
c© 2019 Pranjal Vachaspati

LARGE SCALE PHYLOGENOMIC ESTIMATION

BY

PRANJAL VACHASPATI

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2019

Urbana, Illinois

Doctoral Committee:

Professor Tandy Warnow, Chair and Director of Research
Professor Nancy Amato
Professor Chandra Chekuri
Professor James Leebens-Mack, University of Georgia

ABSTRACT

Phylogenomic estimation - the science of calculating evolutionary trees from genomic data

- is an important biological problem. As the amount of genomic data in biological datasets

increases, new methods are needed to analyze this data. Cutting edge analyses may utilize

genomes from tens of thousands of species.

I present several methods for supertree and species tree estimation: ASTRID, FastRFS,

SVDquest, and SIESTA. ASTRID can be used for both species tree and supertree estimation,

and is designed to scale to very large datasets while maintaining a high level of accuracy.

FastRFS is a supertree method that uses an exact constrained optimization algorithm to

find accurate supertrees. SVDquest is a coalescent-aware species tree estimation method

that estimates trees directly from sequences without using gene trees. Finally, SIESTA is a

modification to the algorithms used by FastRFS, SVDquest, and other methods including

ASTRAL that allows for the output and analysis of multiple optimal solutions, if they exist.

For all these methods, I describe the algorithms used, along with a theoretical analysis

of their running time and their statistical consistency. I also show results on biological and

simulated data that demonstrate these methods’ effectiveness over a wide range of model

conditions. In addition, I present the results of an experiment that compares various methods

on trees simulated under both incomplete lineage sorting (ILS) as well as horizontal gene

transfer (HGT).

ii

ACKNOWLEDGMENTS

First and foremost, I would like to thank my advisor, Tandy Warnow, for her support and

guidance over the last five years. I got stuck many times during the last five years, whether

on a research problem or (more frequently) on writing, and every time, Tandy was there to

inspire me and to push me to not only get un-stuck, but to make it a little easier for me to

not get stuck the next time. I am also deeply grateful for the extent to which she accepted

my various time-consuming extracurricular pursuits over the course of my PhD. It is difficult

for me to imagine a better advisor.

I am fortunate to have the opportunity to work with the many students and researchers

who have worked in the Warnow lab. Mike Nute, Erin Molloy, and Sarah Christensen

have been indispensable partners on this journey, puzzling through papers, traveling to

conferences, running experiments, and supporting one another through the tougher parts of

the program. I am also grateful to have had the opportunity to work with others in the

lab, including Nam Nguyen, Ruth Davidson, Kodi Collins, Ashu Gupta, Thien Le, Vlad

Smirnov, Srilakshmi Pattabiraman, and others. Several former students in the lab provided

me with guidance, insight, and inspiration, including Siavash Mirarab, Nam Nguyen, Kevin

Liu, and Luay Nakhleh.

I would like to thank my committee members, Tandy Warnow, Nancy Amato, Chandra

Chekuri, and Jim Leebens-Mack for their comments and discussion of this dissertation.

I could not have made it this far without constant support from my parents and my sister

Krithi, who never doubted that I could do this (even when I doubted myself), and who have

instilled in me their dedication and work ethic.

This work was funded by the Debra and Ira Cohen graduate fellowship, the Saburo Muroga

endowed fellowship, the Roy J. Carver fellowship, and a National Science Foundation Grad-

uate Fellowship, as well as NSF grant DBI-1461364.

iii

TABLE OF CONTENTS

CHAPTER 1 PHYLOGENOMIC ESTIMATION 1
1.1 Organization of this Work . 1

CHAPTER 2 BACKGROUND . 3
2.1 Phylogenetic Trees . 3
2.2 Molecular Sequence Data . 4
2.3 Models of Sequence Evolution . 5
2.4 Gene Tree Estimation Methods . 5
2.5 Gene Tree Heterogeneity . 6
2.6 Phylogenomic Estimation under the Coalescent Model 7
2.7 Supertree Estimation . 9

CHAPTER 3 FASTRFS . 11
3.1 Introduction . 11
3.2 Materials and Methods . 12
3.3 Results and Discussion . 21
3.4 Conclusions . 25
3.5 Supplementary Data for FastRFS . 26

CHAPTER 4 IMPROVING DYNAMIC PROGRAMMING FOR PHYLOGE-
NOMIC ESTIMATION WITH SIESTA . 30
4.1 Background . 30
4.2 Methods . 32
4.3 Results and Discussion . 41
4.4 Conclusions . 48
4.5 Supplementary Data for SIESTA . 50

CHAPTER 5 SUPERTREE ESTIMATION WITH ASTRID 68
5.1 Supertree Estimation . 68
5.2 Methods . 68
5.3 Experiments . 72
5.4 Results . 75
5.5 Discussion . 81
5.6 Conclusions . 81

CHAPTER 6 SPECIES TREE ESTIMATION WITH ASTRID 84
6.1 Background . 84
6.2 Methods . 84
6.3 Results . 88
6.4 Running time results . 96

iv

6.5 Discussion . 98
6.6 Conclusion . 100

CHAPTER 7 SVDQUEST . 102
7.1 Introduction . 102
7.2 Materials & Methods . 104
7.3 Results . 110
7.4 Discussion . 122
7.5 Summary . 127

CHAPTER 8 SPECIES TREE ESTIMATION WITH ILS AND HGT 142
8.1 Background . 142
8.2 Results . 144
8.3 Discussion . 150
8.4 Conclusions . 151
8.5 Methods . 152
8.6 Tables and Figure . 157

CHAPTER 9 CONCLUSIONS AND FUTURE WORK 164
9.1 Supertree Estimation . 164
9.2 Species Tree Estimation . 164

REFERENCES . 166

v

CHAPTER 1: PHYLOGENOMIC ESTIMATION

The goal of phylogenomic estimation is to estimate evolutionary trees from genomic data.

An evolutionary tree is a representation of the evolutionary history of the organisms being

studied. Finding accurate evolutionary trees is an interesting scientific problem in itself, and

these trees are also key components of a number of downstream biological analyses.

As genomic sequencing costs continue to fall dramatically, cutting-edge phylogenomic

analyses increases in two dimensions: in the number of organisms (taxa) studied; and in the

amount of genetic information considered per taxon. Upcoming analyses, including the next

phase of the Avian Phylogenomics Project [178], the 10,000 plant genome project [35], the

Genome 10k project [79], the i5k arthropod genome project [85], and others, will analyze

whole genomes of thousands or tens of thousands of taxa.

The scale of this data presents unique computational challenges, as many existing methods

were designed to run on datasets with tens or hundreds of taxa. In addition to running

efficiently on large datasets, new methods must also estimate accurate trees on datasets

generated under a range of biological conditions that complicate phylogenomic analyses,

including incomplete lineage sorting and horizontal gene transfer.

1.1 ORGANIZATION OF THIS WORK

Chapter 2 provides much of the background necessary to understand this research into

phylogenomic methods, including the relatively minimal amount of biology needed to de-

scribe the relevant mathematical models of evolution.

1.1.1 Supertree Estimation

Chapters 3-5 focus on supertree estimation. The goal of supertree estimation is to combine

small trees on subsets of a larger taxon set into a single tree on the entire taxon set. Supertree

estimation is commonly used to combine results of smaller analyses (as in [20, 32, 77, 100,

171]).

A supertree method can also be used as a component of a divide-and-conquer technique

for species tree estimation. These techniques (e.g. [114]) divide a large dataset into many

small, overlapping datasets, and run a species tree estimation method on each subset. Then,

a supertree method is used to combine trees on the subsets into a tree on the entire taxon

set. In this way, methods that may be too slow or memory intensive to run on a large dataset

1

directly may still be used to analyze that dataset.

We describe two methods for supertree estimation: FastRFS [159], along with SIESTA

[160], a modification to FastRFS, and ASTRID [158].

Chapter 3 introduces FastRFS [159]. Designed as a supertree method, FastRFS uses a

constrained optimization technique to exactly solve its NP-hard optimization criterion within

a constrained search space.

Chapter 4 describes SIESTA, an improvement to the constrained optimization algorithm

used in FastRFS that allows it to consider multiple optimal solutions to its optimization

criterion and return consensus trees of those solutions.

Chapter 5 describes modifications to ASTRID (which is discussed in more detail in the

species tree context in Chapter 6) that allow it to be used effectively for very large species

tree analyses.

1.1.2 Species Tree Estimation

Chapters 6-8 discuss methods for species tree estimation. These methods take evolutionary

trees on individual genes (gene trees) as input, which may differ from one another due to

various biological effects, and return a species tree, which represents the actual evolutionary

history of the organisms.

Chapter 6 describes ASTRID, a distance matrix based method for species tree estimation.

ASTRID provides highly accurate species trees, and is capable of analyzing extremely large

datasets in a small amount of time.

Chapter 7 introduces SVDquest, which is an implementation of the SVDquartets method

that uses a constrained optimization technique to exactly optimize the SVDquartets opti-

mization criterion within a constrained search space. This allows accurate species trees to

be estimated directly from alignments in a statistically consistent manner.

Chapter 8 analyzes the behavior of phylogenetic estimation methods on datasets with

incomplete lineage sorting (ILS) as well as horizontal gene transfer (HGT).

2

CHAPTER 2: BACKGROUND

2.1 PHYLOGENETIC TREES

The use of a phylogenetic tree to describe evolutionary relationships was popularized by

Darwin, who used a diagram of a tree as the sole illustration in On the Origin of Species

[43]. While the methods used to estimate these trees have changed drastically, the basic

structure and meaning of these trees is more or less the same.

Phylogenetic trees (see, e.g. Chapter 2 of [165]) have nodes (leaves and internal nodes)

and edges. The leaves of a phylogenetic tree represent extant taxa that have been sampled

for the analysis, referred to as the taxon set. We let L(T) denote the leafset of a tree T .

Internal nodes represent speciation events. An internal node also represents a species that

is the most recent common ancestor of all the descendants of that node, and in some cases

(for example, when fossil data is used), may correspond to a known species.

Edges represent the evolution of a species without any speciation events that led to mul-

tiple extant species in the dataset (that is to say, speciation events may have occurred along

an edge, but only one of those species survived to the present day and was included in the

analysis). An edge may have a length, which represents the expected amount of change

between the nodes the edge connects.

The deletion of an edge e from a tree T induces a bipartition of L(T) into two sets A and

B, denoted by [A,B]. Every unrooted tree T is defined by its set Bip(T) of bipartitions.

Phylogenetic trees may be rooted or unrooted. In many models of evolution, the root is

not identifiable; in other words, every rooting of the same unrooted tree will produce the

same distribution of site patterns on the leaves of the tree. Accurately identifying the root

of an unrooted tree can be challenging in some cases [27, 155], especially when evolution is

not clock-like (that is, when mutation rates vary across the tree). Trees may be binary or

multifurcating (non-binary). Each internal node in a binary tree has degree 3 (except for

the root, which has degree 2), while internal nodes in multifurcating trees may have higher

degrees and are referred to as polytomies. Since speciation events are in reality binary,

polytomies in trees represent an uncertainty as to the ordering of two or more speciation

events.

2.1.1 Distances between trees

The distance between two trees that share a set of taxa can be measured in a few different

3

Figure 2.1: Commonly accepted topologies for unrooted and rooted phylogenetic trees on
the four great ape genera (Hominidae) [170].

ways, the most common of which is the Robinson-Foulds (RF) distance [121]. The Robinson-

Foulds (RF) distance between trees T and T ′ that are on the same leafset is the number of

bipartitions that are in one tree but not the other (i.e., RF (T, T ′) = |Bip(T)4Bip(T ′)|).
Note that when T and T ′ have the same leafset, then RF (T, T ′) = 0 if and only if T = T ′.

The RF distance is commonly used to measure the accuracy of an estimation method with

respect to a known true tree from a simulation. Two related metrics are the number of false

positives and false negatives, the number of edges present in the estimated tree but not in

the true tree and vice versa. These are equal to each other and to the RF distance if both

trees are binary, but may not be equal if either tree has polytomies.

Variants of the RF distance are sometimes used. The weighted RF distance [122] takes into

account edge lengths, so that longer edges contribute more to the distance and differences

between edge lengths for matching edges are counted when measuring the distance. The

matching distance [86] pairs every bipartition in one tree with a bipartition in the other tree,

and weights each pair by the number of leaves that must be moved to make the bipartitions

match.

Two additional tree distance metrics include the triplet and quartet distances [14, 41, 105,

131]. A triplet is a rooted tree on three leaves, and a quartet is an unrooted tree on four

leaves. For three taxa, there are three possible rooted triplet topologies, and for four taxa,

there are three possible unrooted quartet topologies. Triplets and quartets are the smallest

informative rooted and unrooted trees; there is only one possible rooted tree on two taxa

and one possible unrooted tree on three taxa. The triplet or quartet distance between two

trees is the proportion of triplet or quartet topologies shared between the trees.

2.2 MOLECULAR SEQUENCE DATA

The input to phylogenetic estimation problems is often an alignment matrix containing

4

DNA, RNA, or amino acid sequences (see [165], Chapter 9). Each row in the alignment

corresponds to a single taxon, and each column represents a single character, which may

take various character states (depending on the type of the sequences; a DNA character can

take the states {A,C, T,G}), or −, representing a character insertion or deletion (“indel”).

2.3 MODELS OF SEQUENCE EVOLUTION

Sequence evolution is modeled as a Markov process, in which each site evolves indepen-

dently, and a character transitions from one state to another along an edge e depending on

the length of e and a rate matrix.

The simplest model of nucleotide sequence evolution is the Jukes-Cantor model [76]. This

model has a single parameter µ, the overall substitution rate, which gives the expected num-

ber of substitutions per unit edge length for each site. More complicated substitution models

are also possible, with the most common being the generalized time-reversible (GTR) math-

ematical model of evolution [152], which allows for each element in a diagonally symmetric

rate matrix to be set independently. The GTR model is often augmented by allowing for a

proportion of invariant sites, as well as allowing rates to vary across the genome according to

a gamma distribution. This gives the GTR+Γ+I model, which is among the most commonly

used models for tree estimation from sequences [7, 33, 60].

While Jukes-Cantor substitution rates or GTR parameters can typically be estimated from

the sequence data being analyzed, amino acid substitution matrices are much larger (20×20

instead of 4 × 4), so fixed matrices calculated from empirical data are often used. These

include the JTT matrix [75] and the WAG matrix [167]. More information about models

of sequence evolution can be found in [173] (chapter 2 for nucleotide models; chapter 3 for

amino acids).

2.4 GENE TREE ESTIMATION METHODS

These models of sequence evolution are useful because they are identifiable [33] and be-

cause computing the relative likelihoods of different trees given a sequence alignment is

computationally feasible [51]. Maximum likelihood tree estimators that use these models,

including FastTree [118], RAxML [141], and IQ-TREE [115] are important tools for phy-

logenomic analysis. Other methods for estimating trees from sequences include Bayesian

methods, which use a Markov Chain Monte Carlo (MCMC) process to sample a proba-

bility distribution over trees; and distance matrix methods like neighbor joining [130] and

5

FastME [84], which take as input the distance between each pair of sequences, rather than

the sequences themselves. Bayesian methods are often slower than maximum likelihood es-

timators, and distance methods, while often faster than maximum likelihood methods, are

typically less accurate [162].

2.5 GENE TREE HETEROGENEITY

However, evolution is in reality more complex than the GTR model suggests. This is

because different parts of the genome evolve in different ways, with different evolutionary

histories and evolutionary trees. This can happen for a number of reasons, including hori-

zontal gene transfer (HGT) [125, 143], incomplete lineage sorting (ILS) [94, 104], and gene

duplication and loss [94].

We refer to a portion of the genome that has a single evolutionary history as a recombination-

free locus, c-gene or often as just a gene [140]. This is different from the standard biological

definition of a gene, (i.e. a genetic sequence that codes for a particular protein). The evolu-

tionary history of a gene is captured in a gene tree, and differences between these gene trees

are referred to as gene tree heterogeneity.

2.5.1 Horizontal gene transfer (HGT)

The easiest to understand cause of gene tree heterogeneity is horizontal (or lateral) gene

transfer (HGT or LGT) [71]. An HGT event occurs when two organisms from different

species exchange DNA. There are many biological reasons for this. Bacteria, for example,

emit DNA in the form of short circular segments called plasmids, and other bacteria can

readily consume these plasmids and add them to their own DNA [154]. Bacterial evolution-

ary trees have high levels of HGT, and for many analyses, it is more appropriate to think of

bacterial evolution as represented by a network rather than a tree [70]. Eukaryotic organ-

isms also experience HGT, although through different mechanisms and less frequently than

bacteria. Examples include hybridization and introgression, where two different species can

mate to produce fertile offspring [10, 175].

2.5.2 Incomplete lineage sorting (ILS) and the coalescent model

Incomplete lineage sorting (ILS) [94] is a much more common cause of gene tree het-

erogeneity among eukaryotes. ILS is most common when population sizes are large and

6

speciation times are short. In these cases, mutations might not become distributed through-

out a population in the time between speciation events; in other words, looking back in

time, two lineages for a particular gene might not coalesce on the edge that corresponds to

the common ancestor of their species. This process can result in gene trees that differ from

species trees, and is modeled by the multispecies coalescent.

2.5.3 Gene duplication and loss

A third cause of gene tree heterogeneity is gene duplication and loss. As organisms evolve,

portions of the genome may be duplicated, and portions of the genome may be lost. Gene

duplication events result in multiple copies of a particular gene in an organism, called par-

alogs. If different descendants lose different paralogs, the evolutionary history of a gene may

reflect duplication events, rather than speciation events [94].

2.6 PHYLOGENOMIC ESTIMATION UNDER THE COALESCENT MODEL

Four general approaches are commonly used for phylogenomic estimation under the coa-

lescent model.

The first of these is the Bayesian Markov Chain Monte Carlo co-estimation approach (e.g.

MrBayes [128], *BEAST [64], and BEST [89]). These methods sample from tree space to

simultaneously estimate a probability distribution for gene trees and species trees. While

they may in theory provide more information about the dataset than other methods and can

be quite accurate, in practice they are extremely slow and cannot be run on datasets with

more than about 50 taxa [181].

The second approach is concatenated maximum likelihood (CA-ML). The alignments for

each c-gene are concatenated together to form a single long alignment, and a maximum

likelihood estimator produces a tree. Commonly used maximum likelihood methods are

RAxML [141, 142], FastTree [118], and IQ-TREE [115]. CA-ML is in practice accurate on

many datasets; however, it is not statistically consistent on datasets with ILS [126], and in

fact can be positively misleading - that is, as the amount of data increases, the probability

of producing the correct tree does not converge to 1 and the probability of producing an

incorrect tree may converge to 1.

The third type of methods, and the ones focused on here, are coalescent-aware summary

methods. These typically operate in two phases. First, a maximum likelihood method

estimates a gene tree on each gene’s alignment. Then, the summary method uses the gene

trees to estimate the species tree. Some commonly used coalescent-aware methods include

7

ASTRAL [105, 106, 174, 177], MP-EST [92], NJst [90], and ASTRID [158].

Finally, site based coalescent-aware phylogenetic estimation methods estimate trees di-

rectly from sequences, bypassing gene tree estimation. Unlike CA-ML, which also estimates

trees directly from sequences, site-based methods are designed to be statistically consistent

under the multi-species coalescent. These include SVDquartets [36], SVDquest [161], and

SNAPP [28].

2.6.1 ASTRAL

ASTRAL takes as input a set of gene trees and outputs a species tree that minimizes the

quartet distance to the gene trees. This is an NP-hard problem [73], but ASTRAL is able to

solve a constrained version in polynomial time. It first generates a set X of bipartitions from

the input gene trees. Then outputs the tree with the lowest quartet distance to the input

trees, constrained such that every bipartition in that tree comes from the set X. ASTRAL

is fast and accurate in practice [158, 174].

2.6.2 MP-EST

MP-EST takes as input a set of rooted gene trees and computes the triplet distribution

over these trees. It then attempts to find a species tree that maximizes the probability

of generating that distribution of triplets. MP-EST uses a set of heuristics to generate an

approximate solution. MP-EST can be slow in practice, and is typically less accurate than

leading methods [45, 158].

2.6.3 NJst

NJst takes as input a set of gene trees, and calculates distance matrices based on topo-

logical distances in each tree. It averages those matrices together and runs neighbor-joining

[130] on the average matrix. NJst gives fairly accurate trees in practice, but is relatively

slow compared to other methods [45].

2.6.4 ASTRID

ASTRID (see Chapter 6) uses a similar approach to NJst, computing the same average

distance matrix, but can use a variety of distance based phylogenetic estimation methods to

find more accurate trees than NJst in less time. ASTRID gives accurate trees in practice,

8

and is much faster than any competing method, especially on large datasets [158].

2.6.5 SVDquest

SVDquest (see Chapter 7) is an implementation of the SVDquartets technique [36], which

estimates a species tree directly from alignments instead of from gene trees. SVDquartets

generates a set of quartets from the alignments, and SVDquest seeks a tree that maximizes

support over these quartets.

2.7 SUPERTREE ESTIMATION

Supertree estimation [166] is the problem of computing a tree on a set S of taxa from a

set of estimated trees (called “source trees”) on subsets of S. Traditionally, the purpose of

supertree estimation was to combine published species trees estimated by different research

groups around the world, using different datasets and different methods. Supertree methods

have been used to construct many species trees, and the development of supertree methods

is an area of very active research (see [23] for some of the early literature, and [1, 116, 147]

for some more recent methods).

More recently, supertree estimation has been used within divide-and-conquer frameworks,

in which a large and potentially heterogeneous dataset is divided into overlapping smaller

subsets, trees are estimated on each subset, and then combined into a tree on the full dataset

using a supertree method. These divide-and-conquer methods thus enable the application

of statistical phylogeny estimation methods to scale to larger datasets [19, 69, 114, 164].

Each of these methods has been able to improve the accuracy and/or speed of its base

method. Thus, supertree computation provides an essential tool for both moderate- and

large-scale phylogeny estimation, and is relevant to both gene tree estimation and species

tree estimation.

2.7.1 Methods

Some species tree estimation methods, including ASTRAL and ASTRID, can be used

effectively for supertree estimation. However, some methods are designed explicitly for

supertree estimation, including MRP [119], MRL [116], and FastRFS [159].

9

2.7.2 MRP and MRL

Matrix Representation with Parsimony (MRP) [119] and Matrix Representation with Like-

lihood (MRL) [116] are two related supertree estimation methods. They start by creating

an alignment matrix where each column corresponds to a particular edge in an input tree.

Taxa on one side are coded as 0, taxa on the other side are coded as 1, and taxa not in

the tree are coded as −. Then, a phylogenetic maximum parsimony estimator or maximum

likelihood estimator like RAxML is run on this matrix to produce a supertree.

2.7.3 FastRFS

FastRFS (discussed further in Chapter 3) is a method to solve the NP-hard Robinson-

Foulds supertree problem [13], which minimizes the sum of the Robinson-Foulds distances

to the input trees. FastRFS uses a constrained exact optimization algorithm similar to that

used in ASTRAL and SVDquest to find a solution in polynomial time within a constrained

search space.

2.7.4 Other methods

Numerous other methods can also be used for supertree estimation, including BCD [52],

which is a fast and accurate method for rooted supertree construction, and PluMiST [80]

and MulRF [34], which are heuristic methods for the Robinson-Foulds supertree problem.

Species tree methods like ASTRAL [105] and ASTRID [158] can also be used for supertree

construction. Furthermore, SuperFine [147] can be used to boost the accuracy and scalability

of other supertree methods by using another supertree method to refine a conservative

estimate of the supertree.

10

CHAPTER 3: FASTRFS1

3.1 INTRODUCTION

One of the popular approaches to supertree estimation is the NP-hard Robinson-Foulds

Supertree problem [13], which seeks a binary tree that has the minimum total Robinson-

Foulds [121] distance to the input source trees. The best known local search heuristic for the

Robinson-Foulds Supertree is MulRF [34], but PluMiST [80] is a new method that shows

promise; to our knowledge, there are no other methods that are competitive with these two.

