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Abstract. Understanding how populations respond to spatially heterogeneous habitat disturbance is as
critical to conservation as it is challenging. Here, we present a new, free, and open-source metapopulation
model: Dynamic Habitat Disturbance and Ecological Resilience (DyHDER), which incorporates subpopu-
lation habitat condition and connectivity into a population viability analysis framework. Modeling tempo-
rally dynamic and spatially explicit habitat disturbance of varying magnitude and duration is
accomplished through the use of habitat time-series data and a mechanistic approach to adjusting subpop-
ulation vital rates. Additionally, DyHDER uses a probabilistic dispersal model driven by site-specific habi-
tat suitability, density dependence, and directionally dependent connectivity. In the first application of
DyHDER, we explore how fragmentation and projected climate change are predicted to impact a well-
studied Bonneville cutthroat trout metapopulation in the Logan River (Utah, USA). The DyHDER model
predicts which subpopulations are most susceptible to disturbance, as well as the potential interactions
between stressors. Further, the model predicts how populations may be expected to redistribute following
disturbance. This information is valuable to conservationists and managers faced with protecting popula-
tions of conservation concern across landscapes undergoing changing disturbance regimes. The DyHDER
model provides a valuable and generalizable new tool to explore metapopulation resilience to spatially
and temporally dynamic stressors for a diverse range of taxa and ecosystems.

Key words: climate change; dispersal; DyHDER; habitat disturbance; metapopulation; population model; population
viability analysis.
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INTRODUCTION

The distribution and composition of habitats
in a landscape are governed by the interactions
between regional climate, geology, ecological
succession, and disturbance regimes, generating
a mosaic of patchy habitats across multiple spa-
tial scales (e.g., Whited et al. 2007, Turner 2010).
The heterogeneity of habitat, in turn, creates

variable opportunities for survival, growth, and
reproduction of biotic populations, and thereby
controls population distributions (e.g., Morris
and Davidson 2000, Stanford et al. 2005, Willems
and Hill 2009). As disturbances inevitably occur
across the landscape, the ability of organisms to
access suitable habitats becomes increasingly
important for population persistence (e.g., Ovas-
kainen and Hanski 2002, Elkin and Possingham
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2008). Thus, understanding how habitat distur-
bance is likely to impact population dynamics is
a primary goal of conservation and management
agencies, particularly given rapidly changing
disturbance regimes and climate (Westerling
et al. 2006, Turner 2010).

Disturbance regimes operate across a range of
temporal and spatial scales, driving both short-
and long-term habitat changes at local to regio-
nal spatial scales (Stanford et al. 2005, Whited
et al. 2007, Turner 2010). In aquatic systems, epi-
sodic disturbances can have profound hydro-
logic and geomorphic impacts on physical
habitat, altering the habitat suitability for biotic
populations and the ability to support popula-
tions of conservation concern (Lake 2000). How-
ever, our ability to predict biotic population-level
responses to acute or chronic disturbances
requires detailed information about the biotic
processes affecting survival and recruitment
rates, as well as the landscape-scale physical pro-
cesses influencing the relative quality of local
habitat patches (Murphy et al. 1990, AkC�akaya,
2000, Wilcox et al. 2006).

Population projection models are increasingly
used to examine the expected response of popu-
lations of conservation or management concern
to alternative management, land use, and envi-
ronmental scenarios. Many population projection
models have been used in a population viability
analysis (PVA) framework to determine the long-
term viability and potential extinction risk of a
population across a range of management
actions (e.g., Shaffer 1981, Boyce 1992, Brook
et al. 2000). These models are especially useful
for studies in which baseline vital rates are well-
constrained and stage-structured populations are
responding to known perturbations (e.g., dis-
ease, harvesting, stocking). Stage-structured
PVAs have been used, for example, to identify
management actions to aid in the recovery of
endangered woodpeckers (Heppell et al. 1994)
and salmon (Kareiva et al. 2000), identify the
cause of decline in whale populations (Fujiwara
and Caswell 2001), and determine the critical
life-stages on which to focus conservation efforts
for loggerhead sea turtles (Crouse et al. 1987).
Furthermore, metapopulation dynamics have
been incorporated into PVA frameworks to
explore the importance of source–sink dynamics
and spatial variation in habitat conditions on

metapopulation persistence (e.g., Sj€ogren-Gulve
and Hanski 2000, Schtickzelle and Baguette 2004,
Chandler et al. 2015).
The importance of incorporating dynamic habi-

tat conditions is increasingly recognized in terres-
trial-focused population projection models (e.g.,
AkC�akaya et al. 2004, Larson et al. 2004, Bekessy
et al. 2009), yet models focusing on stream-
dwelling organisms have lagged behind (cf. Free-
man et al. 2013). This lag has occurred, in part,
because the linear and asymmetric nature of con-
nectivity in river networks presents additional
challenges to species coping with disturbance
(Hitt and Angermeier 2008). Further, the more
constrained connectivity means river habitats
and their inhabitants are particularly sensitive to
fragmentation (Cote et al. 2009, Perkin and Gido
2012, Jaeger et al. 2014). Additionally, the physi-
cal and biological responses to disturbance (e.g.,
climate change, wildfire, construction of artificial
barriers) in the aquatic portion of the landscape
are affected by both the landscape and stream
network dynamics (e.g., Frissell et al. 1986,
Richards et al. 1996). As such, understanding
how disturbance and dispersal interact dynami-
cally and mechanistically is an especially critical
area of research for stream biodiversity conserva-
tion. Understanding these complexities will ulti-
mately require rigorous and targeted modeling
approaches that explicitly consider the condition
of local habitat, the relationships between habitat
condition and local vital rates, and spatiotempo-
ral variability in connectivity and dispersal.
While frameworks exist that allow users to

incorporate landscape conditions into population
models, every model has its limitations. For
instance, individual-based modeling approaches
(IBMs) have substantial computational require-
ments, especially when attempting to model spa-
tially explicit conditions for large populations
and at large landscape scales (e.g., VORTEX, Lacy
1993; HexSim, Schumaker and Brookes 2018).
While spatially structured, habitat-based PVA
models have improved substantially (e.g.,
RAMAS GIS, AkC�akaya 1998), their ability to
mechanistically model population responses to
spatiotemporal physical disturbances (as
opposed to changes in patch size, reductions in
abundance, carrying capacity, etc.) can still be
challenging. Further, available models are not
always designed to handle the more complex
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constraints and behavior of metapopulation dis-
persal within river networks (e.g., Numerus PVA,
Getz et al. 2016; RAMAS Metapop, Chaumot and
Charles 2008). Last but not least, many of these
models are cost-prohibitive for many users and/
or have closed-source codes, which limits users
from understanding their inner workings, limits
modification for specific research needs, and lim-
its direct linkage with physical systems models.

Here, we introduce a free and open-source
matrix population model called Dynamic Habitat
Disturbance and Ecological Resilience (DyHDER;
“Die Harder”). This model can be used in a PVA
framework, can be applied to metapopulations of
any size or species, and was specifically designed
to be capable of evaluating mechanistic metapop-
ulation responses to changing habitat conditions
(e.g., disturbance) through the incorporation of
species-specific habitat suitability relations. Also
included within DyHDER is a metapopulation
dispersal model that drives probabilistic emigra-
tion and immigration rates as a function of habi-
tat condition and is capable of handling the
directionally dependent connectivity sometimes
present within river networks. Collectively, DyH-
DER represents a new modeling framework for
evaluating the ecological impact of spatially
explicit, probabilistic, or theoretical physical habi-
tat disturbance scenarios (e.g., flood, drought,
wildfire, habitat restoration, fragmentation) of
varying location, magnitude, and duration.
Importantly, the DyHDER model is available as a
free, generalizable, open-source code for popula-
tion modeling (see Acknowledgements for link to
code) and will enable the direct linkage between
models of ecological population dynamics and
physical landscape processes (e.g., landslides,
erosion, flooding, landscape evolution).

We first present the structure and methodol-
ogy of the DyHDER model, followed by a case
study application using a long-term dataset from
a well-studied trout metapopulation in a western
watershed of significant conservation concern.
We have aimed to develop a model that is suffi-
ciently flexible to accommodate commonly avail-
able ecological and habitat data and that allows
users to identify and run sensitivity tests on ele-
ments that are difficult to constrain. Finally, we
address the gaps in both our understanding and
data that were revealed through the develop-
ment and application of DyHDER. We provide

guidance on future data collection and monitor-
ing to help better model dynamic physical and
ecological systems.

