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Abstract 13 
Given size and performance advantages, microchannel heat exchangers are becoming increasingly 14 

important for various energy recovery and conversion processes. In this study, detailed experimental 15 

measurements were conducted to characterize flow and heat transfer performance of a microchannel heat 16 

recovery unit (HRU) manufactured using standard photochemical etching and diffusion bonding 17 

processes. According to the global flow and temperature measurement, the HRU has delivered the 18 

predicted thermal performance under various oil and air flow rates. As expected, the heat transfer 19 

effectiveness varies between 88% and 98% for a given air and oil flow rates while it increases with air 20 

inlet temperature due to the improved thermal conductivity. However, significant flow mal distribution is 21 

identified among the air channels according to the in-depth flow distribution measurement using hot wire. 22 

The flow measurement also indicates visible misalignment of the air channels caused by the 23 

manufacturing processes. In addition, the excessive pressure drops occurred for both air and oil channels 24 

indicating reduced flow areas due to the photochemical etching process. The results of this experimental 25 

study can hopefully provide insights in improving designs of microchannel heat exchangers using the 26 

same manufacturing processes.  27 

 28 
Keywords: 29 
Microchannel heat exchanger, experimental characterization, thermal-hydraulic, flow distribution, organic 30 
Rankine cycle, waste heat recovery,  31 
 32 
Nomenclature 33 

Variables: 34 

A Cross-sectional area of an air channel 35 
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Dh Hydraulic diameter 36 
�̇�𝑚 Mass flow rate 37 
N Total number of air channels 38 
Re Reynolds number 39 
t Student’s t distribution 40 
T Temperature  41 
u Error (uncertainty analysis) 42 
V Velocity 43 
ρ Density 44 
μ Viscosity 45 
ε Heat transfer effectiveness 46 

Subscripts: 47 

Air the air side 48 
bias Bias error 49 
c the cold side of the fluid 50 
h the hot side of the fluid 51 
Oil the oil side 52 
pres Precision error 53 

Acronyms: 54 

COP Coefficient of Performance 55 
HRU Heat recovery unit 56 
ORC Organic Rankine cycle 57 
TEG Thermoelectric generation 58 
 59 
 60 
1. Introduction 61 

In the spirit of improving energy efficiency and mitigate climate change due to greenhouse gases 62 

emissions, waste heat recovery has been attracted significant research in recent years [1]–[4]. In general, 63 

there are three levels of waste heat that are loosely defined as: low grade, with temperatures less than 200 64 

°C; medium grade, with temperatures greater than 200 °C and less than about 600 °C; and high grade, 65 

with temperatures greater than 600 °C [5]. Among various technologies for waste heat recovery, organic 66 

Rankine cycle (ORC) has been widely used for low-to-medium grade waste heat recovery systems  and 67 

geothermal power plants [6], [7]. The technology has also been increasingly used for engine waste heat 68 

recovery [8]–[11]. A technical and economic analyses of using ORC for waste heat recovery from internal 69 

combustion engines is conducted [12]. For waste heat recovery of large stationary gaseous fuel internal 70 

combustion engines with rated power of 1 MW, both steam Rankine cycle and ORCs have been 71 
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considered and shown respective pros and cons according to the technical and economic analyses [13]. 72 

For mobile applications with unsteady waste heat, dynamic simulation and control strategies need to be 73 

considered over various dynamic driving cycles [11], [14], [15]. Recently, an interesting waste heat 74 

recovery system using ORC is proposed for automotive engines in order to account for various dynamic 75 

driving situations [16]. It includes exhaust gas recirculation and thermal energy storage using metal 76 

blocks. According to the numerical simulation, the design significantly improves the operating stability 77 

and the overall efficiency of the ORC system. While improving system designs and performance, more 78 

and more studies have also been focused on design optimization of the ORC system for various objective 79 

functions [9], [17]. 80 

 81 

Figure 1. Waste heat-to-cooling system integrating an ORC with a vapor compression cycle 82 

While most of the studies related to organic Rankine cycle for waste heat recovery have been 83 

focusing on converting the thermal energy to power, it is often desirable to convert waste heat to cooling 84 

directly for various cooling applications. An example of waste heat-to-cooling system utilizing ORC is 85 

shown in Figure 1. The system combines an ORC with a vapor-compression cycle to meet the cooling 86 

needs directly [18]. It is designed to produce cooling from the exhaust of a diesel engine. The waste heat 87 

recovery process starts at the diesel generator. Exhaust gases from the diesel generator pass through the 88 