One of the exciting properties of the Robinson-Foulds Supertree problem is that it is closely

related to the Maximum Likelihood Supertree problem, which seeks a supertree that is the

most likely to have produced the observed source trees under a simple exponential model

of phylogenetic error [144]. Although the two problems are not identical (as established in

[29]), it seems likely that good solutions to the Robinson-Foulds Supertree problem will be

good solutions to the Maximum Likelihood Supertree problem. However, the only technique

for the Maximum Likelihood Supertree problem that we are aware of, L.U.-st [1], is very

computationally intensive, making it infeasible for use on biological datasets [2].

In this paper, we report on a new method, FastRFS (Fast Robinson-Foulds Supertrees)

for finding optimal Robinson-Foulds Supertrees in a constrained search space. Unlike the

previous methods for Robinson-Foulds Supertrees, which depended on heuristic searches

through tree space, the method we have designed uses dynamic programming (DP) to find

an exact solution to the Robinson-Foulds Supertree problem within a constrained search

space.

This algorithmic strategy of using dynamic programming to find a species tree optimizing

some criterion within a constrained search space was first used in [62]; since that time, the

approach has been used in other phylogenetic estimation methods [17, 30, 105, 106, 153,

176]. Most of these methods constrain the search space for their optimization problem by

computing a set X of allowed bipartitions (i.e., splits of the leafset into two parts, each

defined by deleting edges in the species tree that will be constructed) from the input, and

require that the output tree draw its bipartitions from X. These methods run in time that is

polynomial in the number of species, source trees, and |X|. Many of these methods specify

X to be the set of bipartitions in the input source trees, but expanding the set can improve

accuracy [105].

1This chapter contains material previously published in [159], which was a joint work with Tandy Warnow.
It has been edited slightly for brevity. PV implemented FastRFS, performed experiments, wrote the first
draft, and analyzed the data. TW designed the study, analyzed the data, and wrote the final draft.

11

The supertree method we present, FastRFS, is a combination of the polynomial time

dynamic programming algorithm for the constrained Robinson-Foulds Supertree problem

we have developed and the technique we use to define the set X from the input source trees.

The basic FastRFS method uses ASTRAL-2 to define the set X of allowed bipartitions from

the input set of source trees. We also explore an enhanced version where we add additional

bipartitions (beyond those computed by ASTRAL-2) to the set X defined by ASTRAL-2.

We define the additional bipartitions by computing fast supertrees on the input set, and

then add their bipartitions to X; this approach ensures that we find RFS criterion scores

that are at least as good as the trees we use to define the set X of allowed bipartitions, and

also at least as good as the trees obtained by the basic FastRFS method. By only adding

bipartitions from supertrees that we can compute quickly, the enhanced FastRFS method is

able to complete quickly, and provides improved criterion scores.

We evaluate these two versions of FastRFS in comparison to leading methods for supertree

estimation on a collection of biological and simulated datasets with 100 to 2228 species that

were used in prior publications to evaluate supertree methods [116, 146, 147]. We compare

FastRFS to PluMiST, the current best performing method (in terms of criterion scores) for

the Robinson-Foulds Supertree problem, and also to MulRF, the most well known software

for this optimization problem. We also compare FastRFS to Matrix Representation with

Likelihood (MRL) [116], ASTRID [158], and ASTRAL-2 [105]. MRL is the maximum likeli-

hood counterpart to the well known Matrix Representation with Parsimony (MRP) method,

and has produced topologically more accurate supertrees than leading MRP heuristics [116].

ASTRID and ASTRAL-2 are methods for species tree estimation that take gene tree hetero-

geneity arising from incomplete lineage sorting into account, and have had good accuracy

on large phylogenomic datasets. We evaluate these methods with respect to RFS criterion

scores (which can be evaluated on both simulated and biological datasets), topological accu-

racy in estimating the true supertree (which can only be evaluated on simulated datasets),

and wall clock running time.

3.2 MATERIALS AND METHODS

Every model tree and estimated supertree in this study is a fully resolved tree, and no

two leaves have the same label; the source trees are unrooted trees with leaves drawn from

(possibly proper) subsets of the full set of taxa, and may contain polytomies (nodes of degree

greater than three). We let T |Q denote the tree obtained by restricting the tree T to the

subset Q of its leafset, and then suppressing nodes of degree two.

We extend the definition of RF distance to trees t and T with nested leafsets (i.e., L(t) ⊆

12

L(T)) to be the RF distance between T |L(t) and t, and denote this distance by RF (T, t).

Given a set T of trees and tree T satisfying L(t) ⊆ L(T) for all t ∈ T , we define RF (T, T) =∑
t∈T RF (T, t). A binary tree T with leafset S = ∪t∈T L(t) that minimizes RF (T, T) is the

Robinson-Foulds Supertree for T , and is denoted TRFS.

Finding a Robinson-Foulds Supertree is NP-hard; however, the Constrained Robinson-

Foulds Supertree Problem constrains the search space using a set X of allowed bipartitions,

and can be solved in polynomial time, as we will show.

Constrained Robinson-Foulds Supertree Problem:

• Input: Set T of trees and set X of bipartitions of the taxon set S, where S =
⋃

t∈T L(t).

• Output: Unrooted binary tree TRFS(c) that minimizes RF (T, T), subject to the con-

straint that every bipartition in TRFS(c) is drawn from X.

The Dynamic Programming Algorithm to solve Constrained Robinson-Foulds

Supertrees. While the Robinson-Foulds Supertree problem is stated in terms of mini-

mizing the total Robinson-Foulds distance to the source trees, we will rephrase it as maxi-

mizing the bipartition support from the source trees. This formulation will make it easy for

us to present and explain the dynamic programming approach we have developed.

Let t be a source tree with leafset S ′ and let T be a tree with leafset Y , so that S ′ ⊆ Y ⊆ S.

Let [A′, B′] be a bipartition in t. We will say that [A′, B′] supports T if there is a bipartition

[A,B] in T such that A′ = S ′ ∩ A and B′ = S ′ ∩ B. We will also say that the bipartition

support of t for T is the number of bipartitions in t that support T , and that the bipartition

support from T for T is the bipartition support for T from all the trees in T .

Observation 3.1. For any set T of source trees, a binary tree T with leafset S = ∪t∈T L(t)

that has the maximum bipartition support from T is an optimal solution to the Robinson-

Foulds Supertree problem.

Recall that the input includes a set X of allowed bipartitions. A clade in a rooted tree

is a set of leaves that constitute all the leaves below some selected node in the rooted tree.

We define a set C of allowed clades, by setting C = {A : ∃[A,B] ∈ X} (i.e., C contains every

half of every bipartition in X).

Let t be an unrooted tree with leafset S ′, let T be a rooted binary tree with leafset Y

where S ′ ⊆ Y , and let [A′, B′] be a bipartition in t. We will say that [A′, B′] supports T if

T |S ′ contains A′ or B′ (or both) as clades. We define the bipartition support of source tree

t ∈ T for the rooted tree T to be the number of bipartitions in t that support T , and the

13

bipartition support of T for T to be the total of the bipartition support from all the source

trees in T for T . Furthermore, given node v in T , we let Tv denote the subtree of T rooted

at v; note that every node in Tv is also a node in T .

Observation 3.2. For all sets T of source trees and all rooted trees T with leafset S =

∪t∈T L(t), the bipartition support of T for T is the same as the bipartition support of T for

the unrooted version of T .

By Observation 3.2, we can solve the Constrained Robinson-Foulds Supertree problem by

finding a rooted tree with leafset S that has the maximum bipartition support, and then

unrooting this tree.

For the rest of this discussion, T will denote a rooted binary tree with leafset Y ⊆ S, with

all its clades drawn from C. We will show that we can write the bipartition support for T

from a source tree t as the sum of the bipartition support for the clades in T , which will

allow us to construct a dynamic programming algorithm.

Consider an internal node v in T , and let v1 and v2 be its two children. Let the clade below

v be A, the clade below v1 be A1, and the clade below v2 be A2. Deleting v from T splits

Y into three parts: A1, A2 and A3 = Y \ A. We will describe this by saying v defines the

ordered tripartition (A1, A2, A3), with the understanding that (A1, A2, A3) and (A2, A1, A3)

are equivalent, and both correspond to node v. Note that if Y 6= S, then the tripartition

defined by v will not cover all the elements of S. Also, we will require that A1 and A2 be

allowed clades (i.e., in C), but we make no such constraint on A3.

Suppose that source tree t with leafset S ′ has a bipartition [U ′, V ′] that supports T ; thus,

T |S ′ must have U ′ or V ′ (or both) as clades. We wish to associate this bipartition to exactly

one node in T , so that we can compute the bipartition support without having to correct

for over-counting, and so that the dynamic programming algorithm is simple.

Case 1: T |S ′ contains only one of these two clades. Suppose T |S ′ contains U ′ but not V ′

as a clade. If T |S ′ does not contain any leaves from V ′, we do not assign [U ′, V ′] to any node

in T . If T ′|S ′ does contain at least one leaf from V ′, we follow the path from the MRCA of

U ′ towards the root until we reach the first node w that has at least one element of V ′ in

the subtree below it, and we assign [U ′, V ′] to w.

Case 2: T |S ′ contains both U ′ and V ′ as clades. We assign [U ′, V ′] to the MRCA of U ′∪V ′.
The following lemma follows directly from the description of the assignment process:

Lemma 3.1. For any bipartition π = [U ′, V ′] and any tree T , π is assigned to node w in T if

and only if w defines a tripartition (A1, A2, A3) where U ′ ⊆ A1, V
′∩A1 = ∅, and V ′∩A2 6= ∅.

If π supports T , then there is a unique node in T satisfying this constraint. However, if no

such node exists, π does not support T , and so is not assigned to any node in T .

14

Lemma 3.2. Let T be a rooted tree on set Y , and let v be a node in T other than the root.

Let [U ′, V ′] be a bipartition in a source tree t that supports both T and Tv, and suppose

that [U ′, V ′] is assigned to node w in T and node w′ in Tv. Then w = w′.

Proof. By Lemma 3.1, [U ′, V ′] is assigned to the unique node w′ in Tv that defines a tri-

partition (A1, A2, A3) where U ′ ⊆ A1, V
′ ∩ A1 = ∅, and V ′ ∩ A2 6= ∅. Since Tv is a rooted

subtree of T , the node w′ exists in T , and defines the tripartition (A1, A2, A
′
3) that differs

from the tripartition above only in the third coordinate. By Lemma 3.1, it follows that

w = w′. QED.

Note that the assignment of bipartitions to nodes in trees depends only on the first two

components of the tripartition for the node. We make the following definition:

Definition 3.1. Let A1, A2 be a disjoint pair of allowed clades. We define support(A1, A2)

to be the number of bipartitions in the source trees that map to a tripartition (A1, A2, Z)

for some Z.

Theorem 3.1. The bipartition support from T for a rooted binary tree T is∑
(A1,A2,A3)∈Trip(T)

support(A1, A2), (3.1)

where Trip(T) denotes the set of tripartitions defined by the nodes of T .

Proof. The prior discussion establishes that for a given source tree t ∈ T and bipartition

πe ∈ Bip(T) that supports T , there is exactly one tripartition in Trip(T) that πe is mapped

to. Furthermore, if πe does not support T , then it is not mapped to any tripartition in

Trip(T). The theorem follows. QED.

Theorem 3.2. Let T be a set of source trees with S the set of taxa that appear as a leaf

in at least one tree in T , and let C be the set of allowed clades. Set BPS({s}) = 0 for all

s ∈ S, and let BPS(A) for A ∈ C with |A| ≥ 2 be the maximum bipartition support over all

rooted binary trees T on clade A where T draws its clades from C. Then, for A ∈ C, |A| ≥ 2,

BPS(A) =

max{BPS(A1) +BPS(A2) + support(A1, A2) :

A = A1 ∪ A2, A1 ∩ A2 = ∅, Ai ∈ C} (3.2)

15

Proof. Let A ∈ C be arbitrary, with |A| ≥ 2. Let BPS∗(A) denote the maximum achievable

bipartition support of any rooted tree on A that draws its clades from C, and let BPS(A)

be the value as computed by Equation 3.2. We will prove by induction on the size of A that

BPS∗(A) = BPS(A).

The base case is A = {a, a′}. There is only one rooted tree on A, and it has bipartition

support support({a}, {a′}), which is equal to BPS(A). Hence BPS∗(A) = BPS(A) for

|A| ≤ 2. Now let |A| > 2 be arbitrary, and let T be a binary rooted tree with leafset A

having the largest bipartition support from the trees in T , and drawing its clades from C.
The inductive hypothesis is that BPS(A′) = BPS∗(A′) for all proper subsets A′ of A where

A′ ∈ C.
Let v1 and v2 be the two children of the root of T , A1 and A2 be the leafsets of the subtrees

of T rooted at v1 and v2, and T1 and T2 be the subtrees of T rooted at v1 and v2, respectively.

By the inductive hypothesis, BPS(A1) = BPS∗(A1) and BPS(A2) = BPS∗(A2). Because

T optimizes the bipartition support of all rooted binary trees on A given the constraint

set, T1 and T2 have the highest bipartition support of all rooted binary trees on A1 and

A2, respectively, given the constraint set. By Theorem 3.1, the bipartition support of Ti is

the sum of support(X, Y) for all tripartitions defined by the nodes of Ti, for i = 1, 2, and

the bipartition support of T is the sum of support(X, Y) for all tripartitions defined by the

nodes of T . Hence, the bipartition support of T is BPS(A1) +BPS(A2) + support(A1, A2).

Thus, BPS∗(A) = BPS(A1) +BPS(A2) + support(A1, A2), and so BPS∗(A) ≤ BPS(A).

To complete the proof, we need only show that BPS(A) ≤ BPS∗(A). So suppose

BPS(A) > BPS∗(A). Then there is a bipartition [A′1, A
′
2] of A such that BPS(A′1) +

BPS(A′2)+support(A′1, A
′
2) > BPS(A1)+BPS(A2)+support(A1, A2). Let T ′1 and T ′2 be the

rooted trees on A′1 and A′2 having quartet support BPS∗(A′1) and BPS∗(A′2), respectively,

with clades drawn from C, and let T ′ be the binary rooted tree on A with subtrees T ′1 and

T ′2. Then T ′ draws its clades from C and has bipartition support that is strictly greater than

that of T . This contradicts the assumption that T had the largest bipartition support among

all rooted binary trees drawing its clades from C. Hence, BPS(A) ≤ BPS∗(A). We have

shown that BPS(A) ≤ BPS∗(A) and BPS∗(A) ≤ BPS(A), and so BPS(A) = BPS∗(A).

Since A was arbitrary, the theorem follows. QED.

The Dynamic Programming Algorithm. The input is a pair (T , X) where T is a set

of source trees and X is a set of allowed bipartitions.

• Preprocessing: Compute the set C of allowed clades, and order them by cardinality

from smallest to largest. Compute the set S of taxa. Set BPS({s}) = 0 for all s ∈ S.

16

Compute support(A1, A2) for every pair of disjoint allowed clades A1, A2.

• For each A ∈ C with |A| ≥ 2, in order of size (from smallest to largest), set

BPS(A) = max{BPS(A1) +BPS(A2) + support(A1, A2)}, (3.3)

where A1 and A2 are disjoint allowed clades and A = A1 ∪ A2.

• Return BPS(S).

• Compute a rooted binary tree achieving this score using backtracking, and then unroot

it to produce a Robinson-Foulds Supertree.

Theorem 3.3. The dynamic programming algorithm finds an optimal solution to the con-

strained Robinson-Foulds Supertree problem, and does so in O(|X|2nk) time, where there

are n taxa and k source trees.

Proof. Let (T , X) (where T is the set of source trees and X is a set of bipartitions on the

species set S) be an input to the constrained Robinson-Foulds supertree problem, and let C be

the set of halves of these bipartitions. By Theorem 3.2, the dynamic programming algorithm

correctly computes the best achievable bipartition support for any rooted supertree drawing

its clades from set C. Backtracking produces a rooted T achieving that optimal score, and

unrooting T produces T ′, which has the same optimal score. By construction, T draws

its clades from C, and so T ′ draws its bipartitions from X. Hence, the output from the

algorithm, T ′, is a supertree that draws its bipartitions from X and that achieves the best

possible bipartition support score of all supertrees drawing their bipartitions from X; this

establishes correctness.

For the running time analysis, we begin with the preprocessing step. Note that |C| = 2|X|
and that there are O(nk) bipartitions in the source trees. For each of the O(|X|) allowed

clades A and each half Y1 of the O(nk) source tree bipartitions, we determine if Y1 ⊆ A; this

takes O(n) time per comparison, for a total cost of O(|X|n2k) time. Once this is done, we can

compute support(A1, A2) for every pair A1, A2 of disjoint allowed clades, using O(|X|2nk)

additional time. Since |X| ≥ n − 3, |X|n2k ≤ |X|2nk; hence, the preprocessing is done

in O(|X|2nk) time. The second phase, where we compute BPS(A) for the allowed clades

A, is easily seen to take O(|X|) time per clade, provided that the preprocessing is done

first, and the calculations are done in the proper order. Hence, the total time is O(|X|2nk)

time. QED.

17

Figure 3.1: RFS criterion scores on biological data of supertree methods; lower is better.
MulRF and PluMiST could not be run on the CPL dataset due to its large size; hence no
values are shown for those methods on that dataset. Overall, FastRFS-enhanced produces
the best RFS criterion scores on these datasets.

The basic FastRFS method. The input to the FastRFS method is a set T of unrooted

source trees, but they do not need to be binary trees (i.e., polytomies are allowed). In the

basic FastRFS method, we use ASTRAL-2 to compute the set X of allowed bipartitions.

The technique in ASTRAL-2 for computing the set X of allowed bipartitions produces a set

that contains at least one compatible subset of n−3 bipartitions, where n = |S|; as a result,

FastRFS is guaranteed to return a fully resolved tree on every input. See [102] for details

on how ASTRAL-2 computes the set X.

FastRFS-enhanced and ASTRAL-enhanced. The enhanced version of FastRFS,

which we write as FastRFS-enhanced, operates by computing a set Z of supertrees that can

be computed quickly on T , and then adds the bipartitions from trees in Z to the set X that

is computed by ASTRAL-2. This approach ensures that the RFS criterion score found by

FastRFS-enhanced will be at least as good as any tree in Z.

In our study, we used one or both of ASTRID and MRL for our set Z. ASTRID computes

a matrix of average pairwise “internode distances” (the number of edges in the path between

two species in a tree), and then computes a tree on the distance matrix. When the distance

matrix has no missing data, ASTRID uses FastME [50], a fast and accurate method to

compute the supertree; however, when the distance matrix has missing entries, it uses BioNJ*

[40], a method that is slower and not quite as accurate (see [158] for a comparison of ASTRID

using BioNJ* and ASTRID using FastME). In our experiments, we include the MRL tree

in Z, and we also include the ASTRID tree for those inputs where the internode distance

matrix has no missing entries. We similarly define ASTRAL-enhanced using the same set of

extra trees as for FastRFS-enhanced.

Datasets. We used a collection of published simulated and biological datasets that have

been used in other studies [146] to evaluate supertree methods, all of which are available

18

Method 100 100 100 100 500 500 500 500 1000 1000 1000 1000
Scaffold % 20 50 75 100 20 50 75 100 20 50 75 100

Replicates 9 10 10 10 8 10 10 10 10 10 10 10

ASTRAL 32 31 38 45 170 190 225 274 365 414 502 591
ASTRAL-enh 32 30 38 45 163 182 221 274 337 393 491 591

ASTRID 40 41 50 41 360 914 905 223 1066 2447 2370 470
MRL 30 30 36 42 158 179 202 223 309 362 412 474

MulRF 32 34 38 40 282 315 279 229 − − − −
PluMiST 31 29 34 40 210 245 246 214 − − − −

FastRFS-basic 29 29 34 40 152 173 191 209 325 366 394 434
FastRFS-enh 29 28 34 40 148 166 186 206 292 347 384 426

Table 3.1: Average Robinson-Foulds Supertree criterion scores on the simulated datasets;
lower is better. No results shown for the 1000-taxon datasets for MulRF and PluMiST, due
to time constraints; otherwise, results are shown for those datasets for which all methods
completed. The best result shown for a given model condition is boldfaced.

Figure 3.2: Sequential running times (in seconds) on biological data of supertree methods.
MulRF and PluMiST could not be run on the CPL dataset, due to its large size; hence no
values are shown for those methods on that dataset.

online at http://www.cs.utexas.edu/users/phylo/datasets/supertrees.html.

The simulated data, referred to as “SMIDgen” in [146], are generated using a taxon

sampling strategy that mimics biological practice. These datasets have 100, 500, or 1000

taxa, with up to 25 source trees per replicate. Each supertree input has several “clade-based”

source trees and a “scaffold tree”, which are estimated using maximum likelihood heuristics

on a concatenation of gene sequence alignments. Some genes are “universal” and so are

present in every species; others evolve within the species tree under a birth-death model

in which birth happens once but death (i.e., gene disappearance) can happen several times;

therefore, unless the gene is born at the root of the species tree, it will be present only within

a clade within the tree. Sequences then evolve down the gene trees under the GTRGAMMA

model of site evolution. The scaffold tree is based only on the universal genes, and have a

random subset of the species set; the clade-based trees are obtained by selecting a clade in

the tree and then a set of genes that covers that clade well. As shown in [146], the density of

the scaffold tree (i.e., the percentage of the full set of taxa that are in the scaffold dataset)

19

has a large impact on the topological accuracy of the resultant estimated supertree. These

simulated data enable us to evaluate topological accuracy as well as criterion score.

We include the biological datasets that were also studied in [146]: CPL (comprehensive

papilinoid legumes) [100], Marsupials [32], Placental Mammals [20], Seabirds [77], and THPL

(temperate herbaceous papilionmoid legumes) [171]. These range in size from 116 species

(Placental Mammals) to 2228 (CPL), and with as few as 7 source trees (Seabirds) to as

many as 726 (Placental Mammals).

Methods. In addition to the two FastRFS variants (basic and enhanced), we computed

supertrees using MRL, ASTRID, ASTRAL-2, MulRF, and PluMiST. For MRL, we compute

the MRP matrix using “mrpmatrix” available at github.com/smirarab/mrpmatrix, and we

use RAxML [141] version 8.2.4 under the BINGAMMA model with seed 12345 on the MRP

matrix. We ran MulRF version 1.2 [34] and PluMiST version 1.1 [80]. We ran PluMiST in

default mode, and we ran MulRF ten times, and report results for the tree with the best

criterion score. We ran ASTRAL-2 version 4.7.12 [105] (henceforth referred to as ASTRAL)

and ASTRID version 1.1 [158], both in default mode. Each of these methods produces fully

resolved unrooted trees.

ASTRAL produces a supertree that minimizes the total quartet distance to the input

source trees (equivalently, it produces a supertree that maximizes the total quartet tree

support) subject to a constrained set X of bipartitions that it computes from the input

source trees.

We tested an enhanced version of ASTRAL (analogous to FastRFS-enhanced), in which we

added the bipartitions from MRL and ASTRID to the set X; this enables a direct comparison

of FastRFS-enhanced and ASTRAL-enhanced. Although FastRFS-enhanced is guaranteed

to find RFS criterion scores that are at least as good as ASTRAL-enhanced, the comparison

with respect to tree topology accuracy makes it possible to evaluate the two optimization

criteria (minimize quartet distance or minimize Robinson-Foulds distance) and their impact

on topological accuracy. Finally, we tested the impact of adding the bipartitions from just

one tree (MRL or ASTRID) to the set X on FastRFS, to determine the relative impact of

each additional tree.

Measurements. We can use the simulated data to explore performance with respect

to criterion scores as well as tree estimation error. However, since there is no known true

supertree for the biological datasets, we use the biological datasets to explore performance

only with respect to criterion scores.