METHODS

Model structure
At its core, DyHDER is a spatially explicit,

stage-structured matrix population model. The
source code is written in MATLAB R2018a, all
data inputs are read into the model from Excel
spreadsheets, and simulation parameters (e.g.,
timestep) are modified in an annotated master
script that runs the DyHDER model and all
underlying components. We include more details
about the model in Appendix S1, but here, we
discuss the basic structure and functionality of
the model. First, for each subpopulation, popula-
tion projection is modeled as post-birth pulse,
temporally discrete, stage-structured matrix pro-
jection (Fig. 1). The model iterates at discrete
one-year timesteps and, thus, assumes reproduc-
tion occurs just once per year, prior to population
projection. Following the census adjustment in
each timestep, individuals from each subpopula-
tion are able to disperse among all other subpop-
ulation sites based on updated habitat
conditions, using a new probabilistic, direction-
ally dependent dispersal model (Fig. 1).
Baseline demographics for all subpopulations

are input to the model from spreadsheets, which
include annual, stage-based mean survival prob-
abilities, /, transition probabilities, c, reproduc-
tion rates, F, and the temporal variance, r, for the
respective vital rates (Table 1). Site-specific stage-
based matrices are then constructed within the
model based on these data. Within each matrix,
survival probabilities (for all but the largest
stage) are partitioned between the probability of
surviving and staying in the same life-stage (/ (1
– c)) and the probability of surviving and transi-
tioning to the next life-stage (/c; e.g., Budy and
Luecke 2014). Further, each subpopulation must
be prescribed a carrying capacity, K. In order to
ensure a stable initialization for model simula-
tions, this value also serves as the initial abun-
dance for each subpopulation. The initial stage-
based population vector is computed for each
site by calculating the stable-stage proportions
for each matrix and then multiplying these by
the subpopulation carrying capacity.
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Density dependence is applied through repro-
duction within each subpopulation (Morris and
Doak 2002), and the model can execute either the
Ricker or Beverton-Holt models of density
dependence. Both approaches are computed as a
function of local subpopulation density and both
require a fitting parameter, b, which describes
the rate of decline in reproduction as subpopula-
tion density increases. Rather than prescribing
this parameter, estimated survival rates of off-
spring or eggs to the first life-stage in the matrix,
/01, are defined both at carrying capacity,

/01ðn=K ¼ 1Þ, and as the subpopulation density
approaches zero, /01ðn=K � 0Þ. Using these con-
straints, b is then calculated for the selected den-
sity-dependent model. This approach ensures
baseline reproduction rates produce stable sub-
populations at carrying capacity.
DyHDER can run either numerous stochastic

simulations or a single deterministic simulation.
Stochasticity here simulates the effects of envi-
ronmental stochasticity, and we do not attempt
to model demographic stochasticity at small pop-
ulation sizes. To apply environmental

2 3 41
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Movement (M) 
= f (life stage, HSI, 
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One-way 
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Fig. 1. Conceptual figure showing the key components of the DyHDER model. Within each subpopulation
(denoted by yellow circles labeled A–D), a stage-based Lefkovitch matrix defines rates of survival, transition,
and reproduction. This is illustrated with white circles each representing a life-stage, here a four-stage model.
Demographic rates are modified by habitat metrics (green boxes) that are defined by the user to target single (or
multiple) demographics (solid and dashed lines). In each timestep, individuals from each subpopulation are also
able to move between sites using a new probabilistic, life-stage-dependent subpopulation dispersal model (pink
boxes). This dispersal model accommodates linearized network systems (i.e., a river; thick blue lines) and direc-
tionally dependent barriers (e.g., annotated white box) that may isolate some subpopulations from immigration
while still allowing emigration.
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stochasticity within DyHDER, mean survival
rates for each stage and at each site are adjusted
in each timestep based on a distribution charac-
terized by the mean and standard deviation (i.e.,
temporal variance). Since survival, in all but the
largest stage, is partitioned based on the stage
transition rate, we similarly partition the total
variance in survival according to the respective
transition rate. Finally, the generation of stochas-
tic values in DyHDER is based on truncated nor-
mal distributions (Robert 1995, Hilderbrand
2002), where randomly generated values that
exceed the bounds of probability are set equal to
the exceeded bound (e.g., 1.05 would equal 1.0).
Although logit transformations are a more com-
mon approach to addressing the possible excee-
dance of probability bounds in population
models, we find that truncated normals produce
less skew in randomly generated probability dis-
tributions, especially for scenarios of habitat dis-
turbance or population catastrophe where mean
survival rates may be extremely diminished
(Appendix S1: Figs. S3, S4).

As previously stated, the DyHDER model does
not address potential demographic stochasticity
or Allee effects when populations get very small.
Instead, we employed a quasi-extinction

threshold, representative of the abundance at
which these effects become relevant (Morris and
Doak 2002) and include an option to terminate
simulations when population abundance falls
below this level. We define quasi-extinction in
two ways in the model (1) as a proportion of car-
rying capacity and (2) as an absolute number of
individuals. Assuming the total carrying capacity
is relatively large, the proportional threshold is
primarily intended for application to the total
metapopulation. However, DyHDER also
includes an option to apply quasi-extinction
thresholds at the subpopulation level, suspend-
ing subpopulation matrix projection if abun-
dance falls below the threshold. Projection then
only resumes if abundance recovers by way of
immigration. When applied to small subpopula-
tions, a simple proportion of the carrying capac-
ity could potentially represent fewer individuals
than the absolute abundance threshold where
Allee effects may be expected to begin. There-
fore, at both the metapopulation and subpopula-
tion level, whichever of the two thresholds
represents the larger number of individuals is the
one applied.
Finally, in fragmented systems, the recovery of

populations may depend upon stocking after

Table 1. Subpopulation demographics for the seven long-term monitoring sites in the Logan River, Utah.

Site name
Franklin
Basin (FB)

Beaver
Creek (BC)

Red
Banks (RB)

Forest
Camp (FC)

Temple
Fork (TF)

Spawn
Creek (SC)

Twin
Bridges (TB)

k 0.95 0.95 0.95 0.95 0.90 0.90 1.05
K 33 721 89 826 6911 19 400 2334 4330 15 090
/01ðn=K ¼ 1Þ 0.05 0.05 0.05 0.05 0.05 0.05 0.05
/01ðn=K � 0Þ 0.15 0.15 0.15 0.15 0.15 0.15 0.15
/1 0.36 0.10 0.29 0.25 0.21 0.08 0.15
/2 0.18 0.36 0.20 0.22 0.24 0.39 0.29
/3 0.28 0.51 0.33 0.35 0.37 0.54 0.45
/4 0.32 0.53 0.37 0.38 0.43 0.56 0.49
r1 0.03 0.03 0.03 0.03 0.03 0.03 0.03
r2 0.03 0.03 0.03 0.03 0.03 0.03 0.03
r3 0.03 0.03 0.03 0.03 0.03 0.03 0.03
r4 0.03 0.03 0.03 0.03 0.03 0.03 0.03
F3 18 18 18 18 18 18 18
F4 30 30 30 30 30 30 30
rF3 0.9 0.9 0.9 0.9 0.9 0.9 0.9
rF4 1.5 1.5 1.5 1.5 1.5 1.5 1.5
c12 1 1 1 1 1 1 1
c23 0.5 0.5 0.5 0.5 0.5 0.5 0.5
c34 0.5 0.5 0.5 0.5 0.5 0.5 0.5

Note: Demographics include estimates of subpopulation carrying capacity, K, annualized growth rates, k, apparent annual
survival, /, stage transition probabilities, c, reproduction rates, F, and the temporal variance, r, of the respective survival and
reproduction rates.
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habitat disturbance. Thus, DyHDER allows for
exploring the effects of various stocking scenar-
ios, parameterized with the number of stocked
individuals of each life-stage, the model year
for introduction, and the subpopulation tar-
geted for stocking. There is no limit to the num-
ber of stocking inputs per simulation, allowing
for the assessment of various spatiotemporal
stocking scenarios. Additionally, by simply
changing the number of individuals to a nega-
tive value, individuals of any life-stage can
alternatively be removed from any site in any
timestep to allow for the simulation of harvest-
ing scenarios.