Heat Recovery Unit and provide energy to the heat transfer oil. The oil is pumped through the boiler of 89 
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the organic Rankine cycle, energizing the working fluid before it enters the expander. In this system, the 90 

expander is directly coupled to the compressor of a vapor-compression cycle to produce conditioned air.  91 

As critical components, heat exchangers are crucial to the success of any waste heat recovery and 92 

energy conversion systems. With high surface area-to-volume ratio and increased heat transfer 93 

coefficients associated with short diffusion lengths, microchannel heat exchangers have become 94 

increasingly attractive for various energy conversion and management systems [19]–[22]. This often 95 

translates to considerably smaller package sizes with enhanced heat transfer [23]. In addition, the volume 96 

of working fluid necessary for operation is less than that of conventional heat exchangers, which 97 

potentially improves the safety for pressurized energy systems. With the ability to handle extremely high 98 

temperatures and pressures, they are considered as the top candidates for supercritical CO2 Brayton 99 

cycles [24]. In addition to straight channel designs [25], [26], various fin designs have been proposed to 100 

optimize thermal-hydraulic performance for supercritical CO2 recuperators, including zigzag [27], [28], 101 

S-shape [29], airfoil [30] and sinusoidal [24]. A recent review provides a good summary of recent 102 

experiment and numerical studies in understanding the flow and heat transfer characteristics associated 103 

with microchannel (printed circuit) heat exchangers [31]. 104 

While the studies provided valuable insights of flow and heat transfer within individual 105 

microchannel designs, significant questions still remain. For example, many studies have been focused on 106 

geometry design and numerical simulation for a single or only several channels. Thus, the results can be 107 

difficult to apply to real microchannel heat exchangers with hundreds or even thousands of microchannels 108 

due to potential flow maldistribution. According to a recent numerical and experimental study [32], flow 109 

maldistribution had very significant impact on heat transfer effectiveness of the device. Without uniform 110 

flow distribution in microchannel heat exchangers in a heat pump, a study shows up to 30% degradation 111 

of its cooling capacity is identified [33]. In addition, little work has been focused on in-depth, physical 112 

measurement of the actual flow and heat transfer performance of a sizeable, multi-channel and multi-layer 113 

microchannel heat exchanger. In this study, global and local characterizations of flow and heat transfer 114 

performance of a 10 kW-class microchannel prototype heat exchanger are performed. Specifically, it 115 
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conducted a unique flow distribution study of a microchannel heat exchanger made by the standard 116 

photochemical etching and diffusion bonding processes. The work provided a useful measurement 117 

scheme of using hot wire and a 3-axis traverse system, and a post-measurement analysis tool for 118 

quantifying flow distribution among the microchannels. The results provide not only model validation, 119 

but also valuable insights in improving designs of high-performance microchannel heat exchanger. 120 

2. Microchannel Heat Recovery Unit 121 

The microchannel Heat Recovery Unit (HRU) is a two-pass, cross-counter flow microchannel heat 122 

exchanger. A schematic of this type of heat exchanger is shown in Figure 2. The Heat Recovery Unit was 123 

designed to operate as an intermediary between the diesel generator and the organic Rankine cycle. As 124 

such, there were physical and thermal considerations that influenced the design. Physically, the size of the 125 

HRU was limited by the space available within the chassis of the diesel generator. Thermally, the HRU 126 

had to work within the operating conditions of the diesel generator and organic Rankine cycle. Other 127 

factors, such as soot deposition and pressure drop, were also considered in the design. Based on the 128 

expected 5.3 kW cooling capacity of the vapor-compression cycle and an overall system COP of 0.5, the 129 

Heat Recovery Unit was designed to recover approximate10.6 kW of heat from the diesel engine. A 130 

thermal model was developed in MATLAB to optimize the heat transfer and geometry of the HRU to 131 

achieve this goal. Given the two-pass and cross-counter flow design, an iterative scheme was used to 132 

determine the fluid temperatures between the passes. The model first assumes the intermediate exhaust 133 

(air) temperature called midpass exhaust. The midpass oil temperature can be solved using ε-NTU method 134 

for the cold pass (section with blue arrows in Fig. 2). With hot exhaust (air) inlet temperature and oil inlet 135 

temperature (the calculated midpass oil temperature) known for the hot pass (section with red arrows in 136 