For tree estimation error (explored only on the simulated datasets), we report the normal-

20

ized bipartition distance (also called the Robinson-Foulds error rate) between the estimated

and true trees. The Robinson-Foulds (RF) error rate is RF (T,T ′)
2n−6 , where RF (T, T ′) is the RF

distance between the true tree T and the estimated tree T ′, and n is the number of leaves

in T). Hence, the RF error rate is between 0 and 1, and is equal to 0 if and only if the two

trees are identical.

We also report the Robinson-Foulds Supertree criterion score (i.e., the total Robinson-

Foulds distance between the estimated supertree and the input source trees) for all datasets;

this value is bounded from above by (2n− 6)k, where n is the total number of species and

k is the total number of source trees.

Although the criterion scores and tree error metrics both refer to the Robinson-Foulds

distance, the criterion score is based on the RF distance to the input source trees, and the

tree error metric refers to the RF distance to the model tree, which is unknown. Hence these

are two different ways of evaluating methods.

Most of the methods are sequential codes; however, FastRFS is parallelized to run on 8

cores and we run MulRF 10 times in parallel and take the best tree. We report wall clock

running times for all codes; except when the differences are large, comparisons between

running times are not reliable. Running times for FastRFS-enhanced include the time to

compute the MRL tree and the ASTRID distance matrix, and, if the distance matrix has

no missing data, the time to run FastME on the distance matrix (i.e., to fully compute the

ASTRID tree).

Experiments. We performed experiments to evaluate the different supertree methods

with respect to Robinson-Foulds criterion score, topological accuracy of the supertree, and

running time.

3.3 RESULTS AND DISCUSSION

Impact of the constraint set on criterion scores. Our initial experiment evaluated

the impact on the criterion scores found by FastRFS of adding bipartitions from the MRL

tree and/or the ASTRID tree to the constraint set. In general, FastRFS with the MRL

tree alone added was nearly as good as FastRFS-enhanced (i.e., with both ASTRID and

MRL trees added), and FastRFS with MRL found substantially better criterion scores than

FastRFS with just the ASTRID tree added. Nevertheless, since adding the ASTRID tree

did help occasionally, and since ASTRID is so quick to run when the distance matrix is

complete, we continued using it for FastRFS-enhanced. See Figures 3.3 and 3.4 for these

results.

21

Method 100 100 100 100 500 500 500 500 1000 1000 1000 1000
Scaffold % 20 50 75 100 20 50 75 100 20 50 75 100

Replicates 9 10 10 10 8 10 10 10 10 10 10 10

ASTRAL 11.7 14.0 11.6 10.0 15.3 14.8 12.7 11.2 16.9 15.7 13.6 11.6
ASTRAL-enh 11.8 13.1 11.5 10.0 14.8 14.1 12.6 11.2 16.3 15.1 13.5 11.6

ASTRID 15.8 18.7 17.1 9.6 26.0 50.1 45.4 10.5 35.6 58.1 52.0 11.2
MRL 13.6 13.6 11.2 10.8 15.4 14.3 12.1 11.2 17.4 15.1 13.5 12.2

MulRF 22.1 26.0 15.3 9.3 46.9 40.3 27.4 12.6 − − − −
PluMiST 25.9 16.6 11.5 9.3 35.4 29.5 22.4 10.9 − − − −

FastRFS-basic 13.5 14.3 10.5 9.1 14.5 14.3 12.4 11.1 17.3 15.6 13.5 12.0
FastRFS-enh 13.5 13.4 10.6 9.3 14.3 13.9 12.0 10.8 16.7 15.1 13.4 11.8

Table 3.2: Supertree topology estimation error on simulated datasets, measured using the
Robinson-Foulds error rate, expressed as a percentage. The best result for each model
condition is boldfaced. No results are shown for PluMiST or MulRF on the 1000-taxon
simulated datasets due to running time limitations for these methods. Results are averaged
over the completed replicates.

Criterion scores for the simulated datasets. By design, FastRFS-enhanced will

always find criterion scores that are at least as good as those found by ASTRAL-enhanced,

FastRFS-basic, ASTRAL, and MRL. Hence, the only methods that could possibly find better

scores than FastRFS-enhanced are PluMiST, MulRF, and ASTRID. We show the Robinson-

Foulds Supertree criterion scores in Table 3.1; note that lower is better. PluMiST failed to

complete on three datasets (one replicate in the 100-taxon and two replicates in the 500-taxon

datasets, each with 20%-scaffolds); we report results only on the remaining datasets. Both

PluMiST and MulRF had very large running times on the 500-taxon datasets; therefore, we

did not attempt to run them on the 1000-taxon datasets. All other methods succeeded in

completing on all datasets we examined.

FastRFS-enhanced found the best (lowest) Robinson-Foulds Supertree (RFS) criterion

scores of all methods for all datasets; FastRFS-basic also found these best scores for three

of the four 100-taxon model conditions, but otherwise found higher scores. PluMiST found

better RFS criterion scores than MulRF in 7 of the 8 model conditions, and matched in 1

condition. ASTRID had the worst performance of all methods, with much larger criterion

scores on all the sparse scaffold model conditions. These are the same conditions in which

the internode distance matrix has missing entries, suggesting that the reduced accuracy is

largely due to the missing data in the distance matrix.

Certain additional trends are worth noting. First, although PluMiST did well on the 100-

taxon datasets, it was not so competitive with FastRFS-enhanced or even FastRFS-basic

on the 500-taxon datasets, suggesting that the number of taxa may impact the ability of

PluMiST to find trees with good criterion scores. ASTRAL-enhanced matched or improved

22

on the RFS criterion scores compared to ASTRAL; this is interesting because it does not

follow from the algorithm design (the two methods seek the tree that minimizes the quartet

distance, not the RFS criterion). MRL, although never coming in first, often had very good

results, coming just behind FastRFS-basic for overall performance.

Criterion scores on biological datasets. We were unable to run PluMiST and MulRF

on the CPL dataset, the largest in our collection, due to its size: at 2228 species, the run-

ning time needed for these two methods is excessive. Criterion scores on the biological

datasets follow very similar patterns as observed on the simulated datasets (Fig. 3.1). Over-

all, FastRFS-enhanced had the best criterion scores: the best on four datasets, and close

to best on the last dataset (Marsupials). PluMiST tied for best with FastRFS-enhanced on

two of the four datasets on which it can run, had the second best score on seabirds, and

third best on THPL. Hence, PluMiST is in second place. Interestingly, the dataset on which

PluMiST was not able to find one of the top two scores was the second largest dataset, with

more than 500 species. Thus, just as we saw on the simulated datasets, the number of species

seems to impact the relative performance of PluMiST in comparison to other methods.

The next two best methods are MRL and FastRFS-basic, which had close performance,

but MRL was slightly better. ASTRAL and MulRF are next, again with mixed performance

(MulRF was better on two datasets and ASTRAL was better on the other two). Finally,

ASTRID had the worst performance of all methods - coming in dead last on four of the

five datasets. It is worth noting that all but two of the datasets produced distance matrices

with missing entries, and ASTRID did better than ASTRAL on one of the two datasets

(marsupial) that produced a complete distance matrix.

Topological accuracy. Since the true supertree is not known for the biological datasets,

we evaluate topological accuracy only on the simulated datasets red (Table 2). All methods

improved in accuracy with the increase in the scaffold density, so that error rates were

generally highest for 20%-scaffolds and lowest for 100%-scaffolds. The differences between

methods on the 100%-scaffolds were generally small, but there were large differences under

the other conditions. ASTRID had very poor accuracy except for those with 100%-scaffolds,

and MulRF and PluMiST also had poor accuracy with the lower density scaffolds.

The remaining methods (MRL, the two ASTRAL versions, and the two FastRFS ver-

sions) were fairly close in accuracy. However, MRL was never more accurate than FastRFS-

enhanced, and was only the top performing method for one model condition (where it tied

with FastRFS-enhanced). ASTRAL-enhanced was more accurate than ASTRAL on 8 con-

ditions, tied on 1 condition, and less accurate on 3 conditions. FastRFS-enhanced was more

23

accurate than FastRFS-basic on 9 model conditions, tied on 1 condition, and worse on 2

conditions. FastRFS-enhanced was more accurate than ASTRAL-enhanced on 8 of the 12

model conditions, tied on 1 condition, and worse on 3 conditions.

FastRFS-enhanced was the top performing method on 5 of the 12 model conditions; the

next best performing method was ASTRAL-enhanced, which was the top performing method

in 3 of the 12 model conditions. Thus, overall FastRFS-enhanced provided the best accuracy

of the tested supertree methods. These results, and especially the pairwise comparisons,

suggest that optimizing the Robinson-Foulds Supertree criterion (minimize RF distance)

is better than optimizing the ASTRAL criterion (minimize quartet distance) for supertree

estimation, and that adding bipartitions from MRL (and from ASTRID if its internode

distance matrix is complete) also tends to improve accuracy.

Running time. Figure 3.2 shows running times on the biological datasets. MulRF and

PluMiST took the most time, each typically requiring hours where FastRFS-basic, MRL,

and ASTRAL completed in well under a minute (and sometimes in just a few seconds). MRL

and FastRFS-enhanced were the next most computationally intensive, but were sometimes

fast, and finally ASTRAL, ASTRID, and FastRFS-basic were the fastest, often completing

in just seconds. As an example, the running times on the largest dataset on which all the

methods completed (THPL, with 558 taxa) showed substantial differences between methods:

PluMiST used 86400 seconds (i.e., 24 hours), MulRF used 29160 seconds (i.e., 8.1 hours),

FastRFS-enhanced used 615 seconds (just over 10 minutes), MRL used 575 seconds (i.e.,

just under 10 minutes), and ASTRID, ASTRAL, and FastRFS-basic used under 20 seconds.

The size of X impacts the running time for FastRFS, and ranged from 1155 to 20,233 for

FastRFS-basic and from 2485 to 48,313 for FastRFS-enhanced. The most computationally

intensive dataset for FastRFS-enhanced is the CPL dataset, which maximizes both the

number of taxa and |X|; however, FastRFS-enhanced completed on this dataset in 3282

seconds (i.e., under an hour). The majority of the time for FastRFS-enhanced is spent

computing the MRL tree; the other parts of the analysis (i.e., computing the ASTRID

matrix and potentially the ASTRID tree, computing the constraint set from ASTRAL, and

running the DP algorithm) takes very little time (typically less than a minute).

ASTRID’s running time was highly variable, but the running time is high only for large

datasets with missing entries in the distance matrix. The reason is that when the matrix

has missing entries, ASTRID must use BIONJ* (which takes Θ(n3) time) instead of FastME

(which takes Θ(n2) time). For example, ASTRID used about 6 hours on the CPL dataset

(the only biological dataset with these missing entries), but completed in just seconds on all

the other datasets.

24

3.4 CONCLUSIONS

Supertree estimation is a basic bioinformatics challenge that is necessary for the construc-

tion of large phylogenies as well as for enabling statistical phylogeny estimation methods

to be applied to large datasets. While many methods have been developed to compute su-

pertrees, very few have been able to provide good accuracy on datasets with many hundreds

or thousands of species.

The FastRFS methods presented here (i.e., the basic and enhanced versions) are fast

and effective techniques to find solutions to the NP-hard Robinson-Foulds Supertree (RFS)

problem. FastRFS-enhanced in particular nearly always finds better solutions than PluMiST

and MulRF, the leading methods for RFS, and does so in much less time. FastRFS relies

upon a dynamic programming algorithm to find an exact solution to its optimization problem

within a constrained search space, a strategy introduced in [62] and that is quite different

from the heuristic search techniques used by most phylogeny estimation methods. Thus,

while FastRFS, PluMiST, and MulRF all seek to optimize the same criterion, FastRFS is

guaranteed to find an optimal solution within its constraint space but cannot return any tree

that is not within the constraint space, while PluMist and MulRF are not guaranteed to

find an optimal solution within any search subspace but have access to the entire treespace.

Thus, our study suggests that exactly solving an optimization problem within a constrained

search space may be a better approach than being able to search a larger space, as long as

the constrained space is selected carefully. However, our study also shows that expanding

the constraint set beyond the input set of source trees can be highly beneficial in terms of

finding good solutions to NP-hard optimization problems.

FastRFS-enhanced also tends to find more accurate tree topologies than the other su-

pertree methods we explored. The improvement in topological accuracy suggests that the

Robinson-Foulds Supertree problem is a good approach to supertree estimation. The expla-

nation for this is likely to be the close relationship between the Robinson-Foulds Supertree

problem and the Maximum Likelihood Supertree problem [29], which models source tree

discord based on the topological distance to the true supertree [144]. Thus, although a

Robinson-Foulds Supertree is not guaranteed to be identical to a Maximum Likelihood Su-

pertree, good solutions to one problem are likely to be good solutions to the other [29].

Hence, FastRFS may be a good heuristic for the Maximum Likelihood Supertree problem,

and this may explain its good accuracy.

There are many directions for future work. For example, since FastRFS by design can

only search within the space defined by its constraint set, finding better constraint sets may

provide additional improvements. Alternatively, FastRFS-enhanced may provide a good

25

Method Seabirds Placental Marsupial THPL CPL
FastRFS-basic 1155 6907 10251 11109 20233

FastRFS-enhanced 2485 12937 15443 17811 48313

Table 3.3: Sizes of the set X on biological datasets

starting tree for PluMiST and MulRF, which are able to search an unconstrained search

space. In addition, FastRFS-enhanced may be a good initial tree for Bayesian supertree

methods [2, 3] or heuristic searches for Maximum Likelihood Supertrees [1]. Also, like most

supertree methods, FastRFS currently only works with inputs where each source tree has

at most one copy of each leaf; methods like MulRF are designed to handle inputs of source

trees that represent gene trees, and so can have multiple copies of each species (arising from

duplication-loss scenarios). We will modify FastRFS to be able to work with such source

tree inputs.

3.5 SUPPLEMENTARY DATA FOR FASTRFS

3.5.1 Size of the constraint set

FastRFS-enhanced uses a larger constraint space than FastRFS-basic. Table 3.3 shows

the sizes of the constraint sets X for the five biological datasets that are added to the search

spaces for FastRFS-enhanced and ASTRAL-enhanced.

3.5.2 Commands

Commands for the tree estimation software are provided below:

MulRF: We ran MulRF version 1.2 ten times, and the tree with the best optimization

score was used. The command was:

MulRFSupertree -i <input file name> -o <output file name>

PluMiST: We ran PluMiST version 1.1. Since we found PluMiST’s stopping condition

caused it to run for too long, we allowed PluMiST to run for a limited amount of time (1

hour for 100-taxon simulated dataset; 5 hours for 500-taxon simulated dataset; 12 hours for

the the seabird, mammalian, and placental datasets, and 24 hours for the THPL dataset).

In all cases, this was at least as long as the other methods took to run and in most cases sub-

stantially longer. Reported running times are the times of the last iteration that successfully

26

completed before the cutoff. The command used for PluMiST was

python plumist.py -s <input file name> -o <output file name>

MRL: We also ran matrix representation with likelihood (MRL), in which a maximum-

likelihood tree is estimated on an MRP matrix. We generated MRP matrices with mrpma-

trix, available at github.com/smirarab/mrpmatrix:

mrpmatrix <input file> <output matrix file> -dna

We estimated MRL trees with RAxML version 8.2.4 with command line

RAxML -m BINGAMMA -p 12345 -n <run name> -s <matrix file>

ASTRID: To run ASTRID, we used the command line

ASTRID -i <gene tree file> -o <output file>

ASTRAL: To run ASTRAL, we used the command line

java -jar astral.4.7.8.jar -i <gene tree file> -o <output file>

To run ASTRAL-enhanced, we used

java -jar astral.4.7.8.jar -i <gene tree file> -o <output file> -e

<extra trees>

where the extra trees file contained the MRL tree or the MRL tree and the ASTRID tree,

depending on whether or not the ASTRID distance matrix was complete.

FastRFS-basic: To run FastRFS, we used the command line

wASTRAL -c FastRF -g <gene tree file> -o <output file>

-a /path/to/astral.4.7.8.jar

FastRFS-enhanced: To run the enhanced version of FastRFS, we used the command

line

wASTRAL -c FastRF -g <gene tree file> -o <output file>

-a /path/to/astral.4.7.8.jar -e <extra trees> --extraextra

This runs the clade selection portion of ASTRAL three times to get the constraint set. First,

it runs with the input trees as gene trees and the extra trees as extra trees. Second, it runs

with the extra trees as the gene trees. Finally, it runs with input and extra trees combined

as gene trees. The union of these outputs is used as the clade set for FastRFS.

27

Figure 3.3: Comparison of FastRFS variants criterion scores on simulated data. Scores are
normalized by dividing by the FastRFS-basic score; FastRFS-basic has a score of 1.

28

Figure 3.4: Comparison of FastRFS variants on biological data

29

CHAPTER 4: IMPROVING DYNAMIC PROGRAMMING FOR
PHYLOGENOMIC ESTIMATION WITH SIESTA1

4.1 BACKGROUND

Coalescent-aware summary methods and supertree methods are often based on attempts

to solve NP-hard problems, and typically use heuristics (a combination of hill-climbing and

randomization) to search for optimal trees. While these heuristics can be highly effective

on small datasets, they are often very slow and there are no guarantees about the solutions

they find. An alternative approach to the use of heuristic searches is constrained exact

optimization, whereby the solution space is first constrained using the input source trees, and

then an exact solution to the optimization problem is found within that constrained space.

This approach can lead to polynomial time methods (where the running time depends on

the size of the constraint space as well as on the input) that can have outstanding accuracy.

The first use of this approach was presented in [62], which provided a method to find a

species tree minimizing the duplication-loss reconciliation cost given a set of estimated gene

trees. Since then, many other constrained exact optimization methods have been developed

in phylogenomics for different purposes, including computing trees from maximum likelihood

quartet trees [30], constructing species tree from sets of gene trees under gene duplication and

loss models [17] or under the multi-species coalescent model [105, 106, 153, 176], improving

gene trees given a species tree [150], constructing consensus trees [30], constructing supertrees

[159], and extracting a tree from a phylogenetic network [30].

Most of these approaches constrain the search space using a set of “allowed bipartitions”,

which we define here. The constraints imposed by these algorithms are obtained by specifying

a set X of allowed bipartitions so that the returned tree T must satisfy that Bip(T) ⊆
X. The set X is used to define a set of “allowed clades” (comprised of the halves of the

bipartitions, plus the full set of species), and dynamic programming is then used on the set

of allowed clades to find an optimal solution to the optimization problem. The set X has an

impact on the empirical performance, but even simple ways of defining X can result in very

good accuracy and provide guarantees of statistical consistency under statistical models of

evolution [105, 159].

The constrained exact optimization approach has multiple advantages over heuristic search

techniques. From an empirical perspective, the dynamic programming approach is frequently

1This chapter contains material previously published in [160], which was a joint work with Tandy Warnow.
It has been edited slightly for brevity. PV implemented SIESTA, performed experiments, wrote the first
draft, and analyzed the data. TW analyzed the data, and wrote the final draft.

30

faster, and if the constraint space is selected well it is often more accurate than alternative

approaches that typically use heuristic searches for optimal solutions. From a theoretical per-

spective, the ability to provably find an optimal solution within the constraint space is often

sufficient to prove statistical consistency under a statistical model of evolution (e.g., under

the multi-species coalescent model); hence, many of the methods that use constrained exact

optimization can be proven statistically consistent, even for very simple ways of defining the

constraint set.

These constrained exact optimization methods typically have excellent accuracy in terms

of scores for the optimization problems they address (established on both biological and

simulated datasets) and topological accuracy of the trees they compute (as established using

simulated datasets). A basic limitation of these methods, however, is that they return

a single optimal tree, even though there can be multiple optima on some inputs. This

limitation reduces the utility of the methods.

We present SIESTA (Summarizing Implicit Exact Species Trees Accurately), an algo-

rithmic tool that can be used to enhance these dynamic programming methods for finding

optimal trees. The input to SIESTA is the set T of source trees, the constraint set X of

allowed bipartitions, and a scoring function w that assigns scores to tripartitions of the taxon

set (and which is derived from the optimization function F that assigns scores to trees and

the set T , as we show later); SIESTA returns a data structure I that represents the set T ∗

of trees that optimize the function F subject to the constraint that every bipartition in every

tree in T ∗ is in X. This data structure I enables the user to explore the set of optimal trees

in various ways. In this study, we use SIESTA to compute consensus trees, to enumerate

the set of optimal trees, to count the number of optimal trees, and to report the frequency

of each bipartition in the set of optimal trees.

We explore the impact of using SIESTA with two methods that use dynamic programming

for constrained exact optimization: the supertree method FastRFS [159] and the ILS-aware

species tree estimation method ASTRAL [105]. We show that using SIESTA to compute

a strict consensus tree provides improvements in accuracy (in terms of the topology of the

estimated tree) compared to a single optimal tree for both ASTRAL and FastRFS when

the number of optimal trees is large enough, and is otherwise neutral. Furthermore, using

SIESTA with a modification to FastRFS produces more accurate rooted supertrees than Bad

Clade Deletion (BCD), the previous best method for rooted supertree construction [52].

Using SIESTA with ASTRAL, a species tree estimation method that addresses incongru-

ence due to ILS, provides additional benefits. For each optimal tree it returns, ASTRAL

provides branch support values based on local posterior probabilities, but these values do

not take the other optimal trees into account. We show how to correct these support values

31

to take the full set of optimal ASTRAL trees into account, and enable the calculation of

a maximum clade credibility (MCC) tree based on these corrected values. Hence, SIESTA

provides a valuable tool for both species tree and supertree estimation, providing distinct

advantages over the simplistic use of leading methods for these problems. SIESTA, com-

bined with ASTRAL and FastRFS is available at https://github.com/pranjalv123/SIESTA

and the datasets analyzed in this paper are available at [157].

4.2 METHODS

4.2.1 The SIESTA Algorithm

SIESTA is designed to work with tree estimation methods that seek optimal solutions

within a constrained search space using dynamic programming. Recall that in the con-

strained optimization approach, the input is a set of source trees (estimated gene trees in

the case of ASTRAL, generic source trees in the case of FastRFS) as well as a set X of

allowed bipartitions of the set S of species. Given this set X of allowed bipartitions, we

define a set C of “allowed clades” by taking the two halves of each bipartition, and we also

include the set S; thus, C = {A : [A|S \ A] ∈ X} ∪ {S}.
We also form a set TRIPS of “allowed tripartitions”, as follows. TRIPS contains all

ordered 3-tuples (A,B,C) of allowed clades that are pairwise disjoint, that union to S, and

where A∪B is also an allowed clade. We require that A and B be non-empty, but we allow

C to be empty.

The purpose of creating this set is that it allows us to perform the dynamic programming

algorithm to find optimal solutions for some optimization problems. To see this, consider an

unrooted binary tree T that is a feasible solution to the constrained optimization problem

under consideration. Now root the tree T arbitrarily and pick some internal node v defining

clade c. Since T is a feasible solution to the optimization problem, all the clades in T (r) (the

rooted version of T) are allowed clades, and every node v defining clade c that is not a leaf

has two major subclades A and B defined by its two children. The 3-tuple (A,B,C) where

C = S \ (A∪B) is the tripartition associated to node v (equivalently, associated to clade c).

If v is the root of T , then C will be empty. The set of “allowed tripartitions” is defined to

ensure that it includes all 3-tuples that could be formed in this way. Finally, by construction,

we consider (A,B,C) and (B,A,C) to be equivalent tripartitions. Similarly, given a rooted

binary tree T (r) on leafset S, each non-leaf node v in T (r) defines a tripartition (A,B,C)

where A and B are the clades (i.e., leafsets) below the two children of v, and C = S\(A∪B).

We refer to the set of tripartitions of a rooted binary tree T (r) by trips(T (r)).

