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Abstract 

Since its original inception, a great deal has been learned about the nature, properties, and 

applications of the H-bond.  This review summarizes some of the unexpected paths that inquiry into 

this phenomenon has taken researchers.  The transfer of the bridging proton from one molecule to 

another can occur not only in the ground electronic state, but in various excited states as well.  Study 

of the latter process has developed insights into the relationships between the nature of the state, the 

strength of the H-bond, and the height of the transfer barrier.  The enormous broadening of the range 

of atoms that can act as both proton donor and acceptor has led to the concept of the CH···O HB, 

whose properties are of immense importance in biomolecular structure and function.  The idea that 

the central bridging proton can be replaced by any of various electronegative atoms has fostered the 

rapidly growing exploration of related noncovalent bonds that include halogen, chalcogen, pnicogen, 

and tetrel bonds. 
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INTRODUCTION 

Over the course of its century of study following its earliest conceptual formulation 1-2, the 

hydrogen bond (HB) has surrendered many of the mysteries of its source of stability and its myriad 

occurrences.  Indeed, one might be hard pressed to think of chemical or biological systems which are 

completely free of the effects of HBs.  Proteins, carbohydrates, and nucleic acids alike owe much of 

their structure to this phenomenon. The many catalytic functions of enzymes are heavily dependent 

upon HBs between amino acid residues and substrates.  In fact, water would not even exist as a liquid 

at room and biological temperatures were it not for H-bonding.  And of course, one would not be able 

to understand the many chemical and biological processes that take place in aqueous environment 

without a thorough treatment of the HBs that occur in each such system. 

The HB owes a large segment of its stability to simple Coulombic forces.  The normal polarity of 

a A-H bond, wherein A is an electronegative atom like O or N, places a partial positive charge on the 

proton.  The latter can thus attract the partial negative charge of an approaching nucleophile D.  

Another important factor resides in the perturbation of the electronic structure of the two species as 

they approach one another.  These alterations are typically referred to as induction, amongst other 

labels.  At least conceptually, the perturbations can be categorized as internal and external.  That is, 

charge shifts within a given molecule can result in polarization energy, while charge transfer refers to 

any electron density that crosses an imaginary border that separates the two entities.  For example, it 

is common to speak of n→σ* transfer by which some density is shifted from the nonbonding, i.e. 

lone pair, orbital of the nucleophile into the σ*(A-H) antibonding orbital of the proton donor.  This 

accumulation of density in an antibonding orbital has been taken as the source of the weakening of 

the A-H covalent bond, and the resulting red shift of its stretching frequency, itself a hallmark of H-

bonding.  The latter density shifts, both internal and external, are sometimes referred to as “covalent” 

contributions, although this particular sobriquet can be rather vague.  To all of the preceding terms, a 

last attractive contribution arises in connection with London dispersion, a factor which is common to 

all molecular interactions, HBs being no exception.  Of course, if all components of the interaction 

were attractive, an AH⋯B HB would collapse into a single molecule. Such a collapse is prevented by 

Pauli exchange forces, similar in nature to what are colloquially referred to as steric repulsion. 

While the earliest concept of a AH⋯D HB was predicated on only the very electronegative O, N, 

and F atoms as A or D participants, the list of atoms that can serve in this capacity has greatly 

expanded over the years.  All of the halogens have been shown 3-7 capable, as have numerous 

chalcogen 8-17 and pnicogen atoms 18-20.  The list has been extended to metal atoms as well 21-28, both 
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as proton donors and acceptors.  In terms of nucleophilic proton acceptors, the original idea of lone 

pairs has also been extended, now to include π-systems of units such as alkenes or aromatics 29-35.  

Even the σ-bonds of molecules such as H2 can serve 36-40 this function.  Yet another new concept is 

connected 41 with the ability of a through-space α-interaction between two lone pairs on different 

atoms to strengthen the H-bond with a CH donor.  In fact, the definition of the HB has expanded so 

much over the past few decades that a IUPAC group has established a new set of guidelines 42 that 

are quite general. 

