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Abstract

We present a highly-flexible Schwarz overlapping framework for simulating turbulent fluid/thermal transport

in complex domains. The approach is based on a variant of the Schwarz alternating method in which the

solution is advanced in parallel in separate overlapping subdomains. In each domain, the governing equa-

tions are discretized with an efficient high-order spectral element method (SEM). At each step, subdomain

boundary data are determined by interpolating from the overlapping region of adjacent subdomains. The

data are either lagged in time or extrapolated to higher-order temporal accuracy using a novel stabilized

predictor-corrector algorithm. Matrix stability analysis is used to determine the optimal number of corrector

iterations. Stability and accuracy are further improved with an optimal mass flux correction to guarantee

mass conservation throughout the domain. The method supports an arbitrary number of subdomains. A

new multirate time-stepping scheme is developed (a first for incompressible flow simulations) that allows the

underlying equations to be advanced with time-step sizes varying as much as an order-of-magnitude between

adjacent domains. All the developments maintain the third-order temporal convergence and exponential

convergence of the originating SEM framework. This dissertation also presents a mesh optimizer that has

been specifically designed for meshes generated for turbulent flow problems. The optimizer supports surface

mesh improvement, which minimizes geometrical approximation errors. The smoother is shown to reduce

the computational cost of numerical calculations by as much as 40%. Numerous examples illustrate the

effectiveness of these new technologies for analyzing challenging turbulence problems that were previously

infeasible.
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Kanika Narang. Without Kanika’s love and support, I would not have been able to pursue Ph.D. with as

much zeal and vigor as I did.

iv



Table of Contents

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Nonconforming Schwarz methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Overlapping Schwarz Method for Solving PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3.1 Interdomain boundary data interpolation . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.2 Spatial accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.3 Temporal accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.4 Global integration and distance function generator . . . . . . . . . . . . . . . . . . . . 13
1.3.5 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.6 Multirate time-stepping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Mesh optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5 Organization and Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.6 Use of Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Chapter 2 SEM for the Incompressible Navier-Stokes Equations . . . . . . . . . . . . . . 19
2.1 Spectral Element Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.1 Spectral element mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.2 Weighted residual method for SEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.1.3 Function continuity in spectral element mesh . . . . . . . . . . . . . . . . . . . . . . . 22
2.1.4 Linear system resulting from the variational form . . . . . . . . . . . . . . . . . . . . . 24
2.1.5 Parallel Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Incompressible Navier-Stokes Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2.1 Spatial & temporal discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.2 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.3 Summary of Navier-Stokes time advancement . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Spatial and Temporal Convergence of SEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Chapter 3 Schwarz-SEM for the Incompressible Navier-Stokes Equations . . . . . . . . . 37
3.1 Schwarz-SEM for Navier-Stokes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Interdomain Boundary Data Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 High-order interpolation in a single conforming mesh using findpts . . . . . . . . . . . 41
3.2.2 findpts for Schwarz-SEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.3 Improvement to high-order interpolation in findpts eval . . . . . . . . . . . . . . . . . 43

3.3 Multidomain Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Distance Field Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5 Validating the Schwarz-SEM Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

v



Chapter 4 Mass Conservation and Fixed Flow Rate through Overlapping Subdomains . 53
4.1 Mass Conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Fixed Flow Rate through Overlapping Subdomains . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3 Integration on Subdomains with Arbitrary Overlap . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.1 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Chapter 5 Stability of the Predictor-Corrector Scheme in the Schwarz-SEM Framework 69
5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1.1 Unsteady diffusion with a monodomain grid . . . . . . . . . . . . . . . . . . . . . . . . 70
5.1.2 Unsteady diffusion with overlapping grids . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Stability Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.1 Effect of increasing subdomain overlap . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2.2 Effect of increasing grid resolution while keeping overlap fixed . . . . . . . . . . . . . . 75

5.3 Discussion on Stability for Odd- and Even-Corrector Iterations . . . . . . . . . . . . . . . . . 79
5.3.1 Predictor-corrector scheme for ODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.2 Similarity in stability behavior of high-order predictor-corrector methods for ODEs

and PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.4 Improving the Stability for Even-Corrector Iterations . . . . . . . . . . . . . . . . . . . . . . . 83

5.4.1 Stability of the improved predictor-corrector scheme for an ODE . . . . . . . . . . . . 83
5.4.2 Stability of the improved predictor-corrector scheme for the unsteady heat equation . 85

5.5 Validation of the Improved Predictor-Corrector Scheme with Schwarz-SEM Framework . . . . 86
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Chapter 6 Multirate Time-Stepping Scheme for the Schwarz-SEM framework . . . . . . 89
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.3.1 Multirate time-stepping for arbitrary time-step ratio . . . . . . . . . . . . . . . . . . . 97
6.4 Stability of the multirate time-stepping scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.4.1 Propagation matrix for stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.4.2 Stability results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.5 Validation with Schwarz-SEM Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.5.1 Stability Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.5.2 Spatial and Temporal Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Chapter 7 Mesh Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.2 Key Tools for Mesh Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2.1 Smoothing on lower polynomial order . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.2.2 Weight function for boundary layer preservation . . . . . . . . . . . . . . . . . . . . . 114
7.2.3 Surface smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.3 Pressure Solve and Conditioning of the Resulting System . . . . . . . . . . . . . . . . . . . . 118
7.4 Mesh smoothing strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.4.1 Laplacian smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.4.2 Constrained optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.4.3 Mesh smoothing algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

vi



Chapter 8 Timing & Parallel Scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8.1 Impact of Corrector Iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
8.2 Impact of Multirate Time-Stepping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
8.3 Impact of Changes to Interpolation via findpts eval . . . . . . . . . . . . . . . . . . . . . . . . 130
8.4 Strong Scaling for the Schwarz-SEM Framework . . . . . . . . . . . . . . . . . . . . . . . . . 131
8.5 Strong Scaling for Mesh Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
8.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

Chapter 9 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
9.1 Vortex Breakdown in a Canister . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
9.2 Turbulent Channel Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
9.3 Heat Transfer Enhancement in a Pipe with Wire-Coil Insert . . . . . . . . . . . . . . . . . . . 140

9.3.1 Wire-coil insert in a circular pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
9.3.2 Wire-coil insert in a noncircular pipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

9.4 Rotating nonspherical Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
9.4.1 Rotating spherical particle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
9.4.2 Nonspherical particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
9.4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

9.5 Denticles on Shark Skin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
9.5.1 Problem setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
9.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

9.6 Oscillatory Boundary Layer Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
9.6.1 Problem setup and monodomain SEM results . . . . . . . . . . . . . . . . . . . . . . . 178
9.6.2 Schwarz-SEM results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

9.7 Multirate Time-Stepping for Modeling a Thermally-Buoyant Plume . . . . . . . . . . . . . . 183
9.7.1 Governing equations and problem setup . . . . . . . . . . . . . . . . . . . . . . . . . . 184
9.7.2 Motivation for multirate time-stepping . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
9.7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
9.7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

9.8 Flow over a Wall-Mounted Cube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
9.8.1 Problem setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
9.8.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

9.9 Mesh Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
9.9.1 Flow past a half-cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
9.9.2 Low pressure turbine blade . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
9.9.3 Flow over a cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
9.9.4 Boundary layer flow over a cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
9.9.5 Flow over a hemi-sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
9.9.6 Piston cylinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
9.9.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

Chapter 10 Conclusion & Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
10.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
10.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

Appendix A Impact of Grid Stretching on the Spatial Convergence in SEM . . . . . . . 206

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

vii



Chapter 1

Introduction

Numerical solution of partial differential equations (PDEs) is central to much of today’s engineering anal-

ysis and scientific inquiry. Techniques such as the finite element method (FEM), the finite volume method

(FVM), and the spectral element method (SEM) are used to approximate solutions of PDEs on a collection

of volumes or elements whose union constitutes a mesh that covers the entire computational domain, Ω.

Construction of an optimal mesh (grid) is not a trivial task and often becomes a bottleneck for complex

domains. Automatic mesh generation remains an open problem for certain classes of elements, particularly

hexahedrons (hex) in 3D, which are otherwise attractive from an accuracy and performance standpoint, espe-

cially for high-order methods such as the SEM. In this dissertation, we present SEM-based technologies that

enable high-order computational fluid dynamics (CFD) in complex domains by circumventing constraints

imposed by traditional mesh construction approaches. The key components of this dissertation are SEM-

based overlapping Schwarz (OS) methods (which form the majority of the work) and mesh optimization.

We develop these technologies with emphasis on stability, accuracy, and parallel scalability, and demonstrate

the potential of these methods on several challenging fluid-thermal applications.

1.1 Motivation

The primary requirement for numerical simulations, irrespective of the method, is a discretization. For

simulations based on PDEs, the discretization is typically associated with a mesh, which indicates nodal

placements for function values, whether used directly in the finite difference (FD) approximations of deriva-

tives or as nodal points associated with basis functions as in the case of the FEM and SEM. When solving the

PDE of interest in a domain Ω, the goal is to generate a mesh that has the minimum number of grid points

needed to capture the physics of the problem and to ensure that the mesh is free of regions (e.g., elements,

or patches of elements in the FEM and SEM) that adversely impact the performance of the PDE solver

(e.g., elements with high skewness or aspect ratio). Typically, meshes generated by automated methods do

not satisfy either of these criteria and generating an optimal mesh can be time-consuming.
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Figure 1.1: Velocity magnitude contours for flow over a bar twisted in the streamwise direction.

To illustrate some of the challenges in generating computational meshes for three-dimensional domains,

we consider the deceptively simple geometry of Fig. 1.1, which shows a twisted ribbon of a rectangular

cross-section in the interior of a square duct. If one simply had a square duct or just a twisted ribbon in

isolation, it would be possible to generate a 3D mesh for these components by building a corresponding 2D

mesh and extruding (and twisting, in the case of the ribbon) the 2D mesh. The presence of the sharp corners

on each of the components (the ribbon and the duct), however, prevents the use of such a straightforward

approach.

The essential difficulty with the extrusion approach is obvious when we consider a two-dimensional time

analogy. Consider a 2D domain in which a rectangular rotor is turning within a square domain, as illustrated

in Fig. 1.2. If we discretize the fluid (color) region with an arbitrary Lagrangian-Eulerian (ALE) formulation

in which the mesh is allowed to deform, we can support only a small amount of rotation before the mesh

becomes entangled or is torn apart. Because of the corners, some set of the mesh vertices are pinned to the

duct walls, while others are pinned to the rotor. As the rotor spins, the edge graphs that connect the rotor

to the wall must get longer and longer, leading to mesh entanglement.

The most common approach to meshing rotating machinery parts such as the toy 2D rotor of Fig. 1.2(a)

is to use rotating meshes with nonconforming interfaces, as illustrated by Fig. 1.2(b). Here, we show a pair of

overlapping meshes in which the outer mesh has a circular cut-out to guarantee that it will not intersect the

rotor at any angle. An alternative approach is to have a pair of meshes that share a sliding circular interface,

i.e., in d space dimensions, they have an interface of dimension d − 1 that precisely matches each mesh in

shape, but not necessarily in the number of mesh elements. The overlapping approach, which we pursue in

this thesis, allows more flexibility in defining the individual meshes because the shared boundaries of the

subdomains (here illustrated in red and black) have only minimal requirements concerning the clearance of

2



Figure 1.2: Left to right: (a) Velocity magnitude contours for a rotating bar, (b) overlapping 2D spectral
element meshes, and (c) wire-coil insert inside a noncircular pipe.

the parts (e.g., the rotor) and the amount of overlap.

The relevance of our 2D example to the 3D configuration of Fig. 1.1 is that the axial direction in the

3D case is completely analogous to time in the rotating 2D case. Clearly, any attempt to extrude (or

sweep) a valid 2D mesh to cover the 3D domain of Fig. 1.1 is going to suffer the same mesh tearing or

entanglement issues that would occur with the ALE approach to the rotating machinery problem. By using

a nonconforming approach, however, we can use a pair of simple extruded (and twisted) meshes to cover

the domain in Fig. 1.1 . In fact, the results of Fig. 1.1 were generated using precisely this approach. The

simple mesh pairs of Fig. 1.2(b) were swept in the axial direction and the inner mesh was twisted. A similar

approach was used to mesh the geometry of Fig. 1.2(c), which shows the temperature distribution for flow

through a U-channel with a wire coil insert. This challenging problem is based on an actual application at

Argonne National Laboratory’s advanced photon source and was not tractable before the development of the

Schwarz methods presented in this thesis. We describe this problem and other applications of overlapping

Schwarz methods in more detail in Chapter 9.

In the preceding examples, overlapping Schwarz resolved the challenge of meshing relatively simple twisted

domains featuring sharp corners. If either of the domains had been smooth, the mesh entanglement issue

would not arise because vertices on the smooth domain wall could slide along the boundary. Another class

of problems where Schwarz (or other nonconforming) approaches offer significant benefits are cases where

fine-scale features in the solution, which require a fine-scale mesh, are confined to a limited part of the

domain.

Figure 1.3(a) shows velocity magnitude contours for a thermally buoyant plume in a stably stratified

background. The physics of this problem leads to fine-scale structure restricted in the plume region, and to

laminar flow in the far-field. Figure 1.3(b) shows the slice view of the axisymmetric conforming mesh used

to model the buoyant plume. This monodomain mesh is suboptimal because the resolution needed to model
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Figure 1.3: (left to right) (a) Velocity magnitude contours for a buoyant plume in oceanic environment, (b)
slice view of the axisymmetric mesh for the plume.

the fine-scale structures of the plume leads to unwanted resolution in the far-field (e.g., away from the plume

in the axial and radial directions), which increases the computational cost of modeling this problem.

In contrast to the buoyant plume example, where the difference in the scales of fluid motion adversely

impacts the mesh quality, Fig. 1.4 shows an example of flow over shark skin denticles where the geometric

features of the domain lead to a suboptimal mesh. The miniature roughnesses (denticles) on shark skin are

located within the viscous sublayer of the flow and require more elements to discretize the geometry of the

denticles than are needed to resolve the flow. Consequently, meshes generated for discretizing flow over these

denticles typically lead to a much higher resolution than needed away from the denticles.

Figure 1.4: Velocity magnitude contours for flow over denticles on shark skin.
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1.1.1 Nonconforming Schwarz methods

As indicated by the preceding examples, a major challenge in meshing complex domains is posed by needing

to have a mesh that matches resolution requirements (as in the shark’s skin and plume cases) and geometric

constraints (e.g., as in the twisted ribbon and U-channel/wire-coil insert cases). Here, we consider a class

of nonconforming meshes based on subdomain overlap. Throughout this dissertation, a conforming mesh

will be considered to be a union of hexahedral curvilinear brick elements that cover a domain, Ω ⊂ lRd,

d = 2 or 3, or subdomain, Ωj ⊂ Ω The elements in a conforming mesh do not overlap. Adjacent elements

will share in their entirety a common face (curvilinear quadrilateral), edge (curvilinear line segment), or

vertex (point). These local adjacency constraints are ultimately the source of difficulty in meeting the global

resolution constraints.

Nonconforming methods allow adjacent subdomains Ωi 6= Ωj to be meshed without satisfying all the

conforming mesh constraints. Nonconforming methods may be overlapping or nonoverlapping. For the

latter, we require that if Ω ⊂ lRd, then Ωi ∩ Ωj ⊂ lRd−1. Some examples of the nonconforming methods

are adaptive mesh refinement (AMR) [1, 2, 3], mortar element method (MEM) [4, 5, 6, 7], and the sliding

mesh method (SMM) [8, 9]. AMR and MEM are based on nonoverlapping grids, but allow h−refinement

(dividing an existing element into two or more elements) or p−refinement (increasing the polynomial order

used for quadrature on an element) to provide additional resolution where needed. While generally effective

for problems where features of interest are restricted to specific regions of the domain, AMR and MEM

still lack the flexibility of OS methods in mesh generation for complicated domains such as those shown in

Fig. 1.2. The effectiveness of the sliding mesh method is also limited because it does not allow different

subdomains to overlap.

Nitsche’s method relaxes the constraint of generating meshes with matching interfaces by allowing use

of overlapping grids (e.g., Ω := Ω1
⋃

Ω2) to generate a nonconforming nonoverlapping discretization of the

domain [10,11]. The nonoverlapping discretization is obtained by computing intersection of overlapping grids,

and partitioning the domain into a union of disjoint subsets (e.g., Ω := Ω̃1
⋃

Ω2, where Ω̃1 := Ω1\(Ω1∩Ω2)).

Thus, Nitsche’s method is more effective (in terms of mesh generation) than AMR, MEM, and SMM for

the applications that we are targeting. A drawback of Nitsche’s method, however, is that splitting the

overlapping grids into nonoverlapping subsets leads to arbitrary shaped elements at the interface of these

different subsets. Consequently, Nitsche’s method is undesirable for SEM-based implementations since the

SEM relies on hexahedral elements (to realize fast operator evaluation).

Nonconforming OS-based methods circumvent issues posed by conformal grids and nonconforming nonover-

lapping grids, by allowing the domain to be represented as the union of simpler subdomains, each of which
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(a) Bar with a spanwise twist inside a square channel. (b) Wire-coil insert inside a circular pipe.

(c) Thermal plume in a stratified environment. (d) Denticles on shark skin.

Figure 1.5: 2D slices of different meshes demonstrating the potential of overlapping subdomains for different
fluid-thermal problems.

can be meshed independently with relatively simple mesh constructions. The nonconforming union of these

meshes allows combinations of local mesh topologies that are otherwise incompatible, which is a feature of

particular importance for complex 3D domains.

Figure 1.5(a) shows the example of nonconforming overlapping meshes used for the rotor example. A

moving mesh is used to discretize the rotor, and it is overlapped with a static background mesh for the

square channel. Figure 1.5(b) shows a slice view of the overlapping meshes for a wire-coil insert inside a

pipe. A 2D mesh is extruded along the helical wire-coil, and the singularity at the pipe centerline is avoided

by overlapping it with a mesh for modeling the central flow channel.

Figure 1.5(c) and 1.5(d) demonstrate the potential of OS-based methods for reducing the element count

based on the flow structures (for the buoyant plume) or geometric features (for the denticles on shark skin)

in different parts of the domains.

In each of these cases, we see that overlapping grids can provide an efficient means to simulate fluid-

thermal flow, with minimal time spent in mesh generation. Using OS-based methods to solve the incom-

pressible Navier-Stokes equations accurately, however, is not trivial, and we will discuss some of the critical

issues that must be addressed, later in this chapter.
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Figure 1.6: (left to right) (a) Composite domain Ω (b) modeled by overlapping rectangular (Ω1) and circular
(Ω2) subdomains. ∂ΩsI denotes the segment of the subdomain boundary ∂Ωs that is interior to another
subdomain Ωr.

1.2 Overlapping Schwarz Method for Solving PDEs

In the preceding section, we presented several examples that demonstrate the potential of overlapping grids

for different fluid-thermal applications. In order to motivate how the incompressible Navier-Stokes equations

can be solved on overlapping grids, we introduce the overlapping Schwarz method for solving the Poisson

equation using a two-dimensional example. We choose the Poisson equation for simplicity, with the OS

method readily extending to more general equations in three-dimensional domains.

Figure 1.6 shows the example of a composite domain Ω, which is partitioned into a rectangle (Ω1) and

a circle (Ω2) with nonzero overlap such that ∂Ω1
I := ∂Ω1 ⊂ Ω2 and ∂Ω2

I := ∂Ω2 ⊂ Ω1. We use ∂ΩsI to

denote the “interdomain boundary”, namely the segment of the subdomain boundary ∂Ωs that is interior

to another subdomain. The interdomain boundaries ∂Ω1
I and ∂Ω2

I are highlighted in Fig. 1.6(b). Assuming

that we are solving the Poisson equation −∇2u = f with Dirichlet boundary condition (u = ub) on ∂Ω, the

Schwarz alternating method for solving the PDE on overlapping subdomains Ω1 and Ω2 is

−∇2u1,[q] = f in Ω1, u1,[q] = ub on ∂Ω1\∂Ω1
I , u1,[q] = u2,[q−1] on ∂Ω1

I ,

−∇2u2,[q] = f in Ω2, u2,[q] = ub on ∂Ω2\∂Ω2
I , u2,[q] = u1,[q] on ∂Ω2

I ,

(1.1)

where us,[q] refers to the solution u in Ωs at the qth Schwarz iteration. Starting with an initial condition us,[0],

the Poisson equation is solved sequentially in each subdomain with interdomain boundary data exchange

before each Schwarz iteration (q = 1 . . . Q). The number of Schwarz iterations Q can either be specified

before starting the iterative process, or the Schwarz iterations can be repeated until the solution converges

to within a desired tolerance in the overlap.

Since the Schwarz alternating method solves the PDE sequentially in each subdomain (e.g., first Ω1

and then Ω2 in the example above), a drawback of this approach is that it restricts the parallelism of the
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method as the number of subdomains, S, increases [12]. As an alternative, one can consider the simultaneous

Schwarz method, which overcomes the sequential dependencies of the alternating method by solving the PDE

simultaneously on all subdomains and exchanging interdomain boundary data prior to the start of each

iteration. The simultaneous Schwarz method for solving the Poisson equation using q = 1 . . . Q Schwarz

iterations is

−∇2u1,[q] = f in Ω1, u1,[q] = ub on ∂Ω1\∂Ω1
I , u1,[q] = u2,[q−1] on ∂Ω1

I ,

−∇2u2,[q] = f in Ω2, u2,[q] = ub on ∂Ω2\∂Ω2
I , u2,[q] = u1,[q−1] on ∂Ω2

I .

(1.2)

As we can see in (1.2), the boundary data on ∂ΩsI are interpolated from the previous Schwarz iteration, and

the PDE is solved simultaneously on all subdomains. Naturally, the advantage of simultaneous Schwarz is

its parallelism, and all the work presented in this dissertation is based on the simultaneous Schwarz scheme.

We note that due to the use of overlapping grids, the solution to the PDE is double-valued in the overlap

(Ω1 ∩ Ω2), and converges to the same function with Schwarz iteration.

In order to understand how the error varies in each subdomain due to these Schwarz iterations, we subtract

the exact solution ũ of the boundary value problem to obtain the equation for error es,[q] = us,[q] − ũ:

−∇2e1,[q] = 0 in Ω1, e1,[q] = 0 on ∂Ω1\∂Ω1
I , e1,[q] = e2,[q−1] on ∂Ω1

I ,

−∇2e2,[q] = 0 in Ω2, e2,[q] = 0 on ∂Ω2\∂Ω2
I , e2,[q] = e1,[q−1] on ∂Ω2

I .

(1.3)

Since simultaneous Schwarz iterations use the solution from the previous iteration in each subdomain to

obtain interdomain boundary data, the boundary condition for error depends on the error at the previous

Schwarz iteration. It is straightforward to derive from the BVP in (1.3) that in accordance with the maximum

principle, the error is maximum at the interdomain boundary in each domain, and goes to zero away from

the interface.

To demonstrate the effectiveness of (1.2) for solving the Poisson equation −∇2u = f , we consider a

1D example in a domain Ω ∈ [0, π] with homogeneous boundary conditions u(0) = u(π) = 0. For f =

2e−xcos(x), the exact solution to this Poisson problem is ũ = e−xsin(x).

We use two overlapping grids to partition this domain, Ω1 ∈ [0, 0.6π] and Ω2 ∈ [0.4π, π], with a grid

overlap of θ = 0.2π. Starting with an initial guess us,[0] = 5 in each subdomain, the BVP (1.2) is solved.

Figure 1.7(a) shows how the solution varies in each subdomain at the q = 1 (red), 2 (blue), 10 (pink) and

15 (black) iterations. The interdomain boundaries of the overlapping grids are indicated by dashed black

lines in the figure. We can see in Fig. 1.7(a) that after the first iteration, the solution us,[1] satisfies the

inhomogeneous boundary condition on ∂ΩsI obtained from the solution in the corresponding overlapping

domain at the previous Schwarz iteration (ur,[0]) (assuming ∂ΩsI overlaps Ωr). Similarly, us,[2] satisfies
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Figure 1.7: Evolution of (left) the solution (us,[q]) and (right) the error (es,[q] = us,[q] − ũ) for the Poisson
equation in two overlapping grids using simultaneous Schwarz iterations.

the inhomogeneous boundary condition obtained from ur,[1], and so on. With each Schwarz iteration,

the numerical solution converges towards the exact solution in each subdomain, and by the 15th Schwarz

iteration, the solution is within a tolerance of 10−2 with ũ, i.e. max
s=1...S

||us,[15] − ũ||∞≤ 10−2.

Figure 1.7 also shows how the error varies in each subdomain with each Schwarz iteration. The equation

for error satisfies (1.3), which is maximum at the interdomain boundary and goes to 0 at the domain

boundary in each subdomain. After 15 Schwarz iterations, the error is reduced to less than 10−2 in both

subdomains.

The convergence of the solution due to the simultaneous Schwarz iterations (1.2) depends on the decay

of the Green’s functions associated with the PDE of interest and the width of the overlap between different

subdomains. For the 1D Poisson problem considered here, we can use (1.3) to show that the maximum error

in each subdomain at the qth Schwarz iteration is

||es,[q]||∞=

(
L− θ
L

)
||er,[q−1]||∞, s 6= r, (1.4)

where L = 0.6π is the length of each subdomain and θ = 0.2π is the grid overlap width. (1.4) shows that

increasing the grid overlap (θ) increases the rate at which the solution of the Poisson problem converges to

the exact solution. This observation is important as it impacts important design choices for the SEM-based

OS framework (Schwarz-SEM) to solve the incompressible Navier-Stokes equations (Chapter 3).

In this section, we have used a simple 1D example to demonstrated how the Overlapping Schwarz method

can be used to solve a boundary value problem. The basic principles of the Schwarz method discussed here

readily extend to higher dimensions (d = 2, 3) for general boundary value problems, and the reader is referred

to [12] for a detailed discussion on the OS-based methods. We note that (1.4) describes the convergence
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of the simultaneous Schwarz iterations for the 1D Poisson problem considered here, and similar expressions

could be derived, albeit not as straightforward, for more general PDEs (e.g., Navier-Stokes equations) in

higher space-dimensions.

The subject of this dissertation is the use of overlapping Schwarz methods for time advancement of the

solution of the incompressible Navier-Stokes equations (INSE) on nonconforming overlapping meshes. This

application of OS methods should not be confused with the more common context in which overlapping

Schwarz is used, which is to develop domain-decomposition-based preconditioners for solving the system of

equations resulting from discretizing the PDE of interest on a given mesh [13,14].

1.3 Literature Survey

In this section, we present a historical overview of the overlapping Schwarz and a survey of issues that

arise when implementing these methods for the numerical solution of PDEs. We note that overset grid or

chimera schemes fall within the Schwarz framework and research in these methods has addressed many of

the principal concerns.

The overlapping Schwarz method was introduced by Schwarz in 1870 to prove the solvability of Laplace’s

equation on the union of two simply shaped overlapping subdomains [15]. The decomposition for Schwarz’s

initial model problem is illustrated in Fig. 1.6. The OS method started gaining popularity around 1960 when

it was further developed for solving the Laplace’s equation on arbitrarily shaped overlapping subdomains

with smooth boundaries [16, 17], and was used to numerically solve elliptic PDEs on computers [18, 19].

These were some of the earliest works on OS-based methods, and they led to the development of overlapping

grid techniques for solving time-dependent boundary value problems [20,21,22].

Over the last few decades, OS-based methods have become popular for solving different classes of problems

on overlapping grids, such as the incompressible flow [23, 24, 25, 26], compressible flow [27, 28, 29, 30, 31],

electromagnetics [32, 33], heat transfer [34, 35, 36], and particle tracking [37], and have been implemented

using the FD, FEM, FVM and SEM. Some of the popular implementations of OS methods are included

in commercial and research codes such as Star-CCM [26], OpenFOAM [38, 39], elsA [28, 40], Nalu [41],

Overflow [30,42], and Overture [43].

Despite the different class of problems and implementations, the fundamental approach for OS remains

the same; a domain is decomposed into subdomains with a finite overlap and the PDE of interest in then

solved on the mesh discretizing each subdomain.
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1.3.1 Interdomain boundary data interpolation

Since overlapping grids introduce interdomain boundaries ∂ΩsI , they require boundary data to be interpo-

lated from the corresponding overlapping subdomain Ωr. In the context of FEM and SEM, this interpolation

requires the identification of elements in the overlapping subdomain. For example, Fig. 1.8 shows the inter-

face boundary ∂Ω1
I overlapping elements of Ω2. For each grid point1 (x∗) on ∂Ω1

I , the donor element Ω2,e∗

(element number e∗ in the mesh used for Ω2) must be identified, and then the reference space coordinates

(ξ∗ = {ξ∗, η∗, ζ∗}) inside that element must be determined (Fig. 1.8). These reference space coordinates

are used to interpolate boundary data for the incompressible Navier-Stokes equations at each time-step.

For moving or deforming meshes, donor elements must be re-identified after each time-step since the loca-

tion of ∂ΩsI can change with respect to the subdomain Ωr that it overlaps. We note that the reason why

interpolation depends on reference space coordinates will be clear through the discussion in the next chapter.

Figure 1.8: (left) Interface boundary (∂Ω1
I) overlapping with spectral elements of Ω2. (right) For each grid

point discretizing ∂Ω1
I , the element Ω2,e (spectral element with element number e in Ω2) and reference space

coordinates (ξ∗ = {ξ∗, η∗}) inside that element must be determined.

In our framework, we first use a hash table-based search for identifying the donor element and then

use an optimization-based approach for identifying the reference-space coordinates inside the isoparametric

mapping of the donor element. The objective for the optimization method is to minimize the Euclidean

distance between the sought point x∗ and the point x̃∗ in physical-space that corresponds to the reference-

space coordinates (ξ̃∗) in the isoparametric mapping of the donor element. In our framework, identification

of computational coordinates and high-order interpolation is done using findptslib [44], a set of routines that

are a part of an open-source general-purpose communication library gslib [45]. TIOGA [46], Suggar++ [47],

PUNDIT [48], and PEGASUS [49] are some of the popular libraries used by different OS-based methods for

determining interdomain boundary data exchange information between overlapping subdomains.

We note that findptslib has two key routines, findpts and findpts eval. Given a list of points, findpts deter-

mines the computational coordinates for each point. Using these computational coordinates, findpts evalcan

interpolate any given scalar function. findpts and findpts eval were originally designed for monodomain

1We use the term grid point to refer to the Gauss-Lobatto-Legendre points of the spectral element mesh.
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meshes and, as a result, could not be directly integrated into the Schwarz-SEM framework. In Chapter 3,

we describe the changes that we have made to findptslib for enabling computational coordinate identification

for interdomain boundary grid points in an arbitrary number of overlapping grids. Here, we also describe

how we have improved the computational efficiency of findpts eval by a factor of 3X.

1.3.2 Spatial accuracy

Since OS-based methods rely on interpolation for interdomain boundary data, the spatial and temporal

accuracy of these interpolated data impacts the overall accuracy of the solution. Most of the existing OS-

based methods are based on the FD method or the FVM and are at most fourth-order accurate in space

[23, 33, 37, 46, 50, 51]. Recently, sixth-order finite difference based methods have been presented in [30, 52],

and a sixth-order finite volume-based scheme has been presented in elsA [28]. Most OS-based methods, thus,

rely on low-order interpolation, but recently there has been a shift towards polynomial based interpolation

to increase the spatial accuracy of the solution [24, 38, 46, 53]. A spectral element based Schwarz method

presented by Merrill et al. [24] has demonstrated exponential convergence (with the order of the polynomial

used for quadrature on each element), which is the starting point of the work that is presented in this

dissertation. In this Schwarz-SEM framework, we use Lagrange interpolants, which are the basis function

for SEM, of the same order (N) as the solution to interpolate the interdomain boundary data. This approach

ensures that our OS method maintains the exponential convergence of the underlying SEM.

Spatial interpolation of the interdomain boundary data also impacts the overall mass conservation in

each subdomain. For incompressible flow, it is critical to ensure that the interpolation method for obtaining

the interdomain boundary data is conservative. This means that the net mass flux through the boundaries

of each subdomain must be zero. Flux correction techniques have been used for FVM-based OS methods

in [53,54] and velocity field correction for mass conservation has been used for FD-based methods in [23].

In Chapter 4, we present an approach for imposing a correction on the interpolated velocity field via

a constrained minimization problem. This approach ensures that the corrected velocity field is similar to

the interpolated velocity field, and conserves mass in each subdomain. The projection of the interpolated

velocity field onto a divergence-free space has demonstrated that, in addition to improving the accuracy

of the method, it leads to improved stability of the Schwarz-SEM framework and requires fewer Schwarz

iterations when high-order extrapolation is used for the interdomain boundary data.
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1.3.3 Temporal accuracy

The temporal convergence of OS-based methods is constrained by the temporal accuracy of interdomain

boundary data. Since the solution is known only up to the previous time-step, the interdomain boundary

data has an inherent temporal error of O(∆t) if it is directly interpolated from the overlapping domain.

To improve accuracy, Peet and Fischer [55] used time-extrapolated data (of order m) from m previous

time-steps for interdomain boundaries. However, stability analysis showed that this method was unstable

for m > 1, and needed 1 to 3 Schwarz iterations at each time-step for increased stability. These Schwarz

(corrector) iterations used the solution from the most recent iteration for interdomain boundaries. This

predictor-corrector (PC) method was used in the Schwarz-SEM framework presented by Merrill et al. [24] to

demonstrate third-order temporal convergence. We note that in this PC method, each subdomain integrates

the solution of the PDE using the same time-step size, and this is referred to as a single-rate method.

In the current work, we use this high-order predictor-corrector scheme to maintain the temporal accuracy

of the underlying SEM solver. In Chapter 5, we present stability analysis that gives novel insight into the

impact of the number of corrector iterations on the stability of the PC scheme. We also describe how this

stability analysis has led to the development of a PC scheme with improved stability properties.

1.3.4 Global integration and distance function generator

Use of OS framework for solving different fluid-thermal applications on overlapping subdomains requires

us to answer questions that are not as trivial as they are in the context of a single conforming domain

(monodomain).

For example, integration in a single conforming domain is straightforward to effect in Galerkin meth-

ods via the mass matrix. In overlapping grids, however, global integration is not straightforward, and grid

points in the overlap region must be weighted appropriately. In implementations based on Nitsche’s method,

overlapping grids are partitioned into nonoverlapping discretizations, and the resulting arbitrary shaped ele-

ments at grid interfaces are split into regular triangles/tetrahedra for integration [11]. This approach allows

integration to be performed on nonoverlapping subsets. Another approach for integration on overlapping

meshes is to use the quadrature in nonoverlapping regions as usual, and remeshing the overlap region with

regular-shaped elements and then performing the quadrature as usual [56]. Each of these approaches relies

on remeshing, which is guaranteed only for tetrahedra or triangular elements. Additionally, these approaches

are computationally expensive and complicated to implement in parallel, since they rely on identifying inter-

sections of different overlapping grids. In our framework, global integration is achieved via partition-of-unity
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functions that ensure that grid points in the overlapping region are appropriately weighted. We explain our

approach for global integration in Chapter 4.

Similar to the issue of global integration, obtaining a distance field (a field that specifies the shortest

distance from each element to a given point/line/surface) or maintaining a fixed flow rate through overlapping

subdomains is not straightforward, and requires coupling between subdomains. To the best of our knowledge,

existing OS-based methods do not address these problems (or they use methods that do not apply to our

framework), and we have developed an OS-based approach for generating a distance field and maintaining

a fixed flow rate through overlapping subdomains.

1.3.5 Scalability

OS methods rely on general (i.e., off-grid) interpolation and communication between different overlapping

subdomains for solving the PDE of interest. Efficient algorithms to effect general interpolation and com-

munication, which is not a standard component of most numerical PDE solvers, is therefore of paramount

importance, particularly in a parallel context where data locality and load balance are of concern. With the

integration of findptslib into the Schwarz-SEM framework, we can now use an arbitrary number of overlap-

ping subdomains to solve the INSE in parallel on high-performance computers. We demonstrate the strong

scaling of the Schwarz-SEM framework on a high number of MPI ranks (P > 40, 000) in Chapter 8.

The preceding text has focused on the fundamental concerns for the implementation of OS-based methods

to solve the incompressible Navier-Stokes equations. In addition to systematically addressing these issues,

as will be explained in the following chapters, we have identified methods to improve the computational

performance of both monodomain and overlapping grid calculations.

1.3.6 Multirate time-stepping

One of the novel aspects of this dissertation is the introduction of multirate time-stepping for incompressible

flow simulations. The idea behind multirate time-stepping is to allow subdomains to independently advance

the governing time-dependent PDE at a rate that is optimal (e.g., either stability or accuracy constrained)

for each individual subdomain, with periodic updates to synchronize the solutions.

Multirate time-stepping methods were introduced for a system of ODEs by Rice [57], and have since

been developed for parabolic and hyperbolic PDEs [58, 59]. Multirate time-steppers are virtually nonexis-

tent for the incompressible Navier-Stokes equations because the solution is very sensitive to the pressure,

which satisfies an elliptic Poisson or pseudo-Poisson problem at every time-step. In Chapter 6, we intro-
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duce an SEM-based multirate time-stepping scheme that preserves exponential convergence of the SEM,

demonstrates third-order temporal convergence, and marches all subdomains simultaneously using a novel

predictor-corrector scheme. We also expand our stability analysis framework developed for the single-rate

PC scheme to understand how the time-step size ratio between different subdomains impacts the stability

of the multirate time-stepping scheme.

1.4 Mesh optimization

While OS-based methods generally yield relatively simple meshes in individual subdomains, mesh optimiza-

tion is still of value in both the mono- and multidomain cases. Mesh optimization can greatly improve

the computational efficiency of numerical simulations. For INSE, this includes improving elements that

constrain the performance of the pressure Poisson solver and limit the maximum time-step size due to the

Courant-Friedrichs-Lewy (CFL) constraint. Figure 1.3(b) and Fig. 1.5(c) show an example of how mesh

optimization improves the quality of performance-degrading elements by getting rid of high aspect ratio

elements away from the region of interest. In this example of an incompressible flow model of a thermal

plume, numerical experiments showed that mesh smoothing allowed the use of a threefold-large time-step

size for the smoothed mesh as compared to the original mesh.

Mesh smoothing methods have been developed over several decades and various methods of mesh improve-

ment, such as Laplacian smoothing [60,61,62], constrained Laplacian smoothing [63], optimization [61,64,65],

and untangling [66, 67] have been developed for finite element (FE) meshes. However, these methods were

mostly developed for linear meshes, and the shape metrics did not address hex meshes [68,69,70]. Recently,

high-order mesh optimization methods have been presented in [71,72].

We have developed a mesh smoother for the SEM [73] keeping in mind key aspects of automated mesh

generation methods. High-order meshes are typically generated by generating a linear mesh using a block

decomposition approach [74], followed by projection onto the actual high-order geometry surface [75, 76,

77, 78]. As a result, most elements in a mesh are linear or quadratic, except for the surface conforming

high-order elements. Additionally, meshes generated for simulating incompressible flow have boundary layer

resolving elements to capture near-wall physics, which, due to their anisotropy, can lead to high aspect-ratio

elements in the far-field. These high aspect-ratio elements adversely impact the condition of the system for

the pressure Poisson equation (PPE) and the CFL of the grid. Lastly, since the quality of the surface mesh

constrains mesh quality in the interior of a domain, it is important to be able to smooth the surface mesh

in order to maximize the quality of the given mesh.
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Existing mesh smoothing methods, to the best of our knowledge, do not address these issues, primarily

because traditional mesh optimization methods were designed for application to solid mechanics (where there

is typically no boundary layer). Mesh improvement methods that support surface smoothing, typically rely

on a parametric representation of the original geometry in order to smooth the surface mesh. This approach

is not possible in the FEM or the SEM, where only a discrete representation of the original geometry is

available through the original mesh. In this dissertation, we present a mesh smoother that improves the

quality of a mesh while maintaining the mesh quality at critical places such as boundary layers and improves

the quality of CFL constraining elements. We also introduce a novel approach for surface mesh smoothing,

and show how improving the mesh quality improves the condition of the system for pressure Poisson equation

(PPE), which leads to a reduction in the cost of solving the PPE.

1.5 Organization and Thesis Contribution

In this dissertation, we develop the Schwarz-SEM method and a mesh optimizer to enable high-order CFD in

complex domains. The starting point of this dissertation is the Schwarz-SEM framework presented in [24],

and our goal is to extend this framework to accurately solve a wide variety of challenging fluid-thermal

problems that are intractable with the monodomain SEM.

In Chapter 2, we provide a background of the SEM, and the spatial and temporal discretization of the

incompressible Navier-Stokes equations. Here, we also summarize how the solution of the incompressible

Navier-Stokes equations is advanced in time on a monodomain grid. All the discussion in this chapter is

based on the existing literature, and this chapter is important for understanding how the INSE are solved

in the Schwarz-SEM framework.

Chapter 3 presents the methodology for time-advancing the solution of the INSE on overlapping sub-

domains, using the predictor-corrector scheme presented in [24, 55]. Here, we describe how we have intro-

duced discriminators in findptsfor enabling donor element search for interdomain boundary grid points in

an arbitrary number of overlapping grids. We also describe how we have reduced the computational cost

of findpts evalby eliminating redundant communication costs associated with interpolating multiple scalar

functions for a given set of computational coordinates. In Chapter 3, we explain our methodology for gen-

erating a global distance function across overlapping subdomains, a capability that is crucial for enabling

Reynolds-Averaged Navier-Stokes (RANS) based calculations in the Schwarz-SEM framework. Using an

example with S = 2 and 3 overlapping subdomains, we demonstrate that the Schwarz-SEM framework

maintains the spatial and temporal convergence of the underlying SEM-based solver that is described in
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Chapter 2.

Chapter 4 describes the velocity correction method that we have developed to ensure that the use

of interpolation for interdomain boundary data does not violate the divergence-free constraint, which is

critical for the incompressible Navier-Stokes equations. In this chapter, we also describe the strategy for

maintaining a fixed flow rate through overlapping subdomains, a capability that is crucial for modeling

internal flows in periodic domains. Since the determination of quantities such as the flow rate and Nusselt

number requires global integration in overlapping subdomains, which is not trivial, we develop an approach

for global integration in subdomains with arbitrary overlap. This novel approach is based on the generation

of partition-of-unity functions that ensure that grid points in the overlap region are weighted appropriately.

Most of the methods developed in Chapters 3 and 4 appear in a recent publication in the Computers &

Fluids journal [79].

In Chapter 5, we use a simple 1D time-dependent boundary value problem to empirically analyze the

stability behavior of the predictor-corrector scheme for time-advancing the solution of the INSE in the

Schwarz-SEM framework. The stability analysis presented in this chapter gives us novel insight that the PC

scheme is more stable when the number of corrector iterations is odd as compared to when it is even, for

m > 1. In this chapter, we also develop an improved predictor-corrector scheme that does not exhibit this

odd-even pattern in stability with respect to the number of corrector iterations.

Chapter 6 presents our predictor-corrector approach for multirate time-stepping in two overlapping sub-

domains, which is a first in the context of incompressible flows. The PC scheme described here allows

subdomains to independently time-advance the solution of INSE at a rate that is optimal for each individual

subdomain. In this chapter, we also extend the stability analysis framework developed for the single-rate

time-stepping scheme (Chapter 5) to understand how the time-step size ratio between different subdomains

impacts the stability of the multirate time-stepping scheme. Using an example with S = 2 overlapping

subdomains, we demonstrate that our multirate time-stepping method maintains the spatial and temporal

convergence of the underlying SEM-based solver that is described in Chapter 2.

In Chapter 7, we describe our approach for mesh smoothing that is based on a combination of Laplacian

smoothing and optimization-based strategy. This mesh smoother has been designed to improve the quality of

elements that constrain the computational performance of turbulent flow calculations (e.g., high aspect-ratio

elements) while preserving the shape of the elements at critical places such as boundary layers. In our mesh

smoother, we allow elements on the surface of the mesh to be smoothed by the Laplacian smoother and mesh

optimizer, followed by projection of the smoothed surface elements on to the surface of the original mesh.

This novel surface smoothing approach does not rely on any CAD parameterization for mesh smoothing
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and does not introduce geometrical approximation errors at the surface of the mesh. The mesh smoothing

methodology presented in this chapter has been published in the Journal of Scientific Computing [73].

We present the timing and scaling of several key aspects of the Schwarz-SEM framework in Chapter 8.

The results in this chapter help us understand how the number of Schwarz iterations at each time-step affect

the total time to solution, and how the PC-based multirate time-stepping scheme reduces the computational

cost of a calculation in comparison to the PC-based single-rate time-stepping scheme. We also look at strong

scaling results for the Schwarz-SEM framework in 3D problems to understand how much time is spent in

donor element identification and interpolation in comparison to the total time to the solution at each time

step. The results presented in this chapter are essential for understanding the benefits and limitations of

the Schwarz-SEM framework, and in order to effectively use it for different fluid-thermal applications in the

future.