32

The objective of the constrained optimization problems is to find an unrooted tree T ∗ on

leafset S that optimizes a function F (·) defined on unrooted trees, subject to T ∗ drawing

its bipartitions from X. Hence, if we root T ∗, we obtain a rooted tree T ∗(r) in which the

non-leaf nodes define allowed tripartitions. ASTRAL and FastRFS are each algorithms that

find optimal binary trees for some optimization problem, subject to the constraint that the

tree draw its bipartitions from a set X of allowed bipartitions. These algorithms reframe

the problem by seeking a rooted tree that draw its clades (i.e., subsets of leaves defined by

internal nodes) from the set C of allowed clades, and use the dynamic algorithm design that

we will now describe.

For both ASTRAL and FastRFS, it is possible to define a function w on allowed tripar-

titions such that for any unrooted binary tree T on leafset S, letting T r denote a rooted

version of T (obtained by rooting T on any edge),

F (T) =
∑

t∈trips(T r)

w(t) (4.1)

where F (T) is the optimization score for tree T .

The existence of a function w that is defined on tripartitions and that satisfies Equation

4.1 is the key to these dynamic programming algorithms. Given function w that is defined

on tripartitions, we define a recursive function f that is defined on clades that we can then

use to find optimal solutions. We show how to define f for a maximization problem; defining

it for a minimization problem is equivalently easy.

The calculation of f(c) for a given allowed clade c given w and X uses the following

recursion (phrased here in terms of maximization):

f(c) =

max{f(a) + f(b) + w(a, b, x)|(a, b, x) ∈ TRIPS, a ∪ b = c}, |c| > 1

0, |c| = 1
(4.2)

By Equation 4.1, f(S) = F (T ∗), where T ∗ is the optimal solution to the constrained opti-

mization problem.

Hence, we can solve the optimization problem using dynamic programming. We compute

all the f(c) from the smallest clades to the largest clade S. To construct the optimal solution

T ∗, when we compute f(c) for a clade c, we record how we obtained this best score (i.e., we

record the unordered pair (a, b) of clades whose union is c achieving this optimal score), and

we use backtracking to construct the rooted version of T ∗. Then we unroot the rooted tree.

33

4.2.2 The SIESTA data structure

SIESTA modifies these algorithms so they output a data structure that implicitly repre-

sents the set of all the optimal trees.

Specifically, when SIESTA computes f(c), instead of recording a single split of the clade c

into two subclades that achieves the optimal score for the clade c, SIESTA records all such

splits of c. We describe the high-level idea of SIESTA by describing how a single optimal

tree (all of whose clades are drawn from C) can be represented with pointers, and then show

how to extend that to represent all optimal trees.

Let T be a rooted binary tree, all of whose clades are drawn from C. T can be stored

as a collection of nodes, where each node contains either two pointers (one to each of its

two children, if it is an internal node) or a taxon label (if it is a leaf node). Equivalently,

this representation of T can be seen as having pointers from each clade c (with at least two

species) to a pair of disjoint clades c1 and c2, whose union is c.

We modify this representation to compactly represent a set of rooted binary trees, as

follows. Recall that during the dynamic programming algorithm, all optimal ways of splitting

a clade c into two clades c′ and c′′ = c \ c′ are determined. Each of these ways of splitting

c into two subclades is stored in a set I(c), by having each such split represented by a pair

of pointers. In other words, instead of having each clade have a pair of pointers to two

subclades, each clade has a set I[c] of pairs of pointers to a potentially large number of

subclades. Thus, the SIESTA data structure is the array I indexed by the clades in C, and

each element of the array is a set. Note also that |I(c)| ≤ |X|, so that the SIESTA data

structure uses O(|X|2) space.

The SIESTA data structure also naturally defines a directed acyclic graph whose nodes

are labelled by allowed clades c (i.e., elements of X), and there is an edge from c to c′ if the

set I(c) contains a pair of pointers, with one pointer pointing to c′. We will say that c′ is

a child of c when there is an edge from c to c′. Given such a representation, it is easy to

generate any single optimal tree by following a tree from the root of the SIESTA digraph

(i.e., starting with the entry I[S]) down to the leaves, and at each clade x with at least two

elements, picking a pair of its children whose clades union to x.

The asymptotic running time of this phase is equal to the asymptotic running time of the

original DP algorithm, which is O(|X|2α), where α is the time required to calculate w for

a single tripartition [106]. Storing the entire data structure requires O(|X|2) space in the

extreme case where every tree has the same score, but in many real-world cases will require

less.

34

4.2.2.1 Using SIESTA

We show how we can use SIESTA in various ways, including counting the number of

optimal trees, generating greedy, strict, and majority consensus trees, and computing the

maximum clade credibility tree.

Counting the number of optimal trees. We traverse the collection of allowed clades

from smallest to largest, calculating for each allowed clade c the number optsubtrees(c) of

optimal rooted binary trees that contain exactly the taxa in c. Obviously, optsubtrees(c) = 1

for all clades of size 1. It is also straightforward to check that the number of optimal rooted

binary subtrees on larger clades can be computed by examining all the optimal splits of the

clade into two parts. Hence,

optsubtrees(c) =

∑

(x,y)∈I[c] optsubtrees(x) · optsubtrees(y), |c| > 1

1, |c| = 1
(4.3)

The number of optimal rooted binary trees is optsubtrees(S), where S is the entire set of

species. For the algorithms we consider (ASTRAL and FastRFS), all rootings of a particular

unrooted tree have the same criterion score, and so this quantity should be divided by 2n−3,

where n = |S| is the number of species, to get the number of optimal unrooted trees.

Calculating consensus trees. A particular bipartition [c|S \ c] is present in fraction Ac

of the optimal trees, where

Ac =
optsubtrees(c) ∗ optsubtrees(S \ c)

optsubtrees(S)
(4.4)

For α ≥ 0.5, the α-consensus tree is the unique tree that contains exactly those bipartitions

that occur in more than fraction α of the optimal trees. For smaller values of α, we can still

construct a consensus tree, but the set of bipartitions that appear with frequency greater

than α may not form a tree. To construct the α-consensus tree, we sort the bipartitions

in descending order by Ac, restricted only to those bipartitions [c, S \ c] with Ac > α, and

construct a greedy consensus tree using this ordering. To calculate a greedy consensus tree,

we sort all the bipartitions in descending order of Ac and greedily build a tree from them.

The majority consensus tree has α = 0.5, and so is an example of an α-consensus tree. The

strict consensus tree can also be computed easily, and contains only the bipartitions that It

is easy to see that each of these consensus trees can be computed in O(|X| log |X|) time.

35

Correct local branch support in an ASTRAL tree. Recall that ASTRAL-II uses

a quartet-based local posterior probability (PP) measure [132] to assign support values to

edges. However, when there is more than one optimal tree, the branch support in any

individual tree is unreliable, since it does not take the other optimal trees into account.

However, SIESTA can modify the branch support values by taking the other optimal trees

into account. Specifically, for a given bipartition in a tree T , we compute its average support

across the set of optimal trees (where an optimal tree without the bipartition contributes a

support of zero); this is the corrected support for the bipartition.

The ASTRAL Maximum Clade Credibility tree. A natural optimization problem

would be to return the tree whose total corrected branch support (as described above),

summed over all the edges of the tree, is maximized. Such a tree is called the Maximum

Clade Credibility (MCC) tree, but finding such a tree is an NP-hard problem. We developed

a greedy heuristic for the MCC tree, as follows. We use SIESTA to compute every optimal

ASTRAL tree, and calculate the corrected local branch support values (as described above).

We then compute a greedy consensus of the resulting bipartitions, ranked by these corrected

support values. We refer to this as the ASTRAL MCC tree.

4.2.3 Evaluation Protocol

We tested SIESTA in two contexts: in conjunction with FastRFS (a supertree method) and

in conjunction with ASTRAL (an ILS-aware species tree estimation method). We use both

biological and simulated datasets for these experiments, and on each dataset we examined,

we used SIESTA to compute the set of optimal solutions, and to compute consensus trees for

these sets of optimal trees. Overall, we examined 1020 simulated and 16 biological datasets

(5 supertree and 11 phylogenomic).

Gene tree estimation. The simulated supertree datasets (both rooted and unrooted)

and all the biological datasets we analyzed came with pre-calculated source trees; for the

other datasets (i.e., for the simulated phylogenomic datasets) we used RAxML v8.2.4 [141]

to estimate gene trees (using options -m GTRGAMMA -p 12345).

Supertree methods. We evaluated the impact of SIESTA on the FastRFS v2.0 supertree

method, using several variants of FastRFS that vary in how the constraint set of allowed

bipartitions is defined:

• FastRFSbasic, which only uses ASTRAL-II to compute the constraint set,

36

• FastRFSenh (i.e., the enhanced version), which adds the bipartitions from the Matrix

Representation with Likelihood (MRL) supertree to its constraint set and also from the

ASTRID tree (but only when the internode distance matrix that ASTRID computes

is complete), and

• FastRFSBCD, which adds the bipartitions from the BCD supertree, but can only be

used with rooted supertree datasets.

Hence, FastRFS uses other supertree methods (i.e., ASTRAL, MRL, ASTRID, and BCD)

to compute the constraint set. We ran ASTRID v1.1 and BCD v1.0.1 in default mode. For

ASTRAL-II, we ran a custom variant (available at the github site) where we use ASTRAL

v4.7.8 to compute the constraint set of allowed bipartitions, and then our own dynamic

programming implementation to find optimal solutions to the quartet support optimization

problem. This custom version (which we call SIESTA-ASTRAL) produces exactly the same

output species tree(s) as ASTRAL v.4.7.8, and allows us to make a comparison between

SIESTA used with ASTRAL v4.7.8 to compute consensus trees and a single ASTRAL 4.7.8.

tree. For MRL, we used RAxML v8.2.4 [141], with options -m BINGAMMA -p 12345.

The supertree FastRFSenh has already been shown to produce more accurate supertrees

than ASTRID, ASTRAL, and MRL, on simulated datasets [159]. However, a new supertree

method, BCD, has been developed for use with rooted source trees, and has been reported

to be more accurate than FastRFS; hence, we explore these FastRFS variants on supertree

datasets with rooted source trees, and we compare these variants to BCD. We then explore

the impact of SIESTA on the best variant and determine how it compares to BCD.

ILS-aware species tree methods. We evaluated the impact of SIESTA on ASTRAL

v4.7.8 on the phylogenomic datasets. We also used ASTRID, v1.1 (another ILS-aware

method), but only in the context of providing bipartitions for FastRFS. For the biologi-

cal datasets, we explored the use of the MCC (Maximum Clade Credibility) tree computed

using SIESTA.

Consensus methods. For each dataset, we use SIESTA to compute the set of optimal

trees and then also to compute three consensus trees: the strict consensus, the majority

consensus, and the greedy consensus. The strict consensus tree is the unique tree whose

bipartition set is exactly those bipartitions that appear in every optimal tree, and so will

not be fully resolved whenever the number of optimal trees is two or larger. The majority

consensus tree is the unique tree whose bipartition set is exactly those bipartitions that

appear in a strict majority of the set of optimal trees; unlike the strict consensus, it may be

37

fully resolved even when there are two or more optimal trees. Finally, the greedy consensus

tree is obtained by ordering the bipartitions according to their frequency in the set of optimal

trees, and then adding them, one by one, in order of their frequency (from most frequent to

least frequent) to a growing tree. By design, the greedy consensus may not be unique, but

will always refine (or equal) the majority consensus; similarly, the majority consensus will

always refine (or equal) the strict consensus.

4.2.3.1 Datasets

Simulated supertree datasets. We use two collections of simulated supertree datasets

(one with unrooted source trees and one with rooted source trees), each based on the

SMIDgen [146] simulation protocol. The unrooted source trees were originally generated

for [146], and have been used to explore the accuracy of several supertrees methods [116,

159]; the rooted source tree datasets were generated for [52], and enable a comparison with

the BCD supertree method [52], which requires rooted source trees.

We explore the results on the datasets with 100, 500, and 1000 taxa. Each replicate

contains one “scaffold” tree and several clade-based trees. The scaffold tree is based on a

random sample of the species, and contains 20%, 50%, 75%, or 100% of the taxa sampled

uniformly at random from the leaves of the tree. The clade-based trees are based on a

clade and then a birth-death process within the clade (and hence may miss some taxa).

The original 100-taxon, 500-taxon, and 1000-taxon datasets had 6, 16, and 26 source trees

respectively; the number of source trees was reduced to 6, 11, and 16 for the 500-taxon

datasets, and 6, 11, 16, 21, and 26 for the 1000-taxon datasets. Sequences evolved down

each scaffold and clade-based source tree under a GTR+Gamma model (selected from a set

of empirically estimated parameters) with branch lengths that are deviated from the strict

molecular clock. Maximum likelihood trees were estimated on each sequence alignment using

RAxML under the GTRGAMMA model (with numeric parameters estimated by RAxML

from the data), and used as source trees for the experiment. 25 replicates were analyzed for

the 100- and 500-taxon model conditions, and 10 replicates were analyzed for each scaffold

factor of the 1000-taxon model condition.

Simulated phylogenomic datasets. We obtained multi-locus simulated datasets from

[105], and then modified them for this study. These datasets were generated by evolving

gene trees within species trees (with speciation close to the leaves of the model tree) under

the multi-species coalescent (MSC) model using SimPhy [96], and then evolving sequences

down each gene tree under the GTR+Gamma model, with branch lengths deviated from the

38

Dataset # Taxa # Source trees # FastRFS supertrees
Marsupials [32] 267 158 258048

Placental Mammals [20] 116 726 4
Seabirds [77] 121 7 117760
THPL [171] 558 19 5.9 x 1034

CPL [100] 2228 39 7.7 1092

Table 4.1: Statistics for biological supertree datasets. We show the number of taxa, source
trees, and FastRFSenh supertrees for each supertree dataset.

strict molecular clock, using Indelible [53]. Three levels of ILS were generated by modifying

the species tree height.

These datasets were then modified for the purposes of this study. These datasets originally

had 200 taxa each, but were randomly reduced to 50 taxa each to reduce the running time.

The original datasets had variable length loci between 300 and 1500bp, and were truncated

for this experiment to 150bp to produce datasets with properties that are consistent with

empirical phylogenomic datasets (which frequently have very low phylogenetic signal). Each

replicate was evaluated with 5, 10, and 25 loci. We evaluated model conditions where each

gene contained all 50 taxa, as well as model conditions where each gene contained 10, 20, or

30 taxa chosen at random from the taxon set. These datasets with 50 taxa had ILS levels that

ranged from moderate to very high; we characterize the ILS using the average normalized

bipartition distance (AD) between true gene trees and true species trees. The moderate

ILS condition has AD=12%, the high ILS condition has AD=31%, and the very high ILS

condition has AD=68%. We also generated incomplete gene trees by randomly deleting a

specific number of taxa from each gene (so that all genes are incomplete but have the same

number of leaves) and then re-estimated gene trees; this allows us to evaluate species tree

estimation when not all genes have all the species (i.e., in the presence of “missing data”)

[109]. We estimated gene trees using RAxML [141] under the GTRGAMMA model (with

numeric parameters estimated by RAxML), and we analyzed 25 replicates for each model

condition (defined by the ILS level, number of loci, and amount of missing data).

Biological supertree datasets. We analyzed five (all unrooted) supertree datasets

from [146]: Marsupials [32], Placental Mammals [20], Seabirds [77], Temperate herbaceous

papilionoid legumes (THPL) [171], and Comprehensive papilionoid legumes (CPL) [100]

datasets. See Table 4.1 for detailed information about these datasets.

Biological phylogenomic datasets. We analyzed 11 phylogenomic datasets, described

in Table 4.2. Each of these datasets has multiple genes, and each gene has one unrooted

39

Dataset (publication) # Taxa # Genes # ASTRAL trees
Ferns [129] 85 25 1

Flatfishes [22] 152 23 1
Gallopheasants [101] 18 1479 1

Hymenoptera [134] 21 24 4
Lichens [83] 31 303 1

Louse [5] 15 1101 1
Mammalian [139] 37 424 1

Sigmontidine Rodents [95] 285 11 72
Skinks [87] 16 429 1

Synchaeta [151] 32 27 2
Testudinella [151] 25 27 7

Table 4.2: Statistics of the biological phylogenomic datasets. We show the number of taxa,
number of genes, and number of optimal trees for ASTRAL.

binary maximum likelihood gene tree.

4.2.3.2 Performance criteria.

For the simulated datasets, we compare the topological accuracy of the trees we compute

by comparing them to the model species tree or supertree. We use DendroPy v4.0.3 [145]

to compute both the false negative (FN) rate and the false positive (FP) rate with respect

to the model tree, where the FN rate is the number of bipartitions in the model tree that

are missing from the estimated tree and the FP rate is the number of bipartitions in the

estimated tree that are not in the model tree, each divided by n− 3 (the number of internal

edges in an unrooted tree) where n is the total number of leaves in the model tree. For each

basic tree estimation method (i.e., ASTRAL and FastRFS), we also report Delta-Error,

which is the difference between the average error rate (i.e., the average of the FN and FP

error rates) computed for the tree estimation method and the average error rate of the strict

consensus of the optimal trees found by that method. Hence, when Delta-Error is negative,

the strict consensus has overall lower error than a single optimal tree. We also report the

F1 score, which is the harmonic mean of the precision and recall of the estimated trees. For

the biological datasets, since topological accuracy cannot be assessed exactly, we describe

differences between the consensus trees we compute using SIESTA and trees computed using

other techniques. We also report the number of optimal trees for the optimization problems

on all the datasets we examine, and the running time used on the biological datasets.

40

4.3 RESULTS AND DISCUSSION

4.3.1 Overview

Experiment 1 explores the use of SIESTA to compute the number of optimal trees found

by FastRFS and ASTRAL, as this indicates the potential for SIESTA to improve accuracy by

computing consensus trees. Experiment 2 explores how the choice of consensus tree (strict,

majority, or greedy) impacts the average topological accuracy of the resulting tree. The next

experiments compare the strict consensus tree to a single optimal tree, with Experiment 3

examining FastRFS variants on simulated supertree datasets and Experiment 4 examining

ASTRAL on simulated phylogenomic datasets. Experiment 5 examines the use of SIESTA to

calculate branch support with ASTRAL and FastRFS on biological datasets, and Experiment

6 evaluates running time issues.

4.3.2 Experiment 1: Computing the number of optimal trees

We used SIESTA to compute the number of optimal trees found by FastRFS and ASTRAL

on both the biological and simulated datasets. We explore the differences between FastRFS

variants (which depend on how the constraint set is defined) and also between FastRFS and

ASTRAL.

FastRFS variants. As shown in Table 4.1, FastRFSenh tends to produce large numbers

of optimal trees on the biological supertree datasets, and this number tends to increase

with the number of taxa and decreases with the number of source trees. On the simulated

supertree datasets, both FastRFSenh and FastRFSbasic typically have a large number of

optimal trees (Additional file 1, Tables S1 and S2), but FastRFSenh generally had a much

larger number of optimal trees than FastRFSbasic. In addition, the number of optimal trees

for both variants grows with the number of taxa: FastRFSenh typically has tens or hundreds

of optimal solutions on datasets with 100 taxa, but there are up to 1018 optimal FastRFSenh

trees on datasets with 1000 taxa. The density of the scaffold factor also impacts the number

of optimal trees, with fewer optimal trees with the 100%-scaffold factor than with sparser

scaffold factors.

ASTRAL. ASTRAL showed distinctly different trends. For example, ASTRAL typi-

cally only produced a single optimal tree on the biological phylogenomic datasets, as shown

in Table 4.2. We also examined the number of optimal ASTRAL trees on simulated phy-

41

Dataset (publication) FastRFSbasic FastRFSenh ASTRAL
Seabirds [77] 17664 117760 24

Marsupial [32] 24576 258048 96
Placental [20] 64 4 4

THPL [171] 2.7× 1018 5.9× 1034 1.1× 1011

CPL [100] 5.4× 1064 7.7× 1092 3.9× 1029

Table 4.3: Number of optimal trees found by FastRFSbasic, FastRFSenh, and ASTRAL for
biological supertree datasets.

logenomic datasets. As shown in Additional file 1, Table S3, when all the gene trees are

complete, nearly all the analyses produced only one optimal ASTRAL tree, and when more

than one tree was produced it was typically a very small number (often just two). However,

there are many optimal ASTRAL trees on the phylogenomic datasets with incomplete gene

trees (see Additional file 1, Table S4). Thus, although ASTRAL usually only finds a single

optimal tree, it can (in some cases) return a larger number.

Comparison of ASTRAL and FastRFS variants on the same datasets. We then

compared the number of optimal trees found by ASTRAL, FastRFSbasic, and FastRFSenh

on the biological supertree datasets. FastRFSenh found the largest number, followed by

FastRFSbasic, and then by ASTRAL (Table 4.3). The comparison between FastRFSbasic and

FastRFSenh shows that increasing the size of the constraint space for FastRFS results in an

increase in the number of optimal trees, which is as expected.

The comparison between ASTRAL and FastRFSbasic, which have the same constraint set,

is more interesting, and suggests that the optimization problem solved by ASTRAL tends

to have a smaller set of optimal trees than the optimization problem solved by FastRFS.

The reason that FastRFS tends to have more optimal solutions than ASTRAL may be that

the number of possible FastRFS scores is substantially smaller than the number of possible

ASTRAL scores. Specifically, if n is the number of species and k is the number of source trees,

the FastRFS scores are all integers in the range [0, (n − 3)k], while the possible ASTRAL

scores are integers in the range [0, k
(
n
4

)
]. Therefore, the frequency of multiple trees with

the same optimal score is higher for FastRFS than for ASTRAL. However, ASTRAL has by

far a much smaller number of optimal trees, and typically has only one optimal tree under

conditions where even FastRFSbasic has at least 106 optimal trees.

Overall, therefore, FastRFSenh typically has many optimal trees on supertree datasets,

while ASTRAL typically (but not always) has only one optimal tree when given complete

gene trees but can have many optimal trees when given highly incomplete gene trees. This

42

means that if we use SIESTA to compute a consensus tree of the optimal trees, this has a

greater probability of impacting FastRFSenh than ASTRAL, but can also impact ASTRAL

when the input dataset has genes that are missing many taxa.

4.3.3 Experiment 2: Comparing different consensus trees computed using SIESTA

We explored the impact of using different consensus methods (i.e., the strict consensus, ma-

jority consensus, and greedy consensus) in conjunction with FastRFSenh and FastRFSBCD.

We report the difference in average topological error (i.e., the average of the FN and FP

error rates) of these consensus trees compared to a single best tree.

For the unrooted supertree datasets, as seen in Additional file 1, Figure S1, for all numbers

of taxa and scaffold factors, the three consensus trees of the best FastRFSenh supertrees are

nearly identical in accuracy, and typically are more accurate than a single best FastRFSenh

tree. However, there are some cases where the strict consensus has a very slight advantage

over the other consensus methods. Additional file 1, Figure S2 shows FN and FP rates

separately for the strict consensus of the optimal FastRFSenh trees on the unrooted supertree

datasets, and how they are impacted by the number of optimal trees. As expected, the

FP rates decrease and the FN rates increase as the number of optimal trees increases;

furthermore, as the number of optimal trees increases, the decrease in FP rate is substantially

larger than the increase in FN rate. As a result, the average of the FN and FP rates decreases

with the number of optimal trees.

We then explored the impact of choice of consensus tree on the simulated rooted supertree

datasets (where we used FastRFSBCD); see Additional file 1, Figure S3. On these data, the

strict consensus tree had generally the lowest average topological error rate, followed by the

majority consensus, and then by the greedy consensus, but all three consensus trees were

typically more accurate than a single best FastRFSBCD tree.

4.3.4 Experiment 3: FastRFS-SIESTA vs. FastRFS on simulated supertree datasets

We compare the strict consensus of the optimal FastRFS supertrees (referred to as FastRFS-

SIESTA) to a single FastRFS supertree on the simulated supertree datasets. For the un-

rooted supertree datasets, we use FastRFSenh, which was shown to provide better topological

accuracy than other supertree methods in [159].

