/bf01590797)

28

[13] Klein, A., and Viswanathan, S. P., “Approximate Solution for Minimum Induced

Drag of Wings with Given Structural Weight,” Journal of Aircraft, Vol. 12, Np. 2,

1975, pp. 124-126. (doi:10.2514/3.44425)

[14] Klein, A., and Viswanathan, S. P., “Errata: Approximate Solution for Minimum

Induced Drag of Wings with Given Structural Weight,” Journal of Aircraft, Vol.

12, No. 9, 1975, p. 756. (doi:10.2514/3.59866)

[15] Bowers, A. H., Murillo, O. J., Jensen, R., Eslinger, B., and Gelzer, C., “On Wings

of the Minimum Induced Drag: Spanload Implications for Aircraft and Birds,”

NASA TP-2016-219072, March 2016.

[16] Phillips, W. F., Hunsaker, D. F., and Taylor, J. D., “Minimizing Induced Drag

with Weight Distribution, Lift Distribution, Wingspan, and Wing-Structure

Weight,” to be presented at AIAA Aviation, 2019.”

[17] McGeer, T., “Wing Design for Minimum Drag with Practical Constraints,”

Journal of Aircraft, Vol. 21, No. 11, Nov. 1984. (doi:10.2514/3.45058)

[18] Joo, J. J., Marks, C. R., Zientarski, L., and Culler, A. J., “Variable Camber

Compliant Wing-Design,” 23rd AIAA/AHS Adaptive Structures Conference,

AIAA Paper 2015-1050, Jan. 2015.

[19] Marks, C. R., Zientarski, L., Culler, A. J., Hagen, B., Smyers, B. M., and Joo, J.

J., “Variable Camber Compliant Wing-Wind Tunnel Testing,” 23rd AIAA/AHS

Adaptive Structures Conference, AIAA Paper 2015-1051, Jan. 2015.

[20] Miller, S. C., Rumpfkeil, M. P., and Joo, J. J., “Fluid-Structure Interaction of a

Variable Camber Compliant Wing,” 53rd AIAA Aerospace Sciences Meeting,

AIAA Paper 2015-1235, Jan. 2015.

[21] Joo, J. J., Marks, C. R., and Zienstarski, L., “Active Wing Shape Reconfiguration

Using a Variable Camber Compliant Wing System,” 20th International

Conference on Composite Materials, Copenhagen, Program Number is 4121-4,

July 2015.

[22] Marks, C. R., Zientarski, L., and Joo, J. J., “Investigation into the Effect of Shape

Deviation on Variable Camber Compliant Wing Performance,” 24th AIAA/AHS

Adaptive Structures Conference, AIAA Paper 2016-1313, Jan. 2016

[23] Hetrick, J., Osborn, R., Kota, S., Flick, P., and Paul, D., “Flight Testing of

Mission Adaptive Compliant Wing,” 48th AIAA/ASME/ASCE/AHS/ASC

structures, Structural Dynamics, and Materials Conference, AIAA Paper 2007-

1709, April 2007.

[24] Drela, M., “XFOIL: An Analysis and Design System for Low Reynolds Number

Airfoils,” Conference on Low Reynolds Number Aerodynamics, University of

Notre Dame, June 1989.

29

[25] Drela, M. Giles, M.B., “Viscous-Inviscid Analysis of Transonic and Low

Reynolds Number Airfoils,” AIAA Journal, Vol. 25, No. 10, Oct. 1987.

(doi:10.2514/3.9789)

[26] Hunsaker, D.F., Reid, J.T., Moorthamers, B., Joo, J.J., “Geometry and

Aerodynamic Performance of Parabolic Trailing-Edge Flaps,” AIAA Aerospace

Sciences Meeting, AIAA Paper 2018-1278, Jan. 2018. (doi:10.2514/2018-1278)

[27] Ullah, A. H., Fabijanic, C., Estevadeordal, J., Montgomery, Z. S., Hunsaker, D.

F., Staiger, J. M., Joo, J. J., “Experimental and Numerical Evaluation of the

Performance of Parabolic Flaps”, Submitted to AIAA SciTech, 2020.

[28] Phillips, W.F., and Snyder D.O., “Modern Adaptation of Prandtl’s Classic

Lifting-Line Theory,” Journal of Aircraft, Vol. 37, No.4, July 2000, pp. 662-670.

(doi:10.2514/2.2649)

[29] Hodson, J., Hunsaker, D.F., Spall, R., “Wing Optimization using Dual Number

Automatic Differentiation in MachUp,” 55th AIAA Aerospace Science Meeting,

AIAA Paper 2017-0033, Jan. 2017. (doi:10.2514/6.2017-0033)

[30] Broyden, C., “The convergence of a Class of Double-Rank Minimization

Algorithms,” Journal of the Institute of Mathematics and its Applications, Vol. 6,

1970 pp. 76-90. (doi: 10.1093/imamat/6.1.76)

[31] Fletcher, R., “A New Approach to Variable Metric Algorithms,” Computer

Journal, Vol. 13, No. 3, 1970, pp. 317-322. (doi:10.1093/comjnl/13.3.317)

[32] Goldfarb, D., “A Family of Variable Metric Updates Derived by Variational

Means,” Mathematics of Computation, Vol. 24, No. 109, 1970, pp. 23-26. (doi:

10.1090/S0025-5718-1970-0258249-6)

[33] Shanno, D., “Conditioning of Quasi-Newton Methods for Function

Minimization,” Mathematics of Computation, Vol. 24, No. 111, 1970, pp. 647-

656. (doi: 10.1090/S0025-5718-1970-0274029-X)

