

Beavers alter stream macroinvertebrate communities in northeastern Utah

Journal:	Freshwater Biology
Manuscript ID	FWB-P-Jul-19-0378.R1
Manuscript Type:	Standard Paper
Date Submitted by the Author:	19-Sep-2019
Complete List of Authors:	Washko, Susan; University of Arizona, School of Natural Resources and the Environment; Utah State University, Department of Watershed Sciences Roper, Brett; USDA Forest Service, 2Fish and Aquatic Ecology Unit, Forestry Sciences Lab Atwood, Trisha; Utah State University, Department of Watershed Sciences
Keywords:	Running water / rivers / streams < Habitat, Community < Level of Organisation, Invertebrates < Taxonomic Group / Assemblage, Other species interactions < Process / Approach / Methods, Ecosystem < Level of Organisation

1		
2		
3	1	Title: Beavers alter stream macroinvertebrate communities in northeastern
4	-	Utah
5	2	Otan
6 7	3	
8	4	Running title: Beavers alter stream communities
9	5	
10	6	Authors: Washko, Susan ^{1,a*} , Brett Roper ² , Trisha Atwood ¹
11	7	
12	8	¹ Department of Watershed Sciences and The Ecology Center, Utah State University, Logan, UT, 84341
13	9	² USDA Forest Service, National Stream and Aquatic Ecology Center, 860 North 1200 East, Logan, UT 84321.
14	10	*Corresponding author: Susan Washko, washko.susan@gmail.com, School of Natural Resources and the
15	11	Environment, University of Arizona, Tucson, AZ 85721
16	12	
17	13	Keywords: beaver, stream, macroinvertebrates, functional feeding group, mobility group
18	14 15	
19 20	16	
20	17	Footnotes: a Present address School of Natural Resources and the Environment, University of Arizona, Tucson, AZ
22	18	
23	19	
24		
25	20	
26	21	
27	22	
28	23	
29		
30 31	24	Footnotes: ^a Present address School of Natural Resources and the Environment, University of Arizona, Tucson, AZ
32	25	
33	26	
34	27	
35	28	
36		
37	29	
38	30	
39	31	
40 41	32	
41	33	
43		
44	34	
45	35	
46	36	
47	37	
48	38	
49		
50	39	
51 52	40	
52 53	41	
55 54	42	
55	43	
56		
57		
58		
59		1
60		

SUMMARY 1. Understanding changes in macroinvertebrate communities is important because they play a large role in stream ecosystem functioning, and they are an important food resource for fish. Beaver-induced changes to stream morphology could alter macroinvertebrate communities, which in turn could affect food webs and ecosystem function. However, studies investigating the effects of North American beaver activities on macroinvertebrates are rare in the intermountain west, an area with high potential for beaver-assisted restoration. 2. The aim of this study was to quantify differences in the macroinvertebrate community between unaltered segments of streams and within beaver ponds in northeastern Utah, USA. We assessed macroinvertebrate species richness, biomass, density, functional feeding group (FFG) composition, mobility group (MG) composition, and macroinvertebrate habitat characteristics to test the hypothesis that macroinvertebrate communities will differ among habitat types (undammed stream segments and beaver ponds) in beaver-occupied streams. 3. Beaver pond communities significantly differed from lotic reach communities in many ways. Beaver ponds were less diverse with 25% fewer species. Although there was variability among streams, in general beaver ponds had 75% fewer individuals and 90% lower total macroinvertebrate biomass compared to lotic reaches. 4. Regarding FFGs, beaver ponds contained more engulfers, while lotic reaches contained more scrapers, filterers, and gatherers. For MGs, beaver ponds had more sprawlers, while lotic reaches had more clingers. Swimmers were also more prevalent in lotic reaches, though this is likely due to the abundance of *Baetis* within lotic reaches. More beaver pond taxa were classified as lentic-dwelling insects, while more lotic reach taxa were categorized as preferring lotic habitats. 5. The creation of ponds by beavers fundamentally altered the macroinvertebrate community in northeastern Utah streams. Such changes to stream macroinvertebrate communities suggests that recolonization of beavers across North America may be altering stream functioning and food webs. Our study highlights the need to further investigate the effects of beaver recolonization on stream communities. **INTRODUCTION** Overexploitation of the North American beaver (Castor canadensis) from ~1600-1900 brought this species to the brink of extinction. However, declines in the fur trade, stricter trapping regulations, and beaver reintroduction programs has helped this species return to most of its former range (Baker & Hill, 2003). Because beavers are ecosystem engineers with the capacity to alter both physical and chemical characteristics of aquatic ecosystems (Naiman, Melillo & Hobbie, 1986; Smith et al., 1991; Gurnell, 1998; Correll, Jordan & Weller, 2000; Wohl, 2013; Laurel & Wohl, 2019), their expanding populations will undoubtedly influence the aquatic communities residing in the rivers and streams that they recolonize. Research investigating the effects of North American beaver on aquatic ecosystems has largely focused on physiochemical changes to the river/stream system or on fish. In general, previous research has suggested that beavers are beneficial for stream habitat heterogeneity and fish habitat (Pringle et al., 1988; Rolauffs, Hering & Lohse, 2001; Rosell et al., 2005; Bush &

89 Wissinger, 2016; Law, Mclean & Willby, 2016; Laurel & Wohl, 2019), and as a result, agencies

2
3
4
5
6
7

90 are using beavers as a natural solution for stream and riparian restoration (Gibson & Olden,

91 2014; Pollock *et al.*, 2014; Pilliod *et al.*, 2018).

However, results have been mixed for beaver effects on stream macroinvertebrates. Several studies have indicated a decrease in macroinvertebrate species richness within beaver ponds compared to lotic segments (Gard, 1961; McDowell & Naiman, 1986; Anderson & Rosemond, 2007; Arndt & Domdei, 2011; Pliūraitė & Kesminas, 2012; Strzelec, Białek & Spyra, 2018). There is also a trend for differences in macroinvertebrate taxa community composition between beaver ponds and lotic reaches (McDowell & Naiman, 1986; Arndt & Domdei, 2011; Pliūraitė & Kesminas, 2012; Malison et al., 2014; Law et al., 2016; Strzelec et al., 2018). Density results seem to be site-dependent for whether density is higher within beaver ponds (McDowell & Naiman, 1986), not statistically different between lotic habitats and beaver ponds (Rolauffs et al., 2001; Anderson & Rosemond, 2007; Law et al., 2016), or higher within the lotic segments (Arndt & Domdei, 2011; Pliūraitė & Kesminas, 2012; Strzelec et al., 2018). Even studies comparing macroinvertebrate densities between natural pools and lotic reaches have shown site-dependent effects (Logan and Booker 1983, Herbst et al. 2018). Biomass (g/m^2) tends to be higher in beaver ponds than streams, although there are fewer studies on this factor (Gard, 1961; McDowell & Naiman, 1986; Anderson & Rosemond, 2007). Lastly, the beaver dam itself is a habitat with a unique macroinvertebrate assemblage (Clifford, Wiley & Casey, 1993), and beaver ponds can affect macroinvertebrates downstream due to hydrologic changes altering stream temperature and nutrients (Fuller & Peckarsky, 2011a b). Most information about beaver effects on macroinvertebrates have come from studies on the Eurasian beaver (Castor fiber) in European streams, followed by studies from North America and then a couple on invasive North American beavers in South American streams. Surprisingly, few studies have been conducted on the effects of North American beaver recolonization on stream macroinvertebrate communities in North American streams of the Intermountain West, despite that this region has undergone extensive beaver recolonization and utilizes beaver-assisted restoration.

The functional integrity of a stream is heavily dependent on its macroinvertebrate community. Macroinvertebrates control detritus processing and nutrient cycling in streams, influence stream primary productivity, and are a major food source for higher trophic level vertebrates like fish (Wallace & Webster, 1996; Heino, 2005). Studies comparing macroinvertebrate communities between streams (Heino, 2005) and between habitat types (e.g., natural pools versus lotic reaches) within a stream (Logan & Brooker, 1983; Herbst et al., 2018) show that many physical and chemical factors such as water velocity, substrate size, nutrient concentrations, and the availability of allochthonous and autochthonous food resources drive differences in the colonization of stream macroinvertebrates. Furthermore, trait characteristics that reflect a species' adaptations to its environment influence its functional role. Thus, the development and presence of beaver dams, which alter physical and chemical characteristics of streams, will have consequences for the types and functional characteristics of macroinvertebrates that can colonize streams where beavers are present (Anderson and Rosemond, 2010, Strzelec et al. 2018).

Physical changes to a stream due to the formation of beaver ponds should influence the macroinvertebrate community as it changes the necessary traits for maneuvering through the environment (i.e., mobility group; MGs). As water pools behind a beaver dam, the stream's shape forms a wide pond, characterized by slower, deeper water that might benefit swimming taxa that are excluded from fast-moving lotic reaches (Mackay, 1992; Stout, Majerova & Neilson, 2017). Additionally, the substrate size shifts from gravel or cobble in undammed

sections to fine sediments within the beaver ponds (Levine & Meyer, 2014; Strzelec et al., 2018). Sediment grain size is known to be a strong habitat filter influencing macroinvertebrate communities in streams (Mackay, 1992; Rabení, Doisy & Zweig, 2005; Bo et al., 2007). Size of sediment influences the size of interstitial spaces that macroinvertebrates can occupy. Thus, finer sediments behind beaver ponds may select for macroinvertebrates that can cling to fine particles or burrow in the sediment (Mackay, 1992).

Both physical and chemical changes as a result of beaver ponds can also influence how macroinvertebrates acquire food (i.e., functional feeding groups; FFGs) (Anderson & Rosemond, 2007; Arndt & Domdei, 2011; Pliūraitė & Kesminas, 2012; Law et al., 2016). Beaver ponds act as important sinks for nutrients (Westbrook, Cooper & Baker, 2006; Lazar et al., 2015), which can stimulate in situ primary production (Coleman & Dahm, 1990), potentially promoting grazers. However, studies on the effect of Eurasian beaver on macroinvertebrates in European streams found that grazers declined in beaver ponds (Law et al. 2016). This may be because the substrate size has decreased within the beaver pond, making large grazing surfaces rare (Levine & Meyer, 2014; Strzelec et al., 2018). Also, beaver ponds are large sinks for organic matter, and leaching of dissolved organic carbon can color the water like tea (Kwick & Carter, 1975; Cirmo & Driscoll, 1993; Vehkaoja et al., 2015), inhibiting light penetration and primary production. Conversely, the organic matter entering the pond could be utilized by collector and shredder taxa. However, studies on Eurasian beaver found mixed results for these FFGs, with beaver ponds decreasing shredders in Polish streams and increasing collectors and shredders in Scottish streams. The major consensus from this European literature, as well as one study done on the effects of invasive C. canadensis on South American streams, is that predator taxa increase (Anderson & Rosemond, 2007; Arndt & Domdei, 2011; Pliūraitė & Kesminas, 2012; Law et al., 2016). This increase in predator taxa may be due to enhanced prey availability (Harthun, 1999). Prev drifting into beaver ponds cannot continue to drift further to escape predation because water velocity in the pond is too slow, likely increasing the ability of predatory macroinvertebrates to capture prey (Martin & Knight, 1989; Thorp & Covich, 2001).