Fig. 2), a new midpass exhaust temperature is determined using the ε-NTU method, which becomes the 137 

updated input to the cold pass. Convergence is determined when the change in subsequent values of the 138 

intermediate exhaust temperature are less than 1E-3 °C. The solution algorithm of the thermal model is 139 

shown in Fig. 3. 140 



6 
 

 141 

Figure 2. Two-pass, cross-counter flow plate-fin heat exchanger 142 

 143 

Figure 3. Solution algorithm for the heat exchanger thermal model 144 

The Heat Recovery Unit is a diffusion brazed device that consists of a stack of alternating stainless-145 

steel shims. The overall dimensions of the HRU model are 210 mm in length, 145 mm in width, and 85 146 

mm in height. There are two different shim geometries in the Heat Recovery Unit. The first is the exhaust 147 

shim (also referred to as the air shim) and the second is the oil shim. Both shim types are designed with 148 

rectangular microchannels and are produced by photochemical etching. The exhaust channels are straight, 149 

with relatively wide cross-sectional area to reduce the back pressure on the engine and the potential of 150 

soot buildup from the diesel exhaust. Exhaust gases enter and leave through manifolds attached at the two 151 

ends of the heat exchanger. The oil shim contains two sections of channels that make up the two-pass 152 
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flow arrangement. Flow distribution veins help guide the oil from the inlet port to the channels of the first 153 

pass. After the oil has passed through the first set of channels, it enters a plenum where it can mix with 154 

the oil from other layers before going through the second pass. The mixing plenum exists to increase heat 155 

transfer.  156 

The design values of channel dimensions for both shims are shown in Table 1, while the design 157 

conditions and thermal model results for the HRU are shown in Table 2. Figure 4 shows the pictures of 158 

the fabricated HRU and the exhaust and oil shims. The objective of this study is to experimentally 159 

characterize the thermal-hydraulic performance of the microchannel HRU fabricated using a standard 160 

photochemical etching and diffusion brazing processes.  The results will then be used to validate and 161 

refine heat transfer and flow models associated with microchannel heat exchangers.  162 

Table 1. Channel dimensions and information of the shims 163 

 164 

 165 

Table 2. Heat Recovery Unit design conditions and model results 166 

 167 

Exhaust Shim Oil Shim
Number of Channels 23 35 (per pass)

Channel Length (mm) 210 60
Channel Width (mm) 2.00 1.50
Channel Depth (mm) 0.80 0.15
Shim Thickness (mm) 0.99 0.30
Number of  Shims in  
the Bonded Device

46 45

Air Inlet Temp (°C) 488    
Oil Inlet Temp (°C) 100    

Air Flow (kg/s) 0.030  
Oil Flow (kg/s) 0.046

   
   

Input Parameters  
   Air Outlet Temp (°C) 118
   Oil Outlet Temp (°C) 200

  Duty (kW) 11.6
  Effectiveness 0.95

Air Pressure Drop (kPa) 2.0
Oil Pressure Drop (kPa) 22.0

 Model Results
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  168 

 169 

 170 

 171 

Figure 4. (left) A photograph of the HRU showing air and oil inlets; (middle) Exhaust shim; (right) 172 
Oil shim 173 

3. Experiment Setup and Analysis 174 

The thermal testing facility had the capacity to test the thermal performance and measure velocity 175 

and temperature profiles of the Heat Recovery unit using hot air in place of diesel exhaust. A process and 176 

instrumentation diagram for the thermal testing facility is presented in Figure 5.  177 

 178 

Figure 5. Heat Recovery Unit thermal test bench schematic 179 

 180 

A regenerative blower intakes ambient air and passes it through two electrical air heaters. The hot air 181 

then enters a manifold where it is allowed to distribute before entering the exhaust channels of the Heat 182 

Recovery Unit (shown as stream 1 in Fig. 5 ). After the air exchanges heat with the oil in the HRU, it is 183 

exhausted into ambient air (shown as stream 2). A gear pump circulates oil through the HRU (stream 3 184 

and 4) and into a flat plate heat exchanger. Cooling water runs through the flat plate heat exchanger to 185 
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remove heat from the oil. A custom-built manifold was made for ducting the hot air into the Heat 186 

Recovery Unit. The manifold featured five holes for thermocouples to measure the air temperature 187 

distribution before it enters the heat exchanger. A pressure port was also included on the side to measure 188 

inlet pressure.  189 

The instrumentation in the test bench included a hot wire anemometer, K-type thermocouples, 4-20 190 

mA absolute pressure transducers, and turbine flow meters. A 3-axis linear traverse system was used to 191 

collect velocity and temperature measurements on the exhaust outlet of the Heat Recovery Unit. A single 192 

probe hot film anemometer (often referred to as a hot wire) was mounted to the LabVIEW controlled 193 

traverse system. The film had a sensing diameter of 25.4 µm and a length of 0.25 mm (recall that the 194 

exhaust channels were designed to 2 mm by 0.8 mm). A 1/16-in (~1.6 mm) diameter thermocouple was 195 

attached to the probe support. LabVIEW was used for the data acquisition and traverse control. A picture 196 

of the thermal testing facility is shown in Figure 6, where the HRU and traverse system are labelled to 197 

show the respective positions.  198 

 199 

Figure 6. Thermal testing facility 200 

The testing conditions used to evaluate the performance of the microchannel HRU are presented in 201 