Results on the unrooted supertree datasets (Fig. 4.2) show that FastRFS+SIESTA is at

least as accurate as FastRFS for all scaffold factors and all numbers of taxa. The difference

between the two methods is often small, but there are larger improvements when the scaffold

43

factor is the smallest (which is also when the number of optimal trees is largest).

10 20 30
−0.2

−0.1

0.0

0.1

0.2

D
el
ta
 E
rr
or

Moderate ILS, 10 genes

10 20 30
−0.2

−0.1

0.0

0.1

0.2
High ILS, 10 genes

10 20 30
−0.2

−0.1

0.0

0.1

0.2
Very High ILS, 10 genes

10 20 30
Taxa/gene

−0.2

−0.1

0.0

0.1

0.2

D
el
ta
 E
rr
or

Moderate ILS, 25 genes

10 20 30
Taxa/gene

−0.2

−0.1

0.0

0.1

0.2
High ILS, 25 genes

10 20 30
Taxa/gene

−0.2

−0.1

0.0

0.1

0.2
Very High ILS, 25 genes

Figure 4.1: We show Delta-error (change in mean topological error between a single ASTRAL
tree and the strict consensus of the set of ASTRAL trees) on simulated phylogenomic datasets
with three different ILS levels, 50 species, and 25 incomplete estimated gene trees; values
below 0 indicate that the strict consensus of the ASTRAL trees is more accurate than a
single ASTRAL tree. We show results for 25 replicates. Error bars indicate the standard
error; topological error is the average of the FN and FP error rates.

For rooted supertree datasets, we explore another supertree method called the Bad Clade

Deletion (BCD) supertree method, which can only be used with rooted source trees. As

shown in [52], BCD produced more accurate species trees (with respect to the F1 metric)

than FastRFSbasic and several other supertree methods. We confirm that BCD outperforms

FastRFSbasic with respect to the F1 metric (Additional file 1, Fig. S4), and also note that

BCD outperforms FastRFSbasic with respect to the RF error rate (Additional file 1, Fig. S5).

However, it is not known whether BCD is more accurate than FastRFSenh or FastRFSBCD,

nor whether using SIESTA enables some FastRFS variant to outperform BCD. We compared

these three methods with respect to RF errors (Additional file 1, Fig. S6) and F1 scores

(Additional file 1, Fig. S7). The two FastRFS variants are very close in accuracy with respect

to both criteria, with a slight advantage to FastRFSBCD. Interestingly, the comparison to

BCD shows that the FastRFS variants are less accurate on the sparse scaffolds than BCD,

but slightly more accurate on the 100%-scaffold. Overall, therefore, FastRFSBCD has a

slight advantage over the other FastRFS variants on these rooted supertree datasets, and is

competitive with BCD (worse under some conditions and better under others).

We then examined whether computing the strict consensus improves FastRFSBCD enough

44

to enable it to outperform BCD. We first observed that the strict consensus of the FastRFSBCD

supertrees was more accurate than a single FastRFSBCD supertree (Fig. 4.3). Furthermore,

using SIESTA to compute the strict consensus of the optimal trees found by FastRFSBCD

produces supertrees that are generally (but not always) more accurate than BCD (Fig. 4.4

shows average tree error and Additional file 1, Fig. S8 shows the F1 scores). The differences

are smallest on the 100-taxon datasets, but the strict consensus of the FastRFSBCD trees is

generally more accurate than BCD on the larger datasets, especially for the denser scaffolds.

Thus, the use of SIESTA enables FastRFSBCD to outperform BCD.

4.3.5 Experiment 4: ASTRAL+SIESTA vs. ASTRAL on simulated phylogenomic data

As noted earlier, ASTRAL often returns only one optimal tree, so that the strict consensus

of the optimal ASTRAL trees cannot differ from the single best tree. In this experiment,

we restrict the attention to the datasets on which ASTRAL found more than one tree.

In general, this occurred for the phylogenomic datasets with substantial levels of missing

data (i.e., when we deleted species randomly from genes). For these cases, we see that the

average topological error rates for the strict consensus of the ASTRAL trees are lower than

the error rate for a single ASTRAL tree (Fig. 4.1) under three different ILS levels, when

there is missing data. However, the degree to which the strict consensus of the ASTRAL

trees improves over a single ASTRAL depends upon the amount of missing data.

A more nuanced analysis is shown in Figure 4.5, where we explore how the number of

optimal trees impacts the FN and FP rates for the strict consensus. Note that the FN rate

of the strict consensus is very similar to the FN rate of a single optimal ASTRAL tree, but

the strict consensus has a much lower FP rate; hence the strict consensus has a reduced

average error rate compared to a single best tree. Although the FN rates are slightly higher

under lower ILS conditions, the FP rates drop more than the FN rates increase, so that the

same overall trends are similar (Additional file 1, Fig. S9).

4.3.6 Experiment 5: Results on biological datasets

For the biological datasets, we do not know the true species tree (which is the unstated

objective of the supertree analysis), and so we cannot evaluate accuracy. However, we show

how to use SIESTA to provide meaningful branch support in estimated species trees.

Biological supertree datasets. We use SIESTA to compute the greedy consensus tree

of the FastRFSenh supertrees on the unrooted supertree datasets, and then annotated each

45

edge in the greedy consensus supertree with the fraction of the optimal trees on the dataset.

Figure 4.6 shows that most of the edges in the greedy consensus of the optimal FastRFSenh

supertrees for each of these datasets have 100% support, indicating that these edges are

consistent across all optimal trees. It also shows that some edges are only found in about

half (sometimes even less) of the optimal trees, and so should not be considered as reliable.

However, this depends on the dataset: nearly all the edges in the greedy consensus of the

optimal FastRFSenh supertrees for the placental mammals dataset have 100% support, while

the THPL and CPL datasets have a substantial fraction of edges that appear in at most

60% of the optimal FastRFSenh supertrees.

Hymenoptera phylogenomic dataset. The Hymenoptera dataset is a phylogenomic

dataset with 21 taxa and 24 genes. There are four optimal ASTRAL trees on this dataset

(shown in Fig. 4.7). The differences between these four trees are restricted to two clades

with three species each: (1) Solenopsi, Apis, and Vesputal C, and (2) Acyrthosi, Myzus,

and Acyrthosp. The strict and majority consensus trees (Fig. 4.8) on these four ASTRAL

trees are identical, and present these two groups as completely unresolved. The MCC tree

(Fig. 4.8) on this set of four ASTRAL trees matches one of the four trees with respect to

topology, but has different branch support on the edges, so that the branch support for the

two clades in question are halved in comparison to the four ASTRAL trees; thus, the MCC

tree appropriately identifies these clades as having very low support.

Sigmontidine rodent phylogenomic dataset. The Sigmontidine rodent dataset is

a phylogenomics dataset with 285 taxa and 11 genes, and there are 72 optimal ASTRAL

trees on this dataset. The species tree computed on this dataset in [95] was a concatenated

Bayesian tree using MrBayes [128], with branch support based on posterior probabilities. The

Sigmontidine rodent dataset had 72 optimal ASTRAL trees. We computed the ASTRAL

MCC tree, and then collapsed all branches with support less than 75%; this produced a

tree with only 74 internal edges. This dataset has 285 taxa, meaning that a fully resolved

tree would have 282 internal branches. By comparison, the MrBayes tree has 223 internal

branches after collapsing branches with less than 75% support.

Comparing the MrBayes tree with the ASTRAL MCC tree, we find that 64 bipartitions are

present and highly supported in both trees. After collapsing the edges with lower support, we

are left with only the high support edges. Six highly supported bipartitions are present in the

ASTRAL MCC tree and compatible with the collapsed MrBayes tree, and three bipartitions

are present in the ASTRAL MCC tree and incompatible with the collapsed MrBayes tree.

153 highly supported bipartitions are present in the MrBayes tree and compatible with (but

46

not present in) the collapsed ASTRAL MCC tree, and 5 highly supported bipartitions in

the MrBayes tree are incompatible with the collapsed ASTRAL MCC tree. The highly

supported conflicts between the trees occur in three locations:

1. The MrBayes tree has Akodon Mimus as the root of the Akodon genus, while the

ASTRAL MCC tree has it internal to Akodon (the root of Akodon is not resolved with

greater than 75% support).

2. The MrBayes tree and the ASTRAL MCC tree swap the locations of the Holochilus and

Sooretamys clades, with ASTRAL putting Holochilus as the basal clade and MrBayes

putting Sooretamys as the basal clade.

3. The ASTRAL MCC tree and the MrBayes tree disagree about some resolutions within

the Oligoryzomys clade.

These placements are in general not well established in the literature [8, 59, 93], and so it is

not clear which of the two trees is more likely to be correct for these questions.

The difference between a single ASTRAL tree and the ASTRAL MCC tree is therefore

quite significant for some datasets. To understand these differences, recall that the support

values are obtained using posterior probabilities based on quartet trees around an edge in

a single optimal tree. However, a simple example can explain why this can be misleading.

Suppose T1 and T2 are the only trees that are optimal for ASTRAL, and that T1 has a split

π that T2 does not have. Then under the assumption that T1 and T2 are both equally likely

to be the true species tree, the maximum probability that π can be a true split is 0.5 –

since it is in only one optimal tree. It is easy to see that any support value greater than 0.5

produced when T1 is examined is inflated, and that a correction must be made that takes

into consideration that T2 is also an optimal tree. SIESTA’s way of calculating support

explicitly enables this correction, since it explicitly considers the support of each bipartition

obtained from the entire set of optimal trees.

4.3.7 Experiment 6: Running Time

We explore the computational impact of using SIESTA to compute the strict consensus

of the optimal trees found using two variants of FastRFS on the rooted supertree datasets

with 1000 species. We compare the cost of using FastRFSbasic to find a single tree to the

total running time needed to compute the strict consensus of the FastRFSbasic supertrees

(Table 4.4). All methods complete in under a minute (actually under 40 seconds), and that

the difference in terms of time needed to compute a single FastRFSbasic tree and the strict

47

Scaffold factor FastRFSbasic (single) FastRFSbasic (strict consensus) Difference

20% 31.6 31.6 < 0.1
50% 39.3 39.4 0.1
75% 37.5 37.8 0.3
100% 34.6 34.6 < 0.1

Table 4.4: Running time (in seconds, rounded to the nearest tenth) on the 1000-taxon rooted
supertree datasets for FastRFSbasic and for the computation of the strict consensus of the
FastRFSbasic optimal trees (averaged over 10 replicates). The difference in running time to
compute the strict consensus of the set of optimal trees compared to computing a single best
tree is at most 0.3 seconds.

Scaffold factor BCD FastRFSBCD (single) FastRFSBCD (strict consensus) Difference

20% 10.2 33.1 33.5 0.4
50% 8.1 41.8 42.3 0.5
75% 9.2 39.9 40.1 0.2
100% 14.4 36.3 36.4 0.1

Table 4.5: Running time (in seconds) on the 1000-taxon rooted supertree datasets for BCD,
FastRFSBCD, and for the computation of the strict consensus of the FastRFSBCD optimal
trees (averaged over 10 replicates). The difference in running time to compute the strict
consensus of the set of optimal trees compared to computing a single best tree is at most
half a second.

consensus of all the optimal FastRFSbasic trees is at most 0.3 seconds. We also compare the

time needed to run BCD, FastRFSBCD, and the total time needed to compute the strict

consensus of the FastRFSBCD supertrees (Table 4.5). Note that BCD is substantially faster

than FastRFSBCD, but that all methods complete in less than a minute. Note also that

the difference in terms of time needed to compute a single FastRFSBCD tree and the strict

consensus of all the optimal FastRFSBCD trees is at most 0.5 seconds

Thus, the additional time needed to compute the strict consensus of the set of optimal

trees is less than half a second. This is particularly noteworthy, given the number of optimal

trees that are found by FastRFSbasic on these 1000-taxon supertree datasets. Overall, these

data show that the cost of using SIESTA is small, and represents a small percentage of the

total time needed to find a single tree.

4.4 CONCLUSIONS

SIESTA is a simple technique for computing a data structure that implicitly represents a

set of optimal trees found during the dynamic programming algorithms used by ASTRAL

48

and FastRFS, but SIESTA is generalizable to any algorithm that uses the same basic dynamic

programming structure. Once the data structure is computed, it can be used in multiple

ways to explore the solution space. In particular, it can be used to count the number of

optimal solutions and determine the support for a particular bipartition, thus enabling the

estimation of the support on branches for a given optimal tree that takes into account the

existence of other optimal trees.

We studied SIESTA in conjunction with ASTRAL and FastRFS on a collection of biolog-

ical and simulated datasets. This study showed that using SIESTA to compute the strict

consensus produced a benefit for some methods in some cases, but not in all. The trends we

observed clearly indicate that when there are many optimal trees, the use of the strict con-

sensus tree results in a substantial reduction in the false positive rate and a lesser increase in

the false negative rate, for an overall reduction in topological error. Conversely, when there

are only a small number of optimal trees, there is little change between the strict consensus

tree and any single optimal tree. Thus, the impact of using the strict consensus depends on

the number of optimal solutions, which tended to be larger for all FastRFS variants than

for ASTRAL. We also saw that the number of optimal trees for ASTRAL depends on the

amount of missing data, so that the benefit of using SIESTA with ASTRAL to compute

the strict consensus seems to be reliable only when there is missing data. The study also

showed that FastRFS typically benefited from using the strict consensus tree, while AS-

TRAL’s benefit varied with the dataset, as a result of the differences in numbers of optimal

trees.

Our study showed that using SIESTA to produce a maximum clade credibility (MCC) tree

with ASTRAL provided a more statistically meaningful point estimate of the true species

tree than any single optimal ASTRAL tree, especially with respect to appropriately modified

branch support values that take the multiple optima into account. Thus, SIESTA provides

multiple benefits to species tree and supertree estimation: identifying cases where there is

a unique optimum and providing better point estimates of the true tree when there are

multiple optima.

Finally, there are many other methods that also use a dynamic programming approach

for tree estimation (often within a constrained search space), and SIESTA can be used with

these methods in similar ways. Future work should explore the impact of SIESTA with these

other methods.

49

4.5 SUPPLEMENTARY DATA FOR SIESTA

4.5.1 Software Commands and Version Numbers

We provide the detailed commands for the various analyses we performed.

• RAxML v8.2.6 was used to estimate gene trees on the phylogenomic simulated data

with arguments “-m GTRGAMMA -p 12345 -n <jobname> -s <input>”.

• RAxML v8.2.6 was used to run MRL with arguments “-m BINGAMMA -p 12345 -n

<jobname> -s <input>”.

• Mrpmatrix (available from https://github.com/smirarab/mrpmatrix) was used to

calculate the matrix for MRL.

• ASTRAL v4.7.8 was passed to FastRFS and ASTRAL-SIESTA to calculate the search

space.

• BCD v1.0.1 was used to calculate BCD trees using arguments “–filetype newick”

• FastRFS v2.0 was used with and without SIESTA, with arguments “–count”, “–

greedy”, “–majority”, “–strict”, and “–single” used as necessary to count the number

of optimal trees, output consensus trees, or output a single optimal tree. The “-e”

option was used to pass it additional trees.

• ASTRID v1.1 was used to calculate trees for the constraint set of FastRFS-enhanced,

using no additional options.

• Dendropy v4.0.3 was used to calculate error rates with the function

dendropy.calculate.treecompare.false_positives_and_negatives

50

astral fastrfs-basic fastrfs-enh
taxa ngenes scaffold

100 6 20% 9.36 3.52× 102 1.21× 103

100 6 50% 4.00 1.31× 102 1.71× 103

100 6 75% 1.72 7.27× 101 1.57× 102

100 6 100% 1.04 2.49× 101 3.40× 101

500 16 20% 1.62× 103 6.09× 107 1.96× 109

500 16 50% 3.94× 101 1.97× 108 7.62× 108

500 16 75% 4.23× 101 1.37× 108 6.99× 108

500 16 100% 1.00 5.36× 106 2.93× 107

1000 26 20% 6.48× 105 2.32× 1015 2.50× 1016

1000 26 50% 3.60× 104 9.17× 1014 1.11× 1018

1000 26 75% 5.67× 102 2.51× 1014 1.68× 1017

1000 26 100% 1.00 1.97× 1013 5.03× 1013

Table 4.6: Number of FastRFS optimal trees for simulated unrooted supertree datasets. We
show the mean number of optimal trees averaged over 25 replicates for 100 and 500 taxa,
and 10 replicates for 1000 taxa.

astral
ILS ngenes

Moderate ILS 5 2.12
Moderate ILS 10 1.12
Moderate ILS 25 1.04

High ILS 5 1.64
High ILS 10 1.00
High ILS 25 1.00

Very High ILS 5 1.20
Very High ILS 10 1.08
Very High ILS 25 1.04

Table 4.7: Number of ASTRAL optimal trees for simulated 50-taxon phylogenomic datasets
where all gene trees are complete (i.e., no missing data). We show the mean number of
optimal trees averaged over 25 replicates

51

20% 50% 75% 100%
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

E
rr
or

100 Taxa

FastRFSenh

FastRFSenhstrict

20% 50% 75% 100%
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

E
rr
or

500 Taxa

20% 50% 75% 100%
scaffold

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

E
rr
or

1000 Taxa

Figure 4.2: We compare a single FastRFSenh supertree to FastRFSenh+SIESTA (the strict
consensus of the optimal FastRFSenh supertrees) on unrooted supertree datasets. Error
shown is the normalized average topological error (i.e., average of FN and FP rates) between
true and estimated supertrees. Error bars indicate the standard error. There are 25 replicates
each for the 100- and 500-taxon datasets, and 10 replicates for the 1000-taxon datasets.

52

20% 50% 75% 100%
0.0

0.1

0.2

0.3

0.4

E
rr
or

100 Taxa

FastRFSBCD
FastRFSBCDstrict

20% 50% 75% 100%
0.0

0.1

0.2

0.3

0.4

E
rr
or

500 Taxa

20% 50% 75% 100%
scaffold

0.0

0.1

0.2

0.3

0.4

E
rr
or

1000 Taxa

Figure 4.3: We compare a single FastRFSBCD supertree (FastRFSBCD) to
FastRFSBCD+SIESTA (the strict consensus of the optimal FastRFSBCD supertrees)
on rooted supertree datasets. Error shown is the normalized average topological error (i.e.,
average of FN and FP rates) between true and estimated supertrees. Error bars indicate
the standard error. There are 25 replicates each for the 100- and 500-taxon datasets, and
10 replicates for the 1000-taxon datasets.

53

20% 50% 75% 100%
0.0

0.1

0.2

0.3

er
ro
r

100 Taxa

BCD
FastRFSBCDstrict

20% 50% 75% 100%
0.0

0.1

0.2

0.3

er
ro
r

500 Taxa

20% 50% 75% 100%
scaffold

0.0

0.1

0.2

0.3

er
ro
r

1000 Taxa

Figure 4.4: We compare Bad Clade Deletion (BCD) supertrees to the strict consensus of
FastRFSBCD supertrees on rooted supertree datasets. Error shown is the normalized average
topological error (i.e., average of FN and FP rates) between true and estimated supertrees.
Error bars indicate the standard error. There are 25 replicates each for the 100- and 500-
taxon datasets, and 10 replicates for the 1000-taxon datasets.

54

Figure 4.5: We show the FN and FP error rates of the strict consensus of ASTRAL trees,
compared to a single ASTRAL tree, on simulated phylogenomic datasets with 50 species
and 25 incomplete estimated gene trees; values below 0 indicate that the strict consensus
ASTRAL is more accurate for that criterion (i.e., it has lower error) than ASTRAL. The
x-axis shows the number of optimal trees, and we show results for 25 replicates. Error bars
indicate the standard error.

Figure 4.6: Histogram of support values for edges in the FastRFSenh greedy consensus tree
on the unrooted supertree datasets. These support values are the percentages of the optimal
trees they appear in. Although the majority of the edges have 100% support in each tree,
some edges have low support, suggesting that they are not as reliable as the higher support
edges.

55

Acyrthosp

Pelecinid

Acyrthosi

Apis

Lysi3_CG3

Neodiprio

Drosophil

Tribolium

Orthopter

Figitidae

Vespula_C

Lysi2__CG

Nas_girau

Bombyx

Campoleti

Aulacidae

Ceraphron

Solenopsi

Nasonia

Lysiphleb

Myzus

0.65

0.5

0.34

0.77

0.67

0.33

0.23

0.65

0.33

0.33

0.81

0.33

0.85

0.99

0.78

0.67

Drosophil

Acyrthosp

Ceraphron

Lysiphleb

Aulacidae

Orthopter

Nas_girau

Pelecinid

Solenopsi

Lysi3_CG3

Bombyx

Figitidae

Lysi2__CG

Campoleti

Tribolium

Apis

Nasonia

Neodiprio

Acyrthosi

Myzus

Vespula_C

0.67

0.65

0.5

0.33

0.85

0.33

0.33

0.67

0.33

0.77

0.78

0.23

0.99

0.65

0.34 0.81

0.67

Bombyx

Acyrthosp

Lysi2__CG

Acyrthosi

Orthopter

Figitidae

Tribolium

Solenopsi

Apis

Lysi3_CG3

Nasonia

Lysiphleb

Neodiprio

Aulacidae

Pelecinid

Campoleti

Drosophil

Nas_girau

Ceraphron

Myzus

Vespula_C

0.23

0.33

0.33

0.33

0.67

0.67

0.5

0.77

0.85

0.65

0.65

0.81

0.78

0.99

0.34

0.98

Nasonia

Nas_girau

Acyrthosp

Figitidae

Lysiphleb

Aulacidae

Apis

Solenopsi

Myzus

Vespula_C

Tribolium

Pelecinid

Neodiprio

Campoleti

Acyrthosi

Orthopter

Lysi2__CG

Lysi3_CG3

Drosophil

Ceraphron

Bombyx

0.98

0.67

0.85

0.33

0.67

0.65

0.77

0.34 0.81

0.65

0.67

0.78

0.5

0.33

0.99

0.23

0.33

Figure 4.7: The four optimal ASTRAL trees on the Hymenoptera dataset, each rooted at
the outgroup, and given with local posterior probabilities for branch support. The four trees
differ only in two groups: (1) Solenopsi, Apis, and Vesputal C, and (2) Acyrthosi, Myzus,
and Acyrthosp.

56

Myzus

Solenopsi

Aulacidae

Bombyx

Pelecinid

Nas_girau

Tribolium

Lysi3_CG3

Orthopter

Figitidae

Neodiprio

Apis

Ceraphron

Acyrthosp

Acyrthosi

Campoleti

Drosophil

Vespula_C

Lysiphleb

Nasonia

Lysi2__CG

0.23

0.65

0.85

0.33

0.67

0.99

0.835

0.5

0.165

1

0.78

0.34

0.655

0.65

0.67

0.77

0.81

0.165

Pelecinid

Aulacidae

Orthopter

Lysi3_CG3

Neodiprio

Myzus

Figitidae

Ceraphron

Apis

Tribolium

Lysiphleb

Bombyx

Vespula_C

Solenopsi

Acyrthosp

Nasonia

Campoleti

Lysi2__CG

Nas_girau

Drosophil

Acyrthosi

Figure 4.8: The ASTRAL Maximum Clade Credibility (MCC) tree (left) with branch sup-
port and the strict consensus tree (right) on the Hymenoptera dataset. The ASTRAL MCC
tree is topologically identical to one of the four ASTRAL trees, but has different branch sup-
port; in particular, the branch support on the clades in question is half the branch support
in the original ASTRAL trees on these clades. The ASTRAL strict consensus tree makes
these two clades into polytomies.

taxa/gene 10 20 30
ILS ngenes

Moderate ILS 5 2.87× 102 7.07× 102 2.41× 101

Moderate ILS 10 1.33× 105 7.01× 102 1.70× 101

Moderate ILS 25 1.80× 107 4.68× 101 1.80
High ILS 5 1.71× 102 2.10× 102 1.55× 101

High ILS 10 8.17× 104 6.12× 102 1.58× 101

High ILS 25 2.79× 105 1.03× 101 1.44
Very High ILS 5 1.76× 102 1.55× 102 1.22× 101

Very High ILS 10 1.67× 104 1.92× 102 3.64
Very High ILS 25 1.08× 105 2.42× 101 1.40

Table 4.8: Number of ASTRAL optimal trees for simulated 50-taxon phylogenomic datasets
with missing data (i.e., gene trees can be incomplete). We show the mean number of optimal
trees averaged over 25 replicates for each model condition.