The aim of our study was to quantify differences in the macroinvertebrate community between stream lotic reaches and within beaver ponds in northeastern Utah. Understanding the taxa composition of beaver ponds in arid western regions is crucial because stream communities are important for the biodiversity of arid ecoregions (Gibson & Olden, 2014), and because beaver populations are increasing as a result of natural dispersal and their use in stream restoration projects (Small, Frey & Gard, 2016). Our aim is to compare beaver ponds with lotic reaches to better understand how macroinvertebrate taxa of stream reaches changes when beaver ponds occupy habitat that was formerly lotic. We predict that macroinvertebrate communities will differ between lotic reaches and beaver ponds within beaver-occupied streams in multiple ways. In beaver ponds relative to lotic reaches, we expect 1) a higher biomass and density of macroinvertebrates, and 2) lower species richness through a lack of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa. Further, we expect 3) more collectors and shredders due to increases in detritus and fine particulate organic matter in beaver ponds, 4) more predators, and 5) more swimmers and burrowers due to slow, deep water, and abundant soft sediment in ponds.

- 179 METHODS
- 54 180

- 55 181 Study Sites

This study took place in northeastern Utah in three beaver-inhabited streams; Right Hand Fork, Spawn Creek, and Temple Fork (Figure 1). All streams are tributaries to the Logan River and are located within the Wasatch-Cache National Forest. The three streams are in the Semiarid Foothills ecoregion just below the Wasatch Montane Zone ecoregion, between approximately 1,500 and 1,900 meters elevation (Table 1). Riparian communities in the Semiarid Foothills are characterized by sagebrush, grama grass, pinyon, juniper, and maple-oak scrub (Woods et al., 2001). Although the three stream systems are relatively close to one another in the watershed, they vary from one another in several physical and biological characteristics (Table 1). Right Hand Fork drains a watershed area of ~64 km², has a mean width of 3.9 m, a gradient 0.027 m m $^{-1}$, and is more canyon-confined than the other two streams (Meredith, Budy & Thiede, 2015). In addition, Right Hand Fork has an abundance of submerged macrophytes and its fish community is dominated by Bonneville Cutthroat trout (Oncorhynchus clarkii utah), and lacks invasive brown trout (Salmo trutta), brook trout (Salvelinus fontinalis), and rainbow trout (Oncorhynchus *mykiss*). Temple Fork drains a watershed area of $\sim 25 \text{ km}^2$, has an average width of 4.0 m, a gradient of 0.030 m m⁻¹ (Meredith *et al.*, 2015). Temple Fork generally lacks the submerged macrophytes observed at Right Hand Fork, and its fish community contains Bonneville Cutthroat trout, invasive brown trout, and very small populations of brook and rainbow trout. Spawn Creek has a mean watershed area of 15 km², has an average width of 1.8 m, and a gradient of 0.053 m m⁻¹ (Meredith *et al.*, 2015). Spawn Creek also lacks extensive macrophyte populations and its fish community is similar to that at Temple Fork. Spawn Creek is also surrounded by a 67-ha cattle exclusion fence. We selected these three streams because they are the main tributaries of the Logan River, and contained active beaver at the time of the study.

Two habitat types were sampled within each of the streams: i) lotic segments directly upstream of sampled beaver ponds, which were characterized by shallow depths, cobble substrate, and fast to moderate water flow (Wheaton et al., 2015; Stout et al., 2017), and ii) beaver ponds directly behind an in-stream beaver dam (Figure S1). Ponds chosen within a stream were single ponds (i.e. not part of a multi-pond complex) that were less than six years old and had not breached during the spring runoff. Five pairs of beaver ponds and lotic reaches were sampled at each of the three streams. One sample was taken at each designated beaver pond and each lotic reach (total samples = 30, one was compromised and omitted, changing the total number of samples to 29).

Environmental Characteristics

Characteristics measured within each sampling location of each stream to illustrate habitat differences included elevation, water temperature, dissolved oxygen, flow/velocity, and substrate grain size. Elevation was extracted via Google Earth imagery for each sampling location. Water temperature was measured using a Thermochron® iButtons® (Model DS1920, Maxim Integrated, San Jose, CA, USA) every half hour from July to September 2017. Stream flow was measured in the spot of sample collection via a Flo-Mate portable velocity flow meter (Hach Company, Frederick, MD, USA) in one afternoon during September 2017. Dissolved oxygen measurements were taken every half hour in September 2017 with miniDOT dissolved oxygen sensors (PME, Inc., Vista, CA, USA). Grain size measurements followed the protocol designed by Wolman (1954), and were collected in July 2018. Water depth was measured across each habitat (lotic reach or beaver pond) sampled on a grid system (i.e. one measurement per square meter across the length and width of the pond) during September 2017. Surface area was measured using aerial photographs taken in October 2017. Photos included a meterstick as a

reference, and ImageJ was used to calculate areas from the photos. The same five beaver ponds
and lotic reaches at each steam were sampled for environmental characteristics. The average
values for the five beaver ponds and for the five lotic reaches at each stream were analyzed using
analyses of variance (ANOVA).

Multiple environmental characteristics differed between beaver ponds and lotic reaches (Table 1). The average grain size was 95% smaller in beaver ponds (habitat: $F_{1, 24} = 66.421$, p < 0.001), and the difference is likely underestimated because all grains smaller than the smallest gravelometer section were classified into the general category of < 2 mm. The average water velocity was 78.3% lower in beaver ponds (habitat: $F_{1,54} = 67.119$, p < 0.001), and the average beaver pond depth was 37.8% deeper than the average lotic reach depth (habitat: $F_{1, 67} = 8.526$, p < 0.001). Characteristics that differed between individual streams included temperature (stream: $F_{1,48} = 230.833$, p < 0.001), dissolved oxygen (stream: $F_{1,18} = 25.812$, p < 0.001), elevation (stream: $F_{1,24} = 616.285$, p < 0.001), and pond surface area (stream: $F_{1,24} = 8.605$, p = 0.0015). Temple Fork was approximately 2°C colder than Spawn Creek and Right Hand Fork. Right Hand Fork was over 150 meters lower in elevation than the other two streams, and approximately 0.5 mg/L lower in dissolved oxygen. Pond surface area was not different from lotic reach surface area, but average surface area values were higher in Temple Fork. We found no interactions between habitat and stream for any environmental characteristics (all p-values > 0.05). These data illustrate the differences between the habitats sampled in this study.

²⁶ 248 *Macroinvertebrate Sampling Procedure*

Benthic macroinvertebrate samples were collected in July 2017. A single macroinvertebrate sample was collected from each lotic reach and each beaver pond within Right Hand Fork, Temple Fork, and Spawn Creek. We chose to sample only a single location in each pond and lotic habitat to reduce disturbance. Macroinvertebrates from lotic reaches were collected using surber samplers (total sample area 0.093 m^2) with a mesh size of 250 µm (Lancaster & Hildrew, 1993). Macroinvertebrates from beaver ponds were collected using a sweep net, also of mesh size of 250 µm, by sweeping the net along a one-meter segment of the pond (total sample area 0.305m²; Sarnelle et al., 1998; Muzaffar & Colbo, 2002; Wissinger, Perchik & Klemmer, 2018). Both surber and sweep samples covered a known area and a sediment depth of ~2 cm. Beaver pond habitats were sampled mid-depth in areas of deposited fine sediment. Pond tails, dam structures, and other habitat types within the pond were not sampled; sample sites were chosen due to fine sediment areas being the most common and abundant feature (i.e. constituted a large area) among our beaver pond habitats (Figure S1). To directly compare surber and sweep net samples, macroinvertebrate data was standardized to one square meter. Macroinvertebrate collections were fixed in 95% ethanol and transported to the laboratory where they were identified to genus when possible, otherwise to family, both of which are acceptable taxonomic resolutions for determining functional groups (Bailey, Norris & Reynoldson, 2001). To estimate macroinvertebrate biomass of each genus or family, each sample was divided into taxa groupings, dried at 60°C to a constant weight and weighed. Individual taxa group weights were summed by sample for overall biomass.

We report macroinvertebrate results in both biomass and density as functional dominance
 we report macroinvertebrate results in both biomass and density as functional dominance
 can occur as a result of a species being either numerically dominant or as a result of their
 relatively large body size (Lecerf & Richardson, 2011; Atwood, Hammill & Richardson, 2014).
 In this study, we aimed to capture any analogous functional community structure, through either
 a density effect or a biomass effect.

Freshwater Biology

Macroinvertebrates were assigned to a functional feeding group (FFG), mobility group
(MG), and lotic/lentic habitat categories using Merritt, Cummins, and Berg (2008). Although
more than one functional group may have been listed per taxa, only the primary group was
utilized in our study.

279 Statistical Analyses

To determine the effects of beaver dams on macroinvertebrate communities, multiple metrics were compared between beaver ponds and lotic reaches across our three stream systems (Right Hand Fork, Temple Fork, and Spawn Creek). Metrics included species richness, macroinvertebrate density (# organisms per m²), macroinvertebrate biomass (dry weight of each taxa type in the sample per m²), and the biomass and density of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa, each FFG in the community, each MG in the community, and lentic and lotic insects as classified in Merritt et al. (2008). We used linear mixed effects models through the 'lme' function in the 'nlme' package (Pinheiro et al., 2018) in R to test for differences in each metric between habitats. Mixed effects models included the random effect of site identification and fixed effects of habitat and stream. Total density and biomass models included an additional random effect, which was an identifier of the paired beaver ponds and lotic reaches (n=28 for tests with paired habitats). We then ran the models for each metric through analyses of variance (ANOVA) to compare between pond and lotic reach habitats. All metrics were either log-transformed or square root-transformed prior to running the ANOVA to meet normality assumptions. If a significant interaction between stream and habitat occurred in our ANOVA test, we used Tukey contrasts multiple comparisons of means to determine which stream's ponds and lotic reaches were significantly different.

Community composition in terms of taxa present, FFGs and MGs were compared between beaver ponds and lotic reaches. All three metrics were quantified using both density and biomass. FFG biomass and density were calculated by combining the biomass or density of all taxa classified as each FFG in the sample. The same technique was used for MGs. Community compositions were assessed with nonmetric multidimensional scaling (NMDS) ordinations through the 'vegan' package (Oksanen et al., 2017) in R. To compare community composition between beaver ponds and lotic reaches, we used permutational multivariate analysis of variance (PERMANOVA) via the 'adonis' function within the 'vegan' package in R. Stream was set as a block in the PERMANOVA. To determine which specific groups of macroinvertebrates were driving observed differences between pond and lotic reach communities, we used the similarity percentages test, 'simper.' The 'simper' function within the 'vegan' package uses Bray-Curtis dissimilarities to determine species differences between groups. All statistical analyses were completed using the statistical program R (R Core Team, 2017).