Table 3. The nominal air inlet temperature was based on the average of the five manifold thermocouples. 202 

HRU
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The motivation behind the selected test values was to operate the HRU in a range that encompassed the 203 

design air flow rate, oil flow rate and air inlet temperature. For each thermal test case, steady state 204 

measurements were taken at 100 samples per second for three minutes. The thermocouple measuring the 205 

outlet air temperature from the HRU was located approximately in the center of the outlet plane and about 206 

1 mm away from the face.  207 

Table 3. Thermal test matrix 208 

 209 

The traverse system was designed to move the hot wire and thermocouple sensors in a plane parallel to 210 

the exposed face of the microchannel HRU in order to characterize both velocity and temperature profiles 211 

of the air (exhaust) stream. Measurements were taken using a stop-and-go style of traversing. The hot 212 

wire and thermocouple were moved to a measurement position, and then data was acquired for a specified 213 

period of time before moving on to the next point. Two movement sequences were developed: a column-214 

wise traverse and a row-wise traverse, as shown in Figure 7. These two sequence styles were mainly 215 

developed for program flexibility. The coordinate system used for the traverse measurements is drawn in 216 

Figure 8 (left). This coordinate system is only an indication of direction; it is not the origin of each scan. 217 

Each velocity scan has its own origin. The channels are numbered starting from the bottom left corner as 218 

shown in Figure 8 (right).  219 
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 220 

Figure 7. Scanning sequence styles 221 

 222 

Figure 8. (left) Coordinate system for the traverse; (right) Air channel numbering and spacing 223 

Velocity measurements were taken with unheated air at the design flow rate 27 g/s through the Heat 224 

Recovery Unit with no oil flow. In order to get adequate resolution of the channel velocities, 225 

measurements were taken in several regions instead of the full field because the acquisition time of a full 226 

field profile would have been impractical. To understand general trends in the air flow, the hot wire probe 227 

was traversed horizontally and vertically along the sides and middle channels of the HRU, as shown in 228 

Figure 9 (left). Window regions shown in Figure 9 (right) were also scanned to examine the flow 229 

structures near the channel outlets.  230 

 231 

Figure 9. (left) Vertical and horizontal regions for hot wire measurements; (right) window regions 232 
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Vertical scans were executed using the column-wise movement scheme and the horizontal scans 234 

used the row-wise scheme. The window scans used the column-wise scheme. The scan resolution for each 235 

region is presented in Table 4. For all hot wire scan cases, at least 1,000 samples were collected over a 236 

period of one to two seconds for each measurement location. All velocity measurements were taken 237 

approximately 1 mm away from the face of the Heat Recovery Unit. The justification for this distance 238 

comes from measurements of the velocity in the z-direction for a center exhaust channel. As can be seen 239 

from the graph in Figure 10, the velocity was nearly constant within the range of 0.5 mm to 5 mm then it 240 

decreased as the probe moved away from the HRU face. This behavior resembles classical free jet theory.  241 

Table 4. Scan resolutions 242 

 243 

 244 

Figure 10. Air velocity as function of distance in the z-direction 245 

 246 

 247 

Scan Case X (µm) Y (µm)
Horizontal Top 200 100
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Directional Resolution

0 2 4 6 8 10 12 14 16 18 20 22
0

5

10

15

20

25

30

Distance Away From HRU Face (mm)

V
el

oc
ity

 (m
/s

)



13 
 

A full field temperature profile was also captured for the nominal conditions of 27 g/s of air flow, 248 

450 °C of air inlet temperature, 55 g/s of oil flow, and 60 °C of oil inlet temperature. The resolution for 249 

the thermal profile was 1 mm in both the x-direction and y-direction. Four hundred measurements were 250 

taken over three seconds for each location. The thermocouple was located approximately 2 mm away 251 

from the face of the HRU. 252 

The thermal performance of the Heat Recovery Unit is characterized by the heat duty, heat transfer 253 

effectiveness, air pressure drop, and oil pressure drop. To evaluate the specific heat, the average of fluid 254 

inlet and outlet temperatures was used. For the air stream, the cold temperature was the average of the 255 

five manifold thermocouple readings. The hot temperature was taken from the thermocouple in the center 256 

of the air exit plane. Using air and oil temperatures, the effectiveness is defined as [34]: 257 

