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Exposure of lupus-prone female NZBWF1 mice to respirable crystalline silica (cSiO2),

a known human autoimmune trigger, initiates loss of tolerance, rapid progression of

autoimmunity, and early onset of glomerulonephritis. We have previously demonstrated

that dietary supplementation with the ω-3 polyunsaturated fatty acid docosahexaenoic

acid (DHA) suppresses autoimmune pathogenesis and nephritis in this unique model of

lupus flaring. In this report, we utilized tissues from prior studies to test the hypothesis

that DHA consumption interferes with upregulation of critical genes associated

with cSiO2-triggered murine lupus. A NanoString nCounter platform targeting 770

immune-related genes was used to assess the effects cSiO2 on mRNA signatures over

time in female NZBWF1 mice consuming control (CON) diets compared to mice fed diets

containing DHA at an amount calorically equivalent to human consumption of 2 g per day

(DHA low) or 5 g per day (DHA high). Experimental groups of mice were sacrificed: (1) 1

d after a single intranasal instillation of 1mg cSiO2 or vehicle, (2) 1 d after four weekly

single instillations of vehicle or 1mg cSiO2, and (3) 1, 5, 9, and 13 weeks after four weekly

single instillations of vehicle or 1mg cSiO2. Genes associated with inflammation as well

as innate and adaptive immunity were markedly upregulated in lungs of CON-fed mice

1 d after four weekly cSiO2 doses but were significantly suppressed in mice fed DHA

high diets. Importantly, mRNA signatures in lungs of cSiO2-treated CON-fed mice over

13 weeks reflected progressive amplification of interferon (IFN)- and chemokine-related

gene pathways. While these responses in the DHA low group were suppressed primarily

at week 5, significant downregulation was observed at weeks 1, 5, 9, and 13 in mice

fed the DHA high diet. At week 13, cSiO2 treatment of CON-fed mice affected 214
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genes in kidney tissue associated with inflammation, innate/adaptive immunity, IFN,

chemokines, and antigen processing, mostly by upregulation; however, feeding DHA

dose-dependently suppressed these responses. Taken together, dietary DHA intake in

lupus-prone mice impeded cSiO2-triggered mRNA signatures known to be involved in

ectopic lymphoid tissue neogenesis, systemic autoimmunity, and glomerulonephritis.

Keywords: omega-3 polyunsaturated fatty acids, autoimmunity, nanostring, lung, kidney, systemic lupus

erythematosus, silica, transcriptome

INTRODUCTION

Systemic lupus erythematosus (SLE) is a devastating multisystem
autoimmune disease that primarily affects women of childbearing
age and non-Caucasians (1, 2). SLE is initiated following
breakdown of immune tolerance resulting from incompletely
understood interactions between an individual’s susceptibility
genes and the environment. Early stage SLE involves a chronic
autoimmune response, characterized by antibody production
against self-antigens and the subsequent formation of immune
complexes. The latter promote complement activation, cell death,
chemokine/cytokine release, and mononuclear effector cell
infiltration resulting in systemic inflammation and progressive
organ damage that is often exacerbated by acute disease
flares triggered by environmental stimuli. In the kidney, these
responses can manifest as severe glomerulonephritis that often
leads to end-stage renal failure. SLE is currently managed by
decreasing disease symptoms in recently diagnosed persons and
inhibiting further tissue damage in organs, such as the kidney, in
long-term patients. Current therapies have multiple mechanisms
of action including immunosuppression, lymphocyte depletion,
and cytokine/chemokine neutralization. These approaches
have serious limitations including unacceptable side effects,
irreversible drug-induced organ damage, and high costs for new
targeted monoclonal antibody/receptor therapies.

Murine models of SLE have been used to understand disease
pathogenesis and show gradual accumulation of autoreactive B
and T cells as well accumulation of autoantibodies followed by
eventual onset of organ damage [reviewed in (3)]. Therefore,
these models typify quiescent SLE prior to organ damage
heralded by glomerulonephritis. However, flaring can be
induced in these models and organ damage accelerated by
injection of IFNα-expressing adenovirus (4–6), UV exposure
(7, 8), and epidermal injury (9). Crystalline silica (cSiO2) is
a respirable particle commonly encountered in occupations
such as construction and mining that has been etiologically
linked to SLE and other autoimmune diseases (10). Prior
investigations in lupus-prone mice have demonstrated that
airway exposure to cSiO2 rapidly accelerates the onset and
progression of autoimmunity thus emulating flaring (11–14).
We have determined that short-term cSiO2 instillation of female
NZBWF1 mice triggers autoimmunity and glomerulonephritis
3 months earlier than vehicle-instilled controls (15, 16).
Specifically, cSiO2 treatment mimics SLE flaring by initiating
persistent sterile inflammation and cell death in the lung
and initiating ectopic lymphoid structure (ELS) development.

These tissue structures contain functional germinal centers
that house B-cells, T-cells, follicular dendritic cells (FDC), and
autoantibody-secreting plasma cells. Autoantibodies arising from
ELS potentially form immune complexes with autoantigens
formed in the lung following cSiO2 exposure that drive systemic
autoimmunity and glomerulonephritis.

Recently, we utilized NanoString nCounter profiling to map
dynamic transcriptome signature changes in cSiO2-exposed
NZBWF1 mice (17). Dramatic upregulation mRNAs associated
with interferon (IFN) activity, chemokine release, cytokine
production, complement activation, and adhesion was observed
in the lung during the first 2 months after cSiO2 treatment
that corresponded closely with autoimmune pathogenesis. cSiO2

similarly induced robust changes in transcriptome signatures
later in the kidney and in the spleen, to a lesser extent.
Importantly, cSiO2-induced mRNA signatures consistent with
the lung being central autoimmune nexus for initiating systemic
autoimmunity and ultimately, glomerulonephritis.

Preclinical and clinical studies have shown that consumption
of ω-3 polyunsaturated fatty acids (PUFAs), such as
docosahexaenoic acid (C22:6 ω-3; DHA) and eicosapentaenoic
acid (C20:5ω-3; EPA), have the potential to prevent or treat many
chronic inflammatory and autoimmune conditions [reviewed
in (18)]. Western diets tend to exclude anti-inflammatory ω-3
PUFAs, and, more typically, contain high concentrations of
proinflammatory ω-6 PUFAs, including linoleic acid (C18:2 ω-6;
LA) and arachidonic acid (C20:4 ω-6; ARA) found in plant-
and animal-derived lipids. Since Americans consume many
times more ω-6s than ω-3s in the Western diet, their tissue
phospholipid fatty acids skew heavily toward ω-3 insufficiency
(19, 20). Several marine algae proficiently catalyze formation
of DHA and EPA. Oily fish (e.g., salmon and mackerel) and
small crustaceans (e.g., krill) bioconcentrate ω-3s into their
membrane phospholipids by consuming marine algae (21).
Individuals can increase DHA and EPA tissue incorporation,
and correct ω-3 insufficiency, by consuming fish or dietary
supplements with fish oil, krill oil, or microalgal oil. Intriguingly,
ω-3 supplementation may be exploitable as a personalized
medicine approach for individuals suffering from chronic
inflammatory and autoimmune diseases to reduce dose and
frequency of current therapies such as glucocorticoids that have
myriad adverse effects.

