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ABSTRACT 

 The ability to modify a given phenotype to adapt to the external environment (i.e. 

phenotypic plasticity) is a critical component of an organism’s ability to survive 

unfavorable conditions. The free-living nematode, Caenorhabditis elegans is an 

excellent example of phenotypic plasticity. When exposed to unfavorable conditions, C. 

elegans halts reproductive development and enters an alternative developmental stage 

called dauer. Dauer larvae undergo extensive tissue remodeling, including changes to 

the outer cuticle, muscle, and nervous system. Although several morphological and 

behavioral traits of the dauer larvae have been described, the molecular mechanisms 

underlying dauer-specific tissue remodeling have remained poorly understood. This 

work provides evidence that the nidogen domain-containing protein DEX-1 facilitates 

the stage-specific tissue remodeling observed during dauer morphogenesis. DEX-1 was 

previously shown to function as a secreted extracellular matrix protein that regulates 

sensory dendrite formation during embryogenesis. However, we found an alternative 

developmental role for DEX-1. Specifically, we show that DEX-1 is also required for 

remodeling of the stem-cell like hypodermal seam cells and formation of the cuticular 

lateral alae. Further, we found that DEX-1 is necessary for proper dauer mobility, and 

may function as a component of the neuromuscular system to facilitate dauer 

locomotion behaviors. We show that dex-1 is secreted from the seam cells, but 

functions locally in a cell-autonomous manner to facilitate dauer morphogenesis. dex-1 

expression during dauer is also regulated through DAF-16/FOXO-mediated 

transcriptional activation. Finally, we show that dex-1 genetically interacts with a family 

of zona pellucida-domain genes to regulate seam cell remodeling and alae formation. 
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Taken together, this work shows that DEX-1 is an extracellular matrix component that 

plays a critical role in C. elegans tissue plasticity during dauer formation. 
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CHAPTER 1: INTRODUCTION 

This chapter has been adapted, in part, from Androwski et al. 2017.  

 

1.1 OVERVIEW 

Phenotypic plasticity, or the ability of an organism to modify its phenotype in 

response to environmental inputs, is a critical component of the organism’s ability to 

survive in an ever-changing and often stressful environment. Many stress-induced 

phenotypic changes present as developmental and behavioral adaptations. For 

example, during seasonally induced hibernation periods, ground squirrels experience 

reversible, temperature-dependent changes in neuronal density of the hippocampus 

(Popov et al. 1992). Likewise, desert locusts alter their morphology between distinct 

‘gregarious’ and ‘solitarious’ phases in response to changes in population density 

(Pener and Simpson 2009). While these examples of environmentally-induced 

adaptations prove to be evolutionarily beneficial for survival, inappropriate stress-

induced plasticity may foster pathological consequences.  

Unremitting stress is an unfortunate norm of society. Indeed, a 2018 survey by 

the American Psychological Associate revealed that nearly 75% of participating adults 

reported at least one symptom of stress in the previous month, with 45% reporting daily 

stressors impacting sleep quality (American Psychological Association 2018). In 

mammals, chronic stress can contribute to several physical and mental disorders 

including post-traumatic stress disorder, which is marked by a decrease in neuronal 

volume and loss of neuronal integrity of the hippocampus (Bremner et al. 1995; Lee et 

al. 2009). Likewise, chronic stress can also contribute to instances of heart disease, 
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which is the leading cause of death in the United States (Dimsdale 2008; Murphy et al. 

2015). My thesis work uses the stress-resistant dauer stage of the free-living nematode, 

Caenorhabditis elegans (C. elegans) as a model system to investigate the molecular 

mechanisms that underlie stress-induced phenotypic plasticity and tissue remodeling.  

 

1.2 THE C. ELEGANS DAUER STAGE AS A MODEL FOR PHENOTYPIC 

PLASTICITY 

The free-living nematode Caenorhabditis elegans is an outstanding model in 

which to study developmental genetics and phenotypic plasticity. C. elegans is easily 

reared on Escherichia coli and can complete several generation cycles in a matter of 

weeks (Brenner 1974). C. elegans exists most commonly as populations of self-

fertilizing hermaphrodites, which allows for maintenance of stable genetic lines. Male 

animals are also present at low percentages, and allow for genetic crosses. C. elegans 

is transparent, and the entire cell lineage, from single cell to reproductive adult, has 

been completely mapped (Sulston and Horvitz 1977; Sulston et al. 1983). Further, the 

complete connectome of the 302 neurons in the adult hermaphrodite is described, 

allowing investigations into the neuroanatomical basis of behaviors at the level of a 

single cell (White et al. 1986). C. elegans is also amenable to several genetic 

techniques including transformation, RNAi, and genome editing (Mello et al. 1991; Fire 

et al. 1998; Dickinson and Goldstein 2016).   

Perhaps one of the most notable characteristics of C. elegans is its ability to alter 

its developmental pathway based on environmental inputs. In the presence of plentiful 

food and a low population density, C. elegans develops through four larval stages 
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before entering the reproductively active adult stage. However, under adverse 

environmental conditions, C. elegans can halt reproductive development and enter into 

a long-lived, stress-resistant developmental stage called dauer (Cassada and Russell 

1975; Klass and Hirsh 1976; Golden and Riddle 1984)  

 

1.3 THE DAUER FORMATION DECISION 

The dauer formation decision and dauer tissue morphogenesis have been shown 

to be two completely separate processes (Liu and Ambros 1989). The decision to enter 

dauer is based on the ratio of population density to food availability, and modulated by 

temperature (Riddle et al. 1981; Golden and Riddle 1984; Vowels and Thomas 1992; 

Gottlieb and Ruvkun 1994; Gerisch et al. 2001; Jia et al. 2004). The amphids are the 

primary sensory organs in C. elegans and are comprised of 12 pairs of ciliated sensory 

neurons, 8 of which are directly exposed to the external environment (Perkins et al. 

1986). Similar to sensory neurons in vertebrates, the exposed endings of the amphid 

neurons are ciliated (Perkins et al. 1986; Falk et al. 2015). The specific amphid neurons, 

ASI, ADF, and ASG are critical for regulating dauer formation by promoting reproductive 

development and inhibiting dauer formation (Bargmann and Horvitz 1991; Ouellet et al. 

2008; Kim et al. 2009). In contrast, the amphid neurons ASK and ASJ promote dauer 

entry and regulate recovery from dauer (Bargmann and Horvitz 1991; Schackwitz et al. 

1996). Investigation into the signaling pathways involved in the molecular translation of 

dauer-inducing environmental signals into the dauer formation decision has revealed a 

complex web of interactions between four distinct, yet evolutionarily conserved signal 
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cascades. These pathways include the TGFβ-like pathway, the insulin-like pathway, the 

guanylyl cyclase pathway, and the steroid hormone pathway. 

 

The TGFβ-like pathway. The TGFβ, or Transforming Growth Factor-β, superfamily is a 

group of well-conserved, multifunctional cytokines that serve as a means for cell-to-cell 

communication in eukaryotes. Additionally, TGFβ proteins are responsible for driving 

several biological processes including cell proliferation, differentiation, and maintenance 

of cell identities (De Robertis 2008; Wu and Hill 2009). In humans, deregulation of TGFβ 

signaling can lead to several deleterious diseases including fetal malformations, 

infertility, and polycystic ovary syndrome (Josso et al. 2006; Lehmann et al. 2006, 2007; 

Wang et al. 2007). While humans have roughly 30 TGFβ members, C. elegans has only 

5. However, the signaling pathways related to each are extremely well-conserved at the 

molecular and functional level. The C. elegans TFGβ protein responsible for modulating 

dauer formation, DAF-7, is homologous to human GDF11 which has been reported to 

play a role in the pathophysiology of aging, though this has recently come under debate 

(Katsimpardi et al. 2014; Sinha et al. 2014; Egerman et al. 2015; Smith et al. 2015). 

 C. elegans DAF-7/TGFβ is produced exclusively in the ASI amphid sensory 

neurons in the head (Schackwitz et al. 1996; Ren et al. 1996). The ASI sensory neurons 

function to modulate the dauer formation decision by sensing food availability, 

pheromone concentration and temperature (White and Jorgensen 2012). Although DAF-

7/TGFβ is expressed solely in the ASI neurons, its downstream receptors and 

transcription factors are expressed in several tissues providing a means of coupling 

environmental signals with widespread regulation of several tissues (Patterson et al. 
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1997; Inoue and Thomas 2000; Gunther et al. 2000; da Graca et al. 2004). When food 

is plentiful and population density low, secreted DAF-7/TGFβ activates DAF-1/4 

receptor kinases which are thought to phosphorylate downstream SMAD proteins 

resulting in their nuclear activation. In C. elegans, the activated SMADs, DAF-8 and 

DAF-14, antagonize a nuclear DAF-5/SNO-SKI complex, which in turn, promote energy 

metabolism and reproductive development (Estevez et al. 1993; Patterson et al. 1997; 

Inoue and Thomas 2000; Fielenbach and Antebi 2008). In contrast, during unfavorable 

conditions, the absence of DAF-7/TGFβ signaling from the ASI neurons allows the 

nuclear DAF-3/DAF-5 (SMAD/SNO-SKI) complex to promote dauer entry and negatively 

regulate energy consumption (Greer et al. 2008; Fielenbach and Antebi 2008).  

 

The insulin-like pathway. Insulin signaling has been shown to play a role in longevity 

in several organisms, including C. elegans, Drosophila, and mice (Clancy et al. 2001; 

Tatar et al. 2001; Holzenberger et al. 2003; Baba et al. 2005). In humans, insulin 

deregulation is a key factor in the development of age-related disease, including cancer 

and diabetes (Saltiel and Kahn 2001; Osaki et al. 2004). Interestingly, recent studies 

have shown that the positive effects of insulin signaling on longevity may hold true for 

humans, as well (Couet et al. 1992; Facchini et al. 2001; Akintola and van Heemst 

2015). Thus, the molecular and functional components of insulin signaling are 

fundamental in the process of aging and longevity, and studies have shown the 

molecular mechanisms to be highly conserved throughout evolution.  

In C. elegans, the output of the DAF-7/TGFβ pathway is integrated with insulin 

signaling in the regulation of dauer formation. Similar to TGFβ secretion in the TGFβ-
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like pathway, ample food supply promotes the release of the insulin-like protein, DAF-

28, from the ASI and ASJ amphid sensory neurons. DAF-28 secretion acts to inhibit 

dauer arrest by activating the insulin receptor-like protein, DAF-2. Binding of DAF-28 to 

the DAF-2 receptor inhibits dauer formation through activation of a phosphoinositide 3-

kinase (PI3K), and downstream PDK-1, AKT-1 and AKT-2 kinases (Morris et al. 1996; 

Kimura et al. 1997; Paradis and Ruvkun 1998; Paradis et al. 1999). Activation of AKT-1 

leads to phosphorylation of the FOXO transcription factor DAF-16, inhibiting its function 

by sequestration to the cytoplasm and ubiquitin mediated degradation (Lin et al. 1997, 

2001; Ogg et al. 1997; Lee et al. 2001; Hertweck et al. 2004; Li et al. 2007). 

Consequently, in favorable conditions animals undergo reproductive development. In 

contrast, low food supply and high pheromone concentration transcriptionally inhibit 

DAF-28/insulin-like protein production and allow DAF-16 to be translocated into the 

nucleus where it activates several genes important for stress-resistance and dauer 

formation.  

Interestingly, recent work has suggested that the location and timing of insulin-

like signaling influences the decision to promote longevity or reproductive arrest. While 

many studies of DAF-2 suggest that it functions in the nervous system to regulate both 

longevity and dauer arrest, the tissue in which DAF-16 functions may influence its 

downstream affects (Apfeld and Kenyon 1998; Wolkow et al. 2000). For instance, while 

DAF-16 in the nervous system appears to largely influence dauer formation, DAF-16 in 

the intestine primarily regulates lifespan (Libina et al. 2003). Further, promotion of dauer 

arrest via interrupted insulin-like signaling during early larval stages does not influence 
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the longevity of older adult animals, suggesting that the timing of DAF-16 activity is also 

an important factor in regulating the phenotypic consequences of insulin-like signaling.   

 

The guanylyl cyclase pathway. The less-well known guanylyl cyclase pathway is 

suspected to function upstream of both the TGFβ and insulin-like signaling in the 

exposed ciliated endings of the amphid sensory neurons (Vowels and Thomas 1992; 

Thomas et al. 1993; Birnby et al. 2000; Murakami et al. 2001). The daf-11 gene in C. 

elegans encodes a transmembrane guanylyl cyclase that is expressed in the ASI, ASJ 

and ASK amphid sensory neurons to regulate dauer formation, along with several other 

sensory neurons where it is involved in olfactory sensations (Schackwitz et al. 1996; 

Ren et al. 1996; Birnby et al. 2000; Li et al. 2003). In animals with defects in daf-11 

expression, DAF-7/TGFβ and DAF-28/insulin-like protein production in the ASI amphid 

neurons is significantly reduced. Interestingly, this defect in secretion can be rescued by 

expression of daf-11 solely in the ASI neurons, indicating that the guanylyl cyclase 

pathway indeed functions upstream of the DAF-7/TGFβ and DAF-28/insulin-like 

pathways to regulate dauer formation (Murakami et al. 2001; Li et al. 2003). 

Interestingly, recent studies have also suggested a role for DAF-11 in DAF-16/FOXO 

mediated longevity of non-dauer adults, further intertwining DAF-11 function with the 

downstream DAF-2/insulin-like signaling pathway (Li et al. 2003; Hahm et al. 2009).  

 

 

 



8 

 

The steroid hormone pathway. The steroid hormone pathway functions downstream 

of the other three dauer formation pathways and serves to integrate their downstream 

effects (Riddle et al. 1981; Albert and Riddle 1988; Thomas et al. 1993; Gerisch et al. 

2001, 2004). Indeed, promotion of DAF-7/TGFβ and DAF-28/insulin production results 

in the downstream synthesis of a steroid hormone called dafachronic acid by the 

cytochrome P450 protein DAF-9. Dafachronic acid binds to the downstream nuclear 

hormone receptor DAF-12, inhibiting dauer arrest and promoting reproductive 

development (Gerisch et al. 2001). When DAF-12 is not bound by its dafachronic acid 

ligand, it is bound by a DIN-1/SHARP complex. The binding of DAF-12 by DIN-

1/SHARP represses DAF-12 dependent transcriptional activation thereby promoting 

dauer formation (Ludewig et al. 2004).  

  

1.4 DAUER MORPHOLOGY AND BEHAVIOR 

Dauers are specialized, non-feeding larvae capable of withstanding extended 

periods of adverse environmental conditions. Dauer-specific stress resistance is likely 

facilitated by several morphological changes that occur during dauer formation, 

including changes to cuticle, neurons and muscles (Cassada and Russell 1975; Golden 

and Riddle 1984; White et al. 1986). For example, dauers are thinner than the 

comparable non-dauer L3 stage larvae due to autophagy-mediated radial shrinkage of 

the animals’ entire body (Meléndez et al. 2003). Interestingly, starvation conditions are 

also reported to trigger autophagy events in other eukaryotes, like mammals (Takagi et 

al. 2016). C. elegans larvae carrying mutations in the autophagy protein bec-1, an 

orthologue to mammalian Beclin1, fail to complete normal dauer development and have 
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fewer lipid stores, defects in radial constriction and lack dauer-specific SDS resistance. 

bec-1 is expressed in remodeling tissues, including the hypodermis and pharynx, during 

dauer development (Meléndez et al. 2003). The autophagy-mediated radial shrinkage of 

the lateral seam facilitates formation of raised cuticular ridges called lateral alae. The 

dauer cuticle is also biochemically altered compared to that of non-dauer animals, 

adding to its resistant nature (Blaxter 1993). Indeed, one of the most common 

techniques for separating non-dauers from dauers is exposure to 1% sodium dodecyl 

sulfate (SDS) for 30 min (Cassada and Russell 1975). While non-dauers are killed 

within minutes at all tested concentrations of SDS, dauer larvae appear completely 

unaffected in up to 10% SDS (Flatt et al. 2019).  