Habitat-dependent adjustments
A novel component within DyHDER is the

spatially explicit, temporally variable, habitat-de-
pendent adjustments that can be user-defined to
influence some or all demographic rates within a
matrix (e.g., only affect specific stages or only
affect survival vs. reproduction). This is accom-
plished using the combination of time-series data
of site-specific annualized habitat metrics along
with species-specific habitat suitability relations.
The habitat suitability relations, describing the
relative optimality of specific habitat metrics on a
scale of 0–1, serve as transfer functions applied
within the model to modulate specific demo-
graphic rates within a matrix in each timestep
(Fig. 2). For example, using relative growth
curves generated from bioenergetics models, we
can inform and modulate the annualized transi-
tion rates of fish with changes in stream tempera-
ture. If the data are available, stage-specific
suitability relations can also be input to DyH-
DER, allowing habitat metrics to influence differ-
ent stages in different ways. For example,
optimal stream velocities may vary between
juveniles and adult fish. We emphasize that these
habitat-dependent demographic adjustments are
independent of, and do not represent, temporal
environmental stochasticity, but instead repre-
sent press disturbances (i.e., protracted distur-
bances that may emerge rapidly or slowly; Lake
2000, Stanley et al. 2010). This approach allows
for dynamic population responses to various
types, magnitudes, and durations of physical
habitat disturbance without requiring unique
catastrophe matrices for each subpopulation and
in each year of protracted disturbance.

DyHDER additionally allows for the modifica-
tion of demographic rates based on the aggrega-
tion of multiple habitat metrics (e.g., temperature,
suitable land cover/topography, availability of
foraging habitat, availability of refugia). This
modification is accomplished through fuzzy
aggregation methods (e.g., Boj�orquez-Tapia et al.
2002) in which the relative quality of the individ-
ual habitat suitability metrics serves as direct
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Fig. 2. Generic example of the methodology for
adjusting population demographics to changing habi-
tat conditions. With a time-series input of a selected
habitat metric (blue line), DyHDER uses species-speci-
fic habitat suitability functions to calculate a time ser-
ies of suitability values (Ψt) between 0 and 1 (red line).
In each timestep, user-specified demographic values in
the stage-based matrix (here denoted as survival,
s ¼ /ð1� cÞ, and transition, s ¼ /c) are multiplica-
tively adjusted based on suitability in any given year.
Finally, by projecting these adjusted matrices, the
influence of a variable but protracted habitat distur-
bance (duration shaded in gray) can be evaluated with
respect to its effect on the population response (green
line), which can last longer than the disturbance itself.
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inputs, such that no fuzzy membership functions
are required prior to aggregation. There are mul-
tiple methods for combining habitat suitability
variables (e.g., Zhu et al. 1996, Burgman et al.
2001), and DyHDER can use any one of three pos-
sible fuzzy aggregation approaches: product,
minimum, or geometric mean (Fig. 3). With indi-
vidual suitability values Ψj,t for j = 1. . . n, where
n is the number of suitability metrics to be com-
bined in year t, and each value ranges from 0 to 1,
the aggregation operators are expressed as
follows:

Product : W1W2. . .Wn (1.1)

Minimum: minðW1;W2; . . .WnÞ (1.2)

Geometric Mean :
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
W1W2. . .Wn

n
p

(1.3)

While each method presents different sensitivi-
ties, particularly to the influence of low values
(Fig. 3), users can select which is most appropri-
ate for their system or application.

There are two major assumptions inherent to
our habitat-dependent adjustment of which users
should be aware of. First, any habitat metrics not
explicitly included in a model are assumed to be
of optimal condition. This mathematical simplifi-
cation allows users to focus on the evaluation of
only those habitat metrics that are changing and/
or expected to affect population dynamics. Sec-
ond, the effect of each habitat metric is assumed
independent. In other words, our approach does
not address potential interactions or feedbacks
between habitat metrics. However, in choosing
to use either the product or geometric mean
aggregation methods above, the impacts of habi-
tat conditions are multiplicatively combined.
While this approach may fail to capture the com-
plexity of potential habitat interactions affecting
populations, it is consistent with the develop-
ment of other habitat suitability indices (HIS;
e.g., Hickman and Raleigh 1982, Burgman et al.
2001).

Dispersal
Another advancement of DyHDER is our

probabilistic, stage-structured metapopulation
dispersal model, which computes emigration
and immigration rates in a stepwise approach to
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allow for the potential (but not required) condi-
tion of directionally dependent habitat connec-
tivity (e.g., an instream barrier that allows
downstream movement, but prevents upstream
movement). Ultimately, this model drives the
movement of individuals between sites (after
population projection) based on a number of crit-
ical predictors: habitat suitability, subpopulation
densities, site-to-site distance, and site-to-site
connectivity. Building off Getz et al. (2016), dis-
persal rates are computed separately for each
life-stage, i, using Markov transition matrices to
distribute individuals between the h number of
subpopulation sites. The matrix for each life-
stage, M(i), is composed of matrix elements, mðiÞ

gf,
that represent the probability of movement for
individuals of life-stage i from site origin, g, to
destinations, f. Individuals of life-stage i are then
redistributed by multiplying matrix M(i) by a
horizontal array, N(i), which contains the abun-
dances of life-stage i at each site (Getz et al.
2016).

Beyond handling dispersal between metapop-
ulation sites, DyHDER also accommodates
movement in potentially fragmented ecosystems
with directionally dependent site-to-site connec-
tivity. Accounting for directionality in habitat
connectivity is critical in understanding and
modeling metapopulation dynamics, particularly
in river networks (Moore 2015). First, all fish
movement in river networks is limited to a linear
path, and directionally dependent barriers to
movement are common, such as natural water-
falls or man-made dams. Second, after severe
environmental disturbance, the recovery and
genetic diversity of fish populations can depend
upon unrestricted movement and recolonization
(Fausch et al. 2006, Neville et al. 2009). While
these effects have been demonstrated in fish pop-
ulations, the importance of connectivity and
directionality on metapopulation dynamics is
not limited to riverine species and ecosystems
(e.g., Schooley and Wiens 2003).

Therefore, our model takes a stepwise
approach to address directionally dependent
connectivity during dispersal. In the first step, a
movement-independent probability that individ-
uals of life-stage iwill emigrate (i.e., disperse and
not return in that same timestep) is calculated as
a function of the condition of their origin loca-
tion, g:

PðiÞ
E;g ¼ cgqðiÞ

qðiÞ þ ð1� qðiÞÞa2g Kg

ng

� � (2)

where cg is the connectivity for emigration from
the origin site (0 ≤ cg ≤ 1), q(i) is the life-stage-de-
pendent propensity for dispersal (0 ≤ q(i) ≤ 1)
assuming an optimal origin habitat at carrying
capacity,ag is the habitat suitability (0 ≤ ag ≤ 1)
at the origin site, ng is the total abundance at the
origin site, and Kg is the baseline carrying capac-
ity at the origin site. This emigration model pro-
duces a nonlinear relationship between habitat
suitability and dispersal, which forces all individ-
uals to leave their origin site as habitat suitability
approaches zero (Fig. 4). We highlight that habi-
tat suitability is squared in the denominator of
Eq. 2. In addition to habitat condition being a
factor in driving dispersal, we also assume
resource availability will scale with habitat con-
dition. Representing this as a simple linear rela-
tion, aK, produces a squared inverse relationship
between habitat suitability and emigration. With
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Fig. 4. Probability of emigration, PðiÞ
E;g, plotted as a

function of the origin site habitat suitability, a, and at
variable subpopulation density. Importantly, all solu-
tions converge to = 1 (i.e., all individuals leave) when
origin site habitat suitability = 0. Additionally, when
the origin site is at carrying capacity and optimal habi-
tat suitability (a = 1), the emigration probability is
equal to the background dispersal probability, q(i).
Finally, for any given habitat suitability >0, emigration
rate increases with increases in subpopulation density.
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Eq. 2, the elements of the main diagonal of the
Markov transition matrix, mðiÞ

gg, or the probability
that individuals will stay in their current loca-
tion, are then calculated as 1� PðiÞ

E;g.
Next, the movement-dependent probability of

immigration (i.e., arrive and stay) by individuals
is calculated in each timestep by redistributing
the probabilities of emigration from each origin
g among all the potential destination sites f in
the metapopulation network. This immigration
probability is based on (1) the site-to-site connec-
tivity, cgf, (2) the destination site’s habitat suit-
ability, af, (3) the population density at the
destinations (nf=Kf), and finally, (4) the likeli-
hood an individual of a given life-stage could tra-
vel the distance between their origin and
potential destinations, sðiÞgf. We adopt a negative
exponential function to model the probability of
dispersal as a function of distance alone:

sðiÞgf ¼ exp � dgf
dðiÞ

� �
(3)

where dgf is the distance between origin and
potential destination, and dðiÞ is a characteristic
distance scalar, or the e-folding distance, defined
for each life-stage, i. If an exponential function is
not appropriate for a specific species or applica-
tion, this relation could easily be modified within
the model’s code. The probability of immigration
of life-stage i from origin g to destination f is
then calculated as follows:

PðiÞ
I;gf ¼

PðiÞ
E;g � cgfa2f s

ðiÞ
gfKf

nfPh
f¼1;f 6¼g

cgfa2f s
ðiÞ
gfKf

nf

(4)

The remaining elements within each row, mðiÞ
gf,

of the Markov transition matrix are equal to their
respective solution of PðiÞ

I;gf. While Eqs. 2 and 3
do not directly incorporate stochasticity, this
could be included in future applications (e.g.,
temporal variance of the q parameter), if there
were data to support this level of specificity.
However, as written, both equations are depen-
dent upon site abundance and, thus, indirectly
introduce interannual variability in emigration
and immigration rates through the stochastic
behavior of the subpopulation abundances.