In chapter 9, we present several examples that demonstrate the effectiveness of the Schwarz-SEM frame-

work in solving fluid-thermal applications. We start with two 3D problems having nontrivial solutions to

benchmark the Schwarz-SEM framework and then solve problems that are intractable with the monodomain

SEM framework. Here, we also demonstrate the effectiveness of the multirate time-stepping method in

accurately capturing the physics of turbulent flow in a thermally buoyant plume.

1.6 Use of Notation

In this thesis, we bring together results that have been published in different journals. Due to the multidis-

ciplinary nature of the work, we do not attempt to develop a consistent notation, and certain variables can

take different meanings across different chapters, depending on the context. We do, however, take care to

define notation as it is introduced.
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Chapter 2

SEM for the Incompressible
Navier-Stokes Equations

The goal of this dissertation is to develop the Schwarz-SEM framework for solving the incompressible Navier-

Stokes equations in complex domains (e.g., Fig. 1.5). Since the Schwarz-SEM framework builds upon the

monodomain SEM framework, this chapter presents relevant details of the monodomain SEM. Using a

model problem, we describe how the weighted residual method (WRM) is used to discretize the Helmholtz

equation, which leads to a linear system that is solved using efficient, matrix-free, iterative methods in a high

performance computing (HPC) setting.1 The concepts developed for this model problem readily extend to

three-dimensional domains for more general partial differential equations. Since we are interested in solving

the INSE, we also describe our spatial and temporal discretization for INSE in this chapter.

2.1 Spectral Element Method

The spectral element method (SEM) is a high-order weighted residual method that was introduced by

Patera [80] and has been used to solve a variety of challenging fluid dynamics and heat transfer problems

[81, 82, 83]. Here, we introduce the fundamentals of SEM and explain how it is used to solve PDEs. The

first step in solving PDEs in a domain, Ω, using the SEM, is domain decomposition of Ω into (conforming

and nonoverlapping) spectral elements. The PDE of interest is then transformed into the weak form using

the weighted residual method (WRM), followed by use of basis functions to transform the weak form into a

linear system of equations. To demonstrate this solution process, we use the domain shown in Fig. 2.1(a)

to solve the Helmholtz equation

−∇2u+ u = f in Ω,
∂u

∂n̂

∣∣∣∣
∂Ω

= 0, (2.1)

where u(x) is the desired solution, f is a known function, and homogeneous Neumann conditions are imposed

on the domain boundary.

1Iterative methods are the most efficient solvers for unstructured discretizations of elliptic PDEs in 3D.
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Figure 2.1: (left to right) (a) Domain Ω, (b) the spectral element mesh used to model Ω, and (c) the spectral
element mesh with Gauss-Lobatto-Legendre points (N = 3) in each element.

2.1.1 Spectral element mesh

In the standard SEM, the computational domain Ω is the union of nonoverlapping elements, Ωe, e = 1 . . . E,

where each spectral element Ωe is an isoparametric mapping of an element in the reference domain Ω̂ :=

[−1, 1]d in d space dimensions2. The reference domain Ω̂ is a square for d = 2 and a cube for d = 3.

Within a domain (or within a subdomain for overlapping meshes), we assume that elements are conforming,

which means that any point on an element edge is coincident with at least one other point in an adjacent

element, unless that edge (or face or vertex) is on the subdomain boundary, ∂Ω or ∂ΩI . Figure 2.1(b) shows

the conforming spectral element mesh for Ω with E = 52 spectral elements, along with the corresponding

Gauss-Lobatto-Legendre (GLL) points for each element in Fig. 2.1(c).

Figure 2.2 shows the coordinate transformation of a spectral element for N = 4 from reference-space (Ω̂)

to Cartesian-space (Ω) [84], along with the corresponding GLL points. The GLL points in each spectral

element are a tensor-product of the 1D GLL points (in reference-space), which are solutions to the equation

(1− ξ2)L
′

N (ξ) = 0, (2.2)

where L
′

N is the derivative of the Legendre polynomial of degree N . The GLL points, which serve as nodal

points for the SEM, are also quadrature points, which allows efficient approximation of the integrals used in

the WRM.

2.1.2 Weighted residual method for SEM

The weighted residual method is a popular technique for solving partial differential equations by representing

the solution using a set of basis functions and satisfying the PDE in a weighted sense. The SEM is based on

the Galerkin method in which the weight functions (or test functions) are chosen to be the same as those

2Here, we use superscript e to indicate the element number. In the multidomain case, we use superscript s to indicate the
subdomain number. There should be no confusion as the usage will be clear from the context.
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Figure 2.2: Coordinate transformation of a spectral element for N = 4 from the reference space (Ω̂) to the
physical space (Ω).

used to represent the solution of the PDE. In this section, we will restrict our discussion to the Helmholtz

equation (2.1), but we note that the weighted residual method readily extends to more general PDEs (e.g.,

INSE), and the reader is referred to [85] for a detailed discussion on the WRM.

Following standard practice, we derive the weak form of (2.1)

∫
Ω

∇v · ∇u dx +

∫
Ω

vudx =

∫
Ω

vf dx +

∫
∂Ω

v(∇u) · n̂ dx, (2.3)

for all test functions v ∈ H1, where L2 is the Hilbert space of square-integrable functions, and the Sobolev

space H1 is the usual space of functions for solution to second-order PDEs, which are in L2 and whose

derivatives are also in L2. Since we assume homogeneous Neumann conditions on ∂Ω, the surface integral

in (2.3) vanishes, and the weak form of (2.1) simplifies to

a(v, u) + (v, u) = (v, f), (2.4)

where (v, u) :=
∫

Ω
v · u dx and a(v, u) :=

∫
Ω
∇v : ∇u dx are respective L2 and energy inner products. The

next step in solving the Helmholtz equation is the basis functions that are used to represent functions on

GLL points in a spectral element mesh.

Basis functions

The basis functions in the spectral element method are a tensor-product of Nth-order Lagrange polynomials

on the GLL points in each element. Consequently, any scalar function u is represented on each element as

u(ξ)|Ωe =

N∑
i=0

N∑
j=0

N∑
k=0

ueijkli(ξ)lj(η)lk(ζ), (2.5)
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where li(ξ)lj(η)lk(ζ) is the tensor-product of the 1D Lagrange interpolants in each space dimension, ueijk is

the nodal basis coefficient, and ξ := {ξ, η, ζ} are the coordinates of the GLL points in the reference domain

Ω̂ = [−1, 1]d. A consequence of Lagrange interpolants is that the basis coefficients, ueijk, are the nodal values

of u on the tensor-product of GLL points in element e.

Similar to the solution (2.5), we represent the geometry of each element Ωe with an isoparametric

mapping, meaning the geometry shares the same functional form as the solution,

x(ξ)|Ωe =

N∑
i=0

N∑
j=0

N∑
k=0

xeijkli(ξ)lj(η)lk(ζ). (2.6)

In the SEM, the nodal (GLL) values ueijk (or uei,j,k) are numbered lexicographically inside each element,

and constitute the local element-by-element vector u. Consequently, the local form for a function u in a

spectral element mesh with E elements and polynomial order N is

u = [u1u2u3 . . . uE ]T , (2.7)

ue = ueijk, i = 0 . . . N, j = 0 . . . N, k = 0 . . . N (2.8)

where ue represents the local vector for Ωe.

A consequence of using the local form for function representation is that while nodal values on element

interfaces have a unique representation on the grid with global degrees of freedom (DOF), the local form

leads to multiple values for DOFs that are shared between elements. Figure 2.3 illustrates the global (ug)

and local (u) degrees of freedom in a spectral element mesh with E = 2, N = 2. As we can see, the three

global degrees of freedom shared between the two elements are duplicated in the local element-by-element

form and, thus, can be multivalued across the element interface.

Thus, before we use the basis functions for discretization in (2.4), we address how function continuity

(e.g., for global nodes 3, 6 and 9 in Fig. 2.3) is enforced in the monodomain SEM framework.

2.1.3 Function continuity in spectral element mesh

C0 continuity across element interfaces requires that coincident GLL points have the same function values.

xeijk = xê
ı̂̂k̂

=⇒ ueijk = uê
ı̂̂k̂
. (2.9)

For any function u ∈ XN ⊂ H1, we have a pair (u, ug) satisfying u = V ug, where u is the vector of

(redundantly-stored) local basis coefficients and ug is the corresponding (uniquely-defined) global represen-
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Figure 2.3: (left) Global (ug) form and (right) local (u) numbering of two spectral elements with N = 2.
Image taken from [84].

Figure 2.4: Gather operation on a global vector ug to obtain the local element-by-element vector u. Image
taken from [84].

tation. For our weighted-residual formulation, we require a local-to-global map that is given by ug = V T ũ,

where ũ represents a set of functions that may be multivalued at element interfaces. This gather operation,

V T , leads to a summation of shared values and V V T is, thus, not idempotent. Using the gather-scatter

operator, continuity is enforced on a multivalued function as u = V V T ũ.

Figure 2.4 shows the action of gather operator in distributing the vector of global values ug to a vector

of local values u, summing up the shared values in the process.

The gather-scatter operator, V V T , is often used in conjunction with a diagonal counting matrix C that

is used to generate averaged values as u = C−1V V T ũ. The diagonal weighting matrix, C = wiiδij , would

have entries wii = wi corresponding to the vector w = V V T e, where e is the vector having unity for
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each GLL point of each element. C−1V V T is thus an idempotent projector into the space of continuous

functions, which has the effect of averaging values shared across the interfaces. The C−1V V T operator is

useful for methods such as mesh optimization, where each element is optimized individually, and then the

nodal displacement determined by the optimizer for each GLL point is then averaged with other elements

that share that GLL point.

In practice, the matrix V is never explicitly formed, and instead, the action of V and V T is implemented

using indirect addressing. In our framework, the nearest-neighbor exchange V V T is implemented in gslib [86],

an open-source communication library.

2.1.4 Linear system resulting from the variational form

In the preceding section, we have discussed various ingredients that are important for solving a PDE using

the SEM. Using the tensor-product of Lagrange polynomials as our basis functions, we now transform (2.4)

into a system of the form Ax = b.

Assuming that the known function f on the right-hand side of (2.1) is already represented on the spectral

element mesh in a form similar to (2.5), we write the right-hand side of (2.4) as

(v, f) :=

∫
Ω

vfdx, (2.10)

:=

E∑
e=1

∫
Ωe
vfdx, (2.11)

:=

E∑
e=1

N2∑
i=0

N2∑
j=0

vei (

∫
Ωe
φi(x)φj(x) dx) fej , (2.12)

=

E∑
e=1

(ve)TBefe, (2.13)

= vTBf, (2.14)

where φi(x) and φj(x) are a tensor-product of basis functions for v and f , respectively. The mass matrix

Be for each element Ωe is a function of the quadrature weights of the GLL points in e and the Jacobian of

the transformation associated with the isoparametric mapping (2.6) (e.g., see pg. 173 in [84]). We note that

in (2.14), B is the unassembled global mass matrix, which is block diagonal with each block corresponding

24



to a spectral element,

B =



B1

B2

B3

. . .

. . .

BE


. (2.15)

Due to the choice of basis functions (tensor-product of Lagrange interpolants), the mass-matrix Be of each

element Ωe is diagonal, and consequently, B is also diagonal.

Since (2.14) is based on the local form of functions, we cast this system into the global form using the

gather-scatter operator in order to satisfy continuity requirements for the global solution,

(v, f) = (V vg)
TB(V f

g
), (2.16)

= vTg V
TBV f

g
, (2.17)

where V TBV is the global assembled mass matrix. Similar to (2.17), the left hand side of (2.4) simplifies to

a(v, u) + (v, u) :=

∫
Ω

∇v · ∇udx +

∫
Ω

vudx, , (2.18)

= vTg V
TAV ug + vTg V

TBV ug, (2.19)

where A is a stiffness matrix, and the reader is referred to Chapter 4 of [84] for a detailed derivation of the

system in (2.19). We note that the stiffness matrix A, similar to B, is a block diagonal matrix with each

block corresponding to the local stiffness matrix, Ae for element Ωe. Unlike Be, however, Ae is full when the

geometry is deformed, leading to a nominal number of nonzeros for A of nnz = E(N + 1)6, which prohibits

practical formation of A for N > 3.

Using (2.19) and (2.17), the system in (2.4) is written as

vTg (V TAV + V TBV )ug = vTV TBV f
g
, (2.20)

Hug = bg, (2.21)

where H = V TAV + V TBV and bg = V TBV f
g
.
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Matrix-free iterative solution of SEM systems

The system (2.21) is typically solved using an iterative method such as the conjugate gradient (CG) method

or generalized minimum residual (GMRES) method (e.g., [87]), with an appropriate preconditioner. For

solving a system of the form Ax = b, iterative methods such as CG and GMRES construct approximate

solutions in the Krylov subspace {r,Ar, . . . Ak−1r}, where r = b−Ax0 depends on an initial guess x0. The

essential step for these algorithms is matrix-vector products of the form

wg = V TAV p
g
, (2.22)

where w and p are intermediate vectors in the iteration algorithm. In the SEM, we store only local vectors.

Hence, the first operation in (2.22) is superfluous, given that we already have p = V p
g
. Also, since we wish

only to store w, we recast (2.22) as

w = V wg = V V TAp. (2.23)

Since A is block-diagonal with each block corresponding to a spectral element, (2.23) can be represented as

w = V V T [(A1p1)T (A2p2)T . . . (Aepe)T ]T , (2.24)

where Ae and pe represent the operator and vector corresponding to element Ωe. Equation (2.24), thus,

consists of local element-by-element operator evaluation, followed by the communication-intensive gather-

scatter operation, V V T . An advantage of (2.24) is that it avoids packing and unpacking of p and w from

their global to local forms and concentrates the communication of V V T into a single data exchange.

(2.24) is an important result because it shows that we can solve a PDE such as (2.1) by discretizing a

domain Ω into spectral elements, and using element-by-element operators instead of global operators that

are computationally expensive to store and evaluate.

We reiterate that this approach of using the SEM to solve the Helmholtz equation readily extends to

more general PDEs such as the incompressible Navier-Stokes equations. We seek to solve the INSE as

large eddy simulations (LES) or direct numerical simulations (DNS), which require enough grid points to

adequately resolve all flow structures in the domain, and can have anywhere between E = 1000 and 106

spectral elements with polynomial order N between 6 and 12, based on the domain and PDE of interest.

Simulating time-dependent flows, thus, requires us to solve a system of equations similar to (2.21) at each

time-step for each function of interest (e.g., velocity and pressure), which in turn depends on our ability to
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do local element-by-element matrix-vector products (e.g., (2.24)) for all the spectral elements in the mesh.

2.1.5 Parallel Implementation

In the previous section, we described our methodology of transforming the weak form of a PDE into a linear

system of the form Ax = b, which is solved using element-by-element matrix-vector products. In order to

expedite the solution process for the INSE, which can be expensive due to high-resolution requirements of LES

and DNS, we use parallel computing based on the distributed computing model, where each processor (MPI

rank) has its private memory. A spectral element mesh with E elements is partitioned onto P processors,

p = 0, . . . , P − 1, where P ≤ E (each processor must have at least 1 spectral element), and each element is

mapped to a processor. Each processor then uses its private memory to store all functions of interest for the

elements that it has in local vectors of length E(p)(N + 1)d, where E(p) is the number of elements assigned

to process (or processor number) p.

The mesh partitioning, coupled with the private-memory model, leads to a natural work decomposition

in the distributed-memory parallel computing paradigm. The majority of the computational effort in the

SEM is in evaluation of the matrix-vector products (2.24), which are automatically parallel owing to the

block-diagonal structure of global operators (e.g., A and B in (2.20)). If a balanced partition is used, the

amount of work per processor scales as dE/P e. During a linear-system solve, after local element-by-element

operator evaluation is done via fast tensor-product based matrix-vector products, global assembly is effected

via V V T , which ensures function continuity at interfaces that are shared between elements. See for example,

(2.24).

In our framework, V V T is effected in parallel by gslib, which has scaled to over six million MPI ranks

(processors) using highly optimized routines having a communication overhead of at most logP . All com-

munication among MPI ranks is handled by gslib through a single MPI communicator (Intracomm), which

all MPI ranks associated with a spectral element mesh belong to. gs crystal, the MPI communication driver

in gslib, is based on the crystal router algorithm of [88], and is available open-source [45].

In order to demonstrate how a spectral element mesh is mapped to MPI ranks in parallel, we use

an example of a mesh with 5 spectral elements, shown in Figure 2.5(left). Figure 2.5(right) shows the

partitioning of this spectral element mesh on 4 MPI ranks (p = 0− 3), along with local element numbering

on each MPI rank. For this example, E(0) = 2 and E(1) = E(2) = E(3) = 1.

Using eg to represent the global element numbering in the spectral element mesh, p
l

for the processor

number each element is mapped to, and el to represent the local element numbering, the mapping for the
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Figure 2.5: (left) Spectral element mesh with 5 elements along with global element number of each spectral
element, and (right) the mesh partitioned onto 4 MPI ranks (p = 0 − 3) with local element numbering
for each MPI rank. The plot on the right also shows a pictorial representation of the MPI communicator,
Intracomm, that all MPI ranks associated with a spectral element mesh use to communicate via gslib.

spectral element mesh in Fig. 2.5 is:

eg = [1, 2, 3, 4, 5]← global element number,

p
l

= [0, 0, 1, 2, 3]← MPI rank for each element,

el = [1, 2, 1, 1, 1]← local element number,

(2.25)

This global-to-local element mapping in (2.25) is used to set up the gather-scatter operator in gslib to account

for GLL points that are shared between elements.

Using the private memory model and local element-by-element approach for operator evaluation, the

monodomain SEM framework has been used to solve large-scale incompressible flow problems on high per-

formance computers (HPC) [81,82,83]

2.2 Incompressible Navier-Stokes Equations

In the preceding section, we summarized the key ingredients of the SEM for solving PDEs in parallel using

the WRM. Discussing the SEM in more comprehensive detail is beyond the scope of this dissertation, and

the reader is referred to [84] for further details. In this section, we focus on the INSE and describe our

spatial and temporal discretization for time-advancing the solution of the INSE in the monodomain SEM

framework.

Consider the solution of the constant-density incompressible Navier-Stokes equations in a given compu-
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tational domain Ω(t) in lRd at time t,

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u + f , (2.26)

∇ · u = 0, (2.27)

where u(x, t) and p(x, t) represent the velocity and pressure3 solution as a function of position x ∈ lRd and

time t, and Re = LU/ν is the Reynolds number based on the characteristic length scale L, velocity scale

U , and kinematic viscosity of the fluid ν. f(x, t) is a nondimensional forcing that is a function of position

and time. The solution of (2.26) and (2.27) also depends on the initial (for time-dependent problems) and

boundary conditions, which we discuss in Section 2.2.2.

2.2.1 Spatial & temporal discretization

We solve the unsteady NSE in velocity-pressure form using semi-implicit BDFk/EXTk time-stepping in

which the time derivative is approximated by a kth-order backward difference formula (BDFk), the nonlinear

terms (and any other forcing) are treated with a kth-order extrapolation (EXTk)4, and the viscous and

pressure terms are treated implicitly. This approach leads to a linear unsteady Stokes problem to be solved

at each time-step, which is split into independent viscous and pressure (Poisson) updates [89].

Assuming a constant time-step size ∆t for all time-steps5, we compute a tentative velocity field comprising

contributions from the BDFk and the explicit terms, at time tn, as

ún = −
k∑
j=1

βju
n−j + ∆t

k∑
j=1

αj(−u · ∇u + f)n−j , (2.28)

where the superscript n − j indicates quantities evaluated at earlier time-steps, tn−j , and βj and αj are

the BDF and EXT coefficients, respectively. ún constitutes the nonlinear update but does not account for

the divergence-free constraint or viscous effects. The divergence-free constraint (2.27) is enforced through

a pressure correction. A pressure Poisson equation is obtained by taking the divergence of the momentum

equation, assuming the solution is divergence-free at time level tn, ∇ · un = 0, and using the identity

∇2un = ∇(∇ · un)−∇×∇× un:

3Here, we use p to denote the pressure solution in the INSE. In context of parallel computing, we use p to denote the
processor number. There should be no confusion as the usage will be clear from the context.

4From here on, we will use k to represent the order of accuracy of our temporal discretization, unless otherwise stated.
5We will consider a constant time-step size for all the methods and applications presented in this dissertation.
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−∇2pn = −∇ · ú
n

∆t
+

1

Re
∇ ·

k∑
j=1

αj(∇× ωn−j), (2.29)

=⇒ −∇2pn = ∇ · fp, (2.30)

where ωn = ∇× un, and

fp = − ún

∆t
+

1

Re

k∑
j=1

αj(∇× ωn−j). (2.31)

The advantage of using the curl-curl form for the viscous term to decouple the velocity and pressure solve is

that the equation governing the error in divergence (∇·un) is an elliptic PDE instead of a parabolic PDE. As

a result, this formulation is stable with the splitting-induced divergence errors that are only O‘ (∆tk) [89,90].

Substituting the pressure solution pn in (2.26), un is obtained by solving the Helmholtz equation

β0

∆t
un − 1

Re
∇2un = −∇pn +

ún

∆t
. (2.32)

Similar to Section 2.1.2, spatial discretization of (2.29) and (2.32) is based on variational projection

operators. (2.32) is recast in weak form: Find un ∈ XN
b such that

β0

∆t
(v,un) +

1

Re
a(v,un) = (v, fnv ), (2.33)

for all test functions v ∈ XN
0 , where XN ⊂ H1, XN

0 is the set of basis functions that vanish on the domain

boundary wherever Dirichlet conditions are prescribed, and XN
b is the set of spectral element basis functions

in H1 that satisfy the Dirichlet conditions on ∂Ω (and interdomain boundary ∂ΩI in the case of overlapping

grids). In (2.33), fv is the right-hand side of (2.32).

We use ∂ΩD to denote the subset of domain boundary ∂Ω on which Dirichlet conditions are imposed

on velocity, and ∂ΩN for the subset (e.g., outflow) on which pressure is prescribed. As expected, surfaces

that have Dirichlet conditions for velocity have Neumann conditions for pressure, and vice-versa. Equation

(2.33) is free of surface integrals because homogeneous Neumann conditions are used for velocity.

Similar to (2.33), the pressure Poisson equation (2.29) is cast in the weak form, which leads to surface

integrals on ∂ΩD due to integration by parts and Green’s theorem: Find pn ∈ XN
0,p ⊂ H1

0,p such that

a(ψ, pn) = −(fp,∇ψ) +

∫
∂ΩD

ψ∇pn · n̂ dA+

∫
∂ΩD

ψfp · n̂ dA, (2.34)
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for all test functions ψ ∈ XN
0,p, and XN

0,p is the set of basis functions vanishing on the domain boundary. The

surface integrals in (2.34) vanish on the domain boundary where outflow (homogeneous pressure) boundary

conditions are applied.

The use of Lagrange interpolants on GLL points allows integrals in (2.33) and (2.34) to be computed

accurately using pointwise quadrature. The quadrature is performed on Nd GLL points in each element,

save for the nonlinear terms, which are evaluated on (3N/2)d Gauss points to preserve skew-symmetry and

ensure stability [91]. Using an approach similar to that explained in Section 2.1.4, the spatial discretization of

(2.32) leads to a symmetric positive definite (SPD) system matrix for each component of the velocity, which

is solved with diagonally-preconditioned conjugate gradient iteration. Spatial discretization of (2.29) results

in an SPD Poisson system which is solved using p-multigrid accelerated by GMRES [92, 93]. Additional

details concerning the SEM formulation for the incompressible Navier-Stokes equations are in [84,89,90].

Thermal Energy equation

When simulating heat transfer with incompressible flow, we also have the energy equation,

∂T

∂t
+ u · ∇T =

1

Pe
∇2T + qT , (2.35)

where T (x, t) is the temperature as a function of space x ∈ lRd and time t, and qT is an energy source

term. Pe = 1/(Re ·Pr) is the Peclet number. The Prandlt number Pr = ν/α is the ratio of the momentum

diffusivity (ν) and the thermal diffusivity (α). Similar to (2.32), using implicit treatment of the diffusion

term and explicit treatment of the advection term, the solution Tn for temperature at time tn is obtained

as

β0

∆t
Tn − 1

Pe
∇2Tn =

k∑
j=1

βj
∆t

un−j +

k∑
j=1

αj(−u · ∇T + qT )n−j , (2.36)

and the weak form of (2.36) leads to the Helmholtz equation

β0

∆t
(ϕ, Tn) +

1

Pe
a(ϕ, Tn) = (ϕ, fnT ) +

∫
∂ΩNT

ϕ∇Tn · n̂ dA, (2.37)

for all test functions ϕ ∈ XN
b,T , where XN

b,T is the set of basis functions that satisfy the Dirichlet conditions

on ∂Ω (and interdomain boundary ∂ΩI in the case of overlapping grids), and fnT represents the terms

on the right-hand side of (2.32). In (2.37), ∂ΩNT is the set of surfaces that have a Neumann condition

for temperature. Equation (2.35) is an advection-diffusion equation that can be solved for passive scalars
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advected by the flow. However, care must be taken to translate parameters such as the Prandtl number to

the ratio of appropriate diffusivities for each scalar.

2.2.2 Boundary conditions

In our SEM formulation of Navier-Stokes, we typically impose either essential (Dirichlet) boundary conditions

or natural (Neumann) boundary conditions on a surface for velocity. The boundary conditions for pressure

are opposite to that of velocity, that is, a Dirichlet surface for velocity is Neumann for pressure, and vice-

versa. In this section, we describe the different boundary conditions that we impose. We note that all

boundary conditions can be a function of position and time, u(x, t) and p(x, t) ∀ x ∈ ∂Ω, but for brevity,

we simply represent boundary conditions as u and p.

Dirichlet conditions for velocity can be imposed on any surface as

u = ub, (2.38)

where ub = 0 for nonmoving walls due to the no-slip condition (continuum mechanics hypothesis), and ub

can be an arbitrary function depending on the problem of interest. The stress-free condition (symmetry)

states that

u · n̂ = 0, ∇u · n̂ = 0, (2.39)

where n̂ is the unit vector normal to the surface. All outflow surfaces are Neumann for velocity and have

homogeneous Dirichlet condition for pressure

∇u · n̂ = 0, p = 0. (2.40)

Since Dirichlet surfaces for velocity are treated as Neumann for pressure, an immediate concern is bound-

ary condition (surface integrals) for pressure in (2.34). The Neumann condition on pressure is obtained by

taking the dot product of the momentum equation (2.26) with the normal vector (n̂) to the surface

∂pn

∂n
= −∂(n̂ · u)

∂t
− n̂ ·

k∑
j=1

αj(u · ∇u− f)n−j − 1

Re
n̂ ·

k∑
j=1

αj(∇× ωn−j), (2.41)
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which simplifies to

∂pn

∂n
+ fp · n̂ = − β0

∆t
un · n̂, (2.42)

= − β0

∆t
unb · n̂ on ∂ΩD. (2.43)

As we can see, for surfaces which have a Dirichlet condition on velocity, the surface integral (Neumann

condition on pressure) in (2.34) is cast in terms of the Dirichlet velocity condition (unb ). For surfaces that

are Neumann for velocity (e.g., outflow), a Dirichlet condition is prescribed for pressure, and the surface

integrals vanish because the test function ψ ⊂ H1
0,p.

In addition to (2.26), an arbitrary number of scalars can be solved for using the advection-diffusion

equation (2.35). For the thermal energy equation, there are Dirichlet and Neumann boundary conditions as

well. A Dirichlet condition for temperature (T (x, t)) can be imposed as

T = Tb. (2.44)

A Neumann condition for temperature is imposed as

∂T

∂n
= Tq, (2.45)

where Tq is a user-specified flux, and Tq = 0 for insulated surfaces.

We note that in addition to the Dirichlet and Neumann conditions, we can also have periodic boundary

conditions

u(x, t) = u(x + p, t),

p(x, t) = p(x + p, t),

T (x, t) = T (x + p, t),

(2.46)

where we assume that p is the vector describing the location of two periodic surfaces with respect to

each other in the Cartesian-space. From an implementation perspective, periodic boundary conditions are

imposed in the SEM framework using the gather-scatter operator by assuming that GLL points that are

periodic to each other are coincident.

2.2.3 Summary of Navier-Stokes time advancement

To set the stage for our Schwarz-based Navier-Stokes solver, we summarize the Navier-Stokes time advance-

ment of the preceding subsection. Using φn = [pn,un]T to represent the pressure and velocity solution

33



in Ω at time tn, and assuming that the solution is known up to time tn−1, the solution to the INSE is

time-advanced as:

1. Compute the tentative velocity field ún using (2.28), which accounts for the BDFk and time extrapo-

lated nonlinear terms (EXTk terms).

2. Solve the linear Stokes subproblems (2.29) and (2.32) to compute the velocity-pressure pair, φn =

[un, pn]T

Sφn = rn, un|∂ΩD = unb , pn|∂ΩN = 0, (2.47)

where rn, determined using ún, accounts for all inhomogeneities for both pressure and velocity, given on the

right-hand sides of (2.29) and (2.32), respectively:

rn = [rnv , r
n
p ]T ,

rnv = −∇pn +
ún

∆t
,

rnp = −∇ · ú
n

∆t
+

1

Re
∇ ·

k∑
j=1

αj(∇× ωn−j).

(2.48)

In (2.47), unb is the prescribed velocity on all Dirichlet surfaces ∂ΩD of the domain, homogeneous Dirichlet

conditions are imposed for pressure on outflow surfaces ∂ΩN , and homogeneous Neumann conditions are

imposed for velocity on ∂ΩN .

We note that in the Navier-Stokes time advancement process summarized above, Step 1 is used to

compute a tentative velocity field that depends on the solution at previous time-steps. Only Step 2 includes

the solution of a boundary value problem, and thus we can anticipate that time-advancing the solution to

the INSE on overlapping subdomains will require us to iterate on this Schwarz subproblem (2.47), which

constitutes a system of elliptic PDEs (a Poisson problem for pressure and a Helmholtz equation for each

velocity component). We discuss our formulation for solving the INSE on overlapping subdomains in the

next chapter.

2.3 Spatial and Temporal Convergence of SEM

We demonstrate the spatial and temporal accuracy of the monodomain SEM formulation by considering

the exact Navier-Stokes eigenfunctions in a periodic domain Ω = [0, 2π]2, derived by Walsh [94]. We will
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Figure 2.6: (left) Spectral element mesh for discretizing the periodic domain Ω = [0, 2π]2 with 256 elements,
and (right) vorticity contours at Tf = 1 for N = 15.

Figure 2.7: (left) Spatial and (right) temporal convergence plots, with final error computed at Tf = 1.

also use this example in later sections to demonstrate that our multidomain Schwarz formulation retains the

exponential spatial and third-order temporal convergence properties of the monodomain formulation.

Walsh introduced families of eigenfunctions that can be defined using linear combinations of cos(px) cos(qy),

sin(px) cos(qy), cos(px) sin(qy), and sin(px) sin(qy), for all integer pairs (p, q) satisfying λ = −(p2 +q2). Tak-

ing as an initial condition the eigenfunction û = (−ψ̃y, ψ̃x), a solution to the NSE is u = eνλtû(x). Here,

ψ̃ is the streamfunction resulting from the linear combinations of eigenfunctions. Interesting long-time so-

lutions can be realized by adding a relatively high-speed mean flow u0 to the eigenfunction, in which case

the solution is uexact = eνλtû[x− u0t], where the brackets imply that the argument is modulo 2π in x and

y. As a result, this problem lets us test the advection and diffusion component of NSE.

Figure 2.6 shows the spectral element mesh used for this periodic domain Ω = [0, 2π]2 with 256 equally-

sized spectral elements. The flow parameters are ν = 0.05, u0 = (1, 0.3), ψ̃ = (1/5)sin(5y) + (1/5)cos(5x)−

(1/4)sin(3x)sin(4y), and λ = −25. The flow is integrated up to time Tf = 1 convective time units (CTU)

with a fixed ∆t = 10−4. Figure 2.6 also shows the vorticity contours at Tf = 1.

Exponential convergence of the velocity error with respect to N is demonstrated in Fig. 2.7. The error
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is computed as e = u− uexact, and the norm is the 2-norm of the point-wise maximum of the vector field,

i.e., ||e||2,∞:= ||ẽ||2, where ẽ = [||e1||∞, ||e2||∞]. For spatial convergence, N is varied from 3 to 15, and ∆t

is fixed at 10−4. For temporal convergence, N = 13 and the solution is integrated up to Tf = 1 for various

∆t. As we see in Fig. 2.7, exponential convergence with respect to N , and third-order convergence with

respect to ∆t are achieved using the spatial and temporal discretization described in this chapter.

2.4 Summary

In this chapter, we have described the key ingredients of the SEM, along with how a PDE is transformed

from its weak form into a linear system of equations. We have also described the spatial and temporal

discretization of the incompressible Navier-Stokes equations along with the different boundary conditions

that are used in the monodomain SEM framework. We have also summarized how we advance the solution to

the INSE in time. The following chapter will extend the monodomain SEM framework to the Schwarz-SEM

framework for overlapping grids.
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Chapter 3

Schwarz-SEM for the Incompressible
Navier-Stokes Equations

In Section 1.2, we have presented how the overlapping Schwarz method can be used to solve a PDE in

overlapping subdomains, and in Section 2.2.3, we have discussed our methodology for time-advancing the

solution to the incompressible Navier-Stokes equations in a single conforming domain. In this chapter, we

describe the Schwarz-SEM framework for time-advancing the solution of INSE on overlapping subdomains.

We also discuss how we improve and integrate findpts in the Schwarz-SEM framework to enable use of an

arbitrary number of overlapping subdomains.

Important note on notation: In Chapter 2, we used Ωe to denote the element with (local) element

number e in the spectral element mesh used to model Ω. From here on, we will reserve the superscript

(typically s) to denote the subdomain number (e.g., Ωs), unless otherwise stated. We also note that we will

use Ωs,e to represent the spectral element with element number e in Ωs.

3.1 Schwarz-SEM for Navier-Stokes

The strategy for time-advancing the solution of INSE in overlapping subdomains is similar to that for a

single conforming domain. For notational purposes, we introduce ∂ΩsD := ∂Ωs ∩ ∂ΩD as the set of surfaces

that have user-prescribed Dirichlet conditions for velocity, ∂ΩsN := ∂Ωs∩∂ΩN as the set of surfaces that have

(homogeneous) Neumann conditions for velocity, and ∂ΩsI := ∂Ωs\(∂ΩsD∪∂ΩsN ) as the interdomain boundary

Figure 3.1: (left) Composite domain Ω discretized into (right) overlapping rectangular (Ω1) and circular
(Ω2) subdomain.
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surfaces that obtain their boundary condition via interpolation from an overlapping domain Ωr 6= Ωs. Figure

3.1 shows an example of a composite domain modeled with a rectangular domain overlapping with a circular

domain.

Recall from Section 2.2.3 that we use φn−1 = [un−1, pn−1]T to represent our numerical velocity-pressure

solution at time-level tn−1. In the Schwarz context, we further define φs,n−1,[q] as the qth iterate of the

Schwarz update on subdomain Ωs at time level tn−1. We typically run with a predefined upper bound on

q, which we denote as Q. Thus, assuming that that the solution is known up to time tn−1 and has been

converged using Schwarz iterations at the previous time-step, φs,n−1,[Q] represents our solution at time tn−1.

With this notation, and assuming a constant time-step size ∆t (which is equal for all overlapping grids), we

define the Schwarz update procedure as follows:

1. Compute the tentative velocity field ú using (2.28) with the solution from the Q-th Schwarz iteration

at k (for BDFk/EXTk scheme) previous time-steps in each subdomain Ωs, s = 1 . . . S:

ús,n = −
k∑
j=1

βju
s,n−j,[Q] + ∆t

k∑
j=1

αj(−u · ∇u + f)s,n−j,[Q], (3.1)

where ús,n has contributions from the BDFk and EXTk terms.

2. Solve the linear Stokes subproblems (2.29) and (2.32) to compute the velocity-pressure pair, φs,n,[q] =

[us,n,[q], ps,n,[q]]T in each subdomain using Q simultaneous Schwarz iterations. We use q = 0 to denote

the solution that is based on the interdomain boundary data interpolated from the solution at previous

time-step, and q = 1 . . . Q to denote the subsequent Schwarz iterations at that time-step:

q = 0 : Sφs,n,[q] = rs,n,[q], un|∂ΩsD
= us,nb , un|∂ΩsI

= I(ur,n−1,[Q]), pn|∂ΩsN
= 0, (3.2)

q = 1 . . . Q : Sφs,n,[q] = rs,n,[q], un|∂ΩsD
= us,nb , un|∂ΩsI

= I(ur,n,[q−1]), pn|∂ΩsN
= 0, (3.3)

where

rs,n,[q] = [rs,n,[q]v , rs,n,[q]p ]T ,

rs,n,[q]v = −∇ps,n,[q] +
ús,n

∆t
,

rs,n,[q]p = −∇ · ú
s,n

∆t
+

1

Re
∇ ·

k∑
j=1

αj(∇× ωs,n−j,[Q]).

(3.4)

We note that in (3.2) and (3.3), the contribution from ús,n in rs,n,[q] does not need to be updated at each

Schwarz iteration because it depends only on the solution at previous time-steps. Consequently, we do not

use the superscript q in ús,n. Similarly, the boundary condition for user-specified Dirichlet surfaces (∂ΩsD)
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also does not need to be updated at each Schwarz iteration, i.e., un|∂ΩsD
= us,nb . Only the contribution from

the interdomain boundary (∂ΩsI) needs to be updated at each iteration by interpolating the solution from

the overlapping subdomain Ωr, using the interpolation operator I that we will explain in the next section.

In (3.2), we interpolate the interdomain boundary data from the solution at the previous time-step, and

the resulting solution is, thus, only O(∆t) accurate. In (3.3), the Schwarz iterations q = 1 . . . Q interpolate

the solution from most recent iteration and increase the temporal accuracy of the solution (up to order at

most k, which is the order of accuracy of the driving BDFk/EXTk temporal discretization). Numerical

experiments show that it can take more than Q = 30 Schwarz iterations to get temporal accuracy of O(∆t3).

Since each Schwarz iteration requires solution of the pressure Poisson problem and the Helmholtz equation

for each component of velocity, one would like to minimize the number of Schwarz iterations needed at each

time-step.

Peet and Fischer [55] showed that the temporal accuracy of the solution at the first Schwarz iteration

could be increased from O(∆t) to O(∆tm) (m ≤ k) by temporally extrapolating the boundary data from

m preceding steps. Such an approach can formally elevate the accuracy to the level of the underlying

BDFk/EXTk scheme. Stability analysis, however, shows that m > 1 leads to an unstable scheme. To

recover stability, we consider a predictor-corrector (PC) scheme in which the initial guess for data on ∂ΩsI

is based on mth-order temporal extrapolation (from neighboring subdomain Ωr), and subsequent corrector

values are obtained from Schwarz iterations of the linear Stokes system. This (PC) scheme for advancing

the solution of INSE in overlapping subdomains is:

1. Compute the tentative velocity field ú using (2.28) with the solution from Qth Schwarz iteration at k

(for BDFk/EXTk scheme) previous time-steps in each subdomain Ωs, s = 1 . . . S:

ús,n = −
k∑
j=1

βju
s,n−j,[Q] + ∆t

k∑
j=1

αj(−u · ∇u + f)s,n−j,[Q], (3.5)

where ús,n has contributions from the BDFk and EXTk terms.

2. Solve the linear Stokes subproblems (2.29) and (2.32) to compute the velocity-pressure pair, φs,n,[q] =

[us,n,[q], ps,n,[q]]T in each subdomain using Q simultaneous Schwarz iterations. The initial solution

q = 0 is now based on the interdomain boundary data extrapolated in time using the solution at

previous time-steps, and each subsequent Schwarz iteration (1 ≤ q ≤ Q) uses the solution from the
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most recent iteration:

q = 0 : Sφs,n,[0] = rs,n,[q], un|∂ΩsD
= us,nb , un|∂ΩsI

= I
( m∑
j=1

α̃j ur,n−j,[Q]

)
, pn|∂ΩsN

= 0, (3.6)

q = 1 . . . Q : Sφs,n,[q] = rs,n,[q], un|∂ΩsD
= us,nb , un|∂ΩsI

= I(ur,n,[q−1]), pn|∂ΩsN
= 0, (3.7)

where the definition of rs,n,[q] stays unchanged from (3.4), m is the order of extrapolation for interdo-

main boundary data, and α̃j are the corresponding extrapolation weights.

It is clear that the difference between (3.6) and (3.2) is the use of mth-order extrapolation in time for the

interdomain boundary data, which increases the temporal accuracy of the solution and reduces the number

of Schwarz iterations needed at each time-step.

Using stability analysis on a 1D model problem, Peet and Fischer demonstrated that 1 ≤ Q ≤ 3 was

sufficient for ensuring a stable solution when m > 1. For the INSE, Merrill et al. [24] demonstrated that this

PC approach yields up to third-order temporal accuracy for Schwarz-SEM flow applications. In Chapter 5,

we develop a stability analysis framework to empirically analyze the stability of this PC scheme for time-

advancing the solution of the INSE in overlapping subdomains, and we also describe a PC scheme that

requires fewer Q than (3.6,3.7) to ensure a stable solution.

3.2 Interdomain Boundary Data Interpolation

Interpolation is central to the overlapping Schwarz formulation. For a given subdomain, Ωs, the essential

operation is to find the value of a field u(x) at all points x∗ ∈ ∂ΩsI , where u is to be evaluated in the adjacent

subdomain Ωr 6= Ωs. Given the spectral element representation for the function u (2.5) and spatial coordi-

nates x (2.6) of the mesh in the physical space, the task at hand is to use (2.6) to identify computational

coordinates, (e∗, ξ∗, η∗, ζ∗), which indicate the element Ωr,e
∗

that x∗ overlaps, and the reference-space coor-

dinates ξ∗ = {ξ∗, η∗, ζ∗} inside Ωr,e
∗
. With these computational coordinates, (2.5) can be used to evaluate

u∗ = u(x∗)1.

Figure 3.2 shows the example from Chapter 1 with a rectangular domain overlapping with a circular

domain. The overlap between the two domains is nontrivial, and grid points discretizing the interdomain

boundary of each subdomain will rely on the corresponding overlapping subdomain for boundary conditions.

Thus, the first challenge for OS-based methods is to accurately identify the donor element and reference-

space coordinates (ξ = ξ, η, ζ) inside that element, for each interdomain boundary point x∗ ∈ ∂ΩsI , as shown

1Technically, according to (2.6)–(2.5), it would be u∗ = u(ξ∗(x∗)), but we will use the less cumbersome form u∗ = u(x∗).
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Figure 3.2: (left) Overlapping rectangular (Ω1) and circular (Ω2) subdomains, (center) interdomain boundary
∂Ω1

I overlapping spectral elements of Ω2, and (right) grid point x∗ ∈ ∂Ω1
I overlapping the element Ω2,e.

in Fig. 1.8. Since each subdomain is partitioned onto many processors, we also need to know the process p

owning the donor element e corresponding to each interdomain boundary grid point. Using q∗j = (p∗, e∗, ξ∗)j

for each grid point (x∗j ), we can interpolate any scalar function using (2.5). In our framework, speed and

accuracy for donor-element identification and interpolation, comes via integration of findptslib, a set of

high-order interpolation routines in gslib.

3.2.1 High-order interpolation in a single conforming mesh using findpts

findptslib was originally developed for data interrogation and Lagrangian particle tracking in a single con-

forming domain for up to P = 106 processors. High fidelity interpolation for highly curved elements, like the

ones supported by SEM, is quite challenging. Thus, findptslib was designed with the principles of robust-

ness (i.e., it should never fail) and speed (i.e., it should be fast). Here, we summarize how findpts enables

high-order interpolation in spectral element meshes using findpts and findpts eval, and the reader is referred

to [44] for a detailed discussion on findptslib.

findptslib provides two key capabilities. Using findpts, it first determines computational coordinates

q∗j = (e∗, p∗, ξ∗, η∗, ζ∗)j (local element number e∗ on process p∗, and reference-space coordinates ξ∗ =

(ξ∗, η∗, ζ∗)) for any given set of points x∗ = (x∗1,x
∗
2 . . .x

∗
b), where b is the number of points to be found, and

x∗j = (x∗, y∗, z∗)j ∈ lR3. To find q∗ for a given point x∗, findpts first uses a hash table to identify processors

that could potentially have the element inside which the target point x∗ is located. A call to gs crystal

then exchanges copies of the x∗ entries between the source processor that is looking for x∗, and potential

processors. Once there, element-wise bounding boxes further discriminate to determine potential elements

on each processor that could contain x∗. At that point, a trust-region based Newton optimization is used

to solve ξ∗ = argmin||xe(ξ)−x∗||2, where xe(ξ) represents the isoparametric mapping from Ω̂e to Ωe. Once

the Newton search is complete and x∗ is found inside element Ωe
∗
, its computational coordinates q∗ are

returned to the source processor. Additionally, findpts also indicates whether a point was found inside an

element, on the edge/surface of an element, or if it was not found within the mesh. We note that due to the
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use of local form (2.5) for representing functions, and the use of the private memory model (Section 2.1.5),

findpts requires the local element number e∗ (not the global element number) on the process p∗ on which

the point is found. The second key feature of findptslib is the routine findptslib that interpolates any given

field for a given set of computational coordinates (determined from findpts) using (2.5).

