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A Procedure for the Calculation of the
Perceived Loudness of Sonic Booms

Christian R. Bolander∗ and Douglas F. Hunsaker†
Utah State University, Logan, UT, 84322-4130

Hao Shen‡

The Boeing Company, MC S306-4030, Hazelwood, MO 63042, USA

Forrest L. Carpenter§
Texas A&M University, College Station, TX, 77843-3141, USA

Implementing a method to calculate the human ear’s perceived loudness of a sonic boom
requires consulting scattered literature with varying amounts of detail. This work describes a
comprehensive implementation of Stevens’ Mark VII in Python, called PyLdB. References to
literary works are included in enough detail so that the reader could use this work as a guide
to implement the Mark VII algorithm. The details behind the mathematics of the Mark VII
algorithm are included and PyLdB is used to calculate the perceived loudness of an example
pressure signature. PyLdB is benchmarked against a widely used and validated code by NASA
called the Loudness Code for Asymmetric Sonic Booms that also implements the Mark VII
methodology. PyLdB can be applied in conjunction with other tools to calculate the perceived
loudness of sonic booms and facilitate the optimization of aircraft to reduce loudness levels.

Nomenclature

� = amplitude
� = equivalent loudness at 80 Hz
� = band energy level
�) = total energy in a signal
� = loudness summation factor
5� = one-third octave band central frequency
��) = fast Fourier transform
5; = one-third octave band lower frequency
5B = sampling frequency
5D = one-third octave band upper frequency
!��(� = Loudness Code for Asymmetric Sonic Booms
!4@ = equivalent loudness
!ℓ = lower loudness limit
!? = sound pressure level
!D = upper loudness limit
# = total number of data points
#� = frequency band number
% = perceived loudness (PLdB)
? = pressure
?̂ = Fourier transform of pressure
?0 = ambient pressure
?> = reference pressure (20 `%0)

∗Graduate Student, Mechanical and Aerospace Engineering, 4130 Old Main Hill, AIAA Member
†Associate Professor, Mechanical and Aerospace Engineering, 4130 Old Main Hill, AIAA Senior Member
‡Acoustics Engineer, AIAA Senior Member
§Postdoctoral Researcher, Department of Aerospace Engineering, 701 H.R. Bright Bldg., Member AIAA.
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'"(� = root mean squared error
( = loudness in sones
(�� = supersonic business jet design
((� = supersonic canard design
(< = maximum loudness in sones
(C = total loudness in sones
(GG = power spectrum
C> = start of time stamp
- = equivalent loudness transformation constant
Δ 5 = frequency resolution in FFT
ΔC = time step
l = frequency (rad/s)
q = phase shift (rad)

I. Introduction
Quantifying the perceived loudness of a sound such as a sonic boom has been the subject of significant research

over the years and has applications in the optimization of supersonic aircraft design. The object of perceived loudness
research is to relate sounds to a scale that accurately represents human perception. Such a scale allows the loudness of a
sound to be measured and subsequently reduced to prevent annoyance and damage to the human ear. By calculating a
perceived loudness in decibels (PLdB) for the pressure signature generated by a shock wave, tools can be developed
for the optimization of supersonic aircraft with reduced loudness. The purpose of this paper is to summarize, outline,
and implement the traditional algorithm for calculating perceived loudness as reported by Stevens to obtain perceived
loudness results for representative supersonic aircraft geometries [1]. These results are compared to results obtained
using NASA’s Loudness Code for Asymmetric Sonic Booms (LCASB).

A sonic boom refers to the sound created when an aircraft flies in a supersonic flow regime. Supersonic flow is
strongly influenced by the presence of shock waves, which are regions over which flow properties such as pressure,
temperature, velocity, and density change rapidly [2]. The central parameter used in the calculation of perceived
loudness is pressure. The changes in pressure caused by a shock wave at altitude can propagate down to the ground
level, interacting with the human ear. An example of a propagated pressure signature measured at the ground is shown
in Fig. 1, where the pressure metric represents a change from ambient pressure, ? − ?0 or Δ ?.
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Fig. 1 Example ground pressure signature from a sonic boom.