57

Figure 4.9: Comparison of average of FP and FN error rates for a single FastRFSenh tree as
well as the three consensus trees computed on the optimal FastRFSenh trees on simulated
unrooted supertree datasets. We show the mean number of optimal trees averaged over 25
replicates for 100 and 500 taxa, and 10 replicates for 1000 taxa.

58

Figure 4.10: FP and FN rates for FastRFSenh on simulated unrooted supertree datasets as
a function of the number of optimal trees. Data gathered from 25 replicates for 100 and
500 taxa, and 10 replicates for 1000 taxa. Red curves show false negative rates; blue curves
show false positive rates.

59

Figure 4.11: Comparison of average FP and FN error rates for a single best FastRFSBCD

tree and three consensus trees of the best FastRFSBCD trees on simulated rooted supertree
datasets. We show the mean error averaged over 25 replicates for 100 and 500 taxa, and 10
replicates for 1000 taxa.

60

Figure 4.12: Comparison of average RF error rates for a single best FastRFS-basic tree and
BCD on simulated rooted supertree datasets. We show the mean error averaged over 25
replicates for 100 and 500 taxa, and 10 replicates for 1000 taxa.

61

Figure 4.13: Comparison of average RF error rates for BCD and the single best trees for
FastRFSBCD and FastRFSenh on simulated rooted supertree datasets. We show the mean
error averaged over 25 replicates for 100 and 500 taxa, and 10 replicates for 1000 taxa.

62

Figure 4.14: Comparison of F1 scores for BCD and the single best trees for FastRFSBCD and
FastRFSenh on simulated rooted supertree datasets. We show the mean F1 score averaged
over 25 replicates for 100 and 500 taxa, and 10 replicates for 1000 taxa.

63

Figure 4.15: Comparison of F1 scores for the strict consensus of the optimal FastRFSBCD

trees and BCD on simulated rooted supertree datasets. We show the mean scores averaged
over 25 replicates for 100 and 500 taxa, and 10 replicates for 1000 taxa.

64

Figure 4.16: Change in FP and FN rates for the strict consensus of the optimal ASTRAL
trees, compared to a single optimal tree, on simulated phylogenomic datasets as a function
of the number of optimal trees. Positive values indicate that the strict consensus has a
higher error than a single best tree, and negative values indicate that the strict consensus
has a lower error than a single best tree. Data are gathered from 25 replicates per model
condition. Red curves show false negative rates; blue curves show false positive rates.

65

Figure 4.17: Comparison of F1 scores for a single best FastRFS-basic tree and BCD on
simulated rooted supertree datasets. We show the mean scores averaged over 25 replicates
for 100 and 500 taxa, and 10 replicates for 1000 taxa.

66

fastrfs-basic fastrfs-bcd fastrfs-enh
taxa ngenes scaffold

100 6 20% 1.16× 103 6.06× 103 4.35× 103

100 6 50% 5.20× 102 1.84× 104 5.19× 103

100 6 75% 3.00× 102 1.40× 103 6.47× 102

100 6 100% 3.86× 101 4.95× 101 4.33× 101

500 16 20% 4.02× 1014 5.42× 1017 1.12× 1016

500 16 50% 3.57× 1014 1.06× 1022 9.19× 1019

500 16 75% 2.05× 1012 7.83× 1014 1.65× 1015

500 16 100% 4.51× 107 1.08× 108 6.55× 107

1000 26 20% 2.35× 1029 4.08× 1037 1.28× 1034

1000 26 50% 2.80× 1029 5.08× 1036 2.58× 1037

1000 26 75% 2.73× 1021 4.27× 1029 4.42× 1027

1000 26 100% 2.06× 1014 4.18× 1015 1.54× 1015

Table 4.9: Number of FastRFS optimal trees for simulated rooted supertree datasets. We
show the mean number of optimal trees averaged over 25 replicates for 100 and 500 taxa,
and 10 replicates for 1000 taxa.

67

CHAPTER 5: SUPERTREE ESTIMATION WITH ASTRID1

5.1 SUPERTREE ESTIMATION

Upcoming cutting edge phylogenomic analyses will involve tens of thousands of taxa [79,

178]. Computing trees on these datasets will require scaling accurate methods beyond what

is currently possible, and divide and conquer methods are a promising technique for this.

However, these require supertree methods that can run on datasets with tens of thousands

of taxa.

ASTRID [158] (see Chapter 6 for more details) is a method for phylogenetic estima-

tion originally based on NJst [90] and developed as a species tree method. It calculates

a distance matrix from each input tree, averages them together, and uses a distance-based

estimation method like neighbor joining with BIONJ* [40] or minimum-evolution estimation

with FastME [84] to compute a tree. It is a statistically consistent estimation method under

the coalescent model [94], on datasets with gene tree heterogeneity due to ILS.

Typically, ASTRID uses the minimum-evolution distance method FastME to estimate the

species tree. FastME is fast and gives accurate results in practice. However, it requires a

distance estimate for each pair of taxa; in other words, a complete distance matrix with-

out any missing entries. If the distance matrix has missing entries, the original version of

ASTRID used a neighbor joining variant called BIONJ* to estimate the species tree from

the distance matrix. In practice, this is slow and tends to produce inaccurate trees.

In this chapter, we present and test a new iterative approach to ASTRID when the distance

matrix is missing entries. We evaluate this on biological and simulated datasets, including

a very large simulated dataset with over 40,000 taxa.

5.2 METHODS

Previous versions of ASTRID used BIONJ* as a distance based species tree estimation

method on datasets where ASTRID’s distance method was missing entries.

BIONJ* is a modified version of neighbor joining. BIONJ [56] applies a weighting scheme

to the neighbor joining algorithm based on a simple model of variances in the distance matrix.

This model, derived from the Jukes-Cantor model of sequence evolution [76], predicts that

the variance of a distance estimate between two taxa is proportional to the distance between

those taxa. BIONJ* further extends BIONJ by allowing for distance matrices with missing

1This chapter contains unpublished material.

68

20 50 75 100
Scaffold %

0.0

0.1

0.2

0.3

0.4

0.5

0.6
RF
 E
rro

r
1000 Taxa

method
ASTRID-BIONJ*
ASTRID-UPGMA
ASTRID-RapidNJ
ASTRID-FastME+NNI
ASTRID-FastME+SPR

Figure 5.1: Comparison of RF errors for ASTRID with BIONJ* and ASTRID with FastME
using the UPGMA protocol. ASTRID-BIONJ* is used by the original version of ASTRID
when the distance matrix is missing data. Results are shown on 1000-taxon SMIDgen data
with 16 source trees. Data is averaged over 10 replicates.

taxa. This technique combines some straightforward modifications of the BIONJ algorithm

with a set of heuristics to break ties at decision points within the algorithm.

This approach suffers from several issues. First, in some cases, the accuracy suffers sub-

stantially on these datasets when BIONJ* must be used. Second, the running time of

BIONJ* is O(n3) in the number of taxa, and dominates the running time of ASTRID on

larger datasets with high levels of missing data. Third, and somewhat less importantly,

BIONJ* requires Java to be installed and configured appropriately on the user’s computer,

which can be challenging for the user.

The improved version of ASTRID presented here retains the option to use BIONJ*, but

adds a new iterative approach that mitigates all three of these issues. First, ASTRID uses a

variant of UPGMA [138], UPGMA*, which we have developed for this purpose, to quickly

generate a (likely inaccurate) species tree. Then, it uses the UPGMA* tree to fill in the

missing entries in the distance matrix, allowing for a fast and accurate method that requires

a complete distance matrix to be run.

5.2.1 UPGMA*

We have developed a novel distance method, UPGMA*, which extends UPGMA so that

it can be used on incomplete distance matrices.

69

UPGMA and UPGMA* take as input an n element taxon set S and an n × n distance

matrix D. They output a species tree T . UPGMA operates as follows:

1. Initialize a forest data structure F with n independent elements corresponding to the

n taxa

2. Initialize n min-heap priority queues Q1, . . . , Qn that hold < distance, taxon > pairs.

3. Initialize a map M with 〈taxon, taxon〉 pairs as the keys and distances as the values.

4. Mark each taxon as alive, and set the size of each taxon to 1

5. For each pair of taxa i, j, add 〈D[i, j], j〉 to Qi and 〈D[i, j], i〉 to Qj

6. For each pair of taxa i, j, add 〈i, j〉 → D[i, j] to M

7. While F is disconnected:

(a) For each priority queue Qi where i is marked alive:

i. Pop elements from Qi until the top element has a taxon marked alive

ii. Let besti be the top element of Qi

(b) Let Qx be the priority queue with the smallest top element. That top element is

bestx = 〈dmin, y〉

(c) Create a new taxon xy and mark it alive. Let size(xy) = size(x) + size(y)

(d) Mark taxa x and y as dead

(e) Add xy to F and set its children as x and y

(f) Create a new priority queue Qxy.

(g) For each alive taxon i:

i. Let dxy,i = size(x)M [x,i]+size(y)M [y,i]
size(x)+size(y)

.

ii. Add 〈xy, i〉 → dxy,i to M

iii. Add 〈dxy,i, i〉 to Qxy.

8. Let T be the sole tree in F . Return T .

The overall asymptotic running time for this algorithm is O(n2 log n): in each of the O(n)

iterations, O(n) items are added to priority queues. Each addition takes O(log n) time.

Since each item can be removed from a priority queue at most once, the total time taken for

both additions and removals from priority queues is O(n2 log n).

70

UPGMA* differs in a few ways that allow for distance matrices to contain missing elements.

First, when the data structures are initialized, only taxon pairs where the distances are

known are considered.

Second, when dxy,i is computed, if M [x, i] is unknown, dxy,i = M [y, i], and if M [y, i] is

unknown, dxy,i = M [x, y]. If both M [x, i] and M [y, i] are unknown, dxy,i is unknown, and

the corresponding elements are not added to M or Qxy.

Third, if after removing dead elements, every priority queue is empty (and the forest is

still disconnected), the distance matrix is disconnected; i.e. there are two disjoint subsets of

taxa S1 and S2 such that S1∪S2 = S and ∀i∈S1,j∈S2 , D[i, j] is missing. In this case, UPGMA*

picks an arbitrary pair of taxa to join and outputs a warning to the user.

These changes do not increase the asymptotic running time of UPGMA*. Since UPGMA

is known to not be statistically consistent, UPGMA* is also not statistically consistent.

5.2.1.1 Iterative protocol

First, ASTRID calculates a distance matrix from the input trees. This matrix, M0, may

have missing entries. Then, UPGMA* is run, resulting in a tree TU that has a topological

distance matrix MU . Each missing entry in M0 is replaced with the corresponding entry in

MU to get the distance matrix M1, which has no missing entries. Now, FastME (or another

distance method) can be run on M1 to get a tree T1. The matrix from T1, M
′
1, can be used

once again to fill in the missing entries in M0 to get M2, and FastME can again be run on

this matrix. This procedure can be iterated further, and the final tree is the output.

5.2.2 Distance Methods

ASTRID can use a variety of different distance methods to compute the species tree.

The balanced minimum-evolution (BME) estimator in FastME is the default method used

when the distance matrix is complete. Balanced minimum-evolution estimation has some

theoretical similarities to neighbor joining [57], but FastME is able to obtain more accurate

results and run more quickly than standard neighbor joining implementations. FastME uses

a taxon addition strategy, in contrast with the agglomerative approach used by neighbor

joining, and then can improve its tree with nearest-neighbor interchanges (NNIs) and subtree

prune-and-regraft moves (SPRs).

BIONJ*, as discussed above, is a modification to the neighbor-joining algorithm that

incorporates variance estimates for the elements in the distance matrix, and also is able to

run on incomplete distance matrices.

71

20 50 75 100
Scaffold %

0.00

0.05

0.10

0.15

0.20

0.25
RF

 E
rro

r
1000 Taxa

method
ASTRAL
MRL
FastRFS-enhanced
ASTRID-FastME+NNI
ASTRID-FastME+SPR

Figure 5.2: Comparison of RF errors for supertree methods and ASTRID variants with
FastME using the UPGMA protocol. Results are shown on 1000-taxon SMIDgen data with
16 source trees. Data is averaged over 10 replicates.

RapidNJ [136] is an implementation of neighbor joining designed to scale to extremely

large datasets. It uses heuristics to significantly reduce the number of options considered

in each iteration of the neighbor joining algorithm. In fact, while most distance methods

require the entire distance matrix to fit into memory, RapidNJ is able to store most of the

distance matrix on disk, paging portions into main memory only as needed [135]. While this

has a negative impact on running time, it enables analyses of a size impossible with other

methods.

5.3 EXPERIMENTS

Previous studies of supertree methods [146, 159] compared the performance of leading

supertree and species tree methods, including ASTRID, on simulated and biological datasets.

One study [159] showed that ASTRID performed poorly in terms of accuracy and running

time when the distance matrix was missing elements. For this paper, we replicated some of

the analyses from those studies and also analyzed one newly simulated dataset.

5.3.1 Datasets

We analyzed datasets from three sources: simulated SMIDgen datasets [146] with up to

72

1000 taxa, a new large simulated supertree dataset based on the RNAsim dataset in [113],

and three biological supertree datasets.

5.3.1.1 Simulated SMIDgen datasets

For this paper, we ran our improved version of ASTRID on SMIDgen datasets originally

analyzed in [146] and also analyzed in [159]. These simulated datasets had 100, 500, or 1000

taxa. The 100 taxon replicates had 6 source trees, the 500 taxon replicates had 11 source

trees, and the 1000 taxon datasets had 16 source trees. In each replicate, one source tree

was a scaffold tree, which was simulated as a universal gene and contained 20%, 50%, 75%,

or 100% of the taxa. The remainder of the source trees were clade-based and contained a

portion of taxa from a single clade in the true model tree. The only source of heterogeneity

in the source trees was due to tree estimation error. The 100 and 500 taxon datasets had 30

replicates per scaffold level, and the 1000 taxon datasets had 10, resulting in a total of 280

replicates.

5.3.1.2 Large RNAsim-based dataset

We also analyzed a very large supertree dataset derived from the RNAsim dataset orig-

inally generated for [113] and modified and used in [107]. A 30% scaffold tree was chosen

by randomly sampling the taxa in a 50,000 taxon subset of the tree. Then, the following

procedure was repeated:

• A random clade c with between 1% and 50% of the total taxon set was chosen

• If more than 70% of the taxa in c already existed in previously chosen clades, c was

discarded

• Otherwise, 70% of the taxa in c were randomly chosen to form a clade-based tree

This process was halted when the total taxa in the clades was more than 40, 000. Ulti-

mately, 1 scaffold tree and 30 clade-based trees were chosen with a total of 43, 183 taxa.

FastTree 2.1.9 [118] was used to estimate source trees from the 21, 946 site RNA sequences

with gaps.

5.3.1.3 Biological datasets

Finally, we tested the various supertree methods on some of the biological datasets pre-

viously analyzed in [159] and [147]. In particular, we analyzed the three datasets with a

73

scaffold of less than 100% where the distance matrix was missing taxa: the 2,228 taxon

comprehensive papilinoid legume (CPL) dataset with 39 trees including a 74% scaffold tree

[100]; the 558 taxon temperate herbaceous papilinoid legume (THPL) dataset with 19 trees

including a 25% scaffold tree [171]; and the 121 taxon seabird dataset with 7 trees, including

a 74% scaffold tree. [77].

On these biological datasets, we evaluated running time and memory usage for the various

supertree methods. We did not evaluate accuracy due to the lack of a known true tree.

5.3.2 Methods

5.3.2.1 ASTRID variants

We evaluated several versions of ASTRID, which varied in the distance method used to

estimate the species tree. We tested UPGMA* and BIONJ*, which work by themselves on

incomplete matrices. We also tested the iterative protocol using UPGMA* as the first step,

then repeating FastME one, two, or three times, and using one of three FastME variants that

used different local search heuristics - either no local search (ASTRID-FastME+nosearch),

NNIs (ASTRID-FastME+NNI), or NNIs and SPRs (ASTRID-FastME+SPR). We also eval-

uated RapidNJ as the second stage of the iterative protocol, as it may be able to scale to

even larger datasets than FastME.

5.3.2.2 Coalescent-aware methods

We tested ASTRAL 5.14.2 [174], a popular coalescent-aware method that exactly opti-

mizes quartet support over input trees within a constrained search space X that it generates

based on the input trees.

5.3.2.3 Supertree methods

We tested two supertree methods. First, we tested Matrix Representation with Likelihood

(MRL) [116], which computes an alignment matrix based on the bipartitions in the input

trees, then uses RAxML 8.2.12 [141] to estimate a tree from that alignment. On the large

RNAsim-based dataset, we used FastTree 2.1.9 [118] instead of RAxML because RAxML

was too slow and memory intensive to run.

We also tested FastRFS [159], which is a supertree method that exactly minimizes the

Robinson-Foulds distance to the input trees using a constraint set generated by ASTRAL

74

5.14.2. Since FastRFS uses the same constraint set as ASTRAL, its accuracy has increased

due to improvements to ASTRAL’s algorithm. FastRFS may have multiple optimal solu-

tions, and we use SIESTA [160], which is built in to FastRFS, to report a strict consensus

of all optimal trees.

5.3.3 Evaluation metrics

We report estimation error on the simulated datasets only, since there is no known true tree

on the biological datasets. We use the Robinson-Foulds (RF) error between the estimated

and true trees, which is the average of the branch false positive and branch false negative

rates. The RF error falls between 0 and 1, with an error of 0 indicating an estimated tree

identical to the true tree, and an error of 1 indicating an estimated tree that shares no

bipartitions with the true tree. All methods except FastRFS return binary trees, so, the

false positive rate, false negative rate, and RF error are all equal for these methods.

We also report running times and memory usage on simulated and biological datasets. We

analyzed the SMIDgen datasets on Blue Waters nodes with 16 AMD Interlagos cores and

64GB RAM, and we analyzed the large RNAsim-based dataset and biological datasets on

an Illinois campus cluster node with 20 Intel Ivy Bridge cores and 256 GB RAM. ASTRAL

and FastME are multithreaded and were allowed to run on all cores; the remainder of the

methods, including the distance matrix generation step of ASTRID, are single threaded.

5.4 RESULTS

5.4.1 Determining the best way to run ASTRID

The first set of experiments varied the parameters for ASTRID to determine the best way

to run it. In addition to testing the previous version of ASTRID, which used BIONJ*, we

tested the iterative protocol with FastME with no searches, FastME+NNI, FastME+SPR,

and RapidNJ for the second stage. We tested the iterative protocol with up to three iterations

of the second-stage method to determine if more iterations improved the results.

5.4.1.1 Number of iterations

We first compare running multiple iterations of FastME with no local search, NNIs, or

NNIs and SPRs (see Fig. 5.4).

75

20 50 75 100
Scaffold %

0

1000

2000

3000

4000

Ru
nn
in
g
Ti
m
e
(s
ec

)
1000 Taxa

method
ASTRAL
ASTRID-UPGMA
ASTRID-RapidNJ
ASTRID-FastME+nosearch
ASTRID-FastME+NNI
ASTRID-FastME+SPR
ASTRID-BIONJ*
FastRFS-enhanced
MRL

20 50 75 100
Scaffold %

0

20

40

60

80

100

120

Ru
nn

in
g
Ti
m
e
(s
ec

)

1000 Taxa (only fast methods)

Figure 5.3: Comparison of running times for supertree methods on simulated SMIDgen data
with 1000 taxa and 16 source trees. Data is averaged over 10 replicates. The second figure
shows the same data, but without the slowest methods (MRL, FastRFS, ASTRID-BIONJ*).
Calculations were run on a 16-core AMD Interlagos Blue Waters node with 64 GB RAM;
FastME, ASTRAL and the ASTRAL subroutines in FastRFS are multithreaded.

These experiments show that additional iterations of FastME beyond the first do not

improve the results for any of the FastME search types; in fact, there was never any difference

between the number of iterations. However, there was a significant extra running time cost

for additional iterations, especially for ASTRID-FastME+SPR, where the running time was

dominated by the cost to run the distance method.

Therefore, for the remainder of the experiments, we only used a single iteration of the

76

ASTRAL MRL
FastRFS

-enhanced
ASTRID
UPGMA

ASTRID
BIONJ*

ASTRID
RapidNJ

ASTRID
FastME

+nosearch

ASTRID
FastME
+NNI

ASTRID
FastME
+SPR

Taxa Scaffold %
100 20 6.3 7.7 11.1 0.0 4.6 0.0 0.0 0.0 0.0
6 trees 50 6.5 7.7 11.2 0.0 5.0 0.0 0.0 0.0 0.0

75 6.5 8.0 11.6 0.0 6.2 0.0 0.0 0.0 0.0
100 7.1 7.7 11.2 0.0 4.7 0.0 0.0 0.0 0.0

500 20 40.4 270.0 296.6 0.2 140.0 0.2 0.3 0.3 3.0
11 trees 50 42.6 288.0 317.7 0.2 239.0 0.2 0.4 0.4 3.0

75 44.1 321.8 353.6 0.2 556.6 0.3 0.4 0.5 3.2
100 46.5 290.4 322.0 0.3 504.4 0.3 0.5 0.5 1.4

1000 20 102.0 1510.4 1615.4 0.7 799.4 0.9 1.8 2.0 29.4
16 trees 50 112.6 1589.8 1708.8 0.9 1947.9 1.2 2.1 2.2 28.1

75 117.7 1888.6 2014.1 1.1 4074.3 1.3 2.3 2.5 29.7
100 118.5 1548.5 1676.4 1.3 4259.1 1.5 2.6 2.7 10.2

Table 5.1: Comparison of running times (in seconds) for ASTRID variants and supertree
methods on SMIDgen simulated data. 100- and 500-taxon datasets had 30 replicates per
model condition, and 1000-taxon datasets had 10 replicates per model condition. Time for
FastRFS includes time to run MRL for the expanded search space. Some methods took less
than 0.05 seconds on average on the 100-taxon datasets; these are listed as taking 0.0 seconds
to complete. Calculations were run on a 16-core AMD Interlagos Blue Waters node with 64
GB RAM; FastME, ASTRAL and the ASTRAL subroutines in FastRFS are multithreaded.

second stage distance methods.

5.4.1.2 FastME local search variants

FastME with no local search is typically less accurate than using NNIs and SPRs (see

Fig. 5.4). FastME+SPR is always at least as accurate as FastME+NNI, and in some cases

is slightly more accurate (see Fig. 5.1). This difference was most pronounced on the 20%

scaffold datasets.

NNIs take essentially zero additional time, but SPRs come at a significant running time

cost, as seen in Table 5.1 and Fig. 5.3. On the 1000 taxon datasets, ASTRID with a single

iteration of FastME+NNI completed in between 1 and 3 seconds on every replicate, whereas

ASTRID with a single iteration of FastME+SPR took between 18 and 43 seconds on the

20%, 50%, and 75% scaffold datasets; and between 7 and 15 seconds on the 100% scaffold

datasets.

For the remainder of the analyses in this study, we will not show results run with more

than one iteration of FastME, and we will only show the FastME-NNI and FastME-SPR

variants of FastME.

77

5.4.1.3 Other distance methods

Earlier versions of ASTRID used BIONJ* as its distance method in the cases where

the distance matrix was missing entries. Figure 5.1 shows that the new UPGMA protocol

with FastME significantly reduces the error rate under the model conditions where BIONJ*

returns inaccurate trees.