Since there are already available scores of works on HBs, including a number of extensive 

monographs 43-50 that concentrate on the central issues of this phenomenon, this review focuses on 

some of the currently developing frontiers of the concept.  As proton transfers within HBs have 

received a good deal of attention, and much has been written about them, the first topic considered 

here is the extension of this idea to proton transfers within excited states of HBs.  Although of some 

importance in a number of areas, such as laser development, far less is known about this process in 

any of its excited states than its ground state analogue.  A second frontier discussed here is the ability 

of the C atom to participate as a HB proton donor.  Despite the low electronegativity of C, that 

generally precludes the normal -A-H+ polarization, there is growing evidence of CH⋯O HBs, and 

their importance in numerous phenomena.  Lastly, discussion turns to a rapidly evolving field of 

close cousins of HBs, which in an apparent paradox, do not involve a H atom at all. 

 

EXCITED STATE PROTON TRANSFER 

Perhaps the first observation of a proton transfer in an excited state dates to 1956 and refers to the 

intramolecular HB within a methyl salicylate molecule 51. The first documented case of excited state 

concerted double proton transfer occurred in the 7-azaindole dimer 52.  Dual fluorescence in 3-

hydroxyflavone was explained on the basis of this process in 1979 53, and this process was placed in 

the context of a photoinduced proton transfer laser as the process required only 8 ps 54.  In addition to 

lasers, the excited state proton transfer process has implications for data storage device and optical 

switching 55-57, Raman filters and scintillation counters 58, triplet quenchers 59-60, and polymer 

photostabilizers 61-62. 

The poster boy for examining intramolecular proton transfer, partly due to its simplicity, is the 

malonaldehyde molecule which contains an internal OH···O HB within a conjugated ring structure, as 

pictured in Fig 1.  The bridging proton can transfer across to the other O atom which results in a 

symmetrically equivalent system.  The transition state (TS) for this transfer is a symmetric 
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configuration with the proton equidistant between the two O atoms.  An early study of this transfer 63 

comprised both the ground state So and the first excited π→π* triplet state, T1.  The excitation into 

this state required on the order of 95 kcal/mol, and had several effects.   It reduced the acidity of the 

OH group, as well as the basicity of the other O, and weakened the internal HB.  Another result of the 

excitation is the addition of antibonding character to the C=O bond, which causes it to elongate.  The 

bottom line is a higher pT barrier in T1 than in So, 13.6 vs 3.6 kcal/mol.  This concept was expanded 

64 to include other excited states as well.  The 3ππ*, 3nπ*,  1ππ*, and 1nπ* states all displayed a rise in 

pT barrier vs the ground state, and indeed, a number showed barrierless pT.  The height of the barrier 

was inversely correlated with the strength of the internal HB. 

Research has progressed on malonaldehyde and its related systems over the ensuing years and 

continues unabated 65-67.  The excited state proton transfer process is apparently important even in 

terms of the ground state.  A very recent examination of the proton transfer 68 implicated the two 

lowest excited singlet states in the properties of the ground state transfer via conical intersections.  

Measurements and later calculations place the height of the ground state proton transfer barrier at 5 

kcal/mol, while the transfer in the 1ππ* state is barrierless, and a high barrier occurs in the 1nπ* state 

68-70, similar to the results obtained years earlier 64. 

A number of modifications to the basic malonaldehyde conjugated ring structure were examined 

next in the context of glyoxalmonohydrazine.  Replacement of the OCCCO ring by OCCNN raised 

the possibility 71 of different energies for the enol and keto structures, i.e. proton on O or N, as 

indicated in Fig 2.  The ground state pT potential contains two minima, O and N, with the latter lower 

by some 9 kcal/mol.  The pT from N to O most pass over an energy barrier of only 2 kcal/mol.  The 

situation is generally similar in the 1ππ* and 3ππ*.  The situation is reversed in the singlet and triplet 

nπ* states, where O is preferred to N by 1 kcal/mol in 1ππ* and by 14 in the triplet. Unlike the 

malonaldehyde analogue, most of the excited states of glyoxalmonohydrazine favor a nonplanar 

geometry.   The specific distortion mode is different for each state, as is the force toward 

nonplanarity.  Permitting full distortion has a profound influence upon the energetics of pT, switching 

the relative stability of N and 0 in both excited singlets, as compared to the transfer in the planar case.  

