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ABSTRACT

The selection of which model or models to use when studying a complex fluid

is of constant relevance in rheology, though often too little attention is paid

to framing this problem of selection such as to yield consistent, credible, and

meaningful results. In this thesis I provide a novel framework for identifying

the purpose of rheological models along with background on model selection

techniques and criteria, assess the state of and need for model selection in rhe-

ological literature, and perform several case studies investigating how model

selection techniques may be applied in rheology and note their advantages

and limitations. While there remains no single, straightforward technique for

selecting a model in all cases, the rheological literature so rarely acknowledges

this crucial step in analysis and often fails to sufficiently report methodology

relating to model fits, let alone selection, that even preliminary consideration

of this problem and the application of simple criteria such as the Bayesian

Information Criterion (BIC) may add significant value and validity to these

analyses. There remains even greater opportunity in the application of more

sophisticated methods such as the calculation of Bayes Factors and the for-

mulation of priors for rheological models. The background, review, case

studies, and examples presented in this thesis provide a jumping-off point for

an ongoing discussion regarding the place of these theories and techniques in

rheology while offering clear examples of their use and conclusions that may

be drawn from them.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The first choice that a rheologist must make when faced with a new complex

fluid material is whether or not the Newtonian constitutive model is sufficient

to describe its behavior [1]. This choice may often be straightforward to the

point of triviality, relegated to an implicit assumption, worth only the barest

mention, if any. Despite its simplicity, this choice represents a fundamental

decision that exists in virtually all rheological analysis: What model to use?

Rheological phenomena and behaviors are as diverse and numerous as

the material functions and constitutive equations which attempt to describe

them. Consequently, the choice of which model or models to use when con-

ducting any sort of rheological analysis is often nontrivial. Such a choice

must be based on the way in which the model for the fluid behavior is in-

tended to be used or else no meaningful criteria for what is “sufficient” can

be employed.

Bayesian inference provides a useful framework for approaching this prob-

lem in a rigorous way, but has yet to be widely adopted within the rheological

community, despite demonstrations of its applicability [2, 3, 4] and successful

use in other fields [5].

The goal of this thesis is to present actionable, pragmatic suggestions and

examples for applying the tools of Bayesian inference to model selection in

rheology. To this end, this thesis uses three broad categories to organize the

purposes of models in rheology: description, prediction, and interpretation.
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What data is available?

type of experiment, error, uncertainty, relevance

What are the candidate models?
class(es), method of evalua�on, model error, priors,

number of parameters, emprical, physical basis

What method is being used?
least squares, maximum likelihood, sampling, PTMCMC,

objec�ve func�on, simulated annealing

How are the fits evaluated?
RSS, by eye, quan�ty of interest, parametric uncertainty

How is the model being selected?
BIC, priors, Bayesian inference, ease of use

Descrip�on

Inference

Predic�on

Purpose Processing Applica on

Figure 1.1: A schematic representation of the steps that should go into
fitting and selecting a model. Before any fitting or selection is performed,
the purpose for the model must be considered. This purpose must then
guide the choices which follow: what models to consider, how to perform
the fit, what metrics to calculate and report, and ultimately which model(s)
to use. Although the categories are presented as distinct for ease of
illustration, there will often be overlap between them in how a model is
used.

1.1.1 Fitting for Description

Often, one wishes simply to represent data or a material response more con-

cisely than the data itself does. Whether this is for clarity or categorization,

what is of most concern in these cases is models or parameter values which

describe how one material is different from another. For this reason, rheolo-

gists fitting a model for descriptive purposes should concern themselves with

the certainty, or lack thereof, of these distinctions.

When estimating parameters for a model based on experimental data, there

will inevitably be uncertainty in the parameter values [6, 7]. Depending

on the quality of the data and the form of the model, there will be some

“error” associated with the estimated parameter values. When the intent is

to meaningfully distinguish two or more materials, one must consider how to

quantify and report this error. When values and their error estimates overlap,

one should exercise caution when reporting apparent differences. Conversely,

if values are very close but the associated uncertainty of these values is very

low, one may express confidence in the distinction between these materials

(on the basis of the selected model, at least).
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Most commonly used fitting routines and software will report an estimate

of uncertainty made with some assumptions which are not always valid for

rheological models. In fact, in many cases estimated error may imply the

feasibility of values which one knows to be entirely implausible; for exam-

ple, symmetrical, gaussian error about a mean may include a negative yield

stress. This may make one hesitant to even report these uncertainties, but it

should instead motivate careful consideration of what techniques are being

employed. Embedding one’s knowledge of what values are implausible in a

prior will prevent these mathematical aberrations and a thorough sampling

routine will allow for an expression of uncertainty that is accurate, meaning-

ful, and experimentally reproducible.

1.1.2 Fitting for Inference

Inferring material structure from rheology has been identified as one of the

ultimate aspirations of modern rheology [8]. For a material of interest a

rheologist may hypothesize several potential microstructures that would be

consistent with their observations. For each theorized microstructure, they

may then propose constitutive model which one can attempt to fit to some

data.

By fitting the models to the available data, one can begin to quantify

and refine their belief in what the microstructure may actually be; examples

include deducing fractal dimensions of particle networks [9], relating stimuli

responsive chemistry behavior to rheological properties [10], and investigating

the mechanism behind time-dependent behavior in a gel system [11]. If the

only criterion used in making this determination is the quality of the fit, then

more complex models will tend to be favored, regardless of how reasonable

they may actually be. In this way, model selection may be used in a manner

that is traditionally referred to as “hypothesis testing” [12]. The advantage

of doing so in a Bayesian framework is that the use of priors allows for

consistent, meaningful statements to be made about the relative plausibility

of each model based on the available data. Even in the event that there is

no preference for a model expressed in the priors, the priors assigned to the

parameters for each model will ensure that each model is properly penalized

for its complexity and rewarded for its correspondence to physical reality.
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In other circumstances, there may be a material for which the type of

microstructure is known, and a corresponding constitutive model is natu-

ral or singular in its ability to describe the behavior. If the parameters of

the model then correspond to microstructural features of interest, then the

interest in using the model may then be to learn about the precise nature

of the microstructure. In this case, the inclusion of a prior for the value of

this parameter is both useful and necessary for determining and expressing

certainty in its possible values; standard least-squares fitting methods may

yield uncertainties that are unreasonable and therefore uninformative.

1.1.3 Fitting for Prediction

Most rheological measurements occur in the simple flow situations of simple

shear or uniaxial extension, yet it is desirable to use rheological models to

predict flow behavior during complex flow situations such as in material

processing [8]. The selection of a suitable tensorial model for these predictions

may dramatically influence what can be predicted and how accurately; it

should be based on both the performance of the model where it is calibrated

and also the physical basis of the model which informs how it will perform

in other situations.

If there exists significant uncertainty in the preferred parameter values for

the model, this uncertainty should be propagated forward to the prediction.

Sometimes the uncertainty in the values of the parameters is not well rep-

resented by a single, easily propagated statistic; in such a case it may be

prudent to sample the parameter space to generate many predictions then

report statistics on that population of predictions or simply report them all,

as is often done in weather forecasting to account for uncertainty [13]. In

cases where there is not a single, strongly preferred model, ensemble modeling

may yield the most appropriate prediction; with predictions made by each

model are averaged with weights proportionate to their relative plausibility, a

technique that has been shown to improve out of sample predictions [14, 15].

