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Abstract
Inconsistency in taxonomic identification and analyst bias impede the effective use of diatom data in

regional and national stream and lake surveys. In this study, we evaluated the effect of existing protocols and a
revised protocol on the precision of diatom species counts. The revised protocol adjusts four elements of sample
preparation, taxon identification and enumeration, and quality control (QC). We used six independent data sets
to assess the effect of the adjustments on analytical outcomes. The first data set was produced by three laborato-
ries with a total of five analysts following established protocols (Charles et al., Protocols for the analysis of algal
samples collected as part of the U.S. Geological Survey National Water-Quality Assessment, 2002) or their slight
variations. The remaining data sets were produced by one to three laboratories with a total of two to three ana-
lysts following a revised protocol. The revised protocol included the following modifications: (1) development
of coordinated precount voucher floras based on morphological operational taxonomic units, (2) random
assignment of samples to analysts, (3) postcount identification and documentation of taxa (as opposed to an
approach in which analysts assign names while they enumerate), and (4) increased use of QC samples. The
revised protocol reduced taxonomic bias, as measured by reduction in analyst signal, and improved similarity
among QC samples. Reduced taxonomic bias improves the performance of biological assessments, facilitates
transparency across studies, and refines estimates of diatom species distributions.

Over the past 30 years, the use of diatoms as indicators of
biotic condition has increased because of the value of diatom
species composition as an important ecological endpoint
(Stoermer and Smol 2010). In the United States, federal pro-
grams have adopted diatom indicators to complement assess-
ments based on aquatic invertebrates and fish. Many federal
surveys have a large geographic extent, covering regional and
continental scales (Pan et al. 1996; Potapova and Charles 2007),
and can include thousands of samples. Taxonomic expertise is
often spread across several analysts and laboratories. Unfortu-
nately, taxonomic data sets produced by different laboratories
have not been taxonomically comparable with one another
within studies (Lee et al. 2019), which compromises assessments
(Cao et al. 2007). The lack of taxonomic consistency in

freshwater diatom data is a serious issue (Kelly et al. 2009;
Kahlert et al. 2016; Werner et al. 2016), and the EuropeanWater
Framework Directive has initiated cross-analyst comparisons to
quantify the magnitude of the problem (Besse-Lototskaya et al.
2006, summarized in Kahlert et al. 2016). Here, we consider
aspects commonly shared among protocols used in the United
States in support of diatom assessments and recommend revi-
sions to those protocols for ensuring taxonomically consistent
and verifiable diatom species data.

Lack of consistency in taxonomic identification of diatoms
stems, in part, from a reliance on European floras and the
resulting misapplication of names to North American species
(Kociolek and Spaulding 2000). Analysts in different laborato-
ries often use different taxonomic references, which results in
analysts arriving at different species names for the same or
similar specimens. In an Idaho study, Cao et al. (2007) assem-
bled diatom taxonomic data from 256 reference-quality sites
to develop a state-wide diatom index. The species names used
by the three laboratories, however, could not be reconciled or
harmonized. As a result, data from only one laboratory could
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be used (149 samples), reducing the robustness of the final
index. Following recognition of incompatibility in taxonomic
identification in the Idaho study, other studies were found to
suffer from significant “analyst bias” (Lee et al. 2019).

Determining the source of inconsistency in taxonomic iden-
tification can be confounded by the species-specific geographic
distributions of diatoms. In past national surveys, samples were
intentionally assigned to analysts on a geographic basis. For
example, one laboratory might receive samples from the
Northeast United States, whereas another laboratory received
samples from another region. However, when analysts working
in different regions subscribe to different species concepts and
use different taxonomic guides, “analyst effect” can be con-
founded with diatom geographic distributions. Post hoc taxo-
nomic harmonization has been advocated to correct
taxonomic inconsistencies (Manoylov 2014), but the process is
not only time-consuming, but flawed. Post hoc corrections
result in reduced detection of species diversity because many
species are combined into higher-level taxonomic groups in an
attempt to reduce “analyst signal” (Lee et al. 2019). As a result,
bias in the application of diatom names continues to compro-
mise the use of diatom data in biological assessments, particu-
larly at regional and national scales.