Omega-3-rich fish oil supplementation has been shown
to suppress autoantibody production, inflammatory gene
expression, glomerulonephritis, and death from kidney failure
in several different strains of lupus-prone mice (22–27), with
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FIGURE 1 | Design of experiments. At 8 weeks of age, female NZBWF1 mice were dosed intranasally with 25 µl PBS (VEH) or 25 µl PBS containing 1.0mg cSiO2

once [experiment 1 (A)] or weekly for 4 weeks [experiments 2 and 3 (B–C)]. In experiments 1 and 2, mice were fed either a control diet (CON) or a diet supplemented

with 5 g/kg DHA. In experiment 3, mice were fed either CON diet or diets supplemented with 2 g/kg DHA (low) or 5 g/kg DHA (high). Cohorts (n = 8) of mice were

euthanized and necropsied 1 day (experiment 1 and 2) following the only/final instillation or 12, 16, 20, or 24 weeks of age corresponding to 1, 5, 9, or 13 weeks post

the final instillation (experiment 3). Tissues obtained for nCounter digital transcript counting (NanoString PanCancer Immune Profiling gene set) are indicated above. In

this manuscript, the primary comparisons of interest are the DHA-supplemented groups vs. the CON diet groups in cSiO2-exposed mice within each experiment.

Please see Bates et al. (17) for detailed presentation and analysis of the impact of cSiO2 on gene expression vs. vehicle-exposed mice.

DHA-enriched fish oil having the greatest potency (28, 29).
Remarkably, we have found that dietary supplementation
with DHA at realistic human equivalent Furthermore, we
have demonstrated that pre-treating macrophages with
DHA inhibited inflammasome activation by cSiO2 and
linked this observation to suppression of NF-κB-driven
proinflammatory genes (30). Understanding how DHA
influences cSiO2-induced transcription signatures in vivo could

provide insights into the underlying mechanisms by which
ω-3s interfere with lupus flaring. In this investigation, we
employed tissues from two recent published studies (17, 31)
to test the hypothesis that DHA consumption interferes
with upregulation of critical genes associated with cSiO2-
triggered murine lupus. The results indicate that dietary
DHA supplementation at clinically realistic levels impaired
cSiO2-triggered expression of IFN- and chemokine-related genes
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FIGURE 2 | Acute transcriptional response of immune-associated genes in DHA-supplemented mice that received either a single or four weekly instillations of cSiO2.

(A) Venn diagram depicting overlap of genes differentially regulated by exposure to cSiO2 compared to those differentially regulated by DHA supplementation (FDR q

< 0.05, 1.5-fold change). The overlap region indicates genes affected by cSiO2 exposure that were also altered by DHA supplementation. (B) PCA plot of differentially

expressed genes for mice in the Acute.4x dosing group compared to a dosing-matched vehicle control group fed CON diet (VEH/CON). PC1 and PC2 are shown with

95% confidence interval bands (dashed ellipses). A PCA plot is not shown for the Acute.1x dosing group as only one gene was identified as differentially regulated by

DHA for that dosing protocol. Hierarchical cluster analyses are provided in Supplementary Figure 6. (C) Global and directed significance scores for immune

pathways were determined using nSolver (see section Materials and Methods) by comparing mice in the cSiO2/CON group to dosing-matched vehicle (VEH) controls

fed CON diet or by comparing mice in the cSiO2/DHA group vs. cSiO2-exposed, CON-fed mice.

that are likely to play critical roles in autoimmune pathogenesis
and glomerulonephritis.

MATERIALS AND METHODS

Animals and Diets
This investigation used materials and methods that have been
more fully described in two previous published studies by
our laboratory (17, 31). Experiments were approved by the
Institutional Animal Care and Use Committee at Michigan State

University (AUF #01/15-021-00). In both studies, female lupus-
prone NZBWF1 mice (Jackson Laboratories, Bar Harbor, ME)
were fed one of three diets that were based on the purified
American Institute of Nutrition (AIN)-93G diet containing
70 g/kg fat (32). All diets contained 10 g/kg corn oil to
ensure adequate basal essential fatty acids. The control diet
(CON) contained 60 g/kg high-oleic safflower oil (Hain Pure
Food, Boulder, CO). For DHA diets, high-oleic safflower oil
was substituted with 10 g/kg (DHA low) or 25 g/kg (DHA
high) microalgal oil containing 40% DHA (DHASCO, DSM
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FIGURE 3 | Pathway Z scores and network visualization for acute transcriptional response of immune-associated genes in DHA-supplemented mice that received

either a single or four weekly instillations of cSiO2. (A) For cSiO2-exposed mice, gene expression pathway scores were calculated as the first principal component of

the pathway genes’ normalized expression and standardized by Z scaling. Immune pathway Z scores are presented as Tukey box-plots (n = 8) for select immune

pathways of interest. Different letters indicate treatment/diet groups are significantly different (p < 0.05) as determined by the Steel-Dwass nonparametric test for all

pairs. Heatmaps depicting individual pathway Z scores for all pathways captured by the NanoString PanCancer Immune Profiling gene panel are provided in

Supplementary Figure 7. (B) Network interactions were modeled using the STRING database (string-db.org) with a minimum required interaction score ≥0.7, and

clusters were identified using the Markov Cluster (MCL) algorithm with inflation parameter of 1.5. The network was visualized in Cytoscape, and edge widths reflect

the combined interaction score (thicker edges indicate higher score). Note, a network for mice treated only once with cSiO2 (Acute.x1) was not made, as only one

gene was significantly affected by DHA supplementation.

Nutritional Products, Columbia MD). Resultant experimental
diets contained 4 or 10 g/kg DHA, respectively, that equated, on
a caloric basis, to human doses of 2 and 5 g per day, respectively.
To prevent lipid oxidation, experimental diets weremixed weekly
and stored at−20◦Cuntil use. Fresh feed was provided ad libitum
to mice every 2 days.

Experimental Design
Experimental designs are depicted in Figure 1. For the acute
studies (17), groups of 6 week old mice (n = 8) were fed CON
or DHA high diets for the duration of the experiment. To model
the acute response to one dose of cSiO2 (Acute.1x), a cohort
of mice were anesthetized with 4% isoflurane and intranasally
instilled with 1.0mg cSiO2 (Min-U-Sil-5, 1.5–2.0µm average
particle size, Pennsylvania Sand Glass Corporation, Pittsburgh,
PA) in 25 µl PBS or 25 µl PBS vehicle (VEH) (Figure 1A).
To assess acute responses to short-term repeated exposure to
cSiO2 (Acute.4x), a second cohort of mice received 1.0mg cSiO2

or VEH once weekly for 4 weeks (Figure 1B). Cohorts were
euthanized 24 h after the last cSiO2 instillation. Caudal lung
lobes were removed, held in RNAlater (Thermo Fisher Scientific,
Wilmington, DE) for 16 h at 4◦C, and then stored at−80◦C until

RNA isolation. For the time course study (31), groups of mice
were treated with VEH or cSiO2 weekly for 4 weeks beginning
at age 8 weeks, (Figure 1C). Afterward, cohorts were terminated
at 1, 5, 9, and 13 weeks post final cSiO2 exposure and organs
collected and stored in RNAlater as described above. Lungs were
analyzed at 1 (Lung.W1), 5 (Lung.W5), 9 (Lung.W9), and 13
(Lung.W13) weeks post cSiO2 exposure; spleens (Spleen.W13)
and kidneys (Kidney.W13) were analyzed at 13 weeks. These
times correspond with pathological changes previously reported
in NZBWF1 mice after cSiO2 exposure preceding and through
glomerulonephritis onset (15, 16, 31). Fatty acid concentrations
in erythrocytes were analyzed by gas liquid chromatogorphy at
OmegaQuant (Sioux Falls, SD).