We also experimented with RapidNJ as the distance method for the second stage of the

UPGMA protocol; its accuracy is better than UPGMA* alone or BIONJ*, but not as good

as either FastME variant. It was, however, faster than FastME, taking an average of between

0.9 and 1.5 seconds on the 1000-taxon model conditions, while FastME with no local search

took between 1.8 and 2.6 seconds.

Furthermore, Table 5.1 and Figure 5.3 show that the UPGMA protocol has a huge improve-

ment in running time. For example, on the 75% scaffold 1000-taxon data, ASTRID-BIONJ*

took an average of 1 hour 7 minutes, while ASTRID-FastME+NNI took just 2.5 seconds

and ASTRID-FastME+SPR took 30 seconds. ASTRID-RapidNJ was slightly faster than

ASTRID-FastME+NNI, and ASTRID-UPGMA was (by nature) faster than the rest.

5.4.2 Comparison to ASTRAL and supertree methods

ASTRID’s accuracy is comparable to ASTRAL’s, as seen in 5.2. On the 20% scaffold

datasets, ASTRAL performed slightly better than ASTRID. However, ASTRAL is some-

what slower than ASTRID-FastME+SPR, and much slower than ASTRID-FastME+NNI,

as shown in Table 5.1 and Figure 5.3.

MRL also has a similar accuracy to ASTRAL and ASTRID; it is, however, substantially

slower than both of them, taking over 30 minutes to run on the 1000-taxon datasets that

require 2 minutes for ASTRAL, 30 seconds for ASTRID-FastME+SPR, and under 3 seconds

for ASTRID-FastME+NNI.

FastRFS is slightly more accurate than ASTRAL and ASTRID, but takes approximately

as long as MRL to run, since the majority of its running time is taken by running MRL to

enhance FastRFS’s search space.

5.4.3 Scalability to very large datasets

On the large 43,183 taxon RNAsim dataset, ASTRAL failed to complete. It ran out of

memory on a computer with 256GB RAM before even computing its constraint set. Since

FastRFS requires ASTRAL’s constraint set to run, it too was not able to run on this dataset.

78

Method Running Time (HH:MM) Memory usage (GB) RF Error
ASTRID-RapidNJ 00:25 110 55%
ASTRID-FastME 04:22 132 26%
ASTRID-FastME+NNI 05:42 132 23%
MRL-FastTree 24:17 29 31%

Table 5.2: Running times and memory usage for 43,183 taxon simulated RNAsim-based
dataset with 31 source trees. Source trees were simulated by sampling clade-based and
scaffold trees from a 50,000 taxon RNAsim tree. FastRFS, ASTRAL, and MRL-RAxML
were not able to run due to excessive memory usage. Calculations were run on a 20-core Intel
Ivy Bridge cluster node with 256GB RAM; FastME, ASTRAL and the ASTRAL subroutines
in FastRFS are multithreaded.

ASTRID-RapidNJ was able to complete extremely quickly on this dataset, running in just

25 minutes with 110GB RAM. However, its error was quite high, at 55%.

ASTRID-FastME (no search) was slower, taking 4 hours 22 minutes and 132GB RAM.

Its error was 26%.

ASTRID-FastME+NNI was slightly slower, at 5 hours 42 minutes, and also required

132GB RAM. Its error was lower, at 23%.

ASTRID-FastME+SPR also ran out of memory.

MRL with FastTree was able to run, and only required 29GB of RAM. However, it was

much slower, taking 24 hours 17 minutes to complete, and had higher error than ASTRID-

FastME+NNI, at 31%.

5.4.4 Biological dataset

On the 2,228 taxon CPL biological dataset with 39 source trees, we report running time

and memory usage in Table 5.3. ASTRID-FastME+NNI was by far the fastest method,

completing in just 13 seconds and requiring only 489MB RAM. ASTRAL was faster than

ASTRID-FastME+SPR, but had much higher RAM usage (over 8GB) than any of the other

methods. ASTRID-BIONJ* was much slower than the rest of the methods, requiring nearly

six hours to run.

On the two smaller biological datasets, running times and memory usage are shown in

Tables 5.5 and 5.4. On the 121-taxon seabird dataset, no method took more than a few

seconds to complete. On the 558-taxon THPL dataset, FastRFS took 13 minutes, ASTRID-

BIONJ* took just over 1 minute, arunnd ASTRAL and the iterative ASTRID variants

completed in a few seconds.

On all these datasets, ASTRAL and ASTRID-BIONJ* had substantially higher memory

79

usage requirements than the rest of the methods. This may be due to the fact that ASTRAL

and BIONJ* are implemented in Java, while the rest of the methods are implemented in C

or C++.

Method Running Time (HH:MM:SS) Memory usage (MB)
ASTRID-BIONJ* 5:47:00 8598
ASTRID-FastME+NNI 00:00:13 489
ASTRID-FastME+SPR 00:12:30 746
ASTRAL 00:01:02 5200
FastRFS 00:04:15 353

Table 5.3: Running times and memory usage for 2228-taxon comprehensive papilinoid
legume (CPL) dataset with 39 trees [171]. FastRFS was run without MRL enhancement
tree. Calculations were run on a 20-core Intel Ivy Bridge cluster node with 256GB RAM;
FastME, ASTRAL and the ASTRAL subroutines in FastRFS are multithreaded.

Method Running Time (HH:MM:SS) Memory usage (MB)
ASTRID-BIONJ* 00:00:04 80
ASTRID-FastME+NNI 00:00:00 6.9
ASTRID-FastME+SPR 00:00:00 7.4
ASTRAL 00:00:02 408
FastRFS 00:00:01 3.6

Table 5.4: Running times and memory usage for 121-taxon seabirds dataset [77]. FastRFS
was run without MRL enhancement tree. Calculations were run on a 20-core Intel Ivy
Bridge cluster node with 256GB RAM; FastME, ASTRAL and the ASTRAL subroutines in
FastRFS are multithreaded.

Method Running Time (HH:MM:SS) Memory usage (MB)
ASTRID-BIONJ* 00:01:12 1108
ASTRID-FastME+NNI 00:00:00 32
ASTRID-FastME+SPR 00:00:06 52
ASTRAL 00:00:06 2351
FastRFS 00:13:00 24

Table 5.5: Running times and memory usage for 558-taxon temperate herbaceous papilinoid
legume (THPL) dataset [100]. FastRFS was run without MRL enhancement tree. Calcu-
lations were run on a 20-core Intel Ivy Bridge cluster node with 256GB RAM; FastME,
ASTRAL and the ASTRAL subroutines in FastRFS are multithreaded.

80

5.5 DISCUSSION

Supertree estimation is an important tool for next generation phylogenomic analyses. The

development of accurate supertree methods that can scale to datasets with tens or hundreds

of thousands of taxa is critical for these projects. Existing state-of-the-art methods can scale

to datasets with thousands of taxa, but struggle to go beyond that due to running time and

memory utilization constraints.

The improved version of ASTRID presented here can perform analyses much larger than

existing supertree methods. ASTRID’s most significant advantage in the supertree context

is its ability to scale to extremely large datasets while maintaining a low error rate. In

particular, when the number of input trees is relatively low compared to the number of taxa,

ASTRID’s running time is dominated by the distance method used. This improved version

of ASTRID allows fast distance methods to be used even in the supertree context when the

ASTRID distance matrix is missing entries.

ASTRID-FastME+SPR is the most accurate version of ASTRID, and should be used if

running time and memory constraints allow. However, the asymptotic runtime of the SPR

step is O(n3), and the memory usage is empirically higher than with just NNIs, so scaling

this technique beyond a few thousand taxa is unlikely.

ASRID-FastME+NNI is slightly less accurate than ASTRID-FastME+SPR under some

conditions, but substantially faster and memory-efficient. It can scale to datasets with tens

of thousands of taxa while maintaining low error rates.

For even larger datasets, ASTRID-RapidNJ may be able to scale beyond the level of

FastME. However, it it is less accurate than FastME, so it is not usually the best method to

use.

5.6 CONCLUSIONS

We have presented an improved version of ASTRID that significantly improves perfor-

mance, in terms of accuracy and running time, in the supertree context. We have explored

several ways to run ASTRID on a variety of datasets, and compared its performance to other

leading methods, including ASTRAL, FastRFS, or MRL. ASTRID is competitive in terms

of accuracy with these methods, and is able to scale to very large datasets that cannot be

analyzed with any other method.

ASTRID allows for a variety of distance methods to be used, with slower but more accurate

methods like FastME+SPR ideal for small to medium sized datasets, and faster methods

81

0.00

0.05

0.10

0.15

0.20

0.25

RF
 E
rro

r

20% scaffold

FastME search type
nni
spr
none

50% scaffold

1 2 3
Number of iterations

0.00

0.05

0.10

0.15

0.20

0.25

RF
 E
rro

r

75% scaffold

1 2 3
Number of iterations

100% scaffold

Figure 5.4: RF Error for 1000-taxon simulated datasets using up to 3 iterations of FastME
with NNIs and FastME with SPRs. Each model condition has 10 replicates.

like FastME+NNI and RapidNJ allowing for scaling to datasets with tens of thousands of

taxa.

5.6.1 Future work

It is likely possible to further optimize ASTRID to limit memory consumption, particularly

the built-in UPGMA* implementation. Some distance methods, including RapidNJ, are

able to scale to extremely large datasets by intelligently storing data to disk when the entire

distance matrix would not fit into memory. It may be possible to implement a similar

approach in ASTRID, which would enable virtually limitless scaling.

Additional improvements to the distance methods used by ASTRID could also improve

its performance. For example, it may be possible to directly add support for incomplete

distance matrices to FastME. There may also be better methods than UPGMA* for the first

stage of the ASTRID iterative protocol.

82

0

20

40

60

80

100

Ti
m
e
(s
ec

on
ds

)

20% scaffold
FastME search type

nni
spr
none

50% scaffold

1 2 3
Number of iterations

0

20

40

60

80

100

Ti
m
e
(s
ec

on
ds

)

75% scaffold

1 2 3
Number of iterations

100% scaffold

Figure 5.5: Running times for 1000-taxon simulated datasets using up to 3 iterations of
FastME with NNIs and FastME with SPRs. Each model condition has 10 replicates.

83

CHAPTER 6: SPECIES TREE ESTIMATION WITH ASTRID1

6.1 BACKGROUND

In this chapter, we present ASTRID, an ILS-aware distance-based method for species tree

estimation. Our approach is based on NJst, but is substantially faster, and, unlike NJst,

functions even when each gene tree contains only a small portion of the data. The input to

NJst is a set of unrooted gene trees. In the first step, an n× n matrix D[x, y] is computed,

where D[x, y] is the average distance (in terms of number of edges) between x and y among

all the gene trees. In the second step, neighbor joining [130], a very popular distance-based

method of phylogeny estimation, is used to produce the species tree.

ASTRID improves on NJst by enabling other distance-based methods to be used in the

second step. In particular, although NJ cannot be run on datasets with missing entries,

other distance-based methods can, and ASTRID enables the use of these other methods.

We also explore the use of more accurate distance-based methods. Thus, ASTRID is a very

simple modification to NJst. As we will show, ASTRID is much faster than NJst.

The comparison between ASTRID and ASTRAL-2 and MP-EST, two established coalescent-

based summary methods, is also interesting. ASTRID completed in minutes on some

datasets where the other methods took hours, and was fast enough to analyze datasets

with 1000 species and 1000 genes on a single processor within an hour (ASTRAL-2 and MP-

EST take much more time on datasets of this size). Furthermore, ASTRID clearly dominates

MP-EST in terms of accuracy, and is competitive with ASTRAL-2 (more accurate in some

cases, and less accurate in others). Finally, ASTRID has desirable theoretical properties:

it runs in polynomial time, and it remains statistically consistent under the MSC model

without assuming the molecular clock, nor requiring rooted gene trees as input.

6.2 METHODS

6.2.1 ASTRID

The input to ASTRID is a set of unrooted gene trees T1, . . . , Tk. We let Si = L(Ti) denote

the leafset of Ti, and S = ∪iL(Ti). Let |S| = n.

1This chapter contains material previously published in [158], which was a joint work with Tandy Warnow.
It has been edited slightly for brevity. PV implemented ASTRID, performed experiments, wrote the first
draft, and analyzed the data. TW designed the study, analyzed the data, and wrote the final draft.

84

Step 1: Construct n× n matrix M̄ :

1. For all i = 1, 2, . . . , k, compute n × n matrix Mi, as follows. For pairs p, q of

species where both are in Si, set Mi(p, q) to be the number of edges in the path

between p and q in Ti. For all other pairs p, q (i.e., where one or both are not

in Si), set Mi(p, q) = 0. Thus, the only non-zero entries in Mi are for pairs of

species in Ti.

2. For all {p, q} ⊂ S, let n(p, q) be the number of trees Ti that contain both p and

q.

3. Define n×n matrix M̄ by setting M̄(p, q) =
∑

i Mi(p,q)

n(p,q)
if n(p, q) > 0, and M̄ [p, q] =

−1 (to denote a missing value) otherwise.

Step 2: Compute tree on M̄ using a selected distance-based method

6.2.2 Datasets

We tested species tree estimation methods on simulated datasets from previous publi-

cations, and also evaluated ASTRID on the mammalian biological dataset of 37 species,

originally studied in [103]. Here we briefly describe the simulation procedures used to gen-

erate these datasets, and provide empirical statistics for the datasets in Table 6.1. See

the original publications for details about the simulation protocols, and our supplementary

online materials at https://pranj.al/ASTRID/ for links to the data.

All datasets included both true and estimated gene trees, obtained by using maximum

likelihood methods on the true sequence alignments, as well as species trees estimated on

these gene trees obtained in the prior publications. Each gene tree had at most one copy of

each species. We computed ASTRID species trees for these datasets, using various techniques

for Step 2 (how to compute the species tree given the distance matrix).

We estimated the amount of ILS in the data by quantifying the average gene tree discord

in the data, using the average Robinson-Foulds (RF) [121] distance between true gene trees

and the model species tree, expressed as a percentage (written AD for “average distance”).

We also explored some simulated datasets where the DNA sequence evolution was under

the strict molecular clock. Model conditions with AD at most 25% can be considered low

ILS, conditions with AD between 26% and 39% can be considered moderate ILS, conditions

with AD between 40% and 59% can be considered high ILS, and conditions with AD of at

least 60% can be considered very high ILS. In Table 6.1, we indicate these ILS levels for the

different model conditions we study both with the AD value, but also the general level (L

85

Dataset # genes # taxa ILS level (AD%) # sites ref.

Avian very high ILS (0.5X) 1000 48 60 (VH) 500 [103]
Avian high ILS (1X) 1000 48 47 (H) 250-1500 [103]
Avian moderate (2X) 1000 48 29 (M) 500 [103]

Mammalian high ILS (0.5X) 200 37 50 (H) 250-1000 [103]
Mammalian moderate ILS (1X) 200 37 29 (M) 250-1000 [103]

Mammalian low ILS (2X) 200 37 21 (L) 250-1000 [103]
10-taxon very high ILS 200 10 89(VH) 100 [16]

10-taxon high ILS 200 10 48 (H) 100 [16]
15-taxon clocklike 1000 15 82 (VH) 100-1000 [16]

ASTRAL-2 500K-1e6 (MC1) 1000 200 69 (VH) 300-1500 [105]
ASTRAL-2 2M-1e6 (MC2) 1000 200 33 (M) 300-1500 [105]
ASTRAL-2 10M-1e6 (MC3) 1000 200 21 (L) 300-1500 [105]
ASTRAL-2 500K-1e7 (MC4) 1000 200 68 (VH) 300-1500 [105]
ASTRAL-2 2M-1e7 (MC5) 1000 200 34 (M) 300-1500 [105]
ASTRAL-2 10M-1e7 (MC6) 1000 200 9 (L) 300-1500 [105]
ASTRAL-2 2M-1e6 (MC7) 1000 10 17 (L) 300-1500 [105]
ASTRAL-2 2M-1e6 (MC8) 1000 50 30 (M) 300-1500 [105]
ASTRAL-2 2M-1e6 (MC9) 1000 100 34 (M) 300-1500 [105]
ASTRAL-2 2M-1e6 (MC10) 1000 500 34 (M) 300-1500 [105]
ASTRAL-2 2M-1e6 (MC11) 1000 1000 35 (M) 300-1500 [105]

Table 6.1: Empirical statistics of simulated datasets used in this study. The ILS level is
measured by the average Robinson-Foulds distance (AD) between the true gene trees and
the species tree, expressed as a percentage; ILS levels are then classified as low (L), moderate
(M), high (H), or very high (VH).

for low, M for moderate, H for high, and VH for very high).

6.2.2.1 Mammalian and avian simulated datasets

These datasets were created in [103] to evaluate method performance under model condi-

tions similar to real data. Species trees were generated with MP-EST for the avian phyloge-

nomics dataset with 48 species and 14,446 loci [72], and for a mammalian dataset with 37

species and 447 loci [139]. These species trees were used as basic model trees, with branch

lengths in coalescent units. In addition, two other model species trees were created for each

dataset by scaling the species tree branch lengths up (to reduce ILS) or down (to increase

ILS). The ILS levels of the resultant model species trees were very heterogeneous, ranging

from AD = 21% (low) to 50% (high) for the mammalian simulation, and from AD = 29%

(moderate) to 60% (very high) for the avian simulation.

Both datasets had sequences of length 500 for all three model conditions. For the default

86

(“1X”) branch length condition, the avian dataset also had sequences of length 250, 500, 100,

and 1500, and the mammalian dataset had sequences of length 250, 500 and 1000. Sequence

evolution on these datasets deviated from the strict molecular clock.

6.2.2.2 10-taxon simulated datasets

These data were presented in [16], and explored two ILS levels (AD=48% (high) and

AD=89% (very high)). Sequence evolution deviated from the strict molecular clock.

6.2.2.3 15-taxon clocklike simulated datasets

These datasets evolved under a strict molecular clock, and were presented in [16]. The

species tree was a caterpillar model tree (i.e., a path with leaves hanging off the path) with

very short internal branches, and a long branch to the outgroup species. The ILS level in

these data was very high (AD=82%).

6.2.2.4 ASTRAL-2 simulated datasets

These data were presented in [105], and provided a variety of model conditions with

varying ILS levels, tree shapes, numbers of taxa, and sequence lengths per locus. SimPhy

[96] was used to generate the species and gene trees, based on two parameters: the number

of generations (given as the first number in the model) and the speciation rate (given as the

second number). The number of generations simulated ranged between 500K, 2M, and 10M,

and the speciation rate varied between 1e6 and 1e7. Model conditions with fewer generations

had more ILS. Model conditions with the 1e6 speciation rate had speciation events nearer the

tips (leaves) of the trees, while model conditions with the 1e7 speciation rate had speciation

events nearer the root. The ILS levels varied from very low (AD = 9%) to very high (AD

= 69%). Sequences evolved down the gene trees under multiple GTRGAMMA models that

deviated from the strict molecular clock. Maximum likelihood gene trees were computed

using FastTree-2.

6.2.2.5 Incomplete gene tree datasets

To explore performance on incomplete gene trees, we modified the ASTRAL-2 dataset by

randomly removing taxa from trees in the 50-taxon datasets. Up to 40 taxa were removed

from the 50-taxon dataset, and up to 5 taxa were removed from the 10-taxon dataset. In

87

each of these cases, maximum likelihood gene trees were estimated using FastTree-2 version

2.1.7 SSE3 [118], using the following command:

fasttree -nt -gtr -quiet -nopr -gamma -n 1000 <fastafile> > <genetreefile>

where <fastafile> was the input file of aligned sequences and <genetreefile> was the

output file.

6.2.3 Distance-based tree estimation methods

In order to explore the design space for ASTRID, we ran various distance-based methods

for Step 2 (computing the tree from the distance matrix). For incomplete distance matrices

(where some entries are −1, indicating that the pair of taxa do not appear together in any

gene tree), we explored the methods in PhyD* [40]: NJ∗, BIONJ∗, MVR∗, UNJ∗. These

algorithms are all variants on neighbor joining that work on incomplete distance matrices.

We also explored FASTME [50], which is a heuristic for the minimum evolution problem.

6.2.4 ASTRAL-2

To compute ASTRAL-2 species trees on the incomplete gene trees generated for the

ASTRAL-2 datasets, we ran ASTRAL-2 version 4.7.8, using command line arguments

java -Xmx4000M -jar astral.4.7.8.jar -i <genetrees> -o <outputtree>

6.2.5 Computing tree error

All trees computed in this study were fully resolved. We report the RF tree error (the

proportion of the branches in the model tree missing from the estimated tree), using scripts

that are available in the supplementary online materials at https://pranj.al/ASTRID/.

6.3 RESULTS

6.3.1 Selection of distance-based tree estimation method for Step 2

First, we evaluated various distance-based tree estimation methods to determine which one

would be most accurate for the tree computation phase of ASTRID. Results on datasets with

all complete gene trees (no missing species in any gene) are shown in Figure 6.1 and results

88

10 50 200 800
Number of genes

0.0

0.1

0.2

0.3

0.4

0.5

R
F
 T

op
ol

og
ic

al
 E

rr
or ASTRIDbionj

ASTRIDfastme
ASTRIDmvr
ASTRIDnj
ASTRIDunj

Figure 6.1: A comparison of ASTRID variants on the moderate ILS avian simu-
lated datasets with 500bp, using different distance-based methods for the tree
estimation phase. We report RF topological error rates over 20 replicates. Red dots
represent means, while lines represent medians and boxes represent quartiles.

25 50 100 250 500 1000
Number of genes

0.0

0.2

0.4

0.6

0.8

1.0

R
F
To
po

lo
gi
ca
l E

rro
r

a) 50 taxa, missing 20 per tree
ASTRID-bionj
ASTRID-fastme
ASTRID-mvr
ASTRID-nj
ASTRID-unj

25 50 100 250 500 1000
Number of genes

b) 50 taxa, missing 40 per tree

Figure 6.2: Comparison of ASTRID variants on 50-taxon ASTRAL-2 MC8
datasets with missing taxa. We show average RF error rates over 50 replicates for
ASTRID variants, that differ in terms of the method used to compute the tree from the dis-
tance matrix. The datasets have taxa randomly removed from each gene and the sequence
lengths truncated to 300bp. Red dots represent means, while lines represent medians and
boxes represent quartiles.

on datasets with incomplete gene trees are shown in Figure 6.2. Note that for datasets

with entirely complete gene trees, FastME performed as well as or better than the other

distance-based methods, but there were datasets with incomplete distance matrices in which

FastME had very poor accuracy. Therefore, we selected FastME to analyze datasets where

the distance matrix has no missing entries, since it had the best accuracy. For the datasets

with incomplete distance matrices M̄ (indicated by M̄ [p, q] = −1 for some p,q), we selected

BioNJ*, since it generally had among the most accurate results of these PhyD* methods.

6.3.2 Comparison of ASTRID, ASTRAL, and MP-EST

We begin with a comparison between ASTRID, ASTRAL-2, and MP-EST on the avian

simulated datasets with high (1X) ILS, varying number of genes and sequence alignment

lengths, but where all genes are complete; see Figure 6.3.

89

500 1000
Sequence length (bp)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

R
F
 T
op

ol
og

ic
al
 E
rr
or

a) 200 Genes

ASTRAL2
ASTRIDfastme
MPEST

500 1000
Sequence length (bp)

b) 500 Genes

500 1000
Sequence length (bp)

c) 1000 Genes

Figure 6.3: Comparison of ASTRID, ASTRAL-2, and MP-EST on the avian sim-
ulated data. The simulated data evolve under 1X (high ILS) species tree branch lengths,
and with varying gene sequence lengths. We report mean RF rates with standard error bars
over 20 replicates.