In this study, we examined six diatom data sets to quantify
variation in analysts’ abilities to recognize species (as morphologi-
cal operational taxonomic units [mOTUs]). Based on our results,
we developed revisions to common aspects of processing proto-
cols to produce consistent, verifiable diatom species data. The
revised protocol reduced taxonomic bias (i.e., analyst signal) and
improved similarity among enumeration of replicate samples.

Materials and procedures
Diatom taxonomic data sets

Diatom relative abundance data from six recent surveys of
periphyton in streams and lakes were examined in this study.
One survey was collected as a joint effort between the
U.S. Geological Survey (USGS) and the U.S. Environmental Pro-
tection Agency (USEPA): the 2013 Midwest Stream Quality
Assessment (MSQA) (Van Metre et al. 2012; Garrett et al. 2017).
Four studies were collected as part of the USGS National Water

Quality Assessment program: the 2014 Northeast Stream Quality
Assessment (NESQA 2014) (Van Metre et al. 2016; Coles et al.
2018), the 2014 Southeast Stream Quality Assessment (SESQA)
(Van Metre and Journey 2014; Journey et al. 2015), the 2015
Pacific Northwest Stream Quality Assessment (PNSQA) (Van
Metre et al. 2015; Sheibley et al. 2017), and the NESQA 2016
(Van Metre et al. 2016; Coles et al. 2018) (Table 1). Finally, a
2017 regional survey of lake sediments from northeast states, ter-
med the 2017 Northeast Lake Sediment Diatom Voucher Flora
project (NE Lakes), was examined (Fig. 1). Between 60 and
107 sites are represented in each study, and 80–140 taxonomic
analyses of 600 valves were collected (Table 1). The geographic
extent of each survey is roughly equivalent, extending across two
to four Level III ecoregions (Omernik and Griffith 2014).

Strewn slides (Charles et al. 2002) were prepared for the MSQA
study. Although slide preparation does not relate directly to taxo-
nomic bias, Battarbee chambers were used to prepare slides for
the remaining studies. These chambers were developed to pro-
duce quantitative, replicate slides of microfossils for analysis of
lake sediments (Battarbee 1973). Evaporative settling chambers,
such as Battarbee chambers, allow for even settling of cells
resulting in random distribution of diatoms on coverslips. The
method reduces edge effects, that is, differences in density and
distribution of cells, especially near the margins of the coverslip.
Specimens are distributed on the coverslip in a more random dis-
tribution than with strewn slides (Battarbee 1973). Furthermore,
replicate slides prepared by a single person from Battarbee cham-
bers were shown to have a lower coefficient of variation of cell
number than replicate slides prepared by other methods (Wolfe
1997). Strewn preparations using square coverslips are vulnerable
to uneven distribution of cells, both from edge effects and by cell
sorting caused by vibration. Diatomists are familiar with the “X”
pattern that valves form when coverslips are subject to even min-
imal amounts of vibration while drying.

For the MSQA survey, five analysts in three labs completed
diatom identifications and enumeration following Charles et al.
(2002), which did not include our proposed revisions. For the
other studies, we made modifications to data collection and qual-
ity assurance/quality control (QA/QC). The modifications
include (1) development of coordinated precount voucher floras
with provisional names (Bishop et al. 2017), (2) random

Table 1. Descriptive attributes of data sets for each of six regional studies. Studies include the EPA-USGS MSQA, USGS NESQA 2014,
USGS SESQA, USGS PNSQA, USGS NESQA 2016, and EPA NE Lakes. The table lists the study name and number of sites, analytical organ-
ism counts, replicate sample collections, replicate (self and cross) counts, analysts, and labs.

Study Sites Analytical organism counts Replicate collections Replicate counts Analysts Labs

MSQA 92 98 5 5 5 3

NESQA 2014 60 80 0 19 2 2

SESQA 107 134 5 19 2 1

PNSQA 104 112 8 21 2 1

NESQA 2016 119 125 8 26 3 2

NE Lakes 106 140 6 27 3 3
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assignment of samples to analysts, (3) postcount identification of
taxa (as opposed to most protocols, in which analysts assign
names while they enumerate), and (4) implementation of a

“multi-party” QC process with increased collection and analysis
of QC data. Samples were analyzed by two to three analysts in
one to three laboratories (Table 1).

