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ABSTRACT

A uniformly magnetized sphere moves without friction in a plane in response to the field of a second, identical, fixed sphere and makes elastic
hard-sphere collisions with this sphere. Numerical simulations of the threshold energies and periods of periodic finite-amplitude nonlinear
bouncing modes agree with small-amplitude closed-form mathematical results, which are used to identify scaling parameters that govern the
entire amplitude range, including power-law scaling at large amplitudes. Scaling parameters are combinations of the bouncing number, the
rocking number, the phase, and numerical factors. Discontinuities in the scaling functions are found when viewing the threshold energy and
period as separate functions of the scaling parameters, for which large-amplitude scaling exponents are obtained from fits to the data. These
discontinuities disappear when the threshold energy is viewed as a function of the threshold period, for which the large-amplitude scaling
exponent is obtained analytically and for which scaling applies to both in-phase and out-of-phase modes.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5125925

The purpose of this work is to investigate the scaling relation-
ships between the threshold energy, the threshold period, the
bouncing number, the rocking number, and the phase of 1497
periodic modes found previously for the motion of a uniformly
magnetized sphere subject to the field of a second, identical, fixed
sphere. This large dataset offers the opportunity to identify scal-
ing relationships to high precision for this highly nonlinear prob-
lem. Such scaling relationships recall techniques used in studying
phase transitions and fractals and invite the search for universal
scaling laws that may also apply to other systems. This work is
motivated by our interest in the properties of collections of small
neodymium magnet spheres that are used to create beautiful mag-
netic sculptures and are used both in and out of the classroom to
teach principles of mathematics, physics, chemistry, biology, and
engineering.

I. INTRODUCTION

In Paper I,1 we use MagPhyx software to find 1497 periodic
modes for a uniformly magnetized sphere moving without friction
in response to the field of a second, identical, fixed sphere and mak-
ing elastic hard-sphere collisions with this sphere.2 Three quantities

(m, n, p) characterize these modes: (1) the number m of collisions
during one period of the motion, called the bouncing number,
(2) the number n of angular oscillations during one period of the
motion, called the rocking number, and (3) the initial phase of the
angular oscillations, with p = 1 for the in-phase motion with initial
orbital and spin angular momenta of the same sign and with p = 2
for the out-of-phase motion with initial orbital and spin angular
momenta of opposite signs.

As discussed in Ref. 1, the basis for all of these modes is the
finite-amplitude radial mode. In this mode, the magnetic moments
of the two spheres remain in the same direction as the motion of
the free sphere—there is no angular motion as the south pole of
the free sphere bounces repeatedly against the north pole of the
fixed sphere. As the energy of this mode increases, bifurcations to
other modes (m, n, p) occur at threshold energies Emnp and peri-
ods Tmnp. At these bifurcations, the angular motion is infinitesimal,
with pφ(0) → 0 and pθ (0) → 0. As the energy increases beyond
this threshold for a particular mode (m, n, p), the amplitude of
the angular motion increases. Thus, the threshold energy Emnp and
period Tmnp correspond to the finite-amplitude radial motion and
infinitesimal-amplitude angular motion.

The purpose of this paper is to investigate how Emnp and Tmnp

depend on m, n, and p for the motion with small, intermediate, and
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large amplitudes. Values of Emnp range between −1/3 and 0, with
E = −1/3 giving the stable equilibrium state with the south pole
of the free magnet in permanent contact with the north pole of the
fixed magnet and with E = 0 giving the upper energy limit for bound
states. Energies near E = −1/3 give small-amplitude motions for
which the free sphere remains in the vicinity of its stable equilibrium
position, while energies near E = 0 give large-amplitude nonlinear
motions for which the free sphere wanders far from this position.

In this paper, we test our data against mathematical predictions
of Emnp and Tmnp for small amplitudes and use scaling parameters
identified by these predictions to propose and test power-law scaling
for large amplitudes. The use of scaling parameters and the investi-
gation of large-amplitude power-law scaling draws upon techniques
used to study phase transitions and random fractals.3

In this study, we take advantage of our recent proof that sim-
ple dipolar interactions exactly describe the magnetic interactions
between uniformly magnetized spheres4 and build upon our subse-
quent studies of dynamical interactions between spheres that remain
in contact, both with and without friction.5,6

Our 1497 modes exhibit a wide variety of behaviors, includ-
ing simple modes with small m and n and complicated modes with
large m and n. Mode (157,580,2) is the most complicated that we
discovered. With Emnp = −0.003 999 and Tmnp = 11 298, this mode
requires about 16 000 Runge–Kutta time steps to integrate. Tracking
changes in the energy provides a valuable test of the reliability of the
integration of our conservative system of equations. For the long-
period (157,580,2) mode, the energy variations are within 10−10.
Energy variations are even smaller for simpler modes with shorter
periods.

