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Abstract

Background: This paper discusses best practices for estimating fractions of mortality attributable to health
exposures in survey data that are biased by observed confounders and unobserved endogenous selection. Extant
research has shown that estimates of population attributable fractions (PAF) from the formula using the proportion
of deceased that is exposed (PAFpd) can attend to confounders, whereas the formula using the proportion of the
entire sample exposed (PAFpe) is biased by confounders. Research has not explored how PAFpd and PAFpe
equations perform when both confounding and selection bias are present.

Methods: We review equations for calculating PAF based on either the proportion of deceased (pd) or the
proportion of the entire sample (pe) that receives the exposure. We explore how estimates from each equation are
affected by confounding bias and selection bias using hypothetical data and real-world survey data from the
National Health Interview Survey–Linked Mortality Files, 1987–2011. We examine the association between cigarette
smoking and all-cause mortality risk in the US adult population as an example.

Results: We show that both PAFpd and PAFpe calculate the true PAF in the presence of confounding bias if one
uses the “weighted-sum” approach. We further show that both the PAFpd and PAFpe calculate biased PAFs in the
presence of collider bias, but that the bias is more severe in the PAFpd formula.

Conclusion: We recommend that researchers use the PAFpe formula with the weighted-sum approach when
estimates of the exposure-outcome relationship are biased by endogenous selection.

Keywords: Attributable fractions, Selection bias, Confounding bias, Mortality

Background
This paper discusses best practices for estimating the
fraction of mortality attributable to health exposures in
survey-based data that are biased by both observed con-
founders and unobserved endogenous selection. Much
extant work has reviewed errors in computing popula-
tion attributable fractions (PAFs) in the presence of con-
founders [1–6], but little work has considered how
different formulae for computing PAFs are affected by
endogenous selection biases (e.g., collider bias).
Endogenous selection bias can affect estimates of

statistical associations in many ways. Conditioning on a

collider variable—that is, a variable caused by two other
variables that are associated with the exposure and the
outcome—can occur through statistical control, stratifi-
cation of the sample into different groups, or the selec-
tion of participants into a study [7–11]. Introducing
collider variables through any of these mechanisms can
bias estimates of associations between exposure and out-
come. In this study, we focus on unobserved endogenous
selection—a problem that commonly occurs in health
studies through the sampling process of recruiting study
participants. Simply put, the likelihood of participation
in a health study can be affected by both the exposure
and outcome, which can bias estimates of the true asso-
ciation between them.
The most common PAF formulae are based on either

the proportion of deceased (pd) in the sample that
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receives the exposure or the proportion of the entire
sample (pe) that receives the exposure [1]. The two main
aims of this investigation are to examine the perform-
ance of these model-based methods for calculating PAF
in the presence of (1) known and observable con-
founders of the exposure-mortality association and (2)
collider bias. We focus on the association between
cigarette smoking and all-cause mortality risk in the US
adult population, which is confounded by other variables
and also a likely contributor to unobserved endogenous
selection bias in survey-based data of smoking and mor-
tality risk [7].

Methods
We use hypothetical data and real-world survey data to
calculate PAF in the presence of confounding and unob-
served endogenous selection. In all of our exercises,
non-exposed cases are respondents who have never
smoked cigarettes and exposed cases are respondents
who are current or former smokers. The association of
interest is how smoking affects all-cause mortality risk.
For each exercise, we estimate the fraction of US mortal-
ity attributable to cigarette smoking using the PAFpd
formula:

PAFpd ¼ pd� RR−1ð Þð Þ=RR ð1Þ
where pd is the prevalence of a health exposure among

the deceased cases and RR is the mortality risk ratio be-
tween the exposed and non-exposed subjects [12]. We
also estimate this fraction using the PAFpe formula:

PAFpe ¼ pe� RR−1ð Þð Þ= 1þ pe� RR−1ð Þð Þð Þ ð2Þ
where pe is the prevalence of the exposure among all

cases in the sample [6, 13]. For each formula, we adopt a
“weighted-sum” approach [1, 3, 14, 15], which uses
model-based adjusted estimators of PAF separately for
each adjustment level i as well as the distribution of
cases by the adjustment levels:

PAFpd ¼
X

Wi� pdi� RRi−1ð Þð Þ=RRi ð3Þ

PAFpe ¼
X

Wi� pei� RRi−1ð Þð Þ= 1þ pei� RRi−1ð Þð Þ
ð4Þ

where i indicates the adjustment level (i.e., con-
founder) and Wi indicates the proportion of deaths in
adjustment level i. The weighted-sum approach is math-
ematically equivalent to the PAFpd [1, 14]; combining
the PAFpd with the weighted-sum approach is therefore

redundant. Nevertheless, we apply it in all of our exer-
cises to maintain consistency.

Exercise 1: Observed confounding bias in hypothetical
data
In our first exercise, we examine PAF estimates from
Eqs. (1–4) in the presence of a single confounder, race/
ethnicity. For simplicity, we consider race/ethnicity using
only two categories, non-Hispanic black and non-
Hispanic white (hereafter black and white). The hypo-
thetical data are composed of 1000 black respondents
and 4000 white respondents. Both smoking prevalence
(i.e., pe) and mortality risk are higher among black re-
spondents than among white respondents, which con-
found the smoking-mortality association. In these data,
black pe is 0.35 compared to white pe of 0.2, and overall
mortality risk for black respondents is 0.3 compared to
0.2 for white respondents.

Exercise 2: Unobserved endogenous selection bias in
hypothetical data
Our second example uses the same data as before, but
presupposes that estimates of the smoking-mortality
association are biased by differential selection into the
sample. We assume that current smokers sampled are
relatively more select on health than are non-smokers.
That is, both the non-smoking and the smoking samples
are healthier than the true populations, but the differ-
ence between the smoking sample and the smoking
population is greater than the difference between the
non-smoking sample and the non-smoking population.
This unobserved process of health selection biases
downward the all-cause mortality RR estimated in the
sample data. When these conditions hold, both PAF esti-
mates will be biased due to the central role of the RRs
(see Eqs. 1–4). Moreover, the distribution of deaths by
exposure and by adjustment levels, Wi, will also be
biased. This is because counts of deaths among the ex-
posure group in the sample will be artificially low and,
consequently, Wi will be incorrect. Thus, PAFpd and
PAFpe estimates will remain biased via Wi even if our
adjusted RRs account for collider bias. Finally, the esti-
mated PAF from the PAFpd formula will be additionally
biased, due to the central role of the pd in the calcula-
tion of the PAF. That is, the pd in the observed data, like
the RRs in the observed sample data, will be downwardly
biased because deaths among the smoking sample are
underreported.

Exercise 3: PAF estimation with real-world survey data
Finally, we illustrate the points above by analyzing the
smoking-mortality association in the National Health
Interview Survey–Linked Mortality Files (NHIS-LMF)
for years 1987–2009. These data are composed of NHIS
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waves from 1987 and 1989–2009 that have been linked
to official death records at the National Death Index
through December 31, 2011 (the 1988 NHIS survey did
not contain information about respondents’ smoking be-
havior). The NHIS-LMF are designed to form a repre-
sentative sample of non-institutionalized US adults [12].
To simplify the example, we limit the analytic sample to
contain only US adult black and white men and women
aged 40 through 84 at time of interview and whose sur-
vival is followed between ages 50 and 84. We extend the
example by considering two levels of smoking exposure,
“former smoker” and “current smoker,” and by consider-
ing three possible confounders of the smoking-mortality
association: race/ethnicity (i.e., white and black), gender
(i.e., men and women), and age group (i.e., 50–59, 60–
69, 70–79, and 80–84).
We fit a series of clog-log discrete-time survival

models to estimate smoking-based differences in US
adult mortality risk. First, we fit a baseline model that
estimates differences in mortality risks between current,
former, and never smokers (reference category). Next,
we fit a confounder model that estimates age-specific dif-
ferences in mortality risks between current, former, and
never smokers, adjusting for race/ethnicity and gender
as categorical confounders of the smoking-mortality as-
sociation. We also fit models separately for black and
white men and women that estimate age-specific RRs for
former and current smokers compared to never smokers
(i.e., confounder-specific models to be used with the
weighted-sum approach to calculate PAFs). Finally, we
fit a bias model that refits the confounder model by ac-
counting for cohort-based variation in mortality risk and
age-related selection biases in the NHIS-LMF data.
Participants in health surveys like the NHIS are positively