Gene Expression Analysis With NanoString
nCounter
Total RNA was isolated from lung, spleen, and kidney using
TriReagent (Sigma Aldrich, St. Louis, MO) and RNeasyMini Kits
with DNase treatment (Qiagen, Valencia, CA). RNA integrity
(RIN values > 7.0) in samples was verified using an LabChip
Gx Analyzer (Caliper Life Sciences, Waltham, MA). RNA (n
= 7–8/group) was analyzed utilizing the nCounter Mouse
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FIGURE 4 | Comparison of DHA-responsive genes involved in immune response in lung tissues of mice that received either a single or four weekly instillations of

cSiO2. Gene expression data are shown as log2 ratios for cSiO2-exposed mice fed either CON or DHA-supplement diets calculated with respect to dosing-matched,

vehicle-exposed, CON-fed mice (VEH/CON, log2 ratio = 0). (A) For the selected immune pathways shown, heatmaps with unsupervised clustering (Euclidian distance

method) by gene depict log2 expression values for all genes identified as significantly differentially expressed (FDR q < 0.05, 1.5-fold change) after a single (Acute.1x)

or four repeated weekly doses (Acute.4x) of cSiO2. (B) The mean log2 ratio values + SEM for selected genes of interest are also shown. *, p<0.05 for DHA compared

to CON diet as determined by nSolver statistical analyses (see Supplementary File 2 for test specifications and FDR-corrected q values).

PanCancer Immune Profiling Panel (catalog # 115000142, probe
annotations available in Supplementary File 1) as described
in detail previously (17) (Supplementary Figures 1–3).
NanoString’s software nSolver v3.0.22 was utilized for
differential gene expression analyses as outlined previously
(17) and depicted in Supplementary Figure 4. Statistically
significant, differentially expressed genes were delineated as
those with expression levels corresponding to a 1.5-fold change
with respect to the corresponding CON diet group and a
false discovery rate (Benjamini–Hochberg method) q < 0.05
(Supplementary Figure 5). nSolver differential expression
analysis outputs from are contained in Supplementary File 2.
BioVenn (33) or Venny v2.1 (34) was used to produce Venn
diagrams of significant differentially expressed genes in
cSiO2 groups.

Annotated gene sets, global, and directed significance scores
were calculated for each pathway to ascertain the effects of

treatments as previously described (17). Global scores estimate
the cumulative evidence for the differential expression of
genes for specific pathway, whereas directed significance scores
reflect tendency for pathway genes to be over- or under-
expressed collectively. Additionally, pathway Z scores were used
to summarize data from a pathway’s genes into a single score
calculated as the first principal component of the pathway genes’
normalized expression and standardized by Z scaling. ClustVis
(35) was employed to carry out unsupervised hierarchical cluster
analyses (HCC) and principal components analyses (PCA) using
log2 transcript count data. Summary tables for all significance
and pathway Z scores can be found in Supplementary Files 3, 4.

Spearman rank correlations were done to assess overall
patterns in the gene expression profiles compared to percent
CD45R+ (B cells) and CD3+ (T cells) in lung tissues as markers
for ectopic lymphoid tissue development (31) and with the
percent of ω-3 highly unsaturated fatty acids (HUFA; fatty
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FIGURE 5 | Effect of DHA supplementation on cSiO2-induced transcriptional changes in lung tissues of mice 1, 5, 9, or 13 weeks post instillation. (A) Venn diagrams

depicting overlap of genes differentially regulated by exposure to cSiO2 compared to those differentially regulated by supplementation with DHA low or DHA high diets

(FDR q < 0.05, 1.5-fold change). The overlap regions indicate genes affected by cSiO2 exposure that were also altered by DHA supplementation. Hierarchical cluster

analyses are provided in Supplementary Figure 9. (B) Principal components analyses of differentially expressed genes in lung tissues of DHA-supplemented mice

exposed to cSiO2 at 1, 5, 9, or 13 weeks post instillation compared to time-matched vehicle (VEH/CON) and cSiO2-exposed (cSiO2/CON) control diets. PC1 and

PC2 are shown with 95% confidence interval bands (dashed ellipses). (C) Global and directed significance scores for immune pathways were determined using

nSolver (see section Materials and Methods) by comparing mice in the cSiO2/CON group to time-matched vehicle (VEH) controls fed CON diet or by comparing mice

in the cSiO2/DHA low or the cSiO2/DHA high group vs. cSiO2-exposed, CON-fed mice.

acids with 20 or more carbons and three or more double
bonds) in the total HUFA of erythrocytes (ω-3 HUFA score)
(19). Correlation analysis was conducted using cor and corrplot
functions in R (www.R-project.org). Spearman ρ values were
determined utilizing individual sample pathway Z scores and
phenotype data from mice from 1, 5, 9, or 13 weeks cohorts
(31). A correlation was considered significant when ρ > 0.5 or
<-0.5 and p < 0.05.

STRING database version 10.5 (http://string-db.org/) was
used for network analyses for interactions among significant
genes significant genes identified by the nSolver data analysis
at a confidence level for associations set at ≥0.7. Clusters were
identified using the Markov Cluster (MCL) algorithm with
inflation parameter of 1.5. Networks produced by STRING were
mapped with Cytoscape v3.0, with nodes indicating significant
genes and edge width designating combined interaction
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FIGURE 6 | Lung tissue pathway Z scores and correlation analyses of immune-associated pathways. (A) Pathway Z scores are presented as Tukey box-plots (n = 8)

for select immune pathways of interest. Different letters indicate treatment/diet groups are significantly different (p < 0.05) as determined by the Steel-Dwass

non-parametric test for all pairs. Heatmaps depicting individual pathway Z scores for all pathways captured by the NanoString PanCancer Immune Profiling gene

(Continued)
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FIGURE 6 | panel are provided in Supplementary Figure 9. (B) For all cSiO2-treated groups, spearman ρ values were calculated by correlating pathway Z scores

with percent positive staining tissue (CD3 and CD45R) or the percent ω-3 HUFA in erythrocytes (ω-3 HUFA score). Significant correlation values (p<0.05) are

represented as circles colored by the correlation value (blue, positive; red, negative); non-significant correlations are indicated by blank cells. (C) Scatter plots for

pathway scores vs. the diet ω-3 HUFA score for selected pathways of interest. Linear regression lines with 95% confidence intervals (dashed red line) are shown along

with the Spearman r value and p-value.

FIGURE 7 | Network visualization of genes significantly affected by DHA supplementation in lung tissues obtained 1 (A), 5 (B), 9 (C), or 13 (D) weeks post instillation

with cSiO2. Network interactions for genes differentially regulated by either DHA low or DHA high supplementation at each time point were modeled using the STRING

database (string-db.org) with a minimum required interaction score ≥0.7, and clusters were identified using the Markov Cluster (MCL) algorithm with inflation

parameter of 1.5. The network was visualized in Cytoscape, and edge widths reflect the combined interaction score (thicker edges indicate higher score).

score. Data for STRING-db networks and the predicted
clusters, including protein-protein interactions and functional
annotations can be found in Supplementary File 5.