There are a variety of methods, such as the A, B, C, and D-weightings, that attempt to estimate loudness values
using different frequency-based weighting scales. The A, B, and C-weighting scales were introduced by Fletcher and
Munson [3] using 40, 70, and 100 decibel equal-loudness contours respectively. Each scale uses a reference frequency
of 1000 Hz to scale the sound pressure level of a given noise. The D-weighting scale was created to improve upon the
A-weighting scale for measuring the noisiness of common sounds but has fallen into disuse due to a lack of perceived
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benefit over the A-weighting scale [4–6]. The A-weighting scale was quickly adopted as the standard for measuring
noise due to its emphasis on the 1 kHz to 4 kHz frequency range, which early studies showed was the range where
humans were more sensitive to hearing loss [7]. Figure 2 shows the A, B, C, and D-weighting scales plotted by frequency
with the threshold equal-loudness contour, also called the absolute threshold of hearing, plotted for reference [8].
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Fig. 2 A, B, C, and D-weighting scales compared to the threshold of hearing contour [8].

A study by Pierre [7] showed that there are significant issues with using the A-weighted frequency scale to determine
the loudness of sonic booms. The A-weighting scale has been shown to underestimate the loudness of sounds over 60
decibels, which a sonic boom can easily surpass. This occurs because the A-weighting scale weights the contribution of
low frequencies (where much of the sonic energy is located) much lower than the mid-to-high frequencies as can be
seen in Fig. 2 [9].

In contrast to these weighting scales, the procedure used by Stevens has been proven to be effective at measuring the
perceived loudness of sonic booms and is generally used as a quantitative measure for sonic boom loudness [10, 11].
Stevens’ Mark VII algorithm was designed to effectively calculate loudness for the entire human auditory range,
including the range at which a sonic boom is found [1]. To ensure that the PLdB weighting correlated well to the
loudness of a sound based on the response of the human ear, the Mark VII was based on a reference frequency near the
ear’s most sensitive region and was benchmarked against multiple weighting systems, including the A-weighting scale
[1]. Figure 3 shows the equal-sone contours used by the Mark VII to weight the band loudness values and calculate the
perceived loudness.

The Mark VII has been used extensively to predict the loudness of sonic booms [4, 11, 12]. Jackson and Leventhall
[13] showed that the Mark VII procedure developed by Stevens could be easily expressed mathematically using Fig. 3
and tabulated conversions. This allows the procedure to be applied to a computer program efficiently regardless of the
composition of the ground signature. Shepherd and Sullivan [14] outlined and applied the Mark VII algorithm to better
understand the effect of overpressure and rise time in the loudness of sonic booms. Due to the ease with which the
Mark VII is implemented into a computer program, it can be used to calculate and optimize the perceived loudness of
supersonic aircraft.

II. Traditional Procedure for Loudness Calculation
The Mark VII perceived loudness calculation can be described in three steps. The first step in the calculation

requires a determination of the one-third octave bands of the ground signature and their respective sound pressure levels.
Next, the sound pressure levels, measured in units of decibels, are converted to 3150 Hz equivalent loudness levels
using the equal-loudness contours shown in Fig. 3. Finally, the equivalent loudness values are converted to a perceived
loudness, measured in PLdB, using tabulated conversions and a power law.
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Fig. 3 Contours of equal perceived magnitude in sones used by Stevens’ Mark VII algorithm.

The frequency spectrum of any signal can be separated into bands. Octave or one-third octave frequency bands
are most commonly used, where each band is defined with a central frequency, an upper frequency limit, and a lower
frequency limit. The upper limit of any band must be equivalent to the lower limit of the adjacent frequency band.
One-third octave bands will be used in the algorithm outlined in this paper, though mention will be made of any changes
necessary to make the computations with octave bands.

The nominal and calculated one-third octave band central frequencies, upper band limits, and lower band limits for
bands from 1.0 Hz to 12.5 kHz are shown in Table 1. These can be calculated by defining a lower and upper band
central frequency, as well as a reference band about which to begin the calculations. As defined in Hayes’ work [15], the
ratio of the center frequency of any one-third octave band 8 to the next one-third octave band is given by

5�8+1/ 5�8
= 21/3 (1)

while the corresponding lower band limit is

5; = 5�/21/6 (2)

and the upper band limit is

5D = 21/6 5� (3)

The nominal values will be used throughout the present work and the calculated values were found by using Eq. (1)
with a reference value of 3150 Hz.

A pressure signature, such as the one shown in Fig. 1, has energy content in many, if not all, of the one-third octave
bands shown in Table 1. Performing a Fourier transform on the pressure signature allows the energy content in each
band to be analyzed. Since the pressure signature is generally a set of discretized points, a Fast Fourier Transform (FFT)
is performed to analyze the energy content.

