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ABSTRACT
Friction-generated heat and the subsequent thermal evolution control fault material prop-

erties and thus strength during the earthquake cycle. We document evidence for transient, 
nanoscale fault rheology on a high-gloss, light-reflective hematite fault mirror (FM). The FM 
cuts specularite with minor quartz from the Pleistocene El Laco Fe-ore deposit, northern 
Chile. Scanning and transmission electron microscopy data reveal that the FM volume com-
prises a <50-μm-thick zone of polygonal hematite nanocrystals with spherical silica inclusions, 
rhombohedral twins, no shape or crystallographic preferred orientation, decreasing grain 
size away from the FM surface, and FM surface magnetite nanoparticles and Fe2+ suboxides. 
Sub–5-nm-thick silica films encase hematite grains and connect to amorphous interstitial 
silica. Observations imply that coseismic shear heating (temperature >1000 °C) generated 
transiently amorphous, intermixed but immiscible, and rheologically weak Fe-oxide and 
silica. Hematite regrowth in a fault-perpendicular thermal gradient, sintering, twinning, and 
a topographic network of nanometer-scale ridges from crystals interlocking across the FM 
surface collectively restrengthened fault material. Results reveal how temperature-induced 
weakening preconditions fault healing. Nanoscale transformations may promote subsequent 
strain delocalization and development of off-fault damage.

INTRODUCTION
Friction-generated heat activates various dy-

namic weakening mechanisms that lead to low 
coseismic fault strength (e.g., Rice, 2006; Di Toro 
et al., 2011; Goldsby and Tullis, 2011; Yao et al., 
2016). Postseismic strength recovery of faults is 
observed in the field and laboratory and has been 
attributed to pressure solution (Yasuhara et al., 
2005; Niemeijer et al., 2008), melt solidification 
(Mitchell et al., 2016; Proctor and Lockner, 2016), 
or fracture-sealing (Blanpied et al., 1992; Sibson, 
1992). The extent to which various thermally acti-
vated dynamic weakening mechanisms seed fault 
healing, and the way in which nanoscale chemical 
and rheological changes govern these processes, 
and ultimately the seismic cycle, are unclear.

Exhumed faults provide a record of thermal, 
chemical, and rheological changes to fault ma-
terials by earthquake processes (Niemeijer et al., 
2012; Rowe and Griffith, 2015). Fault mirrors 
(FM), common in fault damage zones, track 
these phenomena at micro- to nanoscales (e.g., 
Siman-Tov et al., 2013; Ault et al., 2015; Kuo 
et al., 2016; Pozzi et al., 2018). FMs are thin 
(<1 mm) high-gloss, light-reflective slip surfaces 
comprising layered nanoparticles, and they have 
been observed in carbonate, quartzite, granite, 
chert, and hematite (e.g., Power and Tullis, 1989; 
Fondriest et al., 2013; Kirkpatrick et al., 2013; 
Siman-Tov et al., 2013; Evans et al., 2014). Field 
studies and low- to high-speed deformation ex-
periments on rock and gouge indicate FMs form 
by different processes and at variable slip rates 
(Verberne et al., 2013; Siman-Tov et al., 2015; 
McDermott et al., 2017; Pozzi et al., 2018).

Fault zones are mineralogically heteroge-
neous, and hematite is ubiquitous in these systems 
because iron is one of the most abundant ele-
ments in Earth’s crust. Documenting the interplay 
among stress, strain, temperature, and hematite 
material properties informs fault system behav-
ior. Here, we applied a suite of microscopy and 
spectroscopy tools to characterize nanotextures 
and nanogeochemistry, and thus infer thermal and 
rheological changes, to a hematite FM cutting 
Fe-ore. Observations are consistent with transient 
temperature rise and subsequent thermal decay 
during an earthquake. This thermal evolution con-
trols weakening and, importantly, restrengthening 
of the FM during the seismic cycle.

SAMPLE AND METHODS
The Pliocene–Pleistocene El Laco Fe-ore 

 deposit (67.48°W, 23.83°S) occurs on the flanks 
of an andesitic volcanic complex in northern 
Chile, and hosts magnetite, hematite, and apatite 
mineralization (Park, 1961; Naranjo et al., 2010; 
Tornos et al., 2017). The deposit is dissected by 
north-south– and northwest-southeast–oriented 
fault networks (Tornos et al., 2017). Our El Laco 
sample (A16–7) is a planar, metallic FM that cuts 
Fe-ore with a set of sub–millimeter-spaced slick-
enlines visible only at the FM margins (Fig. 1A; 
Fig. DR1 in the GSA Data Repository1).