A critical component of the dispersal model is
the habitat suitability index, a, which, along with
relative occupancy, is a key variable governing

the movement of individuals between sites
(Fig. 4). Within DyHDER, a habitat suitability
index is computed for each site and in each time-
step using one of the three previously discussed
methods for fuzzy aggregation (Eq. 1; Fig. 3).
This approach allows the habitat suitability index
to be defined by any number of metrics, includ-
ing habitat metrics not used to adjust subpopula-
tion vital rates. Since habitat suitability indices
can be used differently depending on the ecologi-
cal application, we emphasize that the habitat
suitability index in DyHDER specifically repre-
sents the aggregate of metrics expected to influ-
ence dispersal. As the method of aggregation can
influence dispersal dynamics, we specify that for
all applications herein metrics were aggregated
using the geometric mean.

CASE STUDY

To explore the capabilities of DyHDER, our
first application focuses on the Logan River of
northern Utah. The Logan River is a tributary to
the Little Bear River, with headwaters that
extend into the southeastern corner of Idaho
(Fig. 5). From its headwaters, the river flows
64 km through Logan Canyon of the Bear River
Mountains and ultimately drains to the closed
basin of the Great Salt Lake. Our study focuses
exclusively on the upper Logan River Watershed
(525 km2 above the river’s most upstream dam),
where the hydrology is dominated by spring
snowmelt floods (19.9 m3/s) and exhibits base
flow of approximately 2.7 m3/s (based on 48-yr
record of median daily flow from USGS gage
10109000). In these reaches of the Logan River,
the primary resident fish include endemic Bon-
neville cutthroat trout (BCT; Oncorhynchus clarkia
utah), non-native brown trout (Salmo trutta),
mountain whitefish (Prosopium williamsoni), and
mottled sculpin (Cottus bairdii).
We chose the Logan River to run our simulated

DyHDER experiments for a myriad of reasons.
First, the native metapopulation of BCT in the
Logan River has been closely monitored at multi-
ple index sites for 18 nearly consecutive years,
providing a long and rich ecological dataset. The
seven BCT monitoring sites we evaluate in this
study are distributed across the longitudinal gra-
dient of the river and range in elevation, reach
length, and habitat condition (Fig. 5). These sites
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include (1) Franklin Basin (FB tributary; eleva-
tion = 2023 m; 100-m reach), (2) Beaver Creek
(BC tributary; elevation = 2035 m; 100-m reach),
(3) Red Banks (RB main stem; eleva-
tion = 1923 m; 200-m reach), (4) Forestry Camp
(FC main stem; elevation = 1855 m; 200-m
reach), (5) Temple Fork (TF tributary; eleva-
tion = 1745 m; 100-m reach), (6) Spawn Creek
(SC tributary; elevation = 1823 m; 150-m reach),
and (7) Twin Bridges (TB main stem; eleva-
tion = 1691 m; 200-m reach). For each of these
sites, we have estimates of the abundance and
age/size structure (e.g., Budy et al. 2007), sub-
population growth, k, movement and spawning
ecology (e.g., Budy et al. 2012, Mohn 2016), key
vital rates, such as apparent survival via mark–
recapture (Table 1), and habitat condition
(Table 2). Detailed descriptions of sites and

monitoring methods can be found in Budy et al.
(2007).
Second, Logan River BCT represent one of the

largest and genetically pure metapopulations
remaining throughout their native range; this is
likely due to the persistence of highly connected
and nearly pristine habitat (de la Hoz Franco and
Budy 2005, McHugh and Budy 2005). The only
significant contemporary threat to BCT in the
Logan River is the negative impact of non-native
brown trout, but those impacts are largely
restricted to the lower elevations of the water-
shed (Laplanche et al. 2018), which are down-
stream of our study area. Consequently, our
baseline for experimenting with modeled physi-
cal disturbance is a large, healthy metapopula-
tion with high-quality, connected habitat: an
ideal situation for evaluating the effects of future
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Fig. 5. Logan River Watershed (above Third Dam) is located in northern Utah, USA. Seven long-term ecologi-
cal monitoring sites (yellow points; abbreviations are FB, Franklin Basin; BC, Beaver Creek; RB, Red Banks; FC,
Forestry Camp; SC, Spawn Creek; TF, Temple Fork; and TB, Twin Bridges) are located within the watershed. At
right, the modeled spatial configuration of the network (not to scale). Links are annotated with the stream dis-
tance (in km) between each site. The size of each site node is scaled based on the local median grain size, D50,
and colored based on the warmest 7-d average of maximum daily temperature. Also shown are the locations of
simulated dispersal barriers for the three fragmentation modeling experiments.
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disturbance. Third, the experimental disturbance
scenarios we model for the Logan River reflect
real threats to this metapopulation including cli-
mate change and proposed watershed manage-
ment actions. Finally, the Logan River trout
fishery is extremely popular among catch and
release fly anglers, is on the Utah’s Blue Ribbon
List (UDWR 2015), and is considered to be a high
priority for conservation (Budy et al. 2007).

MODELING EXPERIMENTS

Model setup
We constructed a model for BCT in Logan

River, UT, using four life-stages across the seven
subpopulation sites (Fig. 5). The life-stages of
BCT were defined based on fish body lengths
(i.e., fork lengths), as maturity and fecundity are
allometric in cutthroat trout (Downs et al. 1997).
Stage-1 (age-0 fish) are BCT < 100 mm in length
and represent trout <1 yr old. Stage-2 (juveniles)
are 100–149 mm in length and represent trout
≥1 yr old that are not yet reproductively mature.
Stage-3 (small adults) are 150–249 mm in length
and represent reproductively mature fish with
higher survival rates. Finally, stage-4 (large
adults) are >250 mm in length, are reproduc-
tively mature, include all ages (maximum possi-
ble = 8 years old), and experience the highest
survival and fecundity rates.

Apparent survival rates, /, for the three largest
stages (juveniles, small adults, and large adults)
were determined from 12 yr of mark–recapture
data at each site using Markov chain Monte
Carlo (MCMC) analysis (see Appendix S2 for

more detail). Survival for the smallest stage (age-
0) was back-calculated from each of the subpop-
ulation matrices by computing the rate necessary
to create a stable matrix (k = 1). Temporal vari-
ance of survival could not be reliably estimated
for any life-stage from mark–recapture analysis,
so we assumed a uniform temporal variance of
survival across all sites and all life-stages that
produced interannual variance in the metapopu-
lation abundance consistent with that observed
in the long-term monitoring data (r = 0.03; see
Appendix S2 for more detail). Due to the low
survival probabilities for age-0 BCT, the transi-
tion rate, c, for this stage was assumed to be
100% in all subpopulations. For all juveniles and
small adults, we assumed c = 50% (Hilderbrand
2003). Mean annual reproduction rates for small
and large adults were 18 and 30 age-0 fish pro-
duced per female, respectively, using length-to-
fecundity relationships for trout (Meyer et al.
2003), an assumed 50/50 ratio of male-to-female
fish, and a 5% estimate of egg-to-fry survival
(Weaver and Fraley 1993). The temporal variance
for reproductive rates was set uniformly across
all sites (similar to survival rates) with a standard
deviation equal to 5% of the mean annual repro-
ductive rate (rFi = 0.05 Fi). Finally, we used site-
specific abundance estimates derived by extrapo-
lating reach-scale (100–200 m) depletion esti-
mates to the total length of relevant reaches
using the River Styles Framework (Brierley and
Fryirs 2005, Mohn 2016). Site-specific carrying
capacities (K) were estimated from these abun-
dance estimates and the site-specific k estimates,
assuming logistic population growth, and served

Table 2. Summary of habitat metrics measured at the seven long-term monitoring sites within the upper Logan
River watershed.

Site name Site ID Temperature† (°C) D50‡ (cm) Dissolved oxygen§ (mg/L)

Beaver Creek BC 14.1 11.4 8.7
Franklin Basin FB 12.6 12.6 9.1
Red Banks RB 18.0 11.1 9.7
Forestry Camp FC 16.5 20.7 9.6
Temple Fork TF 17.5 5.3 8.7
Spawn Creek SC 18.1 3.1 8.7¶
Twin Bridges TB 16.3 12.0 9.5

† Temperature represents the warmest 7-d average of daily maximum temperatures from hourly or 15-min data collected
over at least two complete summers between 2012 and 2017 (FB and FC include data from iUTAH, 2019a, b).