RESULTS

Overall Macroinvertebrate Availability

Macroinvertebrate density was 75% higher in lotic reaches than in beaver ponds ($F_{1,23}$ = 15.005, p = 0.001; Figure 2a), but overall model significance was driven by large differences at Right Hand Fork only (Tukey's HSD, p < 0.001). Similarly, macroinvertebrate biomass was 90% higher in lotic reaches ($F_{1,23} = 34.872$, p < 0.001; Figure 2b). However, this result was driven by differences between biomass in beaver ponds and lotic reaches in Temple Fork (Tukey's HSD, p

1			
2			
3 4	320	< 0.001) and Right Hand Fork (Tukey's HSD, p < 0.001); beaver ponds and lotic reaches at	
5	321	Spawn Creek did not differ in macroinvertebrate biomass.	
6	322		
7	323	Taxa Richness & Composition	
8	324	Overall, beaver ponds were less taxa-rich compared to lotic reaches, with 25% fewer tax	xa
9 10	325	than lotic reaches ($F_{1,23} = 16.621$, p < 0.001). This pattern was similar and significant at all	
10 11	326	streams (i.e. there was not a significant interaction between habitat and stream). A list of taxa	1
12	327	present and their functional group designations is included in the supplementary materials (Tab	le
13	328	S1).	
14	329	NMDS and PERMANOVA tests demonstrated that the taxonomic composition of	
15	330	macroinvertebrates in terms of density (i.e. taxa present and their respective densities) differed	
16	331	significantly between beaver ponds and lotic reaches ($F_{1,23} = 9.716$, p < 0.001; Figure 2c). A	
17 18	332	similarity percentages test ('simper') attributed the differences in community composition to	
10	333	Baetis, Ephemerellidae, and Elmidae larvae, which were 99%, 99%, and 97% higher in	
20	334	abundance in lotic reaches, respectively, as well as Chironomidae larvae and snails, which were	e
21	335	338% and 77% higher in beaver ponds.	
22	336	The taxonomic composition in terms of biomass (i.e. taxa present and their respective	
23	337	biomasses) also significantly differed between beaver ponds and lotic reaches ($F_{1, 23} = 10.984$, p	
24 25	338	< 0.001; Figure 2d). Dissimilarity in the community composition between beaver ponds and lot	i1C
25 26	339	reaches was driven by a suite of mayfly taxa (98% higher), <i>Oligophleobodes</i> caddisflies (99%	
20	340	higher), Elmidae larvae (97% higher), and Hesperoperla pacifica (100% higher) being more	
28	341	abundant in lotic reaches, whereas Psychoglypha (100% higher) and Lepidostoma (88% higher))
29	342	caddisflies and Chironomidae larvae (60% higher) dominated beaver ponds.	
30	343		
31	344	Lentic/Lotic Classification	
32	345	Density	
33 34	346	The density of lotic taxa was 83% higher in lotic reaches ($F_{1,23} = 23.664$, p < 0.001;	
35	347	Figure 3a), though overall model significance was driven by differences solely at Right Hand	
36	348	Fork (Tukey's HSD, $p < 0.001$). The density of lentic taxa was 72% higher in beaver ponds (F ₁	,
37	349	$_{23} = 16.728$, p < 0.001), though was only different in Spawn Creek (Tukey's HSD, p < 0.001)	
38	350	and Temple Fork (Tukey's HSD, $p < 0.001$). Lastly, the density of taxa classified as both lentic	;
39	351	and lotic did not differ between beaver ponds and lotic reaches at any stream.	
40 41	352		
41	353	Biomass	
43	354	The biomass of lotic taxa was 94% higher in lotic reaches ($F_{1, 23} = 43.764$, p < 0.001;	
44	355	Figure 3b), but overall model significance was driven by differences at Temple Fork (Tukey's	/
45	356	HSD, $p < 0.001$) and Right Hand Fork (Tukey's HSD, $p = 0.002$). Lentic taxa biomass was 71%	0
46	357	higher in beaver ponds ($F_{1,23} = 11.045$, $p = 0.003$), however, differences only occurred at	
47	358	Temple Fork (Tukey's HSD, $p = 0.001$). Biomass of taxa classified as both lentic and lotic was	
48 49	359	82% higher in lotic reaches ($F_{1,23} = 6.652$, $p = 0.017$) overall, but was driven by differences on	ly
50	360	at Right Hand Fork (Tukey's HSD, $p < 0.001$).	
51	361		
52	362	EPT	
53	363	Density	
54	364	The quantity of EPT taxa differed between beaver ponds and lotic reaches. EPT density	
55 56	365	was 98% higher in lotic reaches than in beaver ponds ($F_{1,23} = 56.845$, p < 0.001; Figure 3c), and	a
50 57			
58			
59			8
60			

Page 9 of 29

Freshwater Biology

1		
2		
3	366	the pattern was significant at all streams. Within EPT, Ephemeroptera density was 99% higher in
4	367	lotic reaches ($F_{1,23} = 18.964$, p < 0.001; Figure 3c), and was significant at all streams. Plecoptera
5	368	density was 96% higher in lotic reaches ($F_{1,23} = 21.870$, p < 0.001), but overall model
6	369	significance was driven by large differences at Right Hand Fork (Tukey's HSD, $p < 0.001$).
7	370	Similarly, Trichoptera density was 89% higher in lotic reaches ($F_{1,23} = 53.740$, p < 0.001), but
8		
9 10	371	the pattern was driven by large differences only between beaver ponds and lotic reaches at
10	372	Temple Fork (Tukey's HSD, $p < 0.001$).
12	373	
13	374	Biomass
14	375	The biomass of EPT also differed between beaver ponds and lotic reaches. Overall, EPT
15	376	biomass was 95% higher in lotic reaches ($F_{1, 23} = 16.621$, p < 0.001; Figure 3d), though this
16	377	result was driven by differences at Right Hand Fork (Tukey's HSD, p < 0.001) and Temple Fork
17	378	(Tukey's HSD, $p < 0.001$). EPT density was not different between beaver ponds and lotic
18	379	reaches at Spawn Creek. Within EPT, Ephemeroptera biomass was 98% higher in lotic reaches
19	380	$(F_{1,23} = 49.414, p < 0.001;$ Figure 3d), but was not significantly different at Spawn Creek.
20		
21	381	Plecoptera biomass was 99% higher in lotic reaches ($F_{1,23} = 14.472$, p < 0.001), but overall
22	382	model significance was driven by differences at Right Hand Fork only (Tukey's HSD, p <
23	383	0.001). Finally, Trichoptera biomass was 91% higher in lotic reaches ($F_{1, 23} = 40.062$, p < 0.001),
24	384	but differences only occurred between beaver ponds and lotic reaches at Temple Fork (Tukey's
25	385	HSD, p < 0.001).
26	386	
27	387	Functional Feeding Groups
28 29	388	When testing for differences in density between each individual feeding type (engulfer,
29 30	389	filterer, gatherer, piercer, scraper, shredder), we found that only some feeding groups were
31	390	different between beaver ponds and lotic reaches, and some only at certain streams. Significant
32	391	types are reported below, while all results are included in the supplementary materials (Table
33	392	S2).
34	393	52).
35		
36	394	Density
37	395	The overall composition of FFGs (i.e. the FFGs present and their densities) was different
38	396	between beaver ponds and lotic reaches ($F_{1, 23} = 5.217$, $p = 0.003$, Figure 4a). According to
39	397	'simper,' these differences were driven by gatherers and scrapers in lotic reaches. Using mixed
40	398	effects models and ANOVAs, FFGs with different densities between beaver ponds and lotic
41	399	reaches are as follows. Filterer density was 74% higher in lotic reaches compared to beaver
42	400	ponds at all streams ($F_{1,23} = 5.289$, $p = 0.031$). Gatherer densities were also higher in lotic
43	401	reaches ($F_{1,23} = 10.876$, $p = 0.003$) by 75%, though this pattern was driven by differences only at
44 45	402	Right Hand Fork (Tukey's HSD, $p < 0.001$). Shredder density was 83% higher in lotic reaches
45 46	403	$(F_{1,23} = 7.972, p = 0.010)$, but only significantly differed at Right Hand Fork (Tukey's HSD, p <
40 47	404	(11,23 + 1.572, p = 0.010), but only significantly different transfer frame rock (Takey 3 115D, p < 0.001). Scraper density was 90% higher in lotic reaches (F _{1,23} = 61.180, p < 0.001), and was
47	404	driven by differences at Temple Fork (Tukey's HSD, $p < 0.001$) and Right Hand Fork (Tukey's
49		
50	406	HSD, $p < 0.001$); scraper density was not different between beaver ponds and lotic reaches at
51	407	Spawn Creek.
52	408	
53	409	Biomass
54	410	The composition of FFGs based on biomass (i.e. the FFGs present and their respective
E E	111	1 = 12400

The composition of FFGs based on biomass (i.e. the FFGs present and their respective biomasses) was also different between beaver ponds and lotic reaches (habitat: $F_{1, 23} = 12.488$, p

2		
3	412	< 0.001, Figure 4b), 'Simper' outputs attributed this difference to scrapers and gatherers. FFGs
4	413	with significantly different biomass between beaver ponds and lotic reaches are as follows.
5	414	Engulfers were 91% higher in beaver ponds ($F_{1,23} = 8.733$, $p = 0.007$), but this trend was driven
6		
7	415	by differences at Right Hand Fork only (Tukey's HSD, $p < 0.001$). Filterers were 99% higher in
8	416	lotic reaches ($F_{1,23} = 17.378$, p < 0.001), with the trend holding at all streams. Gatherer biomass
9	417	was 82% higher in lotic reaches ($F_{1, 23} = 23.496$, p < 0.001), once again driven by differences
10	418	only at Right Hand Fork (Tukey's HSD, $p < 0.001$). Scraper biomass was almost 100% higher in
11 12	419	lotic reaches ($F_{1,23} = 87.562$, p < 0.001), and was driven by differences at both Temple Fork
12	420	(Tukey's HSD, $p < 0.001$) and Right Hand Fork (Tukey's HSD, $p = 0.038$); scraper biomass was
14	421	not different between beaver ponds and lotic reaches at Spawn Creek.
15	422	
16	423	Mobility Groups
17	424	When testing for differences in density between each individual mobility group
18	425	(burrower, climber, clinger, skater, sprawler, swimmer) using mixed effects models, only some
19	426	groups were significantly different between beaver ponds and lotic reaches, and some only at
20	427	certain streams. Significant types are reported here, while all results can be seen in the
21		
22	428	supplementary materials (Table S2).
23	429	Density
24	430	The composition of MGs (i.e. the MGs present and their densities) was different between
25 26	431	beaver ponds and lotic reaches ($F_{1,23} = 11.669$, p < 0.001, Figure 4c). 'Simper' outputs
26 27	432	determined that this was due to clingers, burrowers, and swimmers. Using mixed effects models
27	433	and ANOVAs, MGs with significantly different densities between beaver ponds and lotic
29	434	reaches are as follows. Clingers were 95% higher in lotic reaches ($F_{1, 23} = 105.844$, p < 0.001),
30	435	and differences occurred at all streams. Sprawler density was 74% higher in beaver ponds (F _{1, 23}
31	436	= 15.342, p < 0.001), though overall model significance was driven by differences at Right Hand
32	437	Fork (Tukey's HSD, p < 0.001) and Temple Fork (Tukey's HSD, p = 0.020); sprawler density
33	438	was not significantly different between beaver ponds and lotic reaches at Spawn Creek.
34	439	Swimmer density was 96% higher in lotic reaches ($F_{1,23} = 29.194$, p < 0.001), and differences
35	440	occurred at all streams.
36	441	
37	442	Biomass
38	443	Similar to our density results, we found that the composition of MGs using biomass (i.e.
39 40	444	
40 41		the MGs present and their biomasses) was also significantly affected by habitat type (habitat: $F_{1,}$
42	445	$_{23} = 18.423$, p < 0.001, Figure 4d). According to 'simper' outputs, clingers and swimmers drove
43	446	this pattern. Using mixed effects models and ANOVAs, MGs with significantly different
44	447	biomass between beaver ponds and lotic reaches are as follows. Clingers were almost 100%
45	448	higher in lotic reaches ($F_{1,23} = 197.860$, p < 0.001), and differed at all streams. Swimmer density
46	449	was 87% higher in lotic reaches ($F_{1,23} = 13.357$, $p = 0.001$), and was significant in all streams.
47	450	
48	451	
49	452	DISCUSSION
50	453	Our results demonstrate that the macroinvertebrate community of beaver ponds is
51 52	454	significantly different from that of lotic reaches. Overall, we observed that beaver ponds had
52 53	455	lower species richness, biomass, and density of macroinvertebrates compared to lotic reaches,
55 54	456	though biomass and density were not always significantly different between habitats at each
54	457	atroom Own at a los domonation of the table community community deficient deminant functional

though biomass and density were not always significantly different between habitats at each
 stream. Our study also demonstrated that the community composition, dominant functional