We examined the texture and particle mor-
phology of four cross-sectional and four sur-
face (plan-view) millimeter- to centimeter-scale 
aliquots with scanning electron microscopy 
(SEM). SEM and Image J software (https://im-
agej.net/) were used to characterize the  hematite 
grain-size distribution at and away from the 
FM. One cross-sectional and one  plan-view *E-mail: alexis.ault@usu.edu

1GSA Data Repository item 2020003, method details for sample preparation, scanning electron microscopy (SEM), electron-backscattered diffraction (EBSD) 
analysis, grain-size measurement, scanning/transmission electron microscopy (S/TEM), energy dispersive X-ray spectroscopy (EDS), and integrated EDS–electron 
energy loss spectroscopy (DualEELS), as well as SEM, EBSD, S/TEM, EDS, and DualEELS data/image catalogues, is available online at http://www.geosociety.org/
datarepository/2020/, or on request from editing@geosociety.org.
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aliquot were subsequently analyzed with elec-
tron  backscattered diffraction (EBSD) and 
 energy-dispersive X-ray spectroscopy (EDS) 
for phase and crystal orientation mapping. Plan-
view EBSD analysis exploited the natural FM 
surface with no mechanical polishing. A second 
plan-view aliquot was dissected with a focused 
ion beam (FIB)–SEM to produce a cross-sec-
tional lamella (Fig. DR2) for scanning/transmis-
sion electron microscopy (S/TEM), including 
high-resolution TEM (HRTEM), single-crystal 
diffraction, EDS, and integrated EDS–electron 
energy loss spectroscopy (DualEELS) for geo-
chemical and redox analyses. Sample prepara-
tion; SEM, S/TEM, and DualEELS operating 
conditions; and grain-size quantification meth-
ods are detailed in the Data Repository.

TEXTURAL CHARACTERIZATION
The hematite sample comprises two micro-

textural domains (Fig. 1B). Domain 1 is defined 

by subparallel to randomly oriented, elongate, 
intact plates >20–50 μm from the FM surface 
(Figs. 1A–1C; Fig. DR3). Plate thickness aver-
ages 15.1 ± 13.9 μm (2σ), with a 34.1 μm maxi-
mum (Fig. DR4A). EBSD phase maps indicate 
domain 1 is dominantly specular hematite with 
minor, micrometer-scale, intergranular quartz 
(Fig. 1C; Fig. DR5).

Domain 2 is the FM volume, with a thick-
ness <20–50 μm, and includes the FM surface 
(Fig.  1B). Domain 2 comprises polygonal, 
triple-junction–forming particles lacking de-
fined grain boundaries (Figs. 1D–1E and 2; Fig. 
DR2). TEM and EBSD data indicate that do-
main 2 polygonal particles are hematite crystals 
(Figs. 1F and 2E; Figs. DR6–DR10). A single-
crystal  diffraction pattern <2 μm from the FM 
surface yields six-fold coordination and d-spac-
ing consistent with hematite (Fig. 1F). EBSD 
results indicate some hematite crystals have 
lamellar twins misoriented at 85°,  consistent 

with rhombohedral twinning (Fig. DR11; Avi-
la et al., 2015). Polygonal grain diameter de-
creases with increasing distance from the FM 
surface (Fig. 1E; Fig. DR12). Surface crystals 
are 0.65 ± 0.75 μm (2σ) in diameter, with a 
maximum of 2.23 μm (Fig. 2D). At ∼10–20 μm 
from the FM surface, grains are 0.33 ± 0.15 μm 
(2σ) in diameter, with a 0.54 μm maximum 
(Fig. DR4C). Polygonal hematite crystals do 
not exhibit shape preferred orientation (SPO; 
Fig. 1D; Figs. DR3 and DR13) but are flattened 
at the FM surface (e.g., Fig. 1D; Fig. DR3F). 
Grains also lack crystallographic preferred 
orientation (CPO) and internal subgrains that 
would be visible in inverse pole figures (Fig. 2F; 
Figs. DR6–DR10), and they appear relatively 
dislocation-free in bright-field TEM images 
(Fig. 3A; grayscale images in Figs. DR14 and 
DR2G). At the contact between the two do-
mains, some domain 1 specularite plates are 
mantled by <10-nm-diameter polygonal par-
ticles (Fig. DR12).