Collections of small neodymium magnet spheres are used to
create beautiful magnetic sculptures;7 to teach principles of mathe-
matics, physics, chemistry, biology, and engineering;8 and to inves-
tigate the properties of chains and rings.9–17

II. FINITE-AMPLITUDE RADIAL MODE

The basis for scaling for threshold states is the finite-amplitude
radial mode. In this section, we relate the period T of this mode to its
energy E and infer a relationship between the threshold energy Emnp

and period Tmnp of mode (m, n, p).
Setting θ = φ = pθ = pφ = 0 in Eqs. (11a) and (11b) in Ref. 1

gives the total energy of the finite-amplitude radial mode,

E =
ṙ2

2
−

1

3r3
. (1)

As we did for our small-amplitude investigations (Ref. 1,
Sec. III A), we employ the initial conditions r(0) = 1 and ṙ(0) = v0,
placing the free sphere in instantaneous initial contact with the fixed
sphere. We integrate until the time t = T/2 is half the period T,
at which point the free sphere is located at its maximum radius
r(T/2) = a, and its speed is ṙ(T/2) = 0. Evaluating the (conserved)
total energy at t = T/2 gives a relationship between E and a,

E = −
1

3a3
, (2)

where bound periodic states satisfy −1/3 < E < 0 and 1 < a < ∞.

Combining Eqs. (1) and (2), rearranging, and integrating over
half a period gives

∫ a

1

dr
√

r−3 − a−3
=

√

2

3

∫ T/2

0

dt. (3)

Conveniently substituting ρ = r/a to rewrite the integral on the left
side yields the period T as a function of the maximum radius a,

T =
√

6a5/2f(a), (4)

where the integral

f(a) =
∫ 1

1/a

dρ
√

ρ−3 − 1
(5)

cannot generally be expressed in terms of elementary functions. We
use Maple software to evaluate the integral, which has the limiting
values f(1) = 0 and

f(∞) =
∫ 1

0

dρ
√

ρ−3 − 1
= 0.7468. (6)

At its threshold energy Emnp, mode (m, n, p) executes the same
motion as the finite-amplitude radial mode of the same energy E but
executes it m times, apart from its n infinitesimal-amplitude angu-
lar oscillations. Consequently, if Emnp = E, then Tmnp = mT, and
Eqs. (2) and (4) imply

Emnp = −
1

3a3
, (7)

Tmnp = m
√

6a5/2f(a). (8)

These equations relate the threshold energy and period of mode
(m, n, p) through the maximum radius a.

III. SMALL-AMPLITUDE SCALING

For small-amplitude radial motion, a = 1 + δ, where δ � 1.
Working to the lowest order in δ, Eqs. (7) and (8) reduce to

Emnp = −
1

3
+ δ, (9)

Tmnp = 2m
√

2δ, (10)

where we have integrated Eq. (5) by substituting ρ = 1 − ζ with
ζ � 1, yielding

f(δ) =
∫ δ

0

dζ
√

3ζ
= 2

√

δ

3
. (11)

During one period of the motion for mode (m, n, p), the free
sphere executes n angular oscillations. For small-amplitude radial
and angular oscillations, the period of each angular oscillation is
given by the period Tp of the small-amplitude sliding motion for
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which the two spheres remain in contact at all times, with6

T1 = 2π

√

6

13 −
√

139
≈ 14, (12)

giving the period of in-phase oscillations and

T2 = 2π

√

6

13 +
√

139
≈ 3.1, (13)

giving the period of out-of-phase oscillations. Accordingly setting
Tmnp = nTp allows us to rewrite Eqs. (9) and (10) as1

Emnp = −
1

3
+

n2T2
p

8m2
, (14)

Tmnp = nTp, (15)

valid for m � n. The condition m � n means that small-amplitude
periodic states have large bouncing numbers m compared with their
rocking numbers n. In these states, the bouncing frequency is high
and the free sphere remains close to the fixed sphere.