Behaviorally, dauer larvae suppress the pharyngeal pumping required for 

ingestion of bacterial food. While non-dauer animals live for roughly two weeks in the 

presence of plentiful food, C. elegans dauers can survive for months without feeding. In 

addition to the absence of feeding, dauers display additional behaviors that are unique 

to the dauer stage. On a Petri dish, non-dauers typically move continuously in search 

for food or mates. In contrast, dauers are frequently behaviorally quiescent, or immobile. 

Interestingly, dauers are sensitive to touch and move rapidly following physical 

stimulation (Cassada and Russell 1975). This dauer-specific locomotion behavior may 

be due to changes in neuromuscular structure during dauer (Dixon et al. 2008).  

Perhaps the most noticeable among dauer-specific behaviors is ‘nictation’ 

wherein a dauer will climb elevated objects, raise its body into the air and stand on its 

tail. In addition to individual nictating dauers, they will occasionally form undulating 

swarms containing numerous dauers. Nictation is thought to serve as a dispersal 
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strategy; by elevating its body above the ground, C. elegans can reduce surface tension 

and increase the possibility it will be picked up by a passing arthropod. Both 

experimental data and the association of C. elegans dauers with arthropods in nature 

support this dispersal hypothesis (Félix and Braendle 2010; Lee et al. 2011). Previous 

work has shown that dauer-specific remodeling of sensory head neurons called the IL2s 

(Inner Labial 2) is necessary for initiation of nictation behavior (Lee et al. 2011; 

Schroeder et al. 2013). Taken together, these data provide evidence that stress-induced 

tissue remodeling during dauer formation is necessary for increased resistance against 

environmentally unfavorable conditions.  

 

Changes to the cuticle. The cuticle, which is largely secreted by hypodermal cells, 

covers the outside of the animal and the lumen of the pharynx. It is composed of cross-

linked collagenous and non-collagenous proteins that provide protection from the 

outside environment and facilitate locomotion. The cuticle comprises roughly 24% of the 

proteins synthesized during dauer as opposed to 9% in adult animals (Wolkow and Hall 

2011). Extensive cross-linking, disulfide bond formation and increased hydrophobic 

amino acid content facilitate the decreased permeability of the dauer cuticle compared 

to other larval stages (Cassada and Russell 1975; Kramer 1997). Along with structural 

differences, the dauer cuticle is also biochemically distinct from non-dauers (Blaxter 

1993). The surface coat, composed of negatively charged carbohydrates and 

heterodimeric protein complexes, is found on the exterior of the epicuticle and is 

important for C. elegans’ survival (Zuckerman et al. 1979; Blaxter 1993). Though 

surface coats can be found on all stages, disruption of surface coat proteins of dauer 
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larvae can be increasingly detrimental. For example, mutations in surface protein gene 

srf-3 results in a loss of SDS resistance in dauer larvae (Politz et al. 1990). Likewise, 

mutations in srf-4,-8 and -9 were determined to be pleiotropic, as these mutant animals 

were observed to not only have defects in their cuticle surface, but also in cell migration 

patterns (Blaxter 1993).Thus, many different components are required to maintain the 

integrity of the cuticle. However, a deeper investigation into the specific proteins that 

comprise the dauer cuticle is necessary to determine the precise nature of its resistant 

characteristics. 

 During dauer formation, a dauer-specific cuticular plug forms around the lips of 

the animal that occludes the buccal cavity – preventing the animal from ingesting toxins 

or food. This flap of cuticle, called the cheilostom cuticle or “bridging cuticle” is a 

continuous projection that forms from the body wall cuticle (Albertson and Thomson 

1976; Wright and Thomson 1981; Hall et al. 2005). The pharyngeal epithelium largely 

retains its overall morphology during dauer, however, appears thinner and shrunken 

(Wolkow and Hall 2011). Cuticle sheets also line the interior area of the buccal cavity 

during all stages, but appear to be more reinforced during dauer (Hall et al. 2005). 

Electron micrographs show that the dauer cuticle contains a thick, striated layer that, 

along with the buccal plug, assists in maintaining its impermeability (Popham and 

Webster 1979).  

Along with changes in thickness and composition, the cuticle also undergoes 

structural changes during dauer formation. Down both sides of the dauer larvae run five 

ridges of raised cuticle called the ‘lateral alae’. These cuticular structures are not 

present in L2, L3 or L4 stages, but similar structures are found on L1 larvae and adults. 
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Similarly to dauer, the reduction in width of the lateral cuticle is responsible for the 

formation of alae in the L1 larvae, however only two cuticular ridges with a large 

protrusion in the middle are observed in L1 (Singh and Sulston 1978; Sapio et al. 2005). 

Adult alae have three small protrusions that are often used as a marker for seam cell 

differentiation. The seam cells are a set of oval-shaped epithelial cells that extend in a 

row from the head to the tail -adjacent to the alae. The seam cells are embedded in the 

syncytial hypodermis and are thus often referred to as the ‘lateral hypodermal cells.’ 

During development, the seam cells divide in a stem cell-like fashion, generating an 

anterior daughter cell that fuses with the hyp7 hypodermis and a posterior daughter cell 

that will continue to divide until its terminal differentiation in late-L4 (Sulston and Horvitz 

1977). During dauer formation, the seam cells undergo autophagy-mediated shrinkage 

(Meléndez et al. 2003). The loss of cell volume in the seam is speculated to physically 

pull the outer layer of cuticle in radially via crosslinking reactions mediated, in part, by 

non-collagenous extracellular matrix proteins called cuticlins (Sapio et al. 2005).  

 

The cuticlins. Originally isolated from the parasitic nematode Ascaris lumbricoides, 

‘cuticlin’ was the name given to the insoluble material left over from cuticles treated with 

reducing agents (Fujimoto and Kanaya 1973). Cuticlins (CUTs) in C. elegans show 

similar characteristics, like resistance to detergents, collagenases and reducing agents 

(Sebastiano et al. 1991). Though not all CUT proteins are related, some that are 

required for dauer cuticle morphology share a conserved zona pellucida domain (Muriel 

et al. 2003). Zona pellucida (ZP) domains have been conserved throughout evolution 

and are often found in extracellular matrices. ZP proteins contain homologous regions 
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of roughly 260 amino acid residues with 8 strictly conserved cysteine residues that are 

speculated to form disulfide bridges and function in binding reactions (Bork and Sander 

1992). In C. elegans, three of these ZP-domain containing cuticlin proteins are of 

particular interest to the dauer cuticle integrity – CUT-1, CUT-5 and CUT-6. CUT-1 was 

the first cuticlin to be isolated in C. elegans and is required for lateral alae formation. 

This cuticlin was shown to be expressed solely during dauer and to localize in a ribbon-

like pattern running the length of the animal underneath the alae (Sebastiano et al. 

1991). Interestingly, cut-3, a larval-stage cuticlin that is required for L1 alae formation, 

can rescue the dauer-specific cut-1 mutant phenotypes when expressed from the cut-1 

promoter (Sapio et al. 2005). cut-5 is required for alae formation in both L1 and dauer 

larvae and is secreted by the seam cells, under the area where alae will form, solely 

during these stages (Sapio et al. 2005). 

Although CUT-1, -3, and -5 share similar structure and expression patterns, their 

functions are not redundant, as CUT-5 is required for alae formation even in the 

presence of CUT-1 or CUT-3 (Sapio et al. 2005). CUT-6 is involved in the determination 

of dauer body shape, but is not strictly required for alae formation (Muriel et al. 2003; 

Sapio et al. 2005). CUT-6 is expressed in the hypodermis during L1 and dauer cuticle 

development and localizes to the boundary between the hypodermis and lateral seam. 

Interestingly, RNAi knockdown of CUT-6 causes defects in lateral alae formation in 

dauers, but not in L1 larvae (Muriel et al. 2003). Though the effects of these proteins on 

the lateral alae vary, mutations in cut-1, -5 and -6 all result in a ‘dumpy’ dauer 

phenotype characterized by an enlarged body due to defects in radial constriction 

(Muriel et al. 2003; Sapio et al. 2005). Mutations in these cuticlin genes also affect the 
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permeability of the resulting dauer cuticles. Animals with mutations in cut-1, cut-5 and 

cut-6 all show sensitivity to SDS (sodium dodecyl sulfate) when compared to wild-type 

dauers (Flatt et al. 2019). However, radial shrinkage and lateral alae formation are not 

sufficient for SDS resistance, as animals containing mutations in daf-13, an uncloned 

“process” gene, form visually wild-type dauers that are sensitive to standard SDS 

treatments (Riddle et al. 1981). 

 

Changes to the nervous system. Widespread and dramatic morphological changes 

occur throughout the nervous system during dauer that may mediate behavioral 

changes. The amphid sensory neurons are bilaterally symmetric, and eight of the twelve 

amphid neurons on each side extend ciliated dendrites to the tip of the nose, where they 

are open to the environment during both dauer and non-dauer stages (Albert and Riddle 

1983). Interestingly, dauer larvae secrete an electron-dense material that is suspected 

to clog the amphid pores and protect the animals from desiccation (Albert and Riddle 

1983). In non-dauer animals, the ASG and ASI neurons, which both function to inhibit 

dauer formation, send ciliated processes that protrude from the amphid channel 

opening, allowing for sensation of environmental signals. However, during dauer, the 

ciliated tips are displaced posteriorly and are effectively missing from the amphid bundle 

(Albert and Riddle 1983). This retraction of the sensory tips of the ASI neurons may be 

related to their functional inactivation during dauer arrest (Schackwitz et al. 1996).  

 The AFD amphid neurons have historically been known for temperature 

sensation, however recent work has uncovered a novel function for the AFDs in sensing 

magnetic orientation (Mori and Ohshima 1995; Vidal-Gadea et al. 2015; Bainbridge et 
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al. 2016). The sensory ending of the AFD neuron consists of several finger-like microvilli 

embedded in glial cells (Albert and Riddle 1983; Perkins et al. 1986; Doroquez et al. 

2014), and dauer larvae contain approximately twice as many AFD microvilli as non-

dauers (Albert and Riddle 1983). Interestingly, a mixture of starved non-dauers and 

dauers showed an opposite response to thermal gradients as well-fed non-dauers 

(Hedgecock and Russell 1975). That is, when well-fed animals were exposed to 

temperature gradients, they typically migrated to their eccritic temperature. However, 

when starved animals were exposed to a temperature gradient, they were observed to 

migrate away from the eccritic temperature (Mori and Ohshima 1995). Interestingly, 

similar switching of migration patterns were also observed in magnetotaxis experiments, 

with well-fed animals migrating ‘up’ and starved animals migrating ‘down’ (Vidal-Gadea 

et al. 2015). Though the exact function of the dauer-specific microvilli is not known, they 

may serve to more closely detect subtle changes in temperature, as temperature is a 

critical modulator of dauer formation and maintenance (Ailion and Thomas 2000). 

However, it is not known if ultrastructural changes to AFD during dauer mediate the 

observed changes in dauer behavior.   

 Separate from the amphids, the six inner-labial sensilla, two dorsal, two ventral 

and two lateral, each contain two ciliated neurons – the IL1 and IL2 neurons. During 

non-dauer development, the IL2 neurons each have a single, unbranched dendrite that 

extends from the cell-body to the tip of the nose, where it is exposed to the external 

environment, and unbranched axons that extend into the nerve ring (Ward et al. 1975; 

Albert and Riddle 1983; Schroeder et al. 2013). The IL1 neurons also extend single, 

unbranched processes to the nose, however the cilia of the IL1s terminate in the sub-
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cuticle and are not exposed to the external environment (Ward et al. 1975). When 

animals are stimulated to enter dauer, the four dorsal and ventral IL2 dendrites undergo 

extensive dendritic arborization and increase their total dendritic length threefold 

(Schroeder et al. 2013). Interestingly, although the two lateral IL2 neurons do not 

branch as extensively as their quadrant counterparts, they do branch once at the distal 

end of the dendrite. Here, the lateral IL2 dendrites wrap around the nose and form a 

“crown-like” structure (Schroeder et al. 2013). The axons of the IL2 neurons also thicken 

and branch, and appear to change morphology during dauer, though it is not known 

whether this translates to changes in synaptic partners. In addition to dendritic 

remodeling, electron micrographs also show that the positions of the IL1 and IL2 

sensory endings are reversed, with the cilia of the IL1s being more anterior, though still 

not exposed (Albert and Riddle 1983). Indeed, electron micrographs demonstrate that 

the IL2 cilia are approximately two-thirds shorter during dauer arrest. Ablation of the IL2 

neurons results in a significant reduction in dauer-specific nictation behavior (Lee et al. 

2011). Likewise, animals with defects in dauer-specific IL2 arborization also show 

decreased nictation (Schroeder et al. 2013). This suggests that remodeling of the IL2 

neurons during dauer is necessary for initiation of dauer-specific nictation behaviors. 

However, how the arborization of the IL2 neurons functions to regulate nictation 

behavior remains to be determined.  

 The deirid sensory neurons are bilaterally paired, dopaminergic cells that are 

presumed to be involved in mechanical texture sensation (Sawin et al. 2000; Hills et al. 

2004). There are anterior deirids (ADE) that are located approximated 80μm posterior of 

the nose, and the posterior deirids (PDE) that are located in the posterior body near the 
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tail, both on the ventral-lateral sides. Both the ADE and PDE neurons have ciliated 

sensory ending that are embedded in the lateral cuticle (Ward et al. 1975; Perkins et al. 

1986). In addition, the deirids each have a socket cell and a sheath cell that function as 

glial cells. The ciliated ending of the ADE contains extends to the body wall cuticle and 

contains an electron-dense material which has also been observed in several other 

mechanosensory neurons (Perkins et al. 1986). During non-dauer stages, the ciliated tip 

of the ADE is oriented tangentially to the body wall cuticle and held in place by an 

electron dense extracellular structure called the nubbin (Wolkow and Hall 2011). During 

dauer, the ADE ending are substantially enlarged with a much larger region of electron-

dense material than in non-dauers (Albert and Riddle 1983). Additionally, the ciliated 

endings of the ADE neurons are oriented parallel to the lateral alae. Interestingly, during 

dauer, the ADE socket cell remodels to form a cuticular ‘truss-like’ structure that holds 

the endings in place against the cuticle (Albert and Riddle 1983; Cinar and Chisholm 

2004). Though the exact function of the remodeled dauer ADEs is not known, it has 

been proposed that the enhanced cuticle structure surrounding the enlarged sensory 

endings may improve touch sensitivity through the thickened dauer cuticle (Wolkow and 

Hall 2011).  

 

Changes to muscle. Due to the shrinkage of several other tissues during the dauer 

stage, the muscles of the C. elegans dauer appear to occupy a much larger fraction of 

the body. The sarcomeres of the dauer muscles appear larger than in non-dauer 

animals, with a substantial increase in myofilaments (Wolkow and Hall 2013). This 

robust nature of the dauer myofilament lattice suggests that the strength of muscle 
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contraction in dauer animals may be up to 200% more powerful than that of non-dauer 

animals, which may contribute to the rapid locomotion behaviors observed in dauer 

animals following mechanical stimulation (Cassada and Russell 1975)). 

 Dauer muscles also display changes in mitochondrial ultrastructure (Popham and 

Webster 1979). Dauer mitochondria are enlarged and electron dense compared to non-

dauer mitochondria. This supports the speculation that dauer mitochondria may exist in 

a condensed conformation which promotes oxidative phosphorylation and reduced 

respiratory rates (Hackenbrock et al. 1971; Popham and Webster 1979). Increased ATP 

production of the condensed dauer mitochondria may function to supply additional, 

rapid bursts of energy which may promote rapid dauer locomotion, compared to the 

steady state locomotion observed in non-dauer animals (Wolkow and Hall 2013). 

In C. elegans, neuromuscular junctions form between muscle cells and motor 

neurons via extensions of muscle tissue called muscle arms (Dixon and Roy 2005). 