Fig. 1. Geographic distribution of samples for six regional surveys: MSQA (A), NESQA 2014 (B), SESQA (C), PNSQA (D), NESQA 2016 (E), and NE Lakes
(F). Symbols represent analysts, carry across surveys, and correspond to symbols used in Fig. 2.
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Precount voucher floras
For the MSQA survey, diatoms were identified by generally

following established protocols (Charles et al. 2002; USEPA
2009). Each analyst was instructed to provide the project
leader with a digital image of a representative specimen for all
taxa that made up 5% or more of an individual count. In gen-
eral, these images were not shared among MSQA analysts dur-
ing the enumeration process.

In contrast, the other five studies used precount voucher
floras shared by all analysts during enumeration to coordinate
species concepts and naming convention (Bishop et al. 2017).
Multiple images were collected to document the size and mor-
phological range of each taxon, which were then assigned a
unique mOTU code. The images were assembled into image
catalogs, or precount voucher floras, and made available to
analysts. Analysts then had the opportunity to comment and
reformulate mOTUs and their member images before the for-
mal analysis began. Once analysis of microslides started,
newly encountered taxa were photographed, assigned a code,
added to the flora, and made available to project analysts for
use throughout the analysis period. Analysts could use the
voucher flora in either electronic, printed, or both forms dur-
ing analysis. The SESQA flora was published (Bishop et al.
2017), and the additional floras are available for download
(https://diatoms.org/practitioners/what-is-a-voucher-flora).

Random assignment of samples
For the MSQA survey, samples were not randomly assigned

to analysts, but rather, sample assignments generally adhered
to state boundaries. In contrast, for the other five studies, sam-
ples were randomly assigned to analysts, accounting for differ-
ent workloads assigned to each (Table 1).

Formal scientific names
For the MSQA survey, analysts assigned scientific or provi-

sional names to diatom valves as they were encountered dur-
ing microscopic analysis using taxonomic references available
within their given laboratory. At the end of the survey, names
were finalized by a taxonomic coordinator. In contrast, ana-
lysts in the remaining five surveys enumerated taxa based on
the mOTU codes from the shared voucher floras. When ana-
lyses were completed, mOTU codes were reconciled, and for-
mal scientific names were assigned during collaborative
workshops. During the workshops, project analysts, as well as
one to three additional diatomists, assigned scientific names
to mOTUs. For each scientific name assigned, analysts
recorded their initials and the taxonomic concept reference
used when identifying the taxon. Any mOTU that did not cor-
respond with a validly published species was referenced by its
project-specific code (e.g. “Achnanthidium sp. 1 SESQA”). Such
names were entered into the U.S. Geological Survey BioData
Taxonomic Database (U.S. Geological Survey 2019) as a bench
name, with the voucher flora serving as the image representa-
tion of the name.

Quality control
For the MSQA survey, the QC procedure required that 10%

of samples be reanalyzed by an analyst outside the primary
lab (Charles et al. 2002). These analyses are referred to as “tax-
onomic harmonization counts.” The first analyst used a dia-
mond objective marker (i.e., Zeiss No. 46 29 60) to etch the
microslide transects that were examined. Then, the second
analyst located the scribed line and enumerated 600 valves fol-
lowing the same transects as the first analyst.

In contrast, for the other five studies, analyses of QC sam-
ples were divided among the analysts completing the primary
analyses. Each analyst examined a random 10% of the samples
that the other analyst(s) had completed. Additionally, analysts
repeated analysis of 10% of their own samples (self-QC
counts). Thus, a total of 20% of samples were recounted, with
each analysis conducted on a replicate slide produced from
the same Battarbee chamber.