The FFT considers a discrete dataset as a periodic function and therefore any dataset that does not start and end at
the same value can experience spectral leakage. Spectral leakage refers to the creation of new frequency components in
the frequency spectrum that don’t exist in the signature, but rather have leaked from neighboring frequencies. To reduce
the effect of spectral leakage in the output of the FFT, a Hanning window [17] is applied to the front and rear of the
pressure signature. This ensures that the leading and trailing edges of the pressure signature are brought back to zero
smoothly so that the periodic extension of the data and its derivatives are continuous.

Since sonic booms contain more energy on the lower ranges of the frequency spectrum, it is important that the
signature has enough data points to provide proper resolution to the FFT. As seen in Fig. 1, pressure signatures generated
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Table 1 Nominal and calculated one-third octave bands [16].

Band number Nominal Center Frequency (Hz) Calculated Center Frequency (Hz) Frequency Limits (Hz)
0 1.0 0.97 0.89 - 1.12
1 1.25 1.22 1.12 - 1.41
2 1.6 1.54 1.41 - 1.78
3 2 1.94 1.78 - 2.24
4 2.5 2.44 2.24 - 2.82
5 3.15 3.08 2.82 - 3.55
6 4 3.88 3.55 - 4.47
7 5 4.88 4.47 - 5.62
8 6.3 6.15 5.62 - 7.08
9 8 7.75 7.08 - 8.91
10 10 9.77 8.91 - 11.2
11 12.5 12.3 11.2 - 14.1
12 16 15.5 14.1 - 17.8
13 20 19.53 17.8 - 22.4
14 25 24.61 22.4 - 28.2
15 31.5 31.01 28.2 - 35.5
16 40 39.06 35.5 - 44.7
17 50 49.22 44.7 - 56.2
18 63 62.01 56.2 - 70.8
19 80 78.13 70.8 - 89.1
20 100 98.44 89.1 - 112
21 125 124 112 - 141
22 160 156 141 - 178
23 200 197 178 - 224
24 250 248 224 - 282
25 315 313 282 - 355
26 400 394 355 - 447
27 500 496 447 - 562
28 630 625 562 - 708
29 800 788 708 - 891
30 1000 992 891 - 1120
31 1250 1250 1120 - 1410
32 1600 1575 1410 - 1780
33 2000 1984 1780 - 2240
34 2500 2500 2240 - 2820
35 3150 3150 2820 - 3550
36 4000 3969 3550 - 4470
37 5000 5000 4470 - 5620
38 6300 6300 5620 - 7080
39 8000 7938 7080 - 8910
40 10000 10000 8910 - 11200
41 12500 12600 11200 - 14100
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from sonic booms have a very short duration, which requires a high sampling frequency to properly describe the
signature. The number of discrete frequencies resolved in an FFT is equal to half of the total number of data points,
and the FFT has a maximum frequency value equal to half of the sampling frequency. The spacing between resolved
frequencies in an FFT can be described by

Δ 5 = 5B/# (4)

which is controlled directly by the duration of the signal and is generally predetermined. In signal processing,
zero-padding is a method often used to provide increased resolution to the frequency bins in an FFT. By adding banks of
zeros to both sides of the signal, the number of resolved frequencies in the FFT is increased by increasing # while
keeping 5B constant. This allows the energy content in the lower frequency bands to be measured more accurately.

The output of the FFT gives a summation of the Fourier coefficients in both the real and imaginary space. Often this
information is viewed in terms of a power spectral density, which shows the relative power of each discretized frequency
in the signal. The FFT is transformed to the power spectral density through

(GG = |��)2 | ΔC2 (5)

where ΔC is the time step in the pressure signature. Figure 4 shows the power spectral density as a function of frequency
for the ground signature in Fig. 1. The spectral power of a pressure signature is divided between positive and negative
frequencies by the FFT. By multiplying the power of the nonzero, positive frequencies by 2, a one-sided power spectrum
is obtained, which can be used in conjunction with the frequency bands to calculate the energy in the pressure signature.
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Fig. 4 Power spectral density as a function of frequency.

Parseval’s theorem [18] allows for the energy content to be calculated using the power spectral density [19].
Parseval’s theorem in the context of this problem says that for any given waveform, ?(C), starting at C> = 0, the energy of
the wave is proportional to

�) =

∫ ∞

0
|?(C) |2 dC (6)

which is equal to the integral of the Fourier transform over the positive frequency domain,

�) =

∫ ∞

0
| ?̂( 5 ) |2 d 5 (7)

Since we are concerned with the energy content contained within each one-third octave frequency band, Eq. (7) can be
separated by the additive properties of integration, and the energy in each band can be calculated as

� =

∫ 5D8

5;8

| ?̂( 5 ) |2 d 5 (8)

6



Equation (8) can be solved for the discrete pressure signature by using a numerical integration method. To account for
all of the energy within each one-third octave band, a linear interpolation is performed to produce an estimate for the
spectral power at each of the one-third octave band frequency limits, 5; and 5D . This ensures that there is a value of (GG
that can be used in the integration for each of the band limits.