30

0
1

2
3

4
5

6
7

0
3
.1

9
6
4
3
1
E

-0
2

-1
.3

5
5
5
8
8
E

+
0
0

1
.4

3
5
4
5
0
E

+
0
2

-1
.4

6
4
2
5
6
E

+
0
3

1
-1

.1
7
1
5
1
2
E

-0
2

6
.3

1
7
1
1
5
E

-0
3

2
.0

9
6
4
4
8
E

+
0
0

-2
.6

2
2
9
4
1
E

+
0
1

2
2
.3

6
0
7
9
3
E

-0
4

8
.2

9
2
5
5
6
E

-0
2

-3
.1

7
5
9
3
5
E

+
0
0

2
.8

2
1
8
3
3
E

+
0
1

3
7
.6

8
5
3
5
9
E

-0
6

1
.2

9
1
3
7
2
E

-0
3

-6
.4

2
5
9
0
3
E

-0
2

7
.1

5
2
4
0
3
E

-0
1

4
7
.1

9
6
1
5
4
E

-0
6

-1
.0

2
8
5
6
6
E

-0
3

3
.1

2
0
1
5
7
E

-0
2

-2
.6

0
1
2
0
4
E

-0
1

5
2
.0

4
4
3
0
2
E

-0
8

-1
.0

1
7
8
8
2
E

-0
5

4
.4

8
4
3
8
6
E

-0
4

-4
.9

3
1
3
6
0
E

-0
3

6
-3

.2
1
2
8
1
2
E

-0
8

3
.5

5
7
2
0
4
E

-0
6

-9
.6

9
2
5
9
8
E

-0
5

7
.3

0
4
9
9
2
E

-0
4

7
-9

.0
8
5
6
9
1
E

-1
1

3
.0

0
5
1
8
2
E

-0
8

-1
.3

1
8
8
3
1
E

-0
6

1
.5

0
0
4
9
8
E

-0
5

8
3
.6

5
4
7
6
3
E

-1
1

-3
.6

2
1
6
9
2
E

-0
9

8
.9

9
2
9
8
4
E

-0
8

-6
.0

7
0
0
0
4
E

-0
7

9
1
.0

1
2
1
8
4
E

-1
3

-3
.0

9
6
8
9
3
E

-1
1

1
.3

8
1
0
4
6
E

-0
9

-1
.6

1
0
4
1
2
E

-0
8

𝐶
𝑚

𝑛
APPENDIX A

POLYNOMIAL FIT COEFFICIENT TABLES FOR NACA 0015 PARABOLIC FLAP

AIRFOIL AT 𝑅𝑒 = 500,000

Table A1 polynomial

fit coefficient for 𝐶̃𝐿
Table A2 polynomial
fit coefficient for 𝐶̃𝐷

Table A3 polynomial
fit coefficient for 𝐶̃𝑚

0
1

2
3

4
5

6
7

0
6
.3

3
8
0
6
8
E

+
0
0

1
.4

5
6
7
8
0
E

+
0
0

-6
.0

3
7
4
1
1
E

+
0
2

3
.8

3
7
2
5
9
E

+
0
3

1
4
.9

9
4
6
9
6
E

-0
2

-2
.5

0
9
9
2
8
E

-0
2

-1
.3

1
9
9
0
3
E

+
0
1

1
.4

6
9
1
0
9
E

+
0
2

2
-4

.2
9
3
5
0
0
E

-0
3

-1
.3

0
3
2
3
6
E

-0
1

6
.8

7
8
3
4
7
E

+
0
0

-6
.6

4
7
0
2
5
E

+
0
1

3
-3

.4
3
7
8
3
0
E

-0
5

-4
.7

4
6
1
6
7
E

-0
3

2
.3

8
7
1
7
2
E

-0
1

-2
.5

2
3
1
4
8
E

+
0
0

4
6
.0

2
6
8
6
4
E

-0
6

7
.3

8
5
0
0
5
E

-0
5

-6
.3

5
4
2
1
0
E

-0
3

7
.7

7
9
2
2
3
E

-0
2

5
-2

.4
3
6
6
6
5
E

-0
8

2
.6

8
1
3
5
0
E

-0
5

-1
.2

7
2
8
5
0
E

-0
3

1
.3

8
8
6
8
2
E

-0
2

6
-4

.1
0
1
5
4
7
E

-0
9

2
.6

3
1
8
1
0
E

-0
7

-4
.6

2
6
3
5
9
E

-0
6

-7
.0

9
9
4
6
1
E

-0
5

7
8
.1

2
1
2
7
0
E

-1
1

-3
.8

1
1
9
9
3
E

-0
8

1
.7

4
2
0
4
0
E

-0
6

-1
.8

3
4
5
2
4
E

-0
5

𝐶
𝐿

𝑛

0
1

2
3

4
5

6
7

8
9

1
0

0
1
.3

0
4
9
2
0
E

-0
2

1
.4

4
7
1
1
7
E

-0
1

-6
.0

2
2
7
9
9
E

+
0
0

4
.5

2
0
0
2
1
E

+
0
2

-8
.1

0
5
0
8
7
E

+
0
3

5
.2

8
2
0
7
8
E

+
0
4

1
1
.1

6
5
3
2
4
E

-0
3

1
.6

2
7
0
2
6
E

-0
1

-1
.6

2
6
6
6
0
E

+
0
1

4
.0

8
7
9
9
4
E

+
0
2

-2
.8

7
2
0
6
4
E

+
0
3

2
1
.1

2
9
9
4
5
E

-0
5

-9
.3

7
2
3
6
6
E

-0
4

1
.9

0
0
1
0
7
E

-0
1

-8
.7

3
7
8
0
0
E

+
0
0

1
.3

7
5
6
6
5
E

+
0
2

-6
.9

9
8
7
9
3
E

+
0
2

3
5
.9

2
9
5
3
6
E

-0
6

-2
.9

0
4
3
1
1
E

-0
3

2
.2

1
3
8
3
7
E

-0
1

-4
.3

7
4
7
2
5
E

+
0
0

2
.2

2
8
1
1
1
E

+
0
1

4
-6

.5
7
8
9
6
6
E

-0
9

1
.9

0
2
5
7
3
E

-0
6

-6
.7

5
6
2
9
4
E

-0
4

6
.0

2
3
5
1
9
E

-0
2

-1
.3

3
0
2
6
3
E

+
0
0

1
.0

1
4
3
7
6
E

+
0
1

5
-4

.3
5
4
6
2
6
E

-0
8

2
.4

9
1
7
5
2
E

-0
5

-1
.5

5
5
1
2
6
E

-0
3

2
.5

1
0
9
8
8
E

-0
2

-7
.8

3
3
4
2
0
E

-0
2

6
-3

.4
2
3
7
2
4
E

-1
1

4
.2

1
8
9
8
5
E

-0
8

3
.4

5
7
7
3
7
E

-0
6

-5
.2

5
4
8
1
8
E

-0
4

1
.3

9
9
0
7
7
E

-0
2

-1
.2

0
1
6
2
2
E

-0
1

7
2
.2

2
7
2
5
5
E

-1
0

-9
.2

6
1
1
9
1
E

-0
8

5
.2

2
8
9
5
2
E

-0
6

-7
.3

9
3
0
8
3
E

-0
5

1
.0

8
9
5
9
0
E

-0
4

8
2
.8

6
6
8
7
5
E

-1
3

-1
.4

8
6
4
6
2
E

-1
0

-1
.9

9
7
7
6
0
E

-0
8

2
.3

7
2
1
0
6
E

-0
6

-6
.2

9
0
2
1
9
E

-0
5

5
.3

8
6
1
0
4
E

-0
4

9
-3

.2
2
3
6
5
7
E

-1
3

1
.1

3
8
7
5
1
E

-1
0

-6
.1

4
9
1
3
2
E

-0
9

8
.2

4
3
8
8
4
E

-0
8

-7
.6

3
2
0
5
5
E

-0
8

1
0

-4
.0

2
4
9
4
0
E

-1
6

1
.3

1
4
6
4
2
E

-1
3

3
.3

0
2
4
0
5
E

-1
1

-3
.3

1
9
2
2
2
E

-0
9

8
.6

2
1
5
1
0
E

-0
8

-7
.2

5
8
4
1
0
E

-0
7

𝐶
𝐷

𝑛

31

0
1

2
3

4
5

6
7

0
2
.8

0
4
8
0
1
E

-0
2

-1
.4

0
1
7
9
0
E

+
0
0

1
.3

3
8
9
3
3
E

+
0
2

-1
.3

0
6
0
0
5
E

+
0
3

1
-1

.1
8
0
0
0
0
E

-0
2

-3
.3

0
2
1
7
4
E

-0
3

2
.4

9
7
9
9
1
E

+
0
0

-2
.9

7
1
6
9
3
E

+
0
1

2
1
.3

9
3
3
8
9
E

-0
4

8
.5

1
2
5
8
3
E

-0
2

-2
.9

9
5
8
9
0
E

+
0
0

2
.5

3
0
8
8
0
E

+
0
1

3
7
.1

5
5
7
7
9
E

-0
6

1
.3

9
5
8
6
8
E

-0
3

-6
.7

1
5
6
6
2
E

-0
2

7
.2

5
3
6
4
4
E

-0
1

4
7
.9

2
2
4
1
5
E

-0
6

-1
.0

2
6
5
8
7
E

-0
3

2
.9

0
9
3
8
5
E

-0
2

-2
.3

0
4
8
1
1
E

-0
1

5
2
.3

6
3
1
7
2
E

-0
8

-1
.0

6
2
6
8
2
E

-0
5

4
.5

6
4
8
6
9
E

-0
4

-4
.8

5
7
5
3
9
E

-0
3

6
-3

.4
7
5
7
9
2
E

-0
8

3
.6

4
0
8
9
9
E

-0
6

-9
.4

3
7
4
6
8
E

-0
5

6
.8

5
0
5
0
2
E

-0
4

7
-9

.6
8
0
2
0
8
E

-1
1

3
.0

3
3
9
5
9
E

-0
8

-1
.2

9
1
6
3
8
E

-0
6

1
.4

1
0
8
6
5
E

-0
5

8
4
.1

2
3
5
2
7
E

-1
1

-4
.0

4
1
4
9
2
E

-0
9

1
.0

0
0
0
3
9
E

-0
7

-6
.8

7
5
0
6
5
E

-0
7

9
1
.0

2
6
7
0
7
E

-1
3

-2
.9

6
9
6
5
2
E

-1
1

1
.2

7
3
9
6
2
E

-0
9

-1
.4

2
1
9
6
9
E

-0
8

𝐶
𝑚

𝑛
APPENDIX B

POLYNOMIAL FIT COEFFICIENT TABLES FOR NACA 0015 PARABOLIC FLAP

AIRFOIL AT 𝑅𝑒 = 600,000

Table B1 polynomial

fit coefficient for 𝐶̃𝐿
Table B2 polynomial
fit coefficient for 𝐶̃𝐷

Table B3 polynomial
fit coefficient for 𝐶̃𝑚

0
1

2
3

4
5

6
7

0
6
.3

6
8
1
6
3
E

+
0
0

9
.8

3
7
0
5
0
E

-0
1

-5
.3

0
3
2
6
7
E

+
0
2

3
.1

4
6
5
8
3
E

+
0
3

1
5
.0

4
4
9
2
6
E

-0
2

3
.7

1
2
3
4
4
E

-0
3

-1
.4

3
6
6
1
2
E

+
0
1

1
.5

7
9
5
8
4
E

+
0
2

2
-3

.5
2
1
2
2
1
E

-0
3

-1
.9

8
8
0
7
0
E

-0
1

8
.4

7
6
4
5
5
E

+
0
0

-7
.8

1
2
0
3
4
E

+
0
1

3
-3

.4
2
3
9
1
3
E

-0
5

-4
.5

2
7
9
1
8
E

-0
3

2
.2

6
5
9
8
8
E

-0
1

-2
.4

1
4
7
1
6
E

+
0
0

4
-1

.3
1
8
7
3
4
E

-0
6

9
.3

5
0
2
4
3
E

-0
4

-3
.1

8
7
6
9
8
E

-0
2

2
.8

7
1
4
9
6
E

-0
1

5
-1

.7
1
9
5
3
4
E

-0
8

2
.2

8
6
1
5
0
E

-0
5

-1
.0

7
6
8
2
9
E

-0
3

1
.1

8
9
6
2
0
E

-0
2

6
1
.0

8
7
1
8
4
E

-0
8

-1
.5

9
8
1
3
2
E

-0
6

5
.0

0
8
5
2
4
E

-0
5

-4
.7

3
5
1
4
9
E

-0
4

7
6
.3

3
7
2
3
4
E

-1
1

-3
.0

3
5
9
3
5
E

-0
8

1
.3

9
3
2
7
1
E

-0
6

-1
.5

3
5
7
7
7
E

-0
5

𝐶
𝐿

𝑛

0
1

2
3

4
5

6
7

8