Page 11 of 29

Freshwater Biology

1	
2	
3	
4	
5	
6	
7	
8	
9	
	0
1	1
1	2
1	3
	4
1	5
	6
1	7
	8
	9
	0
2	1
2	2

feeding groups, and dominant mobility groups differed between beaver ponds and lotic reaches.
However, whether the trends were expressed in terms of macroinvertebrate biomass or density

460 varied among streams. Overall, our results suggest that beavers, and their effects on habitat

461 through the building of dams, restructure macroinvertebrate communities but exactly how this

restructuring is manifested differs among streams. Context-dependent differences in the effects
 of beaver dams on macroinvertebrate communities may influence the results of stream

464 restoration using beaver. As a result, to help better inform beaver restoration future studies

465 should examine the mechanisms behind beaver-mediated effects on macroinvertebrates.

³ 460 4 467 Biomass and Density

Our study found mixed results for the effects of beaver ponds on both density and biomass. In terms of density, only Right Hand Fork showed a statistically significant difference between beaver ponds and lotic reaches. However, the overall trend for all three streams was a higher average density in lotic reaches compared to beaver ponds. Past studies on the effects of beavers on the density of macroinvertebrates have also found mixed results, with some studies reporting an increase in ponds and others a decrease (Rupp, 1955; Huey & Wolfrum, 1956; Gard, 1961; McDowell & Naiman, 1986; Rolauffs et al., 2001; Anderson & Rosemond, 2010; Arndt & Domdei, 2011; Pliūraitė & Kesminas, 2012; Law et al., 2016; Strzelec et al., 2018). In terms of macroinvertebrate biomass, we found that all three streams had an average higher biomass in lotic reaches compared to beaver ponds, although this was not statistically significant in Spawn Creek. These results differ from past studies which found that beaver ponds generally had higher biomass of macroinvertebrates compared to lotic reaches (Gard, 1961; McDowell & Naiman, 1986; Anderson & Rosemond, 2010), or showed no difference in biomass (Rolauffs et al., 2001). Our results for biomass are, however, congruent with studies that compared natural pools with lotic reaches (Logan & Brooker, 1983; Herbst et al., 2018).

In our stream systems, fine sediments in beaver ponds may preclude the colonization of many stream invertebrates, as interstitial spaces are less available (Bo et al., 2007; Strzelec et al., 2018) and oxygen concentrations may be lower (Wood & Armitage, 1997). We found that on average sediment size was 17-23 times larger in lotic reaches than in ponds (Table 1). The significantly smaller sediment size in ponds may select for smaller individuals that inherently weigh less, reducing overall biomass in beaver ponds. Additionally, the diversity of gravel sizes in ponds is low, which may constrain the number of niches available to colonizing macroinvertebrates. This idea is further supported by the fact that we saw 25% fewer genera/families of macroinvertebrates in beaver ponds compared to streams, a finding that was also documented in Polish streams recolonized by Eurasian beaver (Strzelec *et al.*, 2018). When the surface area of our lotic zones were compared with the surface areas of our beaver ponds, we found no significant difference (Table 1). This data suggests that for the areas we sampled the total abundance and biomass of macroinvertebrates is not likely to greater in beaver ponds. However, in some systems, large beaver ponds may add significantly to stream surface area and macroinvertebrate habitat. If the added area of the ponds is greater than the difference in biomass or densities, than ponds may contain a higher absolute abundance or biomass of macroinvertebrates than lotic systems. However, considering that macroinvertebrates are a major food source for fish, lower densities and biomass of macroinvertebrates per unit area combined with a larger search area in ponds may mean that these pond habitats are poor foraging ground for fish. To date, however, few studies have looked at whether fish are using pond habitats for foraging.

- Lentic/Lotic Classification Beaver pond taxa were different from lotic reach taxa in their habitat classifications using both biomass and density. Organisms in beaver ponds were decidedly lentic, while the lotic reach taxa were lotic. This is not surprising due to the differences in habitat structure and flow characteristics. However, beaver ponds did not include some of the more common taxa associated with completely lentic habitats (e.g., lakes and ponds). Very few Hemipterans were found in beaver ponds, and Odonates were completely absent. Beaver ponds were also devoid of other wetland taxa such as Callibaetis, Megalopterans, and Isopods. This was despite the fact that potential source wetlands are common in the Cache National Forest.

515 Functional Feeding Group Differences

Beaver ponds differed from lotic reaches for several FFGs, although which FFG contributed to the differences varied between biomass and density. First, beaver ponds contained less biomass and density of scrapers, which primarily feed on periphyton. The same trends were observed in many other studies (McDowell & Naiman, 1986; Hering et al., 2001; Anderson & Rosemond, 2007; Arndt & Domdei, 2011; Pliūraitė & Kesminas, 2012). While the fine sediments of beaver ponds can support periphyton (Coleman & Dahm, 1990), fine grains are likely to be too small for scraping taxa to manipulate. Thus, scraper colonization in beaver ponds is likely to be low.

Second, beaver ponds also contained fewer filter-feeding taxa than lotic reaches. These results are supported by the majority of existing literature on beaver pond macroinvertebrates (Margolis, Raesly & Shumway, 2001; Anderson & Rosemond, 2007; Arndt & Domdei, 2011; Pliūraitė & Kesminas, 2012; Law et al., 2016). We hypothesize that the higher density and biomass of filterers in lotic reaches in our study may stem from faster water velocity that increases suspended food particles (Wallace, Webster & Meyer, 1995). Lotic reaches in our study had water velocities 2.5-17 times faster than in ponds.

Third, beaver ponds largely did not contain more predators compared to lotic reaches; only Right Hand Fork demonstrated higher engulfer biomass in beaver ponds than lotic reaches. Higher prevalence of predators in beaver ponds compared to lotic reaches is noted within past studies from all beaver-occupied continents (McDowell & Naiman, 1986; Harthun, 1999; Anderson & Rosemond, 2007; Arndt & Domdei, 2011; Pliūraitė & Kesminas, 2012; Law et al., 2016). Although the mechanism behind a dominance of predators in beaver ponds is unknown, it is speculated that the physical environment of ponds may be beneficial to predators. Specifically, slower water velocity and finer sediments with little interstitial space may help predators capture prey that drift into the pond from upstream sections or fall into the pond from the riparian zone. It is unclear why our results for predator taxa are not congruent with other studies. However, as our ponds were relatively young (less than 6 years old), larger-bodied predatory taxa with more complex life cycles may not have been able to establish stable populations (Mackay, 1992). Future studies should investigate the effect of pond age on macroinvertebrate communities.

Fourth, shredders were also more prominent in beaver ponds in terms of density, but not biomass. The large amount of organic matter such as terrestrial leaves that become trapped behind beaver ponds may help support high densities of detritivorous macroinvertebrates (Hodkinson, 1975; Butler & Malanson, 1995). Though the trend was only significant at one stream, it was the stream with the greatest canopy cover (personal observation). Higher densities

Freshwater Biology

of shredders in ponds may suggest that these habitats are hotspots for allochthonous organic

opposite of previous work, which noted increased gatherer importance within beaver ponds (McDowell & Naiman, 1986; Hering et al., 2001; Anderson & Rosemond, 2007; Pliūraitė &

Kesminas, 2012; Law et al., 2016). Higher gatherer density in lotic reaches may reflect a

in northern Utah. FFG and resource acquisition are traits that have been found to be highly

habitats may function differently, especially in terms of organic matter processing.

associated with ecosystem functioning (Wallace & Webster, 1996). Differences between lotic

reaches and beaver ponds in the dominance of FFGs found in our study suggests that these two

Finally, lotic reaches had higher density and biomass of gatherers. This trend was the

difference in the type of organic matter trapped by different substrate sizes within stream habitats

1
2
3
4
5
6
7
8
9

Mobility Group Differences

matter processing.

Beaver ponds also differed from lotic reaches for several MGs. Beaver ponds contained higher densities and biomass of burrowers, which are known to inhabit fine sediment (Rabení et al., 2005). Sprawlers were also more prevalent in beaver ponds by density. Sprawlers are associated with fine sediment and litter (Johnson, Breneman & Richards, 2003; Gillies, Hose & Turak, 2009), and may move and forage well in small interstitial spaces (Richards et al., 1997), making sprawlers well-adapted for inhabiting the fine sediments and organic matter within beaver ponds. Conversely, lotic reaches contained higher densities and biomass of clingers. Clingers are adapted to withstand flowing water in erosional areas, and heavily rely on interstitial spaces for refuge (Johnson et al., 2003; Rabení et al., 2005). The low quantity of gravel substrate for both clinging and hiding within beaver ponds in our study system likely made clinging taxa ill-equipped to tolerate ponded conditions.

Surprisingly, swimmer density was higher in lotic reaches than in beaver ponds. This pattern was likely driven by the dominance of *Baetis* in lotic reaches. *Baetis* on average accounted for 98% and 95% of swimmers in lotic reaches by density and biomass respectively, with the remainder of the swimmers in lotic reaches represented by only three other taxa. Contrarily, there were at least eight types of swimming taxa in beaver ponds (small Dytiscidae larvae were only identified to family, therefore likely underestimated), and *Baetis* accounted for only 38% of beaver pond swimmers by density, and 46% of swimmers by biomass. Although a beaver pond may be more conducive to swimming taxa due to the low water velocity and increased depth, Baetis may simply be well adapted to swimming through more turbulent conditions, allowing them to be abundant in lotic reaches. Differences in MGs likely indicate differences in structural resource types within ponds (Heino, 2005), which can demonstrate habitat heterogeneity for the streams that contain beaver ponds (Pringle et al., 1988; Rolauffs et al., 2001; Bush & Wissinger, 2016; Law et al., 2016).