The situation was modified by replacing the H on the N by a =CH2 group 72.  This perturbation leads 

to an interesting situation wherein the keto tautomer does not represent a minimum in the ground 

electronic state, but the reverse is true for either the first excited singlet or triplet, where it is only the 

keto minimum that is present.  This system thus represents a pT that is forced by the excitation.  
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The entire system was remade 73 into a symmetric system, wherein both O atoms of 

malonaldehyde are replaced by NH groups, as displayed in Fig 3.  As in the unsubstituted 

malonaldehyde, a correlation is noted in that the stronger the HB, the lower the barrier to proton 

transfer.  Nonplanar distortions are different for each excited state, but because the distortions have 

similar energetic consequences for the equilibrium and transition state structures, the pT barrier of the 

1nπ* state is little affected by permitting such deformations.  As for  malonaldehyde molecule, the 

transfer barriers in either case obey the order 1ππ* < SO < 3ππ* < 'nπ* < 3nπ*. The barriers are 

uniformly higher for the intemitrogen transfers than for the OH··O interaction in malonaldehyde, 

which is attributed to the longer HBs.   For any given Hβ, the interoxygen transfer has a slightly 

higher barrier than does NH - N by 2-3 kcal/mol. 

The effects of the 5-membered ring size of malonaldehyde change to both 4 and 6, coupled with 

addition of a negative charge, while holding the HB atoms to O, was examined 74 in a series of 

systems pictured in Fig 4.  The pT barriers correlate strongly with various geometric and energetic 

markers of the strength of the HB. The H-B is weakened by n→π* excitation, particularly for the 

neutral molecule, resulting in a higher barrier. In the case of the two anions, excitation to 3ππ* 

strengthens the HB, while the result is more ambiguous for the 1ππ* state. This trend is reversed in 

malonaldehyde where the singlet is strengthened by the excitation and the triplet weakened.  Some of 

these patterns were traced directly to the nature of the pertinent orbitals and the density shifts arising 

from the excitation. 

The malonaldyde theme was added to a phenyl ring in such a way as to perturb the intrinsic 

symmetry of the pT process, which was augmented by inclusion of a methyl group in o-

hydroxyacetophenone 75, as illustrated in Fig 5.  The correlated pT potentials for the ground and first 

excited singlet states each contain a single minimum, but they differ in placement of the proton.  

Hence the S0→S1 excitation yields a spontaneous pT, from the hydroxyl O to the carbonyl O.  

Attachment to a phenyl ring was also examined 76 in the closely related o-hydroxybezaldehyde 

(oHBA), wherein the methyl group of hydroxyacetophenone is removed.  In most respects, the 

addition of the aromatic system exerts little influence upon the properties of malonaldehyde. With the 

exception of the 1ππ* state, electronic excitation weakens the HB and simultaneously raises the pT 

barrier in either system. Unlike the symmetric transfer potential in malonaldehyde, the enol and keto 

tautomers of oHBA are chemically distinct. ππ* excitation reverses the preference for the enol 

tautomer in the ground state. This reversal is connected with the changing degree of aromaticity in 

the phenyl ring of oHBA. The asymmetric transfer potential in oHBA leads to forward and reverse 
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barriers of different magnitude. When this factor is accounted for by an averaging procedure, the 

transfer barriers in oHBA are similar to those of the corresponding states of malonaldehyde. 

Another variation of the theme shrunk the HB segment down to a 4-membered OCCO ring, 

which is then attached to a 7-membered hydrocarbon ring as in tropolone, illustrated in Fig 6.  The 

pT process in the S1 state 77 is characterized by a low barrier, such that only one doublet of the OH 

stretching frequency lies below the peak of the pT barrier.  A careful analysis of the tunneling 

splitting revealed that bending vibrations play only a minor role in the pT process so that a 2-

dimensional stretching model, involving only O···O and O-H stretches ought to be adequate. 