During non-dauer development, body wall muscles extend a stereotypic number of 

muscle arms to the nearest nerve cord during early larval stages. However, when 

animals are stimulated to enter dauer, the muscle cells extend additional, dauer-specific 

muscle arms to their respective nerve cords (Dixon et al. 2008). Interestingly, formation 

of the dauer-specific muscle arms appears to be regulated, at least in part, by the DAF-

2/insulin-like signaling pathway, as daf-2 mutant animals also show an increase in the 

number of muscle arms during non-dauer stages (Dixon et al. 2008). While the number 

of muscle arms increases during dauer, it is not known whether this remodeling impacts 

the number of neuromuscular junctions. One possible function for muscle remodeling is 

the promotion of dauer-specific behaviors such as rapid locomotion or nictation. During 
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movement on a flat, two-dimensional surface, C. elegans moves through a coordinated 

contraction and relaxation of body wall muscles to produce a sinusoidal movement. The 

standing behavior seen during dauer nictation may require coordination of muscles to 

allow for simultaneous contraction. 

 

1.5 DEX-1 PLAYS DIVERSE ROLES DURING EMBRYOGENESIS.  

The extracellular matrix (ECM) is a non-cellular component present within all 

tissues and organs. The ECM is important for developmental processes, as it provides 

cells with a physical scaffold for migration, morphogenesis, cell homeostasis and even 

differentiation. Although the fundamental components of the ECM are the same, each 

individual tissue within an organism has a unique composition that is generated 

throughout different stages of development, making the ECM both a static and dynamic 

structure. Zona pellucida (ZP) proteins are a common component of extracellular 

matrices throughout the animal kingdom. For example, the founding members of the 

zona pellucida protein family, ZP1, ZP2, and ZP3, are found in the egg coat of 

mammalian oocytes and are the functional component to which the zonadhesin coat of 

the sperm bind (Wassarman 1987; Hardy and Garbers 1995; Hinsch and Hinsch 1999). 

Other mammalian ZP proteins are found in the vascular lumen, kidney tubules and the 

tectorial membrane of the inner ear (Legan et al. 1997; ten Dijke et al. 2008; Zaucke et 

al. 2010; Yan et al. 2012). C. elegans also has extracellular matrices associated with its 

various cell types. Similar to ECM function in mammals, the ECM of C. elegans 

provides a scaffold for cells to develop their appropriate shapes which can critically 

influence their function. Interestingly, previous work has shown that the ECM protein, 
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DEX-1, is necessary for the proper morphology of sensory dendrites during 

embryogenesis (Heiman and Shaham 2009). DEX-1 shares domain homology with 

mammalian tectorin proteins that anchor stereocilia in the inner ear, and are required for 

hearing. Additionally, DEX-1 shares domain composition with human SNED1 (Sushi, 

nidogen and EGF domain protein 1), which has been implicated in breast cancer 

metastasis (Naba et al. 2014; Flatt et al. 2019). Further, recent work also indicates a 

role for DEX-1 in multiple embryonic apical extracellular matrices to shape the 

developing epithelium (Cohen et al. 2019). 

 

DEX-1 is necessary for sensory dendrite morphology. In most developmental 

systems, neurite length is generally established via emergence of a growth cone the cell 

body and extending to its target position, pulling neuronal tissue that will eventually 

become a dendrite or axon, into existence (Wu and Cline 2003; Williams and Truman 

2004). However, in C. elegans dendritic length of the amphid sensory neurons is 

established through a process called retrograde extension (Sulston et al. 1983; Nguyen 

et al. 1999; Heiman and Shaham 2009). In retrograde extension, the sensory endings of 

the dendrites are anchored to their target location and the cell body then migrates to its 

target location. The anchoring of dendritic tips during retrograde extension is dependent 

on the extracellular matrix protein, DEX-1 (Heiman and Shaham 2009). The dex-1 gene 

encodes a single-pass transmembrane protein with two nidogen-like domains separated 

by an epidermal growth factor (EGF) – like domain, and a zonadhesin-like domain. 

Interestingly, nidogen is also a common component of ECM basement membranes, 

including neuronal basement membranes in C. elegans (Kim and Wadsworth 2000). In 
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an effort to understand how neuronal structure is modulated during embryonic 

development, Heiman and Shaham 2009 isolated the mutant strain dex-1(ns42) which 

truncates the protein at the dex-1 zonadhesin domain. Their studies revealed that the 

dendritic tips of the amphid neurons of dex-1(ns42) mutants failed to remain anchored 

to their target location, and were instead dragged posteriorly with the cell body. 

Expression analysis determined that during embryogenesis dex-1 is expressed in 

several non-neuronal tissues, suggesting that DEX-1 functions as a secreted protein to 

facilitate dendritic tip anchoring. Strikingly, it was also determined that DEX-1 mediated 

dendritic tip anchoring is dependent on interactions of DEX-1 with a ZP-domain ECM 

protein, DYF-7. Interestingly, fusion of the DEX-1 and DYF-7 proteins shares a similar 

domain homology to the mammalian α-tectorin protein (Heiman and Shaham 2009). In 

humans, tectorins form a matrix (the tectorial membrane) in the inner ear that functions 

to anchor stereocilia, and are required for hearing (Legan et al. 1997; Petit et al. 2001). 

Interestingly, a dex-1;dyf-7 double mutant displayed a temperature-dependent synthetic 

lethal phenotype during early embryonic stages that was due to malformation of the 

excretory system, suggesting that dex-1 can function with ZP-domain proteins in several 

tissues to facilitate formation of various systems (Heiman and Shaham 2009). These 

findings provide the first evidence of DEX-1 function as an extracellular matrix protein 

capable of interacting with ZP-domain proteins to facilitate developmental processes 

and tissue morphogenesis. 

 

DEX-1 functions in embryonic apical extracellular matrices. In addition to the well-

known stromal extracellular matrix, there exists the less well-known apical extracellular 
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matrices (aECMs). These aECMs line exposed epithelial surfaces, such as the stratum 

corneum on the outside of the skin (Feingold 2007), or the inside of tubes, such as the 

glycocalyx inside blood vessels (Reitsma et al. 2007). C. elegans contains several 

different types of aECMs. For example, most surfaces of the animals are lined by cuticle 

composed largely of collagen and ZP-domain cuticlin (CUT) proteins (Sebastiano et al. 

1991; Muriel et al. 2003; Sapio et al. 2005; Page and Johnstone 2007). In contrast, the 

pharynx is lined by a different type of cuticle containing chitin (Zhang et al. 2005). 

During embryogenesis, the cuticles are not secreted until epidermal elongation and 

morphogenesis is completed, and epithelial tissue has developed a pre-cuticular matrix 

(Priess and Hirsh 1986). During this process, several non-CUT ZP-domain proteins play 

important roles in the shaping of the embryonic tissues (Kelley et al. 2015; Gill et al. 

2016; Vuong-Brender et al. 2017).  

 A survey of aECM mutants with defects in excretory function identified a new 

allele of the previously described gene, dex-1. The newly isolated allele, dex-1(cs201) 

displays a much stronger phenotype than the previously isolated dex-1(ns42) allele, 

presumably through truncation of both nidogen-like domains (Cohen et al. 2019; Flatt et 

al. 2019). Investigation of this new allele showed that DEX-1 is required to shape 

several embryonic epithelial tissues, including pharynx, excretory system and 

epidermis. Indeed, dex-1(cs201) mutants display several phenotypes that phenocopy 

previously characterized ZP-protein mutants (Cohen et al. 2019; Flatt et al. 2019). For 

example, dex-1(cs201) mutants often arrest at the L1 larval stage due to an ingressed 

pharynx (Pin) phenotype. Pin mutations occlude the pharyngeal opening and prevent 

feeding, causing starvation. Interestingly, this defect was observed during early 
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embryonic development, similar to what is observed in ZP-domain fbn-1 mutants, which 

also fail to maintain pharyngeal attachment during embryonic elongation (Kelley et al. 

2015). Similar to some CUT mutants, dex-1(cs201) mutants also display defects in L1 

body morphology and alae formation, suggesting a role for DEX-1 in maintaining 

structural integrity of the larval cuticle (Cohen et al. 2019). Embryonic expression 

analysis showed DEX-1 accumulation in the excretory duct and pore lumen, at the nose 

tip, and along the apical surface of the developing pharynx. All of these locations of dex-

1 expression coincide with regions rich in ZP-domain protein expression, consistent with 

previous reports that dex-1 interacts with ZP-domain proteins to regulate tissue 

morphogenesis during early larval development (Heiman and Shaham 2009; Cohen et 

al. 2019). 
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CHAPTER 2: THE NIDOGEN-DOMAIN PROTEIN DEX-1 IS NECESSARY FOR 

DAUER-SPECIFIC CHARACTERISTICS  

This chapter has been adapted, in part, from Flatt et al. 2019. 

 

2.1 INTRODUCTION 

To survive changing environments, organisms modify their phenotype (i.e. 

phenotypic plasticity). During periods of unfavorable environmental conditions, C. 

elegans halts reproductive development and enters the stress-resistant dauer stage. 

Dauer larvae differ from non-dauers in both morphology and behavior due to remodeling 

of several tissues making them an excellent model of phenotypic plasticity. Here, we 

examine the role of the tectorin-like adhesion protein, DEX-1 in dauer morphological 

development and show an alternative developmental role for DEX-1 in dauer formation 

and tissue morphology. 

 

2.2 MATERIALS AND METHODS 

Strains and plasmids. All strains were grown under standard conditions unless 

otherwise noted (Brenner 1974). The wild-type Bristol N2 strain and the following 

mutant strains were used: CHB27 dex-1(ns42) III, UP2571 dex-1(cs201) III; csEx402 

[dex-1p::dex-1a + unc-199p::gfp], CB1372 daf-7(e1372) III, DR129 daf-2(e1370) unc-

32(e189) III. All mutant strains were backcrossed at least twice. dex-1(cs201) was 

generated using standard EMS mutagenesis protocols (Brenner 1974; Flibotte et al. 

2010) and identified based on balancer mapping and whole genome sequencing 

(Cohen et al. 2019). dex-1(ns42) was a gift from Dr. Maxwell Heiman (Department of 
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Genetics, Harvard University, Boston, MA) (Heiman and Shaham 2009). The IL2 

neurons were observed using JK2868 qIs56[lag-2p::gfp] V (Blelloch et al. 1999; Ouellet 

et al. 2008; Schroeder et al. 2013). 

 The plasmid pMH7 dex-1p::dex-1 was a generous gift of Dr. Maxwell Heiman 

(Heiman and Shaham 2009). Additionally, translational reporter dex-1p::sfgfp::dex-1 

(pJC24) contains the 2.1 kb dex-1 promoter and dex-1 (isoform a) complementary 

(cDNA) from pMH7 (Cohen et al. 2019). sfgfp was inserted either at an internal 

endogenous BglII restriction site to generate a full-length fusion tagged upstream of the 

first nidogen domain, or inserted at the 3’ end of a cDNA truncated before the 

transmembrane domain (Cohen et al. 2019). For a complete list of primers and 

plasmids, please see the Supplemental Table. 

 Animals containing extrachromosomal arrays were generated using standard 

microinjection techniques (Mello et al. 1991), and genotypes confirmed using PCR 

analysis and observation of co-injection markers. dex-1(ns42) animals were injected 

with 20 ng/ml of plasmid and 80 ng/ml of unc-122p::gfp, unc-122p::rfp or sur-5::gfp as 

the co-injection marker. dex-1(cs201) animals were injected with 30 ng/ml of pJC15 or 

pJC24 and 50 ng/ml of co-injection marker pHS4 (lin-48p::mrfp).  

Domain schematics were constructed using the wormweb.org Exon-Intron 

Graphic Maker. Domain locations were determined using the Simple Modular 

Architecture Research Tool domain prediction software (Schultz et al. 1998). The 

additional low complexity area of DEX-1 with similarity to zonadhesin was assigned 

based on previous work (Heiman and Shaham 2009). 
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Dauer formation and recovery assays. Dauers were induced by one of two methods. 

For non-temperature-sensitive strains, we used plates containing crude dauer 

pheromone extracted by previously established procedures (Vowels and Thomas 1992; 

Schroeder and Flatt 2014). For temperature-sensitive strains with mutations in daf-

7(e1372) or daf-2(e1370), dauers were induced using the restrictive temperature of 

25°C (Riddle et al. 1981). 

 For dauer formation and recovery assays, gravid hermaphrodites were incubated 

on EC90 pheromone plates (Schroeder and Flatt 2014) and allowed to lay eggs for 3-4 

hours at 25ºC. Adult animals were removed from the plate and the eggs incubated at 

25ºC for 72 hours. Dauer larvae were counted and divided by the total number of 

animals (dauer + non-dauer) on the plate. The plastic sides of plates were also checked 

for trapped dauers. To quantify dauer recovery, 10 dauers from each genotype were 

transferred to seeded NGM plates and allowed to recover at 22ºC. Animals were 

checked every 24 hours for recovery. Formation and recovery assays were performed 

in triplicate and results analyzed using an unpaired t-test in GraphPad Prism6 software.  

 

Microscopy and rescue analysis. Unless otherwise specified, animals were mounted 

onto 4% agarose pads and immobilized with 0.1 or 0.01 M levamisole for dauers and 

non-dauer or partial dauers, respectively. In our hands, dauers frequently lay in a 

dorsal-ventral position following anesthesia. Therefore, to image the lateral side, dauers 

were immobilized by mounting on 4% agarose pads with Polybead Polystyrene 0.10 

mm microspheres (Polysciences Inc., #00876) (Kim et al. 2013). A Zeiss AxioImager 

microscope equipped with DIC and fluorescence optics was used to collect images. For 
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radial constriction experiments, Z-stack images were taken and Z-projections were 

made using FIJI. Diameter measurements were taken near the center of the terminal 

pharyngeal bulb. Measurement data were analyzed using a one-way ANOVA with 

Bonferroni’s multiple comparisons test using GraphPad Prism 6 software. The resulting 

Z-projections were used to measure body diameter. For seam cell area analysis, area 

was measured for V2pap, V2ppp, and V3pap and averaged to give one measurement 

per animal (Sulston and Horvitz 1977). Seam cell measurement data were analyzed by 

an unpaired t-test. For confocal microscopy of the IL2 neurons, dauers were mounted 

on 10% agarose pads and anesthetized with 0.1 or 0.01 M levamisole. Animals were 

imaged using a Zeiss LSM 880 confocal microscope.  

 For transmission electron microscopy of dex-1 mutant and N2 animals, dauer 

larvae were induced using pheromone plates and processed for high-pressure freezing 

and freeze substitution modified from previously established methods (Hall et al. 2012; 

Manning and Richmond 2015). Using OP50 Escherichia coli as a substrate and 1% 

propylene phenoxetol in M9 buffer as an anesthetic, animals were loaded into a metal 

specimen carrier coated with 1-hexadecane and frozen in an HPM 010 high-pressure 

freezer. Freeze substitution was performed in an FS-8500 freeze substitution system 

using 2% OsO4 (Electron Microscopy Sciences), 0.1% uranyl acetate (Polysciences) in 

2% H20, and 100% acetone. Samples were held at -90° for 110 hr, then warmed to -20° 

at the rate of 5° per hour (14 hr). Samples were then held at -20° for 16 hr, then warmed 

to 0° at the rate of 5° per hour (4 hr). Samples were washed three times in prechilled 

(0°) 100% acetone and incubated at 0° for 1 hr after the final wash. Samples were then 

warmed to room temperature and washed an additional two times with 100% acetone. 
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Samples were infiltrated with 1:1 Polybed812 (Polysciences) resin: acetone for 6 hr, 2:1 

resin:acetone for 14 hr, and 100% resin for 72 hr. All infiltration steps were incubated on 

an orbital shaker at room temperature. Samples were then embedded in molds in 100% 

resin plus DMP-30 hardener (Polysciences) and baked at 60° for 48 hr, then 70 nm 

sections were cut with a diamond knife using a PowerTome PC ultramicrotome and 

collected onto formvar-coated copper slot grids. Samples were imaged with a Philips 

CM200 transmission electron microscope.  

 

Fluorescent bead and pharyngeal pumping assays. Fluorescent bead assays were 

carried out using established methods (Nika et al. 2016). Fluorescent beads (L3280; 

Sigma) were added to a concentrated OP50 E. coli overnight culture. Fresh NGM plates 

were seeded with 65 ml of the bead/bacteria suspension and allowed to dry. Twenty 

nematodes were added to the plate and incubated at 20° for 40 min. Worms were 

observed for the presence of fluorescent beads in the intestinal tract. The experiment 

was performed twice. Pharyngeal pumping assays were modified from previous 

established methods (Keane and Avery 2003). dex-1(ns42) and wild-type dauers were 

transferred to seeded NGM plates and allowed to recover for 10 min. After recovery, 

each animal was scored individually for 2 min, and then removed from the plate. Data 

were analyzed by an unpaired t-test, using GraphPad Prism 6 software.  