Because interpolation is nonlocal (a point x∗j may originate from any processor), findpts and findpts eval

require interprocessor coordination and must be called by all processors in a given communicator. For

efficiency reasons, interpolation calls are typically batched with all queries posted in a single call, but the

work can become serialized if a single processor ultimately owns all target points. A detail discussion of

findpts is in [44].

3.2.2 findpts for Schwarz-SEM

Since findpts has demonstrated excellent scaling in parallel for finding computational coordinates of a given

point [95], it is natural to use findpts for determining computational coordinates in the context of the Schwarz-

SEM framework. However, we must keep in mind that findpts was originally developed for monodomain

meshes, and cannot discriminate between elements of different subdomains. In order to integrate findpts in

the Schwarz-SEM framework, we have to address two key issues.

First, to find donor elements for grid points on ∂ΩsI , we want to ignore the elements in Ωs. Second, in

case of multiple overlapping meshes (S > 2), we want to pick the donor element from the subdomain that

minimizes error due to Schwarz iterations. Consider the example for S = 3 overlapping domains, shown in

Fig. 3.3, where we illustrate the meshes for Ω1 (red) and Ω3 (black), and the subdomain boundary of Ω2

(∂Ω2
I is shown in green). In order to determine donor elements for a grid point x∗ ∈ ∂Ω2

I , we want to ignore

the elements in Ω2, and pick the donor element from Ω1 or Ω3 that minimizes the error associated with

Schwarz iteration. To address these issues, we have added discriminators to findpts to enable donor element

search in an arbitrary number of overlapping grids.

For the Schwarz-SEM framework, donor element search is done simultaneously for all subdomains. All

elements in each subdomain Ωs are tagged with the subdomain number s, and this subdomain number is

passed to findpts as a discriminator. When findpts is used to find the donor element for an interdomain

boundary grid point x∗ ∈ ∂Ωr, the subdomain number r is passed to findpts along with x∗. findpts then

uses the subdomain number r of the queried point and the subdomain number of spectral elements to only

search elements that are in Ω\Ωr. This subdomain number based discriminator is sufficient for determining

donor elements when there are only two subdomains (S = 2).

For S > 2, it is still possible to have multiple subdomains claim ownership of a given boundary point
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Figure 3.3: For determining the donor element for x∗ ∈ ∂Ω2
I ., findpts ignores elements in Ω2 and considers

distance from the interface boundaries (δ1(x∗) in Ω1 and δ3(x∗) in Ω3). For clarity, we have shown only the
domain boundary of Ω2 overlapping with subdomains Ω1 and Ω3.

x∗. To resolve such conflicts, we associate with each subdomain Ωs a local distance function, δs(x), which

indicates the minimum distance from any point x ∈ Ωs to ∂ΩsI . The owner of any boundary point x∗ ∈ ∂ΩrI

among two or more domains Ωs, s 6= r, is taken to be the domain that maximizes δs(x∗). This choice is

motivated by the standard Schwarz arguments, which imply that errors decay away from the interface, in

accordance with the decay of the associated Green’s functions (Section 1.2). We illustrate this situation in

Fig. 3.3, where x∗ ∈ ∂Ω2
I is interior to both Ω1 and Ω3. In this case, interpolated values (from findpts eval)

will come from Ω1 because x∗ is “more interior” to Ω1 than Ω3.

By adding the subdomain number and distance function based discriminator to findpts, we are able to

use it for identifying computational coordinates for interdomain boundary grid points in the Schwarz-SEM

framework. The distance function δ is essential for integrating findpts in the Schwarz-SEM framework, and

we will describe our method for generating this distance function in Section 3.4.

3.2.3 Improvement to high-order interpolation in findpts eval

Since findpts eval relies on computational coordinates for interpolation, no changes are required to use

findpts eval for interpolating interdomain boundary data in overlapping grids. Here, we describe how we

have reduced the computational cost of the interpolation routine findpts eval.

In the original implementation, findpts eval interpolates a given scalar field at a set of computational

coordinates by sending computational coordinates (q∗) to the processor (process number p∗) on which each

point (x∗) is found. Each processor then sorts the list of points that it has received, element-wise, in

order to efficiently compute Lagrange coefficients for interpolation. This sorted list of points is then used

to interpolate the given scalar field, element-by-element, and the interpolated values are sent back to the
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source processor that had originally issued the query.

In the Schwarz-SEM framework, findpts eval is called at each Schwarz iteration multiple times, and using

the original findpts eval implementation leads to unnecessary sorting and communication at each iteration for

the same list of computational coordinates. To reduce the computational cost, we have improved findpts eval

such that it saves the list of computational coordinates (sorted element-wise) on the processor that the point

is found on, instead of the source processor that owns the point. As a result, every time findpts eval is called,

the scalar field is directly interpolated and communicated to the source processor that has the interdomain

boundary grid point. With this improvement, we have observed a 3X speed-up in performance of findpts eval.

The performance result comparing the original and improved findpts eval are presented in Section 8.3, where

we discuss the timing and scaling for different components of the Schwarz-SEM framework.

3.3 Multidomain Partitioning

Section 3.2.2 and 3.2.3 describe the changes that we have made to findptslib to integrate it in the Schwarz-

SEM framework. With the improvements that we have made to findpts for enabling donor element search in

overlapping subdomains, the extension of the monodomain SEM framework to the multidomain (Schwarz-

SEM) framework is straightforward for parallel implementation.

In the multidomain case with S subdomains, all MPI ranks are initialized within a single communicator

(MPI COMM WORLD). These MPI ranks are then partitioned into S subsets, each with their own MPI commu-

nicator (Intracomm), and elements in Ωs are distributed across MPI ranks within Intracomm s. With this

partitioning strategy, each subdomain s individually advances the solution to INSE, using gslib at the level

of its local subdomain communicator Intracomm s to effect the gather-scatter operator.

Since boundary conditions for interdomain boundaries rely on overlapping grids, however, as described in

Section 3.1, findpts cannot be used at the level of the local subdomain communicator Intracomm s. Instead,

findpts is used at the level of MPI COMM WORLD for computational coordinate search, as MPI COMM WORLD allows

communication between MPI ranks associated with different subdomains. To demonstrate how MPI ranks

are partitioned for multidomain cases at the level of the global communicator, MPI COMM WORLD, and local

subdomain communicator, Intracomm, we consider a simple example of S = 2 overlapping grids.

Fig. 3.4(a) shows an example of overlapping grids with a background mesh that has a hole in the center

and a circular mesh which overlaps the background mesh. The interdomain boundaries ∂ΩsI for each mesh

are also indicated in the figure. For this example, we consider that P = 4 for Ω1, which has E = 16 spectral

elements, and P = 2 for Ω2, which has E = 12 spectral elements. In the Schwarz-SEM framework, all
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(a) Overlapping spectral element meshes. (b) Partitioning of MPI ranks from MPI COMM WORLD

to Intracomm.

(c) Partitioning of each spectral element mesh to MPI ranks.

Figure 3.4: Pictorial representation of two overlapping grids partitioned on to their own MPI communicators.

the 6 MPI ranks will, thus, be initialized within a single communicator (MPI COMM WORLD), as shown in Fig.

3.4(b). The 6 MPI ranks will then be split into S = 2 subsets, and each subset will be assigned its own

MPI communicator, Intracomm s. Elements of each subdomain s will then be partitioned onto MPI ranks in

Intracomm s using the model described in Fig. 2.5. Figure 3.4(c) shows the two overlapping grids partitioned

onto their own MPI ranks, along with the local element numbering on each MPI rank. Since findpts needs

to effect interdomain communication at the level of global communicator (MPI COMM WORLD), and gslib needs

to effect the gather-scatter operator at the level of local communicator (Intracomm s for each subdomain

Ωs), we need a mapping, similar to (2.25), telling how each spectral element of each subdomain maps to the

45



local and global communicator.

Using esg to denote the global element number for elements in Ωs, ps
w

to denote the vector that tells what

MPI rank in MPI COMM WORLD each element is mapped to, ps
l

to denote the MPI rank in Intracomm s that

each element is mapped to, and esl to denote the local element number on the MPI rank that the element is

on, the mapping for the example in Fig. 3.4 is

e1
g = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16],← global element number

p1
w

= [0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3],← MPI rank at MPI COMM WORLD level

p1
l

= [0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3],← MPI rank at Intracomm 1 level

e1
l = [1, 2, 3, 4, 5, 1, 2, 3, 1, 2, 3, 1, 2, 3, 4, 5],← local element number

(3.8)

for Ω1, and

e2
g = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12],← global element number

p2
w

= [4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5],← MPI rank at MPI COMM WORLD level

p2
l

= [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1],← MPI rank at Intracomm 2 level

e2
l = [1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6],← local element number

(3.9)

for Ω2. This approach allows us to map each element at the level of MPI COMM WORLD for interdomain

boundary data exchange, and at the level of Intracomm s for the unsteady Stokes solve.

Using this approach, the single domain SEM framework (100K lines of code) has been extended to the

Schwarz-SEM framework for multiple overlapping meshes, with minimal change.

3.4 Distance Field Generator

Distance fields are needed in multiple contexts within our Schwarz INSE solver and with INSE solvers, in

general. First, as noted earlier in Section 3.2.2, we use distance from interior domain boundaries, ∂ΩsI , as a

discriminator in cases where multiple neighboring domains, Ωr 6= Ωs, share a given point on ∂ΩsI . (We favor

the more interior point, that is, the one for which the distance function is largest.) Second, as we describe

in Section 4.3, distance functions are useful for efficient generation of partition-of-unity functions that are

critical for computing global integrals (to determine mass flux, etc.). Third, global distance functions from

an object (such as a cylinder or other subset of ∂Ω) are often required in, for example, RANS formulations

based on wall models. In this latter case, coupling between overlapping subdomains is required to accurately

compute the distance function from the object of interest.
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Consider the example of Fig. 3.5, which shows the monodomain spectral element mesh and overlapping

spectral element meshes for modeling flow over an oscillating cylinder, using an unsteady RANS formulation.

To allow the cylinder to oscillate in the monodomain case, an ALE formulation is used to move the GLL

points for all elements. In contrast, the Schwarz-SEM framework allows us to model this domain using a

static background mesh, overlapped with an oscillating mesh for the cylinder, thus eliminating the need

for ALE. Using an unsteady RANS formulation, however, requires the distance from the cylinder, which

is not readily available for the background grid since it is not connected to the cylinder. Thus, we need a

mechanism for coupling the overlapping grids in order to accurately generate a distance field for the entire

domain.

In this section, we first describe our methodology for determining the distance field in a single conforming

mesh. This methodology is used in the overlapping grid framework to generate the distance field on each

overlapping subdomain to determine the distance from the interdomain boundaries, which is used as a

discriminator in findpts (Section 3.2.2), and in generating partition-of-unity functions for global integration

(Section 4.3). Next, we extend this monodomain spectral element mesh based distance function generator

to the Schwarz-SEM framework using simultaneous Schwarz iterations (1.2), for applications where a global

distance field is needed based on a surface that could be located in any of the overlapping subdomains.

For a single conforming mesh, we construct the distance field based on the distance between neighboring

GLL points. The distance field δ is initialized by assigning a very large number (e.g., domain diameter that

can be computed as the maximum length of the domain in all space directions) to all the GLL points in the

interior and 0 to all the GLL points on the domain boundary of interest. An iterative loop then updates the

distance of all GLL points. For each GLL point i in the spectral element mesh, we set δi = min
∀j∈Ni

(δ0
i , δ

0
i +dij),

where δ0
i is the estimate of the distance at that GLL point from previous iteration, Ni is the set of GLL

points that are connected to the GLL point with index i, and dij is the Euclidean distance between the GLL

point i and GLL point j in its neighborhood. After each iteration, gslib communicates information between

Figure 3.5: (left) Monodomain and (right) overlapping spectral element meshes for flow over an oscillating
cylinder.
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GLL points shared between elements (which could be located on different processors). The iterative loop is

terminated when the distance is not updated for any GLL point in a mesh during the most recent iteration.

Figure 3.6(left) shows the distance field computed in the monodomain mesh using the approach described

above, based on the distance from the cylinder. As expected, the distance field is 0 at the cylinder and

increases away from the cylinder. We discuss the accuracy of this approach later in this section.

The extension of the distance field generator from monodomain SEM to Schwarz-SEM is straightforward

using simultaneous Schwarz iterations (1.2). The distance field is initialized to 0 at the boundary of interest

(e.g., cylinder surface) and interdomain boundaries, and to a large value everywhere else. An iterative loop,

the same as that used in the monodomain grid framework, is used to update the distance field in each

subdomain. Once the distance field converges on each subdomain, interdomain boundary data is exchanged

between overlapping grids via findpts and findpts eval. The iterative loop is then again used to update

the distance field in each subdomain, before exchanging the interdomain boundary data. These Schwarz

iterations are used until the distance field converges to a desired tolerance on the interdomain boundaries.

Figure 3.6(right) shows the distance field generated using the simultaneous Schwarz iterations on over-

lapping grids, and we can see a good comparison in the distance field generated for the monodomain grid

and overlapping grids. In this example, six Schwarz iterations were needed to compute the distance field

with a relative tolerance of 10−4 for the interdomain boundaries.

Fig. 3.7 shows the error in distance field computed using the nearest-neighbor approach for monodomain

and overlapping grids. While the exact distance field is not trivial to compute for complicated domains, we

can compute it for the geometry considered here since the cylinder of radius 0.5 is centered at the origin.

Thus, δexact(x) =
√
x2 + y2 − 0.5, and we compute the error as e = δ − δexact. Our nearest-neighbor based

approach gives a good approximation of the distance field for GLL points near the cylinder surface, in the

monodomain SEM framework. The use of simultaneous Schwarz iterations readily extends this method to

overlapping grids, and we see a good agreement in the results for the monodomain and the multidomain

Figure 3.6: Distance field for the (left) monodomain mesh and (right) overlapping meshes, based on the
distance from the cylinder.
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Figure 3.7: Error in distance field (e = δ − δexact) computed using the nearest-neighbor approach discussed
above for the (left) monodomain mesh and (right) the overlapping spectral element meshes.

case.

We note that in our experience, the nearest-neighbor based approach for distance function generation

has been sufficiently accurate for the applications (Section 3.2.2 and Section 4.3) that we consider here. It

is clear from Fig. 3.7, however, that a drawback of our methodology is that the error in the distance field

increases away from the surface of interest, where the mesh geodesics are not aligned with the true distance

field (which increases radially away from the cylinder, for the example considered here). This dependence

of accuracy on mesh geodesics is not desirable since mesh quality impacts the error in the distance function,

and this error cannot be reduced by a simple h- or p-type refinement.

In future work, we will look at more accurate ways of generating the distance function. One of the

options that we plan to explore is solving the time-dependent Eikonal equation (for e.g., [96])

∂δ

∂τ
+

(
T̃ (δ)

∇δ
|∇δ|

)
· ∇δ = T̃ (δ),where T̃ (δ) =

δ√
δ2 + |∇δ|2h(x)

, (3.10)

for generating the distance field. In (3.10), h(x) is a mesh dependent parameter. Starting with an ap-

proximation of the distance function, (3.10) can be time-advanced to steady state to get the exact distance

function. Preliminary studies show that the nonlinear nature of (3.10) coupled with lack of smoothness

in distance functions complicates the solution process, and we aim to develop fast and stable methods for

solving (3.10) in future work. We note that methods such as the fast marching method [97] or fast sweeping

method [98] are popular in the literature for generating the distance function, but they do not readily extend

to the high-order SEM framework that we present here.

3.5 Validating the Schwarz-SEM Framework

With integration of findptslib in the Schwarz-SEM framework, we can now solve the incompressible Navier-

Stokes equations in an arbitrary number of overlapping subdomains. In order to validate our Schwarz-SEM
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Figure 3.8: (left) Spectral element mesh for each overlapping subdomain. The background mesh has 240
elements, and is covered by a circular mesh with 96 elements. (right) Overlapped background and circular
mesh.

framework, we use Nek5000, an open-source SEM-based incompressible flow solver that scales to millions

of MPI ranks. It is used by researchers around the world to study turbulent flow phenomenon at high

Reynolds number [81, 82, 83]. All the methods presented in this dissertation have been implemented and

validated in Nek5000. Additionally, most of the theoretical developments presented here have already been

made available open-source through the Nek5000 Github repo [99].

Here, we revisit the example from Section 2.3, where we demonstrated exponential convergence with N ,

and third-order temporal convergence with ∆t for the monodomain SEM framework, using the Navier-Stokes

eigenfunctions by Walsh. We consider two cases with the Schwarz-SEM framework. In the first case, we use

two overlapping grids (S = 2), shown in Fig. 3.8(left). The periodic background mesh is modified from the

monodomain case such that it has a hole in the center, with a total of 240 elements. A circular mesh with

96 elements is overlapped with the background mesh to cover the hole, as shown in Fig. 3.8(right).

In the second case, we use three overlapping grids to test the multidomain (S > 2) capability of the

Schwarz-SEM framework. The background mesh is the same from S = 2 case, but now we use two circular

meshes to cover the hole in the background mesh. The three overlapping grids are shown in Fig. 3.9.

The initial conditions, boundary conditions, and parameters such as time-step size (∆t), polynomial

order (N) and Reynolds number (Re) are the same as for the monodomain case. We set m = 3 and Q = 1

for both, the S = 2 and S = 3 cases. Figure 3.10 shows the exponential convergence with N (left) and

third-order temporal convergence (right) for the two configurations considered here. The results in Fig. 3.10

indicate that the improvements that we have made to findpts support multidomain calculations (S > 2) in

the Schwarz-SEM framework.
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Figure 3.9: (left) Spectral element mesh for each overlapping subdomain. The background mesh has 240
elements, and is covered by two circular meshes, each with 96 elements. (right) Overlapped background and
circular meshes.

Figure 3.10: (left) Spatial and (right) temporal convergence for the multidomain case with S = 2 and S = 3
overlapping grids.

3.6 Summary

In this chapter, we described the key ingredients of the Schwarz-SEM framework that we have developed. We

presented our methodology for extending the high-order interpolation library findptslib by adding a pair of

discriminators for computational coordinate identification in findpts with an arbitrary number of overlapping

subdomains. These discriminators are based on the subdomain number of each overlapping mesh, and the

distance of GLL points in each mesh from its interdomain boundary. We have also identified ways to

improve the computational complexity of findpts eval, the high-order interpolation routine in findptslib.

We empirically showed that using the extension of findptslib to multidomain calculations, we are able to
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maintain the exponential convergence with polynomial order N , and third-order temporal convergence of

the underlying SEM-based incompressible Navier-Stokes solver.
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Chapter 4

Mass Conservation and Fixed Flow
Rate through Overlapping
Subdomains
In this chapter, we describe the impact of interpolating interdomain boundary data on the net mass flux in the

domain. Using a simple 2D example, we describe a velocity correction scheme that ensures that the boundary

conditions for each unsteady Stokes solve are consistent. We also discuss our method for maintaining a fixed

mass flow rate through overlapping subdomains, a capability crucial for modeling internal flows in periodic

domains. This method also brings forth the need for a framework for global integration on overlapping

subdomains, which is not as trivial as in a monodomain grid. Overlapping grid-based methods require that

grid points in the overlap region are weighted appropriately for integration, and we have developed a novel

method for generating partition-of-unity functions in subdomains with arbitrary overlap.

4.1 Mass Conservation

Accurate treatment of boundary conditions is crucial for the stability and accuracy of numerical simulations.

For the incompressible Navier-Stokes equations, the pressure solution in the domain is tightly coupled to

the divergence-free constraint, and violation of mass balance can lead to spurious oscillations in the pressure

solution. Thus, mass conservation is necessary to ensure stability and accuracy in the SEM. This requires

special care in the Schwarz-SEM framework because we must ensure that the boundary conditions enforced

on ∂ΩsI are consistent with the boundary conditions on ∂Ωs\∂ΩsI , i.e., the net mass flux through ∂Ωs should

be zero.

Let us consider the channel with constrictions shown in Fig. 4.1, which is modeled using two overlapping

domains. The domain on the left (Ω1) has inhomogeneous Dirichlet boundary conditions on the inflow

surface on the left, and homogeneous Dirichlet boundary condition on the top, bottom and constriction

walls. The interdomain boundary (∂Ω1
I) is also Dirichlet for velocity, and the boundary data for ∂Ω1

I is

interpolated from the domain on the right (Ω2). For Ω2, there is a Neumann boundary condition for velocity

via outflow on the right boundary and an interdomain boundary (∂Ω2
I) on the other end. Since Ω2 has an

outflow on the right boundary, the net mass flux through the subdomain boundaries in Ω2 is automatically
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Figure 4.1: Velocity magnitude of flow through a channel with constrictions, along with overlapping meshes
used to model the domain.

balanced, i.e.,
∫
∂Ω2 u · n̂ = 0. For Ω1, however, there is no guarantee that the net mass flux through ∂Ω1

I will

balance the mass inflow through the inflow boundary (∂Ω1
D). Numerical experiments show that the mass

flux imbalance across Ω1 can lead to numerical instabilities, and we use this example to derive a velocity

correction scheme to address the mass imbalance due to interpolation for interdomain boundary data.

For each subdomain Ωs, the mass conservation statement is

∫
∂Ωs

u · n̂ dA = 0, (4.1)

where n̂ represents the outward pointing unit normal vector on ∂Ωs. (4.1) is a compatibility condition for the

incompressible NSE and must be satisfied at each time-step. Even though we use high-order interpolation

(order N) to obtain interdomain boundary data, there is no guarantee that (4.1) is exactly satisfied. This

issue is especially exacerbated when grids of varying resolution are used. Our goal is to find a nearby

correction to the interpolated velocity field (û) such that it satisfies the compatibility condition.

Let ∂ΩD denote the subset of the domain boundary ∂Ω corresponding to Dirichlet velocity conditions

and ∂ΩN be the Neumann (outflow) subset. If ∂ΩN ∩∂Ωs = 0 (as is the case for Ω1), then there is a potential

to fail to satisfy (4.1) because the interpolated fluxes on ∂Ωs may not integrate to zero. Let û denote the

tentative velocity field defined on ∂Ωs through prescribed data on ∂ΩsD := ∂Ωs ∩ ∂ΩD and interpolation on

∂ΩsI := ∂Ωs\∂ΩsD. Assuming that υ =
∫
∂Ωs

û · n̂ dA is the net mass flux through the domain boundary, our

goal is to find a correction ũ to the interdomain boundary data such that u = û + ũ and
∫
∂Ωs

u · n̂ = 0.

Since we do not want to modify the prescribed boundary data on ∂ΩsD, we set ũ|∂ΩsD
= 0. The velocity field

correction problem is, thus, represented as

arg min
ũ

‖u− û‖2T subject to

∫
∂Ωs

u · n̂ dA = 0 and ũ|∂ΩsD
= 0, (4.2)
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where ||u− û||T is the trace norm (or L2 norm in the trace space) in the space of functions used to discretely

represent u and û in the SEM. The advantage of (4.2) is that it maintains the prescribed boundary data on

∂ΩsD, and projects the boundary data on ∂ΩsI to a divergence-free space such that
∫
∂Ωs

u · n̂ dA = 0.

To define our velocity correction in the Schwarz-SEM framework, we introduce the following notation:

û represents the discrete velocity field on ∂Ωs, ũ represents the velocity field on ∂ΩsI , R is the standard

restriction operator of size nI × nO that restricts data from ∂Ωs to ∂ΩsI , and nI and nO are the number of

GLL points on ∂ΩsI and ∂Ωs, respectively. The corrected velocity field is thus,

u = û +RT ũ, (4.3)

and the minimization problem (4.2) is

min ũTRBOR
T ũ subject to (û +RT ũ)TBOn̂ = 0, (4.4)

where ũTRBOR
T ũ is the trace norm determined using the diagonal matrix (BO) consisting of the product

of surface quadrature weights with surface Jacobians (e.g., [84], pg.187).

Defining λ as a Lagrange multiplier for this constrained optimization problem, the Lagrangian function

is

L(ũ, λ) = ũTRBOR
T ũ + λυ + λũTRBOn̂ = 0, (4.5)

where υ = ûTBOn̂ is the net mass flux through the domain boundaries of Ωs determined using the in-

terpolated velocity field on ∂ΩsI and imposed Dirichlet boundary condition on ∂ΩsD. The gradient of the

Lagrangian is

∇L =

∇ũL

∇λL

 =

2RBOR
T ũ + λRBOn̂

υ + ũTRBOn̂

 , (4.6)

and solving this minimization problem by setting the gradient of the Lagrangian to 0, we get

2RBOR
T RBOn̂

(RBOn̂)T 0


ũ

λ

 =

 0

−υ

 . (4.7)
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Using Gaussian elimination, the system becomes

2RBOR
T RBOn̂

0 −0.5n̂RTRBOn̂


ũ

λ

 =

 0

−υ

 , (4.8)

which gives

λ =
2υ

n̂RTRBOn̂
, (4.9)

and

2RBOR
T ũ = −RBOn̂λ,

=⇒ 2RBOR
T ũ = −RBOn̂

2υ

n̂RTRBOn̂
,

=⇒ RRT ũ = −Rn̂

∫
∂Ωs

û · n̂ dA∫
∂ΩsI

n̂ · n̂ dA
,

=⇒ ũ|∂ΩsI
= −

∫
∂Ωs

û · n̂ dA∫
∂ΩsI

n̂ · n̂ dA
n̂, (4.10)

The correction, ũ, derived here is important for ensuring boundary condition consistency when overlapping

grids are used. In the Schwarz-SEM framework, the velocity correction (4.3) is imposed before each Schwarz

iteration of the unsteady Stokes solve (3.6,3.7).

A drawback of the correction (4.3) is that the corrected velocity field (ũ) will not satisfy the continuity

requirement ũ ∈ H1 if the domain boundary is not smooth or if ∂ΩsD 6= ∂Ωs. Numerical experiments,

however, show that (4.10) does not adversely impact the accuracy of the solution, mainly because the

velocity field in the interior of the domain is still in H1, due to the SEM formulation that we discussed in

Chapter 2. In future work, we will explore methods to improve our current approach such that ũ ∈ H1 and∫
∂Ωs

u · n̂ dA = 0.

An important consequence of using (4.10) is that it overcomes the inability of the original Schwarz-SEM

formulation in ensuring mass flux balance through the boundaries of each overlapping subdomain. This

shortcoming becomes clear if we consider the example in Fig. 4.1, with an initial condition u = 0 and a

prescribed nonzero inflow boundary condition on Ω1. In this case, the lagged interface velocity (m = 1

in (3.6)) would imply that u|∂Ω1
I

= 0 during the first time-step (or first substep in the iterated case) and

consequently,
∫
∂Ω1 u · n̂ dA 6= 0. With the mass flux based correction, the velocity on ∂Ω1

I will be nonzero

prior to the Stokes substep on Ω1, and the overall solution process will be consistent since
∫
∂Ω1 u · n̂ dA = 0.
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Figure 4.2: Velocity contours comparing flow in a channel with constrictions, (left) without and (right)
with mass flux based correction.

If the subdomains form a chain of length S, and no subiterations are used, it will take S time-steps for the

flow to exit the chain, but each subdomain solve will be self-consistent.

The geometry of Fig. 4.1 is an example of a chain of length 2. In Fig. 4.2(right), we show how the

mass flux based correction leads to a rapid resolution of the global mass conservation, in contrast to the

uncorrected case, which is shown on the left. Figure 4.3, which shows the mean velocity and mean divergence

as a function of time in Ω1 of Fig. 4.1, quantifies the impact of the mass flux based correction for this model

problem. As we can see, without the velocity correction, the mean velocity in the streamwise direction varies

even though the inflow velocity is constant. This result implies that without the mass flux based correction,

mass is not conserved in Ω1. We also see spikes in the divergence of the velocity field in the domain in Fig.

4.3(right). These spikes are associated with ejections of vortices, due to constrictions, passing through the

interdomain boundaries. Using the mass flux based correction helps maintain boundary data consistency,

and reduces divergence errors.

Turbulent flow calculations using the Schwarz-SEM framework have shown that using the correction

(4.10) improves the stability of the PC scheme, and requires fewer corrector iterations when m > 1, as

compared to calculations that are done without (4.10). We remark that (4.10) is analogous to flux corrections

used in FV and FD approaches (e.g., [23, 53]).
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Figure 4.3: Comparison of the (left) mean velocity, and (right) divergence of the velocity
∫

Ω
∇ · u for the

channel with constrictions, with and without mass flux based correction.

4.2 Fixed Flow Rate through Overlapping Subdomains

Engineering applications featuring internal flows are often modeled in periodic domains with flow driven by

a fixed pressure-gradient or a fixed flow rate. The goal of this section is to describe our methodology for

maintaining a fixed flow rate (
∫

Ω
undV = Q̃) in a periodic monodomain and overlapping grid-based simu-

lations. We first describe our methodology for maintaining a fixed flow rate in the monodomain framework

(which was developed prior to this dissertation) and then extend it to the Schwarz-SEM framework. This

capability is essential for modeling problems such as heat transfer augmentation in pipes due to wire-coil

inserts, discussed in Section 9.3.

Our strategy for time-advancing the solution of the Incompressible Navier-Stokes equations on mon-

odomain grids is discussed in Section 2.2.3. If there is no forcing (or incorrect forcing) specified in (2.26), the

INSE solution will not satisfy the desired flow rate Q̃ i.e.,
∫

Ω
undV 6= Q̃. Thus, we need to apply a forcing

at every time-step in order to account for the energy dissipation due to the viscous effects and maintain the

required flow rate.

Recalling our notation for monodomain SEM framework from Chapter 2, we use φn = [un, pn]T to

describe the velocity solution (un) and the pressure solution (pn) at time tn in monodomain SEM framework.

The unsteady Stokes problem that we need to solve at each time-step is

Sφn = rn + rng , un|∂ΩD = unb , pn|∂ΩN = 0, (4.11)

which is similar to (2.47), with rn retaining its definition from (2.48), and we have introduced rng (to be

explained) to account for the inhomogeneities due to the forcing applied at each time-step for maintaining
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the desired flow rate.

Since (4.11) is a linear system that has to be solved at each time-step, we use the principle of superposition

to split its solution into two components,

φn = φ̂n + υφng , s.t.

∫
Ω

undV := Q̃, (4.12)

Sφ̂n = r̂n, ûn|∂ΩD = unb , p̂n|∂ΩN = 0, (4.13)

Sφng = rng , ug|∂ΩD = 0, png |∂ΩN = 0. (4.14)

where υ is a scalar to be defined shortly, and φ̂n = [p̂n, ûn]T in (4.13) is the solution to the unsteady Stokes

solve corresponding to (2.47), which accounts for the BDFk and EXTk terms without any forcing function.

Equation (4.13) also accounts for the specified Dirichlet boundary conditions on ∂ΩD. r̂n in (4.13), thus,

has the same definition as that in (2.48).

φng = [ung , p
n
g ]T in (4.14) is the solution to the unsteady Stokes solve corresponding to a unit-forcing vector

(fg) in the streamwise direction, with homogeneous Dirichlet boundary conditions on ∂ΩD and homogeneous

initial conditions. Splitting the solution of (4.11) using the approach described here has the advantage that

the final solution can be determined using (4.12), where υ is chosen at each time-step such that φn satisfies

the desired flow rate,

υ =

∫
Ω

undV −
∫

Ω
ûndV∫

Ω
ungdV

, (4.15)

=⇒ υ =
Q̃−

∫
Ω

ûndV∫
Ω

ungdV
, (4.16)

Since we assume that the density (ρ) and viscosity (µ) are constant in the domain, it is clear from the

following discussion that (4.14) does not depend on time and can be solved as a pre-processing step for a

given geometry or time-step size. The correction (4.12) can then be applied at each time-step using the

pre-computed solution of φng . In the sequel, we will drop the superscript n from φng because the latter is

time-independent for the applications that we consider in this dissertation.

Using the approach (and following the notation) in Section 2.2.2, we obtain the pressure Poisson equation

and Helmholtz equation for velocity for φg:

−∇2pg = −∇ · fg, (4.17)

β0

∆t
ug −

1

Re
∇2ug = −∇pg + fg, (4.18)
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where (4.17) and (4.18) are similar to (2.29) and (2.32) respectively, from Section 2.2.2, and account for the

unit-forcing vector fg in the direction of the flow. Similar to (2.34), casting (4.17) in variational form leads

to

a(ψ, pg) = −(fg,∇ψ) +

∫
∂ΩD

ψ∇pg · n̂ dA+

∫
∂ΩD

ψfg · n̂ dA, (4.19)

where the surface integrals on ∂ΩD simplify to

∂pg
∂n

∣∣∣∣
∂ΩD

+ fg · n̂
∣∣∣∣
∂ΩD

= − β0

∆t
ug · n̂, (4.20)

and thus vanish because we assume homogeneous Dirichlet conditions, i.e., ug|∂ΩD = 0. Similarly, casting

(4.18) in variational form leads to

β0

∆t
(v,ug) +

1

Re
a(v,ug) = (v, fvg), (4.21)

where fvg represents terms on the right of (4.18).

Using (4.17) and (4.18), rg in (4.14) is defined as

rg = [rvg, rpg]
T ,

rvg = −∇pg + fg,

rpg = −∇ · fg,

(4.22)

and the solution for φg = [ug, pg]
T is obtained using (4.14) and (4.22). Once φg is determined for a given

geometry and time-step size (∆t), φn is updated at each time-step with (4.12) and (4.16) to maintain the

desired flow rate. This method for maintaining fixed flow rate has been used for highly turbulent flow

simulations in the monodomain SEM framework [100].

The extension of this method for maintaining fixed flow rate through overlapping subdomains is straight-

forward if we solve (4.13) and (4.14) using simultaneous Schwarz iterations (1.2). We have already discussed

our methodology for solving (4.13) in Section 3.1 using the PC scheme (3.6,3.7), which corresponds to the

unsteady Stokes solve (minus any forcing). Our goal here is to describe how we can solve (4.14) in the

Schwarz-SEM framework.

Based on the discussion of the OS-based methods, we can anticipate that solving (4.14) will require

us to use simultaneous Schwarz iteration (1.2). Consequently, in addition to the homogeneous boundary

conditions on subdomain boundaries ∂ΩsD, we will have inhomogeneous boundary conditions on interdomain
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boundaries ∂ΩsI , that will be obtained from the corresponding overlapping grid. Using φ
s,[q]
g to denote the

solution φg in Ωs at the qth Schwarz iteration, our methodology for solving (4.14) with Qg simultaneous

Schwarz iterations is

qg = 0 : Sφs,[0]
g = rs,[0]

g , ug|∂ΩsD
= 0, ug|∂ΩsI

= 0, , png |∂ΩN = 0, (4.23)

1 ≤ qg ≤ Qg : Sφs,[qg]
g = rs,[qg]

g , ug|∂ΩsD
= 0, ug|∂ΩsI

= I(ur,[qg−1]
g ), png |∂ΩN = 0, (4.24)

where rsg accounts for all inhomogeneities for both pressure and velocity, similar to (4.22). We note that we

start with homogeneous boundary conditions on the interdomain boundaries (4.23), and then update the

boundary data for ∂ΩsI using interpolation from the corresponding overlapping grid, as indicated in (4.24).

Thus, recalling our notation that φs,n,[Q] is the solution φ in Ωs at the Qth Schwarz iteration at time tn,

the solution to the incompressible Navier-Stokes equations can be updated at the end of each time-step as

φs,n,[Q] = φ̂s,n,[Q] + υφs,[Qg ]
g , (4.25)

where φ̂s,n,[Q] is obtained at each time-step using the approach outlined in Section 3.1, and υ is chosen such

that un satisfies the desired flow rate Q̃.

Numerical experiments show that typically 10-20 Schwarz iterations are sufficient for obtaining an accu-

rate solution of φ
s,[Qg ]
g . Using this method, we have used the Schwarz-SEM framework to simulate internal

flows in complex domains, which were intractable with monodomain SEM.

We note that (4.16) requires the computation of integrals over the entire domain Ω, rather than over

individual subdomains Ωs. Global integration is not trivial on overlapping subdomains because grid points

in the overlap region must be weighted appropriately. In Section 4.3, we will describe our methodology

of constructing partition-of-unity functions for enabling global integration in subdomains with arbitrary

overlap.

While the approach of fixed flow rate described in this section is effective for simulating internal flow

in periodic domains using overlapping grids, there is a caveat. In the current Schwarz-SEM framework,

we only support intradomain periodicity, i.e., surfaces that are periodic to each other must be part of the

same subdomain. Consequently, interdomain periodicity is not supported. Figure 4.4 shows an example

of a periodic domain, which is used to study turbulent flow at a fixed flow rate, and Fig. 4.4(b) shows a

valid configuration for modeling this domain with periodic boundary conditions on overlapping grids. Here,

each subdomain has a surface that is periodic to another surface in the same subdomain. In contrast, Fig.

4.4(c) shows a configuration that requires interdomain periodicity, which we do not support in the current
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Figure 4.4: (left to right) (a) Periodic domain with flow at a fixed rate Q̃ in the streamwise direction (x). (b) A
valid domain decomposition strategy for using two overlapping grids, each with periodic boundary conditions,
to model the domain, and (c) an invalid configuration with interdomain periodicity i.e., surfaces that are
periodic to each other are on different subdomains. Interdomain periodicity is not currently supported in
the Schwarz-SEM framework.

Figure 4.5: (left) Spectral element mesh for flow past a cylinder, and (right) velocity magnitude plot ||ug||.

Schwarz-SEM framework.

4.2.1 Validation

We validate the fixed-flow rate formulation of the preceding section by comparing the results for monodomain

and multidomain simulations of flow past a cylinder in a periodic box. Figure 4.5 shows the spectral element

mesh generated for the single domain calculation. The square domain Ω := [−2.0, 2.0]2 with periodic

boundary conditions in the streamwise direction (x) and homogeneous Dirichlet in y. The nondimensional

diameter of the cylinder is Dnd = 1. For this numerical experiment, we set the nondimensional flow rate

Q̃ = UndLy,nd to 40, where Ly,nd = 4 is the nondimensional length of the domain in y direction and Und = 10

is the nondimensional mean flow speed in the streamwise direction. The Reynolds number of the flow is

Re = UndDnd/νnd = 1000.

We split this domain Ω into two overlapping grids by modifying the monodomain mesh. The radius

of the inner mesh is 1.5 for ∂Ω1
I and 1 for ∂Ω2

I for the outer mesh. As a result, the overlap width is 0.5.

Figure 4.6 shows the two spectral element meshes generated for Schwarz-SEM calculation. After Qg = 10

simultaneous Schwarz iterations, the maximum difference in the solution for φg between the monodomain

and overlapping grids is 10−4. Figure 4.6(right) shows the plot of magnitude of the velocity solution ug.
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Figure 4.6: (left) Overlapping spectral element meshes for flow past a cylinder, and (right) velocity magnitude
plot ||ug|| determined using the simultaneous Schwarz iterations.

4.3 Integration on Subdomains with Arbitrary Overlap

The computation of global quantities (such as mean flow velocity, flow rate, Nusselt number, etc.) on

overlapping grids is not as straightforward as on monodomain grids. In monodomain SEM, integration is

effected via the mass matrix (2.15). This mass matrix cannot be directly used for global integration on

overlapping grids because we need to ensure that grid points in the overlap region are weighted correctly. In

this section, we first describe why some of the methods that are used in the existing literature do not apply

to our Schwarz-SEM framework. We then describe our methodology for enabling integration in subdomains

with arbitrary overlap.

In implementations based on Nitsche’s method, global integration is enabled by partitioning overlapping

grids into nonoverlapping subsets. The arbitrary shaped elements at the interface of different subsets are fur-

ther partitioned into regular shaped tetrahedrons/triangles. Using this approach of splitting the domain into

nonoverlapping subsets, numerical integration can be effected via the mass matrix [11]. Another approach

for integration on overlapping meshes is to remesh the overlap region with regular-shaped elements. Numer-

ical quadrature can then be used to integrate the grid points in nonoverlapping and overlapping region, as

usual [56]. Each of the above approaches relies on remeshing, which is guaranteed only for tetrahedrons or

triangular elements. Additionally, none of these approaches is straightforward to implement in parallel since

each relies on identifying intersections of different overlapping grids. Thus, we need a different approach

for global integration that weights grid points in the overlap region correctly. The challenge of such an

approach is that we need a method that supports subdomains with arbitrary overlap, where we have no a

priori knowledge of the shape of different subdomains.

Our method for global integration is to construct a partition-of-unity function (weight) in each subdomain.
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In order to define the properties of this function, we introduce the following notation,

Ω̃r = Ω\
( ⋃
s 6=r

Ωs
)
, (4.26)

where Ω̃r represents the part of Ωr that is not overlapped by any other subdomain. Thus, for a GLL point

x̃ in Ω, we want the partition-of-unity function (χs) to satisfy the following properties

S∑
s=1

χs(x̃) = 1 ∀x̃ ∈ Ω,

χs(x̃) = 1 ∀x̃ ∈ Ω̃s,

χs(x̃) = 0 ∀x̃ ∈ ∂ΩsI .

(4.27)

These properties of partition-of-unity function are based on the principle that the error due to Schwarz

iterations is highest at the interdomain boundaries, and decreases away from ∂ΩsI . In order to describe our

approach for constructing this partition-of-unity function, we revisit the distance field (based on the distance

from interdomain boundaries) that we described in Section 3.2.2.

In Chapter 3, we described our approach of generating a distance function. The distance function based

on the interdomain boundaries, δs, is used as a discriminator in findpts for donor element search (Section

3.2.2). Since this distance function is 0 for grid points on ∂ΩsI and increases away from ∂ΩsI , it seems natural

to use it for determining χ in each subdomain. Our methodology for constructing the partition-of-unity

function for a GLL point x̃ in Ωs, using the distance function δs, is

χs(x̃) =
δs(x̃)∑S
r=1 δ

r(x̃)
, (4.28)

where δr(x̃) is determined by first using findpts to find x̃ in Ωr. Next, if findpts returns that the point is

not found in Ωr, δr(x̃) is set to 0. Otherwise, the computational coordinates returned by findpts are used to

interpolate the distance field δ using findpts eval. (4.28) is used to determine the partition-of-unity weights

for all the GLL points of each subdomain, and it ensures that all the requirements in (4.27) are satisfied.

A limitation of the current approach (4.28) is that the partition-of-unity functions depend on the dis-

tance function (based on the interdomain boundaries), which in turn depends on the mesh geodesics in each

subdomain. The accuracy (and convergence properties) of these partition-of-unity functions is, thus, con-

strained by the accuracy of our nearest-neighbor based distance function generation approach (Section 3.4).

Additionally, distance functions are typically not smooth (i.e., δs /∈ H1), and determination of χs requires
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interpolation of this distance function in each subdomain. As a result, we do not expect to get exponential

convergence with polynomial order N for global integration using (4.28), and we will look at more accurate

methods of distance function generation in future work. In the following section, however, we will discuss

numerical experiments that show that for practical purposes, our current approach of global integration

gives sufficiently accurate results (relative error less than 10−4) even for subdomains with complex overlap.

4.3.1 Validation

To validate our approach for partition-of-unity function generation, we use the example of three overlapping

grids for discretizing the periodic domain Ω = [0, 2π]2 from Chapter 3, shown here in Fig. 4.7. Since the

overlap between the different subdomains is not trivial, constructing the partition-of-unity function manually

for each subdomain is not feasible/desirable. (4.28) allows us to effortlessly determine the partition-of-unity

function for each subdomain, which is shown in Fig. 4.8. As we can see, the partition-of-unity function is

unity in the nonoverlapping region and goes to 0 on the interdomain boundary. In order to ensure that these

weights indeed add to unity everywhere, we use the partition-of-unity weighted mass matrix to determine

the total area (4π2) of the domain. Our results indicate that the relative error for this approach is less than

10−5, when N = 8.

Figure 4.9 shows how the relative error in the area varies with the polynomial order N . As expected,

we do not get exponential convergence in global integration with polynomial order N due to dependence of

χs on the nearest-neighbor based distance function. We do note, however, that the relative error in global

integration is less than 10−4 for the multidomain cases considered here, even when N = 3, which is sufficient

for our target applications.

Our approach for global integration is being used for the overlapping grid calculations (S = 3) at the

Figure 4.7: 3 overlapping spectral element meshes for discretizing the periodic domain Ω = [0, 2π]2. Two
circular meshes (96 elements each) are used to cover a hole in the background mesh (240 elements.
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Figure 4.8: Partition-of-unity weights (N = 8) for each subdomain along with the grids that overlap it.
The partition-of-unity weight is unity for GLL points in the nonoverlapping regions and goes to 0 on the
interdomain boundary.

Figure 4.9: Spatial convergence in relative error with polynomial order N , for global integration in the
example with S = 3 overlapping subdomains.

Argonne National Lab to simulate flow through the intake valve of an internal combustion engine. Figure

4.10 shows the overlapping subdomains used to model the intake valve. Numerical experiments show that

(4.28) can be used for global integration to determine the volume of the domain with a relative error less

than 10−4. Figure 4.11 shows the partition-of-unity weights determined for each overlapping subdomain.
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Figure 4.10: (top) Three-slice view of the overlapping grids for modeling the intake valve of an internal
combustion engine, and (bottom) slice view showing the cross-section of the overlapping grids.