Figure 1 tests these predictions against our finite-amplitude
simulations for rocking number n = 1 and bouncing numbers
m = 1, 2, 3, . . . , 100 for both the in-phase motion (p = 1) and out-
of-phase motion (p = 2). This test shows excellent agreement for
m � n and helps us to validate our simulation code for n = 1.

Figure 2 shows Emnp vs Tmnp/T2 for various bouncing numbers
m and rocking numbers n for the in-phase (p = 1, open circles) and
the out-of-phase (p = 2, filled circles) motions. Solid constant-m
traces are given by Eqs. (7) and (8), with f(a) evaluated numerically;
values of m for each trace are given along the right side of the plot.
The leftmost data point on each solid trace marks an out-of-phase
mode with n = 1. To its right along each solid trace are out-of-phase
modes with increasing values of n, interrupted occasionally by in-
phase modes. Also included are predicted results for m = 997 given
by Eqs. (14) and (15). Our data for increasing m clearly approach the
predicted results for m = 997. This approach helps us to validate our
simulation code for n ≥ 1, as does the agreement between the solid
traces and the data points.

For small-amplitude out-of-phase modes with p = 2, Eq. (15)
implies that the scaled period Tmn2/T2 = n is just the associated
rocking number n, which can therefore be read directly from the
horizontal axis labels. For in-phase modes with p = 1, the quantity
Tmn1/T2 = nT1/T2 is the product of the rocking number n and the
ratio T1/T2 = 4.53. Rocking numbers n for in-phase modes (open
circles) are shown in parentheses above the horizontal axis. In this
way, families of modes with the same value of n can be identified by
where they meet the horizontal axis.

As seen in Fig. 2, Emnp is always negative, approaching
zero for small m and decreasing with increasing m, approaching
Emnp → −1/3 as m → ∞ for both in-phase and out-of-phase
modes [Eq. (14)]. For fixed m, Emnp increases with Tmnp.

Dashed horizontal lines in Fig. 2 point from duplicate modes to
the associated irreducible modes of the same energy.1 For example,
the dashed horizontal line at E = −0.065 starts the irreducible mode
(1, 1, 2) and passes through the duplicate modes (2, 2, 2), (3, 3, 2),
etc., of the same energy. The periods of these duplicate modes

FIG. 1. Threshold energy Emnp (a) and period Tmnp (b) vs bouncing number m
for periodic states with rocking number n = 1, for spin and orbital motions that
are in phase (p = 1) and out of phase (p = 2). Data points are results from our
finite-amplitude simulations, and solid traces are given by Eqs. (14) and (15), valid
for m � n.

obey Tm,m,2 = mT1,1,2 with m > 1 being integer multiples of the
period T1,1,2 of the irreducible mode. This is because duplicate mode
(m, m, 2) simply replicates, m times, the motion of the irreducible
mode (1, 1, 2).

IV. LARGE-AMPLITUDE SCALING

In this section, we seek to identify scaling parameters that apply
to the entire range of amplitudes and to identify large-amplitude
scaling behavior in the data. For this purpose, it is helpful to rewrite
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FIG. 2. Threshold energy Emnp vs
threshold period Tmnp scaled by the period
T2 of the small-amplitude out-of-phase
sliding mode [Eq. (13)]. Solid traces
are solutions of Eqs. (7) and (8) and
are labeled by their bouncing numbers
m (numerical labels along the right
side). Horizontal axis labels give rocking
numbers n for out-of-phase modes
(p = 2, filled circles) for m � n, and
parenthesized integers give the rocking
numbers n for in-phase modes (p = 1,
open circles) in this limit. Data for
m = 997 are given by Eqs. (14) and (15),
valid for small amplitudes and m � n.
Data for all other values of m are from
our finite-amplitude simulations. Selected
mode descriptors (m, n, p) are shown
to the left of the corresponding data
points. Dashed horizontal lines point
from duplicate modes to the associated
irreducible modes of the same energy.1

Eqs. (14) and (15) as

Ẽmnp = −
1

3
(1 − η), (16)

T̃mnp = nTp, (17)

where

η =
3n2T2

p

8m2
, (18)

is a scaling parameter that includes the bouncing number m, the
rocking number n, and the period Tp of the small-amplitude angu-
lar motion given by Eq. (12) for p = 1 and by Eq. (13) for p = 2.
Equations (16) and (17) are valid for small amplitudes η � 1.