Immunofluorescence Microscopy
Mouse lungs (n = 2 to 3 per group) were fixed in 4%
paraformaldehyde, embedded in paraffin, and cut into 5µm
thick sections by the histology core at Michigan State University.
The lung tissue sections were then deparaffinized by incubation

for 1 h at 60◦C, followed by immersion in xylene for 15min
with two changes. Tissues were rehydrated by sequential
10min incubations in 100, 90, 70, and 50% (v/v) ethanol,
followed by two 5min incubations with deionized water.
Epitope retrieval was accomplished by 10min incubation in
10mM sodium citrate buffer (pH 6.0), followed by another
5min wash in deionized water. Tissues were permeabilized by
incubation for 15min in 1% (v/v) goat serum containing 0.4%
(v/v) Triton X-100 in PBS (PBST). Blocking of non-specific
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FIGURE 8 | Time course of DHA-responsive genes associated with innate and adaptive immune pathways in lung tissues of mice 1, 5, 9, or 13 weeks post instillation

with cSiO2. Gene expression data were obtained using the NanoString PanCancer Immune Profiling gene panel and are shown as log2 ratios for cSiO2-exposed mice

fed CON, DHA low, or DHA high diets calculated with respect to time-matched, vehicle-exposed, CON-fed controls (VEH/CON; log2 ratio = 0). For innate (A) or

adaptive (B) immune pathways, heatmaps with unsupervised clustering (Euclidian distance method) by gene depict log2 expression values for all genes identified as

significantly differentially expressed (FDR q < 0.05, 1.5-fold change) at any one of the indicated time points. The mean log2 ratio values ± SEM for selected genes of

interest are also shown. *p < 0.05 for DHA high compared to CON diet and #p < 0.05 for DHA low compared to CON diet as determined by nSolver statistical

analyses (see Supplementary File 2 for test specifications and FDR-corrected q-values).
†
p < 0.05 for DHA high compared to CON diet and

‡
p < 0.05 for DHA low

compared to CON diet as determined by non-parametric Kruskal–Wallis test (for Mx1 only).

binding was done by incubation in 5% (v/v) goat serum in
PBST for 30min at room temperature. Detection of Mx1
and Oas2 proteins was accomplished by incubation with
primary polyclonal antibodies (Mx1 catalog no. 1370-1-AP

and Oas2 catalog no. 1927-1-AP; Proteintech, Rosemont, IL)
diluted to 1:50 in 1% goat serum PBST and incubation
overnight at 4◦C in a humidified chamber. Next, tissue sections
were washed twice with 1% goat serum PBST for 10min
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FIGURE 9 | Time course of DHA-responsive genes associated with inflammation, chemokines & receptors, or immune pathways in lung tissues of mice 1, 5, 9, or 13

weeks post instillation with cSiO2. Gene expression data were obtained using the NanoString PanCancer Immune Profiling gene panel and are shown as

log2 ratios for cSiO2-exposed mice fed CON, DHA low or DHA high diets calculated with respect to time-matched, vehicle-exposed, CON-fed controls (VEH/CON;

(Continued)
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FIGURE 9 | log2 ratio = 0). For inflammation (A), chemokines and receptors (B), or interferon (C) pathways, heatmaps with unsupervised clustering (Euclidian

distance method) by gene depict log2 expression values for all genes identified as significantly differentially expressed (FDR q < 0.05, 1.5-fold change) at any one of

the indicated time points. The mean log2 ratio values ± SEM for selected genes of interest are also shown. *p < 0.05 for DHA high compared to CON diet and #p <

0.05 for DHA low compared to CON diet as determined by nSolver statistical analyses (see Supplementary File 2 for test specifications and FDR-corrected q values).

and then incubated with Alexa FluorTM 594 goat anti-rabbit
secondary antibody (Invitrogen, Carlsbad, CA) diluted to
1:1000 in 1% goat serum PBST at room temperature for 1–
2 h in the dark. Sections were rinsed twice with PBST for
10min, and the nuclei were counterstained by incubating
overnight in ProlongTM gold antifade reagent with DAPI
(Invitrogen). Samples were stored in the dark until imaged
using the Evos FL Auto 2 cell imaging system; 5 to 6
fields of view for each animal for each treatment group were
inspected qualitatively.

Enzyme-Linked Immunosorbent Assay for
Cxcl10
The concentration of Cxcl10 protein in whole lung homogenate
was determined by ELISA using a the mouse Cxcl10 DuoSet
kit (R&D Systems, Minneapolis, MN) according to the
manufacturer’s instructions. Briefly, snap-frozen lungs were
thawed, weighed, and homogenized in cold lysis buffer
containing protease inhibitors. Homogenates were then
centrifuged at 15,000× g for 20min at 4◦C, and the supernatants
were used for measuring Cxcl10 by ELISA. Total protein
concentrations in the lung tissue homogenates were determined
using the Pierce BCA protein assay kit (ThermoFisher,
Waltham, MA).

RESULTS

Acute immune gene responses 1 day after single (Acute.1x)
or repeated (Acute.4x) intranasal dosing with cSiO2 were
compared in mice fed CON or DHA high diets (Figures 1A,B).
Transcriptomic analyses revealed that that 7 and 140 genes
were differentially regulated (FDR q < 0.05, 1.5-fold change)
in the lung 1 day after cSiO2 treatment in the Acute.1x
and Acute.4x groups, respectively (Figure 2A). While DHA
consumption did not affect cSiO2-induced changes in the
single dose group, 23 genes were affected by DHA in
mice treated with multiple doses of the particle. Principal
component analysis of the Acute.4x responses indicated that
DHA-fed cSiO2-treated mice clustered closely with the CON-
fed VEH-treated mice, with both clusters being relatively
distinct from CON-fed cSiO2-treated mice (Figure 2B). Heat
mapping of global and directed significance scores showed that
cSiO2-potentiated pathways were largely attenuated by DHA
consumption (Figure 2C).

When gene expression pathway scores were calculated as
the first principal component of the pathway genes’ normalized
expression and standardized by Z scaling, several cSiO2-
induced immune pathways were found to be significantly
downregulated by DHA supplementation in the Acute.4x
group (Figure 3A; Supplementary Figure 7). Affected genes
included those associated with inflammation; innate and adaptive

immunity; IFN, chemokines, interleukins, cytokines; T-cell
and macrophage function; and antigen processing and MHC
expression. Network mapping showed that both IFN- and
chemokine-related pathways were among the most prominently
affected by DHA (Figure 3B).

DHA’s effects on representative pathway genes are depicted
as heat maps and line plots in Figure 4. While only a few
of the eight mice in the Acute.1x group responded strongly
to cSiO2, the responses were very similar to those seen in all
eight cSiO2-treated mice in the Acute.4x group (Figure 4A).
DHA supplementation affected all cSiO2-induced genes by
downregulation (Supplementary Figure 6). Consistent with the
network analysis (Figure 3B), DHA significantly suppressed the
upregulation of the IFN-related genes Zbp1, Mx2, Oas2, Ifit1,
Ifit3, Ifit3, Irf7, Isg15, and Ifi44 and the chemokine-associated
genes Ccl4, Cxcl10, Ccl7, Ccl12 (Figure 4B).