Figure 4.11: Slice views of the cross-section along two different directions, showing distribution of the
partition-of-unity function (N = 8) near the overlap region for the three subdomains discretizing the intake
valve. The error due to global integration using these weights is less than 0.01%.
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4.4 Summary

In this chapter, we presented our methodology for ensuring that interpolation of boundary condition data on

interdomain boundaries does not violate the divergence-free constraint. This approach ensures boundary data

consistency for the solution of the INSE. Numerical experiments indicate that the mass flux based correction

significantly reduces the overall divergence in the domain, and also reduces the number of Schwarz iterations

required for using high-order extrapolation of interdomain boundary data in certain cases. We have also

described our method for maintaining fixed flow rate in overlapping subdomains, which is important for

modeling internal flows, and are already using it in a production level calculation for understanding how

heat transfer is augmented in a pipe due to a wire-coil insert (Section 9.3). In this chapter, we also addressed

the issue of global integration on overlapping subdomains, which is much more complicated in comparison

to integration on monodomain grids. Global integration is effected in the Schwarz-SEM framework using

partition-of-unity functions that ensure that grid points in the overlap region are weighted appropriately.

68



Chapter 5

Stability of the Predictor-Corrector
Scheme in the Schwarz-SEM
Framework
In Chapter 3, we have described our methodology for time-advancing the solution of INSE in overlapping

grids. An important concern for this predictor-corrector based time advancement strategy (3.6,3.7) is the

number of corrector iterations (Q) that are required at each time-step. Due to the work presented in [24] and

[55], the implications for the choice of interface extrapolation order (m) and number of corrector iterations

(Q) in the Schwarz-SEM framework are

• m = 1, Q = 0 - Unconditionally stable, O(∆t) accurate.

• m = 1, Q > 0 - Unconditionally stable, more than O(∆t) accurate depending upon Q.

• m > 1, Q = 0 - Unstable.

• m > 1, Q > 0 - Conditionally stable1, O(∆tm) accurate.

We have additionally noticed in the Schwarz-SEM framework that for some cases where m > 1, the calcu-

lation is stable only for odd values of Q but not for even values. This result is counter-intuitive since one

would anticipate that increasing Q would lead to increased stability and accuracy. For example, for the

Navier-Stokes eigenfunctions test case (S = 2) presented in Fig. 3.8, if we set ∆t = 2× 10−3 and N = 7, we

observe that using Q = 2 or 4 leads to instabilities for m = 3, whereas using Q = 1 or 3 leads to a stable

and accurate solution. Figure 5.1 shows the error in solution versus time for different Q, for this example.

As we can see, the solution is stable for Q = 1 and 3 but unstable for Q = 2 and 4.

5.1 Methodology

To investigate the difference in stability of the PC scheme for odd- and even-Q, we use a matrix stability

framework, similar to [55], applied to the unsteady heat equation. We start with a 1D grid and develop

an FD-based scheme for time-advancing the solution of the unsteady heat equation. We then extend this

framework to solve the unsteady heat equation in two overlapping grids and cast the time-advancement

of the solution into a system of the form zn = Gzn−1. Matrix stability analysis indicates that a scheme

1Based on stability analysis and numerical experiments, Q = 3 is typically sufficient.
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Figure 5.1: Error variation for the Navier-Stokes eigenfunctions test case from Chapter 3 with different Q
using ∆t = 2× 10−3 and N = 7.

of the form zn = Gzn−1 is asymptotically stable if the spectral radius of G, ρ(G), is strictly less than 1

(e.g., [101])2. This framework will allow us to analyze the stability properties of the PC scheme for different

m and Q, as we will see in the next section.

We note that use of the unsteady heat diffusion problem with an FD-based scheme, instead of the INSE

in higher space-dimensions with an SEM-based formulation, significantly simplifies the stability analysis.

This approach allows us to focus on the qualitative impact of key parameters such as Q, m, grid resolution,

and overlap width on the stability of the high-order PC scheme. As we will see in this chapter, this simplified

stability analysis has helped us in qualitatively capturing stability behavior that we have observed in the

Schwarz-SEM framework for solving the INSE (Figure 5.1). Additionally, this analysis has also helped us in

determining a potential generalized stability behavior of high-order PC schemes for solving ODEs and PDEs

(similar to the 1D unsteady heat equation in this chapter or the INSE in the Schwarz-SEM framework).

5.1.1 Unsteady diffusion with a monodomain grid

For the monodomain case, consider the solution u(x, t) for the unsteady diffusion equation

ut = νuxx, x ∈ [0, 1], ν > 0, (5.1)

where we model the domain with M̃ + 2 uniformly-spaced grid points (Fig. 5.2), such that ∆x = 1
M̃+1

.

A homogeneous boundary condition is imposed at the left boundary, u(0, t) = 0, and a time-dependent

2Use of ρ to denote the spectral radius should not confused with the use of ρ for density in the incompressible Navier-Stokes
equations.
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1j=0

u0 = 0 uM̃+1 = γ(tn)Ω
M̃ + 1

Figure 5.2: Monodomain grid (M̃ = 11)

inhomogeneous boundary condition is prescribed at the right boundary, u(1, t) = γ(tn).

For notational purposes, we introduce unj to represent the solution u at jth grid point at time tn, R as the

standard restriction matrix (5.2) that casts the solution from the M̃ + 1 grid points ūn = [un1 , u
n
2 , . . . u

n
M̃+1

]T

to the M̃ degrees of freedom un = [un1 , u
n
2 , . . . u

n
M̃

]T , and ūnb = [0, 0, . . . , 0, γ(tn)]T as a vector of length

M̃ + 1 with zeros and the inhomogeneous boundary condition γ(tn). We have omitted un0 from our vectors

(ūn, un, and ūb) due to the homogeneous boundary condition at x = 0. The M̃ × M̃ + 1 restriction operator

R is an identity matrix, with a column of zeros appended to it, and is defined as

R =



1 0
. . .

. . .
. . . 0 0

0 1
. . .

. . .
. . . 0 0

. . .
. . .

. . .
. . .

. . . 0 0

. . .
. . .

. . .
. . .

. . . 0 0

. . .
. . .

. . .
. . .

. . . 0 0

0
. . .

. . .
. . .

. . . 1 0


. (5.2)

The standard 2nd-order accurate central finite difference operator for uxx is of size M̃ + 1× M̃ + 1, and is

defined as Āii = 2/∆x2 and Āi−1,i = Āi+1,i = −1/∆x2, i.e.,

Ā =
1

∆x2



2 −1
. . .

. . .
. . . 0

−1 2 −1
. . .

. . . 0

. . .
. . .

. . .
. . .

. . . 0

. . .
. . .

. . .
. . .

. . . 0

. . .
. . .

. . .
. . .

. . . −1

0
. . .

. . .
. . . −1 2


. (5.3)

It is straightforward to derive that using a BDFk scheme for discretizing ut, and a 2nd-order accurate

central finite difference approximation for uxx, the solution for the unsteady diffusion equation can be time-
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u2̃
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Ω1 Ω2
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N+1 = u2
K

u20 = u1̃
N+1−K

KΔx

u1
i

u2
i

Figure 5.3: Overlapping grids (Ñ = 7,K = 4)

advanced from tn−1 to tn using the solution up to tn−1 as

un = −
k∑
l=1

βlH
−1un−l − ν∆tH−1RĀūnb , (5.4)

where ∆t is the time-step size (assumed to be the same at all time-steps), βl are coefficients for the BDFk

scheme, H = β0I + ν∆tA is the Helmholtz matrix, I is a M̃ × M̃ identity matrix, and A = RĀRT . The

system in (5.4) also depends on the time-dependent inhomogeneous boundary condition, γ(tn).

We can now extend this approach to overlapping grids using a high-order PC scheme, similar to (3.7).

5.1.2 Unsteady diffusion with overlapping grids

For solving the unsteady diffusion equation with overlapping grids, we split the monodomain grid (Ω) into

two grids (Ω1 and Ω2) with equal number of grid points (Ñ + 2) and overlap width K∆x, such that the

grid points in the overlap Ω1 ∩ Ω2 coincide. Figure 5.3 shows the overlapping grids obtained from the

monodomain grid of Fig. 5.2, and the overlapping grids are setup such that M̃ = 2Ñ −K+1. Algebraically,

this decomposition is realized through restriction matrices, Ri that extract Ñ of the M̃ values from a given

vector u on Ω as ui = Riu. Here, we we introduce the notation ui to represent the solution at the Ñ degrees

of freedom of Ωi, and ui,nj to represent the solution at jth grid point of Ωi at tn.

R1 =

M̃︷ ︸︸ ︷

1 0
. . .

. . .
. . . 0 0 . . . 0

0 1
. . .

. . .
. . . 0 0 . . . 0

. . .
. . .

. . .
. . .

. . . 0 0 . . . 0

. . .
. . .

. . .
. . .

. . . 0 0 . . . 0

. . .
. . .

. . .
. . .

. . . 0 0 . . . 0

0
. . .

. . .
. . .

. . . 1 0 . . . 0


(5.5)

︸ ︷︷ ︸
Ñ

︸ ︷︷ ︸
M̃−Ñ
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R2 =

M̃︷ ︸︸ ︷

0 . . . 0 1 0
. . .

. . .
. . . 0

0 . . . 0 0 1
. . .

. . .
. . . 0

0 . . . 0
. . .

. . .
. . .

. . .
. . . 0

0 . . . 0
. . .

. . .
. . .

. . .
. . . 0

0 . . . 0
. . .

. . .
. . .

. . .
. . . 0

0 . . . 0 0
. . .

. . .
. . .

. . . 1


(5.6)

︸ ︷︷ ︸
M̃−Ñ

︸ ︷︷ ︸
Ñ

For simplicity, we impose homogeneous boundary conditions at the left boundary of Ω1 (u1,n
0 = 0) and

right boundary of Ω2 (u2,n

Ñ+1
= 0). These boundary conditions allow us to use the method developed for the

monodomain grid (5.4), for overlapping grids, with the difference that the boundary data for the interdomain

boundary grid points (u1
Ñ+1

and u2
0) is obtained from the corresponding overlapping grid in each subdomain.

To effect this interdomain exchange, we define an interpolation operator, Bij = (I−RTi Ri)RTj , that extracts

the value from Ωj at ∂ΩiI ∩Ωj and maps it to Ωi. The operator Bij serves the same purpose as findptslib in

the Schwarz-SEM framework for interpolating the interdomain boundary data (Section 3.2.2).

Similar to Section 3.1, since we are solving for ui,n in both subdomains simultaneously, the information

at interface boundaries must be extrapolated from the solution at previous time-steps. Using a kth-order

accurate BDFk scheme for ut, and an mth-order accurate EXTm scheme for extrapolating the interface

boundary term, the solution in each subdomain is

ui,n = −
k∑
l=1

βlH
−1
i ui,n−l +

m∑
l=1

α̃lH
−1
i Jiju

j,n−l, (5.7)

Hi = β0Ii + ν∆tAi, Jij = −ν∆tRiABij , Ai = RiAR
T
i ,

where βl and α̃l are coefficients for the BDFk and the EXTm scheme, respectively, and Ii is the identity

matrix. All the matrices in (5.7) are of size Ñ × Ñ except the restriction operator Ri (5.5,5.6).

To ensure stability for a high-order EXTm scheme, we extrapolate the interface data obtained from the

overlapping subdomain at the first iteration, and then iterate using the latest solution at each corrector

iteration. Using the notation ui,n,q for the solution at the qth corrector iteration3, the PC scheme for

3For the sake of convenience in representing the matrices that are to follow in this section, we have dropped the brackets
around the Schwarz iteration index [q] in this chapter.
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time-advancing the solution in overlapping grids is

q = 0 :ui,n,0 = −
k∑
l=1

βlH
−1
i ui,n−l,Q +

m∑
l=1

α̃lH
−1
i Jiju

j,n−l,Q, (5.8)

q = 1 . . . Q :ui,n,q = −
k∑
l=1

βlH
−1
i ui,n−l,Q +H−1

i Jiju
j,n,q−1. (5.9)

To understand the stability properties of this PC scheme, we cast (5.8) and (5.9) into a system of the

form zn = Gzn−1, where G = CQP is a product of the matrix P corresponding to the predictor step that

uses the EXTm scheme (5.8) and matrix C corresponding to the Q corrector steps (5.9).

Defining

zn,q = [u1,n,qT u2,n,qT u1,n−1,qT u2,n−1,qT u1,n−2,qT u2,n−2,qT u1,n−3,qT u2,n−3,qT ]
T
, (5.10)

the predictor step (q = 0) is



u1,n,0

u2,n,0

u1,n−1,0

u2,n−1,0

u1,n−2,0

u2,n−2,0

u1,n−3,0

u2,n−3,0


︸ ︷︷ ︸

zn,0

=



−β1H−1
1 α̃1H

−1
1 J12 −β2H−1

1 α̃2H
−1
1 J12 −β3H−1

1 α̃3H
−1
1 J12 0 0

α̃1H
−1
2 J21 −β1H−1

2 α̃2H
−1
2 J21 −β2H−1

2 α̃3H
−1
2 J21 −β3H−1

2 0 0

I1 0 0 0 0 0 0 0

0 I2 0 0 0 0 0 0

0 0 I1 0 0 0 0 0

0 0 0 I2 0 0 0 0

0 0 0 0 I1 0 0 0

0 0 0 0 0 I2 0 0


︸ ︷︷ ︸

P



u1,n−1,Q

u2,n−1,Q

u1,n−2,Q

u2,n−2,Q

u1,n−3,Q

u2,n−3,Q

u1,n−4,Q

u2,n−4,Q


︸ ︷︷ ︸

zn−1,Q

(5.11)

and the corrector step (with q = 1 . . . Q) is



u1,n,q

u2,n,q

u1,n−1,q

u2,n−1,q

u1,n−2,q

u2,n−2,q

u1,n−3,q

u2,n−3,q


︸ ︷︷ ︸

zn,q

=



0 H−1
1 J12 −β1H−1

1 0 −β2H−1
1 0 −β3H−1

1 0

H−1
2 J21 0 0 −β1H−1

2 0 −β2H−1
2 0 −β3H−1

2

0 0 I1 0 0 0 0 0

0 0 0 I2 0 0 0 0

0 0 0 0 I1 0 0 0

0 0 0 0 0 I2 0 0

0 0 0 0 0 0 I1 0

0 0 0 0 0 0 0 I2


︸ ︷︷ ︸

C



u1,n,q−1

u2,n,q−1

u1,n−1,q−1

u2,n−1,q−1

u1,n−2,q−1

u2,n−2,q−1

u1,n−3,q−1

u2,n−3,q−1


︸ ︷︷ ︸

zn,q−1

(5.12)
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Using (5.11) and (5.12), the spectral radius of G = CQP can be used to determine the stability of the PC

scheme for different grid sizes, overlap widths, extrapolation orders, and corrector iterations. We note that

using the parameters Ñ and K, the grid overlap width can be calculated as K∆x = K/(2Ñ −K + 2).

5.2 Stability Results

To understand the stability properties of the OS-based PC scheme, we start with Ñ = 32 and K = 5. For

different BDFk/EXTm schemes, we vary the number of corrector iterations Q to see how the stability of

the scheme changes with the nondimensional time-step size (ν∆t/∆x2).

Figure 5.4 shows the spectral radius for the BDFk/EXTm schemes with different Q. We observe that

the BDFk/EXT1 schemes are unconditionally stable, and the use of high-order extrapolation (m > 1) for

interdomain boundary data requires correct iterations for stability. These results are also indicated in [55].

However, our analysis suggests that the BDFk/EXT2 and BDFk/EXT3 schemes are more stable when Q

is odd. To the best of our knowledge, this behavior has not been observed in the current literature, and it

corresponds to the stability behavior (e.g., Fig. 5.1) that we have observed in our Schwarz-SEM framework.

5.2.1 Effect of increasing subdomain overlap

The subdomain overlap width has an impact on the convergence of Schwarz-based methods (1.4). For

practical purposes, one would like to minimize the overlap width to minimize the total number of elements

needed for modeling a domain. Thus, we look at the impact of overlap width on the stability of the PC

scheme. Since we are mainly interested in the high-order extrapolation scheme (m = 1 is unconditionally

stable as shown in the previous section), we look at the results for the BDF2/EXT2, BDF3/EXT2, and

BDF3/EXT3 schemes, with Ñ = 32, and change the grid overlap parameter, K.

Figure 5.5-5.7 show that increasing the overlap width increases the stability range over which a given

scheme is stable for a specified number of corrector iterations Q. We also notice that high-order extrapolation

schemes are less stable as compared to their low order counterparts, e.g., the BDF3/EXT3 scheme is less

stable than the BDF3/EXT2 scheme, for a given Q. We also notice that changing the overlap width K

makes a significant difference in the stability of a scheme.

5.2.2 Effect of increasing grid resolution while keeping overlap fixed

For certain applications, such as the spanwise twisting bar shown in Fig. 1.1, geometric constraints can

limit the maximum allowable overlap width between different subdomains. In these cases, if the overlap
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(a) BDF1/EXT1 (b) BDF2/EXT1

(c) BDF2/EXT2 (d) BDF3/EXT1

(e) BDF3/EXT2 (f) BDF3/EXT3

Figure 5.4: Spectral radius ρ(G) versus nondimensional time ν∆t
∆x2 for different BDFk/EXTm schemes with

Q = 0 . . . 7, Ñ = 32 and K = 5.

width is not enough for a stable predictor-corrector scheme with m > 1, the application of the Schwarz-SEM

framework is limited. Thus, we look at the impact of increasing the grid resolution, while keeping the overlap

width fixed, in order to understand if increasing the grid resolution can help stabilize the PC scheme.

Figure 5.8-5.10 shows the impact of increasing the grid resolution while keeping the overlap width (K∆x)

76



(a) Ñ = 32,K = 3 (b) Ñ = 32,K = 5 (c) Ñ = 32,K = 7

Figure 5.5: Spectral radius ρ(G) versus nondimensional time ν∆t
∆x2 for the BDF2/EXT2 scheme with Ñ = 32,

and varying K.

(a) Ñ = 32,K = 3 (b) Ñ = 32,K = 5 (c) Ñ = 32,K = 7

Figure 5.6: Spectral radius ρ(G) versus nondimensional time ν∆t
∆x2 for the BDF3/EXT2 scheme with Ñ = 32,

and varying K.

(a) Ñ = 32,K = 3 (b) Ñ = 32,K = 5 (c) Ñ = 32,K = 7

Figure 5.7: Spectral radius ρ(G) versus nondimensional time ν∆t
∆x2 for the BDF3/EXT3 scheme with Ñ = 32,

and varying K.

fixed. As we can see, increasing the grid resolution has a stabilizing effect on the PC scheme.
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(a) Ñ = 32,K = 5 (b) Ñ = 65,K = 10 (c) Ñ = 98,K = 15

Figure 5.8: Spectral radius ρ(G) versus nondimensional time ν∆t
∆x2 for the BDF2/EXT2 scheme with Ñ and

K varying such that K∆x is fixed.

(a) Ñ = 32,K = 5 (b) Ñ = 65,K = 10 (c) Ñ = 98,K = 15

Figure 5.9: Spectral radius ρ(G) versus nondimensional time ν∆t
∆x2 for the BDF3/EXT2 scheme with Ñ and

K varying such that K∆x is fixed.

(a) Ñ = 32,K = 5 (b) Ñ = 65,K = 10 (c) Ñ = 98,K = 15

Figure 5.10: Spectral radius ρ(G) versus nondimensional time ν∆t
∆x2 for the BDF3/EXT3 scheme with Ñ and

K varying such that K∆x is fixed.
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5.3 Discussion on Stability for Odd- and Even-Corrector

Iterations

The stability analysis presented in this chapter show that the high-order PC scheme is relatively more stable

when Q is odd as compared to when Q is even. This analysis was done using the unsteady diffusion equation

and qualitatively captures the stability behavior that has been observed in the Schwarz-SEM framework.

This decrease in stability due to even number of corrector iterations is not expected, and there is evidence

of similar behavior presented by Stetter in 1968 [102] for a predictor-corrector scheme for solving an ODE.

In [102], Stetter discusses the stability of a scheme that uses the third-order Adam-Bashforth (AB3)

method for the predictor step and the second-order Adam-Moulton (AM2) method for Q corrector steps

to solve an ODE of the form dy
dt = λy. While it is clear from the results presented by Stetter that there

is a difference in the stability behavior between even- and odd-Q for the AB3-AM2 PC scheme, Stetter

does not comment on it. Instead, Stetter describes a general method for improving the stability of the

predictor-corrector scheme for any number of corrector iterations. In this section, we first derive the stability

polynomials of the AB3-AM2 scheme and show the stability diagram of this PC scheme for a different number

of corrector iterations. Using these stability polynomials, we show that the AB3-AM2 scheme leads to a

difference in the stability of odd- and even-Q, which is similar to what we have observed for solving the

unsteady heat equation. Next, we show how the stability analysis of the AB3-AM2 PC scheme for solving

an ODE is connected to the BDFk/EXTm PC scheme for solving the unsteady heat equation, which could

possible explain why we observe this odd-even stability behavior in the Schwarz-SEM framework.

5.3.1 Predictor-corrector scheme for ODE

The AB3-AM2 predictor-corrector scheme for solving dy
dt = λy is

ỹn+1 = yn +
h

12
(23y

′

n − 16y
′

n−1 + 5y
′

n−2), (5.13)

yn+1 = yn +
h

2
(ỹ
′

n+1 + y
′

n), (5.14)

where (5.13) is the predictor step using AB3, and (5.14) is the corrector step using AM2. We use yn to

represent the solution y at time level tn, h for the constant time-step size, y
′

n for the derivative dyn
dt , and

ỹn+1 as the solution from the predictor step. Such a scheme is called PECE, short for predictor-evaluate-

corrector-evaluate. The terms on the right hand side of (5.13) are evaluated using the solution from (5.14)

at the previous time-step.
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Substituting y′ = λy, we can write the AB3-AM2 system as

ỹn+1 = yn +
hλ

12
(23yn − 16yn−1 + 5yn−2), (5.15)

yn+1 = yn +
hλ

2
(ỹn+1 + yn), (5.16)

and substituting ỹn+1 from (5.15) into (5.16), we get

yn+1 = yn +
hλ

2

(
2yn +

hλ

12
(23yn − 16yn−1 + 5yn−2)

)
. (5.17)

Assuming that zn is the exact solution at tn, which is free of any truncation or rounding errors (unlike ỹn

and yn), the equation for error εn = zn − yn becomes

εn+1 = εn +
hλ

2

(
2εn +

hλ

12
(23εn − 16εn−1 + 5εn−2)

)
. (5.18)

At this point, we can assume that the error is of the form εn = ρn, and simplify (5.18),

ρn+1 = ρn +
hλ

2

(
2ρn +

hλ

12
(23ρn − 16ρn−1 + 5ρn−2)

)
. (5.19)

Substituting κ = hλ, and dividing both sides by ρn−2, we get

ρ3 = ρ2 +
κ

2

(
2ρ2 +

κ

12
(23ρ2 − 16ρ+ 5)

)
. (5.20)

(5.20) gives us the stability polynomial describing the relationship between κ and ρ for the PC scheme with

1 corrector iteration.

For a generalized predictor-corrector scheme with Q corrector iterations, P(EC)QE, we can write the

AB3-AM2 system as

q = 0 :y0
n+1 = yQn +

κ

12
(23yQn − 16yQn−1 + 5yQn−2), (5.21)

0 < q ≤ Q :yqn+1 = yQn +
κ

2
(yq−1
n+1 + yQn ), (5.22)

where yqn represents the qth iterate of the solution y at tn. Equation (5.21) and (5.22) can be used to

generalize the stability polynomials for different Q,

ρ3 = ρ2

(
1 +

Q∑
i=1

κi

2i−1
+

23

12(2Q)
κQ+1

)
− 16

12(2Q)
ρκQ+1 +

5

12(2Q)
κQ+1. (5.23)

Figure 5.11 shows the stability diagram for the AB3-AM2 predictor-corrector scheme for different Q, and

the stability curve for each Q is the ρ = 1 contour. As we can see, for real values of κ = λh, which are

represented by the x-axis in Fig. 5.11, the P(EC)QE scheme is more stable for odd-Q as compared to the

corresponding Q+ 1 case. Here, we are interested in negative real values of κ = λh because negative real κ

corresponds to negative real values of λ (the time-step size h is always real and positive), which is related

to our stability analysis of the unsteady heat equation.

In Fig. 5.11, we have used dashed lines to indicated different negative real values of κ, specifically
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Figure 5.11: Stability diagram for the AB3-AM2 predictor-corrector scheme for different number of corrector
iterations. The also indicate κ = −1.5, -1.58 and -1.65 in the plot, which we use to validate these stability
analyses.

κ = −1.5, -1.58 and -1.65. From the stability diagram, we expect that for κ = −1.5, Q = 1, 3, 5 and 6 lead

to a stable scheme, for κ = −1.58, Q = 1, 3 and 5 lead to a stable scheme, and for κ = −1.65, only Q = 3

and 5 lead to a stable scheme. To numerically validate these results, we solve dy
dt = λy with step size h = 1

and λ = κ = −1.5, -1.58 and -1.65. Figure 5.12 shows the solution of the ODE y′ = λy for different values

of λ for different number of corrector iterations. As we can see, these results validate the stability results of

the P(EC)QE AB3-AM2 scheme shown in Fig. 5.11.

Now that we have validated our stability analysis of the AB3-AM2 PC scheme, we can connect this

stability analysis with the analysis of the unsteady heat equation.
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(a) κ = −1.5

(b) κ = −1.58

(c) κ = −1.65

Figure 5.12: Solution y for the ODE dy
dt = λy for different κ = λ∆t using the AB3-AM2 predictor-corrector

scheme.
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5.3.2 Similarity in stability behavior of high-order predictor-corrector

methods for ODEs and PDEs

In the previous section, we have presented a stability diagram for the P(EC)QE AB3-AM2 scheme for solving

the ODE y′ = λy. Specifically, we have focussed on the stability behavior of this scheme for different Q for

negative real values of λ and observed that odd-Q is more stable than even-Q. We focus on the negative

real values of λ for the ODE y′ = λy, because the boundary value problem that we have considered with

overlapping grids in Section 5.1.2 (ut = νuxx with ν > 0 and homogeneous boundary conditions) has negative

real eigenvalues as well.

Based on the stability analyses presented in this chapter and the numerical experiments that we have

done with the Schwarz-SEM framework, we conjecture that for BVP with negative real eigenvalues, high-

order PC schemes lead to a difference in the stability between odd- and even-corrector iterations. In future

work, we will continue this work to determine the fundamental reasoning behind this odd-even pattern, and

look at the stability of high-order PC methods for general boundary value problems, including the unsteady

Stokes problem (2.47) in our SEM-based framework.

5.4 Improving the Stability for Even-Corrector Iterations

In the predictor-corrector scheme discussed so far, since odd-Q is more stable than even-Q, we have to

increase Q by 2 (e.g., increase Q = 1 to Q = 3) if the number of corrector iterations is not sufficient. When

using a predictor-corrector scheme, one wants to minimize the number of corrector iterations for reducing

the computational cost of a calculation. In this section, we develop an improved predictor-corrector scheme

to address this issue.

5.4.1 Stability of the improved predictor-corrector scheme for an ODE

The paper by Stetter discusses how the stability of the AB3-AM2 predictor-corrector scheme can be improved

by using a linear combination of solution from each corrector iteration to determine the final solution as

yn+1 =

Q∑
q=0

γqy
q
n+1,

Q∑
q=0

γq = 1, (5.24)

where γq is some weight corresponding to the solution of qth corrector iteration at each time-step. Using this

approach, Stetter shows that the stability region for the PC scheme could be extended. However, Stetter

does not comment on the difference in stability for odd- and even- number of corrector iterations. We

extend Stetter’s idea to improve the stability for when Q is even. In this improved scheme, if Q is even,
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instead of using yQ−1
n+1 to compute yQn+1 in (5.14), we use a linear combination of yQ−1

n+1 and yQ−2
n+1 . The new

predictor-corrector scheme is

q = 0 :y0
n+1 = yQn +

hλ

12
(23yQn − 16yQn−1 + 5yQn−2), (5.25)

q = 1 . . . Q− 1 :yqn+1 = yQn +
hλ

2
(yq−1
n+1 + yQn ), (5.26)

q = Q :yqn+1 = yQn +
hλ

2
(γyQ−1

n+1 + (1− γ)yQ−2
n+1 + yQn ), (5.27)

where γ is a constant. γ = 1, if Q is odd, and 0 < γ < 1, if Q is even. As we can see γ = 1 for odd-Q

recovers the original scheme (5.21,5.22).

The rationale behind this new predictor-corrector scheme (5.25-5.27) is that we do not want to modify

the convergence properties of the original PC scheme if Q is odd. Thus, we modify only the last corrector

iteration (yQn+1), when Q is even. We also note that for simplicity, we currently use a linear combination of

only the two most recent solutions (yQ−1
n+1 and yQ−2

n+1 ) instead of additional older solutions (y1
n+1 . . . y

Q−1
n+1 ).

Stability analysis show that the new predictor-corrector scheme (5.25-5.27) has better stability for even-Q

in comparison to the original scheme (5.21,5.22), if we consider negative real κ. Figure 5.13 shows how the

stability varies for the predictor-corrector scheme for Q = 2 with γ =0.25, 0.5, 0.75 and 1, Q = 1 and Q = 3.

Q = 1 is equivalent to using Q = 2 with γ = 0, and Q = 2 with γ = 1 corresponds to the original scheme for

Q = 2. As we can see, Q = 2 can be more stable than Q = 1, depending on the value of γ. In this example,

we see that γ = 0.5 yields the most stable scheme.

Figure 5.13: Stability diagram for the improved AB3-AM2 predictor-corrector scheme for different γ.

Figure 5.14 shows the stability diagram of the original scheme for Q = 1, 2, 3, and 4, and the stability
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diagram of the new scheme for Q = 2 and 4 with γ = 0.5. As we can see, the new PC scheme has better

stability for even-Q, in comparison to the original scheme.

Figure 5.14: Stability diagram for the improved AB3-AM2 predictor-corrector scheme for different γ.

In the PC scheme presented in this section, we use a linear combination of two most recent solutions for

the last corrector iteration to improve the stability behavior of the PC scheme for even-Q. In future work,

we will look at additional ways to improve the stability of this PC scheme. For example, we will explore

methods to incorporate more solutions (e.g., y1
n+1 . . . y

Q−1
n+1 ) at last corrector iteration such that yQn+1 can be

determined with improved stability and accuracy.

5.4.2 Stability of the improved predictor-corrector scheme for the unsteady

heat equation

Here, we extend the idea of the improved predictor-corrector scheme from the previous section to the stability

analysis framework that we have developed for the unsteady heat equation (Section 5.1.2). The proposed

predictor-corrector scheme is

q = 0 :un,0i = −
k∑
l=1

βlH
−1
i ui,n−l +

m∑
l=1

α̃lH
−1
i Jiju

n−l
j , (5.28)

q = 1 . . . Q− 1 :un,qi = −
k∑
l=1

βlH
−1
i ui,n−l +H−1

i Jiju
n,q−1
j , (5.29)

q = Q :un,qi = −
k∑
l=1

βlH
−1
i ui,n−l +H−1

i Jij

(
γun,Q−1

j + (1− γ)un,Q−2
j

)
, (5.30)
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Figure 5.15: Spectral radius ρ(G) versus nondimensional time ν∆t
∆x2 for the BDF3/EXT3 scheme with Ñ = 32,

K = 5 for different γ.

where γ is a parameter that can be optimized for improved stability. If Q is odd, we set γ = 1 to use the

original scheme. If Q is even, however, we set 0 ≤ γ ≤ 1.

Figure 5.15 shows the stability plot for the modified predictor-corrector schemes for different values of

γ for Q = 2, and Q = 3 with γ = 1. The parameters for grid size are Ñ = 32 and K = 5. We can see

that Q = 2 with γ = 1 leads to the original scheme and Q = 2 with γ = 0 gives the behavior equivalent

to Q = 1. It is also apparent that the stability of the PC scheme has drastically improved for Q = 2, in

comparison to the original scheme (Fig. 5.4), and it is no longer more unstable than Q = 1 when γ = 0.25

or 0.5. In fact, we see in Fig. 5.16 that this idea works for Q = 4 and 6 as well, and leads to improved

stability in comparison to Q = 3 and 5, respectively. Figure 5.16 compares the stability plots for the original

and improved predictor-corrector scheme. For the improved predictor-corrector scheme, we use γ = 0.5 for

even-Q.

5.5 Validation of the Improved Predictor-Corrector Scheme with

Schwarz-SEM Framework

The improved predictor-corrector scheme for even-Q can be readily extended to the Schwarz-SEM framework.

In this improved scheme, if Q is even, the last corrector iteration uses a combination of solution from the
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(a) Original PC scheme (b) Improved PC scheme

Figure 5.16: Spectral radius ρ(G) versus nondimensional time ν∆t
∆x2 for the BDF3/EXT3 scheme with Ñ = 32

and K = 5 comparing the original and improved predictor-corrector scheme. γ = 0.5 for even-Q in the
improved PC scheme.

previous two iterations (q = Q− 1 and Q− 2) instead of just q = Q− 1. Using this approach, we see that

for the Navier-Stokes eigenfunctions test case (Section 3.5), the Schwarz-SEM framework stays stable for

even-Q. Fig. 5.17 shows the error variation for Q = 1, 2, 3 and 4 with the original scheme, and compares it

to the improved PC scheme with Q = 2 and 4 for γ = 0.5.

Figure 5.17: Error variation for the Navier-Stokes eigenfunctions test case from Chapter 3 (S = 2) with

different Q using ∆t = 2× 10−3 and N = 7.
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Figure 5.18 shows the spatial and third-order temporal convergence for Q = 1, 2, 3, and 4 with m = 3

using the same boundary conditions and flow parameters that were used for validation in Chapter 3. As

we can see, the improved predictor-corrector scheme maintains the spatial and temporal convergence of the

SEM solver.

Figure 5.18: (left) Spatial convergence with ∆t = 10−4, and (right) temporal convergence at N = 13 for

different Q. γ = 0.5 for Q = 2 and Q = 4.

5.6 Summary

In this chapter, we have analyzed the stability properties of a predictor-corrector scheme for solving the

1D unsteady heat equation using the finite difference method. The stability analysis shows that even-Q is

less stable than odd-Q when a high-order scheme is used to extrapolate interdomain boundary data. These

results have helped us understand the behavior that we have observed in the Schwarz-SEM framework. We

have also found that a similar difference between even- and odd-Q is observed in the stability analysis of

the AB3-AM2 based predictor-corrector scheme for solving an ODE [102]. By extending the ideas discussed

in [102], we have improved the stability of the PC scheme for solving the unsteady diffusion equation, for

even-Q. We have also implemented this improved PC scheme in our Schwarz-SEM framework and observed

that in addition to stabilizing the INSE solver, it maintains the exponential convergence with polynomial

order N , and third-order temporal convergence. In future work, we will continue the stability analysis

presented in this chapter to understand the fundamental reasoning behind the difference in stability for

even- and odd-Q. We will also look at ways to extend the FD-based stability analysis framework to an

SEM-based formulation in higher-space dimensions to better understand the stability properties of the PC

scheme for solving the INSE in the Schwarz-SEM framework.
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Chapter 6

Multirate Time-Stepping Scheme for
the Schwarz-SEM framework

In previous chapters, we have described the Schwarz-SEM framework for time-advancing the solution of the

incompressible Navier-Stokes equations using a predictor-corrector scheme. An advantage of the Schwarz-

SEM framework is that it allows us to use grids of varying densities, depending on the scales of fluid

structures or geometry in each subdomain. In this chapter, we describe how we can exploit the difference

in the resolution between different grids, to develop a novel multirate time-stepping strategy for the INSE.

We start with a description of a method for solving the INSE with different time-step sizes in different

subdomains. Next, we extend the stability framework from the previous chapter to analyze the stability of

our multirate time-stepping strategy.

6.1 Motivation

In a monodomain SEM framework, the time-step size used for advancing the solution of the INSE is based

on the maximum CFL number in the spectral element mesh, which is determined as

CFL = ∀i∈Ω

∣∣∣ci∆t
∆xi

∣∣∣
∞
, (6.1)

where ∆t is the time-step size, ci and ∆xi are the velocity and local grid spacing size associated with GLL

point i, respectively. At each time-step, ∆t should be such that the CFL number of the grid is below the

(stability constrained) maximum allowable CFL number that is determined by the temporal discretization

(BDFk/EXTk in our framework). An advantage of using the Schwarz-SEM framework is that it allows us

to use grids of varying resolution depending on the scales of fluid structures or geometry in each subdomain,

as described in Chapter 1 (e.g., Fig. 1.5). Due to this difference in the physics of the flow (which impacts

velocity u) and resolution of the grid (which impacts ∆x), the CFL number (6.1) can be very different

between different overlapping grids. In the current PC scheme, the time-step size is the same for all the

overlapping subdomains in a calculation. This strategy is referred to as a single-rate time-stepping scheme,

and it can lead to an unnecessarily small time-step in the subdomains that have slower time-scales of fluid

motion or coarser grid resolution, in comparison to subdomains with faster time-scales.
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Figure 6.1: (left) Three-slice view and (right) slice view of the axisymmetric overlapping grids used to model
thermal plume in a stably stratified environment.

Consider the axisymmetric overlapping grids shown in Fig. 6.1, which are used to model a buoyant

plume in a stably stratified environment. Figure 6.1(left) shows a three-slice view and Fig. 6.1(right) shows

a slice view of the axisymmetric grids. Figure 6.2 shows a snapshot of the velocity magnitude, where the

fluid enters the tank through a pipe at its bottom. The incoming fluid has a lower density in comparison to

its surroundings at the entrance. Consequently, the plume rises due to buoyancy effects, until it reaches a

height at which the density of the plume is similar to the density of the background fluid. The plume settles

at this trapping height and diffuses outwards. This problem is discussed in detail in Section 9.7.

Due to the physics of the flow in this buoyant plume, the fluid velocity is maximum near the plume

entrance inside the tank, and adverse pressure-gradient at the entrance of the tank leads to fine-scale tur-

bulent structures in that region. In the far-field, away from the plume, the fluid velocity decreases and the

flow becomes less chaotic. Figure 6.3 shows a snapshot of local CFL number at each GLL point in the grid

used for the monodomain calculation (Fig. 1.3). As expected, the CFL number is maximum near the plume

entrance and is two orders of magnitudes smaller in the far-field.

Overlapping grids are an effective method for this problem due to the disparate difference in fluid scales

between different parts of the domain. The Schwarz-SEM framework that we have developed so far, however,

does not allow us to leverage the difference in the CFL constraint between the overlapping grids.
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Figure 6.2: Velocity magnitude plot from the monodomain calculation of the thermal plume in a stably
stratified environment.

Figure 6.3: CFL plot from the monodomain calculation of the thermal plume in a stably stratified environ-
ment.

6.2 Background

Multirate time-stepping methods were first presented in the pioneering work by Rice in 1960 [57]. Therein,

Rice presented a method of integrating a system of two ordinary differential equations with different time

step sizes using the third-order Runge-Kutta method. The stability of multirate methods for ODEs was

analyzed by Gear [103], who showed how coupling between the slow and fast moving components of the

ODEs impacted the stability of the solution process. Since then, much work has been done on developing
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multirate methods for ODEs and PDEs, especially for parabolic and hyperbolic problems [58, 59, 104, 105,

106, 107, 108, 109, 110, 111]. In the context of Navier-Stokes equations, Mikida et al. [107] have introduced

an FD-based multirate time-stepping method for compressible flow.

Most of the existing multirate based methods split the solution of ODEs into fast and slow moving

components, and solve the ODEs sequentially using a fastest-first or slowest-first approach [103, 105, 106,

107, 108]. While generally useful, a drawback of slowest-first or fastest-first schemes is that they limit the

parallelism of the calculation since subdomains integrate the PDE sequentially (similar to the alternating

Schwarz method described in Section 1.2). Another popular approach for multirate time-stepping is to

partition the elements in a domain into different groups, based on criteria such as the element size [58,59,111],

and use a different time-step size for each group. This approach is not straightforward to apply in the

monodomain SEM framework because the pressure is coupled to the divergence-free constraint for the INSE

(2.29).

Multirate time-steppers are virtually nonexistent for the incompressible Navier-Stokes equations because

the solution is very sensitive to the pressure, which satisfies an elliptic Poisson or pseudo-Poisson problem

at every timestep. While multirate methods may not be a feasible approach for a single conforming domain,

overlapping grids allows us to develop a multirate scheme that leverages the difference in the physics and

grid sizes between different subdomains.

Here, we present a novel approach for multirate time-stepping for overlapping grids, which is parallel

(integrates all subdomains simultaneously) and maintains the spatial and temporal convergence properties

of the underlying SEM solver.

6.3 Methodology

In this section, we describe the multirate time-stepping scheme that we have developed for the Schwarz-SEM

framework. We start with an example where the time-step ratio between two subdomains is 2, and describe

our strategy for time-advancing the solution of the INSE. We then show that this multirate time-stepping

strategy can be extended to an arbitrary step size ratio. For simplicity, we restrict the time-step ratio to be

an integer in the Schwarz-SEM framework.

Consider the schematic in Fig. 6.4, which shows the discrete time values for subdomains with coarser/slower

(Ωc) and faster (Ωf ) time-scales1. We assume in this example that the physics in Ωf and Ωc is such that

the maximum CFL in each subdomain constraints the time-step size to ∆tf and ∆tc, respectively, with a

1In this chapter, we reserve the superscripts/subscripts c and f to represent parameters associated with subdomains with
slower and faster time-scales.
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Figure 6.4: Schematic showing different time levels for subdomains with slower (Ωc) and faster (Ωf ) time-
scales.

time-step ratio η = ∆tc/∆tf = 2. Here, assuming that the solution is known up to discrete time tn−1, the

INSE is solved twice in Ωf with a time-step size of ∆tf and once in Ωc with a time-step of ∆tc, to obtain

the solution at tn. This strategy includes, for Ωf , the solution at time tn−
1
2 .

In a slowest- or fastest-first method, the solution would be advanced in either of the domains (e.g.,

say Ωf ) to obtain the solution at time tn, which would then be used to obtain interdomain boundary

data for advancing the solution in the other domain (e.g., Ωc). For a parallel multirate scheme, we wish

to simultaneously advance the solution in Ωf and Ωc. As a result, the interdomain boundary data will

be exchanged prior to starting the solution process such that the sub-time-steps in Ωf can be completed

independently of Ωc.

Similar to the single-rate time-stepping scheme (e.g., see (3.6)), high-order temporal accuracy will be

Figure 6.5: Schematic showing interdomain boundary data dependence between Ωf and Ωc for the predictor
step in the multirate time-stepping scheme.
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achieved in the multirate setting by extrapolating interdomain boundary data from the solution at previous

time-steps. The key difference in the multirate time-stepping scheme is that the subdomain with faster

time-scales has multiple sub-time-steps at each Schwarz iteration.

Figure 6.5 shows how interdomain boundary data is extrapolated for high-order temporal accuracy at

the predictor step in the multirate time-stepping scheme. Assuming η = 2, the interdomain boundary data

to solve for time-levels tn−
1
2 and tn in Ωf is interpolated from the known solution in Ωc at time-levels tn−1,

tn−2, and tn−3. Simultaneously, the interdomain boundary data for the solution at tn in Ωc is interpolated

from the known solution in Ωf at tn−1, tn−3/2, and tn−2.

Once the solution is known at time tn, correction iterations are needed (similar to the single-rate time-

stepping scheme) in order to stabilize the solution if high-order extrapolation is used for interdomain bound-

ary data during the predictor step. Again, the difference in these corrector iterations in comparison to the

corrector iterations for single-rate time-stepping is that Ωf has multiple sub-time-steps at each corrector

iteration. Figure 6.6 shows a schematic of how the interdomain boundary data can be interpolated in Ωf

and Ωc for the Q corrector iterations when η = 2. In Ωf , the interdomain boundary data for the solution

at tn−
1
2 comes from the solution in Ωc at the most recent iteration at time tn and the converged solution at

previous time-steps, tn−2 and tn−1. For the solution at time tn, both subdomains can directly exchange the

solution from the most recent iteration corresponding to time tn.

Using this approach, we can now describe our multirate time-stepping scheme for time-advancing the

solution in two overlapping grids with a time-step ratio of η = 2. Recall our notation for single-rate time-

stepping from Chapter 3, we use φs,n,[q] to denote the solution φ in Ωs at the qth Schwarz iteration at time

Figure 6.6: Schematic showing interdomain boundary data dependence between Ωf and Ωc for corrector
iterations in the multirate time-stepping scheme.
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tn. For multirate time-stepping, we use φf,n,[q] and φc,n,[q] for solution in Ωf and Ωc, respectively. Assuming

that the solution is known up to time tn−1, the multirate time-stepping strategy for INSE is

1. For the predictor step (q = 0), compute the tentative velocity field ú using (2.28), and solve the linear

Stokes problem in each subdomain:

• Unsteady Stokes solve for the first sub-time-step in Ωf :

úf,n−
1
2 = −

k∑
j=1

βju
f,n− j+1

2 ,[Q] + ∆tf

k∑
j=1

αj(−u · ∇u + f)f,n−
j+1
2 ,[Q],

Sφf,n−
1
2 ,[0] = rf,n−

1
2 ,[0], un−

1
2 |∂ΩfD

= u
f,n− 1

2

b , pn−
1
2 |∂ΩfN

= 0,un−
1
2 |∂ΩfI

= I
( m∑
j=1

α̃1j uc,n−j,[Q]

)
.