FAULT MIRROR 
NANOGEOCHEMISTRY

SEM and S/TEM imaging, EDS, and 
 DualEELS data reveal pervasive, amorphous 
silica in various textural settings in domain 2. 
 Nanoscale silica occurs at polygonal hema-
tite grain junctions (Figs. 3A, 3B, and 3E), as 
<5-nm-thick grain-boundary films (Figs. 3D, 3F, 
and 3G), and as spherical inclusions in hema-
tite (Figs. 3C and 3D). HRTEM images show 
that the largest interstitial silica zones (∼300 nm 
diameter) are amorphous (Figs. 3B and 3E). A 
network of semicontinuous, grain-boundary 
silica nanofilms connects to the larger domains 
of amorphous silica at the triple junctions. Al-
though EBSD results from the FM surface indi-
cate some interstitial material is quartz (Fig. 2E), 
comparison of SEM EDS Si maps with the no-
solution regions of EBSD phase maps implies 
some nonindexing silica is amorphous (Figs. 
DR6, DR9, and DR10).

High-spatial-resolution EBSD phase maps 
reveal magnetite nanoparticles on the FM sur-
face (Fig. 2E; Figs. DR7 and DR8). They are 
<50 nm in diameter and occur at the margins 
and within polygonal hematite crystals. Du-
alEELS suggests the FM surface is also locally 
coated with reduced Fe (Fe2+) suboxides. Fe 
L-edge and O K-edge DualEELS spectra ac-
quired at the FM surface are qualitatively more 
similar, but not identical, to standard magnetite 
spectra, compared to data acquired away from 
the FM surface (Fig. DR15). Magnetite is not 
present in the undeformed domain 1 material 
(Fig. DR5).

FAULT MIRROR SURFACE 
TOPOGRAPHY

The FM surface exhibits two networks of 
polygons (Figs. 2A–2C; Fig. DR13). Polygons 
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Figure 1. (A) Photograph of hematite fault mirror (FM) A16–7. Red box denotes location of inset, 
a cross-sectional aliquot photograph, showing scanning electron microscope (SEM) and trans-
mission electron microscopy (TEM) image locations for C–F. (B) Schematic block diagram 
illustrating relationship and textures of two domains: domain 1—undeformed specularite; domain 
2—FM volume and surface; hem—hematite; qz—quartz (domain 1; amorphous silica in domain 2). 
(C) SEM image away from FM with undeformed intergranular specular hematite and quartz. 
(D,E) Secondary election (SE) SEM cross-sectional images of FM showing sintered polygonal 
grains, flattened at FM interface (D) and FM-perpendicular decrease in polygonal grain size (E). 
(F) Upper domain 2 TEM image; inset is polygonal hematite single-crystal diffraction pattern.
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defined by dark-gray lines are recessed regions 
at grain boundaries between hematite crystals. 
White lines transecting multiple polygonal crys-
tal faces delineate the second set. Corroborat-
ing data sets imply the second is a topographic 
network of nanometer-high hematite ridges: (1) 
Both networks yield overlapping mean particle 
diameters and similar minimum and maximum 
values (Fig. 2D); (2) rectangular white ridges 
are consistent with the geometry of rhombohe-
dral twin boundaries observed in some hematite 
crystals on the preserved FM (Figs. DR11 and 
DR13); and (3) high-spatial-resolution, long-
count SEM EDS point data show no difference 
in chemical composition  between grain faces 
and the “white” material (Fig. DR16). Although 

the opposing side of the FM is not preserved, it 
likely comprises polygonal hematite crystals and 
interstitial silica observed in domain 2.