9

1
0

0
1
.2

5
3
2
7
7
E

-0
2

1
.3

7
0
7
2
3
E

-0
1

-6
.2

9
0
5
3
7
E

+
0
0

4
.8

2
0
4
0
3
E

+
0
2

-9
.3

9
0
8
7
0
E

+
0
3

6
.4

4
5
5
5
4
E

+
0
4

1
1
.1

2
8
4
4
1
E

-0
3

1
.6

3
2
2
0
6
E

-0
1

-1
.7

0
0
2
0
2
E

+
0
1

4
.6

6
9
3
1
6
E

+
0
2

-3
.6

5
4
1
8
0
E

+
0
3

2
1
.0

8
4
5
7
9
E

-0
5

-8
.8

7
4
3
8
6
E

-0
4

1
.9

8
4
0
7
5
E

-0
1

-1
.0

4
8
4
9
1
E

+
0
1

1
.9

4
3
7
8
0
E

+
0
2

-1
.1

3
7
5
5
5
E

+
0
3

3
6
.0

0
6
7
9
4
E

-0
6

-3
.0

7
0
1
8
8
E

-0
3

2
.6

2
6
1
0
6
E

-0
1

-6
.6

3
1
4
4
1
E

+
0
0

4
.9

9
7
7
8
0
E

+
0
1

4
-4

.8
8
4
2
9
9
E

-0
9

7
.1

5
2
6
0
7
E

-0
8

-5
.2

9
9
7
4
4
E

-0
4

5
.6

2
6
1
3
6
E

-0
2

-1
.2

4
4
8
0
9
E

+
0
0

7
.9

6
1
7
4
0
E

+
0
0

5
-4

.3
9
0
4
9
8
E

-0
8

2
.5

1
2
6
2
1
E

-0
5

-1
.8

1
7
6
1
0
E

-0
3

4
.2

4
1
9
4
9
E

-0
2

-3
.0

2
9
8
9
6
E

-0
1

6
-4

.8
3
1
1
8
1
E

-1
1

6
.1

8
5
7
9
5
E

-0
8

-6
.2

2
6
6
9
5
E

-0
7

-2
.4

6
9
7
0
5
E

-0
4

6
.7

9
5
5
7
4
E

-0
3

-5
.0

2
9
7
6
1
E

-0
2

7
2
.1

0
5
2
9
2
E

-1
0

-8
.7

8
4
0
6
7
E

-0
8

5
.7

6
2
8
0
8
E

-0
6

-1
.2

5
6
2
5
9
E

-0
4

8
.3

3
3
4
7
4
E

-0
4

8
3
.1

7
7
4
3
9
E

-1
3

-2
.2

3
7
5
7
8
E

-1
0

-4
.2

6
7
4
6
4
E

-1
0

9
.6

0
2
6
5
5
E

-0
7

-2
.6

3
9
9
3
1
E

-0
5

2
.0

6
5
7
0
2
E

-0
4

9
-2

.9
1
3
5
9
9
E

-1
3

1
.0

2
0
4
0
1
E

-1
0

-6
.3

6
7
6
1
5
E

-0
9

1
.3

3
7
5
8
0
E

-0
7

-8
.4

8
9
9
4
5
E

-0
7

1
0

-4
.2

2
5
1
5
2
E

-1
6

2
.2

4
4
4
2
5
E

-1
3

5
.7

2
3
2
5
6
E

-1
2

-1
.3

1
2
3
1
4
E

-0
9

3
.4

5
4
3
9
3
E

-0
8

-2
.7

1
2
6
4
7
E

-0
7

𝐶
𝐷

𝑛

32

0
1

2
3

4
5

6
7

0
6
.4

0
4
3
2
3
E

+
0
0

-1
.1

2
1
6
9
0
E

+
0
0

-4
.2

0
9
7
0
1
E

+
0
2

2
.2

4
7
6
0
4
E

+
0
3

1
5
.0

7
6
4
1
5
E

-0
2

5
.5

4
4
8
8
6
E

-0
2

-1
.6

3
5
6
8
4
E

+
0
1

1
.7

3
3
2
1
6
E

+
0
2

2
-3

.6
9
9
2
2
4
E

-0
3

-1
.3

0
3
1
9
6
E

-0
1

5
.5

4
0
8
2
0
E

+
0
0

-5
.0

1
6
4
1
2
E

+
0
1

3
-3

.1
5
3
8
9
9
E

-0
5

-5
.1

8
4
2
1
0
E

-0
3

2
.5

1
7
4
3
3
E

-0
1

-2
.6

2
0
8
9
7
E

+
0
0

4
3
.7

5
1
8
4
9
E

-0
7

4
.6

8
0
4
6
2
E

-0
4

-1
.2

6
1
9
5
3
E

-0
2

1
.0

2
5
8
0
2
E

-0
1

5
-2

.8
8
8
6
3
6
E

-0
8

2
.5

5
2
3
4
1
E

-0
5

-1
.1

7
0
5
1
9
E

-0
3

1
.2

5
0
7
3
1
E

-0
2

6
7
.5

0
3
6
4
1
E

-0
9

-7
.8

6
9
2
1
1
E

-0
7

1
.6

7
5
4
3
8
E

-0
5

-1
.4

3
1
7
4
7
E

-0
4

7
7
.8

6
9
2
5
8
E

-1
1

-3
.3

9
3
4
4
4
E

-0
8

1
.5

1
8
6
6
8
E

-0
6

-1
.6

1
5
3
3
9
E

-0
5

𝐶
𝐿

𝑛

APPENDIX C

POLYNOMIAL FIT COEFFICIENT TABLES FOR NACA 0015 PARABOLIC FLAP

AIRFOIL AT 𝑅𝑒 = 700,000

0
1

2
3

4
5

6
7

0
2
.4

3
4
8
1
7
E

-0
2

-1
.3

6
0
6
3
2
E

+
0
0

1
.2

4
2
9
3
3
E

+
0
2

-1
.1

7
6
2
5
2
E

+
0
3

1
-1

.1
8
6
8
4
6
E

-0
2

-1
.0

5
4
2
0
4
E

-0
2

2
.7

4
5
8
9
9
E

+
0
0

-3
.1

0
6
3
9
7
E

+
0
1

2
-1

.2
4
1
0
6
4
E

-0
5

9
.9

4
6
0
9
6
E

-0
2

-3
.4

0
3
3
3
1
E

+
0
0

2
.9

6
9
9
1
4
E

+
0
1

3
7
.1

1
6
1
6
8
E

-0
6

1
.2

9
5
4
3
1
E

-0
3

-5
.8

3
5
2
3
2
E

-0
2

5
.7

6
5
1
0
9
E

-0
1

4
9
.3

7
3
7
2
2
E

-0
6

-1
.1

8
9
6
7
4
E

-0
3

3
.4

9
6
3
9
9
E

-0
2

-3
.0

1
3
5
5
8
E

-0
1

5
2
.0

8
1
7
4
9
E

-0
8

-8
.5

8
5
7
3
4
E

-0
6

3
.2

0
0
8
1
6
E

-0
4

-2
.7

9
5
7
2
0
E

-0
3

6
-3

.8
8
0
9
1
2
E

-0
8

4
.1

6
2
2
9
2
E

-0
6

-1
.1

6
1
9
2
5
E

-0
4

9
.7

7
5
9
4
0
E

-0
4

7
-8

.1
6
3
3
5
7
E

-1
1

2
.1

6
3
3
0
8
E

-0
8

-7
.2

9
4
6
5
8
E

-0
7

5
.6

8
3
7
5
7
E

-0
6

8
4
.4

5
7
7
9
9
E

-1
1

-4
.5

2
1
9
4
6
E

-0
9

1
.2

3
2
5
0
0
E

-0
7

-1
.0

3
1
9
3
5
E

-0
6

9
8
.2

8
3
2
9
7
E

-1
4

-1
.9

0
0
0
7
6
E

-1
1

5
.8

4
3
9
6
4
E

-1
0

-3
.8

2
2
1
6
3
E

-0
9

𝐶
𝑚

𝑛

Table C1 polynomial

fit coefficient for 𝐶̃𝐿
Table C2 polynomial
fit coefficient for 𝐶̃𝐷

Table C3 polynomial
fit coefficient for 𝐶̃𝑚

0
1

2
3

4
5

6
7

8
9

1
0

0
1
.2

1
2
2
3
6
E

-0
2

1
.3

2
5
9
3
2
E

-0
1

-6
.9

1
5
3
8
1
E

+
0
0

5
.3

8
2
1
3
3
E

+
0
2

-1
.1

2
6
4
3
3
E

+
0
4

8
.0

5
5
7
5
8
E

+
0
4

1
1
.1

1
4
1
6
7
E

-0
3

1
.5

6
0
5
6
9
E

-0
1

-1
.6

7
5
6
6
9
E

+
0
1

4
.8

1
9
7
9
3
E

+
0
2

-3
.9

6
2
1
1
3
E

+
0
3

2
1
.0

5
5
0
1
3
E

-0
5

-9
.8

2
1
6
8
6
E

-0
4

2
.4

1
9
1
3
5
E

-0
1

-1
.4

9
9
2
1
5
E

+
0
1

3
.3

6
9
9
4
4
E

+
0
2

-2
.3

9
5
0
2
9
E

+
0
3

3
5
.9

5
2
9
1
1
E

-0
6

-3
.0

7
4
2
5
6
E

-0
3

2
.7

7
7
6
4
5
E

-0
1

-7
.7

3
0
3
2
6
E

+
0
0

6
.5

3
5
4
0
6
E

+
0
1

4
-3

.6
9
8
4
6
9
E

-0
9

2
.9

9
9
7
4
5
E

-0
7

-9
.2

7
4
8
6
3
E

-0
4

1
.0

0
3
7
2
4
E

-0
1

-2
.7

3
2
9
9
8
E

+
0
0

2
.1

0
9
4
9
8
E

+
0
1

5
-4

.5
5
0
6
9
9
E

-0
8

2
.5

0
2
2
4
4
E

-0
5

-1
.9

4
8
2
8
2
E

-0
3

5
.2

4
0
1
7
7
E

-0
2

-4
.4

7
5
0
4
0
E

-0
1

6
-6

.1
8
4
1
3
9
E

-1
1

6
.6

7
6
1
8
8
E

-0
8

-4
.9

8
4
5
4
4
E

-0
7

-3
.3

7
0
1
8
0
E

-0
4

1
.1

2
2
4
6
9
E

-0
2

-9
.0

2
0
3
0
2
E

-0
2

7
2
.1

1
4
8
2
4
E

-1
0

-8
.5

5
9
8
6
7
E

-0
8

6
.1

0
3
3
4
3
E

-0
6

-1
.5

8
3
0
5
5
E

-0
4

1
.3

3
7
0
6
9
E

-0
3

8
3
.5

3
7
9
5
2
E

-1
3

-2
.4

9
5
0
8
8
E

-1
0

4
.4

8
9
7
4
3
E

-0
9

7
.9

4
3
8
8
4
E

-0
7

-2
.7

6
1
7
4
5
E

-0
5

2
.1

9
2
4
3
4
E

-0
4

9
-2

.8
5
7
6
3
4
E

-1
3

9
.7

5
3
1
1
3
E

-1
1

-6
.6

3
7
3
2
5
E

-0
9

1
.6

8
9
2
1
4
E

-0
7

-1
.4

2
3
0
6
0
E

-0
6

1
0

-4
.5

1
6
9
6
3
E

-1
6

2
.5

6
7
1
0
6
E

-1
3

-2
.7

1
8
6
7
0
E

-1
2

-8
.5

9
7
9
4
9
E

-1
0

2
.7

9
9
4
2
4
E

-0
8

-2
.1

3
7
0
6
6
E

-0
7

𝐶
𝐷

𝑛

33

APPENDIX D

POLYNOMIAL FIT COEFFICIENT TABLES FOR NACA 0015 PARABOLIC FLAP

AIRFOIL AT 𝑅𝑒 = 800,000

0
1

2
3

4
5

6
7

0
2
.0

4
2
4
6
5
E

-0
2

-1
.1

7
3
3
2
7
E

+
0
0

1
.1

0
2
4
4
1
E

+
0
2

-1
.0

0
0
3
3
7
E

+
0
3

1
-1

.1
9
1
6
4
9
E

-0
2

-2
.0

4
1
5
4
5
E

-0
2

3
.1

8
8
1
0
6
E

+
0
0

-3
.5

8
2
8
9
6
E

+
0
1

2
-1

.0
3
3
7
6
0
E

-0
4

1
.0

2
5
7
0
5
E

-0
1

-3
.2

8
4
5
6
1
E

+
0
0

2
.7

0
0
6
8
8
E

+
0
1

3
6
.6

6
3
7
9
3
E

-0
6

1
.3

9
8
2
8
0
E

-0
3

-6
.3

3
1
1
9
9
E

-0
2

6
.4

5
7
7
2
3
E

-0
1

4
1
.0

0
6
8
0
8
E

-0
5

-1
.1

9
9
0
1