To investigate the scaling behavior of Emnp and Tmnp, we
hypothesize that the variable η governs the behavior of Emnp and
Tmnp not just for small amplitudes but over the entire range of
amplitudes. For Emnp, we propose the scaling form

Ẽmnp(η) = −
1

3
(

1 + η + αpη
βp

) , (19)

with fit constants satisfying αp > 0 and βp > 1. This form reduces
to Eq. (16) for η → 0 and gives the power-law scaling relationship

Ẽmnp = −
1

3αp

η−βp , (20)

for η → ∞.

For T̃mnp, we insert Eq. (19) into Eqs. (7) and (8)

T̃mnp(η) = m
√

6a5/2f(a), (21)

where

a =
(

−3Ẽmnp

)−1/3
. (22)

Equations (9) and (10) ensure that Eq. (21) reduces to Eq. (17) as
η → 0.

For η → ∞, Eqs. (20)–(22) give power laws

a = α1/3
p ηβp/3, (23)

T̃mnp(η) =
√

6mf(∞)α5/6
p η5βp/6. (24)

Figures 3 and 4 show fits of our simulation data to Eqs. (19)
and (21), with values of the fit constants given in Table I. These fits
are accomplished by minimizing

χ 2 = 6mn

(

Emnp − Ẽmnp

)2

|Emnp|3
, (25)

for p = 1 and p = 2, with uncertainties in the fit constants deter-
mined by varying each constant from its optimal value until χ 2

increases by a factor of two. Figures 5 and 6 compare our simulation
data to the predictions of Eq. (21).

Using |Emnp|2 as the denominator in Eq. (25) would assume
that the uncertainties in Emnp are proportional to the quantities
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FIG. 3. (a) In-phase threshold energies Emn1 vs rocking number n, with simula-
tion data shown as open circles and with Eq. (19) giving solid traces for constant
bouncing numbers m, labeled as integers in the plot interior. (b) In-phase thresh-
old energies Emn1 vs scaling parameter η = 3n2T2

1/8m
2, with simulation data for

all values ofm shown as open circles, with Eq. (19) giving the solid trace, and with
Eq. (20) giving the dashed trace.

themselves and would weight all data equally in the fits. Instead, to
investigate large-amplitude scaling, we use |Emnp|3 as the denomi-
nator in order to weight the large-amplitude data more heavily in
the fits, given that Emnp → 0 as η → ∞. With nonstandard weights
chosen to emphasize the large-amplitude data, Eq. (25) differs from
the standard χ 2 function, and the standard procedures for using the
value of χ 2 to test for goodness of fit do not apply.18

The fits are made to all of our data, but only data for selected
values of m are shown in Figs. 3(a), 4(a), 5(a), and 6(a) for clarity.

FIG. 4. (a) Out-of-phase threshold energies Emn2 vs rocking number n, with simu-
lation data shown as open circles and with Eq. (19) giving solid traces for constant
bouncing numbers m, labeled as integers in the plot interior. (b) Out-of-phase
threshold energies Emn2 vs scaling parameter η = 3n2T2

2/8m
2, with simulation

data for all values ofm shown as open circles, with Eq. (19) giving the solid trace,
and with Eq. (20) giving the dashed trace. Figure 7 shows a close-up of the data
within the gray rectangle.

TABLE I. Large-amplitude scaling constants resulting from fits of simulation data to

Eq. (19).

p αp βp

1 0.29 ± 0.03 2.25 ± 0.04
2 0.072 ± 0.003 1.592 ± 0.005
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FIG. 5. (a) In-phase threshold periods Tmn1 vs rocking number n, with simula-
tion data shown as open circles and with Eq. (21) giving solid traces for constant
bouncing numbers m, labeled as integers in the plot interior. (b) In-phase thresh-
old periods Tmn1 vs scaling parameter η = 3n2T2

1/8m
2, with simulation data for

all values ofm shown as open circles, with Eq. (21) giving the solid trace, and with
Eq. (24) giving the dashed trace.

A single equation, Eq. (19), with p = 1 and just two fit parameters,
α1 and β1, describes all of the data in Fig. 3(a). A similar situation
holds for Fig. 4(a) with Eq. (19), p = 2, α2, and β2. These fits provide
evidence that η serves as the pertinent scaling parameter for the data
at all amplitudes and that Emnp and Tmnp scale as powers of η in the
large-amplitude limit.