There is never sufficient data to make a perfect prediction (if there were,

it wouldn’t be called a “prediction”) and there may not be a “correct” set of

assumptions to use for every problem. For this reason, it is imperative that

when making a prediction that any uncertainties are properly propagated
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and the assumptions are explicitly acknowledged such that the limitations

of the prediction are well-understood. Not only does this make predictions

more honest, but it makes them more valuable, as they may be repeated and

improved upon as new data is acquired or new assumptions are proposed.

1.2 Model selection criteria

It is desirable to use selection criteria that are both consistent and quantita-

tive, for whatever purpose a model is being selected (summarized in Figure

1.1). Consistent, so that those working from the same assumptions and

information towards the same purpose will come to identical conclusions.

Quantitative, so that the effect of differing assumptions or information is

easily understood. Bayesian methods for inference offer the means to fulfill

both of these goals [16], which are briefly summarized below.

1.2.1 Bayes factors

One of the greatest advantages of using Bayesian methods is the ability and

requirement to encode prior information into the process of inference [16,

12]. A prior must be formulated both for the individual models (usually

as single point values) and for the values of each of the model parameters

(usually continuous functions). These steps are analogous to the qualitative

judgments that are made when models are selected for a given problem and

when bounds are set (or not) in standard fitting routines. Bayesian methods

simply demand that the rheologist make these choices explicit, while also

providing the opportunity to encode more detailed information.

Bayes’ theorem

Confidence, or belief, in some model M , after observing some data D, may

be calculated using Bayes’ theorem

P (M |D, I) =
P (D|M, I)

P (D|I)
P (M |I) , (1.1)
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where P (D|M, I) is the marginal likelihood of the data and P (M |I) is the

prior belief in the model. The use of I to represent additional background

information or a given state of knowledge is standard practice. The denom-

inator, P (D|I), can be difficult to calculate (or even to meaningfully define

in some cases). One can avoid this difficulty by comparing beliefs in models

to each other. For example,

P (M1|D, I)

P (M2|D, I)
=

P (D|M1, I)

P (D|M2, I)

P (D|I)

P (D|I)

P (M1|I)

P (M2|I)

=
P (D|M1, I)

P (D|M2, I)

P (M1|I)

P (M2|I)
, (1.2)

where M1 and M2 represent different proposed models. The first factor after

the equals sign, the ratio of the marginal likelihoods of the data, is “mod-

ifying” the ratio of the the prior belief in each model. This factor, which

represents the way the data should influence one’s relative confidence in the

models, is called the Bayes Factor,

BF =
P (D|M1, I)

P (D|M2, I)
. (1.3)

Marginal Likelihood calculation

Obtaining the Bayes factors requires several steps of integration. The first

will be to “marginalize out” the unobtainable “true” data D̂,

P (D|M, I) =

∫
P (D|D̂,M, I)P (D̂|M, I)dD̂ . (1.4)

The expressions for the factors of the integrand are obtained by specifying

the form of the experimental and model errors. Taking the errors for each of

N points to be independent and normally distributed yields the product of

Gaussian functions,

P (D|D̂,M, I) = P (D|D̂, I)

=
1

(2π)N
∏
σE,i

exp

[
−
∑ (Di − D̂i)

2

2σ2
E,i

]
, (1.5)

P (D̂|M, I) =
1

(2π)N
∏
σM,i

exp

[
−
∑ (y(xi, θ)− D̂i)

2

2σ2
M,i

]
, (1.6)
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where y(xi, θ), σE,i, σM,i represent the model prediction, experimental error,

and model-form error at each point, respectively.

Next, dependence on the choices of specific parameter values must be in-

tegrated out. Until now, it has served to refer to a model of interest simply

as “M”, but now the model form, m, and particular values the parame-

ters might take (including model error), θ, must be distinguished. Taking

M = {m, θ} leads to

P (D|m, I) =

∫
P (D|m, θ, I)P (θ|m, I)dθ . (1.7)

To summarize, there are two marginalization steps. The first is to integrate

out any dependence on the unobservable, “true” data. One is able to do this

only after formally expressing beliefs about the experimental and model er-

rors as probabilities. The second step is to integrate out the dependence on

particular parameter values, which allows a stronger statement to be made

about the model itself. This step requires the expression of prior beliefs for

the values the parameters are expected to take and then uses beliefs to weigh

the model’s performance at every possible parameter value. A consequence,

and feature, of this weighting is to “penalize” models for having many pa-

rameters and to mitigate this penalty when the priors for the parameters

are narrow; narrow priors on the parameters likely result from them being

physically meaningful.

Ultimately, the determination of a Bayes Factor requires the evaluation of

the integrals

P (D|m, I) =

∫ [∫
P (D|D̂, I)P (D̂|m, θ, I)dD̂

]
P (θ|m, I)dθ . (1.8)

This integration is frequently difficult, as it is high-dimensional (# of model

parameters + 1) and not analytically integrable for most problems of interest.

Sampling methods have proved effective for estimating its value, but remain

difficult to implement.

1.2.2 Quality criteria

Since calculating Bayes factors is frequently difficult or expensive, many

alternatives have been proposed which aim to estimate the Bayes Factor
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or otherwise balance the descriptive capability of a fit model against its

complexity. Two such alternatives are the Bayesian Information Criterion

and Adjusted R2.

Bayesian Information Criterion

The Bayesian Information Criterion (BIC), first proposed by Schwarz [17],

serves as an estimate of the Bayes Factor under certain conditions and may

be calculated as,

BIC = N ln

(
RSS

N

)
+K ln (N) , (1.9)

where N is the number of observed data points used in the fit and K is the

number of free parameters in the fit model [18]. RSS is the Residual Sum of

Squares

RSS =
∑ (Di − y(xi, θ))

2

2w2
i

. (1.10)

Lower BIC values indicate a more credible model. With this in mind,

the first term may be viewed as “rewarding” the model for its ability to

closely reproduce the data while the second term “penalizes” the model for

its number of parameters.

In addition to Schwarz’s original derivation, others have offered derivations

from a frequentist approach [6] as well as showing that the estimate should

hold more generally than under the specific assumptions Schwarz used [19].

Other information criteria have also been proposed, such as AIC [20] and

WAIC [21], although only BIC is considered here.

Some have criticized that BIC cannot be used as an approximation to

a Bayes Factor due to its restrictive and potentially improper formulation

of priors [22]. Complete Bayesian formulations of problems, with thoughtful

priors and thorough reporting of a posterior distributions, will always provide

more meaningful and valuable insight into the performance of models than

any estimation or single point criterion for selection.

I believe that BIC has a place in rheological model selection despite these

criticisms. The use of a consistent, quantitative method for balancing model

complexity and goodness of fit, even a heuristic one, will improve the devel-

opment and use of models by making the consideration itself explicit.
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Adjusted R2

The Coefficient of Determination, orR2 value, is commonly used as a goodness-

of-fit metric [23, 24, 25, 26, 27] and is often one of the metrics reported by

fitting software packages [28, 29]. It can be understood as a normalization

of the RSS value for a fit by the Total Sum of Squares (TSS):

TSS =
∑(

Di − D̄
)2
, (1.11)

R2 = 1− RSS

TSS
, (1.12)

where D̄ is the mean of the observed data [30]. The primary benefit of

this metric is that it can be easily interpreted, with values closer to unity

indicating that the inadequacy of the model in describing the data is small

when compared to the total variability of the data.