(6.2)

• Unsteady Stokes solve for the second sub-time-step in Ωf :

úf,n = −
k∑
j=1

βju
f,n− j2 ,[Q] + ∆tf

k∑
j=1

αj(−u · ∇u + f)f,n−
j
2 ,[Q],

Sφf,n,[0] = rf,n,[0], un|∂ΩfD
= uf,nb , pn|∂ΩfN

= 0,un|∂ΩfI
= I

( m∑
j=1

α̃2j uc,n−j,[Q]

)
.

(6.3)

• Unsteady Stokes solve for the only time-step in Ωc:

úc,n = −
k∑
j=1

βju
c,n−j,[Q] + ∆tc

k∑
j=1

αj(−u · ∇u + f)c,n−j,[Q],

Sφc,n,[0] = rc,n,[0], un|∂ΩcD
= uc,nb , pn|∂ΩcN

= 0,un|∂ΩcI
= I

( m∑
j=1

α̃j uf,n−
j+1
2 ,[Q]

)
.

(6.4)

In (6.2), we first compute the tentative velocity field as we did for single-rate time-stepping (3.5),

and then solve for φf,n−
1
2 ,[0] using the interdomain boundary data extrapolated from the solution at

previous time-steps in Ωc. The definition of rf,n−
1
2 ,[q] is unchanged from (3.4) for single-rate time-

stepping scheme, and we have introduced the notation α̃ij to denote the coefficients that are used

to extrapolate the interdomain boundary data at the ith sub-time-step for Ωf . For example, α̃1j

corresponds to coefficients for extrapolating interdomain boundary data using uc,n−j,[Q],j = 1 . . .m,

to obtain the solution at the first sub-time-step for Ωf , i.e., φf,n−
1
2 ,[0].

After φf,n−
1
2 ,[0] is computed in Ωf , φf,n,[0] can be computed using (6.3), which completes the predictor

step for advancing the solution of INSE in Ωf . Parallel to (6.2) and (6.3), (6.4) is used to solve for the
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solution at time tn in Ωc. We note that we have used α̃j to represent the extrapolation weights for the

only time-step for Ωc.

From an implementation perspective, the extrapolation coefficients used in (6.2)-(6.4) are computed

based on the time-levels (e.g., tn−1, tn−
3
2 , etc.) and the order of extrapolation m, using the routines

described in [112].

Once the predictor step, q = 0, is complete, q = 1 . . . Q corrector iterations can be done to improve

the accuracy of the solution or stabilize the scheme.

2. For the corrector iterations (q = 1 . . . Q), compute the tentative velocity field ú again in Ωf , and solve

the linear Stokes problem in each subdomain:

• Unsteady Stokes solve for the first sub-time-step in Ωf :

úf,n−
1
2 = −

k∑
j=1

βju
f,n− j+1

2 ,[Q] + ∆tf

k∑
j=1

αj(−u · ∇u + f)f,n−
j+1
2 ,[Q],

Sφf,n−
1
2 ,[q] = rf,n−

1
2 ,[q], un−

1
2 |∂ΩfD

= u
f,n− 1

2

b , pn−
1
2 |∂ΩfN

= 0,

un−
1
2 |∂ΩfI

= I
(
γ̃11u

c,n,[q−1] + γ̃12u
c,n−1,[Q] + γ̃13u

c,n−2,[Q]

)
,

(6.5)

• Unsteady Stokes solve for the second sub-time-step in Ωf :

úf,n = −
k∑
j=1

βju
f,n− j2 ,[Q] + ∆tf

k∑
j=1

αj(−u · ∇u + f)f,n−
j
2 ,[Q],

Sφf,n,[q] = rf,n,[q], un|∂ΩfD
= uf,nb , pn|∂ΩfN

= 0, un|∂ΩfI
= I

(
uc,n,[q−1]

)
,

(6.6)

• Unsteady Stokes solve for the only time-step in Ωc:

Sφc,n,[q] = rc,n,[q], un|∂ΩcD
= uc,nb , pn|∂ΩcN

= 0, un|∂ΩcI
= I

(
uf,n,[q−1]

)
, (6.7)

In (6.5), we compute φf,n−
1
2 ,[q] using the interdomain boundary data obtained from Ωc. To maintain

high-order temporal accuracy, this boundary data is interpolated from the most recent solution at cur-

rent time-step, φc,n,[q−1], and the converged solution at previous time-steps, φc,n−1,[Q] and φc,n−2,[Q].

The corresponding coefficients for this temporal interpolation are represented by γ̃1j in (6.5), and they

are computed using the routines in [112]. In our framework, γ̃ij is computed assuming linear interpo-

lation when m = 1 or 2, and quadratic interpolation when m = 2. This approach ensures that the

desired temporal accuracy O(∆tm) is maintained.
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After (6.5) is used to compute φf,n−
1
2 ,[q] in Ωf , (6.6) is used to compute φf,n,[q]. Simultaneous to the

corrector iterations for Ωf , φc,n,[q] is computed in Ωc using (6.7).

We note that in the single-rate time-stepping scheme, the tentative velocity field (ú) was computed

only once for the Q corrector iterations (3.5). In contrast, we recompute the tentative velocity field

in (6.5,6.6) at each corrector iteration for Ωf , because the solution process spans η multiple sub-time-

steps. Saving ú for each of the η sub-time-steps is not a scalable approach (e.g., η = 100 will require

us to save tentative velocity field for 100 sub-time-steps), and, thus, we recompute ú at each corrector

iteration of Ωf .

Using (6.5)-(6.7), Q simultaneous Schwarz iterations can be used to determine the solution in Ωf and

Ωc at time tn.

Using the multirate time-stepping strategy described in this section, two overlapping (S = 2) subdomains,

each with its time-step size, can be used to time-advance the solution of the INSE. We note that the current

multirate time-stepping scheme does not apply to more than two overlapping subdomains with different

time-step sizes, and we will look into this capability in the future.

6.3.1 Multirate time-stepping for arbitrary time-step ratio

Now that we have described our multirate time-stepping strategy for a time-step ratio of η = 2, we can

extend this approach for an arbitrary integer η. We can anticipate from the discussion in the previous

section that in this multirate scheme, the unsteady Stokes problem will be solved for η sub-time-steps in Ωf

and for only one time-step in Ωc. The multirate time-stepping strategy for an arbitrary integer η is:

1. As earlier (6.2)-(6.5), compute the tentative velocity field and solve the linear Stokes problem in each

subdomain for q = 0

• Unsteady Stokes solve for the i = 1 . . . η sub-time-steps of Ωf :

úf,n−1+ i
η = −

k∑
j=1

βju
f,n−1+ i−j

η ,[Q] + ∆tf

k∑
j=1

αj(−u · ∇u + f)f,n−1+ i−j
η ,[Q],

Sφf,n−1+ i
η ,[0] = rf,n−1+ i

η ,[0], un−1+ i
η |∂ΩfD

= u
f,n−1+ i

η

b , pn−1+ i
η |∂ΩfN

= 0,

un−1+ i
η |∂ΩfI

= I
( m∑
j=1

α̃ij uc,n−j,[Q]

)
,

(6.8)
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• Unsteady Stokes solve for the only time-step of Ωc:

úc,n = −
k∑
j=1

βju
c,n−j,[Q] + ∆tc

k∑
j=1

αj(−u · ∇u + f)c,n−j,[Q],

Sφc,n,[0] = rc,n,[0], un|∂ΩcD
= uc,nb , pn|∂ΩcN

= 0,un|∂ΩcI
= I

( m∑
j=1

α̃j uf,n−1− j−1
η ,[Q]

)
,

(6.9)

In (6.8), we compute the sub-time-step solution for Ωf , sequentially from i = 1 . . . η, and in (6.9), we

compute the solution in Ωc at time tn.

2. Once the predictor step is complete, q = 1 . . . Q corrector iterations are done as

• Unsteady Stokes solve for the i = 1 . . . η sub-time-steps of Ωf :

úf,n−1+ i
η = −

k∑
j=1

βju
f,n−1+ i−j

η ,[Q] + ∆tf

k∑
j=1

αj(−u · ∇u + f)f,n−1+ i−j
η ,[Q],

Sφf,n−1+ i
η ,[q] = rf,n−1+ i

η ,[q], un−1+ i
η |∂ΩfD

= u
f,n−1+ i

η

b , pn−1+ i
η |∂ΩfN

= 0,

un−1+ i
η |∂ΩfI

= I
(
γ̃i1u

c,n,[q−1] + γ̃i2u
c,n−1,[Q] + γ̃i3u

c,n−2,[Q]

)
,

(6.10)

• Unsteady Stokes solve for the only time-step of Ωc:

Sφc,n,[q] = rc,n,[q], un|∂ΩcD
= uc,nb , pn|∂ΩcN

= 0,un|∂ΩcI
= I

(
uf,n,[q−1]

)
, (6.11)

Using the high-order multirate time-stepping strategy in (6.8)-(6.11), the solution to the incompressible

Navier-Stokes equations can be advanced in time for an arbitrary integer η. This approach has been used

for analyzing the buoyant plume shown in Fig. 6.2, with η = 5 and 50, and will be discussed in detail in

Section 9.7.

6.4 Stability of the multirate time-stepping scheme

In Chapter 5, we developed a framework for analyzing the stability of the single-rate predictor-corrector

scheme for overlapping grids. Using the stability analysis framework, we had empirically shown how param-

eters such as the number of corrector iterations (Q) and the extrapolation order of interdomain boundary

data (m) impact the stability of the high-order PC scheme. Since the stability analysis in Chapter 5 has

helped us in qualitatively capturing behavior that we have observed in the Schwarz-SEM framework, we

seek to extend that framework to the PC-based multirate time-stepping scheme.

In order to understand the stability properties of the multirate time-stepping scheme, we use the

predictor-corrector scheme for solving the INSE (6.8-6.10) and combine it with our methodology of solving

the unsteady diffusion equation using single-rate time-stepping method in (5.8) and (5.9).
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Figure 6.7 shows an example of two overlapping grids with grid parameters Ñ = 7 and K = 4. For the

purposes of multirate time-stepping, we assume that Ωf = Ω1 and Ωc = Ω2. Assuming that the solution is

know up to time tn−1, the multirate time-stepping scheme for time-advancing the solution to the unsteady

heat equation is:

1. Similar to (5.8), the predictor step q = 0 can be described in Ωf and Ωc as

i = 1 . . . η → uf,n−1+ i
η ,[0] = −

k∑
l=1

βlH
−1
f uf,n−1+ i−l

η ,[Q] +

m∑
l=1

α̃ilH
−1
f Jfcu

c,n−l,[Q],

uc,n,[0] = −
k∑
l=1

βlH
−1
c uc,n−l,[Q] +

m∑
l=1

α̃lH
−1
c Jcfu

f,n−1− l−1
η ,[Q],

(6.12)

where the unsteady heat equation is solved in Ωf at η sub-time-steps and once in Ωc, for obtaining the

solution at time tn. We note that the definition of H, J , β and α̃, and the notation u is unchanged

from Chapter 5

2. Similar to (5.9), q = 1 . . . Q corrector iterations can be done as

i = 1 . . . η → uf,n−1+ i
η ,[q] = −

k∑
l=1

βlH
−1
f uf,n−1+ i−l

η ,[Q]+

H−1
f Jfc

(
γ̃i1u

c,n,[q−1] + γ̃i2u
c,n−1,[Q] + γ̃i3u

c,n−2,[Q]

)
,

uc,n,[q] = −
k∑
l=1

βlH
−1
c uc,n−l,[Q] +H−1

c Jcfu
f,n,[q−1],

(6.13)

The extrapolation weights (α̃il for Ωf and α̃l for Ωc) are determined from the extrapolation order

m, and similarly, the interpolation weights (γ̃il) are chosen to maintain mth-order temporal accuracy.

Both, the extrapolation and interpolation weights are generated using the routines described in [112].

6.4.1 Propagation matrix for stability analysis

In the preceding section, we have described the multirate time-stepping scheme (6.12-6.13) for time-advancing

the solution of the unsteady heat equation. Here, we seek to cast this time-advancement scheme into a system

of the form zn = Gzn−1, in order to extend the stability analysis of the single-rate time-stepping scheme

from Chapter 5.

u10 = 0

u2̃
N+1 = 0

Ω1 Ω2
u1̃

N+1 = u2
K

u20 = u1̃
N+1−K

KΔx

u1
i

u2
i

Figure 6.7: Overlapping grids (Ñ = 7,K = 4)
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In the multirate time-stepping scheme, the unsteady heat equation is solved in the subdomain with faster

time scales (Ωf ) at multiple sub-time-steps in order to advance the solution from tn−1 to tn. Consequently,

casting the multirate time-stepping scheme into a system of the form zn = Gzn−1 is not as straightforward

as it was for the single-rate scheme. Here, we cast (6.12-6.13) into a system of the form zn = Gzn−1 for

η = 2, and this approach can then be readily extended for arbitrary η.

For notational purposes, we define

zn = [uc,n
T

uf,n
T

uf,n−1/2T uc,n−1T uf,n−1T uf,n−3/2T uc,n−2T uf,n−2T uf,n−5/2T uc,n−3T uf,n−3T ]
T
, (6.14)

where uf and uc are the solution vectors for subdomain Ωf and Ωc, respectively, and we use zn,[q] to represent

the vector with solutions at qth corrector iteration. (6.14) is different in comparison to the solution vector

for the single-rate scheme (5.10), because Ωf has solution vectors at sub-time-steps in zn.

In order to account for these sub-time-steps in Ωf , we have to modify our methodology of building the

predictor and corrector matrices. The predictor matrix will now be a product of η matrices, of which η − 1

matrices will correspond to the sub-time-steps of Ωf , and 1 matrix will be for the last sub-time-step of Ωf

and the only step of Ωc. For η = 2, the predictor matrix is P = P2P1 where P1 generates the solution

uf,n−
1
2 ,[0] and P2 generates the solution uc,n,[0] and uf,n,[0]. The matrices P2 and P1 can be defined as



uf,n−
1
2
,[0]

uc,n−1,[0]

uf,n−1,[0]

uf,n−
3
2
,[0]

uc,n−2,[0]

uf,n−2,[0]

uf,n−
5
2
,[0]

uc,n−3,[0]

uf,n−3,[0]



=



α̃11H
−1
f Jfc −β1H

−1
f −β2H

−1
f α̃12H

−1
f Jfc −β3H

−1
f 0 α̃13H

−1
f Jfc 0 0 0 0

I1 0 0 0 0 0 0 0 0 0 0

0 I2 0 0 0 0 0 0 0 0 0

0 0 I2 0 0 0 0 0 0 0 0

0 0 0 I1 0 0 0 0 0 0 0

0 0 0 0 I2 0 0 0 0 0 0

0 0 0 0 0 I2 0 0 0 0 0

0 0 0 0 0 0 I1 0 0 0 0

0 0 0 0 0 0 0 I2 0 0 0


︸ ︷︷ ︸

P1



uc,n−1,[Q]

uf,n−1,[Q]

uf,n−
3
2
,[Q]

uc,n−2,[Q]

uf,n−2,[Q]

uf,n−
5
2
,[Q]

uc,n−3,[Q]

uf,n−3,[Q]

uf,n−
7
2
,[Q]

uc,n−4,[Q]

uf,n−4,[Q]


︸ ︷︷ ︸

zn,[Q]

,



uc,n,[0]

uf,n,[0]

uf,n−
1
2
,[0]

uc,n−1,[0]

uf,n−1,[0]

uf,n−
3
2
,[0]

uc,n−2,[0]

uf,n−2,[0]

uf,n−
5
2
,[0]

uc,n−3,[0]

uf,n−3,[0]


︸ ︷︷ ︸

zn,[0]

=



0 −β1H
−1
c α̃21H

−1
c Jcf α̃22H

−1
c Jcf −β2H

−1
c α̃23H

−1
c Jcf 0 −β3H

−1
c 0

−β1H
−1
f α̃1H

−1
f Jfc −β2H

−1
f −β3H

−1
f α̃2H

−1
f Jfc 0 0 α̃3H

−1
f Jfc 0

I2 0 0 0 0 0 0 0 0

0 I1 0 0 0 0 0 0 0

0 0 I2 0 0 0 0 0 0

0 0 0 I2 0 0 0 0 0

0 0 0 0 I1 0 0 0 0

0 0 0 0 0 I2 0 0 0

0 0 0 0 0 0 I2 0 0

0 0 0 0 0 0 0 I1 0

0 0 0 0 0 0 0 0 I2


︸ ︷︷ ︸

P2



uf,n−
1
2
,[0]

uc,n−1,[0]

uf,n−1,[0]

uf,n−
3
2
,[0]

uc,n−2,[0]

uf,n−2,[0]

uf,n−
5
2
,[0]

uc,n−3,[0]

uf,n−3,[0]



.

Thus, the predictor step which time-advances the solution in Ωf and Ωc from tn−1 to tn is
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uc,n,[0]

uf,n,[0]

uf,n−
1
2 ,[0]

uc,n−1,[0]

uf,n−1,[0]

uf,n−
3
2 ,[0]

uc,n−2,[0]

uf,n−2,[0]

uf,n−
5
2 ,[0]

uc,n−3,[0]

uf,n−3,[0]


︸ ︷︷ ︸

zn,[0]

= P2P1



uc,n−1,[Q]

uf,n−1,[Q]

uf,n−
3
2 ,[Q]

uc,n−2,[Q]

uf,n−2,[Q]

uf,n−
5
2 ,[Q]

uc,n−3,[Q]

uf,n−3,[Q]

uf,n−
7
2 ,[Q]

uc,n−4,[Q]

uf,n−4,[Q]


︸ ︷︷ ︸

zn,[Q]

.

Similarly, the system for corrector iterations is

uc,n,[q−1]

uf,n,[q−1]

uf,n−
1
2
,[q]

uc,n−1,[q]

uf,n−1,[q]

uf,n−
3
2
,[q]

uc,n−2,[q]

uf,n−2,[q]

uf,n−
5
2
,[q]

uc,n−3,[q]

uf,n−3,[q]





I1 0 0 0 0 0 0 0 0 0 0

0 I2 0 0 0 0 0 0 0 0 0

γ̃11H
−1
f Jfc 0 0 γ̃12H

−1
f Jfc −β1H

−1
f −β2H

−1
f γ̃13H

−1
f Jfc −β3H

−1
f 0 0 0

0 0 0 I1 0 0 0 0 0 0 0

0 0 0 0 I2 0 0 0 0 0 0

0 0 0 0 0 I2 0 0 0 0 0

0 0 0 0 0 0 I1 0 0 0 0

0 0 0 0 0 0 0 I2 0 0 0

0 0 0 0 0 0 0 0 I2 0 0

0 0 0 0 0 0 0 0 0 I1 0

0 0 0 0 0 0 0 0 0 0 I2


︸ ︷︷ ︸

C1



uc,n,[q−1]

uf,n,[q−1]

uf,n−
1
2
,[q−1]

uc,n−1,[q−1]

uf,n−1,[q−1]

uf,n−
3
2
,[q−1]

uc,n−2,[q−1]

uf,n−2,[q−1]

uf,n−
5
2
,[q−1]

uc,n−3,[q−1]

uf,n−3,[q−1]


︸ ︷︷ ︸

zn,[q−1]

,



uc,n,[q]

uf,n,[q]

uf,n−
1
2
,[q]

uc,n−1,[q]

uf,n−1,[q]

uf,n−
3
2
,[q]

uc,n−2,[q]

uf,n−2,[q]

uf,n−
5
2
,[q]

uc,n−3,[q]

uf,n−3,[q]


︸ ︷︷ ︸

zn,[q]



0 H−1
c Jcf 0 −β1H

−1
c 0 0 −β2H

−1
c 0 0 −β3H

−1
c 0

H−1
f Jfc 0 −β1H

−1
f 0 −β2H

−1
f −β3H

−1
f 0 0 0 0 0

0 0 I2 0 0 0 0 0 0 0 0

0 0 0 I1 0 0 0 0 0 0 0

0 0 0 0 I2 0 0 0 0 0 0

0 0 0 0 0 I2 0 0 0 0 0

0 0 0 0 0 0 I1 0 0 0 0

0 0 0 0 0 0 0 I2 0 0 0

0 0 0 0 0 0 0 0 I2 0 0

0 0 0 0 0 0 0 0 0 I1 0

0 0 0 0 0 0 0 0 0 0 I2


︸ ︷︷ ︸

C2



uc,n,[q−1]

uf,n,[q−1]

uf,n−
1
2
,[q]

uc,n−1,[q]

uf,n−1,[q]

uf,n−
3
2
,[q]

uc,n−2,[q]

uf,n−2,[q]

uf,n−
5
2
,[q]

uc,n−3,[q]

uf,n−3,[q]



,

and thus, the corrector step is
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uc,n,[q−1]

uf,n,[q−1]

uf,n−
1
2 ,[q−1]

uc,n−1,[q−1]

uf,n−1,[q−1]

uf,n−
3
2 ,[q−1]

uc,n−2,[q−1]

uf,n−2,[q−1]

uf,n−
5
2 ,[q−1]

uc,n−3,[q−1]

uf,n−3,[q−1]


︸ ︷︷ ︸

zn,[q]

= C2C1



uc,n−1,[q−1]

uf,n−1,[q−1]

uf,n−
3
2 ,[q−1]

uc,n−2,[q−1]

uf,n−2,[q−1]

uf,n−
5
2 ,[q−1]

uc,n−3,[q−1]

uf,n−3,[q−1]

uf,n−
7
2 ,[q−1]

uc,n−4,[q−1]

uf,n−4,[q−1]


︸ ︷︷ ︸

zn,[q−1]

We note that the solution uf,n−1/2,[q] is effected via C1, and uf,n,[q] and uc,n,[q] are determined using C2.

For Q corrector iterations, the time-advancement scheme is zn = Gzn−1, where G = CQP , C = C2C1, and

P = P2P1, for η = 2.

This methodology can readily be extended for arbitrary η where the predictor matrix is P = Pη . . . P1 and

the corrector matrix is C = Cη . . . C1. For example, for η = 3, the predictor matrix P will be P = P3P2P1,

where P1 determines uf,n−1/3,[0], P2 determines uf,n−2/3,[0], and P3 determines uf,n,[0] and uc,n,[0]. Similarly

the corrector matrix C will be C = C3C2C1 where C1 determines uf,n−1/3,[q], C2 determines uf,n−2/3,[q],

and C3 determines uf,n,[q] and uc,n,[q].

Using this approach, we can determine the growth matrix G = CQP for any arbitrary η. The spectral

radius of G can then be used to understand the stability behavior of the multirate time-stepping scheme

for different parameters such as the extrapolation order of interdomain boundary data during the predictor

step (m), grid resolution (Ñ), overlap width (K), and the number of corrector iterations (Q).

6.4.2 Stability results

In this section, we present the spectral radius (ρ(G)) version nondimensional time plots (ν∆tc/∆x
2) for

different time-step size ratios. We start with η = 2, and then look at increasing values of η.

Figure 6.8 shows the stability plots for BDFk/EXTm scheme for different number of corrector iterations

(Q) when η = 2, with grid parameters Ñ = 32 and K = 5.
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(a) k = 1,m = 1 (b) k = 2,m = 1

(c) k = 2,m = 2 (d) k = 3,m = 1

(e) k = 3,m = 2 (f) k = 3,m = 3

Figure 6.8: Spectral radius ρ(G) versus nondimensional time ν∆tc
∆x2 for different BDFk/EXTm schemes for

η = 2 with Q = 0 . . . 7, with grid parameters Ñ = 32 and K = 5.
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Based on the results shown here, we can conclude that using high-order extrapolation for interdomain

boundary data (m) decreases the nondimensional time at which the spectral radius of G is greater than 1.

This result is similar to the stability results for the single-rate time-stepping scheme (Fig. 5.4). We also see

that using an odd-Q decreases the stability of the scheme, which is the opposite of what is observed for the

single-rate time-stepping method (η = 1) where an even-Q is less stable than an odd-Q. In order to determine

if the behavior of odd- and even-Q is universal for all η, we look at the results for η > 2. Additionally, since

we are interested in third-order temporal accuracy, we will focus on the high-order scheme with k = 3 and

m = 3.

Figure 6.9 shows the spectral radius versus nondimensional time plot for η = 1, 2, 3, 4, 5, and 10 with

different Q. The plots in Fig. 6.9 use a semi-log scale for the x-axis to show the stability behavior of the

multirate time-stepping scheme for a large range of nondimensional time-step size ν∆tc/∆x
2. We observe

in Fig. 6.9 that for η = 1, odd-Q is more stable than even-Q, and for η = 2, even-Q is more stable than

odd-Q. For η ≥ 3, however, we observe that the odd-even pattern goes away for a large nondimensional

time-step size (ν∆tc/∆x
2 > 2× 104). We also observe in Fig. 6.9 that the single-rate time-stepping scheme

(η = 1) requires fewer corrector iterations to guarantee unconditional stability in comparison to the multirate

time-stepping scheme. Here, unconditional stability means that ρ(G) < 1 irrespective of the nondimensional

time-step size. Fig. 6.9 shows that for the grid parameters considered here (Ñ = 32 and K = 5), η = 1

requires Q = 3 and η ≥ 2 requires Q = 6 for unconditional stability, to solve the unsteady heat equation

using overlapping grids with third-order temporal accuracy in the FD-based framework.

We notice similar behavior in stability if we increase the grid overlap by changing the grid parameter

K = 5 to K = 10. Fig. 6.10(b), similar to Fig. 6.9(b), shows that even-Q is more stable than odd-Q for

η = 2. For η ≥ 3, we observed that the odd-even pattern in stability goes away, as evident in Fig. 6.9. We

also see, as expected, that increasing the grid overlap makes the PC scheme more stable.

In the following section, we will show that the stability behavior that we have observed for large nondi-

mensional time-step size in the 1D model problem, qualitatively captures the general stability behavior of

the PC-based multirate time-stepping scheme for solving the INSE in the Schwarz-SEM framework. In

future work, we will extend this analysis to make more rigorous predictions and establish theoretical bounds

on the stability of the PC-based multirate time-stepping scheme. This will require us to understand how

the nondimensional time-step size of the 1D model problem is related to the time-step size for the unsteady

Stokes problem in the Schwarz-SEM framework. We will also investigate why the odd-even stability pattern

manifests for η = 1 and 2, and not for η ≥ 3.
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(a) η = 1 (b) η = 2

(c) η = 3 (d) η = 4

(e) η = 5 (f) η = 10

Figure 6.9: Spectral radius ρ(G) versus nondimensional time ν∆tc
∆x2 for different BDF3/EXT3 schemes with

Q = 0 . . . 7, with grid parameters Ñ = 32 and K = 5.
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(a) η = 1 (b) η = 2

(c) η = 3 (d) η = 4

(e) η = 5 (f) η = 10

Figure 6.10: Spectral radius ρ(G) versus nondimensional time ν∆tc
∆x2 for different BDF3/EXT3 schemes with

Q = 0 . . . 7, with grid parameters Ñ = 32 and K = 10.
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Figure 6.11: Overlapping spectral element meshes for discretizing the periodic domain Ω = [0, 2π]2 with
(left) an outer mesh with 240 elements, and (right) a circular inner mesh with 96 elements.

Figure 6.12: CFL comparison for the overlapping spectral element mesh for same time-step size. (left) Ωc

and (right) Ωf . The CFL is minimum (4.78 × 10−5 in Ωc and 3.22 × 10−4 in Ωf ) where the ratio of flow
velocity to grid spacing is lowest in each subdomain.

6.5 Validation with Schwarz-SEM Framework

In order to validate the PC-based multirate time-stepping scheme and the stability analysis that we have

done in this chapter, we revisit the Navier-Stokes eigenfunctions by Walsh that we had described in Chapter

2.

Figure 6.11 shows the S = 2 overlapping grids generated for the periodic domain (Ω = [0, 2π]2), with 240

elements for the background mesh and 96 elements for the circular mesh. In Fig. 6.12, we show a snapshot

of the local grid CFL for these grids for a fixed time-step size. Due to the difference in the grid sizes, the

maximum CFL number in the circular mesh (CFL=0.2497) is twice as much as the maximum CFL in the

background mesh (CFL=0.1093). Thus, we can anticipate that in the context of multirate time-stepping,

we will use a larger time-step size (∆tc) for the background mesh and a smaller time-step size (∆tf ) for the

circular mesh.

Here, we will first compare the stability behavior of the multirate time-stepping scheme in the Schwarz-
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SEM framework with the results from the stability analysis of the 1D model problem. Next, we will empiri-

cally show that the PC-based multirate time-stepping scheme maintains the spatial and temporal convergence

of the underlying SEM.

6.5.1 Stability Properties

To understand the stability properties of the PC-based multirate time-stepping scheme in the Schwarz-SEM

framework, we set ∆tc = 5× 10−3, N = 7, k = 3, and m = 3 with different time-step ratio (η = 2− 4) and

corrector iterations (Q = 1− 5). Similar to the results in Fig. 5.1 for single-rate time-stepping (η = 1), we

look at whether the multirate time-stepping scheme shows the same stability behavior in the Schwarz-SEM

framework that we have observed in our FD-based analysis.

Preliminary results using the Schwarz-SEM framework show that we observe the stability behavior that

we had expected from the analysis of the 1D model problem. Figure 6.13(a) shows that for η = 2, odd-Q

is less stable than even-Q, as we had expected from the results in Fig. 6.9(b) and 6.10(b). Figure 6.13(b)

and (c) shows that for η = 3 and 4, respectively, we do not observe the odd-even stability pattern in the

Schwarz-SEM framework, which we had observed for large nondimensional time-step size in the FD-based

framework (Fig. 6.9(c) and (d)). We note that we have observe this same behavior for similar numerical

experiments that we have done in the Schwarz-SEM framework for different N .

Based on numerical experiments that we have done in the Schwarz-SEM framework with the single-

rate and multirate time-stepping PC scheme, we conclude that the asymptotic behavior (in terms of the

nondimensional time-step size) that we observe for different Q and η in the 1D model problem, qualitatively

captures the stability behavior that we observe in the Schwarz-SEM framework. In future work, we will look

at methods that can allow us to make more rigorous predictions on the impact of Q and η on the stability

properties of the multirate time-stepping scheme.

6.5.2 Spatial and Temporal Convergence

In this section, we empirically show that the PC-based multirate time-stepping scheme that we have described

in this chapter maintains the spatial and temporal convergence of the underlying SEM solver.

Figure 6.14 compares the spatial and temporal convergence results from the single-rate time-stepping

scheme and multirate time-stepping scheme (with η = 2 and 3). Q = 2 for η = 2 and Q = 3 for η = 3. For

spatial convergence, we set ∆tc = 10−4, and for temporal convergence, we set N = 13. The final error is

computed at time Tf = 1.

As we can see in Fig. 6.14, the multirate time-stepping scheme preserves the exponential convergence
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(a) η = 2 (a) η = 3 (b) η = 4

Figure 6.13: Error variation for the Navier-Stokes eigenfunctions test case from Chapter 3 with different Q
for η = 2− 4. We set k = 3, m = 3, ∆tc = 5× 10−3, and N = 7 for the results presented here.

with N and third-order temporal convergence of the underlying SEM solver, and the error for η = 2 and 3

is of the same order as η = 1.

Figure 6.14: (left) Exponential convergence with polynomial order N and (right) third-order temporal

convergence for η = 1, 2 and 3. The error is computed at time Tf = 1.

6.6 Summary

In this chapter, we have developed a multirate time-stepping scheme for the Schwarz-SEM framework.

This novel scheme solves the INSE simultaneously in two overlapping subdomains using a PC scheme. We

have also extended our stability analysis framework from the single-rate time-stepping scheme to determine

how factors such as the time-step ratio and the interdomain boundary data extrapolation order impact

the stability of the multirate time-stepping scheme. Preliminary results show that the FD-based stability

analysis qualitatively describes the stability behavior for the multirate time-stepping scheme in the Schwarz-
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SEM framework. Using numerical experiments, we have shown that the PC-based multirate time-stepping

scheme preserves the spatial and temporal convergence of the underlying SEM solver. In future work, we

will extend the multirate time-stepping scheme to more than two overlapping subdomains, and develop

methods to better understand the stability properties of this PC scheme in the context of the Schwarz-SEM

framework.
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Chapter 7

Mesh Smoothing

In this chapter, we describe our mesh smoothing method for spectral element meshes. We start with a simple

example to motivate the need for a robust mesh smoother and then discuss some of the critical aspects that

have defined the design of our method. Next, we describe some of the essential tools needed to develop

this smoother, followed by a discussion on our strategy for combining Laplacian smoothing and constrained

optimization for improving the computational performance of spectral element meshes.

We note that the majority of the work that we present here was done before this dissertation. The work

done as a part of this dissertation, however, was critical in making the mesh smoother robust and effective for

fluid-thermal applications. Specifically, the contribution of this work is the development of a novel surface

smoothing approach, which we describe in Section 7.2.3. We also describe our approach for monitoring the

conditioning of the system for solving the pressure Poisson equation (Section 7.3) and empirically show that

mesh smoothing improves the conditioning of this system. The mesh smoother presented in this chapter has

been published in Journal of Scientific Computing [73].

7.1 Motivation

While overlapping Schwarz based methods generally yield relatively simple meshes in individual subdomains,

mesh smoothing is of value in both, the mono- and multidomain cases. Mesh smoothing can significantly

improve the computational efficiency of numerical simulations. For the INSE, this includes improving ele-

ments that constrain the performance of pressure Poisson solver and limit the maximum time-step size due

to the CFL constraint.

Figure 7.1(a) shows an example of the mesh that was generated for studying buoyant plumes in a stably

stratified environment, using a typical block decomposition approach. In this example, the resolution needed

to capture the turbulence in the pipe at the bottom of the tank, leads to a thin band of elements in the domain

(for the inner mesh shown in blue). These high aspect-ratio elements are degrading for the computational

performance of the SEM solver and limit the maximum allowable time-step size due to the CFL number
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(a) Original mesh (b) Smoothed mesh

Figure 7.1: Comparison of the slice view of the original and smoothed mesh generated for studying buoyant
plumes in a stably stratified environment using the Schwarz-SEM framework.

(6.1). Numerical experiments have shown that smoothing the inner mesh allows use of a 3X larger time-step

size as compared to the original mesh. The smoothed mesh is shown in Fig. 7.1(b), where we can see that

the mesh is free of high aspect-ratio elements away from the pipe at the bottom of the tank. We also note

that in this example, surface smoothing is enabled, which allows grid points on the subdomain boundary

to move along the boundary. If surface smoothing had not been used here, the mesh smoother would not

have been able to eliminate high aspect ratio elements near the subdomain boundaries. The outer mesh is

not smoothed in this example because the flow is laminar in the far-field (Fig. 6.2) and consequently, the

computational performance of the calculation is limited by the quality of the inner mesh.

Our goal here is to describe the mesh smoother that we have developed [73], keeping in mind certain

key aspects of meshes generated by automated mesh generation tools. High-order meshes are typically

constructed by generating a linear mesh using a block decomposition approach [74], followed by projection

onto the actual high-order geometry surface [75, 76, 77, 78]. Due to this approach, most elements in a

mesh are linear or quadratic, except for the surface conforming high-order elements. Additionally, meshes

generated for simulating incompressible flow have boundary layer resolving elements to capture near-wall

physics, which due to their anisotropy, can lead to high aspect-ratio elements in the far-field. These high

aspect-ratio elements adversely impact the condition number of the system of the pressure Poisson solver

and the CFL of the grid. Lastly, since the quality of the surface mesh constrains mesh quality in the interior

of a domain, it is essential to be able to smooth surface mesh in order to maximize the quality of the given
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mesh. Mesh improvement methods that support surface smoothing, typically rely on a CAD or a parametric

representation of the original geometry in order to smooth the surface mesh. This approach is not possible in

the FEM- or SEM-based framework where only a discrete representation of the original geometry is available

through the original mesh. These various aspects have helped us develop a robust mesh smoothing method.

7.2 Key Tools for Mesh Smoothing

In this section, we describe a set of tools that are critical to the efficiency and impact of our smoothing

algorithm.

7.2.1 Smoothing on lower polynomial order

As mentioned earlier, high-order meshes are typically generated by meshing the domain with low-order

elements and then projecting the surface GLL points to the actual high-order description of the bounded

domain. Thus, surface elements, of order G = N , eliminate geometrical approximation errors, where G

represents the order of the mesh and N represents the order of the SEM. Consequently, the interior elements

of most meshes are typically low-order.

Relaxation of the constraint G = N to G = 2, allows us to smooth the mesh with each element cast

in second-order representation since quadratic elements have a GLL point at the middle of every edge.

Furthermore, we note here that the exponential convergence of the SEM is not dependent on the order of

the interior elements, but on the spatial resolution inside the domain1. Consequently, smoothing the mesh

at G = 2 does not impact the convergence of the SEM as long as regions of interest have adequate resolution

and the geometry (i.e., surface elements) is defined with adequate precision. A notable exception where

G = N almost everywhere includes high order Lagrangian formulations [113].

Using G = 2, the first step in our smoothing process is to split each spectral element into 2d micro-

elements, which are represented as bilinear (in 2D) or trilinear (3D) elements (i.e., G=1). Our smoothing

algorithms are applied to this new mesh comprising Em = 2dE micro-elements. Figure 7.2 shows an example

of a spectral element mesh with 16 spectral elements, and Fig. 7.2(b) shows the mesh split into 64 linear

micro-elements.

When performing surface smoothing on this mesh with micro-elements, we project all surface points

onto the surface of the original spectral element mesh after each smoothing sweep. At the very end of the

smoothing process, all micro-elements are recombined into their parent spectral elements at G = 2, and the

1In Appendix A, we empirically demonstrate that the spatial convergence of the solution in SEM depends on the spatial
resolution and not on the mesh quality.
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Figure 7.2: (left to right) (a) A spectral element mesh with E = 16 elements (b) split into Em = 64 elements
with G = 1.

mesh is interpolated from G = 2 to the SEM order G = N . Finally, all GLL points (at SEM order N)

are projected onto the original geometry for elements on the domain boundary. This final projection step

is accompanied by a blending process that smoothly distributes the surface displacement into the domain

interior. Blending is done either on an element-by-element basis using transfinite interpolation [84,114] or by

solving a global Laplace equation, with the latter approach preferred when the mesh has thin boundary-layer

elements.

When recombining (Em, G = 1) elements into the (E,G = 2) mesh it is essential to ensure that the

midside nodes2 are interpolated to the middle of the edge after recombining the mesh, to avoid inverted

elements. This is a common pitfall since valid quad elements do not necessarily combine to form one valid

spectral element. The interpolation of the midside node is done by translating it parallel to the line joining

the two endpoints of the edge, and moving it to the center of this line, as shown below in Figure 7.3. An

alternative to this approach is to fit a second-order curve through the 3 nodes and move the midside node

to the middle of the curved edge. While generally effective, numerical experiments have shown that this

strategy can lead to spectral elements with negative Jacobians.

We note that for notational purposes, the use of the local form (e.g., u) and global form (e.g., ug) in this

chapter will refer to the functions and operators (e.g., V V T ) corresponding to the mesh with micro-elements

(and not the spectral elements that are a starting point for the mesh smoothing process).

7.2.2 Weight function for boundary layer preservation

Boundary layer preservation becomes important when simulating high Reynolds number flows in computa-

tional fluid dynamics applications (the principal target of our effort), because the solution requires adequate

boundary-layer resolution to capture important near-wall physics. Thus, mesh improvement strategies must

ensure that the size of the boundary layer resolving elements is maintained in the wall-normal direction

2We use the term “midside node” to refer to the grid point that is at the center of a spectral element’s edge.
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(a) Edge with midside node not at the middle of the edge

(b) h, distance of the midside node from the line segment joining
the two end points of the edge, and the midpoint (�) of that line

segment

(c) Modified midside node to the middle of the edge while
maintaining the distance between the midside node and the line

joining the two end points of the edge

Figure 7.3: Interpolation of midside node post-smoothing to the middle of the edge

during the smoothing process.

The issue of boundary layer preservation has not been sufficiently addressed in the existing literature.

Canann et al. [63] proposed a method to preserve boundary-layer resolution by constraining the distance of

the farthest boundary-layer node. While this method is effective, it requires the user to identify boundary-

layer points that are farthest from the wall, which is not straightforward to implement for complicated

meshes. Here, we adopt a different approach of using a weight function based on the minimum distance of

all the grid points from the closest wall, to restrict their motion during and after the smoothing process.

The weight function (W ) is a diagonal matrix with weights corresponding to each grid point in the mesh,

which is used to preserve the shape of the boundary layer elements during the smoothing process. This

weight function can either be user-specified or is set by default as a function of the distance to the nearest

wall for each grid point. A typical approach to determine the weight function is first to use the distance

function generator described in Section 3.4 to determine the distance of all grid points in the mesh from

the closest boundary surface. Once the distance function (δ) is determined, it is normalized by some chosen

characteristic length scale. In the absence of any other scale information, we set the characteristic length

scale to the maximum value of δ over the grid points of micro-elements. Using the normalized distance

function, the diagonal matrix with weight function (Wii) is determined using the distance δi for each grid
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point i as

Wii = 1− e−δi/β , (7.1)

or Wii = 0.5(tanh(α(δi − β)) + 1) (7.2)

or another function of user’s choice. In (7.1) and (7.2), α and β are parameters that determine the shape of

the weight function.

Figure 7.4 shows how the weight function given in (7.1) and (7.2) varies for different parameters α and β.

We use this weight function to scale the displacements of the grid points, determined by the mesh smoother,

at each iteration. This approach has an effect of reducing the movement of the grid points near the wall. We

also use the weight function W at the end of the smoothing process, as shown in Algorithm 3 and illustrated

in Figure 7.5, to generate the final mesh as a weighted combination of the original mesh and the smooth

mesh. Our use of the weight function to restore the boundary layer resolution as the final step of the mesh

smoothing process, as shown in Fig. 7.5(c), will be clear from the discussion in the next section.

Figure 7.4: (left to right) (a) Exponential- (7.1) and (b) tanh-based (7.2) weight function.

(a) Original Mesh (b) Smoothed mesh (c) Boundary layer restored

Figure 7.5: Smoothing across domain decomposition zones and boundary layer preservation.
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7.2.3 Surface smoothing

The quality of the surface mesh constraints the mesh quality interior to a domain. It is important, therefore,

to be able to smooth the surface mesh without distorting the domain-boundary geometry. In cases where the

geometry is provided analytically or through a CAD model, one can smooth the elements on the surface of the

domain and project them on to the geometry after smoothing. In other cases, one can leverage the originating

high-order spectral element description as a surrogate for the true geometry, under the assumption that (2.6)

provides a satisfactory description of the domain surface. In our framework, we use this second scheme to

project the surface grid points to the original geometry after each smoothing iteration. The essential idea

behind the surface smoothing is to allow surface points to move during the volumetric smoothing process,

which will be described in the next section, followed by projection onto the original geometry.

The tools that are critical to the surface smoothing procedure include a fast and robust interpolation

routine and a readily computed distance function δ(x) that indicates the minimum distance between any

point x∗ ∈ Ω and the domain boundary ∂Ω. Off-grid interpolation is effected via findptslib, the high-order

interpolation library that we have described in Section 3.2.1, and the distance function δ(x) is generated

using the approach described in Section 3.4. We also define a diagonal mask matrix, M , before starting the

smoothing process. The entries of this mask matrix are 1 or 0 for each grid point depending on whether the

user wants it to move or not during the smoothing process. Where surface smoothing is desired, the mask is

set to 1 such that grid points are allowed to move during each substep of the volumetric mesh optimization

step.

Surface smoothing is implemented as part of the volumetric mesh smoothing process. If a surface node i,

with physical-space coordinates xi is moved to x∗i by the smoother, the constraint for surface smoothing is

that the displacement x∗i − xi should lie in the tangent plane passing through the original surface location,

xi. (The tangent-plane constraint is readily implemented using ∇δ.) For planar surfaces, this constraint

suffices to keep surface grid points on the domain boundary. For curved surfaces, the constrained motion will

yield an O(||x∗i −xi||2) displacement in the normal direction. Consequently, all displaced surface vertices are

reprojected to the original spectral-element domain boundary after each smoothing substep. This surface

projection is done by first using findpts to determine if the surface grid points have moved interior or exterior

to the original spectral element mesh. If a surface node x∗i is outside the domain, the node is mapped to

the nearest surface value, x′i, which is automatically returned by findpts. If x∗ is interior to Ω, we evaluate

[δ(x∗i ),∇δ(x∗i )] using findpts eval and set

x′i = x∗i − ∇δ(x∗i ) δ(x∗i ), (7.3)
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where x′i is the position of the surface node after projection on to the original geometry.