The effect of DHA low and high diets on chronic mRNA
responses to short-term repeated cSiO2 were assessed in the
lung over a 13 week period (Figure 1C). cSiO2 exposure
elicited differential expression (FDR q < 0.05, 1.5-fold change)
in the lung of 128, 197 genes, 218, and 253 genes at 1,
5, 9, and 13 weeks PI, respectively (Figure 5A). DHA low
diet influenced 2, 49, 1, and 5 genes at these timepoints,
respectively, whereas, the DHA high diet, affected 19, 49,
61, and 27 genes, respectively. Principal component analysis
indicated strong separation of VEH-treated mice fed CON diet
from all cSiO2-treated mice at all time points (Figure 5B).
cSiO2-treated DHA low-fed mice responses clustered closely
with cSiO2-treated DHA high-fed mice at 1 and 5 weeks
PI, and with cSiO2-treated CON-fed mice at 9 and 13
weeks PI. Finally, cSiO2-treated DHA high-fed mice clustered
distinctly from cSiO2-treated CON-fed mice at all time points.
Hierarchal cluster analysis indicated that most of these genes
were upregulated by cSiO2 treatment and suppressed by DHA
(Supplementary Figure 8).

As observed in the Acute.4x study, DHA affected chronic
expression of genes altered by cSiO2 exposure related to
inflammation; innate and adaptive immunity; IFN, chemokines
cytokines; B-cell, T-cell, and macrophage function; MHC
expression and antigen processing; and complement
(Figures 5C, 6A; Supplementary Figure 9). Most pathways
in individual lungs of cSiO2-exposed lupus-prone mice time-
dependently correlated with the presence of B cells and T
cells (markers of ectopic lymphoid neogenesis) in the same
lung tissues reported in the parent study (31) (Figures 6B,C).
Significantly, most of these gene pathways were negatively
correlated with ω-3 HUFA scores in erythrocytes from
corresponding animals, with the strongest response noted for the
IFN pathway at week 5.

Figure 7 illustrates gene networks affected by dietary DHA
supplementation during the course of cSiO2-induced disease
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FIGURE 10 | Immunofluorescence detection of interferon-responsive genes

Oas2 and Mx1 in lung tissues at 9 weeks post instillation with cSiO2 and

expression of Cxcl10 in lung homogenates. (A,B) Representative light

photomicrographs depict H&E-stained lung sections from VEH/CON,

cSiO2/CON, and cSiO2/DHA high groups at 9 wk post-installation, while

(Continued)

FIGURE 10 | representative fluorescence microscopy images depict

immunofluorescence staining of the same tissues for either Oas2 (A) or Mx1

(B) proteins (red channel) and Hoechst stain for nuclei (blue channel). For (A),

Oas2-expressing cells are apparent in the ectopic lymphoid tissue (solid arrow)

and the airway epithelium (dashed arrow). For (B), Mx1-expressing cells are

apparent in the alveolar parenchyma (solid arrow). ap, alveolar parenchyma;

BA, bronchiolar airway; V, blood vessel, *, ectopic lymphoid tissues; solid

arrow, MX1-positive staining cells in the alveolar parenchyma. (C) Expression

values for Cxcl10 protein in lung homogenates are shown as Tukey box-plots

(n = 5). ****p < 0.0001 for comparisons among treatment groups within each

time point as determined by two-way ANOVA (main effect of time point p =

0.6785; main effect of treatment group p < 0.0001; interaction p = 0.8908).

development in the lungs. Consistent with the Acute.4x findings,
DHA dramatically affected IFN- and chemokine-related genes at
1, 5, 9 weeks PI and, to a lesser extent, at 13 weeks PI. Also of note,
expression of genes associated with the complement pathway
(C1qb, C1qa, Cfd, and Cfb) was affected at weeks 5, 9, and 13
PI and with B-cell signaling and differentiation (Pou2af1,Ms4a1,
Cd19, Pax5, and Blnk) at week 13 PI.

Heat maps and line plots as a function of time were
constructed for representative genes associated with innate and
adaptive immunity (Figures 8A,B) and with inflammation, IFN,
and chemokines (Figures 9A–C). Particularly striking was the
impact of DHA on IFN and chemokine genes, which were
among the earliest and most highly suppressed. Specifically,
consumption of the DHA low diet significantly suppressed
cSiO2-induced gene expression at 1 week post installation (PI)
and/or 5 weeks PI (e.g., Ccl12, Ccl20, Cxcl10, Oas2, Isg15, and
Ifit1), whereas effects of the DHA high diet were longer lasting
with significant effects also being observed at 9 weeks PI (Mx2,
Cxcl10, Ccl12, Ifi44, Oas2, Ift1) and 13 weeks PI (e.g., Il1b,
Fgcr1, Cxcl9).

Immunofluorescence microscopy of lung tissues of mice
obtained a 9 wk PI with cSiO2 revealed increased expression
of Oas2 protein in ectopic lymphoid tissues and the airway
epithelium, whereas dietary supplementation with DHA
appeared to suppress expression of Oas2 at these sites
(Figure 10A). Similarly, DHA supplementation suppressed
the over-expression of Mx1 protein in the alveolar parenchyma
triggered by cSiO2 exposure (Figure 10B). Of note, while Mx1
gene expression was induced by cSiO2 and then repressed by
DHA, these changes in gene expression were not statistically
significant as determined by the nSolver data analysis workflow.
This result was likely due to failure of the mean to meet the
threshold (10× background signal) for some treatment groups
resulting in the use of the much less powerful Wald test. Separate
analysis using the Kruskal-Wallis non-parametric test (GraphPad
Prism, San Diego, CA) suggested that DHA supplementation
indeed suppressed Mx1 expression induced by silica treatment
at 5 and 9 weeks post installation (Figure 8A), a determination
that agrees with the immunofluorescence microscopy results
(Figure 10B). Lastly, measurement of Cxcl10 protein (also
known as interferon gamma protein 10 (IP-10) or small-
inducible cytokine B10) in lung homogenate using a standard
ELISA revealed a profound 3-fold increase in its expression
in tissues of cSiO2-exposed mice at both 5 and 9 weeks PI
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(Figure 10C). Remarkably, dietary supplementation with DHA
entirely blocked that response such at Cxcl10 expression was not
different from VEH/CONmice.

The effects of DHA supplementation on cSiO2-induced
transcriptional changes were compared in lung, kidney
and spleen tissues of mice at 13 weeks PI (Figure 11A;
Supplementary Figure 10). Consumption of the DHA high diet
influenced 11 percent of cSiO2-affected genes in the lung at this
timepoint, while in the kidney and spleen, 85 and 59 percent
of the induced transcriptomes were modulated, respectively.
Many fewer cSiO2-altered genes in the lung (1%), kidney (3%),
and spleen (5%) were affected in the mice fed the DHA low
diet. Principal component analyses of the kidney indicated
close associations among VEH/CON, cSiO2/DHA low, and
cSiO2/DHA high groups as compared to cSiO2/CON group
(Figure 11B). In the spleen, there were substantial overlaps
between the VEH/CON and cSiO2/DHA high groups and
between the cSiO2/DHA low and cSiO2/CON groups.