 , ,

, ,

Air h Air c

Air h Oil c

T T
T T

ε
−

=
−

 (1) 258 

The oil pressure drop across the microchannel HRU was taken as the difference between the two 259 

pressure measurements on the inlet and outlet of the oil line. The air pressure drop was measured by the 260 

single pressure transducer in the manifold (as outlet open to the atmosphere).  261 

The theoretical air velocity out of the Heat Recovery Unit, assuming that the channels are the same 262 

size and uniform flow is 263 

 ( )
mV

A Nρ
=

×


 (2) 264 

where m is the air mass flow rate, ρ is the density of air, A is the cross-sectional area of an air channel, 265 

and N is the total number of air channels. The Reynolds number is defined as 266 

 Re hVDρ
µ

=  (3) 267 

where ρ is the density, V is the velocity, hD is the hydraulic diameter, and µ is the dynamic viscosity. 268 

The Reynolds number can also be written in terms of the mass flow rate 269 
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 Re hmD
Aµ

=


 (4) 270 

The velocity and temperature profiles were smoothed using a spatial averaging scheme. Each point is 271 

averaged with neighboring points up to two spaces away, including diagonals shown in Figure 11.  272 

 273 

Figure 11. Averaging scheme for the velocity and temperature profiles 274 

4. Uncertainty Analysis 275 

The uncertainty of each measured variable was calculated using [35]: 276 

 ( )22
bias presu u t u= + ×  (5) 277 

where biasu is the bias error, t is the Student’s-t distribution factor, and presu is the precision error. The 278 

bias error of a measured variable consisted of the inherent limitations of the measuring instrument and the 279 

curve fit error of the calibration curve. Table 5 provides specific information and measurement accuracy 280 

of each instrument.  281 

Table 5. Instrumentation specifications 282 

 283 

Cell of Interest

1 Away

2 Away

Window Size = 1 Window Size = 2

Cells Used in Averaging

Description Manufacturer Model Number Range
(Selected)

Accuracy

Hot Wire Anemometer TSI
Model 1750 (System)
1260A-10A (Probe)

- -

Turbine Flow Meter OMEGA FTB-938 8-130 acfm
1% Reading

0.25% Repeatability

Flow Meter Signal 
Conditioner

OMEGA FLSC-61
75-375 Hz

(350-1950 Hz)
1875-10000 Hz

0.3% FS Linearity

Turbine Flow Meter OMEGA FTB-901T 0.5-2.5 gpm
0.5% Reading

0.05% Repeatability
Flow Meter Signal 

Conditioner
OMEGA FLSC-62A

(100-1000 Hz)
1 KHz-10 KHz

0.3% FS Linearity

Pressure Transducer Cole-Parmer 68075-18 0-100 psig 0.25% FS
Pressure Transducer Cole-Parmer 68075-16 0-50 psig 0.25% FS
Pressure Transducer OMEGA PX209-030A5V 0-30 psia 0.25% FS

Thermocouple OMEGA
KMQSS-062U-6
KMQSS-062E-6

-200 to 1250 °C
Greater of

2.2 °C or  0.75%
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The Student’s-t statistic for a 95% confidence interval was taken as 1.96 for all measurements because the 284 

number of measurement samples was large (> 60), and hence a large degree of freedom. The precision 285 

error was taken as the standard deviation of the measurements, usually multiplied by the slope of the 286 

calibration curve if necessary. Table 6 lists the average relative uncertainty for the measured variables. 287 

Propagation of the uncertainties to a derived quantity, such as the fluid energies and the 288 

effectiveness, was calculated using the root-sum-square method [35]. The average relative uncertainties of 289 

the calculated quantities are summarized in Table 7. Specific uncertainties of measured and calculated 290 

quantities are presented as error bars in the results sections. 291 

 

2
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i i x x
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= ± ×  ∂ 

∑  (6) 292 

Table 6. Average relative uncertainty of measured quantities 293 

 294 

Average Relative 
Uncertainty

Air Volumetric Flow Rate (m3/s) 2%

Oil Volumetric Flow Rate (m3/s) 2%
Air Manifold Pressure (kPa) 4%
Oil Pump Pressure In (kPa) 1%