Conclusion

Results from our study suggest that the addition of lentic habitat to stream systems can negatively influence macroinvertebrate biomass and density per unit area, and change community composition and functional traits of macroinvertebrates. Such changes to the community composition suggest that beaver ponds may function differently than non-ponded segments, and that streams containing beaver may function differently than those without. Changes in the quantity of macroinvertebrates can further alter ecosystem functions in ecosystems that receive subsidies from streams, such as emerging adult insects to riparian

595	species (Marcarelli et al., 2011). Understanding how beaver ponds affect macroinvertebrate
596	communities is important to gauging changes to the system instigated by beavers.
597	Although ponds contained lower species richness compared to lotic reaches, overall
598	stream diversity may have been increased by beaver ponds considering the Dytiscid beetles,
599	Siphlonurus mayflies, Psychoglypha caddisflies, and other taxa not recorded in lotic reaches.
600	However, studies have suggested that beaver ponds do not increase species diversity, but rather
601	increase habitat availability for lentic species already occurring in natural pools (Anderson et al.,
602	2014). Regardless, the beaver ponds in these streams contained taxa not found in lotic reaches.
603	To fully understand the effects of beaver ponds on overall stream biodiversity, future
604	studies should sample across a diversity of habitats, including natural pools. Understanding the
605	effects of beavers on macroinvertebrates is important for predicting changes in stream
606	communities and ecosystem functions as a result of the rewilding of beavers in North America.
607	Results from our study suggests that the macroinvertebrate communities can drastically change
608	as a result of beaver pond construction, and such changes may have consequences for fish and
609	other macroinvertebrate predators, as well as ecosystem functioning.
610	
611	
612	Acknowledgments
613	We extend our thanks to Dylan Anderson and Rachel Chamberlain for fieldwork
614	assistance, and to Audree Provard and Colten Elkin for laboratory sample processing assistance.
615	This project was funded by a USDA Forest Service grant (#16-CS-11132422-318) to TBA, and
616	an Ecology Center grant and National Science Foundation Graduate Research Fellowship to SW.
617	
618	
619	Conflict of Interest
620	We claim no conflict of interest.
621	
622	Data Availability Statement
623	Data available on request from the authors.
624	
625	i h
626	References
627	Anderson C.B. & Rosemond A.D. (2010) Beaver invasion alters terrestrial subsidies to
628	subantarctic stream food webs. <i>Hydrobiologia</i> 652, 349–361.
629	Anderson C.B. & Rosemond A.D. (2007) Ecosystem engineering by invasive exotic beavers
630	reduces in-stream diversity and enhances ecosystem function in Cape Horn, Chile.
631	<i>Oecologia</i> 154 , 141–153.

- Anderson C.B., Vanessa Lencinas M., Wallem P.K., Valenzuela A.E.J., Simanonok M.P. &
 Martínez Pastur G. (2014) Engineering by an invasive species alters landscape-level
 ecosystem function, but does not affect biodiversity in freshwater systems. *Diversity and Distributions* 20, 214–222.
- Arndt E. & Domdei J. (2011) Influence of beaver ponds on the macroinvertebrate benthic community in lowland brooks. *Polish Journal of Ecology* 59, 799–811.
- 638 Atwood T.B., Hammill E. & Richardson J.S. (2014) Trophic-level dependent effects on CO2
 639 emissions from experimental stream ecosystems. *Global Change Biology* 20, 3386–3396.
- 55 640 Bailey R.C., Norris R.H. & Reynoldson T.B. (2001) Taxonomic resolution of benthic

Freshwater Biology

1 2		
2	641	macroinvertebrate communities in bioassessments. Journal of the North American
4	642	Benthological Society 20, 280–286.
5	643	Baker B.W. & Hill E.P. (2003) Beaver (Castor canadensis). In: <i>Wild Mammals of North</i>
6	644	America: Biology, Management, and Conservation, Second Edi. (Eds G.A. Feldhamer, B.C.
7		
8	645	Thompson & J.A. Chapman), pp. 288–310. The Johns Hopkins University Press, Baltimore,
9 10	646	Maryland, USA.
11	647	Bo T., Fenoglio S., Malacarne G., Pessino M. & Sgariboldi F. (2007) Effects of clogging on
12	648	stream macroinvertebrates: An experimental approach. <i>Limnologica</i> 37 , 186–192.
13	649	Bush B.M. & Wissinger S.A. (2016) Invertebrates in Beaver-Created Wetlands and Ponds. pp.
14	650	411–449. Springer International Publishing.
15	651	Butler D.R. & Malanson G.P. (1995) Sedimentation rates and patterns in beaver ponds in a
16	652	mountain environment. Geomorphology 13, 255–269.
17	653	Cirmo C.P. & Driscoll C.T. (1993) Beaver pond biogeochemistry: Acid neutralizing capacity
18 19	654	generation in a headwater wetland. Wetlands 13, 277–292.
20	655	Clifford H.F., Wiley G.M. & Casey R.J. (1993) Macroinvertebrates of a beaver-altered boreal
21	656	stream of Alberta, Canada, with special reference to the fauna on the dams. Canadian
22	657	Journal of Zoology 71, 1439–1447.
23	658	Coleman R.L. & Dahm C.N. (1990) Stream geomorphology: Effects on periphyton standing crop
24	659	and primary production. Journal of the North American Benthological Society 9, 293–302.
25	660	Correll D.L., Jordan T.E. & Weller D.E. (2000) Beaver pond biogeochemical effects in the
26 27	661	Maryland Coastal Plain. Biogeochemistry 49, 217–239.
27 28	662	Fuller M.R. & Peckarsky B.L. (2011a) Does the morphology of beaver ponds alter downstream
20	663	ecosystems? <i>Hydrobiologia</i> 668, 35–48.
30	664	Fuller M.R. & Peckarsky B.L. (2011b) Ecosystem engineering by beavers affects mayfly life
31	665	histories. Freshwater Biology 56, 969–979.
32	666	Gard R. (1961) Effects of beaver on trout in Sagehen Creek, California. The Journal of Wildlife
33	667	Management 25 , 221–242.
34 35	668	Gibson P.P. & Olden J.D. (2014) Ecology, management, and conservation implications of North
36	669	American beaver (Castor canadensis) in dryland streams. Aquatic Conservation: Marine
37	670	and Freshwater Ecosystems 24, 391–409.
38	671	Gillies C.L., Hose G.C. & Turak E. (2009) What do qualitative rapid assessment collections of
39	672	macroinvertebrates represent? A comparison with extensive quantitative sampling.
40	673	Environmental Monitoring and Assessment 149, 99–112.
41	674	Gurnell A.M. (1998) The hydrogeomorphological effects of beaver dam-building activity.
42 43	675	Progress in Physical Geography 22, 167–189.
43 44	676	Harthun M. (1999) The infuence of the European beaver (Castor fiber albicus) on the
45	677	biodiversity (Odonata, Mollusca, Trichoptera, Ephemeroptera, Diptera) of brooks in Hesse
46	678	(Germany). <i>Limnologica</i> 29 , 449–464.
47	679	Heino J. (2005) Functional biodiversity of macroinvertebrate assemblages along major
48	680	ecological gradients of boreal headwater streams. Freshwater Biology 50, 1578–1587.
49	681	Herbst D.B., Cooper S.D., Medhurst R.B., Wiseman S.W. & Hunsaker C.T. (2018) A
50	682	comparison of the taxonomic and trait structure of macroinvertebrate communities between
51 52	683	the riffles and pools of montane headwater streams. <i>Hydrobiologia</i> 820 , 115–133.
52 53	684	Hering D., Gerhard M., Kiel E., Ehlert T. & Pottgiesser T. (2001) Review study on near-natural
55 54	685	conditions of Central European mountain streams, with particular reference to debris and
55	686	beaver dams: Results of the "REG meeting" 2000. Limnologica - Ecology and Management
56		
57		
58		

2		
3	687	of Inland Waters 31 , 81–92.
4	688	Hodkinson I.D. (1975) Dry weight loss and chemical changes in vascular plant litter of terrestrial
5	689	origin, occurring in a beaver pond ecosystem. <i>Journal of Ecology</i> 63 , 131–142.
6	690	Huey W.S. & Wolfrum W.H. (1956) Beaver-trout relations in New Mexico. <i>The Progressive</i>
7	691	Fish-Culturist 18, 70–74.
8 9	692	Johnson L.B., Breneman D.H. & Richards C. (2003) Macroinvertebrate community structure and
) 10	692 693	
11		function associated with large wood in low gradient streams. <i>River Research and</i>
12	694	<i>Applications</i> 19 , 199–218.
13	695	Kwick J.K. & Carter J.C.H. (1975) Population dynamics of limnetic cladocera in a beaver pond.
14	696	Journal of the Fisheries Research Board of Canada 32 , 341–346.
15	697	Lancaster J. & Hildrew A.G. (1993) Flow refugia and the microdistribution of lotic
16	698	macroinvertebrates. Journal of the North American Benthological Society 12, 385–393.
17	699	Laurel D. & Wohl E. (2019) The persistence of beaver-induced geomorphic heterogeneity and
18	700	organic carbon stock in river corridors. Earth Surface Processes and Landforms 44, 342-
19 20	701	353.
20 21	702	Law A., Mclean F. & Willby N.J. (2016) Habitat engineering by beaver benefits aquatic
22	703	biodiversity and ecosystem processes in agricultural streams. Freshwater Biology 61, 486-
23	704	499.
24	705	Lazar J.G., Addy K., Gold A.J., Groffman P.M., McKinney R.A. & Kellogg D.Q. (2015) Beaver
25	706	ponds: Resurgent nitrogen sinks for rural watersheds in the northeastern United States.
26	707	Journal of Environment Quality 44, 1684–1693.
27	708	Lecerf A. & Richardson J.S. (2011) Assessing the functional importance of large-bodied
28	709	invertebrates in experimental headwater streams. <i>Oikos</i> 120 , 950–960.
29	710	Levine R. & Meyer G.A. (2014) Beaver dams and channel sediment dynamics on Odell Creek,
30 31	711	Centennial Valley, Montana, USA. <i>Geomorphology</i> 205 , 51–64.
32	712	Logan P. & Brooker M.P. (1983) The macroinvertebrate faunas of riffles and pools. <i>Water</i>
33	712	-
34		Research 17, 263–270.
35	714	Mackay R.J. (1992) Colonization by lotic macroinvertebrates: A review of processes and
36	715	patterns. Canadian Journal of Fisheries and Aquatic Sciences 49, 617–628.
37	716	Malison R.L., Lorang M.S., Whited D.C. & Stanford J.A. (2014) Beavers (Castor canadensis)
38	717	influence habitat for juvenile salmon in a large Alaskan river floodplain. Freshwater
39	718	<i>Biology</i> 59 , 1229–1246.
40	719	Marcarelli A.M., Baxter C. V., Mineau M.M. & Hall R.O.J. (2011) Quantity and quality:
41 42	720	unifying food web and ecosystem perspectives on the role of resource subsidies in
42 43	721	freshwaters. <i>Ecology</i> 92 , 1215–1225.
44	722	Margolis B.E., Raesly R.L. & Shumway D.L. (2001) The effects of beaver-created wetlands on
45	723	the benthic macroinvertebrate assemblages of two Appalachian streams. 21, 554–563.
46	724	Martin J.C. & Knight A.W. (1989) The effect of long pools on the drift of macro-invertebrates in
47	725	a mountain stream. Hydrobiologia 185, 63–70.
48	726	McDowell D.M. & Naiman R.J. (1986) Structure and function of a benthic invertebrate stream
49	727	community as influenced by beaver (Castor canadensis). <i>Oecologia</i> 68, 481–489.
50	728	Meredith C.S., Budy P. & Thiede G.P. (2015) Predation on native sculpin by exotic brown trout
51	729	exceeds that by native cutthroat trout within a mountain watershed (Logan, UT, USA).
52 53	730	Ecology of Freshwater Fish 24, 133–147.
53 54	731	Merritt R.W., Cummins K.W. & Berg M.B. (2008) An introduction to the aquatic insects of
55	732	North America, 4th edn. Kendall Hunt Publishing, Dubuque, Iowa, USA.
56	152	Torm Interior ven, für ein. Echeun Hunt Fuorbinng, Dubuque, 10wa, 0011.
57		
58		