Statistical methods
Permutational multivariate ANOVA (PERMANOVAs) were

used to test for analyst bias. Data were square root transformed
and converted to Bray–Curtis similarity matrices prior to anal-
ysis. PERMANOVAs were based on a one-factor, fixed design
and type III sums of squares. “Analyst” was the factor, and cal-
culations used unrestricted permutation of raw data, with
9999 permutations. Percent variation explained by each ana-
lyst was calculated by dividing the sum of squares of the ana-
lyst factor by the total sum of squares to give the coefficient of
determination (R2). Nonmetric multidimensional scaling
(NMDS) was used to create visual representations of relative
differences among analysts. Tests for similarity among repli-
cate samples were based on Bray–Curtis similarity matrices in
which Bray-Curtis values were arcsine transformed and evalu-
ated with one-way ANOVA. The relation between sample
diversity and QC sample similarity was examined with ranged
major axis regression (RMA). RMA is designed to accommo-
date independent variables estimated with error (e.g., species
richness) for data with no outliers (Legendre and Legendre
2012). Data preparation and graphic production was con-
ducted in R (R Core Team 2017) and analyzed in R and Primer
6 (PRIMER-E).

Table 2. Results of PERMANOVA analysis for all primary counts
for each of the six regional studies.

Study Pseudo F R2 p

MSQA 3.18 0.14 <0.001

NESQA 2014 2.69 0.03 0.006

SESQA 1.75 0.01 0.039

PNSQA 2.04 0.02 0.009

NESQA 2016 1.73 0.03 0.015

NE Lakes 2.13 0.04 <0.001
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Assessment
Analyst was a significant factor (p ≤ 0.05) in the MSQA

study, with the analyst factor explaining 14% of the varia-
tion in the data (R2 = 0.14, p < 0.001; Table 2). The results

can be visualized by NMDS (Fig. 2), in which sites are
clustered based on analyst. Analyst was also a significant
factor in the remaining five studies, but only accounted

Fig. 2. Ordination of diatom species data in NMDS for sites in six regional surveys: MSQA (A), NESQA 2014 (B), SESQA (C), PNSQA (D), NESQA 2016
(E), and NE Lakes (F). Symbols represent analysts, carry across surveys, and correspond to symbols used in Fig. 1. R2 values represent the amount of varia-
tion in the data set attributable to analyst bias.
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for 1–4% of variation (Table 2). NMDS plots of these stud-
ies do not demonstrate visual clustering by ana-
lyst (Fig. 2).

Average Bray–Curtis similarity between paired QC counts
(cross-QC and self-QC counts) varied among studies (Fig. 3).
For cross-QC counts, the median similarity was lowest in
MSQA and NE Lakes and highest in NESQA 2014. Note that
MSQA protocols did not include self-QC counts. For NESQA
2016, self-QC counts had lower average Bray–Curtis similarity
than cross-QC counts, but the difference was small (0.039;
p = 0.018; Table 3). In the other four surveys, cross- QCand
self-QC counts did not differ significantly from one another
(Table 3).

Bray–Curtis similarity was strongly correlated with taxon
richness (Fig. 4). Furthermore, slope and coefficient of deter-
mination were similar between self-QC counts (m = −0.004;
r2 = 0.46) and cross-QC counts (m = −0.004; r2 = 0.43).

Discussion
Taxonomic bias has been problematic for diatom data sets

combined across analysts and laboratories (Cao et al. 2007;
Kelly et al. 2009; Kahlert et al. 2016; Lee et al. 2019). While
exact protocols differ among agencies and practitioners, no
existing protocols include the four revisions presented here.
Our methodological changes to common practice improve
transparency in taxonomy, and substantially reduce bias in
the following ways: (1) precount voucher floras provide shared
species concepts to analysts and serve as permanent records of
each study, (2) random assignment of samples prevents

Fig. 3. Boxplots comparing Bray–Curtis similarity between cross-counts
and self-counts in six regional surveys. The MSQA study did not include
analyst self-counts; only cross-count data are shown. Each study is shown
in a different pattern.

Table 3. ANOVA results comparing cross-QC and self-QC
counts within studies. Note that MSQA protocols did not include
self-QC counts.