selected on survival, health, and non-institutional living ar-
rangements [16]. These selection biases tend to grow stron-
ger with increasing age [17]. Thus, older respondents in
NHIS-LMF data are selected on the outcome of interest
(i.e., survival) and inclusion in the NHIS sampling frame
(i.e., healthy and living in non-institutionalized housing).
Combined, the selective nature of the sample results in col-
lider biases via age-related selection into the sampling
frame and the selective factors associated with age are likely
stronger among respondents with health risk factors such
as smoking than among healthy respondents [8].
Survival models fitted separately by cohort of entry into

the NHIS sample provide evidence consistent with these
assumptions about collider biases. For example, the esti-
mated RR between current smokers and never smokers
who died at age 70–80 ranges from 1.51 [1.43–1.58
95%CI] among respondents surveyed at age 70–75 to 4.11
[3.02–5.57 95%CI] among respondents surveyed at age
50–55. The bias model is a shared frailty survival model
that estimates random effects variation in mortality risk by

NHIS respondents’ 5-year age cohorts at the time of sam-
pling. Overall, the model fits age-specific mortality risks
separately for current, former, and never smokers, adjust-
ing for gender, race/ethnicity, birth year, and random ef-
fects for a 5-year cohort of entry into the data.
Mortality differences between US adults self-reported to

be current, former, and never smokers between ages 50
and 84 are estimated across these three models. We use
the adjusted RRs between (1) current smokers and never
smokers and (2) former smokers and never smokers,
which are estimated from confounder-specific survival
models and the weighted-sum approach to calculate the
PAF for smoking as a cause of death in the US adult black
and white populations between ages 50 and 84 for years
1987–2011. For all models, we contrast PAFs calculated
from PAFpd with PAFs calculated from PAFpe to examine
how each formula is affected by (1) confounders in the es-
timated smoking-mortality association and (2) collider
bias.
The NHIS-LMF data analyzed for the current study

are public-use files made available by the NCHS (https://
www.cdc.gov/nchs/data-linkage/mortality.htm). The ana-
lytic scripts (Additional file 1) and calculations to gener-
ate results (Additional file 2) for Exercise 3 are available
in the appendix.

Results
Exercise 1: Observed confounding in hypothetical data
The confounding effect of race/ethnicity on the smoking-
mortality association is illustrated in Table 1. The all-
cause mortality RR for smoking when unadjusted for the
confounding effects of race/ethnicity is (450/1150)/(650/
3850) = 2.32. Alternatively, the RR adjusted for race/ethni-
city is 2.23. That is, when we estimate separate RRs for
each race/ethnicity sample, we observe

Non−Hispanic black ¼ 150=350ð Þ= 150=650ð Þ ¼ 1:86

Non−Hispanic white ¼ 300=800ð Þ= 500=3200ð Þ
¼ 2:40

When these race/ethnic-specific RRs for smoking are
standardized by the race/ethnic distribution of deaths
and the race/ethnic distribution of smoking prevalence,
the adjusted RR is 2.23. If one does not account for the
confounding effects of race/ethnicity on both mortality
risk and the probability of smoking, one would incor-
rectly estimate the PAF by the following:

a) Aggregating the probability of smoking to be (1150/
5000) = 0.23,

b) Aggregating the probability of smoking among
decedents to be (450/1100) = 0.41, and

Masters and Reither Population Health Metrics           (2019) 17:19 Page 3 of 9

https://www.cdc.gov/nchs/data-linkage/mortality.htm
https://www.cdc.gov/nchs/data-linkage/mortality.htm


c) Aggregating the RR associated with smoking to be
(450/1150)/(650/3850) = 2.32.