2		
3	733	Muzaffar S.B. & Colbo M.H. (2002) The effects of sampling technique on the ecological
4	734	characterization of shallow, benthic macroinvertebrate communities in two Newfoundland
5	735	ponds. <i>Hydrobiologia</i> 477 , 31–39.
6 7	736	Naiman R.J., Melillo J.M. & Hobbie J.E. (1986) Ecosystem alteration of boreal forest streams by
7 8	737	beaver (Castor canadensis). <i>Ecology</i> 67, 1254–1269.
8 9	738	Oksanen J., Blanchet F.G., Friendly M., Kindt R., Legendre P., McGlinn D., <i>et al.</i> (2017) vegan:
9 10		
11	739	Community Ecology Package.
12	740	Pilliod D.S., Rohde A.T., Charnley S., Davee R.R., Dunham J.B., Gosnell H., et al. (2018)
13	741	Survey of beaver-related restoration practices in rangeland streams of the western USA.
14	742	Environmental Management 61, 58–68.
15	743	Pinheiro J., Bates D., DebRoy S., Sarkar D. & R Core Team (2018) nlme: Linear and nonlinear
16	744	mixed effects models.
17	745	Pliūraitė V. & Kesminas V. (2012) Ecological impact of Eurasian beaver (Castor fiber) activity
18	746	on macroinvertebrate communities in Lithuanian trout streams. Central European Journal
19	747	of Biology 7, 101–114.
20	748	Pollock M.M., Beechie T.J., Wheaton J.M., Jordan C.E., Bouwes N., Weber N., et al. (2014)
21 22	749	Using beaver dams to restore incised stream ecosystems. <i>BioScience</i> 64, 279–290.
22 23	750	Pringle C.M., Naiman R.J., Bretschko G., Karr J.R., Oswood M.W., Webster J.R., <i>et al.</i> (1988)
23 24	751	Patch dynamics in lotic systems: The stream as a mosaic. <i>Journal of the North American</i>
25	752	Benthological Society 7, 503–524.
26	753	R Core Team (2017) R: A language and environment for statistical computing.
27		
28	754	Rabení C.F., Doisy K.E. & Zweig L.D. (2005) Stream invertebrate community functional
29	755	responses to deposited sediment. Aquatic Sciences 67, 395-402.
30	756	Richards C., Haro R.J., Johnson L.B. & Host G.E. (1997) Catchment and reach-scale properties
31	757	as indicators of macroinvertebrate species traits. Freshwater Biology 37, 219–230.
32	758	Rolauffs P., Hering D. & Lohse S. (2001) Composition, invertebrate community and
33	759	productivity of a beaver dam in comparison to other stream habitat types. Hydrobiologia
34 25	760	459 , 201–212.
35 36	761	Rosell F., Bozsér O., Collen P. & Parker H. (2005) Ecological impact of beavers Castor fiber and
30 37	762	Castor canadensis and their ability to modify ecosystems. <i>Mammal Review</i> 35 , 248–276.
38	763	Rupp R.S. (1955) Beaver-trout relationship in the headwaters of Sunkhaze Stream, Maine.
39	764	Transactions of the American Fisheries Society 84, 75–85.
40	765	Sarnelle O., Cooper S.D., Wiseman S. & Mavuti K.M. (1998) The relationship between nutrients
41	766	and trophic-level biomass in turbid tropical ponds. <i>Freshwater Biology</i> 40 , 65–75.
42	767	Small B.A., Frey J.K. & Gard C.C. (2016) Livestock grazing limits beaver restoration in
43	768	northern New Mexico. <i>Restoration Ecology</i> 24, 646–655.
44		Smith M.E., Driscoll C.T., Wyskowski B.J. & Brooks C.M. (1991) Modification of stream
45	769	
46	770	ecosystem structure and function by beaver (Castor canadensis) in the Adirondack
47	771	Mountains, New York. <i>Canadian Journal of Zoology</i> 69 , 55–61.
48 40	772	Stout T.L., Majerova M. & Neilson B.T. (2017) Impacts of beaver dams on channel hydraulics
49 50	773	and substrate characteristics in a mountain stream. <i>Ecohydrology</i> 10 , 1–13.
51	774	Strzelec M., Białek K. & Spyra A. (2018) Activity of beavers as an ecological factor that affects
52	775	the benthos of small rivers - a case study in the Żylica River (Poland). Biologia 73, 577–
53	776	588.
54	777	Thorp J.H. & Covich A.P. (2001) Ecology and Classification of North American Freshwater
55	778	Invertebrates, 2nd edn. (Eds J.H. Thorp & A.P. Covich), Academic Press, San Diego, CA.
56		
57		
58		
59		17
60		

3	779	Vehkaoja M., Nummi P., Rask M., Tulonen T. & Arvola L. (2015) Spatiotemporal dynamics of
4	780	boreal landscapes with ecosystem engineers: beavers influence the biogeochemistry of
5	781	small lakes. Biogeochemistry 124, 405–415.
6 7	782	Wallace J.B. & Webster J.R. (1996) The Role of Macroinvertebrates in Stream Ecosystem
8	783	Function. Annual Review of Entomology 41 , 115–139.
9	784	Wallace J.B., Webster J.R. & Meyer J.L. (1995) Influence of log additions on physical and biotic
10	785	characteristics of a mountain stream. Canadian Journal of Fisheries and Aquatic Sciences
11	786	52 , 2120–2137.
12	787	Westbrook C.J., Cooper D.J. & Baker B.W. (2006) Beaver dams and overbank floods influence
13	788	groundwater-surface water interactions of a Rocky Mountain riparian area. <i>Water</i>
14 15	789	Resources Research 42, W06404.
16	790	Wheaton J.M., Fryirs K.A., Brierley G., Bangen S.G., Bouwes N. & O'Brien G. (2015)
17	791	Geomorphic mapping and taxonomy of fluvial landforms. <i>Geomorphology</i> 248 , 273–295.
18	792	Wissinger S.A., Perchik M.E. & Klemmer A.J. (2018) Role of animal detritivores in the
19	793	breakdown of emergent plant detritus in temporary ponds. <i>Freshwater Science</i> 37 , 826–835.
20	794	Wohl E. (2013) Landscape-scale carbon storage associated with beaver dams. <i>Geophysical</i>
21	795	Research Letters 40, 3631–3636.
22 23	796	Wolman M.G. (1954) A method of sampling coarse river-bed material. <i>Transactions - American</i>
25 24	797	Geophysical Union 35, 951–956.
25	798	Wood P.J. & Armitage P.D. (1997) Biological effects of fine sediment in the lotic environment.
26	799	<i>Environmental Management</i> 21 , 203–217.
27	800	Woods A.J., Lammers D.A., Bryce S.A., Omernik J.M., Denton R.L., Domeier M., <i>et al.</i> (2001)
28	800	<i>Ecoregions of Utah (color poster with map, descriptive text, summary tables, and</i>
29	801	
30 21	802	phologruphs). Reston, Virgina, USA.
31 32	803 804	
33	804	
34	805	photographs). Reston, Virgnia, USA.
35		
36		
37		
38 39		
39 40		
41		
42		
43		
44		
45 46		
40 47		
48		
49		
50		
51		
52		
53 54		
54 55		
56		
57		
58		
59		18

806 807	Table 1. Environmeter ± standard error). R				1	· · · · · · · · · · · · · · · · · · ·	
		Right Ha	and Fork	Spawr	n Creek	Temple	e Fork
	Environment	Lotic reaches	Beaver Ponds	Lotic reaches	Beaver Ponds	Lotic reaches	Beaver Ponds
	Elevation (m)	1710 ± 3	1709 ± 3	1883 ± 5	1883 ± 5	1871 ± 8	1870 ± 8
	Temperature (°C)	8.34 ± 0.39	8.66 ± 0.50	6.21 ± 0.26	6.21 ± 0.27	5.33 ± 0.09	5.40 ± 0.08
	DO (mg/L)	9.00 ± 0.16	8.83 ± 0.32	9.70 ± 0.08	9.70 ± 0.05	10.04 ± 0.04	9.89 ± 0.02
	Flow (m/s)	0.28 ± 0.05	0.11 ± 0.04	0.24 ± 0.04	0.06 ± 0.01	0.34 ± 0.06	0.02 ± 0.01
	Grain Size (mm)	34.60 ± 9.14	< 2.00 ± 0	41.72 ± 6.99	< 2.00 ± 0	45.52 ± 8.34	< 2.00 ± 0
	Depth (cm)	25.1 ± 1.0	35.2 ± 1.0	20.6 ± 10.0	38.0 ± 3.0	30.2 ± 2.0	39.5 ± 4.0
	Surface Area (m^2)	80.06 + 11.3	132.12 ±	72 08 + 18 0	115.08 ±	848.20 ±	259.17 ±