 

Sodium dodecyl sulfate sensitivity assays. Sodium dodecyl sulfate (SDS) dose-

response assays were performed using 12-well culture dishes containing M9 buffer and 

specified concentrations of SDS. Dauers were exposed to SDS for 30 min and scored 
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as alive if movement was observed following stimulation with an eyelash. Each 

concentration was tested in triplicate with each experiment containing a separate wild-

type (N2) control. Dose-response curves and LD50 values were determined by testing 

20 dauers per treatment at each concentration, with three independent experiments. 

The LD50 and 95% confidence interval of each concentration was calculated using probit 

analysis in Minitab 18. LD50 values were considered significantly different if the 95% 

confidence intervals did not overlap. Significant difference was denoted with a single 

asterisk. Single concentration assays were conducted at 0.1% SDS with 20 dauers for 

each genotype and three independent experiments. Data were analyzed using a one 

proportion exact method analysis in Minitab 18 and considered significantly different if 

the 95% confidence intervals did not overlap. Significant difference was denoted with a 

single asterisk.  

 

 2.3 RESULTS 

DEX-1 is required for proper dauer morphology. Wild-type C. elegans dauers have a 

distinctive morphology due to radial shrinkage that leads to a thin appearance 

compared with non-dauers (Figure 2.1, A and B). I found that dex-1(ns42) mutants 

produce dauers that are defective in radial shrinkage, leading to a “dumpy dauer” 

phenotype (Figures 2.1C and G, 2.2A). The defect in body size appears specific to the 

dauer stage, as comparable non-dauer dex-1(ns42) mutant L3s show no differences in 

body size compared with wild-type L3s (Figure 2.3). Radial shrinkage in dauers is 

correlated with the formation of longitudinal cuticular ridges on the lateral sides of the 

animal, called the alae (Cassada and Russell 1975). The lateral alae of dex-1(ns24) 
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mutant dauers are indistinct compared with wild-type dauers (Figure 2.1, A, C, E, and 

F). In addition to radial shrinkage, dauers have an ability to survive high concentrations 

of SDS (Cassada and Russell 1975; Androwski et al. 2017). Wild-type dauers survive 

for hours in 1% SDS (Cassada and Russell 1975). We found that while dex-1 mutant 

dauers were able to survive significantly higher concentrations of SDS than wild-type 

non-dauer animals, they were sensitive to 1% SDS (Figure 2.2B).  

The previously isolated dex-1(ns42) allele results in a premature stop codon in 

exon 9, encoding the predicted zonadhesin-like functional domain (Heiman and 

Shaham 2009)(Figure 2.2C). In an unrelated screen for mutants with embryonic and 

early larval lethality, we isolated dex-1(cs201), which introduces a point mutation at the 

splice donor site of intron 4 (Figure 2.2C, Cohen et al. 2019). Analysis of dex-1(cs201) 

cDNA suggests this results in multiple transcripts with read through into intron 4, with all 

introducing a new stop codon 10bp into this intron (Cohen et al. 2019). dex-1(cs201) 

mutants have a high rate of early larval lethality (96% dead L1s, n = 170). Similar to 

dex-1(ns42), dex-1(cs201) dauers are defective in radial shrinkage, alae formation, and 

SDS resistance (Figures 2.1, D and G, and 2.2, A and B). To confirm dex-1 as the 

causative mutation regulating these phenotypes, we rescued the radial shrinkage 

phenotype and SDS sensitivity of both dex-1 mutants with dex-1 cDNA under the 

control of its endogenous promoter (Figure 2.2, A and D). 

Dauers suppress pharyngeal pumping and have a buccal plug that prevents 

feeding (Cassada and Russell 1975; Popham and Webster 1979). Non-dauers will 

readily ingest fluorescent beads and show fluorescence throughout the digestive system 

(Nika et al. 2016). We did not find fluorescent beads in dex-1(ns42) mutant dauer 
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intestines; however, we occasionally observed them in the buccal cavity (Figure 2.4, A–

C). Additionally, we found no difference in the rate of pharyngeal pumping between dex-

1(ns42) and wild-type dauers (Figure 2.4D). These data suggest that while pharyngeal 

pumping is effectively suppressed, dex-1(ns42) dauers have low-penetrance defects in 

buccal plug formation. Together, these data suggest that dex-1 mutants form partial 

dauers with defects in epidermal remodeling. The enhanced sensitivity of dex-1(cs201) 

to SDS compared with dex-1(ns42) (Figure 2.2D) combined with our molecular data 

suggest that dex-1(ns42) is a hypomorphic allele; however, due to the early larval 

lethality of dex-1(cs201), all further experiments were done using the dex-1(ns42) 

background, unless otherwise noted. 

 Finally, we examined dex-1(ns42) dauers for the presence of dauer-specific 

gene expression of lag- 2p::gfp in the IL2 neurons during dauer (Ouellet et al. 2008). 

Similar to wild-type dauers, dex-1(ns42) dauers showed appropriate dauer-specific 

expression (Figure 2.5). We sought to determine whether the dex-1(ns42) mutation 

would affect the initial decision to enter dauer. The dauer formation decision is based on 

the ratio of population density to food availability during early larval development 

(Golden and Riddle 1984). C. elegans constitutively secrete a pheromone mixture that 

is sensed by conspecific animals and, at high levels, triggers dauer formation (Golden 

and Riddle 1982). Dauers can be picked from old culture plates (starved) or can be 

induced using purified dauer pheromone. We found no difference in the dauer 

morphology phenotype between starved or pheromone-induced dex-1(ns42) mutant 

dauers (Figure 2.6). The C. elegans insulin/IGF-like and TGFβ signaling pathways 

function in parallel to regulate dauer formation (Thomas et al. 1993; Gottlieb and 
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Ruvkun 1994). Reduced insulin and TGFβ signaling induced by overcrowding and 

scarce food promotes dauer formation (Riddle and Albert 1997). Disruption of either the 

insulin-receptor homolog DAF-2 or the TGFβ homolog DAF-7 results in a dauer 

formation constitutive (daf-c) phenotype. The dex-1(ns42) alae formation defects were 

not suppressed in the daf-7(e1372) or daf-2(e1370) mutant backgrounds. While non-null 

alleles were used in these crosses, these data may suggest that dex-1 acts outside of 

the dauer formation decision to generate dauer alae (Figure 2.7). 

While screening dex-1(ns42) for defects in the dauer formation decision, we 

anecdotally observed that dex-1(ns42) mutants appeared to form fewer dauers that 

wild-type animals. To quantify this, we induced dauer formation in dex-1(ns42) mutant 

and wild-type animals using either a daf-7(e1732) background or high pheromone 

concentration. We found that in both a daf-c and non-daf-c backgrounds, dex-1(ns42) 

animals formed significantly fewer dauer larvae than wild-type (Figure 2.8). This 

suggests that while dex-1 may function downstream of the dauer initiation decision, dex-

1(ns42) mutants that enter dauer may have defects in maintaining dauer diapause. We 

also tested whether dex-1(ns42) mutant dauers showed defects in recovery from dauer. 

To ensure that we were isolating dauer animals, we used lag-2::gfp and  

dex-1(ns42);lag-2::gfp double mutants, along with wild-type N2 and dex-1(ns42) single 

mutants for recovery assays. We found no difference in the rate of dauer recovery 

between wild-type and dex-1(ns42) mutant dauers in either single or double mutant 

backgrounds, as 100% of animals tested were recovered after 48 hours. 
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2.4 DISCUSSION 

The dauer stage of C. elegans is an excellent example of a polyphenism, where distinct 

phenotypes are produced by the same genotype via environmental regulation (Simpson 

et al. 2011). Compared to the decision to enter dauer, little is known about the 

molecular mechanisms controlling remodeling of dauer morphology. DEX-1 was 

previously characterized for its role in embryonic neuronal development (Heiman and 

Shaham 2009) and the shaping of multiple embryonic epithelia (Cohen et al. 2019). Our 

data show that DEX-1 also functions during dauer morphogenesis to regulate cuticle 

remodeling and dauer-specific environmental resistance. Interestingly, our data 

suggests that dex-1 may function outside of the dauer pathway to regulate dauer 

morphogenesis, but that these dex-1(ns42) mutant dauers may be unable to maintain 

the dauer stage for extended periods. This phenomenon, known as ‘transient dauer 

formation’ has been described as a spontaneous recovery after dauer formation (Gems 

et al. 1998). Future experiments using strict synchronization techniques may be used to 

determine if this defect in dauer formation is due to transient dauer formation or defects 

in dauer formation initiation (Vowels and Thomas 1992).   
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2.5 FIGURES 

 
 

Figure 2.1: dex-1 mutants have defects in lateral alae formation. (A) Wild-type dauers have prominent 
lateral alae (arrows) that are not present in the comparable non-dauer L3 stage (B). (C) dex-1(ns42) and 
(D) dex-1(cs201) mutant dauer alae are indistinct. All animals are lying laterally. Bar, 10 mm. (E-G) 
Transmission electron micrograph showing lateral alae (arrows) of a wild-type dauer (E), dex-1(ns42) 
mutant dauer (F), and a dex-1(cs201) mutant dauer (G). Bar, 1 mm.  
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Figure 2.2: dex-1 mutants form partial dauers. (A) dex-1 mutant dauers are defective for dauer-specific 
radial shrinkage. The radial shrinkage defect can be rescued with dex-1 cDNA driven by its endogenous 
promoter (n = 60 per genotype pooled from three trials). **** indicates statistical significance at P < 
0.0001. Error bars indicate SEM. (B) Dose-response survival assay to SDS. dex-1 dauers are sensitive to 
SDS compared to wild-type dauers, but are able to survive low levels of SDS exposure. Non-dauer 
animals are sensitive at all tested SDS concentrations (n = 60 per treatment and dose pooled from three 
independent trials). Error bars indicate SEM from three independent trials. (C) dex-1 gene schematic. 
DEX-1 contains two nidogen-like domains, a single epidermal growth factor-like domain, a low-complexity 
domain previously predicted to have similarity to zonadhesin, and a transmembrane domain. The cs201 
mutant allele is a point mutation at the exon 4 splice donor. The previously isolated ns42 mutation 
truncates the DEX-1 protein in its predicted zonadhesin-like domain. Bar, 1 kb. (D) Percent survival of 
dauers at 0.1% SDS. The dex-1 SDS sensitivity phenotype is partially rescued by the endogenous dex-1 
promoter and DEX-1 cDNA (pMH7) (n = 60 per genotype pooled from three independent trials). Error 
bars indicate 95% confidence intervals. Non-overlapping confidence intervals were considered 
significantly different (*). 
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Figure 2.3: The radial shrinkage phenotype observed in dex-1 mutants is dauer-specific. dex-
1(ns42) dauers are defective for radial shrinkage and have a larger body diameter than wild-type dauers. 
However, dex-1(ns42) non-dauer L3 animals are not significantly larger than wild-type L3s. Error bars, 
SEM. (n=20, α = 0.05, p-value indicated by ****<0.0001, n.s. = not significant.) 
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Figure 2.4: dex-1(ns42) dauers have defects in buccal plug formation. Dorsoventral view of a wild-
type dauer (A) and lateral views of a dex-1(ns42) dauer (B) and non-dauer L3 (C) following a fluorescent 
bead feeding assay. We did not observe fluorescence in the intestines of wild-type (A) or dex-1(ns42) 
mutant (B) dauers. However, fluorescence was occasionally observed in the buccal cavity of dex-1(ns42) 
dauers (B). (C) Fluorescent beads were observed throughout the digestive tract of non-dauer animals. 
Arrowheads point to the terminal bulb. Scale bar, 10μm. (D) Pharyngeal pumping is effectively 
suppressed in dex-1(ns42) dauers over a two minute observation period. Error bars, SEM. n = 12. 
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Figure 2.5: dex-1(ns42) dauers exhibit dauer specific expression of lag-2p::gfp in the IL2 neurons. 
Expression of lag-2p::gfp in the IL2 neurons is specific to the dauer stage. lag-2p::gfp is absent in non-
dauer IL2 cell bodies (A) (arrow) but is expressed brightly in both wild-type (B) and dex-1(ns42) dauers 
(arrows). Scale bar, 10μm. 
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Figure 2.6: Dauers isolated from either starved or pheromone-induced populations are 
morphologically similar. dex-1(ns42) dauers taken from pheromone (A) and starved (B) plates both 
display indistinct lateral alae (arrows). Scale bars, 10μm. (C) Body diameter measurements for dex-
1(ns42) and wild-type dauers showed no statistically significant differences between starved and 
pheromone-induced populations. Both starved and pheromone induced dex-1(ns42) dauers displayed 
defects in radial constriction compared to wild-type dauers. Error bars, SEM. (n = 20, α=0.05, p-value 
indicated by ****<0.0001, n.s. = not significant.) 
 
 
 
 
 

 

Figure 2.7: dex-1 functions outside of the dauer decision pathway. (A-D) Lateral view micrographs of 
(A) daf-2(e1370) dex-1(ns42), (B) daf-7(e1372) dex-1(ns42), (C) dex-1(ns42), and (D) wild-type dauers. 
daf-c mutations in the dauer decision pathway did not suppress the dex-1(ns42) alae phenotype. Arrows 
point to the lateral alae. Scale bar, 10µm. 
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Figure 2.8: dex-1 mutants form fewer dauers in both daf-c and non-daf-c backgrounds. 
Quantification of dauer formation showed that dex-1(ns42) mutants form fewer dauers in both the dauer 
constitutive daf-7(e1372) (A) and wild-type (B) backgrounds. (n=6, α=0.05, p-value indicated by **** 
where P < 0.0001). Error bars indicate SEM.  
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CHAPTER 3: DEX-1 IS SECRETED, BUT ACTS LOCALLY TO REGULATE SEAM 

CELL REMODELING DURING DAUER MORPHOGENESIS 

This chapter is adapted, in part, from Flatt et al. 2019. 

 

3.1 INTRODUCTION 

Dauer-specific radial shrinkage and alae formation are regulated by a set of 

lateral hypodermal seam cells called the seam cells (Singh and Sulston 1978; Meléndez 

et al. 2003). Seam cell function and remodeling are critical for proper dauer morphology 

and increased environmental resistance. The seam cells also have stem cell-like 

properties. During non-dauer development, the seam cells undergo asymmetrical 

divisions at larval molts to produce an anterior differentiated cell and a posterior seam 

cell (Sulston and Horvitz 1977). Alternatively, if the animal enters dauer diapause, the 

seam cells shrink and stop dividing (Meléndez et al. 2003; Karp and Ambros 2012). 

Here, we show that DEX-1 is upregulated in the seam cells during dauer formations and 

functions to facilitate seam cell remodeling as a secreted protein that localizes in or near 

the dauer alae.  

 

3.2 MATERIALS AND METHODS 

Strains and plasmids. All strains were grown under standard conditions unless 

otherwise noted (Brenner 1974). The wild-type Bristol N2 strain and CHB27 dex1(ns42) 

III. The transgenic line JR667 wIs51 [SCMp::GFP+unc-119(+)] was used to observed 

the seam cell nuclei and ST65 ncIs13[ajm1::gfp] was used to observe the apical 
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junctions of the seam cells (Köppen et al. 2001). Both were provided by the CGC. All 

mutant strains were backcrossed at least twice.  