‡ Median grain size (D50) data from repeat Wolman pebble counts (Wolman 1954) collected at each site between 2007 and
2016, with a minimum of two years of data for each site.

§ Dissolved oxygen data from point samples collected on 18–19 August 2015 at each site (Neilson et al. 2018).
¶ There were no DO measurements collected in SC, but as this is a tributary to TF, we use the TF value as a surrogate for SC.
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as our initialization abundance for each site
(Morris and Doak 2002).

While we lack estimates for stage-based dis-
persal rates in this system, cutthroat trout are
generally a sedentary and territorial species
(Behnke 1992). Limited PIT-tag data in this sys-
tem validate this observation, indicating low
rates of BCT movement throughout the Logan
River (Mohn 2016). Given the limited data, we
prescribed low dispersal propensities, q(i), for all
life-stages of BCT that varied slightly with body
length. For age-0 through small adult fish, we
assumed dispersal propensity increased as a
function of body length and set q(i) to 0.1%, 2.5%,
and 5%, respectively. Given their territorial
behavior, we assumed large adults were more
sedentary than small adults and set q(i) to 2.5%
for this largest life-stage. Similarly, we assumed
the distance a fish can travel in a given timestep
is a function of its body length (Detenbeck et al.
1992, Moyle and Cech 2000). Therefore, we set
the stage-based distance scalar, dðiÞ, equal to 0.05,
0.5, 2, and 3 km with increasing life-stage.
Although bull trout have been observed to
migrate large distances within a single month
(e.g., up to 53 km; Bowerman and Budy 2012),
this is not observed for Logan River BCT (Mohn
2016). Without dispersal data to prescribe these

parameters, we conducted a sensitivity analysis
to ensure the selected rates and distance scalars
produced metapopulation behavior consistent
with empirical observations and that did not pro-
duce any instabilities in the metapopulation
model.
Habitat-based demographic adjustment was

modeled using three metrics collected at each site
with varying frequency since 2005. We chose to
modulate survival rates based on dissolved oxy-
gen content, transition rates based on the 7-d
average of daily maximum water temperatures
for the warmest week of the year, and reproduc-
tion rates based on the median measured grain
size, D50, measured at the same locations as the
fish sampling (Table 2). As per Mohn (2016), we
assumed dispersal decisions were not influenced
by spawning habitat, and thus, our habitat suit-
ability indices for dispersal were aggregated
based on dissolved oxygen and water tempera-
ture using the geometric mean. The dissolved
oxygen and spawning gravel metrics were con-
verted to optimality functions using Bonneville
cutthroat-specific habitat suitability relations
from Hickman and Raleigh (1982), and tempera-
tures were converted to an optimality function
using a relative growth–temperature relation
borrowed from Railsback and Rose (1999; Fig. 6).
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Fig. 6. Habitat suitability relations for the three metrics used in modeling population dynamics of Bonneville
cutthroat trout (BCT) in the Logan River (green lines). Measured habitat conditions for the seven subpopulation
sites are shown in yellow circles. (a) For temperature, we use a relative growth relation modeled by Railsback
and Rose (1999) specifically for trout. (b) Suitability of dissolved oxygen, DO, comes from the BCT habitat suit-
ability model of Hickman and Raleigh (1982). (c) Spawning gravel suitability comes from the BCT habitat suit-
ability model of Hickman and Raleigh (1982). Also shown is the artificially inflated spawning gravel relation we
use for modeling experiment Gravel 2 (gray dashed line and white circles).
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Experiment descriptions
The metapopulation of BCT in Logan River

offer an ideal backdrop against which to test
common impacts to aquatic biota, because long-
term monitoring data demonstrate the Logan
River BCT metapopulation is robust with a cur-
rently stable long-term trajectory (Budy et al.
2007). Thus, we used DyHDER to evaluate how
habitat conditions, potential fragmentation, and/
or climate change could affect Logan River BCT
through eight simulated experiments (summa-
rized in Table 3). First, we evaluated Logan River
BCT spawning dynamics based on measured
streambed sediment (D50 in Table 2) at each
long-term monitoring site. Next, we evaluated
three potential fragmentation scenarios within
the network. Finally, we tested how climate
change projections of increasing stream tempera-
ture may affect BCT populations in the Logan
River. The baseline model to which all of these
results were compared used dissolved oxygen,
DO, to adjust survival rates and the seven-day
average of daily maximum temperature for the
warmest week of the year to adjust stage transi-
tion rates (Tables 1, 3). The habitat suitability
index, a, used to drive dispersal in all experi-
ments was based on the geometric mean of these
two habitat metrics. In all experiments and for all
sites, we used a Ricker model for density-depen-
dent reproduction. Every model experiment,
including the baseline, was run 100 times (i.e.,

100 simulations) for 100 model years to ensure
populations stabilize following disturbance.
Although spawning has frequently been

observed in the TF and SC sites (e.g., Bennett
et al. 2014), the actual number of individuals
observed spawning in these tributaries is small
when compared to the abundance of the total
metapopulation (Mohn 2016). This highlights
that, despite being a well-studied system,
unknowns remain regarding the spawning loca-
tions and behavior of this BCT metapopulation.
Thus, we first used the DyHDER model to test
the hypothesis that fish are using their local habi-
tat for spawning (Gravel 1; Table 3). Streambed
grain sizes were measured by pebble count (Wol-
man 1954) at each of the seven sites during sum-
mer monitoring campaigns between 2005 and
2016. We characterized local sediment size by the
median measured size, D50, for the log-normal
distributions of streambed sediment (Table 2).
We then adjusted reproduction rates in each site
matrix based on the Hickman and Raleigh (1982)
spawning gravel suitability relation (Fig. 6c).
Cursory observation revealed that the mainstem
reaches of the Logan River (FC, RB, and TB) have
relatively coarser streambeds (Fig. 5). There is
evidence to suggest BCT in the Logan River can
utilize somewhat larger gravels than those
defined as optimal by Hickman and Raleigh
(1982; Budy et al. 2012). Therefore, we ran the
same experiment again but instead used an

Table 3. Details and model input parameters for the eight DyHDER experiments we evaluate for the Logan River
Bonneville cutthroat trout metapopulation.

Experiment ID Brief description Dispersal W/ Wc WF

Baseline Baseline scenario based on DO and temperature adjustments
to site demographics in Table 1

On DO Temp –

Gravel 1 Reproduction rates adjusted using Hickman and Raleigh
(1982) spawning gravel suitability

On DO Temp D50

Gravel 2 Reproduction rates adjusted using inflated spawning
gravel suitability relation

On DO Temp D50

Frag 1 Simulate one-way barrier at mouth of TF tributary On DO Temp –
Frag 2 Simulate one-way barriers at mouth of FB and BC tributaries On DO Temp –
Frag 3 Simulate one-way barriers at mouth of all three

tributaries (FB, BC, and TF)
On DO Temp –

Climate 1 Stream temperature increased by 1.3°C at all sites Off DO Temp + 1.3°C –
Climate 2 Stream temperature increased by 1.3°C at all sites On DO Temp + 1.3°C –
Climate–Frag 3 Stream temperature increased by 1.3°C at all sites + one-way

barriers simulated for all three tributaries
On DO Temp + 1.3°C –

Notes: BC, Beaver Creek; FB, Franklin Basin; TF, Temple Fork. Habitat metrics and suitability relations used to inform the
demographic adjustment parameters (Ψ) were applied uniformly across the four life-stages. A hyphen (–) is used to indicate if
no habitat parameter is applied to adjust demographics.
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inflated version of the Hickman and Raleigh
(1982) spawning gravel relation (Fig. 6c) that
increased the spawning suitability of coarser
grains (Gravel 2; Table 3).

Next, we evaluated the influence of simulated
fragmentation scenarios on Logan River BCT
metapopulation dynamics. Engineered one-way
fish barriers (i.e., allowing emigration but no
immigration) represent a strategy that has previ-
ously been implemented within lower tributaries
of the Logan River to manage for non-native
brown trout. Currently, no such barriers exist
between the subpopulation sites in our study,
but a relatively large reservoir was recently pro-
posed for the TF tributary (UDWR 2014). While
this dam would represent a complete barrier to
fish (i.e., no movement in either direction), it
would also likely result in changes to the down-
stream thermal regime that has yet to be mod-
eled or predicted. Thus, we instead simulated
three common scenarios for smaller directionally
dependent barriers (i.e., allow downstream dis-
persal but not upstream), which represent feasi-
ble future locations for engineered non-native
exclusion structures. First, we introduced a simu-
lated one-way barrier at the mouth of TF (Frag 1;
Table 3). Second, we introduced simulated one-
way barriers at the mouth of both headwater
tributaries (FB and BC; Frag 2; Table 3). Finally,
we ran an experiment with one-way barriers at
all three locations (Frag 3; Table 3; Fig. 5). All
three experiments were run with habitat-based
adjustment and dispersal driven by the metrics
of DO and stream temperature (Table 3).