74.2

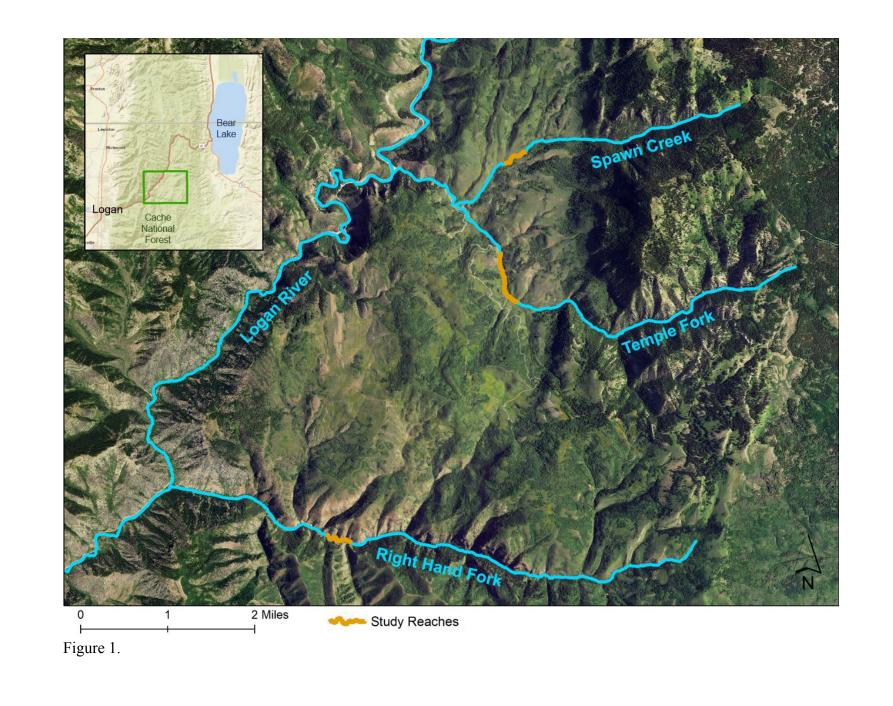
73.08 ± 18.9

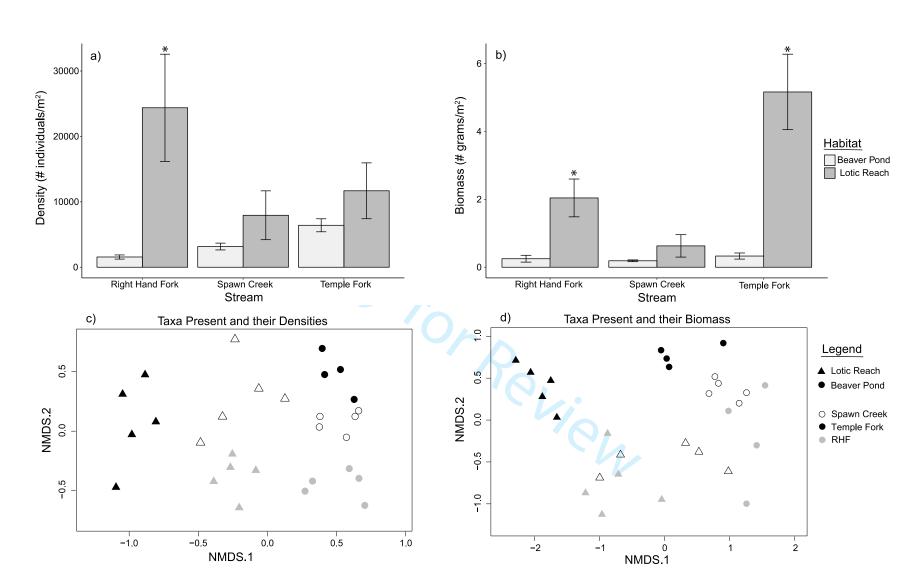
23.9

456.3

61.9

Surface Area (m^2) 89.96 ± 44.3


Figure Captions


Figure 1. A map of study reaches within Right Hand Fork, Spawn Creek, and Temple Fork. All streams are tributaries to the Logan River, located in the Cache National Forest in northeastern Utah, USA. Blue lines indicate streams and orange lines indicate study reaches within streams.

- Figure 2. Differences in community structure measured by density (number of organisms per m²) and by biomass (grams of organisms per m²) for lotic reach and beaver pond habitats: a) total macroinvertebrate density by habitat type (beaver ponds or lotic reaches) in each stream, b) total macroinvertebrate biomass within beaver ponds and lotic reaches in each stream c) nonmetric multidimensional scaling (NMDS) plot illustrating how beaver ponds differ from lotic reaches in terms of macroinvertebrate taxa present and their densities (stress 0.15), d) NMDS plot of macroinvertebrate taxa and their biomasses (stress 0.11). Each point represents a lotic reach (triangle) or beaver pond (circle) community for each of the three streams studied (Right Hand Fork (RHF) = grey, Temple Fork (Temple) = black, and Spawn Creek (Spawn) = white). The closer together the symbols are in the NMDS plot, the more similar the community composition. Asterisks above bars represent significantly higher values between the noted bar and its neighboring bar in that stream.

Figure 3. Differences in community composition in terms of macroinvertebrate habitat preference classifications (lentic, lotic, or both) and in terms of quantity of Ephemeroptera, Plecoptera, and Trichoptera (EPT): a) density of macroinvertebrates classified as lentic, lotic, and both in beaver ponds and lotic reaches at each stream, b) biomass of macroinvertebrates classified as lentic, lotic, c) density of EPT taxa in beaver ponds and lotic reaches at each stream,

- d) biomass of EPT taxa. Asterisks above bars represent significantly higher values between the noted bar and its corresponding bar (the other bar of the same color) in that stream.
- Figure 4. Differences in Functional Feeding Groups (FFGs) and Mobility Groups (MGs) of macroinvertebrates between beaver ponds and lotic reaches. Composition differences are measured by comparing functional groups present and their respective biomasses or densities per m²: a) FFG composition by density (stress 0.20; actual position of points in space may vary as stress is high), b) FFG composition by biomass (stress 0.09), c) MG composition by density (stress 0.17), and d) MG composition by biomass (stress 0.11). Symbols closer together represent more functionally similar communities. Each point represents a lotic reach (triangle) or beaver pond (circle) community for each of the three streams studied (Right Hand Fork (RHF) = grey, Temple Fork (Temple) = black, and Spawn Creek (Spawn) = white).

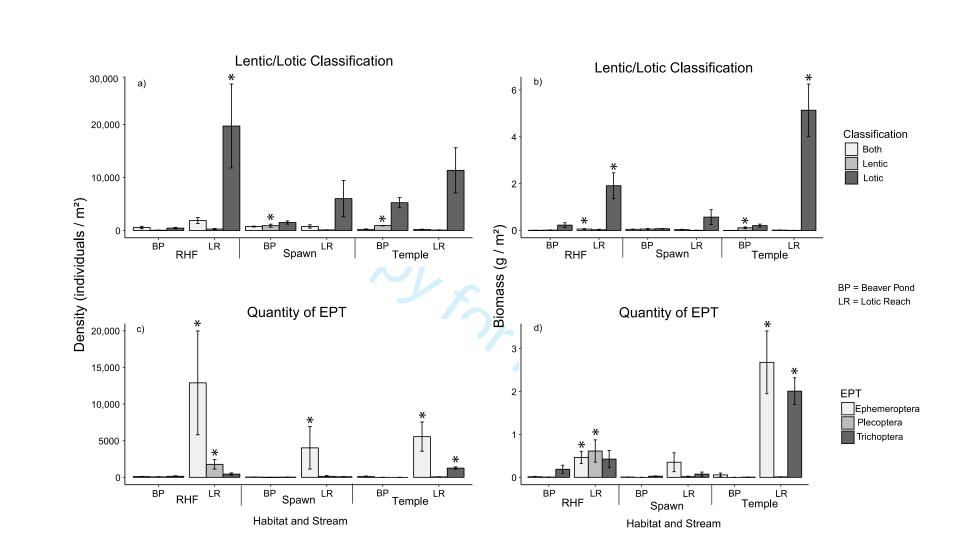
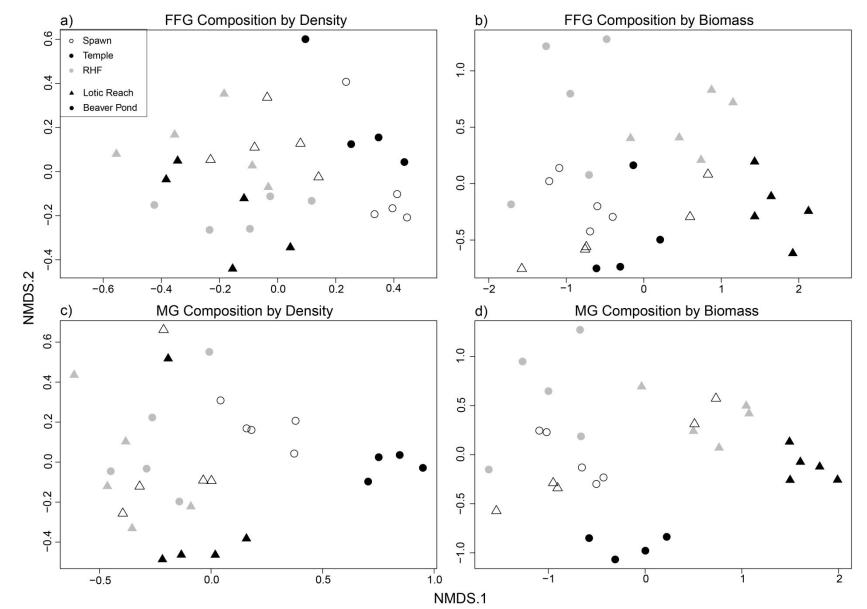



Figure 3.

Supplementary Items

Figure S1. Examples of beaver ponds and lotic reaches used in this study.

Table S1. List of taxa sampled and their Functional Feeding Group (FFG) and Mobility Group (MG) assignments (based on taxa tables in Ode, 2003; Merritt, Cummins & Berg, 2008). Although many macroinvertebrates belong to multiple FFGs, only the first listed was used.

Class/Order	Family	Genus & species (if possible)	FFG	MG
Amphipoda	Hyalellidae	Hyalella	shredders	swimmer
Bivalvia	unidentified	unidentified	filter	burrower
Coleoptera	Curculionidae	unidentified	shredders	clinger
Coleoptera	Dytiscidae	Oreodytes	piercer	swimmer
Coleoptera	Dytiscidae	Stictotarsus larvae	piercer	swimmer
Coleoptera	Dytiscidae	Tropisternus larvae	piercer	swimmer
Coleoptera	Dytiscidae	unidentified larvae	piercer	swimmer
Coleoptera	Elmidae	Cleptelmis adult	gatherer	clinger
Coleoptera	Elmidae	Elmidae larvae	gatherer	clinger
Coleoptera	Elmidae	Heterlimnius corpulentus adult	gatherer	clinger
Coleoptera	Elmidae	Narpusconcolor adult	gatherer	clinger
Coleoptera	Elmidae	Optioservus adult	scraper	clinger

Coleoptera	Gyrinidae	Gyrinus	engulfer	swimm
Coleoptera	Haliplidae	Ametor	gatherer	clinger
Coleoptera	Haliplidae	Haliplidae larvae	piercer	climbe
Coleoptera	Helophoridae	Helophorus	shredder	climbe
Collembola	unidentified	unidentified	gatherer	skater
Diptera	Ceratopogonidae	Probezzia	engulfer	burrow
Diptera	Chironomidae	Chironominae	gatherer	burrow
Diptera	Chironomidae	Orthocladiinae	gatherer	burrow
Diptera	Chironomidae	Tanypodinae	engulfer	sprawl
Diptera	Dixidae	Dixa	gatherer	swimm
Diptera	Empididae	Chelifera	piercer	spraw
Diptera	Empididae	Clinocera	piercer	clinge
Diptera	Empididae	Neoplasta	piercer	spraw
Diptera	Empididae	Wiedemannia	piercer	clinge
Diptera	Limoniidae	Hesperoconopa	gatherer	burrov
Diptera	Muscidae	unidentified	piercer	spraw
Diptera	Psychodidae	Pericoma	gatherer	burrov
Diptera	Simuliidae	Simulium	filter	clinge
Diptera	Simuliidae	Twinnia	scraper	clinge
Diptera	Stratiomyidae	Caloparyphus	gatherer	spraw
Diptera	Stratiomyidae	Stratiomys	gatherer	spraw
Diptera	Tabanidae	unidentified	piercer	spraw
Diptera	Tipulidae	Antocha	gatherer	clinge
Diptera	Tipulidae	Dicranota	engulfer	spraw
Diptera	Tipulidae	Tipula	shredder	burrov
Diptera	unidentified	unidentified	gatherer	spraw
Ephemeroptera	Baetidae	Baetis	gatherer	swimn
Ephemeroptera	Baetidae	Cinygmula	scraper	clinge
Ephemeroptera	Baetidae	Rhithrogena	scraper	clinge
Ephemeroptera	Baetidae	Siphlonurus	gatherer	swimn
Ephemeroptera	Ephemerellidae	Drunella coloradensis	scraper	clinge
Ephemeroptera	Ephemerellidae	Drunella dodsii	scraper	clinge
Ephemeroptera	Ephemerellidae	Drunella grandis	scraper	clinge
Ephemeroptera	Ephemerellidae	Ephemerella tibalis	gatherer	clinge
Ephemeroptera	Ephemerellidae	Serratella	gatherer	clinge
Ephemeroptera	Paraleptophlebidae	Paraleptophlebia	gatherer	clinge
Gastropoda	unidentified	unidentified	scraper	clinge
Hemiptera	Gerridae	unidentified	piercer	skater
Oligochaeta	unidentified	unidentified	gatherer	burrov
Ostracoda	unidentified	unidentified	gatherer	burrov