The dex-1(ns42) mutant strain and the following plasmids were generous gifts 

from Dr. Maxwell Heiman (Department of Genetics, Harvard University, Boston, MA): 

pMH7 dex-1p::dex-1, pMH8 pha-4p:: dex-1, pMH111 dex-1p(5.7 kb)::gfp (Heiman and 

Shaham 2009). The sur-5::gfp construct used for mosaic analysis was a generous gift 

from Dr. Trent Gu (Gu et al. 1998; Yochem et al. 1998). Plasmids were constructed 

using Gibson Assembly (E2611S; New England Biolabs, Beverly, MA) and restriction 

enzyme cloning (for a complete list of primers and plasmids, please see the 

Supplemental Table). The seam cell-specific expression plasmid was built by replacing 

the dex-1 promoter from pMH7 with a 1.21 kb cut-5 promoter region. The hypodermal-

specific dex-1 plasmid was constructed by replacing the dex-1 promoter in pMH7 with 

the cut-6 promoter (Muriel et al. 2003; Sapio et al. 2005). Additionally, translational 

reporters dex-1p::sfgfp::dex-1 (pJC24) and dex-1p::dex-1(ecto)::sfgfp (pJC15) contain 

the 2.1 kb dex-1 promoter and dex-1 (isoform a) complementary (cDNA) from pMH7 

(Cohen et al. 2019). sfgfp was inserted either at an internal endogenous BglII restriction 

site to generate a full length fusion tagged upstream of the first nidogen domain, or 

inserted at the 3' end of a cDNA truncated before the transmembrane domain. See 

Cohen et al. 2019 for further cloning details. 

Animals containing extrachromosomal arrays were generated using standard 

microinjection techniques (Mello et al. 1991), and genotypes confirmed using PCR 

analysis and observation of co-injection markers. dex-1(ns42) animals were injected 

with 20 ng/ml of plasmid and 80 ng/ml of unc-122p::gfp, unc-122p::rfp or sur-5::gfp as 
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the co-injection marker. dex-1(cs201) animals were injected with 30 ng/ml of pJC15 or 

pJC24 and 50 ng/ml of co-injection marker pHS4 (lin-48p::mrfp). 

 

Microscopy. Unless otherwise specified, animals were mounted onto 4% agarose pads 

and immobilized with 0.1 or 0.01 M levamisole for dauers and non-dauer or partial 

dauers, respectively. In our hands, dauers frequently lay in a dorsal-ventral position 

following anesthesia. Therefore, to image the lateral side, dauers were immobilized by 

mounting on 4% agarose pads with Polybead Polystyrene 0.10 mm microspheres 

(Polysciences Inc., #00876) (Kim et al. 2013). A Zeiss AxioImager microscope equipped 

with DIC and fluorescence optics was used to collect images. For radial constriction 

experiments, Z-stack images were taken and Z-projections were made using FIJI. 

Diameter measurements were taken near the center of the terminal pharyngeal bulb. 

Measurement data were analyzed using a one-way ANOVA with Bonferroni’s multiple 

comparisons test using GraphPad Prism 6 software. The resulting Z-projections were 

used to measure body diameter. For seam cell area analysis, area was measured for 

V2pap, V2ppp, and V3pap and averaged to give one measurement per animal (Sulston 

and Horvitz 1977). Seam cell measurement data were analyzed by an unpaired t-test. 

 

Sodium dodecyl sulfate sensitivity assays. Single concentration assays were 

conducted at 0.1% SDS with 20 dauers for each genotype and three independent 

experiments. Data were analyzed using a one proportion exact method analysis in 

Minitab 18 and considered significantly different if the 95% confidence intervals did not 

overlap. Significant difference was denoted with a single asterisk. 
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dex-1 expression analysis. Ten animals were measured for each genotype. Mosaic 

analysis was conducted using dex-1(ns42) dauer animals expressing 

extrachromosomal dex-1p::dex-1 and sur5::gfp (Yochem et al. 1998). Lateral view 

micrographs were taken of transgenic animals and seam cells were scored for the 

presence of sur-5::gfp in the nucleus. Areas of lateral alae adjacent to seam cell nuclei 

positive for sur-5::gfp expression were scored as either full, partial, or no rescue. Seam 

cells not expressing sur-5::gfp were also counted and the adjacent alae scored. Twelve 

animals were observed for mosaicism, with one set of seam cells being scored for each 

animal. 

 

3.3 RESULTS 

DEX-1 functions as a tightly localized, secreted protein to facilitate seam 

cell remodeling and lateral alae formation. dex-1 is expressed at high levels during 

embryogenesis to regulate sensory dendrite formation and subsequently downregulated 

throughout development (Heiman and Shaham 2009). However, previous microarray 

data suggested that dex-1 is also upregulated during dauer (Liu et al. 2004). Dauer-

specific radial shrinkage and subsequent lateral alae formation are facilitated by 

shrinkage of the seam cells (Singh and Sulston 1978; Meléndez et al. 2003). Using the 

ajm-1::gfp apical junction marker (Köppen et al. 2001), we found that dex-1(ns42) 

mutant dauer seam cells are larger and have jagged, rectangular edges, unlike the 

smooth, elongated seam cells of wild-type dauers (Figure 3.1). These data suggest that 

DEX-1 is required for seam cell remodeling. To determine the location of dex-1 
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expression, we generated transgenic animals expressing green fluorescent protein 

(GFP) driven by a 5.7 kb 5’ dex-1 upstream promoter. We observed bright fluorescence 

in the seam cells and glia socket cells of the anterior and posterior deirid neurons 

starting in the pre-dauer L2 (L2d) stage. Expression of dex-1p::gfp in the seam cells and 

deirid socket cells persisted throughout dauer (Figure 3.2). We also observed dex-

1p::gfp expression in unidentified pharyngeal cells during all larval stages (Figure 3.2C). 

To determine the subcellular localization of DEX-1 during dauer remodeling, we 

expressed dex-1 cDNA (isoform A) tagged with super-folder GFP (sfGFP) under the 

control of its endogenous promoter. This dex-1p::sfgfp::dex-1 construct rescued the 

SDS phenotype in dex-1(ns42) mutant dauers, suggesting it is functional (Figure 3.3A). 

During dauer, we observed sfGFP along the length of the animal above seam cells in a 

mosaic pattern alternating between alae with diffuse sfGFP expression immediately 

under the outer ridges and alae with bright and punctate expression immediately below 

the lateral ridge (Figure 3.3B). Interestingly, regions with diffuse GFP expression 

correlated with proper radial constriction and intact lateral alae, whereas regions with 

bright, punctate expression did not undergo proper dauer shrinkage and lacked alae 

(Figure 3.3B). The mosaicism in alae formation was observed in both wild-type and dex-

1(ns42) dauers expressing the dex-1p::sfgfp::dex-1 construct, indicative of dominant 

negative effects of the transgene.  

DEX-1 contains a putative transmembrane domain, but was previously 

suggested to be secreted through cleavage of the large extracellular domain (Heiman 

and Shaham 2009). To test if DEX-1 can function as a secreted protein during dauer, 

we expressed a dex-1p::dex-1(ecto)::sfgfp construct that truncates the C-terminal 
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transmembrane domain. Consistent with a role as a secreted protein, the truncated 

DEX-1 construct rescued the SDS resistance (Figure 3.3A), radial shrinkage, and alae 

formation phenotypes (Figure 3.4, A and B). To further examine where DEX-1 acts to 

regulate seam cell remodeling, we expressed dex-1 cDNA under the control of cell-

specific promoters. First, we expressed dex-1 in the seam cells using the cut-5 

promoter. cut-5 was previously shown to be expressed specifically in the seam cells 

during L1 and dauer (Sapio et al. 2005). Seam cell-specific expression of dex-1 rescued 

the dex-1(ns42) radial shrinkage in a mosaic pattern similar to that seen with the full-

length sfgfp::dex-1 construct (Figure 3.4C). Expression of dex-1 under a pharyngeal 

promoter failed to rescue the dex-1 seam cell phenotype, suggesting that dex-1 

expression is necessary near the seam cells (Figure 3.4, B and D). The basolateral 

membranes of the seam cells are surrounded by a syncytial hypodermis. We 

hypothesized that the close proximity of the surrounding hypodermis to the seam cells 

would be sufficient for secreted DEX-1 to function during seam cell remodeling. We 

therefore expressed dex-1 under the control of a cut-6 promoter that was previously 

shown to drive expression in the hypodermis, but not in the seam cells, during dauer 

(Muriel et al. 2003). While dex-1 expression in the surrounding hypodermis failed to 

rescue the dex-1 dauer-specific alae phenotype (Figure 3.4E), hypodermal expression 

of dex-1 resulted in partial rescue of the radial shrinkage phenotype, suggesting a 

limited ability for DEX-1 to translocate in vivo (Figure 3.4B)  

Finally, to verify that DEX-1 is functioning in a cell-autonomous manner, we 

performed a mosaic analysis using dex-1p::dex-1 and sur-5::gfp as the co-injection 

marker (Yochem et al. 1998). We found that in cells expressing sur-5::gfp: 56% showed 
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full rescue of the lateral alae, 29% showed at least partial alae rescue, and 16% showed 

no alae rescue (n = 12 animals, 191 cells). We did not observe alae rescue in cells that 

did not express nuclear sur-5::gfp (Figure 3.4F). Together, these data indicate that dex-

1 acts cell-autonomously to regulate seam cell remodeling during dauer. 

In addition to their role in cuticle remodeling during dauer formation, the seam cells 

also have stem cell-like properties. During non-dauer development, seam cells divide at 

larval molts to produce a seam cell daughter and a differentiated daughter cell (Sulston 

and Horvitz 1977). During dauer, the seam cells enter a quiescent state and only 

resume division following recovery from dauer. To determine if dex-1 is required for 

maintaining seam cell quiescence during dauer, we used a seam cell nuclei marker to 

examine the number of seam cell nuclei in wild-type and dex-1(ns42) backgrounds. 

Interestingly, we found the dex-1 mutant dauers have a slight, but statistically 

significant, increase in the number of seam cell nuclei compared with wild-type dauers 

(dex-1 x̅ = 16.63 ± 0.09928, WT x̅ = 15.95 ± 0.1715, p = 0.0010, n = 40). This could 

suggest that dex-1 plays a role in maintaining the seam cell quiescence during dauer.  

 

3.4 DISCUSSION 

Our data show that DEX-1 functions during dauer-specific remodeling of the stem cell-

like seam cells. We demonstrate that DEX-1 is secreted, but acts locally in a cell-

autonomous manner to regulate seam cell remodeling during dauer morphogenesis. 

DEX-1 is similar in sequence to the human ECM protein SNED1 (Sushi, Nidogen, EGF-

like domains 1). High levels of SNED1 expression promote invasiveness during breast 

cancer metastasis (Naba et al. 2014), suggesting a possible mechanical role in tissue 
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remodeling. Interestingly, results from our full-length translational DEX-1 reporter 

indicate that seam cell remodeling can also be perturbed by a dominant negative effect 

of DEX-1 overexpression. Seam cells with bright, aggregated sfGFP::DEX-1 expression 

were correlated with indistinct lateral alae and large body diameter, whereas diffuse 

sfGFP::DEX-1 correlated with intact alae. We hypothesize that this could be the result of 

increased interaction of DEX-1 protein with either itself or other ZP proteins in the ECM, 

leading to protein aggregates that disrupt alae formation. 

 Our data indicate that DEX-1 acts in a cell-autonomous manner directly beneath 

the edges of the lateral alae. Although expression of dex-1 in the hypodermis was 

sufficient to partially rescue dauer-specific radial shrinkage, hypodermal expression 

failed to rescue the lateral alae phenotype. We therefore propose DEX-1 may act as a 

secreted protein during dauer with restricted localization to the cuticle or extracellular 

matrix (ECM) immediately above the apical membrane of the seam cells. During 

embryogenesis, DEX-1 is secreted and localized to the dendritic tips (Heiman and 

Shaham 2009). DEX-1 may serve to couple physical interactions between the 

remodeled cuticular ECM and seam cell shape. Failure of these tissues to properly 

compact and thicken due to a loss of DEX-1 could lead to an overall weakening of the 

cuticle, and thus result in the SDS sensitivity observed in dex-1 mutant dauers. 

Furthermore, we found that dex-1 dauers have significantly more seam cells than wild-

type dauers, suggesting ectopic divisions during dauer diapause. In mammalian cell 

lines, stem cell shape regulates differentiation (McBeath et al. 2004; Kilian et al. 2010). 

For example, mesenchymal stem cells will differentiate into adipocytes or osteoblasts 

depending on whether the cell is round or flat, respectively (McBeath et al. 2004). We 
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speculate that the shrinkage observed during dauer may be important for maintenance 

of seam cell quiescence. Previous research demonstrated a role for autophagy in 

dauer-specific seam cell remodeling (Meléndez et al. 2003). It will be interesting to 

determine if dauer-specific changes to autophagy are influenced by DEX-1–mediated 

mechanical forces. 
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3.5 FIGURES 

 

 

Figure 3.1: dex-1 mutant dauers have defects in seam cell shrinkage. Lateral view micrographs of (A) 
wild-type (WT) and (B) dex-1(ns42) dauers expressing the apical junction marker ncIs13 [ajm-1::gfp]. The 
seam cells of wild-type dauers are elongated and smooth, while dex-1(ns42) mutant seam cells are wider 
with jagged edges. Bar, 10µm. (C) Quantification of seam cell area as measured with the ajm-1::gfp 
reporter. Data were analyzed by an unpaired t-test (dex-1(ns42) dauer n = 14, WT dauer n = 15). Error 
bars indicate SEM. 
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Figure 3.2: dex-1 is expressed in the seam cells during dauer. (A) Dorsoventral view of a dauer 
animals expressing dex-1p::gfp from a 5.7 kb promoter. (B) GFP is seen in the seam cells (arrowheads) 
during dauer and is not expressed during L3. Bar, 10µm. (C) Lateral view of a dauer animals expressing 
dex-1p::gfp from a 5.7 kb dex-1 promoter region. IN addition to the seam cells along the length of the 
animals, dex-1 is expressed in the socket glial cells of the anterior and posterior deirid neurons (arrows) 
during dauer, and in unidentified pharyngeal cells (arrowhead) during all larval stages. Bar, 10µm.  
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Figure 3.3: DEX-1 is localized to the outer ridges of the lateral alae. (A) Functional full-length dex-
p::sfgfp::dex-1 and truncated dex-1p::dex-1(ecto)::sfgfp constructs rescue the dex-1(ns42) SDS sensitivity 
phenotype to wild-type levels. Error bars indicate 95% confidence intervals. Non overlapping confidence 
intervals were considered significantly different (*) (n=60 per genotype pooled from three independent 
trials). (B) Lateral view overlay (top), fluorescence (middle) and DIC (bottom) micrographs of a dex-
1(ns42) dauer expressing a full-length dex-1p::sfgfp::dex-1 construct. The full-length dex-1p::sfgfp::dex-1 
construct rescues the lateral alae phenotype in a mosaic pattern. dex-1::sfgfp::dex-1 localizes in a diffuse 
pattern to the areas immediately below the outer ridges of rescued, intact lateral alae (arrowheads). In 
contrast, in areas where lateral alae are not rescued, DEX-1 expression is bright and punctate and 
localizes throughout the lateral ridge (arrows). Bar, 10µm. 
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Figure 3.4: DEX-1 functions as a secreted protein in a tightly localized manner. (A) Lateral view DIC 
overlay (top) and fluorescence (bottom) images of a dex-1(ns42) dauer expressing dex-1p::dex-
1(ecto)::sfgfp, which lacks the C-terminal transmembrane domain. dex-1p::dex-1(ecto)::sfgfp localizes to 
the outer edges of the lateral ridge and completely rescues the dex-1(ns42) alae phenotype 
(arrowheads). (B) Cell-specific rescue of body diameter in dex-1(ns42) suggests DEX-1 functions cell-
autonomously. Error bars, SEM. **** indicates statistical significance at P < 0.0001 (n =15). (C) dex-1 
expression from the cut-5 promoter rescues the dex-1(ns42) alae formation phenotype in a mosaic 
pattern. Arrowhead points to areas with rescued alae, arrow points to areas with partially rescued alae. 
dex-1 expression from a (D) pha-4 pharyngeal and (E) cut-6 hypodermal promoter fail to rescue alae 
formation in dex-1(ns42) dauers. Arrows point to the indistinct lateral alae. (F) DIC overlay (top) and 
fluorescence (bottom) image of a dex-1(ns42) dauer expressing a dex-1p::dex-1 construct with sur-5::gfp. 
sur- 5::gfp expression in seam cell nuclei was correlated with rescue of the lateral alae (arrowheads), 
while the absence of sur-5::gfp correlated with indistinct lateral alae and a larger body diameter (arrows). 
Occasionally, sur-5::gfp was expressed in seam cell nuclei that did not show lateral alae rescue (*). Bar, 
10 mm. 
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CHAPTER 4: DEX-1 INFLUENCES DAUER-SPECIFIC BEHAVIORS 

This chapter is adapted, in part, from Flatt et al. 2019. 