As a result, estimates of the PAF for smoking, irre-
spective of the formula used, would be biased by not at-
tending to the confounding effects of race/ethnicity:

PAFpd ¼ pd� RR−1ð Þð Þ=RR ¼ 0:41� 2:32−1ð Þð Þ=2:32
¼ 0:233

PAFpe ¼ pe� RR−1ð Þð Þ= 1þ pe� RR−1ð Þð Þð Þ
¼ 0:23� 2:32−1ð Þð Þ= 1þ 0:23� 2:32−1ð Þð Þð Þ
¼ 0:233

The actual PAF shown in the counterfactual example
above is (1100 − 856)/1100 = 0.222
Thus, by failing to account for (1) the higher preva-

lence of smoking among black respondents and (2) the
higher mortality risks among black respondents, we
would incorrectly inflate the RR associated with smoking
and misattribute numerous deaths to smoking as a cause
of mortality in the population. As such, it is necessary to
identify the RR by accounting for confounders in model
estimates, and then use this confounder-adjusted RR to
calculate PAFs [18]. It has been argued that only the
PAFpd formula can accurately estimate the PAF when
using confounder-adjusted RRs [3–6]. Yet, as others
have noted, one can use the PAFpe equation with the
confounder-adjusted RR to derive the true PAF [1, 15].
To do so, one needs to first estimate separate PAFs for
each confounder group (i.e., each adjustment level i),

and then standardize these confounder-specific PAFs by
the distribution of deaths across groups (i.e., Wi).
To illustrate, when we estimate separate PAFs for

black and white respondents, we see for black:

PAFpd ¼ pd� RR−1ð Þð Þ=RR ¼ 0:5� 1:86−1ð Þð Þ=1:86
¼ 0:231

PAFpe ¼ pe� RR−1ð Þð Þ= 1þ pe� RR−1ð Þð Þð Þ
¼ 0:35� 1:86−1ð Þð Þ= 1þ 0:35� 1:86−1ð Þð Þð Þ
¼ 0:231

and for white:

PAFpd ¼ pd� RR−1ð Þð Þ=RR ¼ 0:375� 2:40−1ð Þð Þ=2:40
¼ 0:219

PAFpe ¼ pe� RR−1ð Þð Þ= 1þ pe� RR−1ð Þð Þð Þ
¼ 0:2� 2:40−1ð Þð Þ= 1þ 0:2� 2:40−1ð Þð Þð Þ
¼ 0:219

To estimate the total PAF, we further attend to the
distribution of deaths across groups. That is, we sim-
ply weight the confounder-specific PAFs by the pro-
portion of total deaths occurring in the confounder
groups (i.e., Wi) [18]. The proportion of the total
deaths that occurred among black respondents = (300/
1100) = 0.273 and the proportion of total deaths that
occurred among white respondents = (800/1100) =
0.727. When we weight the confounder-specific PAFs
by the proportion of deaths in the two groups, Wi, we
retrieve the true overall PAF:

Table 1 Hypothetical sample data

Non-smoker Smoker Total Counterfactual pe pd RR

Non-Hispanic black

Survived 500 200 700 769

Died 150 150 300 231

Total 650 350 1000 1000 0.35 0.50 1.86

qx 0.231 0.429 0.30

Non-Hispanic white

Survived 2700 500 3200 3375

Died 500 300 800 625

Total 3200 800 4000 4000 0.20 0.375 2.40

qx 0.156 0.375 0.20

Combined

Survived 3200 700 3900 4144

Died 650 450 1100 856

Total 3850 1150 5000 5000 0.23 0.409 2.32

qx 0.169 0.391 0.22

pe proportion smoker in entire sample, pd proportion smoker among deceased, qx probability of death, RR risk ratio
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PAFNHB�WNHB þ PAFNHW�WNHW

¼ 0:231�0:273ð Þ þ 0:219�0:727ð Þ ¼ 0:222

This shows that the weighted-sum approach can cal-
culate the true PAF regardless if one uses the PAFpd or
PAFpe formula. So long as (1) unobservable confounders
or unobservable selection do not induce bias, and (2)
one attends to observable confounders of the smoking-
mortality association, one can use adjusted RRs with ei-
ther PAFpd or PAFpe and the weighted-sum approach to
calculate the PAF for smoking-related mortality in the
sample [18].