Study
Median
self-QC

Median
cross-QC Difference p

NESQA 2014 0.694 0.714 −0.020 0.468

SESQA 0.660 0.600 0.060 0.583

PNSQA 0.699 0.707 −0.008 0.635

NESQA 2016 0.723 0.684 0.039 0.015

NE Lakes 0.588 0.583 0.005 0.958

Fig. 4. RMA linear regressions between mean taxa richness between rep-
licate counts and arcsine-transformed Bray–Curtis similarity across six
regional studies for (A) self-QC counts and (B) cross-QC counts. The
MSQA study did not include analyst self-counts; only cross-count data are
shown. Full linear equations and coefficients of determination (r2) are
reported for each regression.
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confounding of analyst bias against diatom geographic distri-
bution, (3) formal scientific names are assigned by analysts
working collaboratively and each name is documented to a
published source, and (4) improved QC distinguishes analyst
bias between self-QC and cross-QC consistency. Implementa-
tion of these methods produced taxonomic data in which ana-
lyst bias was significantly reduced.

Reduction of bias
The revised process outlined here resulted in reduced analyst

bias for all five studies compared to the study (MSQA) that
lacked the revisions. Although analyst was a significant factor
for all six studies, the effect size was notably larger in MSQA
(R2 = 0.14). The revised protocol resulted in <5% of the variance
in the data being attributable to analyst bias (R2 = 0.01–0.04).

QC procedures
Many protocols for diatom analysis specify that the analyst

marks the coverslip of each microslide with a diatom scribe,
permanently etching the observed transect (Charles et al.
2002; USEPA 2012, 2018). If the slide is selected for one of the
10% repeat counts, a QC analyst returns to this same transect.
An implicit assumption of this protocol is that the primary and
secondary analyst both examine the same transects and speci-
mens during a QC count. In practice, however, it is difficult for
analysts to examine the same transect, with many analysts
reporting they are unable to locate or follow previously etched
transects (S. A. Spaulding, pers. observ.). Furthermore, the dia-
mond objective marks frequently degrade the thin glass cover-
slips over time, destroying the integrity of the microslide
(M. Potapova, Academy of Natural Sciences of Drexel Univer-
sity, pers. comm.). Many of the transects can no longer be
observed in slides, defeating the purpose of long-term archives.

In addition, some protocols specify that the primary and
secondary counts must be at least 60% similar based on Bray–
Curtis similarity (USEPA 2019). Thus, two analysts examining
the same specimens need only be 60% similar in their species
identification. Analysts are therefore penalized for failing to
match a standard of Bray–Curtis similarity when, instead, dif-
ferences in identifications between the primary and secondary
analyst result from inability to locate or follow etched tran-
sects. Species are distributed on slides in a heterogeneous man-
ner such that the greater the species richness, the less likely
analysts encounter the same taxa. Moreover, the greater the
species richness, the more likely analysts are penalized, falsely,
for being “inconsistent.” Not only does the revised protocol
produce more consistent data, but it is a more fair assessment
of analyst ability.

Some protocols require that QC samples be reanalyzed if
they fall below a threshold of taxonomic similarity,
irrespective of species richness (USEPA 2012, 2019). In con-
trast, inclusion of 10% self-QC counts and 10% cross-QC
counts allows us to evaluate analyst self-consistency, analyst
cross-consistency, and inherent sample heterogeneity as

independent factors. For example, NE Lakes had low median
Bray–Curtis similarity compared with the other studies, but
this survey also had the greatest species richness. Self-QC and
cross-QC count similarities were statistically indistinguishable,
indicating individual analysts were equally consistent com-
pared with all analysts as they were recounting their own sam-
ples. In contrast, because MSQA did not include self-QC
counts, we have no standard by which to judge the relatively
low cross-QC count similarities. Inclusion of self-QC counts as
a standard by which to evaluate cross-QC counts highlights
the importance of ensuring analyst self-consistency, which is
currently being addressed through a newly implemented pro-
gram on diatom taxonomic certification (Lee et al. 2019;
https://diatoms.org/practitioners/diatom-taxonomic-
certification).