 

4.1 INTRODUCTION 

 Dauer larvae exhibit distinct locomotion behaviors compared to non-dauer 

animals (Cassada and Russell 1975; Gaglia and Kenyon 2009). While non-dauers 

exhibit bouts of spontaneous locomotion in search of food or potential mates, dauer 

larvae are often found to be behaviorally quiescent. Interestingly, dauer larvae are 

capable of immediate and rapid locomotion following mechanical stimulation. This rapid 

locomotion response is likely due to dauer-specific tissue remodeling. For example, 

dauer larvae undergo radial shrinkage of the entire body, resulting in formation of raised 

cuticular ridges called the lateral alae. Though the function of the dauer lateral alae is 

not well understood, it is hypothesized that they aid in dauer-specific locomotion over 

various terrains. Additionally, dauer larvae undergo remodeling of the muscular 

systems, including increases to myofilament lattices and changes in mitochondrial 

conformations to promote short, but powerful bouts of locomotion (Hackenbrock et al. 

1971; Popham and Webster 1979). Here we show that dauer locomotion is not entirely 

dependent on lateral alae formation, and that defects in the neuromuscular system of 

dex-1 mutant dauers may impact their ability to perform the rapid locomotion behaviors 

observed in wild-type dauers.  
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4.2 MATERIALS AND METHODS 

Strains and plasmids. All strains were grown under standard conditions unless 

otherwise noted (Brenner 1974). The wild-type Bristol N2 strain and the CHB27 

dex1(ns42) III and UP2571 dex-1(cs201) III mutant strains were used for behavioral 

analysis. All mutant strains were backcrossed at least twice. dex-1(ns42) was a 

generous gift of Dr. Maxwell Heiman (Department of Genetics, Harvard University, 

Boston, MA) (Heiman and Shaham 2009). dex-1(cs201) was generated using standard 

EMS mutagenesis protocols (Brenner 1974; Flibotte et al. 2010) and identified based on 

balancer mapping and whole genome sequencing (Cohen et al. 2019). The IL2 neurons 

were observed using PT2660 myIs13[klp-6p::gfp+pBx] III and PT2762 myIs14[klp- 

6p::gfp+pBx] V (Blelloch et al. 1999; Ouellet et al. 2008; Schroeder et al. 2013). The 

deirid neurons were observed using TG2435 vtIs1[dat-1p::gfp +rol-6(su1006)] V (Nass 

et al. 2002). Muscle arms and the nerve cords were observed using RP247 trIs30[him-

4p::yfp+hmr-1b::DsRed2+unc-129nsp::DsRed2] (Dixon and Roy 2005).  

The seam cell-specific expression plasmid was constructed using Gibson 

Assembly (E2611S; New England Biolabs, Beverly, MA). To do this, we replaced the 

endogenous dex-1 promoter in the pMH7 plasmid with a 1.2 kb cut-5 promoter region 

(for a complete list of primers and plasmids, please see the Supplemental Table). 

Animals containing extrachromosomal arrays were generated using standard 

microinjection techniques (Mello et al. 1991), and genotypes confirmed using PCR 

analysis and observation of co-injection markers. dex-1(ns42) animals were injected 

with 20 ng/ml of plasmid and 80 ng/ml of unc-122p::gfp. 
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Microscopy and muscle arm analysis. For light microscopy, animals were mounted 

onto 4% agarose pads and immobilized with 0.1 or 0.01 M levamisole for dauers and 

non-dauer or partial dauers, respectively. In our hands, dauers frequently lay in a 

dorsal-ventral position following anesthesia. Therefore, to image the lateral side, dauers 

were immobilized by mounting on 4% agarose pads with Polybead Polystyrene 0.10 

mm microspheres (Polysciences Inc., #00876) (Kim et al. 2013). A Zeiss AxioImager 

microscope equipped with DIC and fluorescence optics was used to collect images. To 

determine the average width of wild-type muscle arms, we measured the width of 

muscle arms from muscle cells #9, 11, 13, 15 and 17 as described by Dixon and Roy 

2005. Measurements from 3 individual wild-type animals were averaged to determine a 

standard average muscle arm width of 0.98µm. For all following experiments, muscle 

arms greater than 2µm in width were considered abnormal. For mutant muscle arm 

analysis, muscle arms from muscle cells #9, 11 and 13 as described by Dixon and Roy 

2005 were measured at the estimated mid-point. The calculated number of abnormal 

muscle arms was divided by the total number of muscle arms and multiplied by 100, 

giving a single measurement for each animal. Muscle arm data were analyzed using an 

unpaired t-test in GraphPad Prism 6 software. 

For transmission electron microscopy, dauer larvae were induced using 

pheromone plates and processed for high-pressure freezing and freeze substitution 

modified from previously established methods (Hall et al. 2012; Manning and Richmond 

2015). Using OP50 Escherichia coli as a substrate and 1% propylene phenoxetol in M9 

buffer as an anesthetic, animals were loaded into a metal specimen carrier coated with 

1-hexadecane and frozen in an HPM 010 high-pressure freezer. Freeze substitution 
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was performed in an FS-8500 freeze substitution system using 2% OsO4 (Electron 

Microscopy Sciences), 0.1% uranyl acetate (Polysciences) in 2% H20, and 100% 

acetone. Samples were held at -90º for 110 hr, then warmed to -20 at the rate of 5º per 

hour (14 hr). Samples were then held at -20º for 16 hr, then warmed to 0º at the rate of 

5º per hour (4 hr). Samples were washed three times in pre-chilled (0º) 100% acetone 

and incubated at 0º for 1 hr after the final wash. Samples were then warmed to room 

temperature and washed an additional two times with 100% acetone. Samples were 

infiltrated with 1:1 Polybed812 (Polysciences) resin: acetone for 6 hr, 2:1 resin:acetone 

for 14 hr, and 100% resin for 72 hr. All infiltration steps were incubated on an orbital 

shaker at room temperature. Samples were then embedded in molds in 100% resin plus 

DMP-30 hardener (Polysciences) and baked at 60º for 48 hr, then 70 nm sections were 

cut with a diamond knife using a PowerTome PC ultramicrotome and collected onto 

formvar-coated copper slot grids. Samples were imaged with a Philips CM200 

transmission electron microscope. 

 

Dauer formation. Dauers were induced using plates containing high concentrations 

(EC90) of crude dauer pheromone extracted by previously established procedures 

(Vowels and Thomas 1992; Schroeder and Flatt 2014). 

 

Locomotion assays. For movement assays, animals were transferred to unseeded 

NGM plates and allowed to sit at room temperature for 10 min before being assayed. 

Animals were stimulated near the anus with an eyelash and the number of body bends 

was scored. Counting was stopped if the animal did not complete another body bend 
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within 5 sec of stopping, or if the animal reversed direction. Each animal was scored 

twice and then removed from the plate. Counts were averaged and then analyzed using 

a nonparametric Kruskal–Wallis test with Dunn’s multiple comparisons test, or Mann–

Whitney U test, using GraphPad Prism 6 software. 

 

4.3 RESULTS 

DEX-1 plays a role in dauer-specific locomotion behaviors. Morphological changes 

during dauer are accompanied by changes in behavior. Wild-type dauer animals are 

often quiescent, but move rapidly when mechanically stimulated (Cassada and Russell 

1975). Anecdotally, we noticed a higher percentage of quiescent dex-1 dauers than 

wild-type dauers. To quantify this behavior, we developed a behavioral assay to 

measure movement following mechanical stimulation (see Materials and Methods). 

Although both dex-1 mutant and wild-type dauers initially respond to mechanical 

stimulation, the dex-1 mutant dauers have significantly reduced locomotion and display 

slightly uncoordinated body movements (Figure 4.1A). This locomotion defect was 

dauer-specific, as non-dauer dex-1 animals moved at wild-type levels following 

mechanical stimulation (Figure 4.1B). In addition to seam cell remodeling, the IL2 and 

deirid sensory neurons remodel during dauer formation (Albert and Riddle 1983; 

Schroeder et al. 2013). The IL2s regulate dauer-specific behaviors (Lee et al. 2011; 

Schroeder et al. 2013), while the deirids respond to specific mechanical cues (Sawin et 

al. 2000). We therefore examined these neuron classes using fluorescent reporters; 

however, we observed no obvious difference in neuronal structure between dex-1(ns42) 

and wild-type (Figure 4.1, C and D). Given that dex-1 was primarily expressed in the 
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seam cells during dauer, we tested if seam cell-specific expression could rescue the 

behavioral phenotype. Surprisingly, although seam cell-specific expression of dex-1 

rescued radial shrinkage and alae formation defect in a mosaic pattern, seam cell-

specific dex-1 expression completely rescued the dex-1(ns42) dauer locomotion defects 

(Figure 4.1A). The ability of seam cell-specific expression of dex-1 to completely rescue 

the dauer-specific locomotion defects, independent of radial shrinkage and alae 

formation, may suggest a role for DEX-1 in locomotion-specific neuronal circuits during 

dauer.  

C. elegans locomotion is regulated by the motor neurons found in the ventral 

nerve cord (VNC). The somas of all motor neurons are located in the VNC and a subset 

send commissures to the dorsal side that run along the dorsal hypodermal ridge and 

form the dorsal nerve cord (DNC) which innervates the dorsal muscles. Interestingly, a 

previous RNAi screen revealed that a knockdown of DEX-1 resulted in failure of motor 

neuron commissures to reach the DNC (Schmitz et al. 2007). To determine if these 

effects were observable during dauer, we used transmission electron microscopy to 

observe the dorsal nerve cords of dex-1(cs201) and wild-type dauers. We found that 

while wild-type dauers had intact DNC commissure bundles, the DNC of dex-1(cs201) 

mutant dauers appeared defasciculated (Figure 4.2). Further, the dorsal hypodermal 

ridge appeared enlarged in dex-1(cs201) dauers compared to wild-type (Figure 4.2). 

This may suggest a role for DEX-1 in maintaining the integrity of the dorsal nerve cord, 

and the surrounding tissues.  

The motor neurons facilitate locomotion in C. elegans through innervation of 

muscle cells via projections of muscle tissue called muscle arms (Dixon and Roy 2005) 
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(Figure 4.2). C. elegans typically extend a characteristic number of muscle arms during 

non-dauer development. However, previous work shows that dauer animals send 

additional, dauer-specific muscle arms to make connections with the nerve cord (Dixon 

et al. 2008). We hypothesized that these additional muscle arms may contribute to the 

rapid locomotion observed during dauer and that defects in dex-1 may result in defects 

in neuromuscular connections between muscle arms and the nerve cords. Using the 

muscle arm reporter trIs30[him-4p::yfp+hmr-1b::DsRed2+unc-129nsp::DsRed2], we 

determined that the average muscle arm width in a wild-type animal is roughly 1µm 

(See Materials and Methods). We then measured muscle arm width in dex-1(cs201) 

mutant dauers and found a statistically significant increase in the number of 

membranous muscle arms compared to wild-type dauers (Figure 4.3). This suggests 

that DEX-1 may play a role in muscle arm formation and locomotion behaviors. To 

determine if these defects in muscle arm formation were dauer-specific, we used the 

same quantification methods to investigate the comparable L3 stage. Surprisingly, we 

found that dex-1(cs201) non-dauer L3 animals also have a slight, yet statistically 

significant increase in abnormal muscle arms (Figure 4.4). However, the dex-1(cs201) 

L3 locomotion behaviors were unaffected (Figure 4.4).  

While many morphological aspects of dauer formation are reversible upon 

recovery from dauer, the dauer-specific muscle arms are retained into adulthood (Dixon 

et al. 2008). Using our muscle arm marker, we observed the muscle arms in dex-

1(cs201) and wild-type post-dauer adults and found that the dex-1 mutants, again, 

showed an increased number of abnormal muscle arms compared to wild-type post-

dauer adults (Figure 4.5A). To test whether these defects impaired post-dauer adult 
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locomotion, we used our previously developed locomotion assay (Flatt et al. 2019). 

Surprisingly, we found no differences in locomotion behaviors between dex-1(cs201) 

mutant or wild-type post-dauer adults (Figure 4.5C). Likewise, we observed similar 

results in both muscle arm morphology and locomotion between dex-1(cs201) and wild-

type well-fed adults that had not gone through dauer (Figure 4.5, B and D). Taken 

together, these data suggest that while muscle arms by nature may be important for 

locomotion (Dixon et al. 2008), muscle arm morphology may not be consequential to 

non-dauer locomotion.  

While investigating electron micrographs of dex-1(cs201) mutant and wild-type 

dauers, we anecdotally observed that the mitochondria of the dex-1 mutants appear 

darkened with abnormal membranes and indistinct cristae, which are signs of 

mitochondrial distress and degeneration (Dagda et al. 2009) (Figure 4.2). Interestingly, 

similar signs of mitochondrial degradation were observed in the Duchenne’s muscular 

dystrophy model, dys-1, albeit in non-dauer stages (Hughes et al., 2019). While the 

mitochondrial defects observed in dex-1 mutant dauers are anecdotal observations, 

they may suggest a role for dex-1 in maintaining tissue integrity during dauer. Future 

work is needed to determine if these dex-1 mutant mitochondrial defects are exclusive 

to the dauer stage, and what role these defects may play in dex-1 dauer locomotion 

defects.  

 

4.4 DISCUSSION 

Here we show that dex-1 mutant dauers are sluggish and slightly uncoordinated 

following mechanical stimulation in contrast to the rapid locomotion observed in wild-
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type dauers. We originally hypothesized that this dauer-specific defect in dex-1 mutants 

could be due to the indistinct lateral alae observed on dex-1 mutant dauers. However, 

our seam cell-specific rescue of dex-1 resulted in a mosaic pattern of alae formation 

while completely rescuing the locomotion behavior. One explanation may be that DEX-1 

acts cell-non autonomously to mediate dauer behaviors. Alternatively, our seam cell-

specific promoter could drive undetectable expression in the neuromuscular system.  

Previous RNA interference data showed that knockdown of dex-1 results in low 

penetrance defects in motor neuron commissure formation (Schmitz et al. 2007). 

Indeed, our investigation into the ultrastructure of the dex-1 mutant dauer 

neuromuscular system suggests that while wild-type dauers exhibit an intact DNC, the 

DNC of dex-1 mutant dauers appears defasciculated which may influence the dex-1 

mutant dauers uncoordinated behaviors. Future experiments will aim to determine 

whether these defects in nerve cord structure are dauer specific, and how DEX-1 

facilitates proper dorsal nerve cord organization. 

Dauer larvae also exhibit changes in somatic muscle structure compared to non-

dauers (Dixon et al. 2008). Nerve cords make connections with muscle cells via 

extensions of muscle tissue called muscle arms (Dixon and Roy 2005). Non-dauer 

animals develop a stereotypical number of muscle arms during early larval 

development. However, when animals are stimulated to enter dauer, they extend 

additional, dauer specific muscle arms to their respective nerve cords. While the 

function of these dauer-specific muscle arms is not known, it has been speculated that 

they may influence dauer-specific locomotion behaviors (Cassada and Russell 1975; 

Dixon et al. 2008). We show here that dex-1 mutant dauers appear to have defects in 
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muscle arm morphology compared to wild-type dauers which we speculate may 

negatively impact dex-1 mutant dauer locomotion. Interestingly, previous work has 

shown that muscle arms will extend to meet their respective nerve cords regardless of 

the nerve cord location (Hedgecock et al. 1990)(Figure 4.2). We hypothesized that 

defects in muscle arm formation may be a result of positional compensation due to 

defasciculation of the nerve cord in dex-1 mutant dauer animals. Animals with defects in 

muscle arms are also often described as uncoordinated, suggesting that muscle arm 

morphology is important for proper locomotion (Dixon and Roy 2005). We therefore 

speculated that the defects in muscle arm morphology may negatively influence dauer 

locomotion. However, although we did observe statistically significant differences in 

muscle arm morphology between dex-1 mutant and wild-type dauers, our investigation 

into whether these defects influenced dauer locomotion behaviors were inconclusive. 