Oil Pump Pressure Out (kPa) 1%
HRU Oil Pressure In (kPa) 1%

HRU Oil Pressure Out (kPa) 1%
Manifold Temperatures (°C) 1%

HRU Air Outlet Temperature (°C) 3%
Air After Heaters Temperature (°C) 1%
Ambient Air Inlet Temperature (°C) 9%

HRU Oil Inlet Temperature (°C) 4%
HRU Oil Outlet Temperature (°C) 1%

After Flat Plate HEX Temperature (°C) 4%
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Table 7. Average relative uncertainty of calculated quantities 295 

 296 

As shown, a measurement that had a high relative uncertainty was the ambient air inlet temperature. 297 

This measurement was located at the inlet of the air blower and was used to calculate the air density near 298 

the flow meter. This seemingly high uncertainty in the measured temperature did not significantly affect 299 

the calculations because the density of air is not very sensitive to small changes in temperature. The 300 

primary contributor to the uncertainty of the oil energy was the oil mass flow rate.  301 

The positional accuracy and repeatability of the traverse stages was 23 µm and 5 µm, respectively, 302 

over the full travel range. Each stage had a linear encoder that was used in conjunction with the motor 303 

driver to position the stage precisely. The encoders had a resolution of 5 µm. Using the root-sum-square 304 

method from Figliola and Beasley [35], the uncertainty of travel was calculated as 25 µm. On average, the 305 

uncertainty of the velocity measurements was 2 m/s. The velocity uncertainty was dominated by the level 306 

of fluctuations in the readings (standard deviation). Where there was more flow and turbulence, the 307 

fluctuations were larger. 308 

5. Results and Discussions 309 

Average Relative 
Uncertainty

Average Air Temperature
[Manifold & Outlet] (°C)

1%

Average Air Specific Heat (kJ/kg-K) 0.04%
Air Inlet Density (kg/m3) 1%

Average Oil Temperature
[HRU Inlet & Outlet] (°C)

1%

Average Oil Specific Heat (kJ/kg-K) 1%
Average Oil Density (kg/m3) 0.2%

Air Mass Flow Rate (g/s) 2%
Oil Mass Flow Rate (g/s) 2%

Average Manifold Temperature (°C) 0.2%
Air Energy (kW) 2%
Oil Energy (kW) 5%

Effectiveness (%) 1%
Air Pressure Drop (kPa) 4%
Oil Pressure Drop (kPa) 2%
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5.1 Thermal-hydraulic Performance Tests 310 

For all thermal tests, the manifold thermocouples indicated a uniform air temperature distribution 311 

into the Heat Recovery Unit. Graphical results of the duty, effectiveness, air pressure drop, and oil 312 

pressure drop are presented in the following subsections. Additionally, comparisons of performance 313 

between cases with a warm oil inlet temperature (73 °C average) and a cold oil inlet temperature (53 °C 314 

average) are shown and discussed. 315 

The heat duty (overall heat transfer rate) is presented as the oil energy, reflecting the energy change 316 

per unit mass flow per unit time. Figures 12-14 display the heat duty for each constant oil flow rate. These 317 

tests were conducted with an oil inlet temperature near 73 °C, which is closest to the design point of the 318 

microchannel HRU. For a constant oil mass flow rate, higher air inlet temperature increases the amount of 319 

energy picked up by the oil. Similarly, as the air mass flow rate increases, so does the oil energy. 320 

Increasing the air inlet temperature and the air mass flow rate effectively increases the available energy 321 

for exchange. Meanwhile the increased heat duty is also attributed to improved thermal conductivity for 322 

air at higher temperature and improved average heat transfer coefficient for air at higher mass flow rates. 323 

For 40 g/s oil mass flow rate (Figure 12), the experimental results are consistently higher than the model 324 

predictions, even when considering the uncertainty. However, for the cases of 47 g/s and 55 g/s of oil 325 

flow, the experimental heat transfers match the predicted heat transfer to within the estimated uncertainty. 326 

An investigation later revealed that the calibration of the oil flow meter using the catch and weigh method 327 

may have over-estimate the oil flow rate at lower flow rates. 328 

Overall, the model predicted the heat transfer of the microchannel HRU very well. For the air 329 

energy, the model agreed with the experimental values almost exactly (less than 1% difference). Even 330 

though the geometric characterization indicates that the flow areas of the microchannels were smaller than 331 

the design, it did not significantly degrade the heat transfer performance of the Heat Recovery Unit. This 332 

is likely because the hydraulic diameters did not significantly deviate from the design. 333 
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 334 
Figure 12. Heat Duty for 40 g/s warm oil flow 335 