Finally, we ran experiments to assess how pro-
jected climate change impacts on stream temper-
ature could influence Logan River BCT. The
NorWeST model, which is based on the A2 emis-
sion scenario, suggests stream temperatures in
the Logan River could uniformly increase 1.3°C
by 2080 (Isaak et al. 2010). However, given the
current spatial variability in stream temperature
(Fig. 5; Table 1), habitat and population effects at
each site would be expected to vary with a uni-
form increase in temperature. We first ran a cli-
mate change experiment without any dispersal
(Climate 1; Table 3), in order to evaluate isolated
local responses to stream temperature increases.
Next, we ran an identical experiment but with
dispersal (driven by temperature and DO), to
evaluate responses when fish have the option to

migrate toward more optimal thermal conditions
(Climate 2; Table 3). Finally, we ran a climate
change experiment but incorporate the third, and
most widespread, fragmentation simulation (Cli-
mate–Frag 3). This final scenario exercised all of
the advancements within DyHDER and explored
the combined effects on the Logan River BCT
metapopulation from realistic future scenarios of
fragmentation and habitat disturbance in the sys-
tem.

RESULTS

From our eight modeling experiments, we
compared results based on relative outcomes for
the Logan River BCT metapopulation, as well as
for each of the seven subpopulations in the net-
work. This approach allowed for the evaluation
of possible spatial redistributions of fish within
the stream network, even if the total abundance
of the metapopulation was unchanged (Fig. 7).
In some simulated disturbance scenarios, the
metapopulation required multiple years to stabi-
lize, though all did within the 100-yr model run-
time (e.g., Gravel 2 in Fig. 7). While we did not
evaluate perturbation response times here, one
could with the DyHDER model. Instead, all
results represent the mean abundance of age-
1 + fish (i.e., do not include the smallest stage)
from the final 25 model years across all 100 simu-
lations of each experiment (mean of n = 2500
results) normalized by the respective mean abun-
dance from the final 25 yr of the baseline sce-
nario. While age-0 BCT are important to the
population dynamics, we did not include them
in our comparative results, as they are not effec-
tively sampled.
First, we assessed the influence of median

streambed sediment size, D50, on Logan River
BCT spawning dynamics. Using the Hickman
and Raleigh (1982) suitability curve (Fig. 6c) to
adjust reproductive rates, we found that the over-
all BCT metapopulation diminished to 2% of
baseline (Gravel 1 in Fig. 8), below the 5% quasi-
extinction threshold. The subpopulations within
the finer-grained tributary of TF and its upper
limb, SC, exhibited the best outcomes, with abun-
dances diminishing to only 45% and 39%, respec-
tively. The four subpopulations in the upper half
of the watershed with coarser-grained sediment
were extirpated (0%), despite the fact that their
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reproductive rates remained above zero and that
fish immigrated to these sites (gravels did not
influence dispersal). Although SC and TF possess
optimal spawning gravels (Fig. 6c), they did not
contain large enough populations to maintain the
entire Logan River metapopulation. Additionally,
given the quality of stream and spawning habitat
in SC and TF, the diminished abundances there
reflected a greater net loss of fish due to dispersal
relative to baseline.

Next, we inflated the spawning gravel suitabil-
ity relation under the assumption that coarser
streambeds may provide some available spawn-
ing gravels (Fig. 6c). The more generous suitabil-
ity relation did prevent all subpopulations from
going below quasi-extinction; however, all sub-
populations were still heavily impaired (Gravel 2
in Fig. 8). BCT abundance at FC suffered the
most, due to its very coarse streambed, but no site
exhibited an abundance >52% of baseline. The
total Logan River metapopulation was just 38%
of baseline. From these results, we conclude the
local median sediment sizes do not accurately

capture the available spawning habitat or dynam-
ics in the Logan River, and thus, we did not
include gravels as a metric in the remainder of
our modeling experiments. However, this is an
interesting result in and of itself, and we discuss
the implications in more detail in our discussion.
Subsequently, we tested the three scenarios of

fragmentation. The first was a one-way dispersal
barrier at the mouth of TF, the next was one-way
barriers at the mouth of both headwater tribu-
taries (FB, and BC), and finally we evaluated the
impact of installing all three (Fig. 2). While we
found that placing a one-way barrier at TF had
little to no influence on the total Logan River
metapopulation abundance (Frag 1 in Fig. 8),
this fragmentation scenario significantly affected
abundance in three subpopulations of the net-
work. First, both the isolated TF and SC dropped
to 48% and 43% of baseline, respectively. This
indicates that in the absence of a barrier, these
subpopulations were largely augmented by
immigration. Second, with this tributary cutoff to
immigration, dispersing fish in the mainstem
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were forced to redistribute among a smaller area
of available habitat. Red Banks, with a 7%
increase in abundance, was the recipient of most
displaced individuals. The fact that this marginal
increase at RB balances the >50% reduction at
both TF and SC reflects the comparatively small
abundances in these two tributary sites (Table 1).

Similarly, we found that simulated one-way
barriers at the mouth of both headwater tribu-
taries did not affect the overall metapopulation
abundance. However, in contrast to the TF bar-
rier, these barriers only marginally affected one
of the isolated subpopulations and increased the

relative abundance in all other subpopulations
(Frag 2 in Fig. 8). Beaver Creek was more or less
unaffected, with an abundance at 96% of base-
line, while FB’s abundance dropped to 89% of
baseline. The other five subpopulations in the
network experienced increases in abundance that
ranged from 6% to 10% of baseline.
Introducing simulated one-way barriers at all

three locations similarly had little effect on the
metapopulation of Logan River and did not
result in the extirpation of any subpopulation,
indicative of the overall high quality of habitat
throughout the system (Frag 3 in Fig. 8). The
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four isolated subpopulations (TF, SC, FB, and
BC) all exhibited decreases in abundance similar
to the previous isolation experiments. However,
this increase in river fragmentation significantly
reduced the available habitat area for dispersing
fish in the mainstem, yet the emigration of tribu-
tary BCT was unimpeded by the one-way barri-
ers. For this reason, the abundance of the three
mainstem sites increased by 12–32%. In all three
fragmentation experiments, RB experienced the
greatest relative increase in abundance compared
to other sites. This pattern indicates that despite
its less favorable local habitat conditions, it
serves as an important migration hub for fish dis-
persing throughout the network.

Finally, we evaluated how stream temperature
projections may affect Logan River BCT popula-
tions, both with and without the influence of
fragmentation. Since dispersal in DyHDER is dri-
ven by habitat condition and the projected 1.3°C
increase in stream temperature will cause
nonuniform changes in habitat suitability
(Fig. 6a), it was valuable to first interpret results
in the absence of dispersal (Climate 1 in Fig. 8).
For reference, the only site currently with opti-
mal late summer temperatures (i.e., suitabil-
ity � 1 prior to the introduction of the increase
in stream temperature) is BC at 14.1°C. In com-
parison, FB is slightly colder (12.6°C) than opti-
mal and all other lower elevation sites are
warmer than optimal (Fig. 6a). Evaluating the
sites in isolation, we found that a 1.3°C increase
in stream temperature negatively impacted all
but the cooler headwater tributaries. Franklin
Basin actually benefited from the increase in tem-
perature, experiencing an 18% increase in abun-
dance, while all downstream sites experienced
significant decreases in abundance, ranging from
19% to 71% of baseline. Despite the diminished
habitat quality for a majority of the stream net-
work, abundance of the entire metapopulation
only dropped 8%. This effect, whereby the head-
water populations buffer the climate impacts on
the total abundance of trout, is supported by
empirical observations that suggest the two large
headwater tributaries contain more than two-
thirds of the Logan River BCT metapopulation
(Table 1; Mohn 2016).