Consistent with DHA’s effects in the lung in earlier weeks,
its supplementation affected a broad array of cSiO2-induced
pathways in the kidney and spleen at week 13 (Figures 11C, 12,
13). Network analysis revealed that DHA had robust effects on
critical genes associated with glomerulonephritis including those
related to IFN signaling (e.g., Irf7, Ifit1, Oas2, Isg15); cytokines
and chemokines (e.g., Ccl8, Ccl2, Ccr2, Cx3cr1); and antigen
processing and MHC (e.g., H2-Dmb2, Fcgr1, Fcer1g, H2-Eb1)
(Figure 13A). Lastly, heat mapping and line plotting revealed
that DHA dose-dependently suppressed induction of many genes
in the kidney associated with innate and adaptive immunity
and inflammation (Figure 14), and chemokines, IFN and antigen
processing (Figure 15), whereas the effects were much more
modest in the spleen with only a few genes uniquely affected by
DHA in this tissue (e.g., Elane and Ccl124).

DISCUSSION

DHA and other ω-3s potentially quell lupus flaring and
progression by altering intracellular signaling, transcription
factor activity, gene expression, bioactive lipid mediator
production, and membrane structure and function [reviewed in
(36)]. We show here for the first time howDHA supplementation
at translationally relevant doses influenced cSiO2-induced
changes in gene regulation in the NZBWF1 female mouse model.
Over the course of the chronic study, DHA suppressed a broad
array of cSiO2-induced inflammatory, innate, and adaptive
gene responses in the lung that correlated with inhibition of
ectopic lymphoid neogenesis previously described in these same
tissues (31). Based on ELISA data in previous studies (15, 16),
we expected proinflammatory genes to be critically affected here,
however, cSiO2-induced genes specifically associated with the
IFN signature and chemokines were among the earliest and most
robustly downregulated by DHA treatments. Furthermore, we
determined that expression of the IFN-responsive proteins Mx1,
Oas2 and Cxcl10 in the lung was similarly markedly induced by
cSiO2 treatment and were suppressed by dietary intervention
with DHA. In the kidney, DHA suppressed the expression

of a broad array of gene pathways related to inflammation,
innate/adaptive immunity, IFN, chemokines, antigen processing
that likely contribute to cSiO2-triggered glomerulonephritis.
Finally, the observation that lupus-associated mRNA signatures
negatively correlated with erythrocyte ω-3 HUFA scores is of
high relevance from a translational perspective.

Investigation of cSiO2-triggered lupus in the NZBWF1 mouse
offers an exquisite window for exploring how environmental
factors contribute to this devastating autoimmune disease as
well as for understanding how potential interventions might
prevent or diminish SLE flaring and progression. At the
mechanistic level, polymorphonuclear leukocytes (PMNs) and
alveolar macrophages (AMΦs) are the primary responders to
cSiO2 and other particles in the lung. Both cell types were
increased in the alveolar fluids from the lungs of cSiO2-exposed
NZBWF1 mice used for the present study (31). AMΦ death
occurs following lysosomal membrane permeabilization with
inflammasome activation and involves pyroptosis, apoptosis, and
necrosis (37, 38). cSiO2 induces death in PMN by necroptosis, a
process associated with release of neutrophil extracellular traps
(NETs) (39, 40). Because cSiO2 clearance in animal models
is limited (41–43), exposure to this particle drives a vicious
cycle in AMΦs and PMNs involving phagocytosis of SiO2, cell
death, autoantigen release, cSiO2 particle escape, and renewed
cSiO2 phagocytosis [reviewed in (30)]. This feedback loop
perpetuates recurrent pulmonary exposure to cSiO2 potentially
saturating the efferocytotic capacity of the lung with cell corpses
and autoantigens that can override tolerogenic mechanisms,
particularly in animals genetically prone to autoimmunity, such
as NZBWF1mice (16, 31). In agreement with this scenario, in this
study, cSiO2 induced expression of genes in the lung indicative of
sustained IFN activity, chemokine release, cytokine production,
complement activation, and adhesionmolecule expression. These
transcriptome signatures correlated with the particle’s capability
to evoke in the lung an early and persistent sterile inflammation,
ectopic lymphoid tissue development, autoantibody production,
and, in the longer term, elicit systemic autoimmunity and
glomerulonephritis (17).

In the present study, short-term repeated exposure to cSiO2

evoked mRNA signatures in the lung that reflected wide-scale
activation of inflammatory, innate, and adaptive gene pathways.
Although comparable genes were elevated at 1 d and 1, 5, 9,
and 13 weeks PI, the responses increased in both extent and
intensity with time. This observation suggested that the effects
of cSiO2 were not self-limiting and were consistent with a
perpetual feedback loop. These gene pathways correlated with
ectopic lymphoid neogenesis previously reported in the lungs
from which the RNA samples were obtained for this study
(17, 31). Strikingly, in the chronic experiment, consumption of
the DHA high diet provided early and long-lasting protective
effects against cSiO2-induced gene expression. Exhaustion of
DHA’s protective effects by week 13 is likely attributable to the low
clearance rate of cSiO2 from the lung and continual reentry into
the aforementioned inflammation cycle. Nevertheless, it might
be speculated that such exhaustion might not occur in the cases
of transient lupus triggers, such as infections, drugs, UV light,
and stress.
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FIGURE 11 | Effect of DHA supplementation on cSiO2-induced transcriptional changes in lung, kidney or spleen tissues of mice 13 weeks post instillation. (A) Venn

diagrams depicting overlap of genes differentially regulated by exposure to cSiO2 compared to those differentially regulated by supplementation with DHA low or DHA

high diets (FDR q < 0.05, 1.5-fold change). The overlap regions indicate genes affected by cSiO2 exposure that were also altered by DHA supplementation.

Hierarchical cluster analyses are provided in Supplementary Figure 10. (B) Principal components analyses of differentially expressed genes compared to

tissue-matched vehicle control (VEH/CON) and cSiO2-exposed (cSiO2/CON) control diets. PC1 and PC2 are shown with 95% confidence interval bands (dashed

ellipses). (C) Global and directed significance scores for immune pathways were determined using nSolver (see section Materials and Methods) by comparing mice in

the cSiO2/CON group to dosing-matched vehicle (VEH) controls fed CON diet or by comparing mice in the cSiO2/DHA low or the cSiO2/DHA high group vs.

cSiO2-exposed, CON-fed mice.