This metric has been further extended to account for model complexity in

the form of Adjusted R2,

R2
adj = 1− RSS/dfError

TSS/dfTotal
, (1.13)

where dfTotal = N − 1 and dfError = N −K [30]. This criterion penalizes

models for their number of parameters k, similar to the way BIC does, so

that the value only improves (increases towards unity) if the improvement in

the fit overcomes this penalty.

Of primary importance to a rheologist is the use of any metric which

considers this balance between reproducing the data and limiting the number

of fit parameters. With that in mind, BIC can still be recommended over

R2
adj on the basis that it can be used along with prior confidence in the models

being compared and therefore encourages a Bayesian approach to selecting

a model, even if the priors are determined to be uninformative. It may

therefore be tempting to think of the R2
adj as providing a more “objective”

interpretation of the quality of a fit, but it and other metrics which neglect

to acknowledge priors, are merely less explicit about which subjective choices

have been made. One must be careful not to equate apparent objectivity with

validity; although there is room for improvement in both of these standards

within the rheological literature.
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CHAPTER 2

ASSESSING MODEL FITTING IN
RHEOLOGY

To determine the ways in which model selection techniques could be best

employed in the field of rheology, an assessment of the use of models in the

Journal of Rheology (JoR) was performed. For each of the 302 articles in the

journal spanning the years 2016 to 2018, several questions were asked: Was

a model fit to rheological data? What was the purpose of the model used?

Is the method used to fit the model(s) reported? Were metrics related to the

fit reported? Was the model used selected among several?

2.1 Classifying Rheological Models and Their Uses

For the purposes of determining whether or not a model was fit in a given

paper, the presence of parameter estimation was used as the primary criteria.

Thus a “model fit” is defined as use of an equation with parameters not

determined a priori, whose values are then estimated to calibrate the model’s

ability to describe some data. In some cases a model is calibrated as part

of a signal processing step [31, 32], where the data is not necessarily from

a rheological measurement; these cases are still counted, as they represent

an assumption about the structure of data relevant to to the measurements

being made. Additionally, while “modeling” does not strictly necessitate

the estimation of parameters [33, 34], attention was limited to cases where

it was present as they represent the most straightforward opportunities for

improvement in and expansion of methodology.

The purpose of a model being used in a paper was classified into three

broad categories: description, prediction, and inference. Description is the

simplest and most common use for a model, where its main advantage is

that it can represent data or a phenomenon in a compact manner, useful for

ordering or categorization of complex materials. Prediction is using a model
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to try to anticipate a behavior or outcome outside of an experiment (“out of

sample” prediction). The word “prediction” is employed frequently in papers

which fit models to refer to the value of a model equation evaluated as a

particular experimental point, compared to the values measured at the same

point; this is not, for present purposes, considered a prediction. Inference

is using a model, frequently through the interpretation of some physically

relevant parameter(s), to understand physical features of the material, such

as its structure. It should be noted that these categories are not mutually

exclusive, although each paper was categorized into only one based on what

appeared to be the predominant use of a model. Description is frequently

present among other uses, and a paper given this label does not necessarily

lack prediction or inference.

Determining methodology and reported metrics were based purely on what

was explicitly provided or referenced in a paper and its supplementary mate-

rial (where present). The level of detail given in reported methodology varied,

from identifying what software was used [35, 36, 37, 38, 39, 40, 41] to pro-

viding an objective function and optimization method were used [42, 43, 44].

There are several degrees of model selection present in JoR, implicit and

otherwise. Some models are presented almost without comment and are

simply assumed to be relevant and meaningful as they are used. More often,

the model used receives some sort of justification, either on a basis of physical

understanding or experience that leads to an expectation that the model will

be helpful. Additionally, a paper may list or provide examples of alternative

models which are not employed, perhaps with a brief comment as to why.

Finally, there are instances of explicit selection, where multiple models are

employed and their usefulness is compared; the criteria used and the depth

of the comparison varies. One common example, to be discussed later, is the

selection of the number of modes for use in a multimode Maxwell model, in

which a number is selected as “sufficient” without details given as to what

criteria are being used.

While an attempt has been made to categorize the papers as accurately

and consistently as possible, there is an inherent subjectivity involved in

doing so. Additionally, there is a practical limitation to the level of nuanced

understanding one can achieve of every paper assessed in a short period of

time. With these caveats in mind, I believe that meaningful conclusions may

be drawn from the trends observed in the application of these categories.
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Furthermore, it is my hope that any disagreement over a categorization I

have made prompts thoughtful discussion on the topic of how rheological

models are employed.

2.2 Summary of Fitting in Journal of Rheology

2016-2018

Based on these criteria, it was determined that in the three years 2016, 2017,

and 2018, of the 302 articles published in the Journal of Rheology, 215 (71%)

employed some sort of model fit involving parameter estimation. This is taken

as clear evidence that this practice holds substantial value within rheological

research. It is for this reason that the further details of the assessment may

be considered troubling.

Of those 215 papers which fit a model, 155 (72%) did not indicate what

methodology they used to do so. Of the 60 that did, 23 were incomplete

or vague in such a way as to make their fit difficult to reproduce, if not

impossible. For any article in which a conclusion is drawn from the results

of a fit, this omission should be viewed—at the very least—as a failure to

adhere to the principle of reproducibility in research. Depending on the

purpose to which the model is put, this lack of methodological detail may

call into question the validity of the conclusions themselves.

From the same set of articles in which a model was fit, 175 neglected to

make any sort of quantitative report of the quality of the fit or of uncertainty

in the values of estimated parameters. A failure to report these values does

not necessarily mean that the authors are misrepresenting their results; in

fact in many cases it may be a missed opportunity to strengthen the quality

of the conclusions drawn.

Not every use of a model necessitates or benefits as much from maximally

careful and thorough application of model fitting and selection techniques,

so it is important to contextualize the above observations with commentary

on what use the models in these articles were put to. A summary of the

categorization and inclusion of details relating to model fit and selection is

presented in Figure 2.1.

A large majority of the articles with fits (73%) in JoR use models in a

way that I classify as descriptive; this means the model is used primarily as

12



Absent Acknowledged Present

Description Inference Prediction

Selection

Reporting

Method

Model fitting in the Journal of Rheology years 2016-2018

Type

0% 100%

Figure 2.1: Summary of the 215 of the 302 articles appearing in JoR
2016-18, in which a fit was identified. The presence of stated methodology,
reporting of fit results, and model selection are each labeled as either
Absent, Acknowledged, or Present. Absent indicates that a method was not
mentioned, no quantitative measure of fit quality was provided, or no
reference was made to the process of selecting a model. Acknowledged
indicates that a method or procedure was named or described, ether a
measure of fit quality or parameter error was provided, or the process of
selecting a model was mentioned but no comparisons were made. Present
indicates that a method was described in sufficient detail to reproduce,
both fit quality and error estimates were reported, or an explicit
comparison is made between the performance of two or more candidate
models. Additionally, the breakdown into which of the three purposes each
model was identified as fitting into best is shown. See Table 2.1 (below) for
numerical data used to make this figure.

a lower-dimensional description of the data, a sort of “data compression”.

In these cases it is permissible—if not ideal—to leave out much of the detail

of the model fit and selection process. But if any additional conclusions are

drawn or comparisons made from the results of these fits, such as an ordering

of materials by some quantity of interest, then leaving out how the parameters

and their uncertainties were estimated means that these descriptions, and any

conclusions drawn from them, are incomplete.
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Is a model fit?
Yes 215
No 77
Unsure 10

Purpose
Description 155
Inference 39
Prediction 21

Methodology

Method 38
Vague 12
Procedure 22
None 154

Reporting

Both 4
Error 28
Quality 9
None 174

Selection

Selection 4
Justified 136
Alternatives 47
None 28

Table 2.1: Summary of the data used to generate the plot in Fig. 2.1
(above). See the caption of Fig. 2.1 for a description of each label.