The sound pressure level for a given frequency band can be found using

!? = 10 log10

(
�/?2

>

)
− 3 (9)

where the reference pressure ?> is defined to be the lower threshold of human hearing with a value of 20`Pa. As there
is a discrepancy between the units in Eqs. (7) and (9), it is necessary to divide the band energy by some reference
time. According to Johnson and Sullivan, this reference time is 0.07 s. This is defined as the critical time of the
human auditory system, and represents the time for the auditory system to fully respond to acoustic stimuli based on
experimental data [12].

Two assumptions are made when subtracting the 3 decibels shown in Eq. (9). It is assumed that the majority of the
energy in the signature is contained in the two pulses at the front and rear of the waveform and that the time separating
these pulses is greater than the critical time of the auditory system. Making these assumptions means that the human ear
will hear two distinct events of equal loudness over the duration of this pressure signature. Since the definition of the
total energy in Eq. (6) is taken over the entire waveform, not just a single pulse, that energy must be divided equally into
the two events. In this context, the sound pressure level can be described using

!? = 10 log10

(
�/(2 ?2

>)
)
= 10 log10

(
�/?2

>

)
− 10 log10 (2) (10)

which is very nearly equivalent to Eq. (9).
Using the values of !? for each of the frequency bands, Stevens’ Mark VII method can be implemented to find the

perceived loudness value for the pressure signature. The !? values (in decibels) for each of the frequency bands are
first transformed to an equivalent loudness value with reference to the 3150 Hz frequency band. The 3150 Hz band is
chosen as the reference band for the purpose of better approximating the perception of sound by the human ear [1].
The transformations from sound pressure level, !?, to an equivalent loudness, !4@ , for each of the one-third octave
frequency bands are given in Jackson’s work [13], which is reproduced in Table 2. The formulation of the equations
referenced in this table can be found in Appendix A.

After calculating the !4@ for each frequency band using the transformations in Table 2, a second transformation is
performed from loudness in decibels to loudness in sones. A sone is defined by Stevens as the perceived magnitude of
the standard 3150 Hz sound with an !? of 32 decibels [1]. Each of the equivalent loudness values are transformed from
decibels to sones using a table provided by Jackson [13], which is included for convenience in Table B.1 of Appendix B.
Values of !4@ may be linearly interpolated to find a value in sones.

After the value in sones for each of the frequency bands is found, the total loudness is found using

(C = (< + �
(
#∑
8=1

(8 − (<

)
(11)

where (8 is the equivalent loudness in sones of each frequency band and (< is the maximum sone value in all of
the frequency bands. Stevens calls � the summation factor, and explains that it is related to the masking and mutual
inhibition of each band with its adjacent bands [1]. The values for � can be found using (< in Table B.2 of Appendix B.
It should be noted that if an octave band analysis has been used up to this point, 4.9 dB should be subtracted from the
loudness of the band with the highest sone value and a new sone value calculated for that band. The value of � should
then be doubled in Eq. (11) [13].

Finally, a perceived loudness, %, in PLdB can be calculated using

(C = 2(%−32)/9 (12)
which can be rearranged to yield

% = 32 + 9 log2 ((C ) (13)
This procedure can be used in an algorithm to calculate the perceived loudness of any pressure signature. The
implementation of this algorithm will be covered in the following section on a specific pressure signature, followed by a
validation of the results.
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Table 2 Equivalent loudness transformations for a 3150 Hz reference frequency [13]. All equations are
derived in Appendix A.