Exercise 2: Unobserved endogenous selection in
hypothetical data
In the next exercise, we extend the previous example to
consider sample data that are biased by unobserved se-
lection, causing underestimation of mortality risk in the
smoking population. To simplify matters, let us assume
that the prevalence of smoking is the same in both the
sample and population so that the only change pertains
to qx for smokers in the sample. The new information
about population parameters is presented in Table 2
below.
The mortality probabilities for the non-smoking popu-

lations equal those in the sample data (0.231 among
blacks and 0.156 among whites). Smoking prevalence is
also the same (peNHB = 0.35 and peNHW = 0.20). How-
ever, we now see discrepancies in the mortality risks for
the smoking populations (0.500 in the white population
vs. 0.375 in the white sample, and 0.500 in the black
population vs. 0.429 in the black sample). These, in turn,
affect the RRs for smoking (e.g., 2.17 vs. 1.86 for black
and 3.21 vs. 2.40 for white), the pds (0.538 vs. 0.500 for
black and 0.444 vs. 0.375 for white), and the Wi (e.g.,
0.265 of population deaths are among blacks vs. 0.273 of
sample deaths).
The confounder-specific PAFs using both the PAFpd

and PAFpe formulae are as follows (estimates might be
slightly different due to rounding):
non-Hispanic black:

PAFpd ¼ pd� RR−1ð Þð Þ=RR ¼ 0:538� 2:17−1ð Þð Þ=2:17
¼ 0:290

PAFpe ¼ pe� RR−1ð Þð Þ= 1þ pe� RR−1ð Þð Þð Þ
¼ 0:35� 2:17−1ð Þð Þ= 1þ 0:35� 2:17−1ð Þð Þð Þ
¼ :290

non-Hispanic white:

PAFpd ¼ pd� RR−1ð Þð Þ=RR ¼ 0:444� 3:21−1ð Þð Þ=3:21
¼ 0:306

PAFpe ¼ pe� RR−1ð Þð Þ= 1þ pe� RR−1ð Þð Þð Þ
¼ 0:20� 3:21−1ð Þð Þ= 1þ 0:20� 3:21−1ð Þð Þð Þ
¼ 0:306

Standardizing these confounder-specific PAFs by the
distribution of deaths, Wi, we use the weighted-sum ap-
proach to calculate the true PAF:

0:290�0:2653ð Þ þ 0:306�0:7347ð Þ ¼ 0:301

We see that the PAFs in the sample data underesti-
mate the true PAF in the population (0.222 vs. 0.301),
and this bias is the same in the PAFpd and PAFpe formu-
lae. The discrepancy arises from one’s inattention to
(unobservable) endogenous selection bias in the sample
data, resulting in biased sample estimates of the mortal-
ity RRs associated with smoking as well as biased Wi in
the sample.
Imagine that we had accounted for unobservable selec-

tion bias in our survival models and correctly identified
the RRs for smoking for both the black and white sam-
ples. Even though the adjusted RRs would be correct in
our survival models, the counts of deaths in the sample
data would remain biased. Consequently, the pd values
in the sample stay at 0.50 and 0.375, and the proportion
of deaths occurring among blacks and whites stay at
0.273 and 0.727, respectively. As a result, if we were to
calculate the PAF using the adjusted RRs with PAFpd, we
would find

PAFpdb ¼ pd� RR−1ð Þð Þ=RR ¼ 0:50� 2:17−1ð Þð Þ=2:17
¼ 0:270

PAFpdw ¼ pd� RR−1ð Þð Þ=RR
¼ 0:375� 3:21−1ð Þð Þ=3:21 ¼ 0:258

The confounder-specific PAFs are biased (i.e., 0.270
estimated vs. 0.290 actual for blacks and 0.258 estimated
vs. 0.306 actual for whites) even when using the adjusted
RRs. Furthermore, when we use the weighted-sum ap-
proach and standardize these PAFs by Wi, we add an-
other source of bias because the distribution of deaths in
each confounder group is biased as well: total PAF =
(0.270*0.273) + (0.258*0.727) = 0.263. Yet, were we to
follow conventional wisdom [3–6] and use the adjusted