Attachment to a phenyl ring was also considered in the context of salicylaldimine, which contains 

the symmetric OCCCN ring, and in particular how the pT potential is affected by F substitution 78 as 

indicated in Fig 7.  Many of the effects are inductive; the electronegative F makes the proximate N or 

O atom a stronger acid or weaker base and thereby modulates the preferred position of the proton. 

The agnitude of the perturbation diminishes as the site of substitution is further removed from the 

HB. This principle also controls the manner in which F affects the geometry and strength of the 

intramolecular HB in both the enol and keto tautomers.  Whereas these notions apply fairly 

consistently to the ground state and excited ππ* singlet and triplet, a number of anomalous patterns 

emerged in the 1nπ* state. In general, the effects of fluorosubstitution are smaller in magnitude than 

the changes that occur in the pT properties as a result of electronic excitation. 

While the results described above concerned intramolecular pT through an internal HB, it is also 

of interest to consider intermolecular processes.  An example is the transfer of a proton from phenol 

to ammonia 79 which would morph the system from a neutral PhOH···NH3 pair to a PhO-·· +HNH3 ion 

pair.  While such a transfer is highly disfavored in the ground state, the situation changes 

dramatically in the first excited singlet state where the pT potential develops a second minimum, with 

the two configurations roughly equal in energy. 

More details about these results, and the specific methods applied can be found in the original 

papers as well as a summarizing Feature Article 80.  Work has certainly not ceased in this field, which 

continues apace 81-83 from both computational and experimental perspectives. 

 

CH···O H-BONDS 

Another frontier in the definition and properties of H-bonding lies on the weak end of the 

spectrum.  The C-H group is so pervasive in chemistry and biochemistry, that its ability to participate 

in a HB is of utmost importance.  While a simple alkane does not provide a sufficiently polar CH 
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group to act in this fashion, it is well documented that a HB is formed if the C changes its 

hybridization 84-85 from sp3 to sp, as in HC≡CH or N≡CH.  Another means to amplify the CH polarity 

is the placement of electron-withdrawing substituents on the C, as would naturally occur in a protein 

where each CαH is flanked by a pair of peptide groups.  As work proceeded on CH⋯O HBs, it was 

soon apparent that some of them have an unusual quirk.  Instead of shifting the A-H stretching 

frequency to the red as had been taken as a necessary condition of a AH··D HB, a certain subset of 

CH··O interactions shifted the C-H stretch to the blue 86-92.  While there were some initial complaints 

that such a shift in the wrong direction ought to disqualify this interaction as being a true HB, it 

fulfilled all other typical criteria.  This anomaly was soon determined to result from the fact that the 

direction of shift arises from a delicate balance between forces, some tending to shift to the red, and 

others to the blue 93-101.  While the former tend to win out in most HBs, the subtle balance simply 

shifts in the opposite direction for some CH⋯O HBs 102-106. 

Within the realm of proteins, the most common CH group capable to participate in such a bond is 

the CαH group which is surrounded by a pair of electron-withdrawing peptide groups.  Calculations 

have demonstrated the strength of these bonds 107 as just less than that of a standard NH··O 

interaction.  With respect to sidechains containing an aromatic group, e.g. Tyr or Im, the CH of the 

aromatic ring was also a viable proton donor 108.  

It had been part of conventional wisdom that it is the NH··O HBs between strands that hold the β-

sheet together.  But study of the atomic positions of a β-sheet in Fig 8 shows that CH groups are also 

in position to donate a proton to the peptide O of the neighboring strand.  Quantum calculations 109 

showed that these putative interstrand CH··O HBs are competitive in strength with NH··O, and serve 

as an integral component in the stability of the β-sheet, a finding that has since been confirmed by 

others 110-115. 