While we observed abnormal muscle arms in all stages tested, we only observed 

locomotion defects in the dauer stage. This suggests that muscle arm morphology may 

not influence muscle arm function.   

Finally, while investigating the ultrastructure of dex-1 mutant dauers, we 

observed that the mitochondria of dex-1 mutant dauers appeared dark and segmented 

compared to wild-type dauers. While mitochondria take on a condensed, electron dense 

conformation during dauer due to changes in respiratory rates and energy expenditure 

(Hackenbrock et al. 1971; Popham and Webster 1979), segmentation and membrane 

breakdown, which were also observed in dex-1 mutant dauers, are signs of 

mitochondrial degeneration (Dagda et al. 2009). Interestingly, similar defects were 

observed in the C. elegans DMD mutant, dys-1 (Hughes et al. 2019). DMD is a muscle-
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wasting disease, which results in loss of locomotion due to muscle and mitochondrial 

degeneration (Goldstein and McNally 2010). Though our observations in the dex-

1(cs201) mutant dauers were anecdotal, it is worth noting that loss of mitochondrial 

function may play a role in dex-1 dauer locomotion defects. If this is the case, it will be 

interesting to determine how the degenerated dauer mitochondria recover to facilitate 

post-dauer adult locomotion.  
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4.5 FIGURES 

 

Figure 4.1: dex-1(ns42) dauers have defects in locomotion. (A) dex-1(ns42) dauers are less 
responsive when mechanically stimulated compared to wild-type dauers. Seam cell-specific expression of 
dex-1 rescues the locomotion phenotype to wild-type levels. **** indicates statistical significance at P < 
0.0001 (n =40). (B) The locomotion defect in dex-1(ns42) dauers is dauer-specific, as non-dauer dex-
1(ns42) adults move at wild-type levels when mechanically stimulated (n =40). Error bars indicate SEM. 
(C) Dorsoventral confocal images of the inner labial 2 (IL2) neurons in dex-1(ns42) (top) and wild-type 
(bottom) dauers. Bar, 10 mm. (D) Lateral view micrographs of the anterior deirid (ADE) neurons in dex-
1(ns42) (top) and wild-type (bottom) dauers. We did not observe any structural differences in either the 
IL2 or deirid neurons. Bar, 1 mm. 
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Figure 4.2: dex-1(cs201) appear to have defects in nerve cord organization and mitochondrial 
structure. Electron micrographs showing cross-sections of the dorsal nerve cords (false colored pink) in 
a dex-1(cs201) mutant (top) and wild-type (bottom) dauer. The nerve cord of the dex-1(cs201) dauer 
appears defasciculated compared to the wild-type dauer. A muscle cell (false colored blue) extends a 
muscle arm to the defasciculated nerve cord in the dex-1(cs201) mutant dauer. Additionally, the dorsal 
hypodermal ridge (false colored green) of the dex-1(cs201) mutant dauer is enlarged. The mitochondria 
(*) of the dex-1(cs201) mutant dauer also show signs of degeneration which were not observed in wild-
type dauers. Scale bar, 500nm 
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Figure 4.3: dex-1(cs201) mutant dauers have abnormal muscle arms. Dorsoventral view micrographs 
of a dex-1(cs201) dauer (top) and a wild type dauer (bottom) expressing the trIs30[him-4p::yfp+hmr-
1b::DsRed2+unc-129nsp::DsRed2] reporter. The muscle arms of dex-1(cs201) mutant dauers appeared 
membranous (arrowheads) compared to those in wild-type dauers (arrows). Scale bar, 10µm. 
Quantification of muscle arm defects revealed that dex-1(cs201) dauers have a high percentage of 
abnormal muscle arms than wild-type dauers. (n = 10). Error bars indicate SEM. * indicates significance 
at P < 0.05.  

 

 

 

 

 
Figure 4.4: dex-1(cs201) L3 larvae have abnormal muscle arms and wild-type locomotion 
behaviors. Non-dauer L3 larvae show a slight but significant increase in abnormal muscle arms 
compared to wild-type L3s. (n=10). * indicates statistical significance at P < 0.05. However, locomotion 
behaviors are not affected, as dex-1(cs201) L3s moved at wild-type levels following mechanical 
stimulation. (n=25). Error bars, SEM. 
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Figure 4.5: Abnormal muscle arm defects do not affect adult locomotion behavior. (A and B) Both 
post-dauer and well-fed dex-1(cs201) adult animals have an increased number of abnormal muscle arms 
compared to wild-type adults. (C and D) The abnormal muscle arms observed in dex-1(cs201) adult 
animals do not affect locomotion behaviors. (n = 25). Error bars represent SEM. ** indicates significance 
at P < 0.01. 
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CHAPTER 5: DEX-1 IS REGULATED BY THE FOXO TRANSCRIPTION FACTOR 

DAF-16 DURING DAUER FORMATION 

This chapter is adapted, in part, from Flatt et al. 2019. 

 

5.1 INTRODUCTION 

The decision to enter dauer typically results in an all-or-none phenotype where 

dauers have every dauer morphological characteristic. However, mutations in some 

genes necessary for dauer formation result in an intermediate dauer phenotype, called 

partial dauers, in which the animals will display some, but not all, dauer characteristics 

(Albert and Riddle 1988). For example, when food availability is restricted, reduced 

insulin signaling promotes dauer formation via the sole C. elegans ortholog of human 

FOXO transcription factor, DAF-16 (Lin et al. 1997; Ogg et al. 1997; Lee et al. 2001). 

Mutations in daf-16 result in animals incapable of forming true dauers under natural, 

dauer-inducing conditions. However, when exposed to high dauer pheromone 

concentrations, daf-16 mutants can enter into a transient ‘partial dauer’ stage in which 

the animals arrest following a pre-dauer L2 stage, but exhibit defects in some dauer-

specific characteristics (Vowels and Thomas 1992; Gottlieb and Ruvkun 1994). During 

reproductive development, DAF-16 is excluded from the nucleus and remains in the 

cytosol. However, when animals are stimulated to enter dauer, DAF-16 is translocated 

into the nucleus where it regulates several aspects of dauer formation. Here, we show 

that dex-1 expression during dauer is regulated by the transcription factor DAF-16. 
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5.2 MATERIALS AND METHODS 

 Strains and plasmids. All strains were grown under standard conditions unless 

otherwise noted (Brenner 1974). The wild-type Bristol N2 strain, CHB27 dex1(ns42) III, 

and DR27 daf-16(m27) III were used for seam cell analyses. All mutant strains were 

backcrossed at least twice. The dex-1(ns42) mutant strain and the pMH111 dex-1p(5.7 

kb)::gfp and pMH125 dex-1p(2.1 kb):: gfp plasmids were a generous gift from Dr. 

Maxwell Heiman (Department of Genetics, Harvard University, Boston, MA) (Heiman 

and Shaham 2009). The insulin response sequence was deleted from pMH111 using 

the Q5 Site Directed Mutagenesis Kit (E05525; New England Biolabs). For a complete 

list of primers and plasmids, please see the Supplemental Table. Animals containing 

extrachromosomal arrays were generated using standard microinjection techniques 

(Mello et al. 1991), and genotypes confirmed using PCR analysis and observation of co-

injection markers. Adult animals were injected with 20 ng/ml of plasmid and 80 ng/ml of 

unc-122p::gfp as the co-injection marker.  

 

Dauer formation. Dauers were induced using plates containing high concentrations 

(EC90) of crude dauer pheromone extracted by previously established procedures 

(Vowels and Thomas 1992; Schroeder and Flatt 2014). 

 

dex-1 expression analysis. To analyze dex-1p::gfp expression in the seam, images of 

dauer animals were taken using identical fluorescence settings and exposure times 

(10ms). The fluorescence intensities of the V2pap, V2ppp, and V3pap seam cells were 

measured using established methods (McCloy et al. 2014). Each cell was outlined and 
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the area, integrated density, and mean gray value were measured. Measurements were 

also taken for areas without fluorescence surrounding the cell. The total corrected cell 

fluorescence [TCCF=integrated density2 (area of selected cell X mean fluorescence of 

background reading)] was calculated for each cell. The intensities of the three cells from 

each worm were averaged such that each nematode comprised a single data point. 

Variability in copy number between dex-1p::gfp and daf-16(m27); dex-1p::gfp was 

controlled by using the same transgene in both wild-type and daf-16(m27) backgrounds. 

Multiple independent lines were examined. To control for potential variation in copy 

number between the dex-1p(IRSΔ)::gfp strain and dex-1p::gfp, we examined multiple 

independent lines. The data were analyzed using one-way ANOVA and Bonferroni’s 

multiple comparisons test. Ten animals were measured for each genotype. 

 

5.3 RESULTS 

  dex-1 expression is regulated by the DAF-16 transcription factor. To 

understand how dex-1 expression is regulated, we examined the upstream region of 

dex-1 for potential regulatory sites. Previous chromatin immunoprecipitation sequencing 

data identified a putative DAF-16 binding site ~3 kb up-stream of the dex-1 coding 

region (Figure 5.1A) (Celniker et al. 2009). DAF-16 is the sole C. elegans ortholog of the 

human Forkhead Box O-type transcription factor and a major regulator of the dauer 

decision (Lin et al. 1997; Ogg et al. 1997). To examine whether this region affects 

expression of dex-1, we first expressed GFP from a truncated 2.1 kb dex-1 promoter 

that does not include the putative DAF-16 binding site. Unlike the 5.7 kb dex-1p::gfp 

promoter fusion, which resulted in GFP expression in the seam cells exclusively during 
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dauer (Figure 3.2, A and B), the shorter dex-1 promoter drove GFP expression in the 

seam cells during all larval stages (Figure 5.1B). This suggests that dex-1 is repressed 

during non-dauer stages and activated by DAF-16 during dauer. To further examine if 

DAF-16 is regulating dex-1 expression during dauer, we examined the expression of the 

5.7 kb dex-1p::gfp reporter in a daf-16(m27) mutant background. While mutations in daf-

16 result in animals incapable of forming dauers, under high-pheromone concentrations, 

daf-16(m27) mutants can enter into a partial dauer state with some dauer morphological 

characteristics (Vowels and Thomas 1992; Gottlieb and Ruvkun 1994). daf-16(m27) 

partial dauers are identifiable by body morphology and the presence of indistinct lateral 

alae (Vowels and Thomas 1992). We found that the fluorescence intensity of dex-

1p::gfp was significantly reduced in daf-16(m27) partial dauers compared to wild type, 

suggesting that DAF-16 regulates dex-1 seam cell expression during dauer (Figure 5.1, 

C and D). 

 FOXO/DAF-16 binds to canonical DAF-16 binding elements and insulin response 

sequences (IRS) (Paradis and Ruvkun 1998; Obsil and Obsilova 2008). Within the 

chromatin immunoprecipitation sequencing–identified region (Celniker et al. 2009), we 

identified a putative IRS binding site (Figure 5.1A). To determine whether the identified 

DAF-16 IRS site directly regulates dex-1 expression, we deleted the IRS sequence in 

the 5.7 kb dex-1 promoter region used to drive GFP. We found that deleting the IRS 

sequence results in reduced GFP expression in the seam cells during dauer, similar to 

the levels observed in daf-16 partial dauers (Figure 5.1, C and D). Taken together, 

these results indicate the 2.1 kb region proximal to the dex-1 start codon drives 

expression in the seam cells, and that an unidentified element within the 3.6 kb region 
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upstream from the 2.1 kb activation site represses expression outside of dauer. This 

repression is counteracted by DAF-16 binding to the IRS during dauer formation.  

 

5.4 DISCUSSION 

 Dissection of the genetic pathways regulating the decision to enter dauer has 

revealed insights into TGF-β, insulin, and hormone signaling (Thomas et al. 1993; 

Gottlieb and Ruvkun 1994; Riddle and Albert 1997). The FOXO transcription factor 

DAF-16 is a well-known regulator of the dauer formation decision by acting downstream 

of the insulin/IGF-1 receptor DAF-2 (Gottlieb and Ruvkun 1994; Ogg et al. 1997). 

Dauer-inducing environmental conditions lead to a translocation of DAF-16 to the 

nucleus, where it activates dauer formation pathways (Lee et al. 2001; Fielenbach and 

Antebi 2008). We found that dex-1 expression during dauer is regulated by DAF-16. 

Based on our results, we propose that DEX-1 is repressed during non-dauer 

postembryonic stages and DAF- 16 serves to activate dex-1 expression via an 

upstream non-canonical insulin response sequence. One hypothesis is that genetic 

repression of dex-1 expression by daf-12 during non-dauer stages is alleviated by DAF-

16 translocation during dauer. Previous chromatin immunoprecipitation-sequencing also 

identified a putative DAF-12 binding site in the upstream region of dex-1 in nearly the 

same location as our identified DAF-16 IRS binding site (Celniker et al. 2009; Snyder et 

al. 2011). During non-dauer stages, the nuclear hormone receptor DAF-12 is bound by 

DAF-9 and promotes reproductive development through activation of gene expression 

(Gerisch et al. 2004). In our working hypothesis, while DAF-9-bound DAF-12 would not 

directly repress dex-1 expression, DAF-12 binding in this region may indirectly ‘block’ 
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expression of dex-1 during non-dauer stages. When conditions become unfavorable, 

DAF-9 production is down regulated, and DAF-12 is bound by the DIN-1/SHARP 

complex (Ludewig et al. 2004). This change in binding partner represses DAF-12 

transcriptional activation and promotes dauer entry. Interestingly, DIN-1/SHARP-bound 

DAF-12 promotes translocation of DAF-16 from the cytoplasm to the nucleus during 

dauer formation (Hochbaum et al. 2011). Thus, it may be that DAF-12 acts to both 

repress and activate dex-1 expression during dauer formation. Future work is necessary 

to characterize this putative DAF-12 binding site and determine what role it may play in 

dauer morphogenesis. 
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5.5 FIGURE 

 

 

Figure 5.1: dex-1 expression in the seam cells is regulated by DAF-16. (A) We identified a putative 
DAF-16 IRS binding site (in capitals) 3 kb upstream from the dex-1 ATG start site. (B) Expression of dex-
1p::gfp from a truncated 2.1 kb dex-1 promoter drives fluorescence in the seam cells (arrowheads) in both 
dauer (top) and non-dauer (bottom) stages. Bar, 10 mm. (C) Dorsoventral view micrographs of GFP 
expression from the 5.7 kb dex-1 promoter in a wild-type background (top) produces bright fluorescence 
in the seam cells during dauer (also see Figure 5A). Fluorescence intensity is reduced in a daf-16(m27) 
partial dauer mutant background (middle). Deletion of the DAF-16 IRS sequence (bottom) from the 5.7 kb 
promoter region also significantly reduces GFP expression in the seam cells during dauer. Arrowheads 
indicate seam cells. Bar, 10 mm. (D) Quantification of GFP expression driven by the 5.7 kb dex-1 
promoter in dauers. ** and *** indicate statistical significance at P < 0.01 and P < 0.001, respectively. 
Error bars indicate SEM. 
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CHAPTER 6: DEX-1 GENETICALLY INTERACTS WITH ZONA PELLUCIDA-DOMAIN 

PROTEINS TO FACILITATE DAUER MORPHOGENESIS 

This chapter is adapted, in part, from Flatt et al. 2019. 

 

6.1 INTRODUCTION 

DEX-1 was previously shown to function with the zona pellucida (ZP) domain-

containing protein, DYF-7, to mediate dendrite extension during embryogenesis 

(Heiman and Shaham 2009). Our data suggest that DEX-1 acts along with additional 

ZP-domain proteins to regulate seam cell remodeling. Combined with previous data 

demonstrating a role for DEX-1 in sensory dendrite adhesion (Heiman and Shaham 

2009), and recent data showing roles for DEX-1 in epithelial shaping in the embryo 

(Cohen et al. 2019), our data suggest that DEX-1 is an extracellular matrix (ECM) 

component that plays a role in modulating cell shape of several cell types throughout 

development. 