EVIDENCE FOR HIGH 
TEMPERATURES

Multiple lines of micro- to nanotextural and 
geochemical evidence support high temperatures 
during FM development. Domain 2 polygonal 
hematite crystals lack defined grain boundar-
ies, SPO, and CPO; do not exhibit  internal sub-
grains; and appear dislocation free (Figs. 1D, 2F, 
and 3A). This morphology, suggestive of grain 
growth and sintering, is similar to textures ob-
served (1) in hematite dry heating experiments 
to >1000 °C (Vallina et al., 2014); (2) on some 

Wasatch fault zone (Utah) hematite FMs, where 
calculated flash temperature rise at 20-μm-
diameter asperity contacts is >1200 °C (Ault 
et al., 2015; McDermott et al., 2017); and (3) 
on high-gloss experimental faults in carbonate 
gouge, where coseismic frictional heat is inferred 
(e.g., Fondriest et al., 2013; Pozzi et al., 2018). 
In the Wasatch example, polygonal grains are 
located in clusters reflecting the thermal footprint 
of localized paleo-asperities (McDermott et al., 
2017). In contrast, the textural continuity of po-
lygonal hematite grains from all A16–7 aliquots, 
covering a total area of ∼5 cm2, implies that tem-
peratures >1000 °C were pervasive in domain 2. 
Within 15 μm of the FM surface, average and 
maximum polygonal crystal diameters decrease 

Figure 2. (A,B) Plan-view scanning electron 
microscope (SEM) secondary election (SE) 
images of hematite FM surface at two scales 
showing two polygonal networks. Dark poly-
gons are recessed grain boundaries between 
adjacent crystals; white polygons are ridge 
network (visible in C). (C) Cross-sectional 
SEM image. (D) Distribution of polygonal 
grain and ridge polygon diameters from SEM-
based ImageJ grain-size analysis (n = 225 for 
each). (E) Electron backscattered diffraction 
phase map over band contrast image with 
white box denoting enlarged inset highlight-
ing magnetite nanoparticles; hem—hematite 
(red), mt—magnetite (yellow), qz—quartz 
(blue), no soln—no solution (black). (F) Lower-
hemisphere, equal-area contoured pole figure 
indicating no crystallographic preferred ori-
entation to polygonal hematite grains at FM 
surface. MUD—multiples of uniform den-
sity, PPG—point per grain (excluding border 
grains).
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Figure 3. (A) Scanning/transmission elec-
tron microscopy (S/TEM) bright-field image 
showing locations of B inset and C–F. Black 
arrows denote silica films around polygonal 
hematite crystals. FM—fault mirror. (B) S/
TEM energy dispersive X-ray spectroscopy 
(EDS) Fe and Si map, where inset shows 
geochemistry of region in E. (C,D) High-
spatial-resolution (HR) S/TEM bright field (C) 
and complementary EDS (D) images show-
ing spherical silica inclusions (circled in C) 
and silica along hematite grain boundaries 
(denoted by black arrow). (E) TEM image of 
inset in B showing that interstitial silica (Si) 
within crystalline hematite (hem) is amor-
phous (inset). (F,G) S/TEM bright-field image 
of grain boundary between two polygonal 
hematite crystals (F) and Fe L-edge electron 
energy loss spectroscopy (DualEELS) and Si 
K-edge EDS map (G) of zone in F denoted 
with red box. DualEELS reveals ∼5-nm-thick 
silica film and silica inclusion within hematite.
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by a factor of two and four, respectively (Fig. 1E; 
Figs. DR4 and DR12). This trend reflects a FM-
perpendicular thermal gradient in the FM vol-
ume. Material at what is now the FM surface 
experienced the highest temperatures and thus 
largest crystal growth. In addition, documented 
magnetite nanoparticles and local Fe2+ suboxides 
on the FM surface support high-temperature Fe 
reduction during FM development (Fig. 2E; Figs. 
DR7, DR8, and DR15; Evans et al., 2014).

Amorphous silica implies, but does not re-
quire, transient elevated temperatures (e.g.,  Faber 
et al., 2014). Although amorphous silica, includ-
ing interstitial <5-nm-thick grain-boundary films, 
can form by fluid-mediated and/or dissolution-
precipitation processes (Kirkpatrick et al., 2013), 
which may or may not be coupled with fault slip, 
the pervasive spherical silica inclusions within 
neoformed polygonal hematite in domain 2 argue 
against this interpretation (Figs. 3D, 3F, and 3G). 
The silica presumably experienced the same high 
temperatures and thermal gradient documented 
by hematite nanoparticles in the FM volume.

COUPLED TEMPERATURE-
RHEOLOGY EVOLUTION

Evidence for high temperatures implies 
that this FM developed by seismic slip (Rowe 
and Griffith, 2015). Figure 4 presents a suite of 
schematic block diagrams visualizing proposed 
phases of the FM development (Fig. 4B) with 
respect to relative slip velocity, shear stress, and 
temperature (Fig. 4A). Domain 1 preserves un-
deformed specular hematite and minor inter-
granular quartz (phase 1).