The second-most common use for models in JoR that I identified was in-

ference (18%); instances where the results of a model fit are used primarily to

infer something unobserved, usually molecular features or material composi-

tion [11, 9, 10]. In these cases it should be considered absolutely imperative

to—at the very least—justify the choice in model with some theoretical ar-

gument or understanding of what the model and its parameters represent.

If there are multiple models considered that each represent a different hy-

pothesis regarding the structure of the material then it becomes incumbent

on the rheologist to do as much detailed model selection as is feasible or else

risk the results of their work being rightfully regarded as meaningless. In

instances where it is the value or values of a number of parameters which

lead to the inference, then reporting how the value was estimated and the

error associated with it should be considered necessary.

Lastly, the least common use to which models were put in JoR was pre-

diction (9%); the use of a model to predict behavior in a circumstance other

than that created in the experiment. Although this is frequently stated as a

goal for the development of a model, their use in this way does not appear

often. This is understood to be a product of the current focus of the journal
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on rheological complexity rather than flow prediction as opposed to an in-

dication that prediction is not of interest in rheology, as its significance has

been described elsewhere [8].

2.3 Noteworthy Cases

Categorization and summary are often at odds with nuanced understanding;

in order to gain additional insight from this survey of JoR several articles and

their use of models will be discussed in greater detail. By examining these

articles more closely, examples of both good practices and opportunities for

improvement will be highlighted.

2.3.1 Multimode Maxwell Model

Fitting a multimode Maxwell model to data was among the most common

uses of model fitting and was the primary illustrative example used by Freund

and Ewoldt in their 2015 article demonstrating the application of quantitative

model selection in the same journal [4]. Wang et al. follow in the same spirit,

citing Winter and coworkers [45, 46], in their use of criteria to “best fit the

data with the minimum number of modes” or “converge to a ‘parsimonious

spectrum’ ” [47]. In doing so, they provide the objective function used for

optimization and reference to the code that was used but neglect to provide

quantitative results for the value of a selection criterion or uncertainty. As the

purpose of the models in this work was determined to be largely descriptive,

relating the behavior of hydrogen-bonded polymer complexes to observed

structure parameters, this level of detail is appropriate.

When models are being used to infer structural parameters from rheolog-

ical data, the standard for the level of detail provided is much higher. Du

et al. observe a “large deviation” from a single Maxwell mode in their work

and theorize that this is due to the coexistence of both trans- and cis-form

of a model polymer in solution [10]. They attempt to confirm this by a fit-

ting a generalized Maxwell model with two modes and conclude that their

hypothesis is correct because the two mode model fits “much better” and is

consistent with the presence of two isomers [10]. They fail to describe their

fitting methodology in any detail, to report any quantitative measure of the
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quality of the fits, or even comment on the fact that a model with more

modes will always better reproduce the data. The absence of these features

in their work dramatically limits the strength of the conclusion drawn from

the data and fit versus what could be argued if they offered a quantitative

statistic like BIC.

Similarly lax treatment of the selection of a number of modes is seen in the

work of Dessi et al. who use a multimode Maxwell model in their finite ele-

ment analysis to “perform a parametric study of the effects of the aspect ratio

in the cross-sectional stress distribution and the linear viscoelastic torsional

response [of industrial rubbers]” [48]. To this end, they do not appear to

require a model that relates to a particular material structure, just one that

captures the material response under the conditions of interest. A process of

fitting the model with progressively more modes until “sufficient accuracy” is

described [48]. While a more detailed description of the methodology would

be preferable and lend itself better to reproducibility, it does not appear to

have significant bearing on the results. If a model is being employed in this

way, than this treatment of selection may be considered adequate, if not

ideal.

2.3.2 Other Examples

An exceptional level of detail in describing fitting methodology is found in

the work of Horner, Armstrong, Wagner, and Beris; who formulate, fit, and

compare to others a thixotropic and viscoelastic model to dynamic rheological

data of human blood [44]. To this end they use a multiparameter global

optimization method based on that which was proposed in the earlier work

of Armstrong et al. [49]. The objective function used in the optimization is

provided and the method for determining error in the parameter estimation

is explained. First and foremost, this paper should be lauded as an example

of the level of detail and thought to give to the process of fitting rheological

models. With that in mind, there are several ways in which it could be

improved.

Within this thesis the models presented are being evaluated primarily on

their ability to reproduce data, and thus I have counted this article as being

primarily concerned with description. The authors also discuss the opportu-

16



nity that may exist to use rheological characterization of blood as a method

of identifying medical conditions [44], which is descriptive in the sense that

it categorizes behavior. For the purpose of comparing models’ ability to re-

produce data, reporting a quality of fit metric would have strengthened these

comparisons by quantifying the improvement; which could also be weighed

against increasing number of parameters in the proposed model (perhaps

with a metric that penalizes them, such as BIC [17]). The authors also

give attention to the value of the error in the parameter estimates and how

they may be interpreted. The conclusions that may be drawn from the error

values are limited by the fact that they are based on single point value esti-

mate for the parameters; a more complete view of the uncertainty in these

values may be obtained by looking at their full, calculated or sampled dis-

tribution [50, 22]. Although some reframing of the problem with priors may

be necessary to obtain the proper distribution, it is possible that the more

difficult numerical work can be achieved through some modification to the

optimization algorithm [49], which already employs many of the techniques

to have been found useful for sampling posterior distributions and evaluating

Eqn. 1.8 [5].

The difficulty of implementing these methods having been remarked upon,

it is worth considering what improvements can still be made when using

them is not deemed practical or worthwhile. Lang uses model fits to infer

molecular mass distributions (MMD) in polymer melts; they report that

they used the Levenberg–Marquardt algorithm and compare error in their

calculated MMD to that determined by other methods [51]. By evaluating

a model’s performance in precisely the way it is proposed to be used, Lang

avoids the use of more abstract methods of comparison. Still, more details

such as the objective function used in the fitting process and some measure

of the quality of the fit would aid other rheologists who wish to reproduce or

reapply this work.

Evaluation of the performance of a model does not always eliminate the

need for thoughtful comparison; sometimes the differences in performance

need further contextualization. Varchanis et al. [52] compare two tube-theory

based constitutive models in their ability to describe and predict simple and

complex flows of entangled linear polymeric liquids, stating that “An ideal

model... should be able to predict the actual properties of such materials,

have the minimum possible number of material parameters, and be computa-
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tionally manageable in complex flows”. Despite this statement and a direct

comparison of the models’ abilities to predict flow with experiments, no di-

rect treatment is given to the problem of limiting the number of material

parameters; modes are added to the models until some nebulous sufficiency

criterion is achieved.

Even in the cases of inference, where standards should be higher, small

additions can be a significant improvement. In the work of Zhang et al.,

compatible bilayer systems are investigated in a manner typical throughout

the paper surveyed; a variety of rheological experiments are performed on a

model material system and models to describe the observed behavior are pro-

posed [53]. This particular example has been categorized as inference due to

its reported ability to determine an unobserved property of the system, the

tube diameter. This value was determined by fitting a model to data with a

“finite difference Levenberg-Marquardt routine”; a correlation coefficient was

reported and plots of the model curve and the data shown; alternative models

for describing this data were also discussed, particularly that they were in-

adequate for describing “certain experimental observations” [53]. The model

proposed in this work is therefore presented as improved both in its ability to

better describe certain observations and also its capacity to estimate a phys-

ical quantity of interest. Providing even rudimentary estimates of parameter

uncertainty and its impact on the inference of physical values would provide

a basis for comparison against other methods, more firmly establishing its

value in rheological analysis of materials and their composition.