Our findings indicate QA/QC efforts must be considered
within the context of sample diversity. In the United King-
dom and Ireland, accredited analysts are required to partici-
pate in ongoing ring tests, in which analysts report their
identification of diatoms from a test slide. The results are com-
pared to the identifications provided by a panel of experts of
the same set of test slides. Participants must achieve a certain
standard in terms of multi-metric index scores (Kelly 2013).
To borrow concepts from this scheme, we believe it is conceiv-
able to compute a “standard curve” characterizing the rela-
tionship between Bray–Curtis similarity of recounts and
sample richness. Certified diatomists with verified self-
consistency could serve as experts counting paired QC sam-
ples ranging from low to high diversity, for which Bray–Curtis
similarity could be calculated, as in Fig. 4. In future analyses,
analysts would be expected to fall within a predetermined
range of the standard curve for a given taxon richness.

Precount floras
The production and use of precount project floras allow

transparency and data provenance. Because analysts can refer
to mOTUs and their morphological “meaning” through
images that are project-specific, data reproducibility and porta-
bility are improved. The images within the flora represent the
“truth” of the entities encountered because they are derived
from each study, rather than from a flora from some other
geographic region. Moreover, understanding of the size dimi-
nution series, or “morphological space” throughout a species’
life history for each taxon, is shared by analysts. In addition,
new taxa are incorporated and shared throughout the project
timeline. Finally, project floras can be archived and made
accessible so that future work to merge data is based on trans-
parency of the species concepts used in each study.

There is a general perception that the development of an a
priori flora requires a cost prohibitive effort. A significant
amount of time and expertise is required to produce a
precount flora, but the effort for subsequent identification and
counting of diatom valves is equally reduced. For example,
when an analyst has a customized flora for a project, none of
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the analyst’s time during the enumeration process is diverted
to searching for literature references to apply names to taxa.
The analyst’s job becomes to pay attention to microscopy and
specimen characters, not search for names or references. The
use of bench reference codes improves data collection effi-
ciency by compartmentalizing and streamlining workflow.
Once a flora is produced for a region, it can be reused for sub-
sequent surveys by providing a base document to which ana-
lysts add additional taxa as they are encountered.

Random assignment of samples
The random assignment of samples to analysts does not, by

itself, affect analyst bias, but random assignment allows bias to
be detected. It is generally unappreciated that diatoms have
biogeographic distributions (Kociolek and Spaulding 2000) and
that species are regionally distributed across the broad expanse
of North America (Potapova and Charles 2007). Random
assignment of samples ensures that samples and analysts do
not covary with environmental factors. In other words, ran-
dom assignment of samples crosses potential geographic
boundaries, so that bias can be revealed in the QA/QC process.

Formal scientific names
In the process presented for assessed surveys (except

MSQA), the assignment of formal scientific names was shifted
to the final stage of analysis. The assignment of scientific
names becomes the most speculative aspect of a project. If the
image voucher represents the documentation of the truth—
the range of specimens observed—then the assignment of for-
mal scientific names is best interpreted as the proposal of a
hypothesis (with acknowledgement to E. F. Stoermer). This
assignment of taxonomic alignment might be better consid-
ered as provisional as more information is gained about dia-
tom species and their meaning.

Precollection measures to prevent and reduce bias are easier
and more efficient than post hoc taxonomic harmonization.
However, most taxonomic coordination efforts are
implemented after analyses have been completed (Besse-
Lototskaya et al. 2006; Manoylov 2014). Back coordination of
taxonomic data is time-consuming, sacrifices data resolution,
and reduces analyst signal at the expense of also reducing the
desired environmental signal (Lee et al. 2019).

Comments and recommendations
We outline a process for analyzing diatom samples in

national and regional surveys using multiple analysts. The pro-
cess is also appropriate for smaller studies that need to ensure
taxonomic consistency over time, or to place results in a larger,
regional context of species’ responses to environmental vari-
ables. For example, recent work to harmonize large diatom data
sets shows that when analyst bias is removed, there is greater
ability to observe species responses to phosphorus (Lee et al.
2019). The process includes four steps that, taken together, sig-
nificantly decreased analyst bias in five recent regional surveys.

We highlight the importance of rigorous QA/QC methods,
with consideration to self-QC as well as cross-QC counts. Fur-
thermore, we suggest an approach to isolate analyst taxonomic
consistency from sample heterogeneity. This process should be
considered a central component of a modern, robust biological
assessment of aquatic condition based on diatom data.
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