 336 
Figure 13. Heat Duty for 47 g/s warm oil flow 337 

 338 
Figure 14. Heat Duty for 55 g/s warm oil flow 339 

The heat transfer effectiveness for the three oil flow rates are shown in Figures 15-17. These plots 340 

also correspond to the tests with the warm oil inlet temperature. As shown, the effectiveness increased 341 
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slightly as the inlet air temperature increased. Unlike the heat duty, the effectiveness decreased when the 342 

air mass flow rate increased. The effectiveness seems to be insensitive to oil flow rate for these 343 

conditions. Nearly all of the experimental data matches the model predictions within the uncertainty. For 344 

those that do not fall within the uncertainty, the difference is minimal. The very slight discrepancy in the 345 

effectiveness for a few cases could be due to the air outlet temperature measurement. The air outlet 346 

temperature was only measured at a single location for the thermal tests. The thermocouple was placed at 347 

the center of the air exhaust plane, 1 mm away from the face of the HRU. Since it is unlikely that the flow 348 

was entirely uniform, as the model presumes, the location of the air outlet temperature measurement may 349 

influence the resulting effectiveness. In general, the results of the effectiveness confirm that the 350 

microchannel HRU performed as the model predicted. 351 

 352 
Figure 15. Effectiveness for 40 g/s warm oil flow 353 

 354 
Figure 16. Effectiveness for 47 g/s warm oil flow 355 
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 356 
Figure 17. Effectiveness for 55 g/s warm oil flow 357 

The air pressure drop is plotted versus the air mass flow rate in Figure 18. The plot shows that the air 358 

pressure drop was significantly more than what the model predicted for all the test cases. The general 359 

trend of increasing pressure drop as flow rate increases is displayed by both the experimental data and the 360 

model prediction. The pressure drop also increases for an increase in the air temperature, as expected, as 361 

the viscosity of air increases with the temperature. The factor that likely contributes the most to the 362 

discrepancy of the pressure drop is the channel cross-sectional area. Since the actual air channels are 363 

smaller than the design, significantly larger pressure drop is expected.  364 

 365 

 366 
Figure 18. Air pressure drop as function of mass flow rate 367 

The oil pressure drop is plotted versus oil inlet temperature in Figure 19. The experimental data 368 

shows that the oil pressure drop tends to decrease as the temperature increases. This is because the 369 
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viscosity of the oil is sensitive to temperature. As the oil inlet temperature increases, its viscosity 370 

decreases resulting in lower pressure drops. As the oil mass flow rate increases, the pressure drop also 371 

increases. However, the magnitude of the experimental data is significantly different from the model 372 

predictions by consistently more than a factor of two. The same explanations discussed in the previous 373 

section for the inconsistency between the experimental and model results of the air pressure drop are also 374 

valid for the oil pressure drop. The smaller cross-sectional area and shape of the oil channels likely caused 375 

the conflict between the measured data and the model prediction. In addition, the model does not account 376 

for any of the header and plenum features within the oil passages. For example, there are significant 377 

constrictions at the inlet and outlet of the oil ports. Also, the plenum area between the two passes could 378 

have contributed to significant oil pressure drops. 379 

 380 
Figure 19. Oil pressure drop as function of inlet temperature 381 

5.2 Hot Wire Flow Distribution Tests 382 

All the velocity measurements were taken with unheated air (25 °C inlet) at an air mass flow rate of 383 

27 g/s. Several plots of the horizontal and vertical velocity scans are presented in this section. Figure 20 384 

shows 3-D plots of each scan (noted the x and y directions are in different scales). The contour plots of 385 

the horizontal and vertical scans are shown in Figures 21 and 22. Velocity profiles of individual channels 386 

are distinguishable in the figures. Each figure shows that the velocity magnitudes were fairly uniform 387 

within the scan. Out of all six scans, the horizontal center scan showed more consistent and higher air 388 

velocities (approaching 20 m/s). A peculiarity of the horizontal and vertical scans is that the peak 389 
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velocities do not match where the scans should intersect. The reason why the scans do not match is likely 390 

due to the resolution of the traverses. The vertical scans were taken with a resolution of 200 µm in the x-391 

direction and 200 µm in the y-direction, whereas the horizontal scans were taken with a resolution of 200 392 

µm in the x-direction and 100 µm in the y-direction. The horizontal scans were deemed more accurate at 393 

characterizing the flow than the vertical scans because the resolution was finer.  394 

From Figures 21 and 22, it can be seen that there are some channels missing in the horizontal bottom 395 

scan. This could be due to some blockage in the channels (potentially during the diffusion brazing 396 

process). Similarly, the vertical right scan is missing a channel at the bottom. In addition, the horizontal 397 

top velocity scan and all vertical scans have depicted the poor channel alignment due to fabrication. 398 