0
E

-0
3

3
.2

9
9
1
8
2
E

-0
2

-2
.6

1
7
8
7
1
E

-0
1

5
2
.3

4
8
0
6
9
E

-0
8

-9
.2

4
2
3
4
9
E

-0
6

3
.6

2
1
8
1
4
E

-0
4

-3
.5

1
4
8
6
9
E

-0
3

6
-4

.0
5
4
3
3
8
E

-0
8

4
.1

3
3
1
8
4
E

-0
6

-1
.0

6
8
4
0
1
E

-0
4

8
.0

1
6
4
3
1
E

-0
4

7
-8

.8
6
5
0
4
9
E

-1
1

2
.3

8
9
0
8
4
E

-0
8

-8
.9

5
2
9
3
3
E

-0
7

8
.6

4
8
0
7
5
E

-0
6

8
4
.6

3
2
2
4
5
E

-1
1

-4
.4

8
1
9
8
8
E

-0
9

1
.1

1
9
3
1
7
E

-0
7

-8
.1

0
1
0
7
8
E

-0
7

9
8
.9

7
6
1
0
8
E

-1
4

-2
.1

7
2
5
1
5
E

-1
1

7
.9

6
8
2
4
8
E

-1
0

-7
.6

8
7
3
9
4
E

-0
9

𝐶
𝑚

𝑛

Table D1 polynomial

fit coefficient for 𝐶̃𝐿
Table D2 polynomial
fit coefficient for 𝐶̃𝐷

Table D3 polynomial
fit coefficient for 𝐶̃𝑚

0
1

2
3

4
5

6
7

0
6
.4

2
9
1
0
0
E

+
0
0

-2
.0

6
7
2
1
1
E

+
0
0

-3
.6

1
5
5
5
2
E

+
0
2

1
.8

0
2
3
4
3
E

+
0
3

1
5
.1

1
0
7
5
4
E

-0
2

6
.8

6
7
1
7
8
E

-0
2

-1
.6

5
9
5
2
2
E

+
0
1

1
.7

2
0
5
9
6
E

+
0
2

2
-3

.4
2
7
8
2
6
E

-0
3

-1
.3

2
9
0
3
3
E

-0
1

5
.0

9
1
6
5
0
E

+
0
0

-4
.4

0
3
0
9
8
E

+
0
1

3
-3

.1
1
4
6
7
1
E

-0
5

-5
.0

5
9
9
1
3
E

-0
3

2
.4

3
3
3
5
3
E

-0
1

-2
.5

3
6
9
6
8
E

+
0
0

4
-2

.3
4
9
0
7
0
E

-0
6

6
.9

4
3
0
5
5
E

-0
4

-1
.7

8
0
2
7
8
E

-0
2

1
.4

0
6
8
7
7
E

-0
1

5
-2

.6
2
4
2
0
5
E

-0
8

2
.3

3
7
7
0
9
E

-0
5

-1
.0

5
6
3
1
7
E

-0
3

1
.1

2
9
1
5
5
E

-0
2

6
1
.3

2
6
8
8
7
E

-0
8

-1
.4

1
8
6
8
6
E

-0
6

3
.5

2
4
7
7
6
E

-0
5

-3
.0

2
1
6
8
7
E

-0
4

7
6
.9

4
1
6
1
8
E

-1
1

-2
.9

1
1
0
8
9
E

-0
8

1
.2

7
0
1
0
1
E

-0
6

-1
.3

4
4
6
5
2
E

-0
5

𝐶
𝐿

𝑛

0
1

2
3

4
5

6
7

8
9

1
0

0
1
.1

7
8
5
7
9
E

-0
2

1
.2

8
1
1
4
8
E

-0
1

-7
.2

5
9
5
4
5
E

+
0
0

5
.7

3
6
8
6
8
E

+
0
2

-1
.2

5
0
2
5
1
E

+
0
4

9
.1

4
4
0
1
5
E

+
0
4

1
1
.1

3
1
7
5
3
E

-0
3

1
.3

5
8
5
2
8
E

-0
1

-1
.5

0
1
2
0
5
E

+
0
1

4
.3

7
8
4
5
6
E

+
0
2

-3
.6

1
0
7
5
3
E

+
0
3

2
1
.0

3
4
6
4
3
E

-0
5

-1
.1

5
6
6
1
2
E

-0
3

2
.9

3
8
6
2
9
E

-0
1

-1
.9

6
0
1
9
4
E

+
0
1

4
.7

4
8
4
4
8
E

+
0
2

-3
.6

3
1
6
8
5
E

+
0
3

3
4
.9

3
0
5
0
0
E

-0
6

-2
.5

8
0
2
1
3
E

-0
3

2
.3

3
2
3
5
0
E

-0
1

-6
.4

6
9
6
2
3
E

+
0
0

5
.3

9
8
7
8
7
E

+
0
1

4
-4

.6
4
1
8
9
2
E

-0
9

3
.5

6
7
1
7
1
E

-0
6

-1
.8

0
6
7
4
2
E

-0
3

1
.7

0
5
2
0
3
E

-0
1

-4
.7

8
9
1
2
1
E

+
0
0

3
.9

7
9
1
1
4
E

+
0
1

5
-3

.7
6
8
2
8
9
E

-0
8

2
.0

2
4
1
9
3
E

-0
5

-1
.5

1
1
3
4
7
E

-0
3

3
.9

4
5
2
3
2
E

-0
2

-3
.2

3
5
7
6
8
E

-0
1

6
-5

.3
2
0
5
7
6
E

-1
1

4
.2

2
9
3
7
8
E

-0
8

4
.8

8
0
6
6
7
E

-0
6

-7
.4

4
5
4
2
6
E

-0
4

2
.3

2
4
6
6
7
E

-0
2

-2
.0

2
5
2
4
7
E

-0
1

7
1
.7

9
1
6
0
6
E

-1
0

-6
.6

9
2
6
5
2
E

-0
8

4
.4

3
7
5
3
1
E

-0
6

-1
.0

8
9
2
8
4
E

-0
4

8
.5

7
8
8
9
4
E

-0
4

8
3
.1

4
2
8
7
1
E

-1
3

-1
.7

5
8
7
4
4
E

-1
0

-9
.1

5
1
5
2
3
E

-0
9

1
.7

9
0
5
5
1
E

-0
6

-5
.7

5
7
6
3
8
E

-0
5

5
.0

9
0
6
8
3
E

-0
4

9
-2

.4
0
8
6
2
8
E

-1
3

7
.3

7
0
1
1
4
E

-1
1

-4
.5

6
1
6
5
0
E

-0
9

1
.0

7
9
2
3
2
E

-0
7

-8
.2

9
0
1
4
0
E

-0
7

1
0

-3
.9

8
6
1
0
5
E

-1
6

1
.8

1
2
2
6
8
E

-1
3

9
.2

9
3
6
8
5
E

-1
2

-1
.7

1
0
2
3
5
E

-0
9

5
.4

3
5
6
8
5
E

-0
8

-4
.7

9
7
6
2
7
E

-0
7

𝐶
𝐷

𝑛

34

APPENDIX E

POLYNOMIAL FIT COEFFICIENT TABLES FOR NACA 0015 PARABOLIC FLAP

AIRFOIL AT 𝑅𝑒 = 900,000

0
1

2
3

4
5

6
7

0
1
.6

4
4
1
7
7
E

-0
2

-9
.3

5
7
2
4
2
E

-0
1

9
.6

6
4
6
4
7
E

+
0
1

-8
.4

8
2
2
5
6
E

+
0
2

1
-1

.1
9
6
0
4
9
E

-0
2

-2
.6

9
5
1
4
4
E

-0
2

3
.4

1
4
6
4
8
E

+
0
0

-3
.7

3
7
9
6
4
E

+
0
1

2
-1

.1
6
1
8
1
7
E

-0
4

9
.5

8
6
1
2
3
E

-0
2

-2
.9

0
1
0
8
0
E

+
0
0

2
.2

7
1
7
5
9
E

+
0
1

3
6
.3

0
6
4
1
2
E

-0
6

1
.4

5
3
3
0
0
E

-0
3

-6
.4

2
7
4
0
0
E

-0
2

6
.4

0
3
1
0
7
E

-0
1

4
9
.6

1
7
1
5
6
E

-0
6

-1
.0

6
1
8
6
4
E

-0
3

2
.6

9
9
9
9
9
E

-0
2

-1
.9

8
6
3
8
0
E

-0
1

5
2
.5

8
3
7
0
2
E

-0
8

-9
.6

4
6
0
5
0
E

-0
6

3
.7

2
8
0
5
7
E

-0
4

-3
.5

3
7
8
8
0
E

-0
3

6
-3

.7
0
3
5
2
7
E

-0
8

3
.4

2
4
5
5
7
E

-0
6

-7
.8

8
7
3
8
9
E

-0
5

5
.2

0
9
1
2
1
E

-0
4

7
-9

.6
0
7
8
0
3
E

-1
1

2
.5

5
9
9
5
2
E

-0
8

-9
.5

4
8
1
5
2
E

-0
7

9
.0

0
6
6
8
4
E

-0
6

8
4
.0

5
9
1
2
8
E

-1
1

-3
.4

5
9
4
5
2
E

-0
9

7
.3

4
1
2
8
0
E

-0
8

-4
.3

3
8
6
8
4
E

-0
7

9
9
.8

7
0
1
5
2
E

-1
4

-2
.4

1
6
5
8
6
E

-1
1

8
.9

1
1
6
3
5
E

-1
0

-8
.3

7
9
9
4
4
E

-0
9

𝐶
𝑚

𝑛

Table E1 polynomial

fit coefficient for 𝐶̃𝐿
Table E2 polynomial
fit coefficient for 𝐶̃𝐷

Table E3 polynomial
fit coefficient for 𝐶̃𝑚

0
1

2
3

4
5

6
7

0
6
.4

5
2
2
8
3
E

+
0
0

-3
.1

4
7
0
5
5
E

+
0
0

-3
.0

5
3
9
1
6
E

+
0
2

1
.4

0
0
7
4
5
E

+
0
3

1
5
.1

3
7
5
3
9
E

-0
2

8
.5

4
6
6
1
4
E

-0
2

-1
.6

8
6
3
3
3
E

+
0
1

1
.6

9
2
2
9
0
E

+
0
2

2
-3

.4
6
8
3
0
4
E

-0
3

-9
.2

1
0
3
2
5
E

-0
2

3
.2

0
2
0
0
4
E

+
0
0

-2
.4

7
6
2
9
9
E

+
0
1

3
-2

.9
9
4
4
0
1
E

-0
5

-5
.1

9
5
3
2
2
E

-0
3

2
.4

4
6
0
1
9
E

-0
1

-2
.5

0
8
2
2
7
E

+
0
0

4
-2

.2
6
8
4
2
9
E

-0
6

5
.1

0
3
9
8
9
E

-0
4

-8
.7

6
3
2
3
7
E

-0
3

4
.4

9
3
7
7
0
E

-0
2

5
-2

.9
5
9
1
8
4
E

-0
8

2
.3

2
9
8
2
4
E

-0
5

-1
.0

2
8
1
9
8
E

-0
3

1
.0

7
5
6
8
4
E

-0
2

6
1
.2

9
8
0
4
4
E

-0
8

-1
.1

3
5
1
8
5
E

-0
6

2
.1

1
0
4
0
7
E

-0
5

-1
.4

6
0
9
5
1
E

-0
4

7
7
.2

1
5
8
0
8
E

-1
1

-2
.8

5
7
4
1
5
E

-0
8

1
.2

1
2
4
7
4
E

-0
6

-1
.2

4
9
8
7
2
E

-0
5

𝐶
𝐿

𝑛

0
1

2
3

4
5

6
7

8
9

1
0

0
1
.1

5
0
3
4
1
E

-0
2

1
.2

1
6
6
3
8
E

-0
1

-6
.9

9
6
7
5
9
E

+
0
0

5
.6

5
6
0
4
1
E

+
0
2

-1
.2

5
2
6
7
5
E

+
0
4

9
.1

9
5
0
6
8
E

+
0
4

1
1
.1

7
4
9
6
7
E

-0
3

1
.0

9
8
2
0
1
E

-0
1

-1
.2

8
3
0
1
8
E

+
0
1

3
.8

2
8
3
7
3
E

+
0
2

-3
.2

1
9
2
5
1
E

+
0
3

2
1
.0

0
8
4
1
8
E

-0
5

-1
.1

3
7
6
2
5
E

-0
3

2
.9

7
7
0
7
9
E

-0
1

-2
.0

3
4
4
1
3
E

+
0
1

4
.9

9
9
2
2
7
E

+
0
2

-3
.8

4
4
8
6
5
E

+
0
3

3
3
.3

6
7
3
1
7
E

-0
6

-1
.9

3
6
3
5
7
E

-0
3

1
.7

5
7
5
1
5
E

-0
1

-4
.8

8
6
1
0
9
E

+
0
0

4
.1

8
4
0
1
3
E

+
0