Band number Frequency 5� Using band number, #� Using band frequency, 5�
#� (Hz) and corresponding loudness, !? and corresponding loudness, !?
0 1 Find � from Eq. (A.12) Find � from Eq. (A.11)

!? = � and # = 19 !? = �, 5 = 80, and - = 10.5
to to !ℓ = 86.5 dB and !D = 131.5 dB !ℓ = 86.5 dB and !D = 131.5 dB

18 63 !4@ =

{ Eq.(A.6), � < !ℓ

Eq.(A.8), !ℓ ≤ � ≤ !D
Eq.(A.10), � > !D

!4@ =

{ Eq.(A.5), � < !ℓ

Eq.(A.7), !ℓ ≤ � ≤ !D
Eq.(A.9), � > !D

19 80 !ℓ = 86.5 dB and !D = 131.5 dB !ℓ = 86.5 dB and !D = 131.5 dB

!4@ =

{ Eq.(A.6), !? < !ℓ

Eq.(A.8), !ℓ ≤ !? ≤ !D
Eq.(A.10), !? > !D

!4@ =

{ Eq.(A.5), !? < !ℓ

Eq.(A.7), !ℓ ≤ !? ≤ !D
Eq.(A.9), !? > !D

20 100 Same as previous, with !; and !D
to to Same as previous, with !; and !D and X given by:
25 315 from Table A.1 5 (Hz) 100 125 160 200 250 315

-(dB) 9.0 7.5 6.0 4.5 3.0 1.5
26 to 31 400 to 1250 Use Eq. (A.1) with - = 8 Use Eq. (A.1) with - = 8

32 1600 Use Eq. (A.2) with - given by:
to to Use Eq. (A.3) 5 (kHz) 1.6 2.0 2.5
34 2500 -(dB) 6.0 4.0 2.0

35 to 39 3150 to 8000 !4@ = !? dB !4@ = !? dB
Use Eq. (A.1) with:

Above 39 Above 8000 Use Eq. (A.2) - = 4 dB for 5 = 10 kHz
and - = 8 dB for 5 = 12.5 kHz
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III. An Example Perceived Loudness Calculation
An example calculation of perceived loudness will be performed with the pressure signature shown in Fig. 5.

One-third octave bands were defined with central frequencies from 1.0 Hz to 12.5 kHz. A Hanning function was used
to window to the first and last 800 points of the signature to bring the trailing edge back to zero smoothly. It should
be noted that the number of points used in the Hanning window has a significant effect on the PLdB calculation, and
should be varied with caution.
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Fig. 5 Ground signature used in example calculations.

The 36,000-point pressure signature was zero-padded with 144,000 points on each end of the signal to produce a
frequency resolution of Δ 5 = 0.53 Hz in the FFT. The one-sided power spectrum shown in Fig. 6 was found using
the FFT performed on the zero-padded, windowed signal. Values of (GG were found at each of the frequency band
boundaries using linear interpolation to estimate the total power in the pressure signature. The energy content of each
frequency band was then found using Simpson’s rule for the integration [20] in Eq. (7).
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Fig. 6 Power spectral density for the example signature in Fig. 5.

At this point, a check of Parseval’s theorem, described in Eq. (6) and Eq. (7), can be made to ensure that all of
the energy in the signature was accounted for properly. The value of the integral in Eq. (6) is equal to 0.004123274,
while the value of the energy integral, Eq. (7) yields 0.004123261 for this pressure signature. The 0.0003 % difference
between these two values can be accounted for by recognizing estimation made at the frequency boundaries. In addition,
the numerical approximation being made by the integration could yield this kind of error. Due to these considerations,
Parseval’s theorem dictates that the energy of the wave before and after the Fourier transform remains the same, and that
all the energy in the wave has been accounted for in the loudness calculations.
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The sound pressure levels for each of the one-third octave bands is found by using the energy in each band in Eq.
(9). The resulting loudness in decibels is plotted in Fig. 7. Using the steps contained in Table 2, 3150 Hz equivalent
loudness levels can be found, as shown in Fig. 8, and converted to sones using Table B.1. The loudness of each band in
sones is shown in Fig. 9. The maximum value in sones, 14.75 for this signature, is then used in conjunction with Table
B.2 to produce a value for � of 0.2. � is then used in Eq. (11) to find the total loudness, (C , which is 42.35 sones.
Finally, the perceived loudness is calculated to be 80.64 PLdB using Eq. (13).
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Fig. 7 !? values for each one-third octave band.
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Fig. 8 !4@ based on a 3150 Hz reference frequency for each one-third octave band.
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IV. Results and Validation
The specific implementation of the described method used in this work was written in the Python programming

language and is called PyLdB∗. To validate PyLdB, the calculated PLdB is compared with the results generated by
NASA’s LCASB program, another perceived loudness calculator using Stevens’ methodology. Table 3 shows the
PLdB values generated by PyLdB and LCASB for four ground signatures from reported supersonic geometries. The
geometries include the NASA 25D concept geometry [21], the Lockheed Martin N+2 design [22], a supersonic business
jet design (SBJ) [23], and a supersonic canard design (SSC) [24].