Despite a longstanding notion that the strength of a HB between two given groups depends only 

upon their relative geometry, i.e. HB length and angles, calculations showed this to only be part of 

the story.  Even when a pair of peptide groups is locked into a given configuration 116, the interaction 

energy is highly sensitive to the overall structure of the polypeptide chain on which they reside.  In 

particular, extended conformations of a polypeptide are capable of only weak NH··O HBs, and the 

interstrand NH···O H-bonds in β-sheets are weaker than those found in other conformations, such as 

helices, ribbons, and β-bends, even if the specific HB geometries are similar.  In a related vein, the 

CH··O HB is even stronger than NH··O within the context of a simple dipeptide 106 when in a C5 

geometry, a small model somewhat similar to the β-sheet.  These trends are not restricted only to in 
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vacuo settings, but retain their integrity within the context of a dielectric continuum model of a 

protein interior 117. 

The importance of the CH··O HB is not limited to structural issues, but also plays a role in 

various enzymatic mechanisms.  These ideas were tested within the context of the serine proteinase 

family of enzymes 118.  Earlier workers had suggested what they called a “ring-flip” hypothesis 

involving a 180° rotation of a key His residue as a vital step in the catalysis.  This mechanism relied 

on the presence of a CH··O HB in order to stabilize one of the intermediates in the formation of the 

tetrahedral intermediate.  The calculations were generally supportive of this idea but raised some 

important discrepancies that required resolution before its acceptance.  This sort of HB has 

implications in other enzymatic mechanisms as well 119.  There are also contributions of this weak 

HB as a determining factor 120-122 in the conformation of certain organic systems.  Needless to say, 

even normally weak HBs can be strengthened by the acquisition of charge on either the proton donor 

or acceptor group 123-125. 

As experimentalists continue to examine systems for the presence of CH··O HBs, they require 

certain trademark or fingerprint characteristics for which to search.  In addition to geometric aspects 

which are already fairly well understood, it is common to apply spectroscopic methods to these 

biological systems.  Quantum calculations have provided some such characteristics for which to 

search 126-128.  It was noted earlier that CH stretching frequencies can shift in either direction; 

nonetheless a blue shift would be a valuable indicator as it would not occur in the absence of such a 

bond.  A downfield shift of the bridging proton’s NMR signal would reinforce this supposition.  With 

respect to the proton acceptor, a large upfield shift of the O chemical shift, by as much as 16 ppm, 

can serve as another indicator. 

 

COUSINS OF THE H-BOND 

Another HB frontier that has been approached is its definition as an interaction involving a 

bridging proton.  Suppose this H were to be replaced by a different atom, but the various properties 

were to remain largely intact.  Early work had suggested such a phenomenon, wherein H could be 

replaced by any of several halogen (X) atoms 129-131.  The ability of the X to serve in this capacity 

rests on the highly anisotropic charge distribution which surrounds it.  While its electronegativity 

imparts to it an overall negative partial charge, there is a reduced density along the extension of the 

R-X bond, which has been termed a “polar flattening”, which in turn causes a region of positive 
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electrostatic potential in this region, commonly referred to as a σ-hole 132-136.   It is this localized 

positive region which can attract a nucleophile, in much the same way as does the H in a AH··D HB.   

This idea of a halogen bond (XB) is not restricted only to halogen atoms, but is common also to 

chalcogen, pnicogen, and even tetrel atoms, in their eponymously named bonds.  There are certain 

fine point differences amongst these bonds.  For example, while a univalent X atom displays a single 

σ-hole lying along the extension of the R-X bond, a divalent Y chalcogen atom will typically contain 

two such σ-holes, each lying along an extension of the two R-Y bonds.  These holes will not be able 

to lie directly opposite the bond, since the high electron density of the two Y lone pairs will tend to 

push the holes away from them.  This distinction is illustrated in the comparison of FCl with HFS in 

Figs 9a and 9b, respectively.  In each case, the blue oval represents the σ* antibonding orbital, FCl in 

a and FS in b, along which the reduced electron density would tend toward a σ-hole.  The Cl atom of 