At the end of the smoothing process, when the micro-elements are combined into the coarse mesh

(E,G = 2), which is then interpolated back to the original SEM order (E,G = N), all surfaces GLL points

are again projected onto the original mesh. This approach ensures that no geometrical approximations are

introduced for high-order meshes. Additionally, as discussed earlier, as long as there is adequate resolution

inside the domain, the exponential convergence of the SEM is maintained. Figure 7.5 shows a section of

mesh generated for an internal combustion engine. As we can see, surface smoothing on the cylinder helps

eliminate CFL constraining elements between the valve stem and the cylinder wall. Figure 7.6 shows the

effect of smoothing the surface of a mesh for a turbine blade.

Figure 7.6: Comparison of a mesh (N = 5) before and after surface smoothing for a turbine blade, with

GLL points

7.3 Pressure Solve and Conditioning of the Resulting System

As one of our key drivers for the smoother is computational efficiency, we briefly introduce the pressure

Poisson equation that is typically a bottleneck for incompressible Navier-Stokes due to its ill-conditioning

for high-resolution calculations. The discretization of the INSE for the SEM formulation has been presented

in Chapter 2 in (2.33-2.34). Since the characteristic propagation speed of pressure perturbations is infinite in

incompressible flows, the pressure operator is the leading contributor to the stiffness of the system resulting in

unsteady flows. Following [115,116], the pressure is calculated using generalized minimal residual (GMRES)

method to solve a preconditioned system MAx = Mb. Here M is the preconditioner, and MA has properties

similar to a Poisson operator [117, 118], which adds to the ill-conditioning of the overall pressure system.

This preconditioner is effectively a three-level p-multigrid strategy [119, 120], and has proven to be highly

effective for systems with E > 106 on over a million processors [121].

For a given preconditioned system of equations MAx = Mb, the convergence of the solution using a

Krylov-subspace projection method depends on the iterative condition number, which is the ratio of the
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maximum to minimum eigenvalues (κiter = λmax
λmin

) of the matrix MA [122]. This convergence property holds

for our problem since we solve for pressure using GMRES. For a mesh with E spectral elements, the size of

this system of equations is np×np, where np = E(N − 1)D, which can be very large for even calculations of

modest size. Consequently, the matrix MA is never explicitly formed, and as a result, the condition number

of MA cannot be monitored during the solution to understand how the quality of mesh affects this system.

However, since GMRES is used, the upper Hessenberg matrix that is generated during the iterative process

can be used because its extreme eigenvalues (also know as Ritz values) [123] are a good estimate of the

extreme eigenvalues of MA.

We hypothesize that for our calculation of pressure correction, mesh smoothing decreases κiter which

results in decreasing the number of iterations for the pressure-solve step, with λmax and λmin determined

from the upper Hessenberg matrix generated during the GMRES iterations. We present the κiter for various

cases that we have analyzed using this approach, in Section 9.9, to understand how the smoothness of mesh

translates into better computational performance in terms of Niter.

7.4 Mesh smoothing strategy

In this section, we describe our mesh improvement methodology that is based on a combination of Laplacian

smoothing and constrained optimization and can be used in parallel on P MPI ranks. The rationale behind

our approach of mesh improvement is that Laplacian smoothing is computationally cheap, but does not

guarantee that that the mesh will stay valid during the smoothing process. Combining the Laplacian

smoother with a constrained optimization approach allows us to ensure that the mesh stays valid everywhere

in the domain while improving the quality of the performance degrading elements.

7.4.1 Laplacian smoothing

Mesh smoothing is inherently nonlocal and therefore requires interprocessor communication in a parallel

implementation. Laplacian smoothing is typically performed by updating the position of each grid point as

the average of all the grid points that it is connected to. In our framework, the geometry is stored in the

local form, as explained in Section 2.1.2. Thus, updating the position of each element vertex as a function

of other elements that it is shared with, is not an efficient approach for mesh smoothing in parallel. As a

result, we smooth each element individually and then use the C−1V V T operator (Section 2.1.3) to average

the displacement between shared grid points. The use of the C−1V V T operator ensures that we maintain

the geometric continuity of the mesh.
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Since we split each element in a mesh into micro-elements, we use the notation xe to represent the vector

of physical-space coordinates of the vertices of each micro-element e. Similar to the spectral elements, each

micro-element is also mapped to the reference-space element Ω̂, such that xe = x(ξ, η, ζ) = x(±1,±1,±1).

Our approach to Laplacian smoothing is to shrink each element in the mesh by a user-specified factor (sf )

in the reference-space. We typically use sf = 0.99 based on our experience with smoothing meshes. The

benefit of shrinking elements in the reference-space is that it is a convex operation. Following the shrinking

step, the displacement of the grid points is averaged using C−1V V T operator. This strategy has an overall

effect of making the mesh uniformly sized. Additionally, the edges/faces on the surface are shrunk tangent

to the surface. This can be achieved by simply setting sf = 1 for the edge/face which is on the surface.

Figure 7.7 demonstrates a simple example of one iteration of the shrinking process.

Figure 7.7: Laplacian smoothing done by shrinking each element followed by the C−1V V T operator on the

nodal displacements.

Algorithm 1: Laplacian smoothing algorithm

1: for i:=1 to Nlap do

2: for e:=1 to Em do

3: ∆xe = xe(±sf ,±sf ,±sf )− xe(±1,±1,±1)

4: ∆x = C−1V V T∆x

5: ∆x = M∆x

6: ∆x = W∆x

7: update ∆x by surface smoothing

8: x = x + ∆x

Algorithm 1 describes the Laplacian smoothing algorithm in our mesh improvement framework. Lapla-

cian smoothing is computationally cheap, and the smoother typically spends only a fraction of time per

iteration in Laplacian smoothing as compared to the optimizer. However, it is essential to note that Lapla-

cian smoothing can lead to invalid elements for certain meshes, especially when aggressive values of sf are
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used. Such situations warrant the use of more sophisticated smoothing techniques such as optimization

which we talk about next. Additionally, if the Laplacian smoother makes the mesh invalid, the mesh is

restored to its state before that iteration of Laplacian smoother, and that loop of Laplacian smoother is

terminated. This approach ensures that the Laplacian smoother is only used when it improves the mesh

quality.

7.4.2 Constrained optimization

Optimization is governed by an objective function that is minimized over the region of interest. Typically,

mesh optimization is done on a grid point-by-grid point basis where the objective function is the sum of

the local objective function for each grid point in the mesh. If the optimization relies on a gradient-based

method, such as steepest-descent or conjugate gradients (CG), it requires evaluation of the gradient of the

global objective function. Movement of a grid point i affects the quality of the elements that it is connected

to. Calculation of the gradient thus requires communication across processors if grid points in the same

neighborhood are on different processors. Similar to Laplacian smoothing, we use an element-by-element

approach for effecting mesh optimization with minimal parallel communication.

The global objective function for our element-by-element smoother is determined as the sum of the shape

metric for every element in the SE mesh.

φ(x) = φ(x, y, z) =

Em∑
e=1

φ̃e(x, y, z) =
1

2d

Em∑
e=1

[ 2d∑
i=1

(φei )
2

]
, (7.4)

where, φ̃e is the objective function associated with element e, and φei is the objective function for vertex

i of element e. The vertex-based objective function is based on the normalized condition number (in the

Frobenius norm) of the local Jacobian Ji,e for vertex i of element e,

φei =
1

d
κ(Ji,e) =

1

d
(‖Ji,e‖F ‖J−1

i,e ‖F ), (7.5)

where Ji,e is the Jacobian matrix associate with the transformation of from the physical space coordinates

(xei ) to reference space coordinates (ξ).

[Ji,e]j,k =
∂xj
∂ξk

∣∣∣∣
x=xe

i

j, k ∈ {1, .., d}2 . (7.6)

We remark that in (7.6), the Jacobian is computed based on the small bi- or trilinear micro-elements, rather

than the corresponding Nth-order spectral elements. The normalized Frobenius-norm based metric was
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originally proposed by Knupp [65] and yields a minimum of φ̃e = 1 for an ideal element (i.e., a square in 2D

or a cube in 3D).

In our mesh optimization framework, we rely on the conjugate gradients method for optimization, which

is based on the gradient of the objective function. In the element-by-element framework, the gradient (ĝei,j)

for each vertex i of micro-element e corresponding to the jth space-direction is calculated as

ĝei,1 =
∂φ̃e

∂xi
, ĝei,2 =

∂φ̃e

∂yi
, ĝei,3 =

∂φ̃e

∂zi
, e = 1, . . . , Em, i = 1, . . . , 2d, (7.7)

and we compute each component of the gradient using second-order accurate central finite differences as

ĝei,j =
1

2h
[φ̃e(xi + hêj)− φ̃e(xi − hêj)], j = 1 . . . d, e = 1, . . . , Em, i = 1, . . . , 2d, (7.8)

where h is a local variable, chosen to be .01 times the length of the smallest edge incident to xei , and êj is

the unit-vector corresponding to the jth space-direction.

Once the element-by-element gradient vector is computed, it is assembled for CG as,

ĝ =


ĝ
x

ĝ
y

ĝ
z

 , ĝ
j

=



ĝe=1

j

ĝe=2

j
...

ĝe=E
j


, ĝe

j
=



ĝe
1,j

ĝe
2,j
...

ĝe
2d,j


, (7.9)

followed by the V V T operation to add the gradient for shared grid points:

g =


V V T ĝ

x

V V T ĝ
y

V V T ĝ
z

 . (7.10)

(7.10) is important because it ensures that the local element-by-element gradients are assembled and con-

tinuous across shared element vertices. Using this assembled gradient vector and other tools described in

the previous sections, we can use CG for constrained mesh optimization with Algorithm 2.

In Algorithm 2, lmin is the smallest edge length in the mesh with micro-elements, x0 refers to the original

mesh, and the parameters αk and βk should not be confused with the α and β that we use in the SEM

framework to denote the coefficients for the BDFk/EXTk temporal discretization.

In the element-by-element approach, the gradient calculation for a given grid point requires a total of 2
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Algorithm 2: Optimization smoothing algorithm

h = 0.1(lmin)
Determine φ(x0)
Determine g(x0)
∆x = −g(x0)
for k:=0 to Nopt do

Determine αk using line search to minimize φ(xk + α∆xk)
∆xk = C−1V V T∆xk
∆xk = M∆xk
∆xk = W∆xk
update ∆x by surface smoothing
xk+1 = xk + α∆xk
Determine g(xk+1)

βk =
g(xk+1)TC−1g(xk+1)

g(xk)TC−1g(xk)

∆xk+1 = −g(xk+1) + βk∆xk

function evaluations (φ(xi+hêj) and φ(xi−hêj)) in each direction, followed by the action of V V T operator

on it. Thus the total number of function evaluations for calculating the gradient of all the grid points in a

mesh is 2dn, where n = 2dEm is the total number of grid points in the decomposed mesh. We also note

here that the cost of each function evaluation is bounded since it is simply based on the Frobenius norm of

a d× d matrix and its inverse. Since the total number of function evaluations is O(n), even as the number

of elements increases or the mesh topology changes, the algorithm is easily parallelized and scales well. The

P processor parallel time complexity for the mesh optimizer is thus O(n/P ), which is optimal.

7.4.3 Mesh smoothing algorithm

The cost of both Laplacian smoother and optimizer are O(n), which allows them to scale well as the number

of elements increases in the mesh. Since the Laplacian smoother does not require any line search step or

objective function evaluation for each grid point, the proportionality constant for the cost is much less than

that for the optimizer. Consequently, even though the Laplacian smoother can make the mesh invalid during

the smoothing process, its cheap computational cost compared to the optimization-based smoothing make it

attractive to include it in the smoother. Numerical experiments conducted to compare the speed of Laplacian

and optimization-based smoothing show that the Laplacian smoothing can speed up the smoothing process

by as much as 3 times. Consequently, we include the Laplacian smoother in our smoother with constraints

implemented to ensure that it is turned off if it makes the mesh invalid. Additionally, the combination of

Laplacian and optimization based smoothers have proven to be successful in the past [61,63,66,124].

User-specified iterations of Laplacian smoothing (nlap) and optimization (nopt) are applied to the mesh
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before interpolating the mid-side nodes to the middle of the parent spectral element’s edge. This process is

repeated for the user-specified number of iterations (nouter). In case the mesh converges to the state with

minimum φ(x), the smoother automatically terminates the loop. The interface of the smoother is shown

below. Based on our experience with numerous meshes, we have found nouter = 20, nlap = 20, and nopt = 40

to be reasonable default values.

Algorithm 3: Mesh Smoother

1: Interpolate mesh from G = N to G = 2
2: save a copy of original mesh - xc,yc,zc
3: generate the mask (M) for boundary grid points
4: generate the weight function (W ) based on minimum distance from wall surfaces
5: Determine φ(x0)
6: for k:=1 to nouter do
7: nlap iterations of Laplacian smoothing - Algorithm 1
8: nopt iterations of optimization smoothing - Algorithm 2
9: save smooth mesh - xs,ys,zs

10: Determine φ(xk)
11: if φ(xk)− φ(xk−1) < tol , go to 12

12: (xs,ys,zs) = (W )(xs,ys,zs) + (I-W )( xc,yc,zc) This restores boundary layer
13: Interpolate mesh from G = 2 to G = N
14: Project surface grid points to the surface of the original mesh
15: Gordon-hall mapping of GLL points inside each element

After the mesh has been smoothed by the Laplacian smoother and optimizer for user-specified iterations,

the weight function (Section 7.2.2) is used to average the original and smoothed mesh as shown in Algorithm

3 and Fig. 7.5. This weight function has the effect of favoring the grid points closer to walls in the original

mesh and grid points farther away in the smoothed mesh, thus restoring the boundary layer resolution. Next,

the mesh is interpolated from (E,G = 2) to the SEM order (E,G = N), and all the surface GLL points are

projected to the surface of the original mesh (Section 7.2.3). Finally, all GLL points in each element are

mapped using the algorithm by Gordon and Hall [84, 114].

7.5 Summary

In this chapter, we have presented our methodology for smoothing spectral element meshes using a Laplacian

and optimization-based mesh smoother. Using our novel approach of element-by-element smoothing, we will

show in Chapter 8 that the mesh smoother demonstrates good scaling even when each MPI rank has as

few as ten elements. In Chapter 9, we will present various examples that show the effectiveness of our

methodology of mesh smoothing in improving the computational performance of a given mesh. Through

different examples, we will see that improving mesh quality leads to an improvement in the conditioning of
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the system for the PPE, which reduces the computational cost of a calculation. A comparison of the iterative

condition number (κiter = λmax
λmin

) via the upper Hessenberg matrix constructed during GMRES iterations of

pressure solve has helped us establish a strong correlation between κiter and Niter. For the eight cases that

will be presented in Chapter 9, we see that Niter decreases with κiter. This result is significant because it

opens doors to better mesh smoothing strategies. In future work, we aim to exploit this correlation between

the conditioning of the upper Hessenberg matrix and pressure iterations to improve our mesh smoother.

Instead of just using the conditioning of the Jacobian matrix for mesh smoothing, we will investigate ways

to include κiter in the global function used for mesh optimization. This strategy could potentially help us

ensure that every step taken during mesh smoothing improves the conditioning of the system and hence

results in decreasing the iteration count for pressure solve.

125



Chapter 8

Timing & Parallel Scaling

In previous chapters, we focussed on developing the Schwarz-SEM framework for solving incompressible

Navier-Stokes equations in complex domains, and developing a mesh smoothing method for improving the

computational performance of spectral element meshes. In addition to the accuracy and stability of these

methods, their applicability for solving large-scale real-world problems also depends on their speed and

scalability. In this chapter, we understand how different aspects of Schwarz-SEM framework impact its

speed, and also look at the scaling of the mesh smoother. All the results presented in this section were

obtained on Cetus or Mira, the IBM Blue Gene/Q machines at the Argonne Leadership Computing Facility,

unless otherwise noted. Additionally, the timing results that we show here for the Schwarz-SEM framework

were obtained by averaging the timing data over at-least 50 time-steps.

8.1 Impact of Corrector Iterations

Through our stability analysis results presented in Chapter 5 for single-rate methods, and in Chapter 6

for multirate methods, we have seen that increasing the number of corrector iterations (Q) increases the

stability of the Schwarz-SEM framework. Since each corrector iteration requires interdomain boundary

data interpolation and an unsteady Stokes solve, we look at understanding how Q impacts the cost of

time-advancing the solution of the INSE using the single-rate time-stepping approach.

Here, we consider turbulent flow in a doubly-periodic channel, that we will discuss in detail in Section

9.2. The overlapping meshes used to model this domain have a total of 6304 elements and these meshes are

shown in Fig. 9.3. For the timing test, we set m = 1 for polynomial order N = 7 and 9. Figure 8.1 shows how

the time to solution per time-step (Tstep) varies as we increase Q. The time to solution includes the time for

solving the pressure Poisson equation and a Helmholtz equation for each component of velocity. As we can

see in Fig. 8.1, the time to solution increases almost linearly for Q > 4. This is likely because in the SEM

framework, the pressure Poisson equation is solved by using an initial guess based on the space of solutions

at previous Pr time-steps. This projection method for accelerating the pressure solve was developed for the
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monodomain SEM framework, and is used in each subdomain in the Schwarz-SEM framework. When Q > 0

in the Schwarz-SEM framework, the Pr solutions that are used to generate the initial guess, essentially only

span previous Pr/(Q + 1) time-steps. As a result, the quality of the initial approximate generated using

this projection technique decreases as Q increases. We plan on looking into better projection techniques for

reducing the cost of increasing Q, in future.

The results in Fig. 8.1 also show why the improved predictor-corrector scheme that was presented in

Section 5.4, will help in significantly reducing the computational cost of the Schwarz-SEM framework. In

contrast to the original PC scheme where we observed that even-Q was less stable than odd-Q (Chapter 5),

the improved PC scheme shows that increasing Q monotonically increases the stability of the method. As a

result, we can increase Q by 1 instead of 2, if the current Q is not sufficient from a stability perspective.

We note that not all cases require Q > 0. For examples such as the turbulent channel flow (Section

9.2) and buoyant plume (Section 9.7), we have observed that even the simple time-lagged Schwarz updates

(Q = 0 with m = 1) have produced results that agree well with literature.

Figure 8.1: Impact of Q on the time to solution per time-step for turbulent channel flow at N = 7 and
N = 9. The domain was modeled with two overlapping meshes with a total of 6304 elements (1444 elements
in the lower mesh and 4860 elements in the upper mesh).
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8.2 Impact of Multirate Time-Stepping

In Chapter 6, we introduced a multirate time-stepping predictor-corrector scheme for time-advancing the

solution of INSE using different time-step sizes in overlapping subdomains. With multirate time-stepping,

the subdomain with faster time-scales (Ωf ) uses a smaller time-step size in comparison to the subdomain

with slower time-scales (Ωc), and as a result Ωc needs to take many fewer time-steps in comparison to

Ωf . The number of time-steps needed for each subdomain to integrate up to a fixed time depends on the

time-step ratio η = ∆tc/∆tf . Using this novel multirate time-stepping predictor-corrector scheme, we have

demonstrated that it maintains the exponential convergence with N and third-order temporal accuracy of

the SEM.

In Section 9.7, we will demonstrate the use of multirate time-stepping scheme for modeling a buoyant

plume with two overlapping meshes of different element size. For the buoyant plume, a dense inner grid

is used to resolve the fine scale structures in the plume where the flow is buoyancy driven, and a coarse

outer grid is used to model the tank in the far-field. Due to the difference in the spatial and temporal

scales of the overlapping grids, multirate time-stepping scheme enables us to use η = 50 for this example.

In order to validate the multirate time-stepping scheme, numerical calculations were done with η = 5 and

50. Here, we use the calculation done with η = 5 to demonstrate how the multirate time-stepping reduces

the computational cost in comparison to the single-rate time-stepping (η = 1) for the same problem.

For the buoyant plume problem, Ef = 55, 480 elements for the dense inner grid (Ωf ) and Ec = 15, 560

elements in the coarse outer grid (Ωc). For overlapping subdomains, ideally one would partition the domain

in parallel such that the time to solution per time-step (Tstep) is similar for each subdomain. For the single-

rate time-stepping scheme, a good rule of thumb to choose the number of MPI ranks for each subdomain

is

Pc
Pf
≈ Ec
Ef

, (8.1)

where Pf and Pc are the number of MPI ranks use to partition Ωf and Ωc, respectively. Based on Ec and

Ef for this example, we can set Pc ≈ Pf/4. For the multirate scheme, however, since Ωc has many times

fewer steps as compared to the Ωf , the number of MPI ranks for Ωc can be reduced even further.

Figure 8.2 compares how Tstep varies with Pc for the single-rate and multirate time-stepping scheme,

while keeping Pf fixed at 4096 MPI ranks. These calculations were done with m = 1, Q = 0, and N = 7.

The time per time-step was obtained for multirate time-stepping scheme by monitoring the mean time

taken by Ωf for each sub-time-step, which is equivalent to a single time-step in the single-rate time-stepping
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Figure 8.2: Comparison of time to solution per time-step (Tstep) for the single-rate and multirate time-
stepping scheme with number of MPI ranks (Pc) used for the subdomain Ωc with slow time-scales. These
tests were done using the buoyant plume problem (Section 9.7), where Ef = 55, 480 and Ec = 15, 560.

scheme. The time-step size was kept same for Ωf for the multirate and single-rate time-stepping scheme, in

order to ensure fair comparison.

As we can see, the single-rate time-stepping is most efficient when Pc = 1024 = Pf/4. As Pc is decreased,

the time to solution increases as expected. We also notice that as Pc is increased from 1024 to 2048, the

time to solution doesn’t change. This is because when Pc > Pf/4, Tstep is limited by Ωf .

In contrast to the single-rate scheme, since Ωc has to take many fewer time-steps with the multirate

time-stepping scheme, Pc = Pf/16 is as effective as Pc = Pf/4. Pc cannot be reduced further because of

the constraint on maximum memory that can be allocated on each MPI rank. Additionally, we see that the

multirate time-stepping scheme does better than the single-rate time-stepping scheme for equivalent number

of MPI ranks because it requires fewer calls to findpts eval.

Based on the results presented here, we conclude that load balance can be ensured for multirate time-

stepping-based calculations by choosing the MPI ranks for each subdomain such that

Pc
Pf
≈ Ec
ηEf

. (8.2)

We note that (8.1) and (8.2) are based on our experience with numerical experiments, and have proven

to be effective for choosing the number of MPI ranks to ensure load balance between different subdomains,

due to the private-memory model (Section 2.1.5) that the Schwarz-SEM implementation is based on. (8.1)

and (8.2) will likely not be effective in cases where the difference in the number of iterations needed for

pressure Poisson solve or Helmholtz solve for velocity varies significantly between different subdomains.
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8.3 Impact of Changes to Interpolation via findpts eval

findpts eval is used at each Schwarz iteration in the Schwarz-SEM framework to interpolate interdomain

boundary data. In Section 3.2.3, we had described our methodology for improving the performance of

findpts eval by reducing the sorting and communication cost of the algorithm. To test our improvements,

we use the monodomain spectral element mesh generated for modeling a thermally buoyant plume (Section

9.7). The monodomain mesh has 70,400 spectral elements, and we set N = 5 and 7 with 275,000 points

distributed uniformly throughout the domain.

To test the time for interpolation in the old and new interpolation framework, findpts is first used to

determine the computational coordinates of the 275,000 sought points, and then findpts eval is used to

interpolate a scalar field. Figure 8.3 compares the time for interpolation for these 275,000 points (Teval)

using the original and improved findpts eval. As we can see, our improvements to findpts eval show a 3X

speed-up in comparison to the original scheme.

Figure 8.3: Comparison of time to interpolation (Teval) via findpts eval using the original and improved
scheme for the buoyant plume example (E = 70, 400 with N = 5 and 7.)
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8.4 Strong Scaling for the Schwarz-SEM Framework

In the context of the Schwarz-SEM method, we are concerned with the cost of findpts for finding compu-

tational coordinates of interdomain boundary grid points, the cost of findpts eval for interpolating scalar

functions for these grid points, and the overall time to solution per time-step. For evaluating the parallel

performance of the Schwarz-SEM framework, we present two different examples.

The first example is the turbulent channel flow case that will be discussed in Section 9.2. The domain

for this example is discretized using two overlapping grids with 4860 and 1444 elements, respectively. These

grids have 324 and 361 elements, respectively, for interdomain boundary surface. Figure 8.4 shows how

time to solution for NS solve, time for finding donor elements of interdomain boundary points (findpts),

and time for interpolation (findpts eval) varies with number of grid points (n = END) per MPI rank (P )

for the case when m = 1, Q = 0 and N = 7. Here, we consider E and P as the total number of spectral

elements (E = 6304) and MPI ranks, respectively, for the two overlapping grids. The results presented

here go up to P = 5120, where due to the difference in the element counts between the two overlapping

grids, the ratio of MPI ranks used for overlapping subdomains is 1 : 4 (fewer MPI ranks for the grid with

fewer elements). Figure 8.4(b) shows a comparison of time for different components of the Schwarz-SEM

framework with the total number of MPI ranks. We can see from the results in Fig. 8.4(a) and (b) that

finding interdomain boundary grid points and interpolating a scalar field are computationally much cheaper

as compared to the NS solve. The scaling for findpts and findpts eval is not ideal, as expected, due to the

inherent load imbalance in overlapping grids because all interface elements might not be partitioned onto

separate processors.

Figure 8.4(c) shows the parallel efficiency versus n/P and as we can see, the parallel efficiency of the

calculation does not drop below 70% until n/P ≈ 2000, which meets theoretical expectations [121].

The second example that consider here is flow over a wall-mounted cube that is used to understand how

laminar boundary layer flow transitions to turbulence due to a wall-mounted roughness. This case is ideal

for the Schwarz-SEM framework because fine scale structures of the flow are confined near the wall, and

using a single conforming grid leads to unwanted resolution in the far-field. The overlapping grids used here

have 99,840 elements in the subdomain modeling the roughness (near the surface), and 30,932 elements for

the subdomain modeling the region away from the surface. These overlapping grids have 6272 and 2812

elements, respectively, for the interdomain boundary surface. The Schwarz-SEM framework reduced the

total element count by 30% in comparison to the monodomain case. The application of Schwarz-SEM for

the wall-mounted cube is discussed in detail in Section 9.8.

For the strong scaling study, we set N = 7, and the ratio of MPI ranks used for overlapping subdomains
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Figure 8.4: (left to right) Strong scaling plot showing total time for the NS solve, findpts, and findpts eval
versus (a) total number of points per processor (n/P ) and (b) total processor P . (c) Parallel-efficiency versus
n/P . The overlapping grids have a total of E = 6304 spectral elements and the results shown here were
obtained from calculations with m = 1, Q = 0 and N = 7.

Figure 8.5: (left to right) Strong scaling plot showing total time for the NS solve, findpts, and findpts eval
versus (a) total number of points per processor (n/P ) and (b) total processor P , and (c) parallel-efficiency
versus n/P . The overlapping grids have a total of E = 130, 772 spectral elements and the results shown here
were obtained from calculations with m = 1, Q = 0 and N = 7.

is 1 : 4 due to the difference in element counts of the two grids. Fig. 8.5(a) and (b) show the strong scaling

plot for time for NS solve, time for donor-element search (findpts), and time for interpolation (findpts eval)

with m = 1, Q = 0, and N = 7 versus n/P and P , respectively. Here, we define n = ENd with E as the

total number of elements (130,772) and P as the total number of MPI ranks used for the two subdomains.

The parallel scaling results presented here are for P up to 40,960.

We observe that similar to the results for channel flow (Fig. 8.4), the cost of findpts and findpts eval is a

fraction of the cost of the NS solve. We also see that the parallel efficiency of the calculation does not drop

to below 70% until n/P ≈ 2000, which matches the theoretical expectations [121].
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Figure 8.6: Scaling test comparing total time per iteration of smoothing with number of elements per
processor. The timing results shown here were obtained from numerical experiments done on the Blue
Waters Supercomputer.

8.5 Strong Scaling for Mesh Optimization

In Chapter 7, we presented our mesh smoothing framework that is based on a combination of Laplacian

smoothing and function optimization. Due to the data locality and private memory model that we use in

the monodomain- and Schwarz-SEM framework (Section 2.1.5), mesh smoothing is done on an element-by-

element basis. This approach has an advantage that all the elements of a mesh can be smoothed simultane-

ously on any number of processors while keeping the communication cost to a minimum.

Here, we use the monodomain mesh constructed for analyzing oscillatory flow over a cylinder (Section

9.9.4) to test the scaling of the mesh smoother. This mesh is chosen because of its high element count,

E = 83, 598. Figure 8.6 shows a comparison of the total time it takes per smoothing iteration (Topt) versus

the total number of spectral elements per MPI rank (E/P ). The plot indicates that the smoother shows

nearly linear speed-up even at the strong scale limit where there are only 10 elements per processor.

We note that typically, the mesh smoother is used as a preprocessing step where the mesh of interest is

smoothed before being used for a production level calculation. Thus, the computational resources needed for

mesh smoothing are insignificant in comparison to the resources that are typically used for turbulent flow

calculations on HPCs. Nonetheless, the results here show that the mesh smoother that we have developed

shows good performance in parallel.
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8.6 Summary

In this chapter, we presented results that show how different aspects of the Schwarz-SEM framework impact

its performance. Our analysis show that the cost of each corrector iteration is significant, and it is crucial

to minimize Q to ensure that the cost of Q corrector iterations does not offset the savings associated with

reduction in element count due to use of overlapping grids. The results in this chapter also show that

multirate time-stepping can significantly reduce the computational resources needed to solve the INSE in

the subdomain with slow time-scales. The improvements that we have made to findpts eval have shown

that reducing the sorting and communication cost of the algorithm has led to 3X speed-up for high-order

interpolation in parallel. We also presented strong scaling results for the Schwarz-SEM framework, which

show that the parallel efficiency of the framework meets the theoretical expectations [121]. Finally, we also

discussed strong scaling tests on mesh smoothing that show nearly linear speed-up even at the strong scale

limit, when there are only 10 elements per processor.
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Chapter 9

Applications

The Schwarz-SEM framework is allowing us to tackle various fluid-thermal problems that are intractable

with the monodomain SEM framework. In this chapter, we start with two examples (vortex breakdown in

a canister and turbulent channel flow) that we have used to benchmark the Schwarz-SEM framework and

establish its accuracy. We then present the application of overlapping grids for solving various fluid-thermal

applications that are intractable with the monodomain SEM method.

9.1 Vortex Breakdown in a Canister

We illustrate the potential and capabilities of the Schwarz-SEM solver on a problem that has a fairly sensitive

structure, namely, vortex breakdown in a circular canister with a rotating lid, as studied experimentally

by Escudier [125]. Escudier considered cylinders of various height to radius ration (H/R) at different

Reynolds number, Re = Ω̃2R/ν. Ω̃ is the angular velocity of the rotating lid, and following standard

nondimensionalization practice, we set Ω̃ = R = 1 and ν = 1/Re. For the current study, Re = 1854 and

H/R = 2. Here, we use the Schwarz-SEM framework to study this problem with two overlapping grids and

compare our results with the experimental results of [125] and with a monodomain SEM-based solution.

The monodomain mesh has 140 elements at N = 9 and is generated by extruding a planar mesh with 20

elements, which is shown in Fig. 9.1(left). The overlapping meshes are generated by cutting the monodomain

mesh across the cylinder axis such that Ωz = [0, 1.21R] for the lower domain and Ωz = [0.8R, 2R] for the

upper domain (E = 80 for both overlapping meshes). Figure 9.1(right) shows the slice view, parallel to

cylinder-axis, of the overlapping spectral element meshes. The boundary-conditions are no-slip walls for all

surfaces except the top of the canister (in z-direction), where we impose a fixed Dirichlet velocity to model

rotation. The calculations were run with m = 1 and Q = 0 (no corrector iterations) for 2000 convective

time-units to reach steady state.

Figure 9.1 compares the axial velocity along the centerline for monodomain and overlapping grids based

solution. The locations where the axial velocity (w) reverses sign, corresponds to the location of bubbles.
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Figure 9.1: Vortex breakdown problem: (left) 2D mesh used to generate the 3D mesh, and (right) in-plane
streamlines along with slice view of the two overlapping meshes used for discretizing the domain.

Figure 9.2: Vortex breakdown problem: w along cylinder centerline showing locations of velocity reversals.

z1 z2 z3 z4

Overlapping 0.42 0.78 0.96 1.12
Monodomain 0.42 0.77 0.96 1.12

Escudier 0.42 0.74 1.04 1.18

Table 9.1: Zero-crossings (z) for vertical velocity along cylinder centerline for the vortex breakdown.

Figure 9.1 also shows the location of these velocity reversals that are reported by Escudier. Comparing these

locations, we find that the Schwarz-SEM results are within 1 percent of the monodomain SEM results, and

to within 7 percent of Escudier’s experiments (see Table 9.1).
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9.2 Turbulent Channel Flow

Turbulent channel flow and boundary layer flows are a class of problems where overlapping grids offer the

potential for significant savings. These flows feature fine-scale structures near the wall with relatively larger

scales in the far-field. As a first step to addressing this class of problems, we validate our Schwarz-SEM

scheme for turbulent flow in a doubly-periodic channel, for which abundant data is available in the literature.

In particular, we compare mono- and multidomain SEM results at Reynolds number Reτ = uτh/ν = 180

with direct numerical simulation (DNS) results of Moser et al. [126], who used 2.1 million grid points, and

with the DNS of Vreman & Kuerten [127], who used 14.2 million grid points. Both, [126] and [127], use

Fourier modes in the periodic/horizontal direction, and Chebyshev modes in the wall-normal direction. The

Reynolds number Reτ is based on the friction velocity uτ at the wall, channel half-height h and the fluid

kinematic viscosity ν, with uτ =
√
τw/ρ determined using the wall shear stress τw and the fluid density ρ.

Figure 9.3 shows a slice view of the overlapping meshes used to discretize the domain, and Table 9.2 lists

the key parameters for the four different calculations. The monodomain grid has 5832 elements (18×18×18).

Simulations were primarily conducted with polynomial order N = 9. Thus, the mono-domain case has 5.832

million grid points. The overlapping meshes were generated with a resolution similar to the monodomain grid.

The lower mesh has 1444 elements, and the upper mesh has 4860 elements. The total number of elements in

the overlapping grid calculations is higher than the monodomain calculation because the number of elements

in the streamwise and spanwise direction was increased by 1 in the lower mesh to avoid elements coinciding

in the overlap. Following [126] and [127], the streamwise and spanwise lengths of the channel were 4πh and

4πh/3, respectively, and we set the channel half-height to h = 1. Statistics for all SEM calculations were

collected over 50 convective time units.

Reτ Ωy/h Grid-size

Monodomain 179.9 [−1, 1] 18× 18× 18×N3

Overlapping 179.9 [−1,−0.88] 19× 4× 19×N3

[−0.76, 1] 18× 15× 18×N3

Moser 178.1 [−1, 1] 128× 129× 128
Vreman 180 [−1, 1] 384× 193× 192

Table 9.2: Parameters for channel flow calculations. We consider different values of N for the monodomain
and overlapping grids for comparison. The second column in the table reports the actual shear Reynolds
number of the simulation. This number is slightly different from the imposed 180, and can be used as a
measure for lack of spatial resolution.
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Figure 9.3: Slice view of the overlapping meshes used for the channel. The two meshes are shown in red and
black, with overlap in the wall-normal (y) direction.
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Figure 9.4: Comparison of monodomain, overlapping grid, and Moser et al. with Vreman & Kuerten for
Umean (left) and urms, vrms and wrms at N = 9 and N = 11.
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Figure 9.4 shows the time-averaged mean streamwise velocity (Umean) and Fig. 9.5 shows the mean tur-

bulence intensity in the three-direction (urms, vrms and wrms), versus y+ = uτy/ν for each case determined

using y, the distance from the nearest wall. Umean, urms, vrms and wrms were obtained by temporally

averaging the velocity field, and then spatially averaging it in the homogeneous directions. For the Schwarz

case, several combinations of resolution (polynomial order N), and corrector iterations (Q) were considered.

We quantify the relative error for each quantity by computing the norm of the relative percent difference

from the results of Vreman & Kuerten. Error is calculated by using

εψ(y) := 100
|ψ(y)− ψ(y)V reman|

ψ(y)V reman
(9.1)

and

||εψ|| :=
1

2h

∫ h

−h
εψ dy (9.2)

for ψ = Umean, urms, vrms and wrms.

Table 9.3 lists ||εψ|| for different quantities and we observe that ||εψ|| is within three percent of the

results by [127] for ψ = Umean, urms, vrms and wrms. The results in Table 9.3 demonstrate that increasing

the number of Schwarz iterations (Q) leads to improved accuracy, as expected. However, even the simple

time-lagged Schwarz updates (i.e., without corrector iterations) are within 3 percent of the values in the

literature. These results indicate that for production-scale turbulence calculations, typically performed as

large-eddy simulations, the noniterated simulations (Q = 0) can provide a fast and sufficiently accurate

pathway to simulating turbulence in complex domains.

Umean urms vrms wrms
Monodomain, N = 9 0.17 1.00 0.60 0.57
Monodomain, N = 11 0.16 0.46 0.49 0.71
Overlapping, N = 7, Q = 0, m = 1 0.32 2.83 1.63 1.78
Overlapping, N = 9, Q = 0, m = 1 0.43 1.69 0.89 0.77
Overlapping, N = 9, Q = 3, m = 3 0.21 0.92 0.60 1.05
Overlapping, N = 11, Q = 0, m = 1 0.17 1.58 0.74 0.31
Moser et al. 0.04 0.15 0.52 1.62

Table 9.3: Relative % difference for channel flow results compared with Vreman & Kuerten [127] for different
polynomial order (N), corrector iterations (Q) and order of extrapolation (m) for interdomain boundary
data.
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9.3 Heat Transfer Enhancement in a Pipe with Wire-Coil Insert

This problem is being studied in collaboration with scientists at Argonne National Lab and the University

of Illinois Urbana-Champaign (UIUC), who are studying heat transfer augmentation due to wire-coil inserts

in pipes. Annie Goering and Kento Kaneko have done the monodomain calculations discussed here.

The effectiveness of wire-coil inserts to increase heat transfer in pipe flow has been studied through an

extensive set of experiments by Collins et al. at Argonne National Laboratory (ANL) [128]. The goal of

the experiments, done with wire-coil inserts in circular casings, was to understand how heat transfer could

be augmented in high-heat load components at the Advanced Photon Source (APS) at ANL. However, the

actual casings that were used at APS were noncircular, and understanding the impact of different casing

shapes was not possible without reworking the experimental apparatus. Thus, the onus of studying the effect

of different casing shapes on the heat transfer falls on the numerical simulations.

The domain for wire-coil insert in a circular casing is straightforward to mesh since it can be generated by

twisting a 3D mesh that is created by sweeping (extruding) a 2D template. Wire-coil inserts in noncircular

casings, however, are not readily accessible for the monodomain approach due to the topological constraints

induced by the shape of the casing and wire-coil insert. We first use the overlapping grid approach for

the circular-casing configuration and compare these results against available monodomain simulations and

experimental data. We then apply the overlapping approach to the more challenging noncircular casing

geometry.

Figure 9.6 shows the wire-coil insert in a circular pipe that was used for the experiments. The geometric

parameters of interest are wire-coil pitch (pc) and diameter (ec), and pipe inner diameter (Dc). pc and Dc

are indicated in Fig. 9.6 along with the pipe outer diameter (Dout). The experiment compared Nusselt

number (Nu) for a range of pc, ec, and Dc. The configuration that yields the highest Nu for a given Re is

ec/pc = 0.4273 with ec/Dc = 0.2507 [128]. Coils with shorter and longer pitches resulted in Nusselt numbers

that were not as high, but were nonetheless higher than the straight pipe without a wire-coil insert. We

refer to the configuration that yields the highest Nu as the optimal-pitch. As a first step towards validation,

we consider the case with ec/pc = 0.4273 (optimal-pitch) and ec/pc = 0.0940 (long-pitch), and compare our

results with the experimental data and monodomain SEM calculations. The Reynolds number of the flow is

UDc/ν = 5300, and the Prandtl number is ν/αc = 5.8, where ν is the kinematic viscosity and αc is thermal

diffusivity. The velocity U for determining the Reynolds number is based on the mean flow speed in a pipe

without a wire-coil insert for the flow rate (Q̃ = πD2
cU/4) at which the experiments were done.

The spectral element meshes were periodic in the streamwise direction, and a fixed flow rate was imposed
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Figure 9.6: Wire-coil insert in a circular pipe used for experiments at Argonne National Lab [128]. The
wire-coil pitch (pc), pipe inner diameter (Dc) and outer diameter (Dout) are indicated in the figure.

through overlapping meshes using the method described in Chapter 4. A fixed heat flux q
′′

= 1 was imposed

on the outer walls of the pipe, and the Nusselt number Nu was calculated by monitoring the bulk fluid

temperature and the inner-wall temperature of the casing. All calculations were started at a relatively low

polynomial order of N = 5, with m = 1 and Q = 0 to develop the flow. Eventually, the flow was spatially

converged by increasing N . Additionally, the number of Schwarz iterations was set to Q = 3 with m = 3 for

ensuring high-order temporal accuracy of interdomain boundary data. A detailed discussion on the boundary

conditions for monodomain SEM and a description of how the Nusselt number is calculated is given in [129].

9.3.1 Wire-coil insert in a circular pipe

For the long-pitch case, ec/pc = 0.0940, a 2D mesh with 448 elements is azimuthally extruded along a helical

path (E = 10, 752 with Ef = 5760 for fluid domain and Es = 4992 for the solid domain) to model the outer

part of the domain. The singularity at the pipe centerline is avoided by using a second (overlapping) mesh

(E = 2016), generated by extruding a planar mesh with 84 elements, to model the central flow channel.

Following the monodomain SEM calculations, the outer diameter of the pipe was set to Dout = 4Dc/3 for

the long-pitch case. The meshes overlapped in the radial direction between r ∈ [0.15, 0.2], and integration

weights were setup accordingly to enable calculation of flow rate and Nusselt number. Overlapping meshes

avoid the topological constraint of mesh conformity and lead to better mesh quality. Mesh smoothing [73]

further improves the quality of the mesh. Figure 9.7 shows a slice view of the overlapping meshes generated

for the long-pitch case and Fig. 9.8 shows contours of velocity magnitude and temperature for flow through
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Figure 9.7: Overlapping spectral element meshes generated for the long-pitch case.

(a) Velocity (b) Temperature

Figure 9.8: Slice view of the (left) velocity magnitude and (right) temperature contours for flow through a
circular pipe with a wire-coil insert. The Nusselt number for the long-pitch configuration is Nu ≈ 113.

a circular pipe with a wire-coil insert.

The overlapping grid calculation for the long-pitch case, ec/pc = 0.0940, was spatially converged at

N = 11, and determined that the Nusselt number is Nu = 113. The Nusselt number compares well

with the experimental data (Nu ≈ 100) and the monodomain SEM (Nu = 113) calculation. The difference

142



between these results and experiments can be attributed to the uncertainty associated with the experimental

apparatus.

For the optimal-pitch case, ec/pc = 0.4273, a 2D mesh with 440 elements is extruded azimuthally with a

helical pitch (E = 10,560 with Ef = 5952 for fluid domain and Es = 4608 for the solid domain) for the outer

region, and overlapped with a mesh (E = 2184) generated by extruding a planar mesh with 91 elements.

The Re and Pr were unchanged, but the outer diameter of the pipe was set to Dout = 2D. The diameter

was increased in comparison to the long-pitch case because the wire-coil insert for optimal-pitch was also

used in a noncircular pipe, which required Dout = 2D to accommodate for the change in the shape of the

pipe. Figure 9.9 shows a slice view of the overlapping meshes generated for this calculation, and Fig. 9.10

shows a slice view of the velocity magnitude and temperature contours for the optimal wire-coil insert in a

pipe.

Figure 9.9: Overlapping spectral element meshes generated for the optimal-pitch case.

The Nusselt number was determined to be around 184 by the experiment, 194 by the monodomain

approach, and 186 by the overlapping-grid calculation, for the optimal-pitch wire-coil insert in a circular

pipe. As we can see, the Schwarz-SEM framework gives a good comparison with the experiment, and there

is about a 4% relative difference in the Nusselt number obtained from the monodomain simulation. We are

currently looking at the monodomain simulation to ensure that it is spatially converged, which could possibly

explain why the Nusselt number is different between the monodomain and multidomain calculation. Ongoing

efforts with monodomain spectral element simulations also seek to understand why the optimal-pitch case

leads to the highest Nu for wire-coil insert inside a circular pipe.
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(a) Velocity (b) Temperature

Figure 9.10: Slice view of the (left) velocity magnitude and (right) temperature contours for flow through a

circular pipe with a wire-coil insert. The Nusselt number for the optimal-pitch configuration is Nu ≈ 186.