While only three out of eight mice in the single dose
group fed the CON diet showed altered gene response 24 h
after a single cSiO2 dose, the responders’ transcriptomes

closely matched those for all eight mice 24 h after four
weekly cSiO2 treatments. Notably, IFN- and chemokine-related
genes were among those most affected. The inconsistency
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FIGURE 12 | Effect of DHA supplementation on selected immune pathways in lung, kidney and spleen tissues of mice 13 weeks post instillation. Mice fed either

CON, DHA low, or DHA high diets received four repeated weekly doses of cSiO2 via intranasal instillation. Gene expression was determined by nCounter digital

transcript counting in lung, kidney or spleen tissues obtained 13 weeks post instillation. Pathway Z scores are presented as Tukey box-plots (n = 8) for select immune

pathways of interest. Different letters indicate treatment/diet groups are significantly different (p < 0.05) as determined by the Steel-Dwass non-parametric test for all

pairs. Heatmaps depicting individual pathway Z scores for all pathways captured by the NanoString PanCancer Immune Profiling gene panel are provided in

Supplementary Figure 11.
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FIGURE 13 | Network visualization of genes significantly affected by DHA supplementation in kidney (A) or spleen (B) tissues obtained 13 weeks post instillation with

cSiO2. Network interactions for genes differentially regulated by either DHA low or DHA high supplementation at each time point were modeled using the STRING

database (string-db.org) with a minimum required interaction score ≥0.7, and clusters were identified using the Markov Cluster (MCL) algorithm with inflation

parameter of 1.5. The network was visualized in Cytoscape, and edge widths reflect the combined interaction score (thicker edges indicate higher score).
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FIGURE 14 | Comparison of DHA-responsive genes associated with innate, adaptive, and inflammation immune pathways in lung, kidney, or spleen tissues 13 weeks

post instillation with cSiO2. Gene expression data were obtained using the NanoString PanCancer Immune Profiling gene panel and are shown as log2 ratios for

cSiO2-exposed mice fed CON, DHA low or DHA high diets calculated with respect to tissue-matched, vehicle-exposed, CON-fed controls (VEH/CON; log2 ratio = 0).

For the innate (A), adaptive (B), and inflammation (C) pathways, heatmaps with unsupervised clustering (Euclidian distance method) by gene depict log2 expression

values for all genes identified as significantly differentially expressed (FDR q < 0.05, 1.5-fold change) in any one of the indicated tissues. The mean log2 ratio values +

SEM for selected genes of interest are also shown. *p < 0.05 for DHA high compared to CON diet (see Supplementary File 2 for test specifications and

FDR-corrected q-values).

of the former might have resulted because of slow and
incomplete cSiO2 distribution to the lower lung airways of
some mice at 1 d following a single intranasal dose (25).
Nonetheless, dietary DHA similarly suppressed cSiO2-triggered
gene responses, suggesting that supplementation with this
fatty acid could influence some of the very earliest effects of
the particle.

Type I IFNs (IFNs), particularly IFN-α, induce an assemblage
of up to 2000 genes referred to as the “IFN signature” that
is a hallmark of SLE and other autoimmune diseases (44). In

SLE patients, levels of type I IFN and IFN-inducible genes in
peripheral blood mononuclear cells (PBMCs) are elevated and
correlate with disease severity (45–48). GWAS investigations
have further established a linkage between genes associated
with type I IFN production and human lupus (49–53). The
nCounter module used here contained 36 of the 63 genes in
the human IFN signature designed by Li et al. (54). cSiO2

induced two-thirds of these genes in the lung, and remarkably,
all were suppressed by DHA supplementation. The IFN-related
genes most highly affected by DHA in this study have been
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FIGURE 15 | Comparison of DHA-responsive genes associated with chemokines & receptors, antigen processing and interferon immune pathways in lung, kidney, or

spleen tissues 13 weeks post instillation with cSiO2. Gene expression data were obtained using the NanoString PanCancer Immune Profiling gene panel and are

shown as log2 ratios for cSiO2-exposed mice fed CON, DHA low, or DHA high diets calculated with respect to tissue-matched, vehicle-exposed, CON-fed controls

(VEH/CON; log2 ratio = 0). For the chemokines & receptors (A), antigen processing (B), and interferon (C) pathways, heatmaps with unsupervised clustering

(Euclidian distance method) by gene depict log2 expression values for all genes identified as significantly differentially expressed (FDR q <0 .05, 1.5-fold change) in

any one of the indicated tissues. The mean log2 ratio values + SEM for selected genes of interest are also shown. *p < 0.05 for DHA high compared to CON diet (see

Supplementary File 2 for test specifications and FDR-corrected q-values).

associated with human SLE, including Irf7 (55, 56), Oas2
(57–60), Ifi44 (60–63), Ifit1 (64), Ifit3 (64), Isg15 (65), Nrlc5 (66),
andMx2 (67).

Consistent with our findings, cSiO2 induced a type 1
IFN response in C57Bl/6 mice within 1 week of instillation
(68). Moreover, cSiO2 instillation induced accumulation of
macrophages, neutrophils, and lymphocytes and marked
expression of Ifnb, Irf7, and Ccl2 in the lungs of 129SV
mice, whereas these responses were significantly reduced in
corresponding interferon α/β receptor knockout mice (69).

Also in agreement with our results here, preclinical studies
suggest that type 1 interferons promote autoimmunity. For
example, IFN-α administration to NZBWF1 mice quickened
lupus onset (70, 71) and diminished the effectiveness of
pharmacological interventions (4, 71). Furthermore, type
I IFN overexpression hastened autoantibody production
and autoimmune disease progression in NZBWF1 mice
(71). Finally, type I IFN receptor deletion diminished
autoantibody production and disease activity in NZBWF1
mice (72) and four other lupus-prone models (73–75).
Together, these reports support our findings that the IFN

signature was closely linked to cSiO2-induced autoimmune
disease progression in NZBWF1 mice and, furthermore,
that both the signature and disease were ablated by
DHA supplementation.

Our observation that cSiO2 exposure altered IFN-related
gene expression provides unique insight into putative early
targets and mechanisms of action for the particle and how
its effects are ameliorated by ω-3 fatty acids. A candidate cell
type for the effects of cSiO2 and DHA is the plasmacytoid
dendritic cell (pDC), a primary producer of IFN-α (76). pDC
depletion in lupus-prone mice prior to disease initiation resulted
in reduction in autoimmune pathology (77–79). Lupus-prone
mice haplodeficient for a pDC-specific transcription factor
contained fewer pDCs and exhibited reduced disease symptoms,
particularly those related to germinal center development and
autoantibody production (80). pDCs contain endosomal toll-
like receptor (TLR)-7 and TLR-9 that recognize single-strand
RNA and DNA, respectively (81–84). The IFNα-producing
capacity of pDCs obtained from lupus patients was enhanced
following TLR stimulation and these responses correlated
with disease activity and serum IFN-α (85). Importantly,
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cSiO2 induced dsDNA release into the alveolar space in
mice, and patients with silicosis had increased circulating
dsDNA (68). RNA/DNA-containing immune complexes have
been shown to elicit robust IFN-α production in pDCs
(86–89). Indeed, prior studies have established that airway
instillation of lupus-prone mice with cSiO2 triggers early and
robust autoantibody responses to dsDNA, nuclear antigens,
and histones coupled with increases in circulating immune
complexes (11, 12, 15, 16). Thus, further investigation is needed
to determine how cSiO2 affects pDC activation and type 1 IFN
release and, furthermore, how DHA supplementation impairs
this process.