2.4 Best Practices

Having evaluated several particular articles, identified their strengths and

areas of potential improvement, these comments and suggestions can be gen-

eralized into a set of best practices to apply when fitting models to rheological

data. There is no one-size-fits-all recipe for model fitting and selection, but

by following some general guidelines one can achieve a standard of clarity,

reproducibility, and significance that meets or surpasses the current state of

the rheological literature.
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1. Identify purpose

The first step should always be to consider for what purpose a model is being

used. The categories laid out in this thesis are not the only—or likely even

the best—way to frame this question, but they serve as a practical place to

start. What can be said, made clearer, or achieved only after a model is

calibrated to the data? The answer to this question is precisely that which

the rheologist must strive to express with the utmost clarity.

2. Determine what features to report

Perhaps the simplest way to add clarity, and one that many papers published

in the Journal of Rheology still fail to achieve, is to report what method was

used to estimate the model parameters. Regardless of what method was

chosen and how, reporting it in sufficient detail to reproduce the estimates

(algorithm, objective function, priors, code, etc.) will always make one’s

results clearer. Even in cases where a “fit by eye” was performed, where

the parameter values were manually adjusted until the fit “looks good”, one

should report so and comment on what qualitative criteria were considered

when deciding that the fit was sufficient. This will highlight what features

in the data were considered significant to the work and communicate the

relative unimportance of precise values.

In cases where precision is a matter of greater importance it follows that

one should quantitatively report the quality of any fits performed and un-

certainty in estimated values. Quality of fit metrics, such as residual sum

of squares and coefficient of determination, are important when one’s pri-

mary interest is in how closely a model can describe data; especially when

comparing models. No matter how a model was fit or how closely it repro-

duces the data, parameters and other quantities of interest estimated from

a fit will have some error or uncertainty associated with them. Some soft-

ware and fitting packages will yield an estimate of parameter uncertainty;

which should be remarked upon when it is the only value available. Further

consideration of sources of experimental error, simplifying assumptions, and

inherent model inaccuracy in a particular analysis can lead to an improved

estimate of uncertainty; as the assumptions used in fitting software are not

universally applicable.
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3. Consider basis for selection

It is because all models are—to some degree—inaccurate that the choice of

a model cannot be based entirely on which can fit the data the most closely.

Selection of models based solely on this criterion will inevitably favor models

with more parameters, but not necessarily those which are most useful. It

is therefore necessary to apply additional consideration to determine which

model(s) to use. As above, a rheologist is left to decide exactly what method-

ology and criteria to apply to make this determination. It is the position of

this thesis, and others [16, 12, 5, 4], that Bayesian inference methods are a

consistent, practical, and flexible approach to this end. Yet the implementa-

tion of these methods remains intimidating, and beyond the scope of many

works, so a case study examining and comparing this approach with others

will follow.
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CHAPTER 3

USING MODEL SELECTION IN
RHEOLOGY

Having performed an assessment of the state of model selection in rheology

and outlined a general set of best practices, two case studies demonstrating

methodology for fitting and selecting a rheological model shall be presented.

Rather than explore the numerous potential applications for rheological mod-

els that require fits, which each require their own specialized considerations

as discussed above, simple illustrative examples using easily calculated fit

statistics will be performed. Two classes of models are considered: one which

describes steady shear and one which describes thixotropy and steady shear,

each calibrated to a corresponding model material. In order to compare the

performance and credibility of the models within each class, RSS and BIC

are calculated and their uses and limitations are discussed. In doing so, these

practices that are relevant and accessible to the widest number of rheologists

are demonstrated and discussed.

3.1 Materials and Methods

3.1.1 Shear-thinning material: Carbopol

Carbopol is a commonly used model complex fluid, known to exhibit a yield

stress at sufficiently high concentrations [54]. It is an aqueous suspension of

microgel particles which swell in the water environment, capable of forming

a jammed system which creates the aforementioned yield stress. An aque-

ous solution of 0.2 wt.% Carbopol 940 was both prepared in the manner of

Blackwell et al. [55] and characterized as described below by Piyush Singh

and Scott Rogman.

Rheological characterization was performed on a TA Instruments AR-G2

rotational rheometer using a parallel-plate geometry held at 25 degrees Cel-
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sius. Experimental protocols included a steady flow sweep from 0.01 to

1000 s−1 and creep tests performed to probe low stress behavior. A sol-

vent trap was utilized to prevent evaporation during the creep tests, which

spanned a longer period of time. Corrections were applied to apparent shear

stress to account for the non-uniform strain rate present in parallel plate

geometry [1] for both the steady flow and creep data; the corrected data is

plotted in Figure 3.1.
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Figure 3.1: Data collected for carbopol 940. Steady shear data is shown in
(a), the 6 lowest strain-rate points were determined form creep tests shown
in (b) by estimating a constant shear rate at long times.

Ten empirical constitutive models developed for describing shear-thinning

and yield stress behavior were fit and considered for selection. Five of the

models are traditional yield stress models frequently employed in rheological

literature [56, 57, 58, 59, 60]. These models all exhibit diverging viscosity

at low shear rates, a feature that poses potential difficulty in numerical sim-

ulations using these models and which has received criticism on theoretical

grounds [1]. Models have been proposed which avoid this problem either

through the regularization of the viscosity function or new model forms alto-

gether; three such models are also fit to the data [61, 62, 63]. Additionally,

two novel model forms are introduced to further illustrate considerations

that go into model fitting and selection. These “naive expansion models”

are formed simply by adding additional terms to the 1-D forms of existing

models as,

τ = τm[γ̇; θ] +
∑

Anγ̇
1/2N . (3.1)
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The coefficient of each additional term is treated as a free parameter to be

estimated along with the others in the model and it is known a priori that

each additional term will either improve or not affect the ability of the model

to describe the data. All of the models fit in this section are summarized in

Table 3.1.

3.1.2 Thixotropic material: Fumed Silica Suspension

A dispersion of fumed silica particles (2.9 vol.%) in a mixture of paraffin oil

(69 wt.%) and poly(isobutylene) (PIB) (31 wt.%) was developed by Dullaret

and Mewis as a model thixotropic material [64]. The material exhibits (a

tunable) thixotropy due to the build-up and break-down of flocs of colloidal

particles as well as an apparent yield stress [64]. This material was refor-

mulated and characterized for the purpose of testing constitutive models by

Armstrong et al.; steady shear data and transient step-down data are taken

from the supplementary material of that work and used to fit candidate mod-

els models [65].
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Figure 3.2: Thixotropic data for fumed silica suspension from
supplementary material of Armstrong et al. [65]. (a) shows step down tests
from 5.0 s−1 to values indicated in legend. b) shows steady shear flow.