9.3.2 Wire-coil insert in a noncircular pipe

The experiments done at ANL to understand the impact of wire-coils on heat transfer augmentation were

done with a circular pipe (casing). However, the actual casings were noncircular and understanding the

impact of this change in shape is not possible without reworking the original experimental apparatus. Thus,

the effect of the noncircular casing on heat-transfer could only be studied numerically. As discussed in

Section 1.1, wire-coil inserts in noncircular casings are not readily accessible to the monodomain SEM

approach because of the combination of twisting/shearing in the inner geometry with the sharp corners of

the outer casing over-constrains the meshing requirements, similar to the twisted ribbon configuration of

Fig. 1.2. Using the case where the wire-coil insert is in a circular pipe, we have shown that the Schwarz-SEM

framework provides an effective way for simulating turbulent flow and heat transfer in complex domains.

Here, we consider two different ReD (5300 and 10, 000) for the optimal-pitch wire-coil insert in a noncircular

pipe. Figure 9.11 shows the difference in the cross section of the circular and noncircular pipe, along with

velocity magnitude contours.

We note that another advantage of using overlapping grids instead of a single conforming mesh is that

a monodomain grid requires twisting the mesh in the axial direction. This mesh twisting/stretching leads

to a decrease in the effective resolution of the domain, which is demonstrated through a simple 2D example
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in Appendix A. Overlapping grids avoid this since they do not require either the inner or outer mesh to be

twisted. The meshes for the noncircular casings were generated using the same approach as in the preceding

examples. The principal benefit of using the Schwarz approach, in this case, is that the mesh lines for the

outer part of the domain remain vertical (in contrast to the monodomain meshes for the helical pipe, where

the mesh is twisted axially). With vertical mesh lines, it is possible to readily accommodate the vertical

(axially aligned) corners in the outer casing. The mesh for the outer part of the domain has E = 13,088

(Ef = 7648 and Es = 5440), and E = 2560 for the interior mesh, for ReD = 5300. For ReD = 10, 000, the

mesh was refined to increase the element count by roughly a factor of 2 in each direction. As a result, the

exterior mesh has E = 107, 776 (Ef = 64, 256 and Es = 43520), and E = 15, 792 for the interior mesh.

We note that the spectral element mesh with E = 107, 776 elements was also used with ReD = 5300 to

ensure that the Nusselt number obtained from the mesh with E = 13,088 elements was spatially converged

(i.e., grid-independent).

Figure 9.11: Velocity magnitude contours for the optimal-pitch wire-coil insert in (left) circular pipe, and
(right) noncircular pipe.

As before, the flow was initialized at a low polynomial order (N = 5) without any corrector iterations

(Q = 0 and m = 1). The polynomial order N was gradually increased to ensure that the calculation was

spatially converged. Both calculations, ReD = 5300 and ReD = 10, 000, were spatially converged at N = 9,

and used Q = 3 with m = 3 for high-order temporal accuracy of the interdomain boundary data. These

calculations indicate that Nu ≈ 205 for ReD = 5300, and Nu ≈ 320 for ReD = 10, 000, which corresponds

to an 11% increase for ReD = 5300 and a 20% increase for ReD = 10, 000, with respect to the wire-coil insert
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in circular pipe. Figure 9.12 and Fig. 9.13 show slice view of the velocity magnitude and temperatures,

respectively, for flow through noncircular pipe with wire-coil insert at ReD = 5300 and ReD = 10, 000.

A potential limitation of the current approach is that we model a single pitch of the helically-periodic

wire-coil insert. While calculations done for circular pipes indicate that this approach accurately captures

the heat transfer properties of the flow, we will consider more than one pitch of the wire-coil insert in future

work to ensure that the estimates of Nu are independent of the number of pitches of the wire-coil.

Figure 9.12: Velocity magnitude contours for the optimal-pitch wire-coil insert in noncircular pipe at (left)
ReD = 5300 and (right) ReD = 10, 000.

Figure 9.13: Temperature contours for the optimal-pitch wire-coil insert in noncircular pipe at (left) ReD =
5300 and (right) ReD = 10, 000. The Nusselt number for ReD = 5300 and ReD = 10, 000 is 205 and 320,
respectively, based on the calculations done using the Schwarz-SEM framework.
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9.4 Rotating nonspherical Particles

In this section, we consider simulations of nonspherical particles under rotation that are performed in col-

laboration with scientists at Utah State University and UIUC.

Particle-laden flows are common to engineering systems such as environmental flows (sediment transport in

rivers), industrial systems (chemical processing and oil pipelines), and combustion processes, etc. Particles

in these systems could rotate due to collision with other particles, or due to high vorticity and mean shear

of the fluid. Thus, it is essential to understand how the shape and orientation of a rotating particle impact

the flow around it, and consequently, the forces acting on it.

Through his experiments, Best [130] observed that particle rotation led to turbulence enhancement, even

at moderate Reynolds number, which emphasized the importance of accounting for particle rotation for

modeling particle-laden flow. Dobson et al., Kim et al., and Poon et al. have done high-resolution LES

and DNS calculations to study flow around a rotating sphere for a range of Reynolds number and rotation

rates [131, 132, 133]. Typically, numerical studies have modeled particles as spheres, as the rotation of a

sphere can be modeled with a static mesh by imposing Dirichlet velocity on the surface of the sphere.

Modeling a rotating nonspherical particle, however, either requires remeshing in case of conformal meshes

(as the mesh distorts beyond the limit of computational utility), or a nonconforming mesh method. Here,

we use the Schwarz-SEM framework to model a rotating particle using a rotating inner mesh for the particle,

which overlaps with a static mesh for the background. This approach allows us to compare our results with

the existing literature [131, 132], which helps demonstrate the effectiveness of the Schwarz-SEM framework

for modeling rotating/moving objects. Next, we also consider the impact of change in the shape of particles

on the flow characteristics. These preliminary analyses will give us insight into a phenomenon that has not

been studied until now. The long-term goal of this study is to model a large number of rotating particles to

understand their interaction with each other and their impact on the flow.

9.4.1 Rotating spherical particle

As a first step towards validating the Schwarz-SEM framework for moving meshes, we model a rotating

sphere at Reynolds number, Rep = U∞D/ν = 300, where U∞ is the freestream velocity, D is the particle

diameter, and ν is the kinematic viscosity of the fluid. Following Dobson, the particle rotation is set normal

to the flow direction, and the nondimensional rotation rate is set to Ω∗ = 0.5Ω̃D/U∞. Here, Ω̃ is the angular

velocity of the sphere. Figure 9.14 shows the schematic that indicates the direction of rotation of the particle

with respect to the direction of the flow. In Fig. 9.14, aj represents the length of the principal axis of the

sphere in jth direction, and ax = ay = az for a sphere.
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Figure 9.14: Schematic showing the direction of the rotation of particle with respect to the flow.

Figure 9.15 shows a slice view of the two overlapping spectral element meshes that are used to model the

flow around a rotating sphere. A moving interior mesh with E = 24, 576 is used for the rotating particle,

and a static exterior mesh with E = 41, 216 is used for the background flow. The particle is centered at

the origin, and a uniform inflow is imposed at z = −10D with the outflow at z = 24D. Periodic boundary

conditions are imposed on the other two directions, with periodic surfaces 20D apart in each direction. In

contrast to our problem setup, Dobson’s calculations were based on a Fourier-Chebyshev spectral collocation

method in spherical coordinates. The maximum domain extent in the radial direction was set to 22.5D, and

a mesh with 121× 100× 32 points in the r× θ× φ direction was used for Ω∗ ≤ 1.25. For Ω∗ > 1.25, a mesh

with 120×100×64 points was used. Here, θ corresponds to the direction of rotation, and φ is the azimuthal

direction.

Figure 9.16 shows contours of λ2 vortices [134] colored by velocity magnitude (top) and a velocity

magnitude plot for Rep = 300 with Ω∗ = 1. This calculation was done with Q = 3 and m = 3 for the

Schwarz iterations, and the results were spatially converged at N = 7. Figure 9.16 shows vortex shedding

in the wake of the sphere, with the flow separating around the point of least relative velocity between the

sphere and the background flow. The sphere rotation makes the vortex shedding asymmetrical.

Figure 9.17 shows a slice view of the flow near the rotating sphere. We can observe in the vector plots

shown in Fig. 9.17 that the rotating sphere pulls fluid from the leeward side to the windward side1, which

is similar to the phenomena of added-mass where fast-moving/accelerating particles are known to carry

additional mass of fluid around them [135]. Consequently, a shear layer forms between the opposing flows

of the fluid pulled by the rotating sphere and the background flow (U∞) along the z-axis. With the shear

1The windward side refers to the side of the sphere which is facing the inflow, and leeward side refers to the side that does
not directly interact with the background flow.
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Figure 9.15: Slice view of the (left) overlapping spectral element meshes for the rotating particle and the
background mesh, and (right) spectral element mesh around the particle.

layer instability growing behind the sphere, we see vortex shedding about one sphere diameter downstream

of the sphere. This vortex shedding is also apparent in Fig. 9.16. Due to the fluid being pulled from the

leeward to the windward side and its interaction with the background flow, a high pressure region forms at

the bottom of the sphere. This relatively high pressure region at the bottom along with a relatively low

pressure region on the top of the sphere leads to lift force (along the y direction) on the sphere. Similarly,

a high pressure region on the windward side of the sphere, due to the background flow, and a low pressure

region on the leeward side, due to the rotation of the sphere, results in the form drag (along z direction).

The flow structures that we see in Fig. 9.16 and Fig. 9.17 are similar to those reported by Dobson [131] and

others [132,133].

We note that for the Schwarz-SEM framework, the boundary conditions for pressure are Neumann on

surfaces that are Dirichlet for velocity (Chapter 2). Since we do not impose Dirichlet condition on pressure

at the interdomain boundaries, the pressure is not continuous across overlapping subdomains. However, this

pressure discontinuity across overlapping grids is acceptable because it is the pressure-gradient which needs

to be continuous in order for the solution of (2.26) to be consistent. Consequently, we only show the pressure

distribution for the inner mesh in the following sections.

Table 9.4 lists the lift coefficient (CLy), drag coefficient (CDz) and Strouhal number (St) determined by

the Schwarz-SEM framework for the sphere at Rep = 300 rotating at Ω∗ = 1 and 2, and compares these
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Figure 9.16: (top) Isosurfaces of λ2 colored by velocity magnitude, and (bottom) velocity magnitude contours
for flow over the rotating sphere.

Figure 9.17: (left) Velocity magnitude contours, (center) close up of the velocity vector field near the sphere
surface, and (right) pressure contours for the rotating sphere.

results with Dobson et al. (and other literature for the case of Ω∗ = 1). The drag coefficient was computed

as CDz = 2Fz/(ρU
2
∞Ap), where Fz is the force on the particle in the streamwise direction and Ap = πD2/4

is the projected area of the sphere. The lift coefficient is computed similarly using the lift force. Table 9.4
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shows that our results match the data of Dobson et al. to within 1.5%.

CLy CDz St
Ω∗ = 1

Schwarz-SEM 0.613 0.961 0.426
Dobson et al. [131] 0.610 0.961 0.423
Kim et al. [132] 0.596 0.931 0.424
Poon et al. [133] 0.605 0.964 0.427

Ω∗ = 2
Schwarz-SEM 0.589 1.019 0.243
Dobson et al. 0.582 1.012 0.240

Table 9.4: Comparison of lift coefficient (CLy), drag coefficient (CDz), and Strouhal number (St) for the
Schwarz-SEM calculations, with Dobson et al. and other existing literature.

9.4.2 Nonspherical particles

Here, we extend the results of the preceding section to the case of a rotating ellipsoid. We consider two

different particle shapes, where we keep ax = az = 0.5D unchanged from the sphere in the previous section,

but modify ay = 0.75D for one particle and ay = 0.25D for the other. As before, the axis of rotation is x,

and the background flow is in the positive z direction. The meshes for these nonspherical (ellipsoid) particles

have been generated by morphing the inner mesh generated for the spherical particle. This morphing of

mesh is straightforward to effect since the surface of the particle is described as x2/a2
x + y2/a2

y + z2/a2
z = 1.

Figure 9.18 contrasts the two ellipsoids with the spherical geometry of the preceding example. The position

of the particles shown in Fig. 9.18 corresponds to θ = 0◦, and θ increases from 0◦ to 360◦ as the particle

rotates clockwise around the x-axis.

Figure 9.19 shows the λ2 [134] for the three particles considered here. It is apparent from Fig. 9.19 that

the structure of the vortices being shed behind the ellipsoids is different from the structures that we had

observed for the sphere. The primary reason behind this difference is that unlike in the flow over the rotating

sphere, a steady shear layer never develops behind the ellipsoid. The flow keeps attaching and separating as

the ellipsoid rotates, which leads to multiple vortices being shed in its wake. The primary vortex shedding

mechanism is the interaction of the mean background flow with the ellipsoid, which we had observed for the

spherical particle as well. For the ellipsoids, there is also a secondary mechanism due to the asymmetry in

shape. This mechanism will be clear through the discussion in the next section.

Since the shape of the particle has changed, it is essential to consider what area to use for computing the

drag (and lift) coefficient, CD = 2F/(ρU2
∞Ap). For the case of drag in the streamwise direction, the choice

of the frontal area is straightforward. However, for the lift coefficient (normal to the direction of the flow
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Figure 9.18: Schematic showing the direction of the rotation of particle with respect to the flow for different
particles, and the three different particles considered here.

- y in Fig. 9.18), it is not clear whether the projected area normal to the direction of the flow is the best

choice. Using the frontal area of the sphere (constant at πD2/4) indicates that decreasing ay increases the lift

coefficient. However, using the actual frontal area of the ellipsoids (time-varying due to rotation) indicates

that decreasing ay decreases the lift coefficient. Thus, instead of comparing the drag and lift coefficients, we

compare the nondimensionalized drag and lift forces to avoid any confusion and inconsistencies.

Figure 9.20(top) and (bottom) shows how the drag and lift, respectively, varies for the three particles

with θ. The drag and lift forces on the sphere are almost constant in time because the flow is steady near

the sphere surface. In contrast to the sphere, we observe that the drag and lift vary in time for the ellipsoids,

and there is a phase-shift of 90◦ for the drag and lift time-series for the two ellipsoids. This phase-shift is

expected because the major principal axis of the particle with ay = 0.75 is the minor principal axis for the

particle with ay = 0.25. In Fig. 9.20, we have also indicated the θ at which the frontal area of the particles

is maximum or minimum, using vertical golden-colored lines. An interesting observation from these results

is that there is a phase difference between the θ of maximum (or minimum) frontal area and the θ at which

the drag is maximum (or minimum).

Table 9.5 lists the mean drag and lift forces on each particle for Rep = 300 at Ω∗ = 1 along with the

maximum and minimum drag and lift forces. As we can see, increasing ay increases the mean drag on the

particle. This increase is expected due to the change in the frontal area of the particle. However, we see

that the lift force (FLy) has decreased for both the ellipsoids in comparison to the sphere. This decrease in
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(a) ax = ay = az = 0.5D

(b) ax = az = 0.5D, ay = 0.75D

(c) ax = az = 0.5D, ay = 0.25D

Figure 9.19: Comparison of the λ2 vortices [134] for the three ellipsoids considered for this problem.

FLy is likely because of the repeated flow attachment and separation that occurs for the ellipsoids, which

will be discussed in the next section.

FLy [FLy,min, FLy,max] FDz [FDz,min, FDz,max]
ax = ay = az = 0.5D 0.241 [0.234,0.247] 0.378 [0.367,0.387]
ax = az = 0.5D, ay = 0.75D 0.222 [0.046,0.515] 0.426 [0.135,0.675]
ax = az = 0.5D, ay = 0.25D 0.212 [0.042,0.441] 0.330 [0.085,0.563]

Table 9.5: Comparison of lift (FLy) and drag (FDz) for the Schwarz-SEM calculations.
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Figure 9.20: Comparison of the (top) drag and (bottom) lift forces on different particles. Golden colored
vertical lines indicate θ at which the projected area of the ellipsoids is maximum or minimum.

Discussion of results

Figures 9.21 and 9.22 show the drag and lift variation, respectively, with θ for the two ellipsoids. It is clear

that the θ at which the ellipsoids experiences maximum and minimum streamwise drag (FDz) and transverse

lift (FDy), do not coincide with the θ at which the frontal area is maximum or minimum. We also note that

the two particles exhibit similar characteristics for the evolution of drag and lift, with a phase-shift of 90◦.

Additionally, we observe that due to the symmetry in the shape of the particle, the drag and lift time-series

repeat after 180◦. In this section, we examine the velocity magnitude and pressure for flow over the ellipsoid

with ay = 0.75 to understand how the shape of the ellipsoid leads to this phase-shift between maximum and

minimum drag (and lift) with maximum and minimum frontal area.
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Figure 9.21: Comparison of the drag and lift with rotation angle (θ) for the ellipsoid with ay = 0.75.

Figure 9.22: Comparison of the drag and lift with rotation angle (θ) for the ellipsoid with ay = 0.25.

Maximum streamwise drag on the ellipsoid with ay = 0.75

Figures 9.23 and 9.24 show the variation of velocity-magnitude and pressure near the sphere, for different

angles of rotation θ (measured clockwise from the axis normal to the flow, as indicated in Fig. 9.18).

Figure 9.23(f) corresponds to the instance of maximum drag and Fig. 9.23(i) corresponds to the instance of

maximum frontal area. In order to understand why there is a phase-difference between the two, we look at
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the flow-field around the ellipsoid as it rotates from θ = 90◦ to 180◦, as shown in Fig. 9.23,9.24(a)-(i).

As the ellipsoid is rotating past θ = 90◦, a high pressure zone forms behind it (Fig. 9.23(a),9.24(a)).

This high pressure zone forms due to the increase in the frontal area of the particle with respect to the

background flow. Interestingly, this zone forms behind the particle and is not attached to the particle itself

(θ = 90◦ − 140◦). As the particle rotates, it pulls fluid with it from the leeward side to the windward side,

which leads to a low pressure (high velocity) region on the leeward side surface of the ellipsoid. With particle

rotation, the high velocity zone stretches across the surface of the particle, and a low pressure zone grows on

the leeward side. Though, once θ > 153◦, the velocity magnitude starts to drop on the leeward side of the

particle. This drop in the velocity magnitude is due to an increase in blockage (frontal area) by the ellipsoid,

which results in flow separation on its surface. Consequently, the pressure starts to increase on the surface

of the ellipsoid as the particle rotates past θ = 153◦.

On the windward side, a high pressure zone is created at the surface of the ellipsoid due to its blockage

effect. This high pressure zone is further extended on the particle surface because of the interaction of the

background flow with the fluid being pulled from the leeward side (see Fig. 9.25).

Typically, the drag on a nonrotating particle is maximum at the orientation at which the frontal area

is maximum (θ = 180◦) because the maximum frontal area results in maximum pressure difference in the

streamwise direction. Interestingly, the rotation of the particle changes this dynamic. As the rotating

particle tends to pull fluid along with it (as previously described), the added-mass of the fluid results in the

shift of the optimal pressure difference (in the z-direction) scenario from θ = 180◦ to θ ≈ 153◦ (Fig. 9.24(i)).
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(a) θ ≈ 90◦ (b) θ ≈ 110◦ (c) θ ≈ 120◦

(d) θ ≈ 130◦ (e) θ ≈ 140◦ (f) θ ≈ 153◦( maximum drag)

(g) θ ≈ 160◦ (h) θ ≈ 170◦ (i) θ ≈ 180◦

Figure 9.23: Slice view of the velocity magnitude contours at different θ for the nonspherical particle with
ay = 0.75.
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(a) θ ≈ 90◦ (b) θ ≈ 110◦ (c) θ ≈ 120◦

(d) θ ≈ 130◦ (e) θ ≈ 140◦ (f) θ ≈ 153◦( maximum drag)

(g) θ ≈ 160◦ (h) θ ≈ 170◦ (i) θ ≈ 180◦

Figure 9.24: Slice view of the pressure contours at different θ for the nonspherical particle with ay = 0.75.
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(a) θ ≈ 90◦ (b) θ ≈ 120◦

(c) θ ≈ 153◦( maximum drag) (d) θ ≈ 170◦

Figure 9.25: Slice view of the velocity magnitude contours with vectors indicating the direction of flow for
different θ.
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Minimum streamwise drag on ellipsoid with ay = 0.75

Here, we continue the discussion from why the maximum streamwise drag has a phase difference with the

maximum frontal area, to understand the phase difference between minimum drag and minimum frontal

area. Figure 9.26-9.28 show the velocity magnitude, pressure, and vector plots, respectively, for the ellipsoid

with ay = 0.75 for θ between 180◦ and 270◦.

As the ellipsoid rotates beyond θ = 180◦, the relatively high pressure zone continues to grow on the

leeward side of the ellipsoid, especially due to the momentum of the streamwise flow taking it past the

ellipsoid (θ = 180◦ to 230◦ in Fig. 9.26 and Fig. 9.27). Additionally, with increase in θ from 180◦ to

230◦, the particle becomes relatively more streamlined with the flow, which results in decrease in size of the

high pressure zone on the windward side (Fig. 9.27(a)-(e)). Consequently, at about θ = 242◦ the pressure

difference in the z-direction is minimum, which resulting in minimizing the drag on the particle; even though

the frontal/projected area of the particle is not minimum.

Traditionally, the particle should experience the least drag at θ = 270◦, as the frontal area is minimum,

and the flow around the particle is the most streamlined. Here, we observe that as the particle becomes

streamlined with the flow for θ > 242◦, the fluid being pulled from the leeward side interacts with the

background flow, which increases the pressure on the windward side. Consequently, the drag is not minimum

at θ = 270◦. We can see the details of this interaction in Fig. 9.28(c) and 9.28(d), and in Fig. 9.26(f)-(i)

and Fig. 9.27(f)-(i).

We also observed in these figures that as the particle rotates from θ = 180◦ to θ = 270◦ and the position

becomes more streamlined with respect to the background flow, the flow re-attaches to the particle and a

low pressure region develops on the top along with a high pressure region on the bottom2. This observation

will be important in understanding the phase difference between the maximum lift force with the minimum

frontal area.

The key result that comes forward from the analysis of streamwise drag is that the impact of rotation

primarily manifests through the fluid pulled by the particle, which results in decreasing pressure on the

leeward side or increasing pressure at the windward side, or sometimes both, depending on the orientation

of the particle. Due to the asymmetry in the shape of the ellipsoid, a steady shear layer never develops near

the particle, which is observed for the rotating sphere.

2Here, we use top and bottom to represent the surface of the particle in the transverse direction, i.e., y as indicated in Fig.
9.18.
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(a) θ ≈ 180◦ (b) θ ≈ 200◦ (c) θ ≈ 210◦

(d) θ ≈ 220◦ (e) θ ≈ 230◦ (f) θ ≈ 242◦( minimum drag)

(g) θ ≈ 245◦ (h) θ ≈ 255◦ (i) θ ≈ 270◦

Figure 9.26: Slice view of the velocity magnitude contours at different θ for the nonspherical particle with
ay = 0.75.
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(a) θ ≈ 180◦ (b) θ ≈ 200◦ (c) θ ≈ 210◦

(d) θ ≈ 220◦ (e) θ ≈ 230◦ (f) θ ≈ 242◦( minimum drag)

(g) θ ≈ 245◦ (h) θ ≈ 255◦ (i) θ ≈ 270◦

Figure 9.27: Slice view of the pressure contours at different θ for the nonspherical particle with ay = 0.75.
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(a) θ ≈ 180◦ (b) θ ≈ 220◦

(c) θ ≈ 242◦( minimum drag) (d) θ ≈ 255◦

Figure 9.28: Slice view of the velocity magnitude contours with vectors indicating the direction of flow for
different θ.
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Maximum and minimum lift on the ellipsoid with ay = 0.75

Building on our discussion on the streamwise drag, we can understand the mechanics that lead to max-

imum and minimum lift for the ellipsoid with ay = 0.75. Figure 9.29-9.31 show the velocity magnitude,

pressure, and vector plots, respectively, for the flow over the spheroid at different θ.

Figure 9.30(b) shows the snapshot at which the front area of the particle is minimum. As the particle

is rotating past θ = 90◦, the flow is attached to the top of the particle, which leads to a low pressure zone.

With particle rotation, the size of the low pressure zone at the top increases. The reason is the same as that

discussed in the maximum-drag section. On the bottom of the particle, the fluid pulled due to the particle’s

rotation starts to interact with the background flow (as discussed earlier), which leads to an increase in the

pressure. Due to this increasing pressure difference between the top and bottom of the particle, the lift is

maximum at θ ≈ 108◦ (also at θ = 288◦), as shown in Fig. 9.29,9.30(c).

As the particle rotates further, adverse pressure-gradient on the leeward side causes the flow to separate,

which increases the pressure on the leeward side. The fluid moving with the particle continues to accelerate

at the bottom of the ellipsoid, whereas, the background flow continues to cause a low pressure zone on the

top of the sphere (θ = 120◦ − 180◦). It is important to note here that the low pressure zone at the bottom

of the particle is not due to the background flow, but due to the fluid being pulled as a consequence of

particle rotation (Fig. 9.31(c)). As a result, the lift is minimized at the point when the entrained fluid

has not yet started interacting with the background flow at the bottom of the particle, which happens at

about θ ≈ 200◦ (or θ ≈ 20◦). As the particle rotates further, it becomes more aligned with the flow and

the pressure increases at the bottom due to the interaction of the entrained flow with background flow.

Consequently, the lift force on the particle starts increasing.

Similar to the discussion on streamwise drag, we observe that the θ at which the ellipsoid experiences

maximum or minimum lift is significantly dependent on the interaction of the background flow and the fluid

being pulled by the particle with its rotation. The discussion for the drag and lift forces on the particle

with ay = 0.75 extends to the particle with ay = 0.25, where we observe similar flow characteristics with a

phase-shift of θ = 90◦.
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(a) θ ≈ 70◦ (b) θ ≈ 90◦ (c) θ ≈ 108◦( maximum lift)

(d) θ ≈ 120◦ (e) θ ≈ 150◦ (f) θ ≈ 170◦

(g) θ ≈ 180◦ (h) θ ≈ 200◦( minimum lift) (i) θ ≈ 225◦

Figure 9.29: Slice view of the velocity magnitude contours at different θ for the nonspherical particle with

ay = 0.75. 165



(a) θ ≈ 70◦ (b) θ ≈ 90◦ (c) θ ≈ 108◦( maximum lift)

(d) θ ≈ 120◦ (e) θ ≈ 150◦ (f) θ ≈ 170◦

(g) θ ≈ 180◦ (h) θ ≈ 200◦( minimum lift) (i) θ ≈ 225◦

Figure 9.30: Slice view of the pressure contours at different θ for the nonspherical particle with ay = 0.75.
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(a) θ ≈ 108◦( maximum lift) (b) θ ≈ 170◦

(c) θ ≈ 200◦( minimum lift) (d) θ ≈ 225◦

Figure 9.31: Slice view of the velocity magnitude contours with vectors indicating the direction of flow at

different θ for the nonspherical particle with ay = 0.75.
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9.4.3 Summary

In this section, we have presented some of the preliminary results from the ongoing study on flow past

rotating particles. Unlike the rotating sphere, where the flow is steady near the surface with a shear layer

instability growing downstream of the sphere, the flow for a nonspherical particle experiences recurring

separation and reattachment on its surface. As a result of the rotation, both spherical and nonspherical

particles pull near-surface fluid on the leeward side. However, due to the difference in the major and minor

axis of the particle, the orientation at which the background flow interacts with the pulled fluid varies. It is

this feature of the flow that determines the angle of rotation at which the flow experiences maximum and

minimum drag and lift forces. Additionally, we observe that changing the shape of the sphere leads to a

decrease in the average lift of the particle and increases in the average drag on the particle, in comparison

to the spherical particle. This observation is important because particles are typically modeled as spheres,

and the drag and lift coefficients are usually assumed to be those associated with a sphere.

In future work, we will continue the analysis that we have started here to understand how the shape and

rotational axis of particle impact the flow characteristics, and how spheres can be used to model the effect

of nonspherical particles for production-scale runs with thousands of particles.
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9.5 Denticles on Shark Skin

This problem is being studied in collaboration with scientists at the University of Leeds in England, who

are analyzing the impact of shark skin denticles on drag reduction. Charlie Lloyd (University of Leeds)

generated the spectral element mesh used in this section.

It has been hypothesized that miniature roughnesses on shark skin, known as denticles, help reduce skin-

friction and allow sharks to swim faster. Despite decades of experimental and computational research

in this area, the question of whether (and the mechanism) denticles reduce drag, remains inconclusive.

Denticles have been compared to riblets (grooved structures aligned with the direction of the flow), which

have shown to reduce drag by reducing the Reynolds stresses in the buffer region of the boundary layer

[136,137,138,139,140,141].

Figure 9.32 shows the shape of riblets that are commonly used in experiments and Fig. 9.33 shows

a typical drag reduction profile for a ribletted surface. As we can see, the spacing between riblets (s in

Fig. 9.32) is a key factor impacting the drag forces on a riblet. The only DNS done on shark denticles

is by Boomsma and Sotiropoulos [142], who observed that denticles increased drag for the geometrical

configurations that they had considered. Boomsma et al. conclude in their work that denticles may behave

like riblets if the spacing between denticles is just right.

Boomsma and Sotiropoulos had used immersed-boundary methods for their numerical experiments. One

of the reasons that DNS has not been extensively used to study shark skin is that generation of a good-quality

computational mesh for an array of denticles is difficult, and the computational cost of these calculations

can be prohibitively high. The goal of our current work is to use DNS calculations at Reτ = 180 in a channel

(discussed in Section 9.2) with denticles shown in Fig. 9.34. Due to the small size (y+ = yuτ/nu ≈ 13) and

curvature of the denticles, the mesh resolution required to model the denticles is higher than the resolution

needed for the DNS of a flat channel at the Reynolds number that we are considering. Thus, we use the

Schwarz-SEM framework with two overlapping grids; a dense grid near the surface that accurately models the

denticles and a relatively coarser grid (yet, DNS quality) in the far-field that resolves all the flow structures.

Figure 9.32: Schematic of riblets that are commonly used for experiments.
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Figure 9.33: Drag reduction profile for a ribleted surface. ∆τ is the change in shear stress due to the riblets,
and τ0 is the shear stress for a channel without riblets. s+ is the distance between riblets in wall units.
Image taken from [143].

Figure 9.34: (left to right) (a) A smoothed and a (b) ribletted denticle. The ribletted denticle is based on
denticles of a Shortfin mako shark, but it has been scaled to have identical aspect ratio as the smoothed
denticle shown on the left. We note that these plots show the surface triangulation that is used by CAD,
and should not be confused with the spectral element mesh that we use for analyzing these denticles.

9.5.1 Problem setup

Figure 9.34 shows CAD models of the two denticles that will be analyzed using the Schwarz-SEM framework.

Figure 9.34(a) shows the smooth denticle that we use for the results presented in this dissertation and Fig.

9.34(b) shows a ribletted denticle. The ribletted denticle is based on the denticle of a Shortfin mako shark,

which has been scaled to have the same aspect ratio as the smoothed denticle. We note that the CAD

models in Fig. 9.34 show the surface triangulation that is used by CAD, and it should not be confused with

the spectral element mesh that we use for analyzing these denticles.

The geometrical parameters that are used to describe the shape of denticles are shown in Fig. 9.35, and

Table 9.6 lists the corresponding parameters. We note that the parameters in Table 9.6 are nondimension-
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Figure 9.35: Geometrical parameters for defining the size of denticles.

L1/h L2/h L3/h L4/h L5/h L6/h ∆x ∆z

Ribletted 0.25 0.091 0.287 0.089 0.029 0.022 0.138 0.25
Smooth 0.25 0.073 0.287 - - - 0.138 0.25

Table 9.6: Denticle dimensions (scaled by the half channel height h) corresponding to those defined in Fig.
9.35.

alized with the half channel height (h).

For numerical calculations using overlapping grids, the target computational domain size is the same as

that used for the turbulent channel (Section 9.2) for the streamwise (x) and spanwise (z) direction. For the

wall-normal direction, however, the channel height is h instead of 2h, and a stress-free boundary condition

is used at the top surface. This domain size (Ω = [4πh× h× 4πh/3]) was also used for the DNS in [142].

Using a single conforming grid for modeling this domain requires about 210,000 elements, and overlapping

grids reduces the element count by about 50%. Since the computational cost of the calculation is still

significant, we seek to use a domain scaled to roughly a quarter of the target channel streamwise and

spanwise length, with a staggered array of denticles. The purpose of this smaller domain is to develop a

better understanding of the mesh resolution required to adequately resolve all fluid structures in the flow.

Additionally, this smaller domain will also allow us to use spatial correlations to determine the minimum

streamwise and spanwise length required to get rid of any correlations in the velocity field.

Figure 9.36 shows the staggered array of the denticle from Fig. 9.34(a) that we consider for DNS in this

dissertation. This 12 × 2 array is generated by replicating a single doubly-periodic block with 2 denticles

(also shown in Fig. 9.36), which allows us to model a total of 48 denticles. We also show the spectral element
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Figure 9.36: Array of denticles generated by replicating a doubly-periodic block with 2 denticles, for DNS
at Reτ = 180. The spectral element mesh is shown for the surface of the denticles.

Figure 9.37: Slice view of the overlapping meshes used for array of denticles.

mesh on the surface of the denticles in Fig. 9.36.

Figure 9.37 shows a slice view of the overlapping grids used for turbulent flow over the array of denticles.

The dimensions of the domain are Lx = 3.3h, Ly = h, and Lz = h. The lower mesh has 16, 272 elements,

and the upper mesh has 672 elements. The element count is higher in the lower mesh due to the geometry

of the denticles, and using a single conforming grid would have required a total of 33,072 elements. Thus,

overlapping grids reduce the total element count by about 50%. The overlap for the two meshes is 0.08h

wide between Ωy = [0, 0.33h] for the lower mesh and Ωy = [0.25h, h] for the upper mesh.

Following Boomsma, the calculation was done with a fixed flow rate through the domain, which was
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determined using the bulk velocity associated with the bulk Reynolds number (Rebulk = Ubulkh/ν) in the

smooth channel flow corresponding to Reτ = 180. Based on the smooth channel flow calculation (Section

9.2), the bulk velocity is Ubulk ≈ 15.63. Consequently, the flow rate is fixed to 15.63LyLz. The DNS

calculation was run for more than 100 flow-through times, and time-averaged statistics were collected for

about 75 flow-through times. For the Schwarz iterations, Q = 3 and m = 3 to ensure third-order temporal

accuracy. Additionally, in order to spatially average the results, blockwise averaging is performed to combine

the statistics for the 48 denticles that were replicated from the single block containing 2 denticles (shown in

Fig. 9.36).

9.5.2 Results

Figure 9.38 shows instantaneous velocity magnitude contours for the channel with denticles. The drag is

monitored on the no-slip surfaces, and results indicate that the drag increases by about 50% as compared

to the smooth wall channel case. These results are similar to those of Boomsma and Sotiropoulos, who

have explored a similar staggered configuration for a different shaped denticle and found that the drag is

increased by 44-50% in comparison to a flat channel [142].

Next, in order to understand whether the length and spanwise width of the channel is sufficient, we look

at the two-point correlations (Rii) along various sections of the domain. The two-point correlation is defined

as

Rii =
u
′
i(x, t)u

′
i(x + r, t)

u
′2
i (x, t)

, (9.3)

Figure 9.38: Slice view of the velocity magnitude contours with and without the denticles.
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(a) x = Lx/2, y = 0.08h, z = 0− Lz (b) x = Lx/2, y = 0.15h, z = 0− Lz (c) x = Lx/2, y = 0.65h, z = 0− Lz

(d) x = 0− Lx, y = 0.08h, z = Lz/2 (e) x = 0− Lx, y = 0.15h, z = Lz/2 (f) x = 0− Lx, y = 0.65h, z = Lz/2

Figure 9.39: Spatial correlations R11 and R33, corresponding to the streamwise and spanwise velocity, along
different sections of the domain.

where u
′

i is the ith component of the fluctuating velocity, and u indicates ensemble averaging for u. Rii is a

function of space and time, and is calculated at using the time-averaged and instantaneous velocity at each

time-step. Figure 9.39 shows spatial correlations along six different lines in the domain for the streamwise

(R11) and spanwise velocity (R33) components. Three lines are along the spanwise direction (z = 0 − Lz),

taken at the mid-plane in the streamwise direction (x = Lx/2) at different heights (y = 0.08h, 0.15h and

0.65h). We have another three lines that are along the streamwise direction (x = 0− Lx) at the mid-plane

in the spanwise direction (z = Lz/2) at different heights (y = 0.08h, 0.15h and 0.65h). The height of the

denticle is about 0.07h, and the lines at y = 0.08h help us determine the correlation in the velocity field

right above the denticles.

The autocorrelation plots shown in Fig. 9.39(b), (c), (e) and (f) indicate that the streamwise and

spanwise velocities are uncorrelated in the streamwise and spanwise directions at y = 0.15h and y = 0.65h.

Near the denticles, however, we notice in Fig. 9.39(a),(d) that Rii for y = 0.08h is not less than zero for a

sustained length of the domain. These results indicate that Lx and Lz should be increased for accurately

capturing all the turbulent structures in the flow.
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Figure 9.40 shows the slice view of the time-averaged streamwise velocity Umean and root-mean-square

(RMS) velocity in the streamwise direction urms. We can see that Umean is symmetric in the spanwise

direction, but urms is slightly asymmetric. Similarly, the plots for vrms and wrms in 9.41 also show some

asymmetry in the spanwise direction. One of the reasons for this asymmetry in the flow could be that the

growth of turbulent structures (or disturbances) in the flow is limited due to the insufficient spanwise length

of the domain. This hypothesis is based on a previous calculation that was done with a domain that was

shorter by a factor of 2 in the spanwise direction and a factor of 4 in the streamwise direction. In that

calculation, we had observed a more prominent asymmetry in the flow in the spanwise direction. These

mean- and fluctuating-velocity plots are also consistent with the spatial correlations shown in Fig. 9.39,

which indicates that the spanwise length of the domain is not sufficient.

Despite the asymmetry in the temporally and spatially averaged flow field, which is due to insufficient

streamwise and spanwise lengths, we observe that the Schwarz-SEM framework accurately captures the

flow across overlapping grids. The time-averaged streamwise velocity Umean and RMS velocities show good

agreement between the overlapping grids.

In the ongoing production level calculations, we are analyzing flow over arrays of smoothed and ribletted

denticles where we have set Lx = 6.6h and Lz = 3h to ensure that the streamwise and spanwise velocity

components are uncorrelated.
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(a) Umean (b) urms

Figure 9.40: Slice view, along the (left) streamwise and (right) spanwise direction, for (a) Umean and (b)
urms , for flow over denticles.

(a) vrms (b) wrms

Figure 9.41: Slice view, along the (left) streamwise and (right) spanwise direction, for (a) vrms (b) wrms ,
for flow over denticles.
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9.6 Oscillatory Boundary Layer Flow

This problem is being studied in collaboration with scientists in the Civil Engineering department at UIUC,

who are analyzing the impact of oscillatory boundary layer flow on sediment transport. Dimitrios K. Fy-

tanidis have done the monodomain calculations discussed here.

Oscillatory boundary layer (OBL) flows have a significant impact on sediment transport in environmental

flows such as coastal and offshore environments [144, 145, 146]. An important aspect of OBLs is the phase

angle at which the maximum wall shear stress (τ) peaks in comparison to the maximum velocity. Experimen-

tal and computational research in the past has shown that there is a phase lead (φ) between the maximum

velocity with respect to the maximum wall shear stress [147,148,149,150], and Fig. 9.42 shows a plot of how

the phase lead varies with Reynolds number. For OBL flow, the Reynolds number is typically defined as

Reδ = Umaxδ/ν, where Umax is the maximum oscillatory velocity, δ is the Stokes boundary layer length, and

ν is the kinematic viscosity. The Stokes boundary layer length δ depends on ν and the angular frequency

ω = 2π/Tp as δ =
√

2ν/ω, where Tp is the period of the oscillating flow. For numerical calculations, the

oscillatory flow is driven by a sinusoidal forcing term in the momentum equation (2.26), which is of the form

f = −Umaxω sin(ωt)ê1, where t is time, and ê1 is the unit vector in the direction (x) of the flow.

Extensive experiments conducted by Mier in the Large Oscillatory Water-Sediment Tunnel (LOWST)

at the Ven Te Chow Hydrosystems Laboratory (UIUC) have studied the transition between laminar and

turbulent flow regimes with smooth bed and have found evidence that shear stress does not lag maximum

velocity for all Reynolds number [152]. Mier has shown that there is a phase lead instead of a phase lag for

maximum shear stress with respect to the maximum flow velocity, for a range of Reynolds number. This

Figure 9.42: Phase difference between maximum shear stress and maximum velocity in OBL flow for a range
of Reynolds number. Image taken from [151].
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finding is an important stepping stone towards better understanding of OBL flows. Due to the limitation

of the applied point-wise experimental technique (Laser Doppler Velocimetry), however, it is not possible

to extend this study for investigating the relation of the phase-lag with the development of flow structures.

The accurate prediction of sediment transport and complex flow structures in OBLs, thus, hinges on high

fidelity calculations that can simulate this phenomenon.

9.6.1 Problem setup and monodomain SEM results

The ongoing computational calculations at UIUC are targeting a DNS study of OBLs in hydrodynamically

smooth and rough channels. Due to the complexity and scale of the structures in OBL, DNS calculations

require significant computational resources to analyze this problem. As a first step, preliminary calculations

have been done using a conformal grid with E = 353, 400 at N = 9, which has a total of roughly 353 million

computational points. The computational domain is a channel that has periodic boundary conditions in the

streamwise (x) and spanwise (z) direction, and a no-slip and stress-free boundary condition at the bottom

and top surface, respectively, in the wall-normal direction (y).

The monodomain SEM calculation has been done at Reδ = 763 for a hydrodynamically smooth surface.

Following standard nondimensional practice, Umax = δ = 1, and ν = 1/Reδ. The period of one oscillation is

Tp = π/ν ≈ 2396.45 convective time units, the nondimensional forcing is F = −2Reδ sin(2Reδt)ê1, and the

size of the computational domain is Lx×Ly×Lz = 160δ×30δ×40δ. Figure 9.43 shows the conforming mesh

used for the monodomain SEM calculation, along with λ2 vortices colored by velocity magnitude contours.

Due to the oscillatory nature of the flow, we analyze the results at different phase angles during an

oscillation period. The phase angle φ = 2πt/Tp = 360◦t/Tp corresponding to maximum streamwise velocity

magnitude is 180◦ and 360◦ (or 0◦), and the flow reverses directions at phase angles 90◦ and 270◦. Figure 9.44

shows contours of the phase-averaged mean streamwise velocity (U) and velocity fluctuations (u′u′, v′v′, u′v′)

for the OBL for 0◦ ≤ φ ≤ 360◦, and Fig. 9.45 shows U, u′u′, v′v′, and u′v′ at six different phases. u in

Fig. 9.44 and Fig. 9.45 represents phase and spatial averaging of u. Mean streamwise velocity and velocity

fluctuations have been obtained by first averaging the instantaneous flow based on the phase angle, and then

spatially averaging the flow in the streamwise and spanwise direction.

The monodomain calculation showed that, as expected, the turbulence is primarily confined to near

the wall of the channel, and does not grow away from the surface because of the oscillatory nature of the

flow. These results suggest that we should be able to use overlapping grids with a dense mesh for the lower

one-third of the domain and a coarser mesh away from the wall, to simulate this domain with many fewer

elements for reduced computational cost. Additionally, the long term goal of this study is to understand
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Figure 9.43: Conforming mesh used for the monodomain SEM calculation, along with λ2 vortices colored
by velocity magnitude contours.

OBL on hydrodynamically rough surfaces. Depending on roughness size, resolution for discretizing the

channel-bed with a conforming mesh can be intractable due to the computational cost. Thus, benchmarking

the Schwarz-SEM framework using the OBL flow in the smooth channel will give us valuable insight into

modeling OBL flow in a rough channel.

9.6.2 Schwarz-SEM results

Figure 9.46 shows the overlapping grids used for simulating the OBL. The lower mesh, with E = 220, 900,

has the same resolution as the corresponding section of the monodomain mesh. The upper mesh is coarser

by a factor of roughly 50% in the streamwise and spanwise directions as compared to the original mesh, and

has 38,000 elements. Using a coarse mesh for the upper portion of the domain reduces the total element

count by about 26% in comparison to the monodomain mesh. The overlap between the upper and lower

mesh is between y = 9.75δ and 10.5δ.

Figure 9.47 shows contours of the phase-averaged mean streamwise velocity (U) and velocity fluctuations

(u′u′, v′v′, u′v′) for the OBL at Reδ = 763. These results show a good qualitative comparison with results

from the monodomain SEM calculation. We also look at the mean streamwise velocity and velocity fluctu-

ations at six different phase angles and compare them to the monodomain SEM results in Fig. 9.48. The
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Figure 9.44: Contours plots for the streamwise velocity and velocity fluctuations for the OBL at Reδ = 763.

Figure 9.45: Streamwise velocity and velocity fluctuations plots for the OBL at Reδ = 763 at different phase
angles of the flow.

solid lines in Fig. 9.48 correspond to the monodomain results, and the dashed lines correspond to the results

from the overlapping grid calculation.