Table 3 PLdB values generated by PyLdB and LCASB for several ground signatures.

Ground Signature PyLdB LCASB ΔPLdB % Difference
NASA 25D 78.06 78.09 0.03 0.04%

Lockheed Martin N+2 80.08 80.14 0.06 0.08%
SBJ 97.08 97.10 0.02 0.02%
SSC 99.30 99.33 0.03 0.03%

Table 3 compares the resulting perceived loudness calculated by PyLdB and LCASB and shows that the loudness
calculated by PyLdB fit very closely with those from LCASB. The magnitude of the percent difference between the
two programs indicate that these errors are likely outside of the range to which the formulations in Appendix A are
accurate. To validate PyLdB over a larger domain, a set of 10,000 N-wave-type signatures were generated with peak
overpressures varying from 0.0 to 0.7 lb/ft2 and rise times from 0.0 to 0.2 s. The overpressure and rise time are defined
in Fig. 10 on an N-wave pressure signature. The contour in Fig. 11 represents the error between the loudness calculated
by PyLdB and the loudness calculated by LCASB for the domain covered by the 10,000 generated signatures. Note that
the maximum error is approximately 0.20 PLdB.

Since common ground signatures are not perfect N-waves, a set of more realistic signatures were generated and
tested in the same domain as the N-wave signatures. These signatures were created using an N-wave with a defined
overpressure and rise time that was supplemented by five sine waves of the form

?(C) = � sin (lC + q) (14)

where � is the amplitude, l is the frequency of oscillation and q is the phase shift of the signal. This produced a ground
signature like that shown in Fig. 12. The purpose of generating these signatures was not to create realistic ground
signatures, but rather to subject PyLdB to a wide range of signatures and validate the results of PyLdB to those of
LCASB. The five sine waves contained five evenly-spaced values for each of the parameters. The values of � ranged

∗https://github.com/usuaero/PyLdB
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Fig. 11 Contour plot of the error between PyLdB and LCASB for N-waves.

from 0.01 to 0.03 lb/ft2, the values of l ranged from 10 to 75 Hz, and the values of q ranged from 0.01 to 0.1 rad.
Figure 13 shows the error between PyLdB and LCASB of the sine-supplemented signatures. Note that the maximum
error is approximately 0.7 PLdB.

Figures 11 and 13 show error values on the same order of magnitude as those reported in Table 3. This seems to
indicate that there are discrepancies between the implementation of the Mark VII algorithm between the two programs,
though the magnitude of the error is so low that there should be little cause for concern in the majority of applications.

To further investigate the error between PyLdB and LCASB, a series of tests were run to evaluate if the source of
error could come from the approach taken by the two codes for windowing. The points used in the Hanning window
were varied on both the N-waves and sine-supplemented N-waves. The overpressure was varied as before with the rise
time set at a value of 100 ms. The error results are shown in Figs. 14 and 15 for the N-waves and sine-supplemented
N-waves respectively.

Figures 14 and 15 show errors that are on the same order of magnitude as those shown in Figs. 11 and 13, indicating
that the windowing is unlikely to be a significant cause of error between PyLdB and LCASB. The errors found in these
studies fall within an acceptable range when considered alongside the precision inherent in the equations used. For
this reason, the implementation discussed in this work can be considered an accurate model of perceived loudness
calculation when compared to LCASB.
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Fig. 13 Contour plot of the error between PyLdB and LCASB for sine-supplemented N-waves.
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V. Conclusion
Stevens’ Mark VII algorithm for the calculation of the perceived loudness from a pressure signature has been

implemented and tested. Other methods, such as A, B, C, and D-weighting scales were discussed and shown to be less
effective measuring devices for the loudness of sonic booms. Stevens’ Mark VII procedure can be used in algorithmic
form to calculate the PLdB of a sonic boom from a given pressure signature.

The Mark VII was implemented by first finding the nominal one-third octave band frequency limits. The pressure
signature was then windowed using a Hanning window to reduce spectral leakage and zero-padded on the front and rear
of the signature to increase the resolution of the FFT. The energy in each one-third octave band was calculated using
Parseval’s theorem, and a sound pressure level for each band was obtained. These sound pressure levels were converted
into a perceived loudness using the perceived loudness calculations from Stevens’ Mark VII algorithm.

An example was shown for a specific signature, which covered all of the steps in the Mark VII algorithm. The
implementation of Stevens’ algorithm used in this paper is called PyLdB. To validate the results obtained from PyLdB,
the PLdB values were compared to those computed by the NASA LCASB program. Results were gathered using
pressure signatures from four representative supersonic geometries. The difference in PLdB for all of the geometries
was less than 0.1 %.