Table 2 Hypothetical population data

pe pd RR qx (NS) qx (S) qx (total)

Non-Hispanic black 0.35 0.538 2.17 0.231 0.50 0.325

Non-Hispanic white 0.20 0.444 3.21 0.156 0.50 0.225

pe proportion smoker in population, pd proportion smoker among deceased
in population, qx (NS) probability of death among nonsmokers in population,
qx (S) probability of death among smokers in population, RR risk ratio
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RR with the PAFpd for the entire sample, we would esti-
mate the same biased PAF:

PAFpd ¼ pd� RR−1ð Þð Þ=RR
¼ 450=1100ð Þ� 2:8−1ð Þð Þ=2:8 ¼ 0:263

Thus, even if we accurately accounted for selection
bias in our survival models and estimated an unbiased
RR (e.g., by fitting frailty models that account for selec-
tion bias in the smoking RR [19]), the PAF calculated
from the PAFpd formula will still be biased. In this case,
a biased 0.263 is estimated for the sample when the true
PAF in the population is 0.301 (a bias on the proportion-
ate scale of 12.6%: (0.263 − 0.301)/0.301).
If we calculate the PAF using the confounder- and

selection-adjusted RRs with the PAFpe formula, we find

PAFpeb ¼ pe� RR−1ð Þð Þ= 1þ pe� RR−1ð Þð Þð Þ
¼ 0:35� 2:17−1ð Þð Þ= 1þ 0:35� 2:17−1ð Þð Þð Þ
¼ 0:290

PAFpew ¼ pe� RR−1ð Þð Þ= 1þ pe� RR−1ð Þð Þð Þ
¼ 0:2� 3:21−1ð Þð Þ= 1þ 0:2� 3:21−1ð Þð Þð Þ
¼ 0:306

We see that the confounder-specific PAFs are un-
biased. Only when we standardize these PAFs by the dis-
tribution of deaths, Wi, do we introduce slight bias in
the total PAF = (0.290*0.273) + (0.306*0.727) = 0.302 (a
bias on the proportionate scale of − 0.3%: (0.301 −
0.302)/0.302). Thus, when we account for selection bias
in our survival models and estimate unbiased adjusted
RRs, the PAF calculated from PAFpe will be biased, but
only via Wi. By using the PAFpe equation, we avoid bias
in estimates from the pd and dramatically reduce the
overall bias in the PAF estimate (0.3% vs. 12.6%).
To recap, when sample data are biased by unobserved

selection, both the PAFpd formula and the PAFpe formula
will calculate a biased PAF—even if researchers adjust for
selection bias in the data. However, the PAFpd formula is
far more affected by the bias than is the PAFpe formula be-
cause bias is introduced in both the pd and Wi. Con-
versely, estimates of the confounder-specific PAF from the
PAFpe equation are not biased, but some bias is intro-
duced in the weighted-sum approach via Wi. Theoretic-
ally, one could completely eliminate bias by identifying the
true RR (i.e., attend to both observable confounders and
unobservable selection biases) and standardizing the PAFs
by the true distribution of deaths for each adjustment level
(i.e., use population data to estimate Wi).

Exercise 3: PAF estimation with real-world survey data
For the final exercise, we calculate PAF for smoking as a
cause of US adult mortality in the NHIS-LMF data,
which are biased by confounding (i.e., age, race/ethnicity,
and gender) and likely biased by endogenous selection
(i.e., likelihood of sample inclusion depends on health).
Table 3 shows age-specific mortality risks between years
1987 and 2011 for NHIS respondents who are current,
former, and never smokers. The pd for former smokers
(0.352) combined with the pd for current smokers
(0.338) indicates that nearly 70% of the deceased NHIS
sample had been exposed to smoking.
From the sample data in Table 3, we calculate the un-

adjusted RRs:

Total RRformer ¼ 14; 566=92; 693ð Þ= 12; 816=121; 459ð Þ
¼ 1:489

Total RRcurrent ¼ 13; 984=86; 969ð Þ= 12; 816=121; 459ð Þ
¼ 1:524

Because we are calculating a PAF for two-levels of an
exposure, former smokers and current smokers, the PAF
formulae change slightly [18, 20]:

PAFpd ¼ pdformer� RRformer−1ð Þ=RRformer

þ pdcurrent� RRcurrent−1ð Þ=RRcurrent

Table 3 Age-specific mortality counts by smoking exposure
level, NHIS-LMF 1987–2009

Age Dead Total qx pe pd

Never smokers

50 1169 43,737 0.027 0.403 0.243

60 2109 41,443 0.051 0.396 0.233

70 4833 26,249 0.184 0.401 0.299

80 4705 10,030 0.469 0.451 0.414

Total 12,816 121,459 0.106 0.403 0.310

Former smokers

50 959 27,283 0.035 0.251 0.200

60 2624 32,554 0.081 0.311 0.289

70 6310 24,207 0.261 0.369 0.391

80 4673 8649 0.540 0.389 0.412

Total 14,566 92,693 0.157 0.308 0.352

Current smokers

50 2674 37,632 0.071 0.346 0.557

60 4335 30,727 0.141 0.293 0.478

70 4998 15,067 0.332 0.230 0.310

80 1977 3543 0.558 0.159 0.174

Total 13,984 86,969 0.161 0.289 0.338
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PAFpe ¼ ðpeformer� RRformer−1ð Þ
þpecurrent� RRcurrent−1ð ÞÞ=ð1þ ðpeformer� RRformer−1ð Þ
þpecurrent� RRcurrent−1ð ÞÞÞ

PAFpd ¼ 0:352� 1:489−1ð Þ=1:48
þ 0:338� 1:524−1ð Þ=1:52

¼ 0:232

PAFpe ¼ ð0:308� 1:489−1ð Þ
þ0:289� 1:524−1ð ÞÞ=ð1þ ð0:308� 1:489−1ð Þ
þ0:289� 1:524−1ð ÞÞÞ ¼ 0:232

We see that if we did not consider age, race/ethnicity,
or gender as confounders of the smoking-mortality asso-
ciation in these NHIS-LMF data, we would estimate
about 23% of US black and white adult deaths between
ages 50 and 85 for years 1987–2011 were attributable to
cigarette smoking.
Average RRs for current smoking estimated from clog-

log discrete time hazard models are presented in Table 4,
and overall PAFs estimated from the PAFpe and PAFpd
formula are included as well.
The baseline model estimates mortality risks for

former and current smokers relative to never smokers
that match the RRs observed in Table 3 (i.e., 1.49 and
1.52, respectively). Using these RRs, we estimate the
same 0.232 PAF for smoking as a cause of US adult
mortality, regardless if we estimate the PAF from the
PAFpe formula or the PAFpd formula. The confounder
model estimates age-specific RRs for former and current
smokers relative to never smokers while controlling for
confounding by gender and race/ethnicity. The age pat-
terns in the RRs for current smokers suggest that the
mortality consequences of smoking significantly decline
with age. For example, current smokers are estimated to
have about 2.6 to 2.7 times the mortality risk as never
smokers in age-groups 50–59 and 60–69, but only about
1.2 times the mortality risk in age-group 80–84. When
using these confounder-adjusted and age-specific RRs

for smoking, we estimate a 0.247 PAF for smoking as a
cause of US adult mortality.
Finally, the estimated age-specific RRs from the bias

model are significantly larger than the age-specific RRs
from the confounder model, especially at older ages. Al-
though the smoking-mortality relationship attenuates
with age, it is substantially less than the attenuation ob-
served in the confounder model. Using these con-
founder- and selection-adjusted RRs, we calculate a PAF
of 0.289 from the PAFpd formula and a PAF of 0.326
from the PAFpe formula. This is the only case in which
we observe different PAF values depending on the for-
mula used. This is because the PAFpd formula remains
biased by pd and likely underestimates the amount of
mortality attributable to cigarette smoking in the US
adult population. In this case, the PAF estimated from
the PAFpd formula is likely additionally biased by −
11.3% over the PAFpe (0.289 − 0.326)/0.326) because it
does not fully account for collider bias in estimates of
the smoking-mortality association in the NHIS-LMF
data.