1

4
-4

.2
5
6
3
7
2
E

-0
9

3
.8

6
5
5
9
2
E

-0
6

-1
.9

0
7
8
4
7
E

-0
3

1
.7

6
0
1
2
9
E

-0
1

-4
.8

8
4
1
6
1
E

+
0
0

3
.9

9
5
8
9
1
E

+
0
1

5
-2

.6
5
8
6
7
3
E

-0
8

1
.4

8
7
4
4
6
E

-0
5

-1
.0

1
9
8
0
9
E

-0
3

2
.5

4
6
9
4
9
E

-0
2

-2
.1

2
5
2
6
6
E

-0
1

6
-5

.2
0
4
0
0
5
E

-1
1

3
.5

6
7
0
2
4
E

-0
8

5
.6

2
1
7
9
5
E

-0
6

-7
.5

1
3
1
9
2
E

-0
4

2
.2

5
7
3
6
9
E

-0
2

-1
.9

0
0
9
1
0
E

-0
1

7
1
.4

2
3
1
5
7
E

-1
0

-4
.9

1
6
6
3
7
E

-0
8

2
.8

1
2
4
8
6
E

-0
6

-6
.2

4
7
2
6
1
E

-0
5

4
.8

7
6
6
6
6
E

-0
4

8
2
.9

4
4
5
9
6
E

-1
3

-1
.4

7
3
8
9
8
E

-1
0

-1
.1

5
5
0
5
8
E

-0
8

1
.7

7
0
9
0
8
E

-0
6

-5
.3

7
3
5
9
9
E

-0
5

4
.5

2
6
6
6
2
E

-0
4

9
-1

.9
8
2
5
5
8
E

-1
3

5
.4

1
4
5
5
7
E

-1
1

-2
.7

6
9
1
6
7
E

-0
9

5
.6

5
1
4
9
4
E

-0
8

-4
.1

9
4
5
0
6
E

-0
7

1
0

-3
.6

4
6
1
0
6
E

-1
6

1
.4

5
6
3
4
3
E

-1
3

1
.2

1
9
9
5
3
E

-1
1

-1
.6

8
6
1
6
4
E

-0
9

4
.9

7
4
2
1
7
E

-0
8

-4
.1

3
0
6
2
6
E

-0
7

𝐶
𝐷

𝑛

35

0
1

2
3

4
5

6
7

0
1
.2

5
1
0
9
6
E

-0
2

-6
.5

3
3
2
8
1
E

-0
1

8
.2

1
0
5
3
2
E

+
0
1

-6
.8

7
7
9
1
9
E

+
0
2

1
-1

.1
9
9
4
2
4
E

-0
2

-3
.4

5
9
8
8
1
E

-0
2

3
.7

2
8
5
4
2
E

+
0
0

-4
.0

4
9
6
3
8
E

+
0
1

2
-7

.2
2
0
7
1
9
E

-0
5

8
.0

6
2
9
8
5
E

-0
2

-2
.1

8
9
6
8
7
E

+
0
0

1
.4

7
4
6
6
6
E

+
0
1

3
5
.6

1
7
2
6
6
E

-0
6

1
.6

5
2
5
7
8
E

-0
3

-7
.3

9
0
3
4
3
E

-0
2

7
.5

8
5
4
6
4
E

-0
1

4
8
.6

7
2
1
3
1
E

-0
6

-8
.4

8
4
8
1
8
E

-0
4

1
.7

8
4
1
3
2
E

-0
2

-9
.7

0
2
3
8
3
E

-0
2

5
3
.1

9
9
1
5
6
E

-0
8

-1
.1

6
7
4
5
0
E

-0
5

4
.7

9
8
0
3
8
E

-0
4

-4
.9

2
3
2
1
5
E

-0
3

6
-3

.2
6
4
2
2
2
E

-0
8

2
.5

6
5
5
2
8
E

-0
6

-4
.3

3
2
1
3
4
E

-0
5

1
.3

0
0
4
3
4
E

-0
4

7
-1

.1
6
9
9
3
4
E

-1
0

3
.3

0
6
5
0
5
E

-0
8

-1
.3

5
9
5
8
1
E

-0
6

1
.4

3
0
8
0
2
E

-0
5

8
3
.5

1
5
3
9
7
E

-1
1

-2
.4

5
1
7
3
6
E

-0
9

3
.2

2
4
3
6
1
E

-0
8

1
.9

3
6
4
1
5
E

-0
8

9
1
.2

2
3
1
3
3
E

-1
3

-3
.2

9
2
5
6
8
E

-1
1

1
.3

7
2
2
9
7
E

-0
9

-1
.4

7
2
5
1
1
E

-0
8

𝐶
𝑚

𝑛
APPENDIX F

POLYNOMIAL FIT COEFFICIENT TABLES FOR NACA 0015 PARABOLIC FLAP

AIRFOIL AT 𝑅𝑒 = 1,000,000

Table F1 polynomial

fit coefficient for 𝐶̃𝐿
Table F2 polynomial
fit coefficient for 𝐶̃𝐷

Table F3 polynomial
fit coefficient for 𝐶̃𝑚

0
1

2
3

4
5

6
7

0
6
.4

7
2
3
1
0
E

+
0
0

-4
.1

2
1
2
8
4
E

+
0
0

-2
.5

4
6
1
1
4
E

+
0
2

1
.0

0
2
0
4
8
E

+
0
3

1
5
.1

6
0
9
1
6
E

-0
2

1
.0

0
6
5
4
2
E

-0
1

-1
.7

2
2
2
0
2
E

+
0
1

1
.7

0
4
5
2
6
E

+
0
2

2
-3

.4
7
3
4
6
4
E

-0
3

-5
.7

7
1
1
9
7
E

-0
2

1
.4

7
8
6
0
6
E

+
0
0

-5
.7

3
2
3
9
2
E

+
0
0

3
-2

.8
6
7
1
3
6
E

-0
5

-5
.4

0
8
6
7
7
E

-0
3

2
.5

3
0
5
0
5
E

-0
1

-2
.6

1
8
3
0
5
E

+
0
0

4
-2

.6
5
3
8
7
4
E

-0
6

3
.9

8
6
0
0
4
E

-0
4

-1
.6

7
4
3
1
5
E

-0
3

-4
.3

0
2
1
0
0
E

-0
2

5
-3

.3
8
8
6
6
9
E

-0
8

2
.3

8
7
9
9
3
E

-0
5

-1
.0

5
2
3
1
3
E

-0
3

1
.1

1
5
1
1
6
E

-0
2

6
1
.4

0
3
5
1
9
E

-0
8

-1
.0

5
5
2
6
5
E

-0
6

1
.3

1
5
8
8
4
E

-0
5

-3
.1

4
8
8
5
6
E

-0
5

7
7
.6

3
2
7
3
0
E

-1
1

-2
.9

0
1
6
0
8
E

-0
8

1
.2

3
3
6
4
0
E

-0
6

-1
.2

9
6
8
3
4
E

-0
5

𝐶
𝐿

𝑛

0
1

2
3

4
5

6
7

8
9

1
0

0
1
.1

2
6
2
0
1
E

-0
2

1
.1

3
8
2
9
9
E

-0
1

-6
.3

8
5
9
5
0
E

+
0
0

5
.3

8
2
8
6
0
E

+
0
2

-1
.2

1
3
3
1
8
E

+
0
4

8
.9

9
6
6
8
8
E

+
0
4

1
1
.2

3
1
2
3
1
E

-0
3

7
.9

8
9
0
8
0
E

-0
2

-1
.0

2
8
2
1
9
E

+
0
1

3
.1

4
4
6
0
9
E

+
0
2

-2
.6

7
7
3
8
8
E

+
0
3

2
9
.7

7
4
4
8
7
E

-0
6

-9
.9

0
9
6
3
7
E

-0
4

2
.7

6
3
1
7
1
E

-0
1

-1
.9

4
4
3
1
4
E

+
0
1

4
.8

6
6
5
3
6
E

+
0
2

-3
.8

0
8
1
5
2
E

+
0
3

3
1
.5

0
0
0
8
5
E

-0
6

-1
.1

6
8
0
6
3
E

-0
3

1
.0

5
3
0
6
5
E

-0
1

-2
.8

0
6
7
1
1
E

+
0
0

2
.3

7
6
7
2
7
E

+
0
1

4
-3

.0
7
4
3
7
8
E

-0
9

2
.5

0
3
3
9
0
E

-0
6

-1
.6

7
0
1
0
7
E

-0
3

1
.6

0
0
9
3
2
E

-0
1

-4
.5

1
0
4
8
3
E

+
0
0

3
.7

6
9
0
1
3
E

+
0
1

5
-1

.2
7
1
1
1
5
E

-0
8

8
.4

6
1
1
0
6
E

-0
6

-4
.1

5
0
3
5
1
E

-0
4

6
.8

9
8
4
2
5
E

-0
3

-4
.3

7
0
2
2
9
E

-0
2

6
-5

.3
3
4
9
4
3
E

-1
1

3
.6

8
0
1
8
5
E

-0
8

4
.8

0
0
3
4
9
E

-0
6

-6
.6

3
3
8
2
0
E

-0
4

2
.0

0
5
4
3
0
E

-0
2

-1
.7

3
3
5
0
0
E

-0
1

7
9
.6

5
3
9
0
5
E

-1
1

-2
.8

0
0
1
7
4
E

-0
8

8
.0

6
4
7
6
9
E

-0
7

6
.4

7
8
7
6
5
E

-0
8

-9
.2

1
1
0
7
3
E

-0
5

8
2
.7

6
2
8
8
2
E

-1
3

-1
.3

2
5
4
1
1
E

-1
0

-1
.1

2
1
8
5
6
E

-0
8

1
.5

9
7
1
2
8
E

-0
6

-4
.7

6
5
1
4
1
E

-0
5

4
.1

1
6
5
2
8
E

-0
4

9
-1

.4
5
6
0
2
0
E

-1
3

3
.0

4
6
9
5
8
E

-1
1

-5
.2

0
9
1
4
5
E

-1
0

-1
.4

1
1
8
8
4
E

-0
8

2
.4

2
7
8
9
1
E

-0
7

1
0

-3
.2

8
4
5
2
5
E

-1
6

1
.1

7
2
5
4
3
E

-1
3

1
.3

5
0
9
1
3
E

-1
1

-1
.5

8
1
7
6
9
E

-0
9

4
.4

8
3
4
1
6
E

-0
8

-3
.8

0
5
4
7
8
E

-0
7

𝐶
𝐷

𝑛

36

APPENDIX G

POLYNOMIAL FIT COEFFICIENT TABLES FOR NACA 0015 PARABOLIC FLAP

AIRFOIL AT 𝑅𝑒 = 1,100,000

0
1

2
3

4
5

6
7

0
9
.0

2
8
0
7
1
E

-0
3

-4
.1

6
7
9
9
5
E

-0
1

7
.0

5
7
8
6
9
E

+
0
1

-5
.6

7
3
6
8
0
E

+
0
2

1
-1

.2
0
2
3
3
8
E

-0
2

-4
.1

1
2
4
4
5
E

-0
2

3
.9

7
2
4
1
0
E

+
0
0

-4
.2

6
2
1
5
0
E

+
0
1

2
-4

.2
1
3
3
0
8
E

-0
5

6
.9

3
7
9
2
2
E

-0
2

-1
.6

8
8
3
9
9
E

+
0
0

9
.5

1
3
3
2
5
E

+
0
0

3
4
.9

9
7
3
0
9
E

-0
6

1
.8

1
6
1
4
6
E

-0
3

-8
.1

0
0
0
9
6
E

-0
2

8
.3

5
7
4
1
7
E

-0
1

4
8
.2

2
0
1
8
5
E

-0
6

-7
.3

7
0
7
5
2
E

-0
4

1
.3

3
4
3
0
0
E

-0
2

-5
.2

1
1
6
1
5
E

-0
2

5
3
.6

6
9
0
6
9
E

-0
8

-1
.3

0
3
4
9
6
E

-0
5

5
.4

2
9
7
7
0
E

-0
4

-5
.6

3
8
6
4
1
E

-0
3

6
-3

.1
1
8
7
1
5
E

-0
8

2
.2

7
3
5
2
5
E

-0
6

-3
.2

8
0
8
9
6
E

-0
5

3
.8

0
6
2
9
9
E

-0
5

7
-1

.3
0
0
2
6
1
E

-1
0

3
.7

0
1
5
6
9
E

-0
8

-1
.5

4
2
4
7
6
E

-0
6

1
.6

3
2
3
6
1
E

-0
5

8
3
.4

1
7
7
9
6
E

-1
1

-2
.2

8
7
4
9
1
E

-0
9

2
.7

9
7
3
5
1
E

-0
8

3
.3

8
2
8
0
8
E

-0
8

9
1
.3

4
1
3
8
6
E

-1
3

-3
.6

4
9
9
8
4
E

-1
1

1
.5

3
1
5
9
9
E

-0
9

-1
.6

3
6
9
9
3
E

-0
8

𝐶
𝑚