FCl contains three lone pairs, represented by red ovals, whose density would push the positive 

potential, i.e. the σ-hole, away from themselves.  Due to their symmetric disposition, the blue region 

of the potential lies directly along the F-Cl axis and the σ* orbital direction.  On the other hand, there 

are only two lone pairs on the S atom in Fig 9b, which together push the σ-hole down away from 

them.  A nucleophile would thus tend toward this blue region σ-hole, and a nonlinear FS···Nuc 

alignment.  A similar nonlinear arrangement between the F-P bond extension and the σ-hole would 

be expected for a pnicogen bond (ZB), in Fig 9c, due to a single lone pair.  The absence of any lone 

pairs on the Si atom in Fig 9d would allow the blue positive potential σ-hole to align perfectly with 

the σ*(F-Si) antibonding orbital, resulting in a linear tetrel bond (TB).  It must be noted that since the 

high electron density of lone pairs mitigate the positively charged σ-hole, the progressive decrease of 

lone pair number in the sequence halogen > chalcogen > pnicogen > tetrel would tend to enhance the 

σ-hole intensity in the same order. 

After an initial study that demonstrated that a P···N interaction is energetically preferred to a 

PH···N HB 137, more detailed study 138 showed this to be a characteristic of pnicogen bonds in 

general.  Part of the interaction arises from the donation of charge from the N lone pair into the 

σ*(PH) antibonding orbital.  This transfer is identical to that in a PH··B HB, except that it is the P-

end of this orbital which points toward the N, rather than the H-end.  The strength of such a ZB is 

heightened when the H is replaced by an electron-withdrawing agent such as F 139.  Fig 10 shows how 

the interaction energy ΔE rises as the substituent’s electron-withdrawing power increases from CH3 

and H up to F and NO2 for the XH2P···NH3 series 140.  Along with this rise in binding is a 
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concomitant amount of charge transferred from the base to the Lewis acid, as measured either by 

NBO values of E(2) or the total charge on the entire subunit Δq. 

In fact, this substitution is even capable of making first-row N capable of accepting charge in a 

N··N pnicogen bond 141 despite the reluctance of first-row atoms to engage in such bonds.   With 

respect to the electronegativity and polarizability of the pnicogen atom, larger atoms yield stronger 

ZBs 140, 142-143 144 in the order P < As < Sb.  This trend has no parallel to HBs as it is always the 

proton that acts as bridge.  

As one might anticipate, since halogen and pnicogen atoms can replace the proton in HBs, the 

same idea can be extended to chalcogen (S, Se, etc) atoms as well.  Work by our group 145-149 as well 

as numerous others 150-156 elaborated on these ideas.  Indeed, there is currently a IUPAC group tasked 

with adopting a working definition of a chalcogen bond, with others to follow later for the other sorts.  

The extension to tetrel atoms (the Si family) occurred soon thereafter, showing many of the same 

controlling factors that are present for X, Y, and Z atoms 157-160.  The normally tetravalent tetrel 

atoms introduced a new factor which had been less prominent in the other sorts of bonds.  In order for 

a base to approach the central tetrel atom along a face of the tetrahedron, the three proximate 

substituents must “peel back” away from this base, changing the originally tetrahedral structure into 

something akin to a trigonal bipyramid.  There is thus a good deal of deformation energy that must be 

surmounted 161-163 if this tetrel bond is to form.  This deformation energy makes the tetrel bond 

formation less exothermic than it would otherwise be, and can even control the particular site at 

which the base can attack. 

The idea of tetrel bonds brought up an interesting issue.  It had typically been considered that a 

nucleophile lying along the R-C extension of a R-CH3 group constituted a trifurcated HB, i.e. 

interaction with three H atoms.  And there are certainly many such geometrical dispositions of this 

sort, in both chemical and biological systems 164.  But how can one distinguish this idea of a 

trifurcated HB from the newer concept of a R-C···D tetrel bond?  Indeed there are spectroscopic 

markers that are different for the two sorts of interactions 165-166, and it is hoped that the future will 

witness attempts to distinguish these two types of interactions. 