During seismic slip (phase 2), strain is local-
ized in a <100 μm zone (2× maximum width of 
domain 2). Temperature rise >1000 °C, perhaps 
by asperity flash heating during slip initiation 
(e.g., Rice, 2006), but ultimately by pervasive 
shear heating (e.g., Ben-Zion and Sammis, 
2013) throughout what is now domain 2, results 
in amorphization or melting of hematite and 
quartz. Hematite and quartz dry melting tem-
peratures are 1565 °C and 1723 °C, respectively 
(Spray, 2010). However, increased surface area 
of domain 2 material via comminution lowers 
the melting temperature by several hundred de-
grees Celsius (Lee et al., 2017), thus enhancing 
frictional weakening mechanisms (Rowe and 
Griffith, 2015, and references therein). Owing 
to subsequent transformation of domain 2 ma-
terial, the role of pre-amorphization grain-size 
reduction by pulverization or cataclasis, pro-
cesses commonly invoked during seismic slip 
(e.g., Reches and Dewers, 2005), is unclear. 
We note that hematite particles at the margin 
of domain 2 are >25–75× smaller than the do-
main 1 plate thickness. Although the hematite is 
now  crystalline, pervasive amorphous silica and 
silica inclusions imply both phases were tran-
siently amorphous, intermixed but immiscible, 
and rheologically weak.

Cooling from peak temperatures promotes 
new mineral growth in a fault-perpendicular 
thermal gradient (phase 3). In this model, he-
matite is first to crystallize under low differen-
tial stress, supported by the lack of SPO, CPO, 
and internal strain in polygonal grains, with 
amorphous silica pinned at grain boundaries. 

The nanometer-high polygonal ridge network 
indicates hematite crystals grew into one an-
other and interlocked across the FM surface, 
which likely formed in the core of the FM vol-
ume. Growth of nanoscale crystals, sintering, 
and twinning are strain hardening (Lu et al., 
2005; Luding and Suiker, 2008). These trans-
formations, combined with ubiquitous FM 
surface topography, contribute to fault heal-
ing during slip deceleration and post-slip. Al-
though subsequent deformation can overprint 
prior textures, we suggest this hematite FM 
records a single slip event, supported by one set 
of slickenlines at FM surface margins, the lack 
of subgrains and CPO, and preserved ridges. 
The presence of nanotextures that contribute to 
fault strengthening permit the material to sus-
tain subsequent shear stress but not slip again. 
Polygonal grains lacking CPO may form by 
grain boundary sliding and superplastic flow 
at high temperatures and high strain (De Paola 
et al., 2015), but the development of the polyg-
onal ridge network supports static grain growth 
in this example.

Our observations demonstrate the feedback 
between the FM thermal evolution and rheol-
ogy during the earthquake cycle. We note that 
other FMs may form at subseismic slip rates 
(e.g., Verberne et  al., 2013). Differences in 
 observations and interpretations of FM devel-
opment (cf. Siman-Tov et al., 2013; Pozzi et al., 
2018) may depend on preslip material proper-
ties (lithology, rock vs. gouge), strain rate, and 
ambient thermal and pressure conditions during 
deformation.
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Figure 4. (A) Relative temperature, slip velocity, and shear stress at hematite fault mirror (FM) interface as a function of relative time. (B) Schematic 
block diagrams illustrating hematite FM textural and inferred rheological evolution associated with conditions in A. Textures and processes are 
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IMPLICATIONS FOR THE 
EARTHQUAKE CYCLE

We suggest that temperature-induced weak-
ening seeds fault restrengthening due to thermal 
decay and associated rheological changes on 
some FMs. Processes inferred here comple-
ment fault welding and postseismic strength 
recovery mechanisms documented in experi-
mentally generated pseudotachylytes (Griffith, 
2016; Mitchell et al., 2016; Proctor and Lockner, 
2016). Our results highlight how thermally in-
duced nanoscale transformations may promote 
and inhibit earthquake behavior on a broader 
range of fault surfaces. This has direct implica-
tions for strain delocalization, the creation of 
off-fault damage as a fault system evolves, and 
the role of nanoscale phenomena during large 
earthquakes.
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