To investigate possible sources of error, N-wave signatures and sine-wave supplemented N-wave signatures were
generated across a domain. Results showed that neither the shape of the N-wave or the way in which the signals
were windowed had a marked effect on the error between PyLdB and LCASB. Future investigations on the effect of
windowing and zero-padding could explain these results, though it is likely that the algorithm followed in the application
of the Mark VII does not have the precision necessary to distinguish these errors.

The purpose of this work was to bring together all of the information necessary to implement Stevens’ Mark VII
procedure in an algorithmic format. This paper has outlined the implementation of the Mark VII algorithm from start to
finish, with details behind the algorithm included. The implementation, PyLdB, has been validated using a LCASB, a
benchmarked and widely accepted program, and can be used to determine the perceived loudness of a pressure signature.

Appendix A. Determining Equivalent Loudness Values
The method used to determine equivalent 3150 Hz loudness values in accordance with Table 2 is outlined here. The

equations below relate directly to the equal-sone contours shown in Fig. 3. Additional details about the derivation of
these equations can be found in Jackson and Leventhall’s work [13].

For band frequencies above 8 kHz, the equivalent loudness can be found using

!4@ = (!? − -) dB (A.1)

with - taking values of 4 and 8 for the 10 and 12.5 kHz bands respectively. If working in band numbers, !4@ can be
described using

!4@ = !? + 4(39 − #�) dB (A.2)
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where #� is the band number.
Frequencies from 3.15 kHz to 8 kHz and band numbers from 30 to 35 have an equivalent 3150 Hz loudness equal to

the loudness value found using Eq. (9).
For frequencies from 1.25 kHz to 3.15 kHz, Eq. (A.1) can be used, with - taking values of 6, 4, and 2 dB for the

1.6, 2, and 2.5 kHz bands respectively. Eq. (A.2) must be modified to accommodate band numbers 31 to 35, and can be
written as

!4@ = !? − 2(35 − #�) dB (A.3)

For frequencies from 400 Hz to 2.5 kHz, with corresponding band numbers of 26 to 31, Eq. (A.1) can be used with
- set equal to 8.0.

The frequencies below 400 Hz in Fig. 3 converge logarithmically to a point that depends on the !? found in the
band. Frequencies from 80 Hz to 400 Hz converge to 115 dB at 1 Hz, and can be split into three ranges based on the
value of !? found in that band. The !? limits corresponding to each band in this range can be seen in Table A.1.

Table A.1 Loudness limits for one-third octave bands from 80 Hz to 400 Hz used in calculating !4@ .

5� (Hz) !ℓ (dB) !D (dB)
80 86.5 131.5
100 85.0 130.0
125 83.5 128.5
160 82.0 127.0
200 80.5 125.5
250 79.0 124.0
315 77.5 122.5
400 76.0 121.0

If the value of !? for a given band in this range is less than the lower limit in Table A.1, then the equivalent loudness
can be found using

!4@ = (� − 8) dB (A.4)

where � is defined as
� = 115 −

(115 − !?) log10 (400)
log10 ( 5� )

dB (A.5)

using central frequency values, and

� = 115 − 26
(115 − !?)

#�
dB (A.6)

using band numbers. � represents the equivalent loudness at 400 Hz, which can then be converted to an equivalent
loudness at 3150 Hz using Eq. (A.4).

If the value of !? lies between the lower and upper limit described, the equal-sone contours have a constant slope
approaching 1 Hz, and � is described using

� = (!? − -) dB (A.7)

with - taking values of 1.5, 3.0, 4.5, 6.0, 7.5, 9.0, and 10.5 for the 315, 250, 200, 160, 100, and 80 Hz bands respectively.
In terms of band numbers, for this range, � is defined as

� = !? − 1.5 (26 − #�) dB (A.8)

For values of !? greater than the upper limit, the equal-sone contours converge to 160 dB logarithmically, and � is
calculated

� = 160 −
(160 − !?) log10 (400)

log10 ( 5� )
dB (A.9)

using frequencies, and

� = 160 − 26
(160 − !?)

#�
dB (A.10)
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using band numbers.
For frequencies less than 80 Hz, an additional conversion factor, � must be utilized to find the equivlent 3150 Hz

loudness values. � represents the equivalent loudness at 80 Hz and is calculated as

� = 160 −
(160 − !?) log10 (80)

log10 ( 5� )
dB (A.11)

using frequencies, and

� = 160 − 19
(160 − !?)