As work has progressed in this area, it has become recognized that the positive regions are not 

limited only to σ-holes lying along the extension of a particular covalent bond.  There are π-holes as 

well, wherein the positive potential sits above the plane of a molecule, as in H2SiO for example, in 

the vicinity of the electronic π-cloud.  This broadening of the idea has been probed extensively and 

shown that while the π-hole interactions are usually weaker than their σ parallels, this trend is 
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sometimes reversed 158, 167-169, especially when the π-hole lies above a triel atom such as B or Al 170-

173.  Of course, such π-hole interactions do not have a H-bonding parallel. 

These relatives of the HB are hardly exotic academic novelties, but have a wide range of 

applications, such as serving as synthons in self-assembling networks 174, biological catalysis 175, 

oxidative addition 176, self-assembled monolayers 177, SN2 reaction catalysis 178, design of functional 

mesomorphic materials 179, and even directed construction of supramolecular quadruple and double 

helices 180.  One of the more interesting uses concerns selective binding of anions 181-188.    It was 

realized that the replacement of the H atom of certain multidentate anion receptors with a halogen 

atom allowed them to engage in halogen bonds with an anion, which in turn strengthened the 

interaction, and enhanced the selectivity for certain anions over others. 

Calculations were applied to this idea, and were able to suggest certain options that ought to 

enhance these abilities.  Optimal choices of particular halogen atoms were proposed, along with 

identification of chemical groups to which they ought to be bonded, spacer groups between the 

halogen bonding groups, and overall charge 189-191.  Subsequent work broadened this idea beyond 

simply halogen bonds, but considered their chalcogen, pnicogen, and tetrel counterparts 192-195.  It was 

concluded that tetrel bonds offered a particularly tempting choice for their interactions with a halide, 

furnishing both very strong interactions, and a marked preference for F- over other halides. 

 

PERSPECTIVE 

It would seem then that even after a full century of study, which has provided a wealth of 

information and insights about the H-bond, we are nowhere near the end of learning its secrets.  Its 

fundamental nature is a template for a much broader set of interactions.  Far from the initial thoughts 

that the A and B atoms in the AH···B interaction are limited to O, N, and F, the set of participating 

atoms has broadened so widely over the years, such that an atom that cannot serve in this capacity 

would be the exception, not the rule.  In particular, the entry of the CH group into the club of proton-

donating members, has opened wide new vistas concerning the structure and function of large 

molecules including proteins and nucleic acids, vistas that are only recently beginning to be explored.  

The possibility of proton transfer within a given HB has enormous implications as well, not only in 

the ground electronic state but also in various excited states which open new sets of practical 

applications.  And the further broadening of the original concept of a proton-bridging HB to systems 

where this central proton is replaced by any of a large number of electronegative atoms has 
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introduced an entire new area that encompasses halogen, chalcogen, pnicogen, and tetrel bonds, again 

an area whose impact is only beginning to emerge. 

Given all that has transpired in the last century, it would be foolish to presume that we have 

reached the final border of what the H-bond has to teach us.  One can only hope that the next century 

of inquiry will be as fruitful as the first. 
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Fig 1.  Structure of malonaldehyde (M) and the transition state (TS) for the transfer of the proton 

between O atoms. 

 

 

 
Fig 2.  O and N tautomers related to asymmetric pT in glyoxalmonohydrazine 

 

 

 
Fig 3.  Symmetric proton transfer in 1,5-Diaza-1,3-pentadiene.   
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Fig 4.  Four (4’) and six (6’) membered anionic ring analogues of malonaldehyde (5). 

 

 

 
Fig 5.  Primary and tautomeric forms of o-hydroxyacetophenone. 
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Fig 6.  Four-membered OCCO ring attached to 7-membered ring in tropolone system. 

 

 

 

 
Fig 7.  Placement of a F-substituent into salicylaldimine in either X1 or X2 positions. 

 

 

 
Fig 8.   Pair of polypeptide strands in the antiparallel β-sheet arrangement, indicating putative HBs by 

broken lines. Brown atoms represent generic R groups of amino acids. 
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Fig 9.  Molecular electrostatic potential surrounding indicated molecules, with blue indicating 

positive and negative represented by red regions.  Light blue oval designates the σ*(F-A) antibonding 

orbital that lies directly opposite the F-A covalent bond. Lone pairs on each central A atom are 

indicated by red ovals. 

 

 
Fig 10. Variation of second-order energy E(2) and amount of charge transferred from N lone pair of 

NH3 to σ*(XP) antibonding orbital of H2PX as a function of interaction energy ΔE 
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