Figures 3(b), 4(b), 5(b), and 6(b), which include all of our data,
supply further evidence that η serves as the scaling parameter. These
plots use η = 3n2T2

p/8m2 as the horizontal coordinate and use Emnp

FIG. 6. (a) Out-of-phase threshold periods Tmn2 vs rocking number n, with simu-
lation data shown as open circles and with Eq. (21) giving solid traces for constant
bouncing numbers m, labeled as integers in the plot interior. (b) In-phase thresh-
old periods Tmn2 vs scaling parameter η = 3n2T2

2/8m
2, with simulation data for

all values ofm shown as open circles, with Eq. (21) giving the solid trace, and with
Eq. (24) giving the dashed trace.

and Tmnp/nTp as the vertical coordinates in order to collapse all of
the data onto a single trace, consistent with Eqs. (19) and (21).

Discontinuities appear in these plots at intermediate ampli-
tudes and are remarkably honored by all of the data, which collapses
down to a single trace in each case. These discontinuities, which
are missed by the continuous scaling functions given by Eqs. (19)
and (21), do not dismiss η as the scaling parameter for the data but
show only that these equations capture only the general behavior of
the data and not its details. What matters in determining whether η

Chaos 30, 013131 (2020); doi: 10.1063/1.5125925 30, 013131-6
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FIG. 7. Close-up of the data within the gray rectangle of Fig. 4(b), with discon-
tinuities located at the intersections of the solid trace and the horizontal dotted
lines, with decimal numbers giving the associated energy values.

serves as the scaling parameter is whether all of the data collapses to
a single curve, albeit a discontinuous one, which it does.

Discontinuities can be seen in Figs. 3(b), 5(b), and 6(b) but are
difficult to see in Fig. 4(b). To show that this figure also has discon-
tinuities, we plot a close-up of the data in the gray rectangle to create
Fig. 7, which clearly shows discontinuities.

In Fig. 3(a), the m = 7 trace passes between two data points
for n = 2, which corresponds to the anomalous mode (7,2,1), which
describes two distinct families of states, each with its own threshold
energy Emnp, period Tmnp, and motion.1

V. UNIVERSAL SCALING

We now consider the threshold energy as a function of the
threshold period. To identify a convenient scaling parameter, we
again appeal to the small-amplitude equations [Eqs. (14) and (15)],
this time rewriting them as

Emnp = −
1

3
(1 − ξ), (26)

where the combined parameter

ξ =
3T2

mnp

8m2
, (27)

involves only the threshold period Tmnp and the bouncing number
m. Equation (26) gives the relationship between the energy and the
period for small amplitudes ξ → 0.

The bouncing numbers in Eqs. (8) and (27) cancel after substi-
tuting Eq. (8) into (27), giving

ξ =
9

4
a5f 2(a), (28)

where Eq. (7) gives

a = (−3Emnp)
−1/3. (29)

Equations (28) and (29) show that Emnp is a function of ξ only and
show that ξ is the appropriate scaling parameter for Emnp when
viewed as a function of Tmnp.

Equations (28) and (29) give the large-amplitude (a → ∞,
ξ → ∞) limit,

Emnp = −kξ−3/5, (30)

FIG. 8. (a) Threshold energies Emnp for both in-phase and out-of-phase modes
vs threshold period Tmnp, with data shown as open circles and with solid traces for
constant m (integer labels) given by inserting Eq. (29) into Eq. (8). (b) Threshold
energies Emnp vs scaling parameter ξ = 3T2

mnp/8m
2, with simulation data for all

values ofm shown as open circles and with Eqs. (8) and (29) giving the solid trace.
Shown also is the large-amplitude scaling law given by Eq. (30) (dashed trace).
Figure 9 shows a close-up of the data within the gray rectangle.
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where

k =
1

3

[

9f 2(∞)

4

]3/5

= 0.3820. (31)

Evidently, Emnp obeys power-law scaling in ξ for large amplitudes,
with scaling exponent of 3/5.