 

6.2 MATERIALS AND METHODS 

 Strains and plasmids. All strains were grown under standard conditions unless 

otherwise noted (Brenner 1974). The wild-type Bristol N2 strain and the following 

mutant strains were used: FX01126 cut-1(tm1126) II, CHB27 dex-1(ns42) III, CB1372 

daf-7(e1372) III, RB1574 cut-6 (ok1919) III, CB1372 daf-7(e1372) III, RB1629 cut-

5(ok2005) X, SP1735 dyf-7(m537) X. All mutant strains were backcrossed at least 

twice.  



77 

 

 dex-1(ns42) was a gift from Dr. Maxwell Heiman (Department of Genetics, 

Harvard University, Boston, MA) (Heiman and Shaham 2009). cut-1(tm1126) was 

provided by the Mitani Consortium (Department of Physiology, Tokyo Women’s Medical 

University School of Medicine, Japan). ST65 ncIs13[ajm- 1::gfp] was used to observe 

the apical junctions of the seam cells (Köppen et al. 2001) and was provided by the 

CGC. The IL2 neurons were observed using PT2660 myIs13[klp-6p::gfp+pBx] III; 

PT2762 myIs14[klp- 6p::gfp+pBx] V and (Peden and Barr 2005; Schroeder et al. 2013).  

 Domain schematics were constructed using the wormweb.org Exon-Intron 

Graphic Maker. Domain locations were determined using the Simple Modular 

Architecture Research Tool domain prediction software (Schultz et al. 1998). 

 

Dauer formation. Dauers were induced by one of two methods. For non-temperature-

sensitive strains, we used plates containing crude dauer pheromone extracted by 

previously established procedures (Vowels and Thomas 1992; Schroeder and Flatt 

2014). For temperature-sensitive strains with mutations in daf-7(e1372), dauers were 

induced using the restrictive temperature of 25ºC (Riddle et al. 1981). 

 

EMS Mutagenesis and Suppressor Screen. Synchronized populations of L4 animals 

were treated with ethyl methanesulfonate (EMS) using previously described procedures 

(Michaelson 2000). Briefly, L4 animals were incubated in 100mM EMS at 22ºC for 4 

hours. Surviving animals were then isolated onto fresh, seeded NGM plates and 

allowed to recover. Recovered adults were allowed to lay eggs for 24 hours before 

being transferred to a fresh, seeded NGM plate. This was repeated twice. F1 eggs were 



78 

 

grown at the permissive temperature (15ºC) to adulthood and then shifted to 25ºC for 72 

hours to induce F2 dauer formation. F2 populations were washed from the plate and 

treated with 1% SDS for 30 minutes. Suppressor mutants were recovered on seeded 

NGM plates at 15ºC. 

 

Microscopy. Unless otherwise specified, animals were mounted onto 4% agarose pads 

and immobilized with 0.1 or 0.01 M levamisole for dauers and non-dauer or partial 

dauers, respectively. In our hands, dauers frequently lay in a dorsal-ventral position 

following anesthesia. Therefore, to image the lateral side, dauers were immobilized by 

mounting on 4% agarose pads with Polybead Polystyrene 0.10 mm microspheres 

(Polysciences Inc., #00876) (Kim et al. 2013). A Zeiss AxioImager microscope equipped 

with DIC and fluorescence optics was used to collect images.  

 

Sodium dodecyl sulfate sensitivity assays. Sodium dodecyl sulfate (SDS) dose-

response assays were performed using 12-well culture dishes containing M9 buffer and 

specified concentrations of SDS. Dauers were exposed to SDS for 30 minutes and 

scored as alive if movement was observed following stimulation with an eyelash pick. 

Each concentration was tested in triplicate with each experiment containing a separate 

wild-type (N2) control. Dose-response curves and LD50 values were determined by 

testing 20 dauers per treatment at each concentration, with three independent 

experiments. The LD50 and 95% confidence interval of each concentration was 

calculated using probit analysis in Minitab 18. LD50 values were considered significantly 

different if the 95% confidence intervals did not overlap. Significant difference was 



79 

 

denoted with a single asterisk. Single concentration assays were conducted at 0.1% 

SDS with 20 dauers for each genotype and three independent experiments. Data were 

analyzed using a one proportion exact method analysis in Minitab 18 and considered 

significantly different if the 95% confidence intervals did not overlap. Significant 

difference was denoted with a single asterisk. 

 

6.3 RESULTS 

Genetic interactions between dex-1 and other extracellular matrix proteins may 

facilitate seam cell remodeling during dauer formation. DEX-1 acts with the ZP-

domain protein DYF-7 to regulate primary dendrite extension during embryogenesis 

(Heiman and Shaham 2009). We therefore examined the dyf-7(m537) mutant for 

defects in dauer morphogenesis. Unlike dex-1 mutants, dyf-7 mutants are unable to 

enter dauer under typical dauer-inducing environmental conditions (Starich et al.), and 

so we examined dyf-7 mutants in a daf-c mutant background. We observed that daf-

7;dyf-7 double mutants had normal dauer-specific radial shrinkage and IL2 dendrite 

arborization (Figure 6.1).  

The cuticlin (CUT) proteins are a family of ZP-domain proteins originally isolated 

from nematode cuticles (Sebastiano et al. 1991). cut-1 and cut-5 are expressed in the 

seam cells, while cut-6 is expressed in the surrounding hypodermis (Muriel et al. 2003; 

Sapio et al. 2005). Similar to dex-1, disruption of cut-1, cut-5, and cut-6 results in dauers 

with incomplete radial shrinkage and defective alae formation (Sebastiano et al. 1991; 

Muriel et al. 2003; Sapio et al. 2005). We asked whether these defects in CUT mutant 

larvae were due to seam cell remodeling. We found that, similar to dex-1(ns42), the 
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seam cells of the CUT mutant dauers were enlarged with jagged edges (Figure 6.2). 

Also similar to dex-1(ns42) mutants, we found that cut-1(tm1126) and cut- 5(ok2005) 

dauers were more sensitive to SDS compared with wild-type dauers (Figure 6.3, Table 

6.1). Interestingly, while cut-6(ok1919) mutant dauers were resistant to the standard 1% 

SDS treatment (Muriel et al. 2003), we found that the cut-6 mutant dauers were 

substantially more sensitive to SDS than wild-type dauers (Figure 6.3, Table 6.1). Taken 

together, these data indicate similar roles for DEX-1 and CUTs during dauer 

remodeling.  

We hypothesized that, similar to its interaction with DYF-7 during embryogenesis, 

DEX-1 may genetically interact with the CUT proteins during dauer. We therefore 

examined double mutants of dex-1(ns42) with cut-1(tm1126), cut-5(ok2005), and cut-

6(ok1919). It is worth noting that, while the cut mutations are all deletion alleles (Figure 

6.4), these data should be interpreted with caution as dex-1(ns42) is a hypomorphic 

allele. The dex-1; cut-1 double mutant did not enhance SDS sensitivity beyond the dex-

1 single mutant, suggesting that they may act in the same pathway to regulate dauer 

remodeling (Figure 6.3, Table 6.1). The dex-1; cut-5 double mutant was synthetically 

lethal during embryogenesis or early L1. This is similar to the dex-1(ns42); dyf-7 double 

mutant (Heiman and Shaham 2009) and the severe loss-of- function mutant dex-

1(cs201) (Cohen et al. 2019), suggesting that in addition to roles in dauer remodeling, 

CUT-5 has additional roles during early development. Interestingly, the dex-1 cut-6 

double mutant was intermediate in SDS sensitivity between the dex-1 and cut-6 single 

mutant (Figure 6.3, Table 6.1). We further tested the cut mutant phenotypes by 

generating double mutants between each of the cut mutants (Figure 6.3, Table 6.1). 
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The cut-1; cut-5 double mutant showed a significant reduction of SDS resistance 

compared to single mutants alone. Interestingly, the cut-1; cut-6 double mutants 

retained the cut-6 SDS sensitivity phenotype. The cut-6; cut-5 dauers showed a drastic 

increase in sensitivity to SDS compared to single mutants. In addition, the cut-6; cut-5 

double mutant showed a severe dumpy phenotype in all developmental stages. These 

results suggest that CUT-5 and CUT-6, like DEX-1 (Cohen et al. 2019), also play 

broader roles during development. 

To identify potential biochemical interactors of dex-1, we performed a 

mutagenesis screen and selected for mutants that suppressed the dex-1 mutant dauer 

SDS defect. To do this, we first mutagenized dex-1(ns42);daf-7(e1735) L4 animals 

using standard EMS protocols (Michaelson 2000). We then treated the mutagenized 

animals with 1% SDS for 30 minutes to isolate animals with suppressed SDS sensitivity. 

Using this method, we isolated 6 potential suppressor mutants of dex-1 that were able 

to withstand 1% SDS treatment. Interestingly, while the SDS sensitivity of the recovered 

suppressor mutants was mitigated, the radial shrinkage defects were not. This agrees 

with previous reports that radial shrinkage and alae formation are not necessary for 

SDS resistance during dauer (Riddle et al. 1981). 

 

6.4 DISCUSSION 

 Here we show that DEX-1 acts along with ZP-domain proteins to control dauer 

tissue remodeling. While the CUT mutants are all deletion alleles that disrupt the ZP 

domains and, therefore, likely functional null (Figure 6.4), the dex-1(ns42) allele is a 

nonsense mutation late in the coding region (Heiman and Shaham 2009). Our isolation 
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of the larval lethal dex-1(cs201) allele suggests that dex-1(ns42) is hypomorphic. 

Therefore, our dex-1 genetic interaction experiments should be interpreted with caution. 

In addition to this complication, our double-mutant experiments do not provide a clear 

interaction pathway. For example, our results suggest that deletion of cut-6 abrogates 

loss of cut-1. One possible explanation is a compensatory mechanism in the ECM, 

where loss of one ECM protein leads to increased expression of other structural 

components. This was previously shown in cases of osteogenesis imperfecta, where 

mutations in type I collagen led to increases in levels of thrombospondin and fibronectin 

(Fedarko et al. 2009). Alternatively, while we did not observe any obvious defects in the 

dauer formation decision in any of the double mutants, it is possible that slight 

differences in the ability to form dauers bias our observations toward individuals with 

only mild remodeling defects. 

 It has been proposed that biochemical compaction of the CUTs in the 

extracellular space between the seam and the hypodermis causes radial constriction, 

and thus forms the lateral alae via a “CUT tether” (Sapio et al. 2005).We add to this by 

proposing that DEX-1 is another seam-specific epidermal matrix component that, along 

with ZP CUTs, facilitates apical constriction of the seam and formation of dauer alae 

(Figure 6.5). Our data indicate that DEX-1 acts in a cell- autonomous manner directly 

beneath the edges of the lateral alae. Although expression of dex-1 in the hypodermis 

was sufficient to partially rescue dauer-specific radial shrinkage, hypodermal expression 

failed to rescue the lateral alae phenotype. We therefore propose DEX-1 may act as a 

secreted protein during dauer with restricted localization to the cuticle or ECM 

immediately above the apical membrane of the seam cells. During embryogenesis, 
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DEX-1 is secreted and localized to the dendritic tips (Heiman and Shaham 2009). DEX-

1 may serve to couple physical interactions between the remodeled cuticular ECM and 

seam cell shape. Failure of these tissues to properly compact and thicken due to a loss 

of DEX-1 could lead to an overall weakening of the cuticle, and thus result in the SDS 

sensitivity observed in dex-1 mutant dauers. Interestingly, results from our suppressor 

screen suggest that the SDS sensitivity phenotype is likely due to defects in the 

structural integrity of the cuticle and not radial shrinkage or alae formation. While the 

SDS sensitivity of our isolated suppressor mutants was restored to wild-type levels at 

1% SDS concentration, the suppressor mutants retained the dex-1 mutant dauer body 

morphology. Interestingly, previous reports show that while the uncloned ‘process’ 

mutant daf-13 forms dauers that wild-type for radial shrinkage and alae formation, they 

are sensitive to standard SDS treatments (Riddle et al. 1981). This suggests that dauer 

SDS resistance is acquired independently of seam cell remodeling and alae formation. 

In the future, it will be interesting to map these dex-1 suppressor mutants to determine 

the biochemical interactors of DEX-1 during dauer.   
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6.5 FIGURES AND TABLE 

 

 

Figure 6.1: dyf-7(m537) dauers are wild-type for dauer-specific radial constriction and IL2 
remodeling. (A) daf-7(e1372);dyf-7(m537) dauers undergo radial constriction similar to daf-7(e1372) 
dauers. Error bars, SEM. (n = 15). (B and C) We observed no apparent defects in IL2 remodeling 
between (B) daf-7(e1372) and (C) daf-7(e1372);dyf-7(m537) dauers. Scale bar, 10μm. 
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Figure 6.2: Cuticlin mutants phenocopy the dex-1 mutant seam cell phenotype during dauer. 
Lateral view of wild-type, dex-1(ns42), and cuticlin mutant dauers expressing the apical junction marker 
ajm-1::gfp. The seam cells in cuticlin mutants are jagged and wider, closely resembling those of dex-
1(ns42) mutant dauers. Bar, 10 mm. 
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Figure 6.3: Dose response curve for wild-type, single- and double-mutant animals. Wild-type dauers 
were resistant to high concentrations of SDS, while non-dauer animals were sensitive to all tested 
concentrations. dex-1(ns42) and CUT mutant dauers showed intermediate SDS sensitivity phenotypes. 
Double mutants of dex-1(ns42) with CUT mutant dauers and double CUT-mutant dauers were also tested 
at varying concentrations of SDS. 
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Table 6.1. % SDS concentration necessary to kill 50% of animals tested for each 
genotype. 
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Figure 6.4: Gene schematics of cuticlins. CUT proteins share similar domains. CUT-1, CUT-5 and 
CUT-6 all contain zona pellucida domains and C-terminal transmembrane domains. CUT-6 alone also 
contains a Von Willebrand factor type-A domain near its N-terminal. The deletion mutations cut-
1(tm1126), cut-5(ok2005), and cut-6(ok1919) all truncate parts of their respective ZP domains, likely 
resulting in functional nulls. The cut-5(ok2005) deletion extends 453 bases past the stop codon. Scale 
bars, 1kb. 
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Figure 6.5: DEX-1 may function outside of the dauer decision pathway to facilitate dauer alae 
formation. A model diagram showing our proposed genetic pathway for dex-1 transcriptional regulation. 
We show that during dauer, dex-1(ns42) is not suppressed by daf-c mutants and that dex-1 is 
transcriptionally activated by DAF-16. We also show that DEX-1 functions as a secreted protein localized 
to the apical extracellular matrix that, along with the cuticlin proteins, facilitates dauer-specific radial 
constriction and alae formation. 
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APPENDIX A: SUPPLEMENTAL TABLE 
 

Supplemental Table: Primers and plasmids used for this study 

PLASMID DESCRIPTION PRIMERS (5'-3') 

pKF1 cut-5p::DEX-1 pMH7_Left - ATGCGCAATAGGCATGCC 

  pmH7_Right - GTCGACCTGCAGGCATG 

  cut-5p_Left - 
TTGCATGCCTGCAGGTCGAaagacgagccaattgg 

  cut-5p_Right - 
GAAGGGCATGCCTATTGCGCATgaacaaaatctgga 

pKF3 dex-1p(5.7kbΔ)::gfp IRS_Left - CATTTAGCTTTCTCCGTC 

  IRS_Right - ATGACAACGAAAAACCAC 

pKF5 cut-6p::DEX-1 pMH7_Left - ATGCGCAATAGGCATGCCC 

  pMH7_Right - GTCGACCTGCAGGCATGC 

  cut-6p_Left - 
CCTGCAGGTCGACcccgaccaattgttatcagtaggag 

  cut-6p_Right - 
GCATGVVTATTGCGCATctcatttcgcagaagaggcga 

pJC15 dex-1p::DEX-
1(ecto)::sfGFP 

see Cohen et al., 2019 

pJC24 dex-1p::sfGFP::DEX-1 see Cohen et al., 2019 

pMH7 dex-1p::DEX-1 see Heiman and Shaham, 2009 

pMH8 pha-4p::DEX-1 see Heiman and Shaham, 2009 

pMH111 dex-1p(5.7kb)::GFP a gift of Dr. Maxwell Heiman 

pMH125 dex-1p(2.1kb)::GFP  a gift of Dr. Maxwell Heiman 

pTG96_2 sur-5p::GFP a gift of Dr. Trent Gu (Gu et al. 1998) 

 