Three thixotropic constitutive models are fit to this data; all of the “struc-

tural kinetics” variety as described by Mewis and Wagner [66]. They share

a common rate equation which describes the evolution of a structure param-

eter λ(t) and are summarized in Table 3.2. [67, 68, 69]. These models were
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chosen for their relative simplicity, commonality, and use as bases for the

development for more complex models.
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Model Form Yield stress?
#

Parameters

Rate equation: dλ
dt

= −k1(λ)γ̇ + k2(1− λ)
Moore (1959) τ = η0γ̇ + ηλ(λ)γ̇ None 4
Worrall (1964) τ = η0γ̇ + ηλ(λ)γ̇ + τy Constant 5
Toorman (1997) τ = η0γ̇ + ηλ(λ)γ̇ + τy(λ) Structural 5

Table 3.2: Structural kinetics thixotropic models fit in this thesis. Each
model uses the same rate equation, but vary in inclusion of yield stress.

3.1.3 Fitting and Selection

The candidate constitutive models were fit to the data using the lmfit pack-

age for Python [29]. The Levenberg-Marquardt method is used by the soft-

ware to minimize the objective functions (defined below). The minimiza-

tion was performed repeatedly from many different initial parameter values

(N = 10000) generated from Latin Hypercube Sampling (LHS) to verify that

a global minimum was found. This method for finding the global minimum

is relatively unsophisticated, but the results did not indicate the presence of

many local minima in the objective function over a wide range of parameter

initializations and were thus interpreted as sufficient.

Additional consideration was necessary to fit models to the thixotropy data

(Sec. 3.1.2) due the inclusion of data taken from multiple experiments of dif-

ferent types and under different experimental conditions; each requiring the

evaluation of a different form of the candidate constitutive equation. Most

standard fitting packages do not support fitting a single model to multiple

sets of data with these requirements and it is common practice within rheo-

logical literature to fit differing model forms to subsets of the data in order

to estimate the model parameters sequentially. The parameter estimates in

this thesis are obtained by fitting the model to all of the available data simul-

taneously ; a method that is more consistent with the statistical assumptions

presented below and which is more permissive of sampling as discussed in

Appendix A.

The objective function used in the minimization is defined as

RSS =
N∑
i=1

(τm[γ̇i, ti; θ]− τi)2

τ 2i
, (3.2)

where τi is the measured stress value and τm is the model evaluation; this
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is the residual sum of squares with the value of the data point chosen as

the weighting. This weighting function is frequently employed in rheology to

avoid artificially weighting data with greater absolute value in experiments

where the numerical measurements for a given observed quantity range over

one or more orders of magnitude [70, 71].

This choice of residual is consistent with the assumption that the experi-

mental error for each data point is independent and Gaussian, the associated

uncertainty is constant relative to the scale of the data, and that there is no

model error (the model represents the underlying data-generating process, or

“truth”, exactly). These assumptions may be represented mathematically as

τi = τtrue,i + εi , (3.3)

τtrue,i = τm[τi, ti; θ] , (3.4)

εi = NormDist[0, τ 2i ] = N [0, τ 2i ] . (3.5)

Under the above assumptions, the least-squares problem of minimizing

Equation 3.2 and the maximum likelihood estimate (a more purely statistics-

based single-point method of parameter estimate, “MLE”) are equivalent [6,

71]; both of which may be justified through a Bayesian approach with the

additional assumption that the prior for the parameter values is uniform

(constant) [12]. This choice is not unique or usually even the best justified;

Sing et al. have demonstrated that estimating data uncertainty as in Equa-

tion 3.5 is not, in general, valid [71]. Even so, this approach to parameter

estimation remains among the most used in rheological studies and is conve-

nient, so it will be used in this study. The results will be examined in light

of what has been discussed, their limitations, and possible next steps.

3.2 Results

3.2.1 Shear-thinning models

The standard shear-thinning models evaluated with the parameters from the

fitting procedure described above are plotted, along with the data used in

the fit, in Figure 3.3. Among the yield stress models, it is not obvious which

is the best fit just by looking at the plot. The Bingham and Casson models
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perform well at the low shear rate data, but the other models appear to

better describe the data at higher shear rates. Among the regularized models,

Papanastasiou’s regularization of the Herschel-Bulkley (PHB) model clearly

adheres to the data far better than the other models. With that exception,

it is otherwise difficult to compare the quality of fit of these models “by eye”.
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Figure 3.3: Comparison of the standard shear-thinning models with best fit
values for Carbopol data.

Yield stress models

Bingham Herschel-Bulkley Casson
Generalized

Casson
Shulman

σy
41.6
±3.73

σy
27.1
±3.07

σy
39.2
±2.97

σy
25.93
±3.20

σy
24.2
±3.58

η∞
0.39
±0.08

k
33.9
±5.11

ηp
0.19
±0.04

K
2.69
±0.42

ηp
1.3× 10−4

±2.9× 10−4

- n
0.26
±0.03

- n
0.20
±0.03

n
6.46
±1.11

Table 3.3: Parameter values for yield stress models determined from
least-squares fit. Error estimates are the standard error values calculated
from the covariance matrix.

The fit statistics (Table 3.5) offer additional clarity and insight. Unsurpris-

ingly, the PHB model has the lowest RSS value, confirming what was easily

seen in the plots. In terms of RSS values, Bingham and Casson models were

outperformed by the other yield stress models and for this data the regu-

larized models performed better overall. The BIC metric estimates model

credibility, penalizing over-parameterization (see Sec. 1.2.2). BIC values
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Regularized models
Cross Carreau-Yasuda Papanastasiou

η0
2.24× 107

±1.11× 107 η0
8.48× 106

±1.69× 106 σ0
46.6
±0.75

η∞
0.28
±0.04

η∞
0.28
±0.03

m
1.91× 105

±8.87× 103

k
7.16× 105

±4.64× 107 k
2.48× 105

±6.78× 104 k
11.6
±0.82

n
0.05
±0.01

n
0.5
±0.009

n
0.45
±0.01

Table 3.4: Parameter values for regularized models determined from
least-squares fit. Error estimates are the standard error values calculated
from the covariance matrix.

suggest that among these models for this data, an additional parameter is

always “worth it”; the penalty incurred by the additional parameter is always

outweighed by the improved quality of the fit. That is, the best (lowest) BIC

is for the PHB model with 4 parameters.

Fit Statistics
Model RSS BIC # Parameters
Bingham 4.67 −52 2
Casson 2.97 −66 2
Herschel-Bulkley 1.21 −90 3
Generalized Casson 1.10 −93 3
Shul’man 1.03 −95 3
Cross 0.773 −100 4
Carreau 0.617 −107 4
Papanastasiou 0.0394 −193 4

Table 3.5: Fit statistics for the standard models fit to Carbopol data. Note
that BIC decreases (improves) monotonically with decreasing (improving)
RSS. By both criteria, Papanastasiou’s Regularization of the
Herschel-Bulkley model is preferred.

This raises the question: under what set of circumstances will BIC indi-

cate that an additional parameter is not justified? This question is what

motivated the application of naive expansion models. Additional terms were

added to both the Bingham (the simplest) and the PHB (best fitting) mod-

els. The results are summarized in Figure 3.4 along with those from the

standard models fit.
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As additional terms, and therefore parameters, are added to each model,

the closeness of the fits achieved are—unsurprisingly—improved. Eventually

this improvement saturated as the additional terms offer no improvement

to the fit. Once 4 additional terms are added to the Bingham model and

5 terms are added to the PHB model in this way, the penalty imposed by

BIC finally overcame the marginal improvement. And thus, it is the PHB

model with 5 additional terms (4PHB) that is ultimately suggested by the fit

statistics (RSS= 1.22×10−3 and BIC= −283) and therefore the best justified

according to the criteria used here. Observe the excellent fit of this model

compared to the standard PHB in Figure 3.5.
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3Bingham

RS
S

Parameters
(a) Residual comparison

2 3 4 5 6 7 8 9 10 11
-300

-250

-200

-150

-100

-50

4PHB

Papanastasiou

Bingham
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(b) BIC comparison

Figure 3.4: Graphical comparison of fit statistics for fit models. The
standard rheological models fit are represented by blue symbols. The
“naive expansions” to the Bingham (NBingham) and Papanastasiou’s
Regularization of Herschel-Bulkley (NPHB) models are represented by
green and red symbols, respectively. Notable models are labeled for
convenience.