Both type 1 IFNs and pDCs are therapeutic targets for SLE.
Randomized, double-blind, placebo-controlled phase IIb clinical
trials have suggested the efficacies of sifalimumab, an anti-IFNα

monoclonal antibody (90) and anifrolumab, a type I interferon
(IFN) receptor antagonist (91, 92), for treating moderate-
to-severe SLE. Very recently, a large double-blind, placebo-
controlled phase 3 clinical trial (TULIP-2) was completed
that reported that intravenous anifrolumab was superior to
placebo for multiple efficacy endpoints, including overall disease
activity, skin disease, and oral corticosteroid tapering (93). Blood
dendritic cell antigen 2 (BDCA2), a pDC specific receptor, has
been targeted for preclinical and clinical investigation of lupus
treatment (94). In non-human primates, anti-BDCA2 antibodies
suppress both IFNα-production by pDCs (95). Recently, it was
reported that the humanized anti-BDCA2 antibody suppressed
the IFN signature and ameliorated cutaneous lesions in human
lupus patients (96).

DHA’s capacity to ameliorate cSiO2-upregulation of
chemokine genes is also remarkable. Affected genes included
chemokine ligands/receptors with C-X-C motif including Cxcl3,
Cxcl9, Cxcl10, Cxcl12, Cxcl13, Cxcr1, and Cxcr3. Of particular
relevance, Cxcl13 (a.k.a. B-lymphocyte chemoattractant [BLC]),
is preferentially produced by follicular dendritic cells in
B-cell follicles of lymphoid organs (97), a population that
is upregulated in the lungs by cSiO2 (31). Treatment with
anti-CXCL13 antibodies mitigated disease in murine models
of autoimmune disease (98). Recently, Denton et al. (99)
demonstrated in C57BL/6 mice that type I IFN produced
after influenza infection induced CXCL13 expression in a
lung fibroblasts, driving recruitment of B cells and initiating
ectopic germinal center formation. Thus, type I IFN induces
CXCL13, which, in combination with other stimuli, could
provide the requisite stimuli to promote ELS. CXCL9 and
CXCL10 share the receptor CXCR3 and are also induced by IFN
(100). These chemokines direct activated T cell and natural killer
cell migration.

Of further note, DHA mitigated cSiO2-driven upregulation
of mRNAs for C-C-L motif ligands and their receptors (Ccl2,
Ccl7, Ccl8, Ccl12, Ccl20 Ccr2, Ccr5, Ccr6). CCL2 (also known
as monocyte chemoattractant protein 1 [MCP-1]) stimulates
monocyte trafficking by binding to CCR2, and it is produced
by mononuclear phagocytes, endothelial, and smooth muscle
cells (101). cSiO2 exposure promoted MCP-1 elevation in
BALF and plasma (15). Importantly, elevated plasma MCP-1
has been associated with increased disease severity in lupus

patients (102, 103). CCL7 (MCP-3), CCL8 (MCP-2), and CCL12
(MCP-5) are structurally related and share properties with
CCL2. Finally, CCR6 and its ligand CCL20 (MCP-3α) coordinate
regulation of effective humoral responses also have been
linked to autoantibody-driven autoimmune diseases including
lupus (104).

Our prior histological assessment (33) of the kidneys
employed in this study indicated that 13 weeks after cSiO2

instillation, CON-fed mice exhibited proteinuria with moderate
to severe diffuse glomerulonephritis. Consistent with this
observation, we found here that there was extensive upregulation
of immune genes in kidney tissue, most notably those
associated with IFN, chemokines, antigen presentation, and
MHC expression. Mice fed DHA exhibited marked reduction
of these histopathological lesions reflecting the dramatic
suppression of massive cell recruitment and gene expression
during cSiO2-driven inflammation. Since cSiO2 is retained the
lung and its associated lymph nodes (41, 42), the cellular
and gene responses in the kidney most likely result from
autoantibodies and immune complexes originating in the lung.
We speculate that these travel via the systemic compartment
and consequently deposit in the kidney evoking vigorous
inflammation and ultimately glomerulonephritis. Accordingly,
the kidney histological and mRNA profiles very likely were
an outcome of cSiO2-triggered ELS formation in the lung.
Since DHA supplementation impeded pulmonary ectopic
lymphoid neogenesis in the lung, it follows that DHA also
prevented downstream cell recruitment and gene expression
in the kidney. Finally, it should be noted that gene responses
in the spleen to cSiO2 and DHA treatments were very
modest compared to the lung and kidney. This result may
be expected because the spleen contains many more non-
activated cells than lung which would dilute expression of
immune genes.

Our finding that DHA supplementation impeded genes
associated with lupus flaring and glomerulonephritis are
consistent with several clinical trials suggesting that there are
potential benefits of ω-3 intake by SLE patients. To date, nine
controlled clinical studies have tested ω-3-containing fish oil
supplements on lupus. Supplementation duration varied from
10 to 52 weeks, and patients per trial ranged from 12 to
85 subjects. ω-3 intake ranged from 0.54 to 3.60 g/d EPA
and 0.30 to 2.25 g/d DHA. Five investigations showed ω-3
supplementation modulated and improved SLE scores (105–
109). Another trial included both non-nephritic SLE patients
and lupus nephritis patients and found significant improvements
in several SLE markers in blood (110). One study reported
improvement in clinical parameters after 3 months but not at
6 months (111). In contrast, two other clinical studies reported
no therapeutic benefits of ω-3 for patients with SLE (112)
or lupus nephritis (113). General limitations of the clinical
studies run to date include low numbers of patients, short
study length, insufficient ω-3 dosage, lack of corroborating fatty
acid analyses, and/or not controlling impact of concurrent SLE
therapies. It should be noted that the clinical studies to date
have typically used between 1 to 5 g of ω-3 mixtures of DHA
plus EPA. The observation that diets providing human energy
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equivalents of 5 g/d DHA elicited more marked and longer
lasting effects than the DHA low diet is potentially a critical
consideration for future clinical studies. Thus, additional studies
are required to examine the potential differential effects of DHA
and EPA.

CONCLUSION

Taken together, the findings reported herein that DHA
supplementation impeded IFN and chemokine gene expression
associated with lupus flaring and nephritis supports the
contention that dietary supplementation with ω-3 fatty acids
may be a viable adjunct for the prevention and treatment of SLE.
A potential mechanism linking dietary ω-3 supplementation
to the observed transcriptional changes is the alteration of
the cell membrane lipid profile, as DHA elevates membrane
ω-3 HUFAs at the expense of ω-6 HUFAs. Consequently,
this shift in membrane lipids could modify HUFA-derived
metabolite profiles. Lipid metabolites derived from the ω-6
HUFA arachidonic acid (ARA) include the proinflammatory
prostaglandins, leukotrienes, and thromboxanes. Alternatively,
metabolites derived from ω-3 HUFAs, including DHA,
docosapentaenoic acid (DPA) and EPA have been termed
specialized pro-resolving mediators due to their capacity to
resolve inflammatory responses. These mediators, as well as
the free fatty acids from which they are metabolized, have
been shown to participate in anti-inflammatory signaling
pathways inhibiting the transcription of pro-inflammatory
genes. We chose to assess levels of membrane ω-3 HUFAs
as a percent of total HUFA (ω-3 HUFA score) (Figure 6),
as defined by Lands and coworkers (19), to accentuate the
competition between metabolism of ω-3 and ω-6 HUFAs. We
found robust negative correlations between the ω-3 HUFA score
and many of the gene pathways induced by cSiO2, providing
strong evidence that incorporation into the phospholipid
membrane is central to DHA’s protective effects. Additional
research is needed to determine how the ω-3 HUFA score
and IFN signature could be used in a precision medicine
approach to identify lupus patients that may benefit from
ω-3 supplementation.
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