#�
dB (A.12)

using band numbers. Using the limits shown in Table A.1 for the 80 Hz band, and setting !? equal to � and 5 equal to
80, a value of � can be found depending on the value of !? . � can then be used with - equal to 10.5 to find the value
of !4@ .
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Appendix B. Sones Conversion Tables

Table B.1 Conversion from !4@ to loudness in sones.

!4@ (dB) ( (sones) !4@ (dB) ( (sones) !4@ (dB) ( (sones) !4@ (dB) ( (sones)
1 0.079 36 1.36 71 20.2 106 299
2 0.087 37 1.47 72 21.8 107 323
3 0.097 38 1.59 73 23.5 108 348
4 0.107 39 1.71 74 25.4 109 376
5 0.118 40 1.85 75 27.4 110 406
6 0.129 41 2.00 76 29.6 111 439
7 0.141 42 2.16 77 32.0 112 474
8 0.153 43 2.33 78 34.6 113 512
9 0.166 44 2.52 79 37.3 114 553
10 0.181 45 2.72 80 40.3 115 597
11 0.196 46 2.94 81 43.5 116 645
12 0.212 47 3.18 82 47.0 117 697
13 0.230 48 3.43 83 50.8 118 752
14 0.248 49 3.70 84 54.9 119 813
15 0.269 50 4.00 85 59.3 120 878
16 0.290 51 4.32 86 64.0 121 948
17 0.314 52 4.67 87 69.1 122 1024
18 0.339 53 5.04 88 74.7 123 1106
19 0.367 54 5.44 89 80.6 124 1194
20 0.396 55 5.88 90 87.1 125 1290
21 0.428 56 6.35 91 94.1 126 1393
22 0.463 57 6.86 92 102 127 1505
23 0.500 58 7.41 93 110 128 1625
24 0.540 59 8.00 94 119 129 1756
25 0.583 60 8.64 95 128 130 1896
26 0.630 61 9.33 96 138 131 2048
27 0.680 62 10.1 97 149 132 2212
28 0.735 63 10.9 98 161 133 2389
29 0.794 64 11.8 99 174 134 2580
30 0.857 65 12.7 100 188 135 2787
31 0.926 66 13.7 101 203 136 3010
32 1.00 67 14.8 102 219 137 3251
33 1.08 68 16.0 103 237 138 3511
34 1.17 69 17.3 104 256 139 3792
35 1.26 70 18.7 105 276 140 4096
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Table B.2 Conversion from (< to a summation factor �.

(< (sones) � (< (sones) � (< (sones) �

0.181 0.100 2.16 0.308 25.4 0.190
0.196 0.122 2.33 0.304 27.4 0.190
0.212 0.140 2.52 0.300 29.6 0.190
0.230 0.158 2.72 0.296 32.0 0.190
0.248 0.174 2.94 0.292 34.6 0.190
0.269 0.187 3.18 0.288 37.3 0.190
0.290 0.200 3.43 0.284 40.3 0.191
0.314 0.212 3.70 0.279 43.5 0.191
0.339 0.222 4.00 0.275 47.0 0.192
0.367 0.232 4.32 0.270 50.8 0.193
0.396 0.241 4.67 0.266 54.9 0.194
0.428 0.250 5.04 0.262 59.3 0.195
0.463 0.259 5.44 0.258 64.0 0.197
0.500 0.267 5.88 0.253 69.1 O.199
0.540 0.274 6.35 0.248 74.7 0.201
0.583 0.281 6.86 0.244 80.6 0.203
0.630 0.287 7.41 0.240 87.1 0.205
0.680 0.293 8.00 0.235 94.1 0.208
0.735 0.298 8.64 0.230 102 0.210
0.794 0.303 9.33 0.226 110 0.212
0.857 0.308 10.1 0.222 119 0.215
0.926 0.312 10.9 0.217 128 0.217
1.00 0.316 11.8 0.212 138 0.219
1.08 0.319 12.7 0.208 149 0.221
1.17 0.320 13.7 0.204 161 0.223
1.26 0.322 14.8 0.200 174 0.224
1.36 0.322 16.0 0.197 188 0.225
1.47 0.320 17.3 0.195 203 0.226
1.59 0.319 18.7 0.194 219 0.227
1.72 0.317 20.2 0.193 237 0.227
1.85 0.314 21.8 0.192 256 0.227
2.00 0.311 23.5 0.191
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