According to the measurement, more flow is reached to the center channels than the top and bottom 399 

channels. Presumably, the diffusion bonding process may have also deformed some of the top and bottom 400 

channels and exacerbated the mis-alignment. 401 

 402 

 403 
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 404 

Figure 20. 3-D plots of horizontal and vertical velocity scans 405 

 406 

 407 

 408 

Figure 21. Contour plots of the horizontal velocity scans 409 

 410 
 411 
  412 
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 413 
Figure 22. Contour plots of the vertical velocity scan 414 

Figures 23 and 24 display the results of the center window scan and the bottom left window scan. 415 

The window scans were taken with the highest resolution of all the traversing schemes at 100 µm in both 416 

the x and y directions. The largest magnitudes collected for the window scans agree with the results of the 417 

horizontal scans, which confirms that the resolution was an issue. For the nine microchannels captured in 418 

the center window scan, their velocity profiles appear to be very uniform in the center region. Similarly, 419 

velocities appear fairly uniform in the four microchannels of the bottom left window. On the global scale, 420 

however, the flow distribution is not very uniform across all air channels, which is also identified in a 421 

full-field maximum velocity interpolation study. 422 
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Figure 23. 3-D velocity plot of the center window (left); the bottom left window (right) 423 

 Figure 24. Velocity contour plot of the center window (left); the bottom left window (right) 424 

5.3 Full Field Temperature Test 425 

A full field temperature profile was measured for one case of thermal loading. The testing conditions 426 

are tabulated in Table 8. Measurements were taken at a resolution of 1 mm in both the x and y directions, 427 

approximately 2 mm away from the HRU face. The temperature profile’s non-uniform shape (as shown in 428 

Figure 25) is indicative of the heat transfer and flow of the Heat Recovery Unit. The air along the outer 429 

regions of the channel array was cooled more than the air in the center, resulting in lower temperatures on 430 

the sides and higher temperatures in the middle. The left and right sides of the profile are not mirrored. 431 

On the left side, the temperature contours show that there was slightly more cooling than on the right. 432 

This can be attributed to the geometry of the HRU. Recall that, in this view, the header ports for the oil 433 

are located on the left side. The inlet oil starts cold on the left side then warms up as it travels to the right, 434 
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picking up heat from the air stream. Consequently, the exhaust air was cooler on the left and warmer on 435 

the right because more heat transfer occurred on the left.  436 

Table 8. Test conditions for the full field temperature profile 437 

 438 

 439 

Figure 25. Full field temperature profile for conditions close to the design  440 

6. Conclusions 441 

The study performed a comprehensive experimental characterization on the flow and heat transfer 442 

performance of a nominal (design value) 10.6 kW microchannel heat recovery unit manufactured using 443 

standard photochemical etching and diffusion bonding processes. In addition to global performance 444 

assessment in terms of heat transfer effectiveness and pressure drops, local flow and temperature 445 

measurements were performed to quantify flow distribution. Based on the results, the following 446 

conclusions are drawn from the study: 447 

    
   
    Outlet Oil Temperature (°C) 155
   

Effectiveness 0.97
Air Pressure Drop (kPa) 3
Oil Pressure Drop (kPa) 200

Heat Exchanger Performance 

Heat Transfer 
[Based on Oil Energy] (kW)

11.8

Average Outlet Air 
Temperature (°C)

72Air Mass Flow Rate (g/s) 27
Inlet Air Temperature (°C) 451

Oil Mass Flow Rate (g/s) 56    
Inlet Oil Temperature (°C) 62

   
   

  Controlled Parameters
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1) The microchannel HRU upheld the predicted thermal performance under various oil and air flow 448 

rates. The heat transfer effectiveness varied between 88% and 98%. 449 

2) For a given oil flow rate, the overall heat transfer (heat duty) increased with air flow while the 450 

effectiveness decreased with air flow. The effectiveness increased with air inlet temperature as 451 

the result of its higher thermal conductivity.  452 

3) Significant flow mal distribution was identified among the air channels according to the flow 453 

measurement using hot wire. The flow measurement also showed visible misalignment of the air 454 

channels and even flow blockage caused by the manufacturing processes.  455 

4) Significantly higher pressure drops were encountered for both air and oil channels, which can be 456 

largely attributed to reduced flow areas due to the photochemical etching process. 457 

5) The findings shed some lights in improving designs of microchannel heat exchangers, which 458 

should consider the capabilities and limitations of the manufacturing processes.  459 
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