𝑛

Table G1 polynomial

fit coefficient for 𝐶̃𝐿
Table G2 polynomial
fit coefficient for 𝐶̃𝐷

Table G3 polynomial
fit coefficient for 𝐶̃𝑚

0
1

2
3

4
5

6
7

0
6
.4

8
6
4
5
4
E

+
0
0

-4
.3

8
7
0
9
1
E

+
0
0

-2
.3

5
1
9
7
0
E

+
0
2

9
.3

2
4
4
4
1
E

+
0
2

1
5
.1

8
6
3
0
8
E

-0
2

9
.2

8
8
4
7
4
E

-0
2

-1
.6

3
1
7
7
3
E

+
0
1

1
.5

5
1
9
6
8
E

+
0
2

2
-3

.2
9
6
2
7
0
E

-0
3

-5
.7

9
6
2
3
0
E

-0
2

1
.2

3
4
3
4
0
E

+
0
0

-3
.5

9
5
6
8
4
E

+
0
0

3
-2

.8
8
5
5
5
8
E

-0
5

-5
.0

2
1
2
8
6
E

-0
3

2
.2

7
2
6
4
4
E

-0
1

-2
.2

6
2
4
7
2
E

+
0
0

4
-4

.4
1
9
1
4
7
E

-0
6

5
.4

7
1
2
1
1
E

-0
4

-5
.7

6
7
5
3
1
E

-0
3

-1
.4

8
3
9
4
9
E

-0
3

5
-2

.9
7
2
2
3
0
E

-0
8

2
.0

9
6
6
6
3
E

-0
5

-8
.7

4
9
1
2
7
E

-0
4

8
.7

7
1
2
5
1
E

-0
3

6
1
.7

5
5
5
7
6
E

-0
8

-1
.4

4
2
7
1
5
E

-0
6

2
.5

5
3
9
9
2
E

-0
5

-1
.5

5
9
2
4
6
E

-0
4

7
6
.7

1
7
5
6
9
E

-1
1

-2
.3

9
1
1
4
5
E

-0
8

9
.3

2
0
4
5
7
E

-0
7

-8
.9

5
5
0
9
1
E

-0
6

𝐶
𝐿

𝑛

0
1

2
3

4
5

6
7

8
9

1
0

0
1
.1

0
5
1
3
0
E

-0
2

1
.0

6
2
0
8
8
E

-0
1

-5
.7

0
3
1
6
4
E

+
0
0

5
.0

7
0
0
2
5
E

+
0
2

-1
.1

6
5
2
6
5
E

+
0
4

8
.7

5
1
4
5
8
E

+
0
4

1
1
.2

7
4
1
2
4
E

-0
3

5
.5

3
2
4
6
5
E

-0
2

-8
.2

6
8
6
0
2
E

+
0
0

2
.6

4
3
1
1
8
E

+
0
2

-2
.3

3
0
1
5
5
E

+
0
3

2
9
.4

5
4
6
7
8
E

-0
6

-8
.2

4
1
3
7
2
E

-0
4

2
.4

8
2
1
8
0
E

-0
1

-1
.8

0
3
7
5
8
E

+
0
1

4
.6

0
4
8
2
3
E

+
0
2

-3
.6

6
5
1
2
8
E

+
0
3

3
-1

.5
8
7
6
8
9
E

-0
8

-5
.1

4
7
9
4
9
E

-0
4

4
.8

2
1
7
0
9
E

-0
2

-1
.2

5
9
0
4
1
E

+
0
0

1
.1

9
7
7
4
7
E

+
0
1

4
-1

.2
4
7
7
9
9
E

-0
9

6
.9

3
3
2
3
3
E

-0
7

-1
.2

9
3
2
9
5
E

-0
3

1
.3

4
4
6
7
2
E

-0
1

-3
.8

9
2
4
2
6
E

+
0
0

3
.3

2
9
9
4
6
E

+
0
1

5
-7

.7
2
1
2
1
6
E

-1
0

2
.7

4
6
8
5
8
E

-0
6

8
.5

3
6
5
3
5
E

-0
5

-6
.8

0
8
4
3
5
E

-0
3

6
.2

5
4
0
0
6
E

-0
2

6
-6

.1
3
5
3
9
1
E

-1
1

4
.4

6
2
7
4
8
E

-0
8

2
.3

2
2
6
7
0
E

-0
6

-4
.6

4
1
8
8
2
E

-0
4

1
.4

7
6
2
8
1
E

-0
2

-1
.3

2
5
4
3
1
E

-0
1

7
5
.4

4
4
5
0
5
E

-1
1

-8
.3

4
0
1
5
1
E

-0
9

-8
.8

1
4
3
9
4
E

-0
7

4
.5

4
7
6
2
8
E

-0
5

-4
.3

7
1
7
5
8
E

-0
4

8
2
.8

6
9
6
7
3
E

-1
3

-1
.5

0
9
3
5
5
E

-1
0

-3
.2

2
0
5
6
0
E

-0
9

9
.1

1
4
4
6
1
E

-0
7

-2
.8

8
3
1
4
3
E

-0
5

2
.6

1
1
3
9
1
E

-0
4

9
-9

.4
6
4
7
7
0
E

-1
4

7
.6

9
5
5
5
0
E

-1
2

1
.3

9
7
1
2
0
E

-0
9

-6
.4

5
4
6
6
5
E

-0
8

6
.1

4
8
1
7
4
E

-0
7

1
0

-3
.3

1
5
8
3
8
E

-1
6

1
.3

7
2
2
6
8
E

-1
3

3
.9

0
1
3
6
4
E

-1
2

-7
.4

7
5
2
4
6
E

-1
0

2
.1

7
5
2
5
0
E

-0
8

-1
.9

2
6
7
9
4
E

-0
7

𝐶
𝐷

𝑛

37

APPENDIX H

PYTHON SCRIPT: RECEIVE USER INPUTS AND FORMAT OUTPUT

import Austin_opt

#import optix

from numpy import array, zeros

"""

Author: Austin Stewart

Date: 4 March 2019

Input: Takes no input

Output: Minimum drag value for a wing

Example usage:

 import Austin_outer_loop as AOL

 Drag=AOL.Austin_outer_loop()

"""

def Austin_outer_loop():

 # Have user give inputs

 rho=1.225 #float(input('What is the density of the air? \nDensity in kg/m^3 (Standard

sea level= 1.229)\n'))

 mu=1.789*10**-5 #float(input('What is the dynamic viscosity of the air? \nDynamic

viscosity in kg/m*s (Standard sea level= 1.73*10**-5)\n'))

38

 Re=999999.999999#float(input('What Reynolds number is your elliptic lift distribution

wing at? \nValue between 0.6e6 and 1.0e6\n'))

 CL=0.5#float(input('What is the lift coefficient of your wing? \nCL is dimensionless

(0.5 for testing)\n'))

 #c=float(input('What is the chord length of the elliptic wing that is being compared?

\nLength in m\n'))

 Ra=8.0#float(input('What is the aspect ratio for the elliptic lift distribution wing that

the wing is being compared to? \nAspect ratio is dimensionless (8 for testing)\n'))

 [B3,lift_case]=get_B3_value()

 [variable_case,washout_val,camber_val,root_twist]=get_variable_case()

 x_length=get_control_point_length()

 c_ell=1.0

 v=Re*mu/(rho*c_ell)

 b_ell=Ra*c_ell

 weight=CL*0.5*rho*v**2*b_ell*c_ell

 b_opt=b_ell*(1/(1+B3))**(1.0/3)

 c_opt=(b_ell*c_ell)/b_opt

 Re_opt=v*rho*c_opt/mu

 # Set inputs into form used in optix

args=[root_twist,B3,rho,v,weight,camber_val,washout_val,variable_case,b_opt,c_opt,Re

_opt]

 # Determine size of x based on way lift distribution is being matched

39

 if variable_case == 'Aero' or variable_case == 'Geo':

 x=zeros((x_length,1))

 # Set the values in x if known to converge to value faster

===

==============

x = array([[4.595],

[5.2470],

[-1.0235],

[-6.5705],

[-10.1554]])

===

==============

 # Allow both Camber and Washout

 if variable_case == 'Both':

 x=zeros((2*x_length,1))

 Optimized_Drag = Austin_opt.min_CD_optix(x,args)

 # Use Optix to find the minimum drag case for the rectangular wing

===

==============

min_drag = optix.minimize(Austin_opt.min_CD_optix,x,args,

40

termination_tol=1e-12,

grad_tol=1e-12,

verbose=False,

max_processes=1,

dx=0.001,

max_iterations=1000

)

===

==============

 print('Lift Case:',lift_case,'\n')

 if lift_case == 'Other':

 print('B3 Value:',B3,'\n')

 print('Variable Case:',variable_case,'\n')

 print('Reynolds number chosen B3:',Re_opt,'\n')

 print('Optimized Aspect ratio:', b_opt/c_opt,'\n')

 return Optimized_Drag

def get_variable_case():

 variable_case=input('Do you want to vary aerodynamic or geometric twist or both?

\nAcceptable values Aero or Geo or Both\n')

 if variable_case == 'Geo':

 washout_val=0.0

41

 camber_val=float(input('What is constant aerodynamic twist value for the wing?

\nAerodynamic twist value in percent (-20 to 20)\n'))

 root_twist=float(input('What is the geometric twist at the root of your wing?

\nGeometric twist value in deg (-15 to 15)\n\n'))

 elif variable_case == 'Aero':

 camber_val=0.0

 washout_val=float(input('What is constant geometric twist value for the wing?

\nGeometric twist value in deg (-15 to 15)\n'))

 root_twist=float(input('What is the aerodynamic twist at the root of your wing?