3.2.2 Thixotropy models

The thixotropy models, fit simultaneously to the step-down and steady shear

experiments, are plotted in Figure 3.6. As before, The difference in model

performance in difficult to discern visually, but there are several notable

features that may be commented on. The fit statistics (Table 3.7) offer more

clarity than the graphical representation and suggest that the Worrall model

is the best fit and most credible.
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Figure 3.5: Behold the 4PHB; 9 parameters and preferred according to
BIC. Nonmonotonic behavior is observed both within the range of available
data and at high shear rates.

The Moore and Worrall models predict similar low shear rate behavior,

due to the the yield stress value in the Worrall model being estimated as so

low as to be unobservable in this range of shear rates; likely due to the simul-

taneous fit “forcing” the yield stress to be low in order to accommodate the

step-down data. While this might be viewed as a drawback of simultaneous

fitting, sequential fitting is only an ad hoc solution; at best loosely justified

by a concept of differing sensitivity to certain parameter values. Some al-

ternatives which follow more consistent reasoning include modified objective

functions (which may weight the steady data more, justified through assump-

tions regarding model or experimental error) and sampling methods (which

would reveal a wider range of yield stress values than the much “choosier”

single-point maximum likelihood or least-squares estimates, see Appendix

A).

At high, steady shear rates, the three models appear to be in close agree-

ment. This can be seen as well in the values estimated for η0 for each of

the models (Table 3.6). Due to the structural similarities of the models,

they predict similar, Newtonian-like behavior at high shear rates, when the
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structure of the material is completely broken down (λ→ 0).
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Figure 3.6: Comparison of thixotropy with best fit values for fumed silica
suspension data, determined by a simultaneous fit to all the available data.

Thixotropy models
Moore Worrall Toorman

η0
1.59
±0.07

η0
1.54
±0.05

η0
1.38
±0.06

ηt
2.60× 104

±1.15× 104 ηt
1.97× 104

±6.16× 103 ηt
70.4
±6.15

k1
1.97
±0.09

k1
1.36
±0.07

k1
0.67
±0.05

k2
9.88× 10−4

±4.39× 10−4
k2

8.72× 10−4

±2.74× 10−4
k2

0.16
±8.67× 10−3

-
-
-

τy
0.73
±0.06

τy
8.89
±0.32

Table 3.6: Parameter values for thixotropy models determined from
least-squares fit. Error estimates are the standard error values calculated
from the covariance matrix.

3.3 Case Study Conclusions and Outlook

Despite its excellent agreement with the data, there is little expectation that

the 4PHB model is going to see widespread adoption throughout the rhe-

ological community, even for purely descriptive purposes. Even though it
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Fit Statistics
Model RSS BIC
Moore 4.79 −820
Worrall 2.77 −935
Toorman 2.98 −920

Table 3.7: Fit statistics for the models fit to fumed silica suspension data.
By both criteria, the Worrall model is preferred.

appears to be “justified” by the analysis above, little consideration was given

to the purpose the model would be used for. Clearly, the 4PHB model offers

virtually no inferential value, as its parameters are the result of a naively mo-

tivated expansion of an already empirical model and offer no special insight

into the structure or behavior of the material. It may perform adequately in

a predictive capacity under certain conditions, as it smoothly passes through

much of the data; although the non-monotonicity between the steady shear

and creep data and at shear rates above those seen in the experiment should

give a would-be simulator pause.

Even as a purely descriptive model, which may be considered those with

the loosest standards for model selection (See Sec. 1.1.1), the 4PHB model

leaves much to be desired. While the BIC value has indicated that the

model’s 9 parameters are not enough to outweigh its excellent fit, a rheol-

ogist wishing to summarize their data may still prefer the standard PHB

model, or even the cruder and more compact Bingham model due to its low

dimensionality. In many works, what is of primary concern to a rheologist is

the yield stress of a material [43, 72] and it is determining and communicat-

ing this value that is most important. In such cases, one may not even wish

to include the creep data in the fit, as it does not increase accuracy of the

fit value of yield stress. This concern could be dealt with more rigorously by

including a form for the model error other than what is presented here (ie.

yield stress models have large error at low shear rates).

Ultimately, the scope of the thixotropic models considered in the thixotropy

case study is too narrow to have revealed much insight into the applicability of

these fit statistics. Additional models, both with more parameters and differ-

ing forms must be compared in order to begin to see where these single-value

statistics may perform well or poorly (consider integral approaches as dis-

cussed by Mewis and Wagner [66], stretched exponential methods proposed

32



by Wei, Soloman, and Larson [73], the Delaware model [74], or Armstrong

et al.’s extension of the Delaware model [65]).

The RSS and BIC fit statistics are fundamentally limited in their ability

to guide model selection, but this should not be taken to mean that they are

without value (the analysis Appendix A is consistent with the BIC in the

examined instance). These quantitative measures provide a much-needed

basis for the comparison of different models and belong in any discussion

pertaining to model selection. What they do not provide is a replacement

for common sense, experience, and thoughtful consideration of the applica-

tions at hand. More complex methods of Bayesian inference allow for the

codification of such subjective, yet useful, information into quantitative pri-

ors. For example, the knowledge that the naive expansions of PHB predict

non-monotonic behavior that is inconsistent with rheologists’ experience with

similar materials might be expressed in a prior credibility that is 100 times

lower than the more traditional model(s); the naive expansion models would

then need to perform significantly better in reproducing the data to overcome

this preference. Furthermore, a rheologist is unlikely to assign a narrow prior

range to the value of the parameters that are added in the naive expansions;

these broad priors will lead to a greater penalty in the full Bayesian analysis.

There remains great opportunity in applying these methods to rheological

model selection.
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CHAPTER 4

CONCLUSION

4.1 Is it really worth the trouble?

If anything has been learned through the work of this thesis it is that the

problem of model selection in rheology belies a single, prescriptive solution.

The formulation and subsequent evaluation of the “full” Bayesian evidence

integral of Equation 1.8 may be theoretically sound for the purposes of select-

ing a model, but it is difficult to recommend—especially within a community

that still struggles to frame model selection problems as such. Though, the

tone adopted here should not be interpreted as defeatist. In fact, the com-

plexity of this problem may be viewed optimistically; the number of ways in

which a rheological study may be improved by the use of even rudimentary

model selection techniques are many, one must simply choose to consider

them.

In Sec. 1.1, a framework for understanding the purpose of rheological

models was presented and in Sec. 2.2 the ways in which modeling for these

purposes may be improved or strengthened through thoughtful selection. It

is vital to consider the purpose to which a model is being set to when de-

ciding whether or not and what types of selection techniques are warranted.