1	l l	l	
Chloroperlidae	Sweltsa	engulfer	clinger
Nemouridae	Malenka	shredder	sprawler
Nemouridae	Zapada	shredder	sprawler
Perlidae	Hesperoperla pacifica	engulfer	clinger
Brachycentridae	Brachycentrus	gatherer	clinger
Brachycentridae	Micrasema	shredder	clinger
Glossosomatidae	Glossosoma	scraper	clinger
Hydropsychidae	Arctopsyche	gatherer	clinger
Hydroptilidae	Hydroptila	piercer	clinger
Lepidostomatidae	Lepidostoma	shredder	climber
Limnephilidae	Psychoglypha	shredder	sprawler
Rhyacophilidae	Rhyacophila brunnea-vemna	engulfer	clinger
Rhyacophilidae	Rhyacophila hyalinata	engulfer	clinger
Rhyacophilidae	Rhyacophila verrula	scraper	clinger
Rhyacophilidae	Rhyacophila volfixa	engulfer	clinger
Uenoidae	Neothremma	scraper	clinger
Uenoidae	Oligophlebodes	scraper	clinger
Hydrachnidiae	unidentified	parasite	sprawler
unidentified	unidentified	engulfer	clinger
	Nemouridae Nemouridae Perlidae Brachycentridae Brachycentridae Glossosomatidae Hydropsychidae Hydroptilidae Lepidostomatidae Limnephilidae Rhyacophilidae Rhyacophilidae Rhyacophilidae Rhyacophilidae Uenoidae Uenoidae Hydrachnidiae	NemouridaeMalenkaNemouridaeZapadaPerlidaeHesperoperla pacificaBrachycentridaeBrachycentrusBrachycentridaeMicrasemaGlossosomatidaeGlossosomaHydropsychidaeArctopsycheHydroptilidaeLepidostomatidaeLimnephilidaePsychoglyphaRhyacophilidaeRhyacophila brunnea-vemnaRhyacophilidaeRhyacophila verrulaRhyacophilidaeRhyacophila volfixaUenoidaeOligophlebodesHydrachnidiaeunidentified	NemouridaeMalenkashredderNemouridaeZapadashredderPerlidaeHesperoperla pacificaengulferBrachycentridaeBrachycentrusgathererBrachycentridaeMicrasemashredderGlossosomatidaeGlossosomascraperHydropsychidaeArctopsychegathererHydroptilidaeHydroptilapiercerLepidostomatidaeLepidostomashredderRhyacophilidaeRhyacophila brunnea-vemnaengulferRhyacophilidaeRhyacophila verrulascraperRhyacophilidaeRhyacophila verrulascraperRhyacophilidaeRhyacophila volfixaengulferUenoidaeOligophlebodesscraperHydrachnidiaeunidentifiedparasite

Merritt R.W., Cummins K.W. & Berg M.B. (2008) *An introduction to the aquatic insects of North America*, 4th edn. Kendall Hunt Publishing, Dubuque, Iowa, USA.

CZ.CZ

Ode P. (2003) List of Californian Macroinvertebrate Taxa and Standard Taxonomic Effort. Rancho Cordova, CA.

Table S2. All statistical results.

Metric	Transformation	DF	Habitat F-Stat, P-value	Stream ID F-Stat, P-value	Habitat:Stream F-Stat, P-value	Tukey comparison for significant Habitat:Stream
Total Biomass	log	23	34.872, <0.001	9.118, 0.0012	4.804, 0.0181	p < 0.001 at Temple and RHF
Total Density	log	23	15.005, <0.001	2.328, 0.1200	6.405, 0.0062	p < 0.001 at RHF only
Total Richness	NA	23	16.621, 0.0005	2.236, 0.130	0.662, 0.526	
EPT Density	Transformation	DF	Habitat F-Stat, P-value	Stream ID F-Stat, P-value	Habitat:Stream F-Stat, P-value	Tukey comparison for significant Habitat:Stream
total EPT	log	23	56.845, <0.001	4.060, 0.0309	1.499, 0.2443	
Ephemeroptera	sqrt	23	18.964, 0.0002	1.100, 0.3499	0.734, 0.4907	
Plecoptera	sqrt	23	21.870, <0.001	15.487, <0.001	7.204, 0.0037	p < 0.001 at RHF
Trichoptera	sqrt	23	53.740, <0.001	14.442, <0.001	21.309, <0.001	p < 0.001 at Temple
EPT Biomass	Transformation	DF	Habitat F-Stat, P-value	Stream ID F-Stat, P-value	Habitat:Stream F-Stat, P-value	Tukey comparison for significant Habitat:Stream
total EPT	log	23	16.621, <0.001	9.118, 0.0012	4.804, 0.0181	p < 0.001 at RHF and Temple
Ephemeroptera	sqrt	23	49.414, <0.001	13.437, <0.001	8.201, <0.001	p = 0.052 at RHF, p < 0.001 at Temple
Plecoptera	sqrt	23	14.472, <0.001	10.646, <0.001	7.614, 0.0029	p < 0.001 at RHF only
Trichoptera	sqrt	23	40.062, <0.001	17.084, <0.001	24.335, <0.001	p < 0.001 at Temple only
FFG Density	Transformation	DF	Habitat F-Stat, P-value	Stream ID F-Stat, P-value	Habitat:Stream F-Stat, P-value	Tukey comparison for significant Habitat:Stream
engulfer	sqrt	23	0.504, 0.4849	12.692, <0.001	16.249, <0.001	
filterer	sqrt	23	5.289, 0.0309	3.045, 0.0671	0.192, 0.8262	
gatherer	log	23	10.876, 0.0031	2.388, 0.1142	8.316, 0.0019	p < 0.001 at RHF only
piercer	sqrt	23	0.006, 0.9369	0.145, 0.8661	1.365, 0.2753	
scraper	sqrt	23	61.18, <0.001	14.306, <0.001	5.929, 0.0084	p < 0.001 at Temple & RHF
shredder	sqrt	23	7.971, 0.0096	13.757, <0.001	6.525, 0.0057	p < 0.001 at RHF only
						Tukey comparison for significant UnkitatiCtycom
FFG Biomass	Transformation	DF	Habitat F-Stat, P-value	Stream ID F-Stat, P-value	Habitat:Stream F-Stat, P-value	Tukey comparison for significant Habitat:Stream
FFG Biomass engulfer	sqrt	23	8.733, 0.0071	2.957, 0.072	6.176, 0.0071	p < 0.001 at RHF only
			-			
engulfer	sqrt	23	8.733, 0.0071	2.957, 0.072	6.176, 0.0071	
engulfer filterer	sqrt sqrt	23 23	8.733, 0.0071 17.378, <0.001	2.957 , 0.072 1.427 , 0.2605	6.176, 0.0071 1.787, 0.190	p < 0.001 at RHF only
engulfer filterer gatherer	sqrt sqrt log	23 23 23 23	8.733, 0.0071 17.378, <0.001 23.496, <0.001	2.957, 0.072 1.427, 0.2605 4.281, 0.0263	6.176, 0.0071 1.787, 0.190 4.781, 0.0184	p < 0.001 at RHF only

MG Density	Transformation	DF	Habitat F-Stat, P-value	Stream ID F-Stat, P-value	Habitat:Stream F-Stat, P-value	Tukey comparison for significant Habitat:Stream
burrower	log	23	0.069, 0.7952	5.866, 0.0087	4.304. 0.0258	
climber	sqrt	23	0.0094, 0.9235	3.918, 0.0343	1.895, 0.1731	
clinger	log	23	105.844, < 0.001	12.682, < 0.001	0.0029	p < 0.001 at all 3 streams
skater	sqrt	23	1.712, 0.2035	0.203, 0.8177	0.004, 0.9959	
sprawler	log	23	15.342, < 0.001	29.365, < 0.001	8.729, 0.0015	p < 0.001 at RHF, p = 0.02 at Temple
swimmer	log	23	29.194, < 0.001	2.502, 0.1039	1.465, 0.2518	
MG Biomass	Transformation	DF	Habitat F-Stat, P-value	Stream ID F-Stat, P-value	Habitat:Stream F-Stat, P-value	Tukey comparison for significant Habitat:Stream
burrower	log	23	2.967, 0.0984	10.314, < 0.001	5.271, 0.0131	
climber	sqrt	23	0.992, 0.3295	4.820, 0.0178	2.943, 0.0728	
clinger	log	23	197.860, < 0.001	3.681, 0.041	10.860, < 0.001	p < 0.001 at all 3 streams
skater	sqrt	23	0.043, 0.8375	0.270, 0.7655	0.979, 0.3909	
sprawler	log	23	0.074, 0.7887	20.116, < 0.001	2.987, 0.0703	
swimmer	log	23	13.357, 0.0013	0.620, 0.5469	0.876, 0.43	
Lotic/Lentic Density	Transformation	DF	Habitat F-Stat, P-value	Stream ID F-Stat, P-value	Habitat:Stream F-Stat, P-value	Tukey comparison for significant Habitat:Stream
Both LL	log	23	0.728, 0.4024	10.800, < 0.001	2.267, 0.1263	
Lentic	sqrt	23	16.728, < 0.001	5.905, 0.0085	14.760, < 0.001	p < 0.001 in Spawn and Temple
Lotic	log	23	23.664, < 0.001	4.482, 0.0227	7.460, 0.0032	p < 0.001 in RHF only
Lotic/Lentic						
Biomass	Transformation	DF	Habitat F-Stat, P-value	Stream ID F-Stat, P-value	Habitat:Stream F-Stat, P-value	Tukey comparison for significant Habitat:Stream
Both LL	log	23	6.652, 0.0168	8.022, 0.0023	9.496, 0.001	p < 0.001 at RHF only
Lentic	sqrt	23	11.045, 0.0030	1.350, 0.2791	5.650, 0.0101	p = 0.001 at Temple
Lotic	log	23	43.764, < 0.001	9.978, < 0.001	3.129, 0.0628	p < 0.001 at Temple, p = 0.002 at RHF