Relative to the isolated experiment, we found
that allowing dispersal improved modeled out-
comes for most subpopulations (Climate 2 in

Fig. 8). The only exceptions to this result were
the two headwater tributaries, which, in the fully
connected model, experienced slight decreases in
abundance relative to the isolated experiment.
This is because they became source populations
that boosted other site abundances. With unre-
stricted dispersal, all of the other downstream
sites experienced abundances ranging from 74%
to 77% of their baseline. While still negatively
impacted by climate change, this was consider-
ably better than the 19–71% for these sites in iso-
lation. This spatial redistribution of BCT from
the cold headwaters to the remainder of the river
network actually benefited the overall metapop-
ulation abundance, which increased by 2% rela-
tive to the isolated case. This result highlights the
benefit of connectivity with disturbance.
Finally, reintroducing the three simulated one-

way barriers to the network under the projected
climate change scenario, we observed little
impact to the total metapopulation abundance
compared to the previous fully connected sce-
nario (Climate–Frag 3 in Fig. 8). This reflects the
disproportionate abundance in the two headwa-
ter tributaries, which in isolation were predicted
to experience increases in abundance with warm-
ing temperature. Even with one-way barriers,
these sites still served as sources of fish to the
remainder of the network. However, with barri-
ers in place, this emigration of fish meant the
abundance in the tributaries was predicted to
decrease marginally. In contrast to the headwa-
ters, the isolated subpopulations of TF and SC
were predicted to decrease by more than 2/3
compared to the fully connected climate change
scenario. While all of the isolated tributaries
experienced decreases in abundance, the three
mainstem sites benefited relative to the fully con-
nected climate change scenario. Despite the
increasingly warm late summer temperatures
predicted in the mainstem sites (18°–20°C), abun-
dance was predicted to range from 87% to 105%
relative to baseline, reflecting the combined effect
of immigration from the isolated tributaries and
inability of mainstem fish to disperse. Therefore,
when compared to the case of fragmentation
alone (i.e., Frag 3), this result demonstrates that
the additive effect of habitat disturbance due to
climate change results in lower abundances for
every subpopulation, except one headwater
tributary currently colder than optimal (i.e., FB).

 ❖ www.esajournals.org 17 January 2020 ❖ Volume 11(1) ❖ Article e03023

MURPHY ET AL.



DISCUSSION

As disturbances (e.g., wildfire, drought) are
predicted to continue increasing in both magni-
tude and frequency (Westerling et al. 2006,
Turner 2010, Murphy et al. 2018), there is a
growing need to understand how biotic popula-
tions will respond through altered growth, sur-
vival, and dispersal across landscapes. Not only
are population responses to disturbance interest-
ing from a purely ecological perspective (e.g.,
Turner 2010, Haddad et al. 2015), but they must
also be considered for the purpose of effective
future conservation and management (e.g.,
Coates et al. 2016, Hughes et al. 2017). Therefore,
we have developed DyHDER to provide a flexi-
ble modeling framework to explore the potential
effects of disturbance on population growth and
dispersal using an approach that is mechanistic,
habitat-dependent, spatially explicit, and tempo-
rally dynamic.

In our DyHDER experimental simulations for
the well-studied and robust metapopulation of
BCT in the Logan River, we found that network
fragmentation and climate change alone had
minimal impacts on the overall metapopulation
abundance. However, each disturbance did dra-
matically alter the spatial distribution of individ-
uals, and the magnitude of these impacts was
greatest when the two disturbances occurred
simultaneously. The results of this case study
highlight both the value and need for models
that are capable of evaluating how spatially vari-
able disturbances may propagate or combine to
affect fish populations. An improved under-
standing of these effects could help managers
tasked with maintaining viable populations and
supporting recreational fishing opportunities,
which can be important for enhancing conserva-
tion sentiment (Tufts et al. 2015).

The availability of spawning gravels is a com-
monly used metric in evaluating the habitat suit-
ability for Pacific salmonids (Oncorhynchus spp).
While the optimality of spawning gravel sizes for
these fishes have been well-studied (e.g., Kondolf
and Wolman 1993, Kondolf 2000, Riebe et al.
2014), we did not find local median grain size
provided a reliable metric to model spawning
dynamics of BCT, despite the known stability
and health of the Logan River metapopulation
(Budy et al. 2007, Laplanche et al. 2018). Rather,

all subpopulations were extirpated when we
introduced grain size-dependent reproduction,
except for the fine-grained TF and SC. The out-
put of recruits from these two small tributaries
would have to be unrealistically large to support
the observed abundance and stability of the
entire metapopulation; thus, we present two
potential interpretations to explain the discor-
dance between the measured gravel composition
and realistic recruitment dynamics. First, com-
mon field survey techniques (e.g., reach-scale
Wolman pebble counts) and grain size metrics
(e.g., D50) may not adequately capture spawning
gravel availability at the meter to submeter spa-
tial scales at which trout select spawning habitat.
Fish habitat surveys are generally conducted
along reach-scale transects, whereas spawning
habitats are often patchily distributed within and
may not overlap with sampling transects. This
finding highlights a need for streambed gravel
metrics and sampling techniques that better cap-
ture this patchiness and specifically target the
prevalence of the grain sizes essential to spawn-
ing. Alternatively, our model results could sug-
gest that habitat surveys limited to the 100–200-
m reaches where fish sampling is conducted may
fail to capture the availability of local habitat to
fishes. For example, Logan River BCT in the
mainstem reaches may spawn in un-surveyed,
intermittent tributaries located adjacent to sam-
pled reaches. While these tributaries present
unsuitable rearing and feeding habitats during
the late summer sampling period, it is hypothe-
sized they could provide quality spawning habi-
tat during spring snowmelt conditions.
Regardless of interpretation, our results highlight
a need for caution when using spatially limited
and simplified summary metrics for estimating
habitat suitability.
Native trout of the Intermountain West are

adapted to rivers with historically cold thermal
regimes, yet recent research has shown climate
change is likely to alter the thermal suitability of
rivers across the western United States for native
salmonids (e.g., Isaak et al. 2010, 2016b, Fullerton
et al. 2018). Warmer temperatures and reduced
snowpack are predicted to increase summer
stream temperatures, pushing many currently
suitable locations into unsuitable conditions
(Isaak et al. 2010, Lisi et al. 2015). Based on mod-
eled stream network temperatures (NorWeST
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SSN Model), the upper Logan River is predicted
to experience an approximately 1.3°C increase in
temperature by 2080 (Isaak et al. 2016a). Even
though the predicted temperature change was
simulated as uniform across our study area,
extant thermal heterogeneity throughout the sys-
tem and the nonlinear relationship between tem-
perature and suitability resulted in diverse
ecological outcomes. For instance, some sites
(i.e., TF, SC, RB) are currently close to the upper
thermal limits for BCT; thus, we find a 1.3°C tem-
perature increase resulted in substantial declines
in suitability and abundance. However, network
dispersal was critical in maintaining a relatively
large metapopulation, despite warming tempera-
tures, as conditions in currently colder neighbor-
ing sites were not predicted to warm beyond the
thermal tolerances of trout (Railsback and Rose
1999). Due to currently below optimal tempera-
tures in one headwater tributary (FB), the
increase in temperature was predicted to benefit
this subpopulation. Ultimately, the variable eco-
logical response highlights the complexity of
habitat composition and discontinuity presented
by stream network patterns (Poole 2002, Rice
et al. 2006), riparian vegetation (Isaak and
Hubert 2001), and groundwater (Caissie 2006),
all of which make rivers particularly challenging
systems for predicting animal population
responses to disturbance at regional scales.
Accordingly, spatial population models that
incorporate mechanistic linkages between habitat
condition, vital rates, and dispersal, as in DyH-
DER, offer a valuable approach for understand-
ing the impacts of habitat complexity and
predicting responses in ecosystems.

Dispersal is a key component of many lotic
fishes’ life-history strategies, allowing them to
access different habitats for specific life-stages or
seasons (Schlosser 1991, Baldock et al. 2016), as
well as cope with temporally dynamic conditions
presented by disturbance and climate variability
(Armstrong and Schindler 2013). As such, frag-
mentation of stream networks can present seri-
ous challenges to fishes (Dunham et al. 2003,
Jaeger et al. 2014, Perkin et al. 2015). In addition
to blocking large-scale spawning migrations,
fragmentation can inhibit the ability of subpopu-
lations to respond to acute habitat disturbances
or rescue neighboring subpopulations following
disturbance and local extirpation (Fagan 2002).