Discussion
Between-group differences in mortality (e.g., smokers
and non-smokers) estimated from survey data are often
biased by unobserved endogenous selection [8, 10].
These biases can distort research findings and lead to in-
correct conclusions and misguided policy recommenda-
tions. Researchers should therefore be wary of collider
biases and, when possible, adjust estimates to account
for them. Relatedly, researchers should be wary of how
these biases affect PAF calculations. In this paper, we
demonstrated that the PAFpd formula is far more sensi-
tive to collider bias than the PAFpe formula. Results
from both our hypothetical examples and real-world il-
lustration using the NHIS-LMF show the PAFpd formula
calculated severely biased estimates of the PAF for
smoking as a cause of mortality. As such, if estimates of
the exposure-outcome association are likely biased by
endogenous selection, researchers should consider calculat-
ing PAFs using the PAFpe formula with the weighted-sum
approach. The main challenge to using the weighted-sum
approach is the data required to scale estimates by Wi,
which increase with the number of confounders in the
model. In addition, the weighted-sum approach may not be
appropriate in small samples because estimates of Wi are
unreliable [1].
The findings are important for researchers aiming to es-

timate the mortality burden of exposures that may induce
collider bias in sample data. For example, estimates from
the NHIS-LMF data indicate that widening educational
disparities in US adult mortality have greatly increased
deaths attributable to low educational attainment [21].
Yet, estimates of the education-mortality association in

Table 4 Estimated age-specific mortality risk ratios for current
smokers relative to never smokers, NHIS-LMF 1987–2009

Age Baseline model Confounder model Bias model

RR RR RR

50–59 1.52 2.62 2.80

60–69 1.52 2.69 3.22

70–79 1.52 1.77 2.75

80–84 1.52 1.18 1.89

PAFpe 0.232 0.247 0.326

PAFpd 0.232 0.247 0.289

Note: RR abbreviation for risk ratio; RRs for the confounder model and bias
model are standardized and averaged from survival models fitted separately
to non-Hispanic black and white men and women
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the NHIS-LMF data may be biased by mortality and health
selection across age [22]. Deaths attributable to low educa-
tion in the USA may, in fact, be underestimated by not ac-
counting for collider bias in PAF calculations. Also,
researchers have reported discrepant PAFs for obesity as a
cause of US mortality. For example, Flegal et al. [5] review
PAF values indicating 2–15% of adult deaths are attribut-
able to high BMI. The discrepancies likely reflect the extent
to which researchers attend to confounder and collider
biases in model estimates and how these biases affect PAF
calculations. While Flegal et al. ([5] p. 203) consider the
PAFpe to be “the invalid formula” and PAFpd to be the “for-
mula appropriate for use with adjusted relative risks when
confounding exists,” their review did not consider how the
PAF formulae were affected by collider bias. Results here
indicate that the PAFpd is, in fact, the formula that calcu-
lates more biased estimates when relative risks are adjusted
for confounding and selection biases.

Conclusion
Many studies have addressed best practices for calculating
and interpreting PAFs for causes of mortality [1, 3, 5, 6,
20, 23–25]. In this paper, we extend these discussions to
consider how unobserved endogenous selection bias (e.g.,
collider bias) distorts calculations of PAFs in the PAFpd
and PAFpe formulae. Prior research has highlighted the
importance of confounding bias in PAF calculations, but it
has not considered how collider bias may affect PAF cal-
culations. We used both hypothetical and real-world data
on the smoking-mortality relationship to explore these
considerations. Results from our examples demonstrate
that both the PAFpd and PAFpe formulae can equally at-
tend to observable confounders and accurately calculate
PAFs via the weighted-sum approach [1, 3, 18]. Yet, the
PAFpe formula via the weighted-sum approach is preferred
to the PAFpd formula if RR estimates for the exposure are
biased from endogenous selection. In contrast to conven-
tional wisdom that recommends using the PAFpd formula
with adjusted RRs [3, 5, 6], we conclude by recommending
the use of the PAFpe formula with the weighted-sum ap-
proach when using RRs adjusted for both confounding
bias and selection bias.
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1186/s12963-019-0196-6.
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