\nAerodynamic twist value in percent (-20 to 20)\n\n'))

 elif variable_case == 'Both':

 camber_val=0.0

 washout_val=0.0

 else:

 print('Error: please provide appropriate answer.')

 [variable_case,washout_val,camber_val,root_twist]=get_variable_case()

 return(variable_case,washout_val,camber_val,root_twist)

def get_control_point_length():

 x_length=int(input('How many control points do you want to have on the wing

including root point? (integer between 1 and 20)\n'))

 if not 1<= x_length <= 20:

 print('Please choose appropriate value.')

 [x_length]=get_control_point_length()

42

 return x_length

def get_B3_value():

 lift_case=input('What distribution case are you trying to match?\nElliptic = 1 \nFixed

lift dist, fixed net weight, fixed max stress, fixed stall speed or Prandtls 1933 = 2 \nFixed

lift dist, fixed gross weight, fixed max stress, fixed wing loading = 3 \nFixed lift dist,

fixed gross weight, fixed max deflection, fixed wing loading = 4 \nFixed lift dist, fixed

net weight, fixed max deflection, fixed stall speed= 5\nUser Specified B3 (enter

Other)\n')

 if lift_case == 'Other':

 B3=float(input('What is the B3 value you would like to use?\nTypical range is -1/3

to 0\n'))

 elif int(float(lift_case)) in [1,2,3,4,5]:

 lift_case=int(float(lift_case))

 # Determine B3 value to use based on lift distribution case

 # Lift Distribution Case {Elliptic}

 if lift_case==1:

 B3=0.0

 # Lift Distribution Case {fixed lift dist, fixed net weight, fixed max stress, fixed stall

speed} {Prandtl's 1933}

 elif lift_case==2:

 B3=-1.0/3

43

 # Lift Distribution Case {fixed lift dist, fixed gross weight, fixed max stress, fixed

wing loading}

 elif lift_case==3:

 B3=-0.13564322

 # Lift Distribution Case {fixed lift dist, fixed gross weight, fixed max deflection,

fixed wing loading}

 elif lift_case==4:

 B3=-0.05971587

 # Lift Distribution Case {fixed lift dist, fixed net weight, fixed max deflection, fixed

stall speed}

 elif lift_case==5:

 B3=-0.17714856

 else:

 print('\nError: Please provide appropriate answer.\n')

 [B3,lift_case]=get_B3_value()

 return(B3,lift_case)

44

APPENDIX I

PYTHON SCRIPT: WRAPPER TO OPTIX

import optix

import Austin_mach as AM

import os

import json

import numpy as np

import Reynolds_Interpolation as RI

import math

"""

Author: Austin Stewart

Date: 4 March 2019

Input: -vars_in: Type(list), Size(varies 5 or 10), variable that will

 be used to match the given lift distribution case

 -const_in: Type(list), Size(7), values that will be constant

 while matching lift distribution,

 const_in[0] = density in kg/m^3

 const_in[1] = velocity of wing in m/s

 const_in[2] = dynamic viscosity in kg/m*s

 const_in[3] = weight of wing in N

 const_in[4] = lift distribution case that is being matched see lines 32-45 for

explanation

Output: Drag for a wing that matches a lift distribution

45

"""

def min_CD_optix(var_in,const_in):

 Opt_case=AM.Match_CL()

 Opt_case.set_vars(const_in)

 x0=var_in

 # Use optix on match CL

 Opt = optix.minimize(Opt_case.Run_MachUp,x0,

 termination_tol=1e-8,

 grad_tol=1e-5,

 verbose=True,

 max_processes=8,

 dx=0.1,

 max_iterations=1000,

 alpha_mult=2.0)

 print('\nThe twist profile that matches the analytic lift distribution.')

 print('alpha:',Opt.x[0,0],'(deg)')

 print('Root twist:',Opt_case.root_twist)

 size_x=len(x0)

 for i in range(1,size_x-1):

 thet=math.pi/2*(1+i/(size_x-1))

 z=-math.cos(thet)

46

===

==============

z=i/size_x # for even spacing along the semi-span

===

==============

 print('Twist at ',z,' span:',Opt.x[i,0])

 print('Twist at full span:',Opt.x[size_x-1,0],'\n')

 print('\nThe RMS value for the results.')

 print(Opt.f)

 print('\n\n')

 # Create Reynolds specific airfoil values

 RI.Reynolds_Interpolation(const_in[10])

 # Use MachUp to determine CD from the matching CL

 if Opt_case.Twist_type=='Geo':

 wash=np.zeros(size_x)

 camb=np.zeros(size_x)

 wash[0]=Opt_case.root_twist

 camb[0]=Opt_case.Camber_value

 for i in range(1,size_x):

 wash[i]=float(Opt.x[i,0])

47

 camb[i]=Opt_case.Camber_value

 if Opt_case.Twist_type == 'Aero':

 wash=np.zeros(size_x)

 camb=np.zeros(size_x)

 camb[0]=Opt_case.root_twist

 wash[0]=Opt_case.Washout_value

 for i in range(1,size_x):

 camb[i]=float(Opt.x[i,0])

 wash[i]=Opt_case.Washout_value

 if Opt_case.Twist_type == 'Both':

 wash=np.zeros(size_x/2)

 camb=np.zeros(size_x/2)

 camb[0]=Opt.x[size_x/2]

 wash[0]=Opt.x[0]

 for i in range(1,size_x):

 wash[i]=Opt.x[i]

 camb[i]=Opt.x[i+size_x/2]

 # Generate washout input file

 CambWash_length=len(wash)

 twist_vars = {'r1': {'c1': 0.00, 'c2': wash[0]}}

 for i in range(1,CambWash_length):

 thet=math.pi/2*(1+i/(CambWash_length-1))

48

 z=-math.cos(thet)

===

==============

z=i/size_x # for even spacing along the semi-span

===

==============

 twist_vars.update({'r'+str(i+1): {'c1': z, 'c2': wash[i]}})

 with open('Final_washout.json', 'w') as data_file:

 json.dump(twist_vars, data_file, sort_keys=True, indent=4)

 # Generate airfoil ratio input file

 af_ratio_vars = {'r1': {'c1': 0.00, 'c2': camb[0]}}

 for i in range(1,CambWash_length):

 thet=math.pi/2*(1+i/(CambWash_length-1))

 z=-math.cos(thet)

===

==============

z=i/size_x # for even spacing along the semi-span

===

==============

49

 af_ratio_vars.update({'r'+str(i+1): {'c1': z, 'c2': camb[i]}})

 with open('Final_af_ratio.json', 'w') as data_file:

 json.dump(af_ratio_vars, data_file, sort_keys=True, indent=4)

 machup_input = json.load(open('Final_input.json'))

 # change angle of attack to achieve desired lift (scales lift distribution)

 machup_input['condition']['alpha'] = Opt.x[0,0]

 machup_input['reference']['area'] = Opt_case.S_opt

 machup_input['reference']['lateral_length'] = Opt_case.b_opt

 machup_input['reference']['longitudinal_length'] = Opt_case.c_opt

 machup_input['wings']['Main']['root_chord'] = Opt_case.c_opt

 machup_input['wings']['Main']['tip_chord'] = Opt_case.c_opt

 machup_input['wings']['Main']['span'] = Opt_case.b_opt/2

 with open('Final_input.json', 'w') as machup_file:

 json.dump(machup_input, machup_file, sort_keys=True, indent=4)

 # Execute MachUp

 os.system('./MachUp.out Final_input.json > Final_values.txt')

 ###

 # Extract data from distributions output file

 CD_dist_temp=[]

 CL_dist_temp=[]

 y_coord_temp=[]

 sec_alpha_temp=[]

 with open('Final_output.txt') as Machup_data:

50

 for line in Machup_data.readlines()[1:201]:

 line = line.strip()

 Name, controlx, controly, controlz, ch, twist, sweep, dihed, area, sec_alph, \

 CL_list, CD_list, Cm_dist_Machup, CL_ref, sec_alph_L0 = line.split()

 CD_dist_temp.append(float(CD_list))

 CL_dist_temp.append(float(CL_list))

 y_coord_temp.append(float(controly))

 sec_alpha_temp.append((Opt.x[0,0]-float(sec_alph))*np.pi/180)

 # Print the lift distributions out to see if they match

 z_size=int(len(CL_dist_temp))

 # Print the MachUp lift distribution out

 # Determine what the z step size is

 CL_dist_Machup=np.zeros([z_size])

 CD_par=np.zeros([z_size])

 y_cord=np.zeros([z_size])

 sec_alpha_coord=np.zeros([z_size])

 #move values so MachUp follows same - b/2 to b/2

 for i in range (0,int(z_size/2)):

 CL_dist_Machup[i]=CL_dist_temp[int(z_size/2)-i-1]

 CD_par[i]=CD_dist_temp[int(z_size/2)-i-1]

 y_cord[i]=y_coord_temp[int(z_size/2)-i-1]

 sec_alpha_coord[i]=sec_alpha_temp[int(z_size/2)-i-1]

 for i in range (int(z_size/2),z_size):

51

 CL_dist_Machup[i]=CL_dist_temp[i]

 CD_par[i]=CD_dist_temp[i]

 y_cord[i]=y_coord_temp[i]

 sec_alpha_coord[i]=sec_alpha_temp[i]

 # Integrate the CD distribution to find total drag

 CD_p=np.zeros([z_size])

 CD_i=np.zeros([z_size])

 CD_t=np.zeros([z_size])

 for i in range (0,z_size):

 CD_p[i]= CD_par[i]*np.cos(sec_alpha_coord[i])

 CD_i[i]= CL_dist_Machup[i]*np.sin(sec_alpha_coord[i])

 CD_t[i]= CD_p[i]+CD_i[i]

 CD_Opt=0

 for i in range (1,z_size):

 CD_Opt+=((CD_t[i-1]+CD_t[i])/2*np.abs(y_cord[i]-y_cord[i-1]))/Opt_case.b_opt

 print('\nMachUp Lift Distribution\n')

 for i in range (0,z_size):

 print(CL_dist_Machup[i])

 print('\nAnalytic Lift Distribution\n')

 #CL_dist_diff=np.zeros([z_size])

 for i in range (0,z_size):

 z=y_cord[i]

 theta=math.acos(-z*2.0/Opt_case.b_opt)

52

 # Calculate analytic CL needed to match

CL_dist_analytic=Opt_case.weight/Opt_case.b_opt/(1/2.0*Opt_case.rho*Opt_case.v**2

Opt_case.c_opt) (4.0/math.pi*(math.sin(theta) \

 +Opt_case.B_3*math.sin(3.0*theta)))

 print(CL_dist_analytic)

 print('\nZ/b Distribution\n')

 for i in range (0,z_size):

 z=y_cord[i]

 print(z/Opt_case.b_opt)

 #CL_dist_diff[i]=(CL_dist_analytic-CL_dist_Machup[i])**2

 return CD_Opt

53

APPENDIX J

PYTHON SCRIPT: WRAPPER TO MACHUP

import os

import json

import shutil

import math

from numpy import zeros

import Reynolds_Interpolation as RI

import uuid

"""

Author: Austin Stewart

Date: 4 March 2019

Input:

Output:

"""

class Match_CL():

 def __init__(self):

 self.alpha=0.0

 self.root_twist=0.0

 self.B_3=0.0

 self.rho=0.0

54

 self.v=0.0

 self.weight=0.0

 self.Camber_value=0.0

 self.Washout_value=0.0

 self.Twist_type="String"

 self.b_opt=0.0

 self.c_opt=0.0

 self.RE=0.0

 self.work_dir="/home/austin/Documents/Integration_py_mach"

 self.orig_dir=self.work_dir + '/' + 'Original_case'

 self.S_opt=0.0

 def set_vars(self,args):

 self.root_twist=args[0]

 self.B_3=args[1]

 self.rho=args[2]

 self.v=args[3]

 self.weight=args[4]

 self.Camber_value=args[5]

 self.Washout_value=args[6]

 self.Twist_type=args[7]

 self.b_opt=args[8]

 self.c_opt=args[9]

55

 self.RE=args[10]

 self.S_opt=self.b_opt*self.c_opt

 def Run_MachUp(self,x):

 alpha = x[0,0]

 size_x=len(x)

===

==============

 case_uuid=str(uuid.uuid4())

 # Copy original files into case directory

 shutil.copytree(self.orig_dir, case_uuid)

 # Make the temporary directory current

 os.chdir(case_uuid)

===

==============

 # Calculate Reynolds

 machup_input = json.load(open('input.json'))

 # Create Reynolds specific airfoil values

 RI.Reynolds_Interpolation(self.RE)

 if self.Twist_type=='Geo':

 wash=zeros(size_x)

56

 camb=zeros(size_x)

 wash[0]=self.root_twist

 camb[0]=self.Camber_value

 for i in range(1,size_x):

 wash[i]=float(x[i,0])

 camb[i]=self.Camber_value

 if self.Twist_type == 'Aero':

 wash=zeros(size_x)

 camb=zeros(size_x)

 camb[0]=self.root_twist

 wash[0]=self.Washout_value

 for i in range(1,size_x):

 camb[i]=float(x[i,0])

 wash[i]=self.Washout_value

 if self.Twist_type == 'Both':

 wash=zeros(size_x/2)

 camb=zeros(size_x/2)

 camb[0]=x[size_x/2]

 wash[0]=x[0]

 for i in range(1,size_x):

 wash[i]=x[i]

 camb[i]=x[i+size_x/2]

 # Generate washout input file

57

 CambWash_length=len(wash)

 twist_vars = {'r1': {'c1': 0.00, 'c2': wash[0]}}

 for i in range(1,CambWash_length):

 thet=math.pi/2*(1+i/(CambWash_length-1))

 z=-math.cos(thet)

===

==============

z=i/size_x # for even spacing along the semi-span

===

==============

 twist_vars.update({'r'+str(i+1): {'c1': z, 'c2': wash[i]}})

 with open('washout.json', 'w') as data_file:

 json.dump(twist_vars, data_file, sort_keys=True, indent=4)

 # Generate airfoil ratio input file

 af_ratio_vars = {'r1': {'c1': 0.00, 'c2': camb[0]}}

 for i in range(1,CambWash_length):

 thet=math.pi/2*(1+i/(CambWash_length-1))

 z=-math.cos(thet)

===

==============

58

z=i/size_x # for even spacing along the semi-span

===

==============

 af_ratio_vars.update({'r'+str(i+1): {'c1': z, 'c2': camb[i]}})

 with open('af_ratio.json', 'w') as data_file:

 json.dump(af_ratio_vars, data_file, sort_keys=True, indent=4)

 # change angle of attack to achieve desired lift (scales lift distribution)

 machup_input['condition']['alpha'] = alpha

 machup_input['reference']['area'] = self.S_opt

 machup_input['reference']['lateral_length'] = self.b_opt

 machup_input['reference']['longitudinal_length'] = self.c_opt

 machup_input['wings']['Main']['root_chord'] = self.c_opt

 machup_input['wings']['Main']['tip_chord'] = self.c_opt

 machup_input['wings']['Main']['span'] = self.b_opt/2

 with open('input.json', 'w') as machup_file:

 json.dump(machup_input, machup_file, sort_keys=True, indent=4)

 # Execute MachUp

 os.system('./MachUp.out input.json > out.txt')

===

==============

 # Extract data from distributions output file

59

 CL_dist_temp=[]

 y_coord_temp=[]

 with open('myfile.txt') as Machup_data:

 for line in Machup_data.readlines()[1:201]:

 line = line.strip()

 Name, controlx, controly, controlz, ch, twist, sweep, dihed, area, sec_alph, \

 c11, CD_p_dist_Machup, Cm_dist_Machup, CL_ref, sec_alph_L0 =

line.split()

 CL_dist_temp.append(float(c11))

 y_coord_temp.append(float(controly))

 # Determine what the z step size is

 z_size=int(len(CL_dist_temp))

 #z_step=float(self.b_opt/(z_size-1))

 CL_dist_Machup=zeros([z_size])

 y_cord=zeros([z_size])

 #move values so MachUp follows same - b/2 to b/2

 for i in range (0,int(z_size/2)):

 CL_dist_Machup[i]=CL_dist_temp[int(z_size/2)-i-1]

 y_cord[i]=y_coord_temp[int(z_size/2)-i-1]

 for i in range (int(z_size/2),z_size):

 CL_dist_Machup[i]=CL_dist_temp[i]

 y_cord[i]=y_coord_temp[i]

60

===

==============

print('\nMachUp Lift Distribution\n')

for i in range (0,z_size):

print(CL_dist_Machup[i])

===

==============

 CL_dist_diff=zeros([z_size])

 for i in range (0,z_size):

 z=y_cord[i]

 theta=math.acos(-z*2.0/self.b_opt)

 # Calculate analytic CL needed to match

 CL_dist_analytic=self.weight/self.b_opt/(1/2.0*self.rho*self.v**2*self.c_opt)*

(4.0/math.pi*(math.sin(theta) \

 +self.B_3*math.sin(3.0*theta)))

 # Compare CL data to analytic CL

 CL_dist_diff[i]=(CL_dist_analytic-CL_dist_Machup[i])**2

 #Calculate RMS

 CL_RMS=math.sqrt(1.0/z_size*sum(CL_dist_diff))

===

==============

61

 os.chdir(self.work_dir)

 shutil.rmtree(case_uuid)

 return CL_RMS

62

APPENDIX K

PYTHON SCRIPT: FORMATS POLYNOMIAL FIT COEFFICEINTS INTO

READABLE FILE

import json

import Linear_Interpolation as LI

"""

Author: Austin Stewart

Date: 31 January 2019

Input: Exact Reynold's Number

Output: Set of curve fit coefficients that to allow CL, CD and Cm to be

 determined given camber and angle of attack on a wing section

"""

def Reynolds_Interpolation(Re):

 """Inputs"""

 data_file='Airfoil_data.json' # this data file has the polynomial fit found using XFOIL

 Reynolds_low=5e5

 Reynolds_high=1.1e6

 """Determine sections of json to use"""

 Re_round=Re//100000

 if Re > Reynolds_high or Re < Reynolds_low:

 print("Reynolds Number outside of range.\nReynolds must be between %d and %d.

\n"%(Reynolds_low,Reynolds_high))

 return

63

 with open(data_file) as f:

 Curve_fit_data=json.load(f)

 Re_file_low=Re_round*100000//1

 Re_file_high=Re_file_low+100000//1

 # Create python dictionary

 Re_specific={'Re_specific' : {

 'properties' : {

 'type' : 'polynomial',

 'is_function' : 1,

 'CL' : {},

 'CD' : {},

 'Cm' : {},

 'CL_max' : "",

 'Comments' : "All angles in radians and slopes in 1/radians"}}}

 #CL

 variable='CL'

 alpha_range=7

 camber_range=7

Re_specific=odd_airfoil_value(Re_specific,Re,variable,alpha_range,camber_range,Re_fi

le_low,Re_file_high,Curve_fit_data)

 #CD

64

 variable='CD'

 alpha_range=10

 camber_range=7

Re_specific=even_airfoil_value(Re_specific,Re,variable,alpha_range,camber_range,Re_f

ile_low,Re_file_high,Curve_fit_data)

 #Cm

 variable='Cm'

 alpha_range=7

 camber_range=9

Re_specific=odd_airfoil_value(Re_specific,Re,variable,alpha_range,camber_range,Re_fi

le_low,Re_file_high,Curve_fit_data)

 # Turn dictionary into json

 with open('Re_specific.json','w') as outfile:

 json.dump(Re_specific,outfile, indent=4)

 return

def

odd_airfoil_value(Re_specific,Re,variable,alpha_range,camber_range,Re_file_low,Re_fil

e_high,Curve_fit_data):

65

 for i in range (0,alpha_range):

 c_alpha='C'+str(i)

 Re_specific['Re_specific']['properties'][variable][c_alpha]={

 }

 j=0

 while j <= camber_range:

 if i % 2 ==0:

 j=j+1

 c_camber='C'+str(j)

value=LI.Linear_Interpolation(Re,Re_file_low,Re_file_high,Curve_fit_data[str(int(Re_fi

le_low))][variable][c_alpha][c_camber],Curve_fit_data[str(int(Re_file_high))][variable][

c_alpha][c_camber])

 Re_specific['Re_specific']['properties'][variable][c_alpha][c_camber] = value

 else:

 c_camber='C'+str(j)

value=LI.Linear_Interpolation(Re,Re_file_low,Re_file_high,Curve_fit_data[str(int(Re_fi

le_low))][variable][c_alpha][c_camber],Curve_fit_data[str(int(Re_file_high))][variable][

c_alpha][c_camber])

 Re_specific['Re_specific']['properties'][variable][c_alpha][c_camber] = value

 j=j+1

 j=j+1

66

 return Re_specific

def

even_airfoil_value(Re_specific,Re,variable,alpha_range,camber_range,Re_file_low,Re_f

ile_high,Curve_fit_data):

 for i in range (0,alpha_range):

 c_alpha='C'+str(i)

 Re_specific['Re_specific']['properties'][variable][c_alpha]={

 }

 j=0

 while j <= camber_range:

 if i % 2 ==0:

 c_camber='C'+str(j)

value=LI.Linear_Interpolation(Re,Re_file_low,Re_file_high,Curve_fit_data[str(int(Re_fi

le_low))][variable][c_alpha][c_camber],Curve_fit_data[str(int(Re_file_high))][variable][

c_alpha][c_camber])

 Re_specific['Re_specific']['properties'][variable][c_alpha][c_camber] = value

 j=j+1

 else:

 j=j+1

 c_camber='C'+str(j)

67

value=LI.Linear_Interpolation(Re,Re_file_low,Re_file_high,Curve_fit_data[str(int(Re_fi

le_low))][variable][c_alpha][c_camber],Curve_fit_data[str(int(Re_file_high))][variable][

c_alpha][c_camber])

 Re_specific['Re_specific']['properties'][variable][c_alpha][c_camber] = value

 j=j+1

 return Re_specific

68

APPENDIX L

PYTHON SCRIPT: PERFORM LINEAR INTERPOLATION

def Linear_Interpolation(Re,Re_low,Re_high,term_low,term_high):

 y=term_low+(Re-Re_low)*(term_high-term_low)/(Re_high-Re_low)

 return y