Our case study experiments highlight that frag-
mentation in the absence of disturbance can
potentially have little impact on total metapopu-
lation abundance, yet can still substantially alter
the spatial distribution of individuals among
subpopulations. When tributaries are frag-
mented from the mainstem river by one-way bar-
riers, we find that individuals become
concentrated in the mainstem, as fish continue to
emigrate from the tributaries but none can dis-
perse into the tributaries. Though, we caution
that we assumed all barriers were open to move-
ment in the downstream direction in our case
study. Large dams, such as that proposed for TF
in the Logan River (UDWR 2014), are generally
barriers to movement in both directions (Lier-
mann et al. 2012). Consequently, our experi-
ments underestimate the impact expected from
bidirectional barriers, particularly in the presence
of additional ecological stressors. However,
regardless of barrier type, if isolated subpopula-
tions were to experience an acute high-magni-
tude disturbance (e.g., ash loading following a
high-severity wildfire), then local habitat condi-
tions may no longer be able to support survival
and recruitment, and proximal subpopulations
would be unable to recolonize these sites. In
addition to the decrease in overall abundance,
the loss of subpopulations can result in the
degradation of population portfolios, decreasing
the stability of metapopulations with uncertain
future conditions (e.g., Hilborn et al. 2003,
Schindler et al. 2010, Carlson and Satterthwaite
2011). The impacts of spatially explicit and tem-
porally dynamic disturbance events can be read-
ily explored in the DyHDER model and can be
highly informative regarding the impacts of frag-
mentation on populations of management con-
cern.
Predicting the impact of ecological disturbance

becomes increasingly difficult as multiple distur-
bances occur simultaneously (e.g., Doherty et al.
2015, Johnstone et al. 2016), particularly because
it is often uncertain whether effects will be addi-
tive, synergistic, or discordant in nature. Cou-
pled habitat and population-dynamic models
can provide a valuable approach to explore the
uncertainty of interacting disturbances (e.g.,
AkC�akaya et al. 2004, Blomberg et al. 2012).
Using DyHDER, we find that the combined
effect of climate change and fragmentation on
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the predicted distribution of trout is dramatically
different than with either fragmentation or cli-
mate change alone. Under an A2 warming sce-
nario with one-way dispersal barriers, lower
elevation tributaries become thermally unsuit-
able and can no longer be maintained by immi-
grants from the mainstem. While we simulated
disconnectivity for the colder headwater tribu-
taries, their thermal conditions are predicted to
remain suitable or even improve for BCT with a
warming climate. Thus, they increasingly served
as source populations to mainstem sites and the
model predicted increased abundances at sites
immediately downstream of these cold tribu-
taries, despite the warmer (i.e., less suitable) local
thermal regime at those sites. If we had not
explored the interactions between habitat distur-
bance and dispersal, abundance at these main-
stem sites would likely be predicted to decrease
with increasing temperature. Our application to
Logan River BCT demonstrates the capabilities of
DyHDER in evaluating population response in
scenarios with a diversity of spatially variable
and uncertain interacting disturbances, the
results of which can provide valuable insights for
shaping robust conservation strategies. Further,
our case study results also demonstrate the
importance of maintaining a diverse and well-
connected metapopulation for improving resili-
ence in the face of climate change.

While DyHDER is a new open-source frame-
work for modeling metapopulation dynamics,
there are other population projection modeling
programs currently available, including, but not
limited to, VORTEX (Lacy 1993), HexSim (Schu-
maker and Brookes 2018), and RAMAS GIS
(AkC�akaya 1998). Each of these models provides
researchers with options for exploring metapopu-
lation dynamics under a range of habitat condi-
tions with differing levels of complexity and
specificity. However, in certain applications,
DyHDER provides distinct advantages over these
other models. For cases where the data only sup-
port, or the research questions only require, a
matrix-based model, the computational demands
and run times of IBMs, such as VORTEX and
HexSim, are disadvantageous, particularly when
modeling large metapopulations. In addition, it is
challenging to parameterize VORTEX for female-
only models, which is a necessary approach for
many terrestrial species and systems (e.g.,

ungulates). While RAMAS GIS offers a GIS inter-
face for modeling habitat-dependent metapopu-
lation scenarios, the implementation of
temporally dynamic changes in habitat condition
is less straightforward and less mechanistic than
DyHDER’s approach of using habitat time-series
and suitability functions. Methodology aside, the
closed-source architecture of these other models
also limits users’ ability to understand or cus-
tomize their analyses, and further, precludes the
direct linkage to physical systems models.
Similar to these other population projection

modeling programs, DyHDER was designed to
be flexible enough for application to different
species and ecosystems. Although we used DyH-
DER for cutthroat trout, our future plans for the
model include the comparison of different
translocation strategies on the recovery of Sierra
Nevada bighorn sheep. These sheep live in a
metapopulation structure, and while specific
recovery goals have been outlined (USFWS
2007), models to date have treated each subpop-
ulation separately (Johnson et al. 2010, Cahn
et al. 2011). Using DyHDER for this analysis will
facilitate modeling the entire metapopulation of
bighorn sheep, while accounting for connections
between subpopulations, spatially explicit spread
of disease, and dispersal in response to potential
habitat changes. The ability to explicitly model
habitat response, as well as connectivity, will pro-
vide a more robust evaluation of the different pro-
posed translocation strategies and the ability to
meet metapopulation recovery goals.
The DyHDER modeling framework has its lim-

itations, but many are common to any matrix
population model, namely the necessity of
detailed vital rate estimates (e.g., Doak et al.
2005, Zeigler et al. 2013). Compiling such esti-
mates requires extensive long-term monitoring
and can still present limitations. For example, our
long-term dataset for BCT allowed us to generate
well-constrained estimates for survival rates of
juvenile and adult life-stages, but from this field
data, we were still unable to confidently estimate
temporal variance or the survival rates for eggs
or the youngest life-stages: a common issue in
riverine fish studies. Another limitation in our
approach of incorporating mechanistic linkages
between habitat condition and vital rates is that it
relies heavily on the availability of accurate quan-
titative representations of these relationships.
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These data can be determined from direct field
measurements or often found in the scientific lit-
erature, though they are sometimes only available
for a related species. This does not represent a
limitation of DyHDER itself, but rather of the
datasets currently available to inform the model.
Regardless of the modeling framework used, fur-
ther development of population models that
mechanistically couple physical and ecological
dynamics will require more research that
explores and quantifies the effects of physical
habitat on survival and growth rates for a wide
range of species (e.g., Bouwes et al. 2016).

Nonetheless, as the intended use of DyHDER
is for the relative comparison of modeled out-
comes, not quantitative prescription of singular
scenarios, these limitations do not minimize the
value of DyHDER analyses for comparing
impacts from different disturbance scenarios.
Specifically, with reasonable estimates of demo-
graphic parameters and habitat suitability rela-
tions, relative outcomes from different scenarios
can still be evaluated. Additionally, in acknowl-
edging these potential uncertainties in model
inputs, the open-source and flexible architecture
of DyHDER allows users to easily explore the
sensitivity of model results to uncertain input
parameters and model design (e.g., habitat–vital
rate relationships). Determining which of the
data and model uncertainties are most influential
to model outcomes through sensitivity analyses
can also provide more informed and reliable
advice for management.

Finally, we highlight that the simulated distur-
bances explored in our initial case study were not
temporally dynamic, and instead represented
long-term disturbances lasting for the entire dura-
tion of simulations (i.e., press disturbances). While
this type of implementation was appropriate for
the disturbances we simulated, more temporally
discrete (i.e., pulse) disturbances can be modeled
using DyHDER. For example, planned future
applications include spatiotemporal habitat dis-
turbances following wildfire introduced using
watershed-scale, post-wildfire erosion and sedi-
ment routing models (e.g., Murphy et al. 2019).

CONCLUSIONS

While the dynamic habitat impacts on
metapopulations are comparatively well-studied

for terrestrial ecosystems (e.g., AkC�akaya et al.
2004, Larson et al. 2004, Bekessy et al. 2009),
stream networks present unique challenges for
predicting the impacts of land-use change, cli-
mate change, and other disturbances on aquatic
populations (e.g., Ver Hoef and Peterson 2010).
Flow-routed propagation of disturbance, as well
as limited dispersal pathways within channel
networks, inherently presents more restrictions
when modeling fluvial systems (Campbell Grant
et al. 2007). The DyHDER model was designed
to account for these additional challenges, yet
remains flexible enough for application to terres-
trial ecosystems.
Finally, DyHDER provides an approach for

incorporating spatially explicit and temporally
dynamic disturbance impacts into population via-
bility analyses. Accordingly, predictions from this
model could be used to explore potential impacts
from different management decisions in the face
of uncertain future disturbance regimes. By
embracing this uncertainty and exploring spa-
tiotemporal impacts of habitat change on popula-
tions, ecologists can gain a better understanding
of the complex interactions and dynamics con-
trolling ecosystems, and managers can make bet-
ter informed decisions regarding potential risks
to species of concern.
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with input template spreadsheets and README files,
can be accessed and downloaded free of charge at:
https://github.com/bpmurphy/
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