Figure 9.48(a) shows that the mean streamwise velocity from the overlapping grid calculation agrees
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Figure 9.46: Overlapping meshes in the Schwarz-SEM framework, along with λ2 vortices colored by velocity
magnitude contours for the OBL at Reδ = 763.
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Figure 9.47: Contours plots for the mean streamwise velocity and velocity fluctuations for the OBL at
Reδ = 763.
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Figure 9.48: Streamwise velocity and velocity fluctuation profiles for the OBL at Reδ = 763 at different
phase angles of the flow. Solid lines correspond to monodomain calculation and dashed lines correspond to
overlapping grid calculation.

well with the results of the monodomain calculation. However, we observe that the results for velocity

fluctuations (u′u′, v′v′, u′v′) do not agree very well with the monodomain calculation. This difference is

likely because the flow statistics were collected for over 5 oscillation periods for the monodomain calculation

and for only 1 oscillation period for the overlapping grid calculation. In future work, we will continue these

simulations to average the flow statistics over more oscillation periods and see how the velocity fluctuation

results compare with the monodomain calculations. Nonetheless, the results shown here are promising and

show yet another class of real-world problems where the Schwarz-SEM framework is an effective alternative

to the monodomain SEM framework.
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9.7 Multirate Time-Stepping for Modeling a Thermally-Buoyant

Plume

This problem is being studied in collaboration with scientists at the City University of New York, who are

analyzing buoyant plumes in oceanic environments. The monodomain calculations discussed here have been

done by Dr. Som Dutta and Dr. Drew Poje.

Buoyant plumes are of interest in many industrial and environmental applications such as deepwater blowouts

[153], volcanoes [154] and hydrothermal vents [155]. The Deep Water Horizon (DWH) incident in 2010, which

leaked millions of barrels of oils into the ocean, is one of the incidents that has shed light on the importance

of understanding the internal dynamics of buoyant plumes [156]. Buoyant plumes, such as the one resulting

from the DWH oil spill, are driven by the buoyancy flux due to multiphase effluents (both, oil and gas)

at elevated temperatures in comparison to a background fluid at a lower temperature. The background

flow (oceanic, in this case) is highly irregular with a broad range of spatial and temporal scales and must

be accurately modeled to properly account for the interaction between effluents and the background flow.

Additionally, background stratification and the rotation of earth also impact the dynamics of the plume.

The impact of these different factors on buoyant plumes has been the subject of various experimental and

computational studies [157,158,159,160,161].

Oceanic environments are subject to stable stratification, and a singlephase plume grows in such a stably

stratified environment because of the buoyancy flux associated with the temperature difference between the

plume and the background fluid. As the plume rises, it entrains the surrounding fluid, which decreases

the buoyancy flux due to the turbulent mixing of the plume with the relatively denser surrounding fluid.

Eventually, the plume reaches a neutral buoyancy level, where the temperature difference vanishes. However,

the plume keeps rising due to inertial effects until its density is significantly higher than the surrounding

fluid. At this point, the plume is negatively buoyant, and the fluid falls back and flows outwards. This height

at which the plume becomes neutrally stratified is known as the equilibrium height, and the height at which

the neutrally buoyant plume accumulates and flows outwards is known as the trapping height. There is also

a maximum height associated with the plume, which is the height at which the mean centerline velocity (in

the vertical direction) vanishes. Figure 9.49(left) shows a schematic of a singlephase plume and indicates its

maximum plume height (zmax), trapping height (zth) and equilibrium height(zeq) [160]. In Fig. 9.49, < ŵ >

indicates the centerline velocity in the direction of the plume (z), and < ĝ > indicates the difference in the

density of the plume with the background flow.
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Figure 9.49: Schematic of a singlephase plume indicating the maximum plume height (zmax), trapping height
(zth) and equilibrium height(zeq). Image taken from [160].

Multiphase plumes have a more complicated dynamic, but we do not discuss them here because they are

beyond the scope of this dissertation. Computational analysis using SEM is currently underway through

a collaboration between UIUC and the City University of New York to understand how rotation impacts

singlephase and multiphase plumes in cross-flow. The domain size of this target problem is intractable with

the monodomain framework due to its computational cost, and our goal is to demonstrate the effectiveness

of the Schwarz-SEM framework for this class of problems.

9.7.1 Governing equations and problem setup

The governing equations for the incompressible fluid flow have been discussed in Chapter 2 (2.26,2.27,2.35),

where we had assumed constant density in the domain. For stratified flows, however, the density is not

constant in the domain, and we model the density variation using the Boussinesq approximation.

We assume that there is a reference density (ρr) and a reference temperature (Tr), with respect to which

the density varies in the domain as ρ = ρr(1−γ(T −Tr)), where γ is the thermal expansion coefficient of the

fluid. We also assume that the temperature in the domain, which is a solution of (2.35), can be described

as T (x, t) = θ(x, t) + Tr + Γz, where θ is the perturbation with respect to the unperturbed environment

temperature, Te, which varies linearly with a slope of Γ as Te = Tr + Γz. Here, z is the direction in which

the fluid is stratified.
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Figure 9.50: Schematic of the axisymmetric domain used to model the thermally buoyant plume, along with
instantaneous velocity magnitude contours and the spectral element mesh.

Using these assumptions, and accounting for the buoyancy force, the governing equations for the flow are

∂u

∂t
+ u.∇u = −∇p+

1

Re
∇2u +Riθk̂, (9.4)

∇ · u = 0, (9.5)

∂θ

∂t
+ u.∇θ =

1

Pe
∇2θ − u · k̂, (9.6)

where we use the Schwarz-SEM framework to solve for velocity u(x, t), pressure p(x, t) and the temperature

perturbation θ(x, t) in the buoyant plume. The actual temperature T (x, t) can be obtained by substituting

T (x, t) = θ(x, t) + Tr + Γz. In (9.4), Ri = g/(B
1/4
o N

5/4
b ) is the Richardson number that depends on

the gravitational constant (g), inlet buoyancy flux (B0) and the buoyancy frequency (Nb) (also known

as the Brunt–Vaisala frequency). The velocity, time, length, pressure and temperature scales used for

nondimensionalization are U0 = (B0Nb)
1/4, t0 = 1/Nb, L0 = (B0/N

3
b )1/4, p0 = ρrU

2
0 , and T0 = ΓL0 =

(B0N
5
b )1/4/(gγ), where g is the acceleration due to gravity. We assume that the reference density is ρr = 1

and the reference temperature is Tr = 0.

We follow [160] and specify B0 = 5 × 10−6m4s−3 , Nb = 0.1s−1. The linear scaling for density is set

to γ = 2 × 10−4K−1, and for temperature to Γ = 5.1m−1. Double diffusion effects are ignored, and thus
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ν = α = 10−6m2s−1, which leads to Prandtl number Pr = 1. The Reynolds number (U0L0/ν) and Peclet

number of the flow is about 7100, and the Richardson number is 3700.

Figure 9.50 shows a schematic of the axisymmetric domain used to model the thermally-buoyant plume,

along with velocity magnitude contours of the flow and the corresponding monodomain mesh. The different

boundary surfaces have been marked in the schematic. A stress-free boundary condition is used at the top

of the tank, and outflow is used on the tank sides. For the bottom of the tank, a homogeneous Dirichlet

boundary conditions are imposed for velocity (u(x, t)) and temperature perturbation (θ(x, t)). Inhomoge-

neous Dirichlet boundary conditions are imposed at the inlet of the pipe, that is connected to the tank, for

velocity and temperature perturbation. In nondimensional units, the source (pipe) diameter is D0 = 0.3,

the length of the pipe is 2.4, the radius of the tank is 6, and the height of the tank is 9.6.

We note that the results presented in [160] were obtained using the monodomain SEM framework. The

only difference in the problem setup of [160] from the ongoing calculations is that [160] did not model the

pipe attached to the bottom of the tank, and instead applied inhomogeneous Dirichlet conditions directly

on the surface of the tank.

9.7.2 Motivation for multirate time-stepping

Due to the physics of the flow considered here, high-temperature fluid enters the tank through the pipe and

is accelerated by buoyancy effects. As we can see in Fig. 9.50, due to the nature of buoyant plumes in

a stably stratified environment, the critical regions of the plume are confined to a T-shaped region. This

T-shaped region includes the region where the plume is driven by buoyancy and the region where the plume

becomes neutrally buoyant and flows outwards. The flow is relatively less chaotic everywhere else in the

domain.

Figure 9.51 shows the spectral element mesh used for the monodomain SEM calculation along with a slice

view of the CFL distribution in the domain. We can observe that using a single conforming mesh leads to

unnecessary resolution away from the region of interest, and overlapping grids can reduce the element count.

The CFL distribution plot (right) shows that since the high-speed flow is confined to a specific portion of

the domain, we can use the multirate time-stepping capability described in Chapter 6 to further reduce the

computational cost of this calculation.

Here, we benchmark the Schwarz-SEM framework using a nonrotating singlephase plume and show that

multirate time-stepping with overlapping grids is an effective way to solve this problem.
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Figure 9.51: (left) Three-slice view of the monodomain mesh used to model the buoyant plume, and (right)
slice view of the CFL distribution for the monodomain mesh.

9.7.3 Results

Figure 9.52 shows the spectral element meshes that were used for the monodomain and Schwarz-SEM

calculations. The conforming mesh for monodomain SEM (left) has 70,400 elements and ongoing calculations

have indicated that the resolution along the plume centerline is not sufficient. Consequently, the inner mesh

(Fig. 9.52(right)) used in the Schwarz-SEM framework has about 35% more grid points in the plume region,

in comparison to the monodomain mesh. The outer mesh has 15,560 elements and it is about 50% coarser in

comparison to the monodomain mesh in that region. Thus, we see that overlapping grids allow us to increase

the resolution in the region of interest while keeping the total element count similar to the monodomain

mesh.

Using the multirate time-stepping method described in Chapter 6, two different time-step ratio (η) are

used for the Schwarz-SEM framework; η = 5 and η = 50. Due to multirate time-stepping, the coarser grid

has to integrate the INS for many fewer time-steps as compared to the finer inner grid. As a result, we

can further reduce the computational cost of the calculation by using many fewer MPI ranks for multirate

time-stepping in comparison to the MPI ranks needed for single-rate time-stepping for this problem (Section

8.2).

Following the monodomain calculation, the polynomial order was set to N = 7 for the overlapping grid

calculation. Since the overlap region is away from the area of interest, we set Q = 1 with m = 1, and the

flow statistics were temporally-averaged over more than 24 convective time units. Figure 9.53 shows the

temporally and spatially averaged (azimuthally averaged) velocity magnitude contours from the overlapping

grid (η = 5 and 50) and monodomain calculations. We observe that there is a difference in the velocity
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Figure 9.52: Slice view of the (left) single conforming and (right) overlapping spectral element meshes
generated for the buoyant plume calculation.

Figure 9.53: Temporally and spatially averaged velocity magnitude contours for the Schwarz-SEM calcu-
lations with overlapping grids using (left) η = 5 and (center) η = 50, and (right) the monodomain SEM
calculation.

magnitude plots between the overlapping grids and monodomain calculation. Specifically, we notice that the

maximum plume height, zmax, seems larger for the Schwarz-SEM framework calculations due to a relatively

higher velocity magnitude along the plume centerline. This difference in the velocity magnitude is likely due

to insufficient resolution in the spectral element mesh that was used for the monodomain calculation. We

note that the results for the Schwarz-SEM calculations with different time-step ratios, shown in Fig. 9.53(a)

and Fig. 9.53(b), agree well with each other.
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Figure 9.54: Temporally and spatially averaged temperature (T = Tr+Γz+θ) contours for the Schwarz-SEM
calculations with overlapping grids using (left) η = 5 and (center) η = 50, and (right) monodomain SEM
calculation.

Figure 9.54 shows the temporally and spatially averaged temperature perturbation contours from the

overlapping grid and monodomain calculations. We can see that the temperature perturbation results agree

well for the three cases considered here. Similarly, we also see a good comparison for these three cases for

the turbulent kinetic energy (TKE) of the flow, which is shown in Fig. 9.55. We note that the monodomain

results for the TKE are not as smooth as the results for the overlapping grid calculation, which is likely due

to a lack of resolution in the plume region or due to insufficient duration over which the flow statistics were

averaged (18 convective time units).

Using the axial velocity and temperature perturbation results, we can obtain the maximum height of

the plume (zmax) and equilibrium height (zeq) by plotting the mean axial velocity (Wmean) and mean

temperature perturbation (θ) at the plume centerline. We can also use the TKE plots to visually obtain

the plume trapping height. The line plots comparing Wmean and θ along the plume centerline are shown in

Fig. 9.56. The plot for Wmean agrees well with our expectation that the plume centerline velocity is higher,

based on the velocity magnitude plot shown in Fig. 9.53. The plot for θ shows good comparison for the
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Figure 9.55: Temporally and spatially averaged TKE plots for the Schwarz-SEM calculations with overlap-
ping grids using (left) η = 5, (center) η = 50 and (right) monodomain SEM calculation.

Figure 9.56: Time and spatially averaged mean (left) axial velocity (Wmean) and (right) temperature per-
turbation (θ) along the plume centerline.

three cases considered here.

Table 9.7 compares the maximum plume height (zmax), equilibrium height (zeq), and trapping height (zth)

for the Schwarz-SEM results with the ongoing monodomain calculations and the monodomain SEM results

by Fabregat et al. [160]. The maximum difference between the Schwarz-SEM calculations and monodomain

calculation for the three parameters of interest that we consider here is 4.5% (for zmax). We reiterate that

the difference in the monodomain calculation with the overlapping grid calculation is likely due to a lack of

resolution in the monodomain mesh. We will be analyzing this difference in the future using monodomain
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zmax zeq zth

Fabregat et al. 4.5 2.85 3.11
Schwarz-SEM η = 5 4.51 2.88 3.1

Schwarz-SEM η = 50 4.45 2.85 3.1
Monodomain SEM 4.29 2.79 3.2

Table 9.7: zmax, zeq and zth obtained from the Schwarz-SEM framework, the current monodomain calcula-
tion, and the monodomain calculation by Fabregat [160].

and overlapping grid calculations at a higher resolution to ensure spatial convergence for each calculation.

9.7.4 Summary

In this section, we have used the multirate time-stepping scheme (Chapter 6) to model a singlephase

thermally-buoyant nonrotating plume. Two different time-step size ratios, η = 5 and 50, were considered,

and we see that the results from the Schwarz-SEM framework agree well with the monodomain calculation,

in general. The buoyant plume example serves to show several advantages of the Schwarz-SEM framework.

First, overlapping grids allow us to increase the resolution in the region of interest while keeping the to-

tal element count similar to the monodomain grid. Second, the multirate time-stepping scheme results for

η = 5 and 50 agree well with each other. This independence of the results from η gives us confidence in

using even higher time-step ratios. Third, multirate time-stepping requires fewer computational resources

than the single-rate time-stepping scheme, which further increases the computational savings due to the

Schwarz-SEM framework.

The results presented in this section show that the multirate time-stepping scheme that we have de-

veloped can accurately model turbulent flow in complex domains. This capability is crucial for analyzing

rotating multiphase plumes in cross-flow, where the domain size is much larger than the domain that we

consider in this section. Monodomain SEM calculations are intractable for this target problem due to their

computational cost and the Schwarz-SEM framework provides an effective alternative.
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9.8 Flow over a Wall-Mounted Cube

This problem is being studied in collaboration with scientists at the Argonne National Laboratory, who

are analyzing flow over roughnesses. The monodomain calculations discussed here have been done by Dr.

Ramesh Balakrishnan.

Flow over a roughness or multiple roughnesses is a problem of significant impact in the area of computational

fluid dynamics (e.g., aerodynamic applications such as airplanes) and has been studied for decades. The

literature in this area is abundant [162,163,164,165], and it is beyond the scope of the dissertation to discuss

the different aspects of this class of problems. Instead, we focus on the effectiveness of the Schwarz-SEM

framework in capturing the physics of the flow over a wall-mounted cube and compare our results with the

monodomain DNS calculations that have been done at the Argonne National Lab.

9.8.1 Problem setup

Figure 9.57 shows the λ2 vortices for flow over a cube roughness at ReH = 3900. The Reynolds number,

ReH = UhH/ν, is based on the flow speed (UH) at the roughness height (H) if the roughness was not

present, and on the kinematic viscosity (ν). The domain is periodic in the spanwise direction (z), with

inflow and outflow in the streamwise direction (x) and no-slip walls at the top and bottom in the wall-

normal direction (y). The monodomain mesh (Fig. 9.57(center)) has 150,000 spectral elements, and the

domain size is Lx×Ly ×Lz = 14H × 3H × 7H. The center of the roughness is 3.5H from the inflow surface

in x, and 3.5H from the spanwise periodic boundaries.

Fig. 9.57(bottom) shows a slice-view of the instantaneous velocity magnitude contours and as we can see,

the laminar flow transitions to turbulence as the flow goes over the roughness, and the turbulent structures

are mainly confined in the lower half of the domain in y. Using a monodomain mesh leads to unnecessary

streamwise and spanwise resolution away from the roughness. Additionally, using a standard domain de-

composition approach leads to a mesh with high aspect ratio elements, as shown in Fig. 9.57(center), that

degrade the computational performance of the flow solver.
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Figure 9.57: (top) λ2 vortices colored by velocity magnitude contours for flow at ReH = 3900, (center) slice

view of the monodomain grid used for flow over a roughness, and (bottom) velocity magnitude contours.

In order to leverage that the physics of this problem confines the flow structures of interest in the lower

half of the domain, we model the domain using two overlapping grids, which are shown in Fig. 9.58. The
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lower mesh discretizing the roughness has 90,000 elements and the upper mesh has only 30,000 elements

in the far-field. Overlapping grids reduce the total element count by 20%. We note that we use a higher

resolution near the roughness, in comparison to the monodomain grid, and smooth the mesh to get rid of the

performance degrading elements. The overlap width between the two grids is 0.25H, with Ωy = [0, 1.75H]

for the lower subdomain and Ωy = [1.5H, 3H] for the upper subdomain.

Following the monodomain calculation, the polynomial order was set to N = 7, and flow statistics were

averaged over 666 convective time units for both calculations. For the Schwarz-SEM framework, we set

Q = 0 and m = 1. Figure 9.58(bottom) shows a snapshot of the instantaneous velocity magnitude plot for

the calculation using overlapping grids.

Figure 9.58: (center) Slice view of the overlapping grids used for flow over a roughness, and (bottom) velocity

magnitude contours.

9.8.2 Results

As a first step towards validating the overlapping grid calculation with the monodomain calculation, we

compare the mean streamwise velocity and RMS velocities for the two calculations. Figure 9.59 compares

the time averaged velocity magnitude between the monodomain grid and overlapping grid calculation, and

Fig.9.60-9.62 compares the RMS velocities in the streamwise (urms), wall-normal (vrms), and spanwise

(wrms) direction, respectively, for the two cases considered here.
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Figure 9.59: Ensemble averaged velocity magnitude for the (top) monodomain and (bottom) overlapping

grid calculations.

Figure 9.60: Streamwise RMS velocity urms for the (top) monodomain and (bottom) overlapping grid

calculations.

195



Figure 9.61: Wall-normal RMS velocity vrms for the (top) monodomain and (bottom) overlapping grid

calculations.

Figure 9.62: Spanwise RMS velocity wrms for the (top) monodomain and (bottom) overlapping grid calcu-

lations.

As we can see in the results presented in Fig. 9.59-9.62, the Schwarz-SEM framework shows a good

comparison for first- and second-order statistics with the monodomain calculation. As a part of the ongoing

collaboration with researchers at ANL, our goal is to further quantify the comparison between these two

calculations. In future work, we will be looking at quantities such as the skin friction distribution along the

lower wall to compare the monodomain and overlapping grid calculations. Ongoing calculations at Argonne

National Lab are already using the Schwarz-SEM framework with S = 3 overlapping subdomains to analyze
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laminar-to-turbulent flow transition at ReH = 20, 000, for which monodomain calculations are prohibitively

expensive.

9.9 Mesh Smoothing

In this section, we demonstrate the effectiveness of the mesh smoother, described in Chapter 7, in improving

the computation performance of spectral element meshes. The results presented in this section have been

published in [73].

For each example that we present in this section, we show the spectral element mesh before and after

smoothing. We also indicate the improvement in the iterations for the solution of the pressure Poisson

equation (Niter) and the iterative condition number (κ) of the pressure-solve system (Section 7.3). The

Niter and κ values reported in this section are based on data averaged over hundreds of time-steps for each

example. In order to ensure a fair comparison between the original and smoothed meshes, each case was

run with the same parameters, such as time-step size and tolerances for pressure and velocity solve. We

summarize the results for all the cases considered here, at the end of this section.

9.9.1 Flow past a half-cylinder

Figure 9.63 shows the mesh constructed for flow past a cylinder in the half-domain, which has been used

in the past for testing the performance of various preconditioners for the pressure Poisson solve [14]. This

mesh contains a spectrum of element shapes and sizes, which make it effective for testing the convergence

behavior of iterative solver. In this case, the calculation was run only for 1 time-step as the pressure solution

is most expensive to compute for the first time-step.

In these tests, the base mesh of Es = 93 elements (Fig. 9.63(left)) was quad-refined (each quad element

split into 4 elements) to obtain mesh with E = 372 and 1488 elements. Smoothing was applied (as shown

in Fig. 9.63, right) to yield improvements in condition number κiter of 76.2 , 67.9, and 72.7 % for respective

element counts of E=93, 372, and 1488. The corresponding reductions in iteration count (Niter) were 43.2,

43.2, and 46.6%.

9.9.2 Low pressure turbine blade

Figure 9.64 shows the 2D mesh constructed for flow past an LPT-106 turbine blade. The domain is periodic

in the pitchwise direction, which requires that the elements on those boundaries have the same streamwise

coordinate. This periodicity constraint leads to mesh skewness, which manifests itself the most near the
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Figure 9.63: Half-cylinder mesh before and after smoothing

Figure 9.64: LPT blade mesh before and after smoothing

leading and trailing edge of the blade, and adversely impacts the CFL of the grid and performance of the

pressure Poisson solver. As evident in Fig. 9.64, our mesh smoother makes the mesh homogeneous and

preserves the boundary layer resolving elements of the mesh during the smoothing process. The global

objective function, φ (7.4), is reduced by 66% by the mesh smoother.

Mesh smoothing leads to an overall decrease in κiter by 21.2% and reduces the pressure iteration count

by 12.9%. Additionally, the CFL of the mesh is improved by 9.8% by the mesh smoother, which allows the

use of a larger step size to time-advance the solution of the INSE.

9.9.3 Flow over a cylinder

Figure 9.65(a) shows the mesh constructed for analyzing the flow past a cylinder. There are 1472 elements

in the mesh and, as is evident in Fig. 9.65(a), the element sizes are nonuniform with bands of thin elements

extending from the cylinder to domain boundaries. The mesh anisotropy that is prominent around the

cylinder, is significantly diminished through smoothing, as evident in Fig. 9.65(b). With use of surface

smoothing on all exterior-boundaries of the domain, mesh smoothing reduces φ by 36%.

As a result of mesh smoothing, the relative magnitude of the maximum and minimum eigenvalue of the

upper Hessenberg matrix decreases by 60.3%, which results in decreasing the mean pressure iteration count

by 25.2%.
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(a) Original Mesh (b) Smoothed mesh

Figure 9.65: Comparison of original and smooth mesh for flow over a 2D cylinder

9.9.4 Boundary layer flow over a cylinder

Figure 9.66 shows the slice view of a 3D mesh (83,598 spectral elements) constructed for oscillatory flow

over a cylinder. Figure 9.67 shows the mesh around the cylinder before and after smoothing. As we can

see in Figure 9.67(a), the mesh contours are not smoothly changing at the boundaries of different geometry

decomposition regions that were used to construct the mesh. Mesh smoothing makes the transition smoother

and makes the elements uniformly sized, which leads to an improvement of 7.4% in κiter and 4% in Niter.

9.9.5 Flow over a hemi-sphere

Figure 9.68(a) shows the mesh constructed for studying flow over a hemisphere at Re = 2500. There are

a total of 2072 elements in this mesh. Figure 9.68(b) shows the improvement in mesh quality due to mesh

smoothing, where φ is reduced by 53%. Consequently, mesh smoothing reduces κiter and Niter by about

17.2% and 6.8%, respectively.

9.9.6 Piston cylinder

Figure 9.69(a) shows a slice view of the mesh for an internal combustion engine’s (ICE) cylinder. As evident

in Fig. 9.69(b), the original mesh has thin elements in the far-field because of the boundary layer resolving

elements below the valve stem. Smoothing this mesh alleviates this issue and makes the mesh more uniform,

Figure 9.66: Three-slice view of a 3D Mesh for oscillatory flow over a cylinder
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(a) Original mesh (b) Smoothed mesh

Figure 9.67: Slice view of the mesh before and after smoothing for oscillatory flow over a cylinder

(b) Original Mesh - slice view

(a) Original mesh -Three-slice view (c) Smoothed mesh -slice view

Figure 9.68: Comparison of original and smooth mesh for flow over a hemi-sphere

as shown in Fig. 9.69(c), which decrease φ by 71%. We note here that this calculation is an ALE application

where the base of the intake valve and cylinder moved based on the relation between the crank angle and

the piston height for a full operating-cycle of an engine.

As shown in Fig. 7.5, mesh smoothing preserves the boundary layer resolution of the mesh on the

valve stem. Consequently, numerical experiments show a reduction of 39.8% and 15% in κiter and Niter,

respectively.

9.9.7 Summary

The mesh smoother presented in Chapter 7 has been designed to maximize the computational efficiency of

SEM-based calculations. By using a combination of Laplacian smoothing and optimization-based approach,

the mesh smoother gets rid of performance degrading elements and decreases the overall run-time of the

calculation. Table 9.8 summarizes the results from various examples that we have presented for mesh

smoothing. For each case, we present the improvement in iterative condition number (∆κ), the number of
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(a) Original mesh - Three-slice view

(b) Original Mesh - slice view (c) Smoothed mesh -slice view

Figure 9.69: Comparison of original and smooth mesh for flow in an ICE

pressure iterations per time-step (∆Niter), and the overall run-time (∆T ) of the calculation. The results

reported here are obtained by averaging data from hundreds of time-steps for each example.

Case E Norig Nsmooth ∆Niter% κorig κsmooth ∆κ% ∆T%

Half-cylinder 93 44 25 43.2 35.1 8.4 76.2 20.9

Half-cylinder 372 37 21 43.2 64.1 20.6 67.9 25.4

Half-cylinder 1488 73 39 46.6 115.5 31.5 72.7 33.3

LPT 532 6.4 5.6 12.9 110.7 87 21.2 6.3

Cylinder 1472 7.1 5.3 21.2 9.3 3.7 60.3 8.7

Oscillating flow 83598 21.3 20.4 3.9 1094.8 1014.3 7.4 2.2

Hemi-sphere 2072 4.19 3.9 6.8 14.6 12.1 17.2 1.5

Piston cylinder 6784 22.7 19.3 15.0 97.5 58.7 39.8 8.3

Table 9.8: Comparison of number of iterations (Niter), iterative condition number (κ) and overall run-time

(T ) for original and smoothed meshes with the number of spectral elements (E) for each case.

The mesh smoothing method that is presented here has been made available open-source through the

incompressible flow solver, Nek5000. Researchers have reported as much as 40% improvement in the com-

putational efficiency of their SEM-based calculations through the use of our mesh smoothing method.
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Chapter 10

Conclusion & Future Work

In this chapter, we present a summary of the scientific contributions made by this dissertation and describe

possible avenues that we plan to explore in the future.

10.1 Summary

In this dissertation, we have presented the latest developments to the Schwarz-SEM framework. The starting

point of this work is the framework presented in [24], which is based on a predictor-corrector scheme for

time-advancing the solution of the incompressible Navier-Stokes equations in overlapping grids.

In Chapter 3, we have extended the Schwarz-SEM framework to support an arbitrary number of over-

lapping subdomains. This extension is made possible by introducing discriminators in a high-order inter-

polation library, findptslib, thich was originally developed for the monodomain SEM. These discriminators

enable findpts to discriminate between elements of different overlapping subdomains and choose computa-

tional coordinates for each interdomain boundary grid point to maximize the convergence of the solution

during the Schwarz iterations. We have also improved the computational performance of the interpolation

routine in findptslib, findpts eval, by reducing redundant sorting and communication cost for interpolating

interdomain boundary data at each time-step. Using these latest improvements, we showed that the im-

proved Schwarz-SEM framework maintains the spatial- and temporal-convergence of the monodomain SEM

solver.

Chapter 4 presented a novel velocity correction technique that ensures that use of interpolation for

the interdomain boundary data does not violate the divergence-free constraint of the INSE. Numerical

experiments show that this mass flux based correction reduces the number of corrector iterations that are

required at each time-step, thus improving the computational efficiency of the Schwarz-SEM framework.

Here, we also describe our methodology for maintaining fixed flow-rate through overlapping subdomains, a

capability that is crucial for modeling internal flow in periodic domains. A novel global integration method

is presented, which generates partition-of-unity functions in subdomains with an arbitrary overlap.
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We have used matrix stability analysis in Chapter 5 to analyze the stability properties of the predictor-

correct scheme for time-advancing the solution of the unsteady heat equation in overlapping grids. Using

a simple 1D example, we have showed that odd number of corrector iterations (Q) are more stable than

even-Q, when high-order extrapolation is used for the interdomain boundary data at the predictor step.

This stability analysis has allowed us to qualitatively capture the stability behavior that we had observed

in the Schwarz-SEM framework for solving the INSE, and has also led to the development of a novel PC

Scheme with superior stability properties.

Overlapping grids enable the use of grids of varying resolution to efficiently capture flow with a wide

range of spatial and temporal scales. In order to leverage the difference in the scales of the flow in different

subdomains, we have developed a novel multirate time-stepping scheme for the incompressible Navier-Stokes

equations. In Chapter 6, we present this predictor-corrector-based multirate time-stepping scheme, which

simultaneously time-advances the solution to the INSE in two overlapping subdomains using different time

step sizes. Here, we also extend the stability analysis framework for the single-rate scheme from Chapter 5

to analyze the stability properties of the multirate scheme. This stability analysis gives us a novel insight

into the impact of increasing the time-step ratio, η, to as high as 10. We find that the general stability

behavior of the multirate scheme becomes independent of η for η ≥ 3. Finally, we demonstrated that the

multirate time-stepping scheme preserves the spatial- and temporal-convergence of the monodomain SEM

solver.

Chapter 7 presented our mesh smoothing method, which is based on a combination of Laplacian smooth-

ing and constrained optimization. Since the quality of a mesh is constrained by the surface mesh, the mesh

smoother uses a novel approach for surface smoothing while making sure that the geometrical approxima-

tion errors are minimized during the smoother iterations. Chapter 7 also describes a method to monitor

the conditioning of the pressure Poisson system to understand how mesh smoothing improves the computa-

tional efficiency of calculations. The novel element-by-element parallel mesh smoothing approach presented

in this chapter has proven to be highly effective for large-scale spectral element meshes, and it is available

open-source through the SEM-based solver, Nek5000.

In Chapter 8, we presented timing results that show how different parameters of the Schwarz-SEM frame-

work impact the time to solution for turbulent flow problems. The results presented in this chapter indicate

that the cost of each corrector iteration is significant, which emphasizes the importance of the improved

predictor-corrector scheme that we have developed in Chapter 5. Here, we have also demonstrated the effec-

tiveness of multirate time-stepping in reducing the computational cost of a calculation in comparison to the

single-rate time-stepping scheme. With improvements to the interpolation routine, findpts eval (Chapter 3),
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a 3X speed-up is realized in high-order interpolation for the interdomain boundary data. Finally, we show

strong scaling results for the Schwarz-SEM framework on up to 40,000 MPI ranks. These scaling results

indicate that donor element search and interpolation account for only 10% and 1%, respectively, of the

total time to solution per time-step, for most turbulent flow calculations. Since the donor element search is

required only once for nonmoving grids, its cost is negligible. We also notice that the scaling for findpts and

findpts eval is not ideal, but that is expected since not all elements on interdomain boundaries are mapped

to separate MPI ranks.

The scientific contributions made through this dissertation are already having a real-world impact, as

demonstrated in Chapter 9. The Schwarz-SEM framework has been validated against several challenging

fluid-thermal applications, ranging from turbulent flow in a smooth channel to heat transer enhancement in

noncircular pipes with wire-coil inserts. The overlapping grid method is being used in collaboration with

researchers at different organizations to solve problems that are intractable with the monodomain SEM.

Some of the problems that we have presented in this chapter are (i) flow over rotating ellipsoids (Section

9.4), (ii) impact of denticles on the drag experienced by a shark (Section 9.5), (iii) thermally buoyant plume

in a stably stratified environment, which was modeled using the multirate time-stepping scheme with a time-

step ratio of η = 5 and 50 (Section 9.7), and (iv) laminar-to-turbulent transition in flow over a wall-mounted

cube (Section 9.8). In Section 9.9, we demonstrated the effectiveness of our mesh smoothing method in

improving the computational efficiency of spectral element meshes. This mesh smoother is available open-

source through Nek5000, and has reduced the computational cost of calculations by as much as 40%.

10.2 Future Work

The work done in this dissertation has helped advance the state-of-the-art of overlapping Schwarz-based

methods for the incompressible Navier-Stokes equations. In addition to the scientific contributions that we

have made through this dissertation, we have identified several avenues that we plan to explore in the future.

The results from stability analysis in Chapter 5 have shown that odd-Q are more stable than even-

Q for the PC-based time-stepping methods in overlapping grids (e.g., Fig. 5.4). We have found that a

high-order PC scheme exhibits this odd-even pattern even for ODEs, and preliminary results indicate that

this difference in stability between odd- and even-Q might be a property of all high-order PC schemes. A

survey of the literature shows that this property of PC schemes has not been analyzed, and we will look

to determine the fundamental reasoning behind this difference in stability of odd- and even-Q. Based on

the timing results that we have presented in Section 8.1, we will also look at PC schemes that can help us
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reduce the number of corrector iterations needed to ensure stability for high-order temporal accuracy in the

Schwarz-SEM framework.

In Chapter 6, we have presented a novel parallel approach for a predictor-corrector based multirate

time-stepping scheme for the INSE. In the current work, we restrict multirate time-stepping to only two

overlapping subdomains (S = 2). In future work, we plan to extend this multirate time-stepping approach

to S > 2. We also plan to develop an adaptive multirate time-stepping method, which can automatically

switch between single-rate and multirate time-stepping scheme (with variable η) during a calculation, based

on the CFL number of each subdomain.

In order to further expand the scope of the Schwarz-SEM framework, we plan on coupling LES/DNS

calculations with unsteady Reynolds-Averaged Navier Stokes (RANS) simulations for modeling large-scale

systems such as nuclear reactors. This capability will also require us to develop a more accurate method for

determining the distance function because RANS based calculations rely on the determination of each grid

point’s distance from the nearest wall for wall models. We plan to address the issue of distance function by

solving a time-dependent Eikonal equation, as discussed in Section 3.4. We also plan to couple the Schwarz-

SEM framework with the discontinuous Galerkin based SEM (DGSEM) solver that is being developed at the

Spectral Element Analysis Laboratory (SEAL) at UIUC. Coupling the Schwarz-SEM framework with the

DGSEM solver will allow us to tackle problems featuring subsonic or supersonic flow, which are intractable

in the Schwarz-SEM framework.
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Appendix A

Impact of Grid Stretching on the
Spatial Convergence in SEM

In order to understand how grid distortion impacts the spatial convergence in SEM, we consider the exact

Navier-Stokes eigenfunctions in a periodic domain Ω = [0, 2π]2, derived by Walsh [94].

In Section 2.3, we had used the Navier-Stokes eigenfunctions to demonstrate the exponential convergence

of the solution with polynomial order N , in SEM. A spectral element mesh with Ex × Ey equally-sized

elements was used for the numerical experiments, where Ex = Ey = 16. The 16× 16 mesh is shown in Fig.

A.1(a).

Here, we take this spectral element mesh with 256 elements and apply a stretching of the form

x̃ = x+ σy, (A.1)

ỹ = y, (A.2)

where x̃ = [x̃, ỹ] and x = [x, y] are the modified and original mesh coordinates, respectively. In (A.1), σ

is the grid-skewness factor. Figures A.1(b) and A.1(c) show the spectral element mesh with σ = 1 and 2,

respectively.

The advantage of using this approach for grid stretching is that as σ is increased, spectral element edges

that were originally vertical are stretched by a factor
√

1 + σ2, and the resolution is effectively decreased. As

a result, we can use these modified meshes to understand how grid stretching impacts the error and spatial

convergence for the SEM.

The initial conditions, boundary conditions, and parameters such as time-step size (∆t), polynomial

(a) σ = 0 (b) σ = 1 (c) σ = 2
Figure A.1: Spectral element meshes used to understand how grid stretching impacts the spatial convergence
and error in the SEM.
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(a) Original meshes (b) σ = 0 and 1 (c) σ = 0 and 2
Figure A.2: Spatial convergence of the solution with polynomial order N for different grids considered here.

order (N) and Reynolds number (Re) are the same that were used for the numerical experiment in Section

2.3. Figure A.2(a) shows the spatial convergence with N for the original grid (σ = 0) and the sheared grids

(σ = 1 and 2). As we can see, the decrease in the effective resolution of the grid leads to an increase in the

error. We note, however, that the exponential convergence of the solution is maintained despite the grid

stretching.

To account for the grid stretching, we increase the resolution in y-direction by increasing the number of

elements from Ey to (
√

1 + σ2Ey) in the y-direction. This increase in resolution leads to a 16 × 23 mesh

for σ = 1 and a 16 × 36 mesh for σ = 2. Figure A.2(b) shows the spatial convergence plot comparing

the original mesh with σ = 0 and σ = 1, and the mesh for σ = 1 with increased resolution. As evident,

increasing the grid resolution allows us to account for the grid stretching and recover the solution with the

same accuracy that we get on the original grid with σ = 0. Similarly, Fig. A.2(c) shows that increasing the

grid resolution in y-direction to roughly
√

5 times the resolution in the original mesh compensates for the

decrease in resolution due to grid stretching.
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methods,” AerospaceLab, no. 2, pp. p–1, 2011.

[41] S. Domino, “Sierra low mach module: Nalu theory manual 1.0,” SAND2015-3107W, Sandia National
Laboratories Unclassified Unlimited Release (UUR), 2015.

[42] N. Foster and R. Noack, “High-order overset interpolation within an OVERFLOW solution,” in
50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposi-
tion, p. 728, 2012.

[43] F. Bassetti, D. Brown, K. Davis, W. Henshaw, and D. Quinlan, “Overture: an object-oriented frame-
work for high performance scientific computing,” in Proceedings of the 1998 ACM/IEEE conference
on Supercomputing, pp. 1–9, IEEE Computer Society, 1998.

[44] A. Noorani, A. Peplinski, and P. Schlatter, “Informal introduction to program structure of spectral
interpolation in nek5000,” 2015.

[45] P. Fishcer, “gslib/gslib,” 2017.

[46] M. J. Brazell, J. Sitaraman, and D. J. Mavriplis, “An overset mesh approach for 3D mixed element
high-order discretizations,” Journal of Computational Physics, vol. 322, pp. 33–51, 2016.

[47] R. Noack, “SUGGAR: a general capability for moving body overset grid assembly,” in 17th AIAA
computational fluid dynamics conference, p. 5117, 2005.

[48] J. Sitaraman, M. Floros, A. Wissink, and M. Potsdam, “Parallel domain connectivity algorithm for
unsteady flow computations using overlapping and adaptive grids,” Journal of Computational Physics,
vol. 229, no. 12, pp. 4703–4723, 2010.

[49] S. E. Rogers, N. E. Suhs, and W. E. Dietz, “PEGASUS 5: an automated preprocessor for overset-grid
computational fluid dynamics,” AIAA journal, vol. 41, no. 6, pp. 1037–1045, 2003.

[50] J. G. Coder, D. Hue, G. Kenway, T. H. Pulliam, A. J. Sclafani, L. Serrano, and J. C. Vassberg,
“Contributions to the sixth drag prediction workshop using structured, overset grid methods,” Journal
of Aircraft, pp. 1–14, 2017.

[51] J. A. Crabill, J. Sitaraman, and A. Jameson, “A high-order overset method on moving and deforming
grids,” in AIAA Modeling and Simulation Technologies Conference, p. 3225, 2016.

[52] J. Aarnes, N. Haugen, and H. Andersson, “High-order overset grid method for detecting particle
impaction on a cylinder in a cross flow,” arXiv preprint arXiv:1805.10039, 2018.

[53] D. D. Chandar, “Assessment of interpolation strategies and conservative discretizations on unstruc-
tured overset grids in OpenFOAM,” in 2018 AIAA Aerospace Sciences Meeting, p. 0828, 2018.

210



[54] G. Chesshire and W. D. Henshaw, “A scheme for conservative interpolation on overlapping grids,”
SIAM Journal on Scientific Computing, vol. 15, no. 4, pp. 819–845, 1994.

[55] Y. T. Peet and P. F. Fischer, “Stability analysis of interface temporal discretization in grid overlapping
methods,” SIAM Journal on Numerical Analysis, vol. 50, no. 6, pp. 3375–3401, 2012.

[56] W. M. Chan, “Development of numerical methods for overset grids with applications for the integrated
space shuttle vehicle,” 1995.

[57] J. R. Rice, “Split runge-kutta methods for simultaneous equations,” Journal of Research of the National
Institute of Standards and Technology, vol. 60, 1960.

[58] E. M. Constantinescu and A. Sandu, “Multirate timestepping methods for hyperbolic conservation
laws,” Journal of Scientific Computing, vol. 33, no. 3, pp. 239–278, 2007.

[59] B. Seny, J. Lambrechts, R. Comblen, V. Legat, and J.-F. Remacle, “Multirate time stepping for
accelerating explicit discontinuous Galerkin computations with application to geophysical flows,” In-
ternational Journal for Numerical Methods in Fluids, vol. 71, no. 1, pp. 41–64, 2013.

[60] S. A. Canann, M. B. Stephenson, and T. Blacker, “Optismoothing: An optimization-driven approach
to mesh smoothing,” Finite Elements in analysis and Design, vol. 13, no. 2-3, pp. 185–190, 1993.

[61] L. A. Freitag, “On combining Laplacian and optimization-based mesh smoothing techniques,” ASME
APPLIED MECHANICS DIVISION-PUBLICATIONS-AMD, vol. 220, pp. 37–44, 1997.

[62] G. Taubin, “Linear anisotropic mesh filtering,” Res. Rep. RC2213 IBM, vol. 1, no. 4, 2001.

[63] S. A. Canann, J. R. Tristano, M. L. Staten, and T. Drive, “An Approach to Combined Laplacian and
Optimization-Based Smoothing for Triangular, Quadrilateral, and Quad-Dominant Meshes.,” in IMR,
pp. 479–494, Citeseer, 1998.

[64] P. Knupp, “Introducing the target-matrix paradigm for mesh optimization via node-movement,” En-
gineering with Computers, vol. 28, no. 4, pp. 419–429, 2012.

[65] P. M. Knupp, “A method for hexahedral mesh shape optimization ‡,” International journal for nu-
merical methods in engineering\, vol. 332, no. November 2002, pp. 319–332, 2003.

[66] L. A. Freitag, P. Plassmann, et al., “Local optimization-based simplicial mesh untangling and im-
provement,” International Journal for Numerical Methods in Engineering, vol. 49, no. 1, pp. 109–125,
2000.

[67] P. M. Knupp, “Hexahedral Mesh Untangling & Algebraic Mesh Quality Metrics.,” in IMR, pp. 173–183,
Citeseer, 2000.

[68] L. Branets and G. F. Carey, “Extension of a mesh quality metric for elements with a curved boundary
edge or surface,” Journal of Computing and Information Science in Engineering, vol. 5, no. 4, pp. 302–
308, 2005.
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[155] M. Walter, C. Mertens, U. Stöber, C. R. German, D. R. Yoerger, J. Sültenfuß, M. Rhein, B. Melchert,
and E. T. Baker, “Rapid dispersal of a hydrothermal plume by turbulent mixing,” Deep Sea Research
Part I: Oceanographic Research Papers, vol. 57, no. 8, pp. 931–945, 2010.

[156] L. C. Smith, M. Smith, and P. Ashcroft, “Analysis of environmental and economic damages from
british petroleum’s deepwater horizon oil spill,” Albany Law Review, vol. 74, no. 1, pp. 563–585, 2011.

[157] W. Schmidt, “Turbulent propagation of a stream of heated air,” Z. Angew. Math. Mech, vol. 21,
pp. 265–278, 1941.

[158] J. Lavelle, “Buoyancy-driven plumes in rotating, stratified cross flows: Plume dependence on rotation,
turbulent mixing, and cross-flow strength,” Journal of Geophysical Research: Oceans, vol. 102, no. C2,
pp. 3405–3420, 1997.

[159] A. F. Tomàs, A. C. Poje, T. M. Özgökmen, and W. K. Dewar, “Effects of rotation on turbulent
buoyant plumes in stratified environments,” Journal of Geophysical Research: Oceans, vol. 121, no. 8,
pp. 5397–5417, 2016.
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