Figure 8 compares our simulation data for Emnp vs Tmnp with
the prediction of Eqs. (8) and (29), with only selected values of m
shown in Fig. 8(a) for clarity. Figure 8(b) shows all of our data (1497
modes in all). The scaling shown in Fig. 8 is stronger than the scal-
ing shown in Figs. 3–6 because Fig. 8 includes both the in-phase
and out-of-phase data, which are treated separately in Figs. 3–6. The
agreement between the data and the predictions supplies evidence
that the threshold energy Emnp, when viewed as a function of the
threshold period Tmnp, depends only on the parameter ξ and that
Emnp scales as a power of ξ−3/5 for large amplitudes. This agree-
ment also validates our Runge–Kutta integration of the equations
of motion.

Figure 8(b) shows Emnp as a function of the scaling parameter
ξ . The collapse of all of the data onto a single curve provides further
evidence that ξ is the appropriate scaling parameter. No discontinu-
ities appear in this plot. Nor do any discontinuities appear in Fig. 9,
a close-up view of the data within the gray rectangle of Fig. 8(b),
which covers the same energies as Fig. 7. Although gaps in Fig. 9
coincide with discontinuities in Fig. 7, the data in Fig. 9 follow a
smooth path with no discontinuities. Evidently, the energy discon-
tinuities of Figs. 3 and 4 conspire with the period discontinuities of
Figs. 5 and 6 to produce a smooth path when viewing the threshold
energy as a function of the threshold period.

In Fig. 8(b), −Emnp decreases with increasing Tmnp at con-
stant m, meaning that Emnp increases with increasing Tmnp. Peri-
ods Tmnp are small for the small-amplitude motion with energies
Emnp → −1/3 and increase without bound as Emnp → 0 from below.

FIG. 9. Close-up of the data within the gray rectangle of Fig. 8(b). Included are
dotted horizontal lines at the energies of the discontinuities of Fig. 7.

VI. CONCLUSIONS

At constant bouncing number m, the threshold period Tmnp

increases monotonically with increasing threshold energy Emnp and
satisfies a simple scaling relationship governed by the scaling param-
eter ξ = 3T2

mnp/8m2. An entire dataset of 1497 periodic modes obeys

this relationship, with a wide variety of bouncing numbers m, rock-
ing numbers n, phases p, and trajectories. The collapse of all 1497
data points onto a single, smooth curve in Fig. 8(b) provides evi-
dence of this relationship and seems remarkable given that each
of these data points is the result of a numerical integration of the
equations of motion with up to 16 000 Runge–Kutta time steps.

This threshold energy-period scaling relationship originates
from the energy-period relationship for the finite-amplitude radial
bouncing mode, from which all periodic modes (m, n, p) bifurcate.
The former scaling relationship applies only to threshold energies
Emnp, that is, the minimum energy for mode (m, n, p), and the asso-
ciated period Tmnp. As the energy E increases beyond this minimum
for a particular mode, the period T increases for some modes [such
as (2,1,2), (2,3,2), and (3,1,2)] and decreases for others [such as
(1,1,2), (1,2,2), (2,5,2)].

Realizing intricate long-period bouncing modes experimen-
tally seems challenging because of energy losses between and during
collisions, but it may be possible to realize some simpler short-
period modes experimentally.

Large hematite magnet spheres with diameters of the order
of 2 cm might be better suited for such realizations than small
neodymium magnets of diameter 0.5 mm. A pair of such hematite
magnets can collide repeatedly before settling into the stable equilib-
rium state, indicating that losses during collisions might be smaller
for these magnets. Commercially, these magnets are called “rat-
tlesnake eggs” because of the buzzing sound that they make as they
collide repeatedly.

Attempting to observe bouncing modes under earth’s gravity
presents challenges. To confine the motion to a plane and to avoid
gravitational deflections, one might carry out experiments on a hor-
izontal surface, with one magnet affixed to the surface and the other
free to slide along the surface. The associated kinetic friction acting
on the free sphere would dissipate energy, violating the assumption
of energy conservation. This friction would also exert a torque on
the free sphere that would tend to rotate its magnetic moment out
of the plane of motion, violating the assumption that both magnetic
moments remain in the plane of motion.

An alternative is to carry out experiments in a drop tower or
in orbit. For such experiments to replicate the calculations, one of
the magnets would need to be held fixed by connecting it to a mas-
sive object using a rigid arm, for example. Such experiments would
effectively eliminate friction between collisions but would still be
subject to frictional losses during collisions. Such an arrangement
could be used to investigate the 2D bouncing modes studied herein
or 3D bouncing modes with three additional degrees of freedom
(one translational and two rotational).
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