Generally speaking, selection is minimally important for description, moder-

ately important for prediction, and maximally important for inference; but

specific cases always need be examined in order to determine what is most

helpful.
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4.2 Future Work

There exist many opportunities for continuation and expansion of the work

that has been presented here. First and foremost, the exploration of the

ways in which the evaluation of the integral Eqn. 1.8 may guide and inform

model selection. While this method may not be viable for many or even most

cases in rheology, it holds an important position as a metric against which

to test other, simpler techniques such as BIC; a more thorough case study

comparing their performance is certainly warranted. The relatively simple—

in form—shear-thinning models studied in Sec. 3.1.1 are ripe for beginning

this work, as their evaluation should not pose any significant hurdles to

sampling techniques; especially due to the the availability of existing software

for this purpose (see Appendix A). The models of thixotropy, such as those

in Sec. 3.1.2 and others, on the other hand, may pose a more significant

challenge as their evaluation becomes more difficult. Still, the work of Freund

and Ewoldt demonstrates that this technique is not limited to models of the

simplest form or fewest parameters [4]. Another way to expand on this and

the work of Freund and Ewoldt would be to explore the ways in which choices

of the form of model error and priors affect selection.

Additionally, the categorization framework presented in Sec. 1.1—or some-

thing like it—should be used as the basis for an ongoing discussion among

rheologists about the purpose of the models they are fitting. Further review

and reflection of the work that has been done in the field should inform the

progression of the state of the art. The Best Practices of Sec. 2.2 are ex-

tremely general, and should be refined into more detailed and instructive

guiding principles for specific applications within rheology. Ultimately, it is

only through an enhanced understanding of models’ purposes and the im-

plementation of thoughtful selection techniques that a rheologist will add

significant value to their work
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APPENDIX A

PTMCMC SAMPLING

To begin to asses the applicability and relative difficulty of evaluating the

integral in Equation 1.8, the assumptions of Equations 3.3-3.5 are made for

the Bingham (B) and Herschel-Bulkey (H) models fit to the carbopol data

presented in Sec. 3.1.1. Additionally, proper, uniform (linear) priors on the

parameter values are given by

P (θ|I) =
1

θM − θm
, (A.1)

where θM and θm are upper and lower bounds, respectively, on the values for

a given parameter θ. This form of prior is not necessarily most-reflective of a

state of ignorance (see references to “Jeffreys Prior” for scale parameters in

other works [12, 4]), but it remains consistent with the least-squares estimate

assumptions of Sec. 3.1.3 and is therefore used for the sake of comparison.

For all the parameters considered in these models, the minimum value given

nonzero credibility is 0. The maximum values are summarized in Table A.1.

The software package used for this sampling, ptemcee [75] (a fork of the

Python package emcee [76]), takes as input the natural logarithm of the

likelihood for a model given the data and the natural logarithm of the prior

for each of the parameters. They are provided as
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C = −N ln[2π]

2
−

N∑
i=1

ln[τ 2i ] , (A.2)

ln[P (D|η, τy,B, I)] = C −
N∑
i=1

(τi − τB(γ̇i; η, τy))
2

2τ 2i
, (A.3)

ln[P (D|k, τy, n,H, I)] = C −
N∑
i=1

(τi − τH(γ̇i; k, τy, n))2

2τ 2i
, (A.4)

ln[P (η, τy|B, I)] = − ln[ηMτy,M ] , (A.5)

ln[P (k, τy, n|H, I)] = − ln[kMτy,MnM ] (A.6)

The constant term C (Eqn A.2) is common to both likelihood equations

and does not depend on the choice of model or parameter values (under the

form of error assumed in Eqns. 3.3-3.5). Equations A.3 and A.5 were used

for the Bingham model (τB) and Equations A.4 and A.6 were used for the

Herschel-Bulkley model (τHB).

Bingham Herschel-Bulkley
ηM 100 kM 100
τy,M 100 τy,M 100

- nM 5

Table A.1: Upper bounds on uniform prior for each model, used in
Equations A.5 and A.6. The lower bounds used in this case are 0 for each
parameter. Values chosen serve as an illustrative example; a more
throughoughly investigation into the sensitivity of the results to these
values is warranted.

The package ptemcee uses a parallel tempered Markov-Chain Monte Carlo

(PTMCMC) sampling method described in the work of Earl and Deem [77]

and a thermodynamic integration method as presented by Goggans and

Chi [78] to estimate the the log value of the evidence integral (Eqn. 1.8).

These are the same methods described in Bayesian Logical Data Analysis for

the Physical Sciences by Gregory [5] and employed by Freund and Ewoldt [4].

Settings used for the sampler are summarized in Table A.2.

From this sampling and estimation method, the following values are ob-

tained from a sampling of N = 10000 steps:
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Setting Value
nwalkers 20
ntemps 40
Tmax 1000

Table A.2: Settings used for the sampling method of ptemcee. Each setting
determines a feature of the temperature ladder; nwalkers is the number of
MCMC walkers used at each level, ntemps is the number of
(exponentially-spaced) temperatures in the ladder, and Tmax is the
maximum temperature used.

ln[P (D|B, I)] ≈ −300.6 , (A.7)

ln[P (D|H, I)] ≈ −297.5 ; (A.8)

(A.9)

from which a Bayes Factor (Equation 1.3) may be calculated as

BB,H =
P (D|B, I)

P (D|H, I)
≈ eln[P (D|B,I)]−ln[P (D|H,I)]

≈ 0.045 . (A.10)

This factor may then be multiplied by the prior odds assigned to these models

to determine the posterior odds ratio,

P (B|D, I)

P (H|D, I)
= 0.045

P (B|I)

P (H|I)
. (A.11)

In other words, if a rheologist were to express no preference for either model

in their priors (odds ratio of 1:1) then the observation of this data, combined

with the aforementioned assumptions, should lead them to update their be-

lief to view the Herschel-Bulkley model as over twenty times more credible

than the Bingham model (odds ratio of ∼22:1). The additional parameter is

justified by the data, just as was indicated by BIC.

Performing the sampling to make these estimates can be costly in terms of

computer time. Thankfully, there are additional benefits to be had from the

samples themselves, which may be leveraged to gain additional insight into

the model’s ability to describe the data, described in figures A.1 and A.2.
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(a) Bingham model

(b) Herschel-Bulkley model

Figure A.1: The steady shear data for Carbopol plotted against the least
squares fit (red) and evaluations of the (a) Bingham and (b)
Herschel-Bulkley models at sets of parameters (n = 1000) values selected
randomly from the MCMC sampling (N = 10000) of the marginal likelihood
distribution such that the relative density of the black lines correspond to
the frequency with which models that pass through a given region appear
in the marginal distribution. These plots offer much broader insight into
the uncertainty in the model fit, as the range feasible fits is visually
apparent. The flexibility and limitations of the models can clearly be seen;
the Bingham model virtually never going through the data near 10 s−1.
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(a) Bingham model sampling

(b) Herschel-Bulkley model sampling

Figure A.2: Histograms depicting the distribution of parameter values in
the MCMC sample generated using the Python package corner. Along the
diagonal are marginal distributions of each of the individual parameter.
Below the diagonal are density plots of two parameter values within the
sample; each contour level represents an additional “sigma” deviation in the
distribution, past the 3-sigma level points are shown as scatter plot. Blue
lines and points correspond to values from least-squares estimates. The
dashed, vertical lines correspond to the median and 1-sigma deviation
values, also shown above each plot. This procedure and visualization offers
a more complete and potentially more accurate picture of the uncertainty
in the values of the model parameters as it does not rely on the assumption
that they are themselves normally distributed.
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