All methods improved with increasing numbers of genes or increasing sequence length;

however, the methods differed substantially in terms of their accuracy. Across all conditions

we explored, MP-EST had the highest error and ASTRID had the lowest error. ASTRAL-2

was in between, but was closer to ASTRID than to MP-EST. The gap between MP-EST and

ASTRID was very large, and increased with the number of genes. For example, at 1000 genes

and gene sequence alignments of length 500, MP-EST had 19% RF error while ASTRID had

about 7% RF error. The gap between ASTRID and ASTRAL-2 was substantial on the 200-

and 500-gene cases, but very small on the 1000-gene case.

Thus, although MP-EST is statistically consistent under the MSC model and hence the-

oretically robust to ILS, it did not have particularly good accuracy on these data. Among

all coalescent-based methods, MP-EST is probably the one that has been used the most in

biological data analyses, but its performance here and in [19, 105] demonstrates that it is

not competitive with the best methods on datasets with even moderate numbers of species.

Therefore, we omit MP-EST from the rest of this study.

6.3.3 Comparison of ASTRID and ASTRAL-2 on complete gene trees

Comparison on avian datasets. Figure 6.4 shows the performance of ASTRAL-2 and

ASTRID on avian simulated datasets under three ILS conditions (moderate, high, and very

high). Both methods performed better when provided with more genes, and both performed

worse on higher levels of ILS. Overall, ASTRID tended to outperform ASTRAL-2, with the

largest effect seen when many genes were available. With 800 genes available, the ASTRID

species tree had a RF error rate that was 2.4 percentage points better than ASTRAL-2’s

under the very high and high ILS model conditions, and 1.2 percentage points better for the

moderate ILS model condition. On the moderate ILS model condition, ASTRID had the

90

10 25 50 100 200 400 800
Number of genes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
F
To
po

lo
gi
ca
l E

rro
r

a) 0.5X
ASTRAL-2
ASTRID-fastme

10 25 50 100 200 400 800
Number of genes

b) 1X

10 25 50 100 200 400 800
Number of genes

c) 2X

Figure 6.4: Comparison of ASTRID and ASTRAL-2 on avian simulated datasets.
We show average RF error rates and standard error bars for 20 replicates. Gene sequence
alignments have 500 sites and varying amount of ILS. Species tree branch lengths of 0.5x
have very high ILS, 1X has high ILS, and 2x have moderate ILS.

250 500 1000 1500 True
Sequence length (bp)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
F
 T
op

ol
og

ic
al
 E
rr
or

a) 10 Genes

ASTRAL2
ASTRIDfastme

250 500 1000 1500 True
Sequence length (bp)

b) 100 Genes

250 500 1000 1500 True
Sequence length (bp)

c) 1000 Genes

Figure 6.5: Performance on the avian simulated data with 1X species tree branch
lengths, varying gene sequence length and number of genes. We report RF rates
over 20 replicates.

greatest advantage over ASTRAL-2 for moderate numbers of genes. Above 200 genes, the

error rate dropped below ten percent for both ASTRAL-2 and ASTRID, and ASTRID had

an average advantage of only about one percentage point.

It is well known that summary methods improve in accuracy as the number of sites per

gene or the number of genes increase [18, 58, 104, 127]. We explored the impact of varying the

sequence length and number of genes on the avian datasets with high (1X) ILS, as well as on

true gene trees. Figure 6.5 shows results on 10, 100, and 1000 genes; results on other numbers

of genes have the same trends (data provided in supplementary materials at https://pranj.

al/ASTRID/). As expected, both methods improved with increased sequence length, and

had their best accuracy on true gene trees. Both methods also improved as the number of

genes increased. ASTRID was always at least as accurate as ASTRAL-2, with the biggest

improvement for shortest sequences (with 250bp).

Comparison on mammalian datasets. A comparison of ASTRAL-2 and ASTRID

on the mammalian datasets with different levels of ILS (high, moderate, and low) is given

91

10 25 50 100 200
Number of genes

0.00

0.05

0.10

0.15

0.20

0.25

0.30

R
F

To
po

lo
gi

ca
l E

rro
r

a) 0.5X
ASTRAL-2
ASTRID-fastme

10 25 50 100 200
Number of genes

b) 1X

10 25 50 100 200
Number of genes

c) 2X

Figure 6.6: Comparison of methods on mammalian simulated datasets, varying
ILS level and number of genes. We show average RF error rates and standard error
bars for 20 replicates. Gene sequence alignments had 500 sites. Model conditions varied in
ILS level from high (0.5x branch lengths) to low (2X branch lengths).

in Figure 6.6. ASTRAL-2 and ASTRID performed fairly similarly on the low (2X branch

lengths) and moderate (1X branch lengths) ILS conditions. Under the high ILS level (0.5X

branch lengths), ASTRAL-2 was fairly consistently more accurate than ASTRID, with the

largest improvement on the 10-gene case.

Comparison on the ASTRAL-2 datasets. We explored performance on the ASTRAL-

2 datasets with 200 taxa (model conditions MC1 to MC6, see Fig. 6.7). These model trees

varied in ILS level, with MC1 and MC4 having very high ILS, MC2 and MC5 having moder-

ate ILS, and MC3 and MC6 having low ILS. Under MC2, MC3, and MC5, the two methods

had essentially identical accuracy. However, under MC1, MC4, and MC6, ASTRAL-2 had

an advantage over ASTRID. In MC1 and MC4, the improvement disappeared at 100 genes,

but in MC6 ASTRAL-2 was still more accurate than ASTRID on 100 genes.

Comparison on the 15-taxon datasets. The 15-taxon datasets evolved on a caterpillar

species tree under very high ILS (AD=82%), the highest ILS considered in this study. We

explored performance under two sequence lengths (100bp and 1000bp) and varied the number

of genes from 10 to 1000. Results on the 15-taxon datasets (Fig. 6.8) showed very close

performance between ASTRID and ASTRAL-2. On the 100bp alignments and on 1000bp

alignments with at least 100 genes, the two methods could not be distinguished. However,

on 1000bp alignments with at most 50 genes, ASTRAL-2 had an advantage over ASTRID.

Comparison on the 10-taxon datasets. The 10-taxon datasets evolved under two

different ILS levels - high and very high, and we explored performance on both true and

estimated gene trees; see Figure 6.9. In general, ASTRID and ASTRAL-2 had very close

accuracy on these data, but there were some cases where they had different accuracy levels.

92

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
F

To
po

lo
gi

ca
l E

rro
r

a) MC1
ASTRAL-2
ASTRID-fastme

b) MC2 c) MC3

10 25 50 100
Number of genes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
F

To
po

lo
gi

ca
l E

rro
r

d) MC4

10 25 50 100
Number of genes

e) MC5

10 25 50 100
Number of genes

f) MC6

Figure 6.7: Comparison of ASTRID and ASTRAL-2 on the simulated ASTRAL-2
datasets with 200 taxa, varying levels of ILS, tree shape, and number of genes.
We report RF error rates and standard error bars over 10 replicates. See Table 6.1 for
information on the model conditions listed.

10 25 50 100 250 1000
Number of genes

0.0

0.2

0.4

0.6

0.8

R
F
To
po

lo
gi
ca
l E

rro
r

a) 100bp
ASTRAL-2
ASTRID-fastme

10 25 50 100 250 1000
Number of genes

b) 1000bp

Figure 6.8: A comparison of ASTRID and ASTRAL-2 on the 15-taxon simulated
datasets for two different sequence lengths. The 15-taxon datasets evolve down gene
trees generated by a caterpillar tree with very high ILS (AD=82%), the highest ILS condition
explored in this study. We report mean RF rates and standard error over 10 replicates.

93

0.0

0.2

0.4

0.6

0.8

1.0

R
F

To
po

lo
gi

ca
l E

rro
r

a) Moderate ILS est.
ASTRAL-2
ASTRID-fastme

b) Very High ILS est.

10 25 50 100 200
Number of genes

0.0

0.2

0.4

0.6

0.8

1.0

R
F

To
po

lo
gi

ca
l E

rro
r

c) Moderate ILS true

10 25 50 100 200
Number of genes

d) Very High ILS true

Figure 6.9: Results on true and estimated gene trees on 10-taxon datasets with
two ILS levels (high and very high). All gene sequence alignments have 100bp. We
report RF rates and standard error bars over 20 replicates.

For example, on the high ILS condition with estimated gene trees, ASTRAL-2 was more

accurate than ASTRID for 200 genes, and ASTRID was more accurate than ASTRAL-2 on

25 genes.

6.3.4 Performance on incomplete gene trees

We explored the impact of missing data on ASTRAL-2 and ASTRID by deleting taxa

from gene trees in the 50-taxon datasets (MC8) from the ASTRAL-2 collection, using 150bp

per gene, and varying the number of genes and the amount of missing taxa; see Figure

6.10. ASTRAL-2 and ASTRID had very similar topological accuracy throughout these

94

0.0

0.2

0.4

0.6

0.8

1.0

R
F

To
po

lo
gi

ca
l E

rro
r

a) 50 taxa, missing 10 per tree
ASTRAL-2
ASTRID-bionj

b) 50 taxa, missing 20 per tree

25 50 100 250 500 1000
Number of genes

0.0

0.2

0.4

0.6

0.8

1.0

R
F

To
po

lo
gi

ca
l E

rro
r

c) 50 taxa, missing 30 per tree

25 50 100 250 500 1000
Number of genes

d) 50 taxa, missing 40 per tree

Figure 6.10: Results on 50-taxon ASTRAL-2 dataset (MC8) with missing taxa and
sequence lengths of 150bp. We report RF rates and standard error over 50 replicates.

experiments. With low amounts of missing data (20% to 40% missing taxa from each gene

tree), both methods had very good accuracy (below 5% tree error) by 500 genes. With 60%

of the taxa missing from each gene tree, the error rates increased for low numbers of genes

(above 20% RF error for up to 100 genes), but then declined to about 10% by 1000 genes.

With 80% of the taxa missing from each gene (so that all gene trees have only 10 taxa out

of 50), error rates were very high with 25 genes (at least 85% RF), but decreased quickly

with increases in the number of genes, so that at 500 genes the error rate was 24%, and then

at most 18% at 1000 genes. The trends suggest that the error rates had not plateaued, and

that adding additional incomplete gene trees should result in continued improvement.

6.3.5 Analysis of the mammalian biological dataset

We analyzed the mammalian biological dataset originally studied in [139]. The original

dataset had 37 species and 447 genes, but there were 23 erroneous genes (as noted by [103])

which we removed before doing the analysis.

We obtained maximum likelihood gene trees and bootstrap replicates of these gene trees

from [103]. We then analyzed these data using ASTRAL-2 and ASTRID+FastME and

compared these analyses to previously published trees obtained using ASTRAL and MP-EST

[106]. We then annotated the branches of the ASTRID+FastME and ASTRAL-2 trees with

bootstrap support from 100 multi-locus bootstrapping (MLBS). The ASTRID+FastME and

95

ASTRAL-2 trees were topologically identical to the ASTRAL tree and differed only in the

bootstrap support; see Figure 6.11 for the ASTRID+FastME tree. On the other hand, the

support for the placement of Scandentia - one of the major open questions about mammalian

evolution - was very low, only 47% (ASTRAL-2 gave it 82%). Hence, neither the ASTRID

tree nor the ASTRAL-2 tree resolved the placement of Scandentia with high support.

6.4 RUNNING TIME RESULTS

6.4.1 Asymptotic running time

ASTRID has two steps: the first step computes the distance matrix, and the second step

uses a selected distance-based method to construct a tree from the distance matrix. When

the input has n species and k genes, then calculating the distance matrix can be performed

in O(kn2) time. Distance-based tree estimation methods typically run in O(n2) to O(n3)

time, but this step no longer depends on k. Hence, the overall running time depends on the

selected distance-based method, but is generally dominated by the first phase, especially for

typical inputs, for which k >> n. Thus, under the assumption that k > n and that ASTRID

uses a distance-based method that runs in O(n3) time, ASTRID’s running time is O(kn2).

ASTRAL-2’s scaling is more complicated to discuss. Asymptotically, ASTRAL-2 runs in

O(nk|X|2) time, where n is the number of species, k is the number of genes, and X is a set

of bipartitions it computes to constrain the search space. The size of X is not bounded by

a polynomial in the input size, and the technique that ASTRAL-2 uses means that X can

be large under conditions with high ILS. Thus the asymptotic running times of ASTRAL-2

and ASTRID (used with various distance methods) are quite different.

6.4.2 Running times on simulated data

In practice, creating the distance matrix took the majority of the running time. On

1000 taxa, creating the distance matrix took several minutes to several hours, depending on

the number of genes, but running FASTME took less than one second regardless of the

number of genes. However, PhyD* methods were much slower than FASTME; on 1000

taxa, running any of the PhyD* methods took approximately 40 minutes (data not shown).

We recorded running times for ASTRAL-2, ASTRID-FastME, and NJst, on avian simu-

lated datasets with high ILS (1X), as we varied the number of genes (see Fig. 6.12). Note

that ASTRID-FastME was by far the fastest of the three methods, and NJst was the slowest.

However, the trends suggest that NJst will be faster than ASTRAL-2 for larger numbers of

96

Megabat

Shrew

Opossum

Galagos

Pika

Mouse

Cow

Gorilla

Squirrel

Human

Rat

Orangutan

Hedgehog

Platypus

Elephant

Tree_Shrew

Pig

Kangaroo_Rat

Dog

Cat

Rabbit

Chicken

Dolphin

Lesser_Hedgehog_Tenrec

Sloth

Armadillos

Tarsier

Hyrax

Alpaca

Marmoset

Chimpanzee

Horse

Wallaby

Macaque

Guinea_Pig

Mouse_Lemur

Microbat

9 7

4 7

9 2

9 9

Figure 6.11: ASTRID analysis of a mammalian biological dataset. We used
ASTRID+FastME to analyze the mammalian biological dataset studied in [103, 106], with
37 taxa and 424 genes. The branches are annotated with bootstrap support values from
100 MLBS bootstrap samples; values not shown indicate 100% support. The ASTRID tree
is identical to the ASTRAL and ASTRAL-2 trees on the same data, but differs from the
MP-EST analysis in the placement of Scandentia.

97

genes. Note also that ASTRID-FastME and NJst both scaled linearly with the number of

genes, but that ASTRAL-2’s running time scaled super-linearly.

We recorded running times for two variants of ASTRID (one using FastME and the other

using BioNJ*), and compared them to ASTRAL-2 on ASTRAL-2 simulated datasets with

1000 taxa (MC11) as we varied the number of genes (Fig. 6.13) and for 500-gene datasets in

which we varied the number of taxa (MC 2 and 7-10, see Fig. 6.14). The relative running

times show that all methods were very fast for smaller datasets, but were clearly distinguished

on the larger datasets, where ASTRID-FastME was much faster than ASTRID-BioNJ* and

both variants of ASTRID were much faster than ASTRAL-2. For example, on the dataset

with 1000 genes and 1000 taxa, ASTRID-FastME finished in 33 minutes, ASTRID-BioNJ

finished in 1 hour and 10 minutes, and ASTRAL-2 finished in 12 hours and 30 minutes.

6.4.3 Running times on biological data

We recorded running times for ASTRID-FastME and ASTRAL-2 on the mammalian bi-

ological dataset. Both methods took 6 seconds for a single bootstrap replicate on one core

of a 2.7 GHz Intel Xeon processor with 424 genes and 37 taxa.

6.5 DISCUSSION

A few trends are apparent upon examining the data as a whole. ASTRAL-2 and ASTRID

had, for the most part, very similar levels of accuracy, while MP-EST was consistently

less accurate. However, there were cases where ASTRID and ASTRAL-2 have small but

detectably different levels of accuracy. One intriguing trend in the data is the improvement

of ASTRAL-2 over ASTRID on high ILS datasets; see Figures 6.6, 6.7, 6.8, and 6.9. In

particular, Figures 6.6 and 6.7 suggest that increases in ILS should favor ASTRAL-2 over

ASTRID. Yet, ASTRID is consistently at least as accurate as ASTRAL-2 on the avian

datasets, which have moderate to very high levels of ILS (Fig. 6.4). Thus, ILS level might

have an impact on the relative accuracy of the two methods, but it is not a determining

favor. Similarly, neither method dominates the other based on the number of taxa, number

of genes, or amount of gene tree estimation error. Thus, it is very difficult to characterize the

conditions under which each method is likely to have an advantage over the other. However,

even for the cases where there are differences in accuracy, in general the differences are

fairly small. Thus, the main difference between the two methods is computational efficiency,

where ASTRID is clearly faster. ASTRID has the biggest running time advantage over

ASTRAL-2 for large numbers of gene trees, since ASTRID scales linearly in the number of

98

0 200 400 600 800
Number of genes

0

50

100

150

200

250

300

350

R
un

ni
ng

 ti
m

e
(s

)

ASTRAL-2
ASTRID-fastme
NJst

Figure 6.12: Scatterplot of running times for ASTRID-FastME, ASTRAL-2, and
NJst, on avian high ILS (1X) simulated datasets, varying number of genes. We
show running time for 20 replicates of each number of genes. The quadratic dependence of
ASTRAL-2’s running time is clearly contrasted with the linear dependence of both ASTRID
and NJst. Experiments were run on a single core of a 2.7 GHz Intel Xeon processor.

10 25 50 10
0

10
00

Number of genes

0

2

4

6

8

10

12

14

R
un

ni
ng

 ti
m

e
(h

ou
rs

)

a) ASTRID-FastME
MatrixGeneration
TreeEstimation

10 25 50 10
0

10
00

Number of genes

b) ASTRID-BioNJ

10 25 50 10
0

10
00

Number of genes

c) ASTRAL-2

Figure 6.13: Running time on the ASTRAL-2 simulated datasets with 1000 taxa
(MC11), varying number of genes. We show results for the each of the ASTRID steps
– matrix generation and tree estimation. We compare ASTRID used with two ways of
computing the trees: FastME and BioNJ*. Experiments were run on a single core of a 2.7
GHz Intel Xeon processor.

99

10 50 10
0

20
0

50
0

Number of taxa

0

10

20

30

40

50

60

R
un
ni
ng
 ti
m
e
(m
in
ut
es
)

a) ASTRID-FastME
MatrixGeneration
TreeEstimation

10 50 10
0

20
0

50
0

Number of taxa

b) ASTRID-BioNJ

10 50 10
0

20
0

50
0

Number of taxa

c) ASTRAL-2

Figure 6.14: Running time of two ASTRID methods on the ASTRAL-2 simulated
dataset with 500 genes, varying number of taxa. We show results on a single replicate
of model conditions MC2 and 7-10 from the ASTRAL-2 collection. Experiments were run
on a single core of a 2.7 GHz Intel Xeon processor.

genes while ASTRAL scales super-linearly. This makes ASTRID an especially good method

for genome-scale datasets that have a large number of genes.

6.6 CONCLUSION

ASTRID is a fast and highly accurate method for species tree estimation that is robust

to high levels of ILS, and provably statistically consistent under the multi-species coalescent

model. Like ASTRAL-2, ASTRID can analyze datasets with unrooted gene trees, an advan-

tage that the two methods have over many other methods (e.g., MP-EST) that can only be

run on rooted gene trees. ASTRID (like NJst) runs in time that is polynomial in the number

of gene trees and species, but ASTRAL-2 and other leading coalescent-based methods do

not have this guarantee. Thus, ASTRID has many desirable theoretical properties compared

to existing methods.

From an empirical viewpoint, ASTRID is also extremely fast and can analyze very large

datasets in minutes, where other methods either cannot run or take hours. In particular,

ASTRID is much faster than ASTRAL-2, especially on datasets with many genes and large

numbers of species. ASTRID also produces more accurate trees than MP-EST and NJst,

and is competitive with ASTRAL-2 in terms of accuracy.

However, even better (more accurate) results might be obtained through more extensive

modifications to the ASTRID algorithm design. In particular, the accuracy of the tree de-

pends on the particular distance-based method that is used. New distance-based phylogeny

estimation methods, such as the absolute fast converging methods [123, 164], might provide

improved accuracy for very large datasets with many thousands of species. Another impor-

100

tant direction is developing additional methods for estimating species trees from distance

matrices that have good accuracy when the distance matrix has missing data. As we saw

here, FastME produced more accurate trees than the PhyD* methods, but it could only be

applied to distance matrices without any missing data. An extension of FastME to enable

it to handle incomplete distance matrices would also be of great interest.

This study can be expanded in several directions. Future work should more carefully

investigate the conditions under which ASTRID is more reliable than ASTRAL-2, and ex-

plore performance on more biological datasets. This study also only investigated relatively

long sequences; a subsequent study should investigate the relative and absolute accuracy of

ASTRID and other methods on very short sequences, since recombination-free loci can be

very short [58]. In addition, this study only examined datasets with a single individual per

species, yet ASTRID (like NJst) can be run on datasets with multiple individuals; future

work should evaluate the absolute and relative accuracy of ASTRID and other methods on

such data. This study showed that ASTRID performed well in terms of species tree topology

estimation, but we did not explore its accuracy with respect to the estimation of coalescent

branch lengths; future work will need to explore how well ASTRID estimates these numeric

parameters. Finally, it may well be that ASTRID will be most useful as a starting tree

for use within more computationally intensive analyses, including Bayesian MCMC analyses

(e.g., *BEAST) or maximum likelihood analyses.

101

CHAPTER 7: SVDQUEST1

7.1 INTRODUCTION

Proofs of statistical consistency for summary methods typically depend on having accurate

gene trees [127], which is generally not expected on biological datasets. In addition, the

proofs depend on all sites within each locus evolving down a single tree (i.e., c-genes), and

meeting that requirement can result in very short sequences for each locus [140], which

increases gene tree estimation error. Furthermore, from an empirical standpoint, there is

ample evidence that gene tree estimation error increases the error of species trees estimated

using summary methods [18, 48, 58, 68, 101, 104, 109, 117, 140], and that CA-ML can be

more accurate than even the most accurate summary methods when gene tree estimation

error is sufficiently high, even in the anomaly zone (see [109] and references therein).

The impact of gene tree estimation error on species tree estimation has led to interest in

methods that can estimate species trees without needing to compute gene trees, and that

are statistically consistent under the MSC. One such approach is to co-estimate gene trees

and species trees; *BEAST [64] and BEST [89] are two such methods, but both are very

computationally intensive [18, 78, 83, 99, 181]. Another type of approach estimates the tree

directly from the observed site pattern frequencies using properties of the MSC, and does

not also try to estimate gene trees; examples of such methods include SuperMatrix Rooted

Triple (SMRT) [49], SNAPP [28], SVDquartets [36], and METAL [44, 111]. PoMo [46] and

its improved version revPoMo [133] can also be considered in this category, although these

methods are not established to be statistically consistent under the MSC. These “site-based”

methods are considered particularly suitable for datasets generated using phylogenomic pro-

tocols such as RADseq that produce loci with very few variable sites, which makes highly

accurate gene tree estimation unlikely [47].

The most popular of these site-based methods is available in PAUP* [149] and operates as

follows. Given a multi-locus dataset, the loci are concatenated into a single long alignment.

Then, for each set of four species, a quartet tree for that set is computed using SVDquartets.

Finally, a species tree is sought that agrees with as many of these quartet trees as possible.

The number of quartet trees that the species trees satisfies is called its MQSST score, where

MQSST refers to the Maximum Quartet Support Species Tree, and the problem of finding the

tree with the highest MQSST score is the MQSST problem. Because the MQSST problem is

1This chapter contains material previously published in [161], which was a joint work with Tandy Warnow.
It has been edited slightly for brevity. PV implemented SVDquest, performed experiments, wrote the first
draft, and analyzed the data. TW analyzed the data, and wrote the final draft.

102

NP-hard [73], PAUP* uses a heuristic search to seek a good solution to MQSST. This method,

which we refer to as SVDquartets+PAUP*, is increasingly popular in phylogenomics studies

[4, 9, 24, 31, 42, 47, 63, 65, 66, 82, 83, 97, 98, 108, 112, 168, 169].

We present SVDquest, a new site-based method for estimating species trees in the presence

of ILS. SVDquest has the same basic approach as SVDquartets+PAUP* in that it uses

SVDquartets to estimate quartet trees, and then combines these quartet trees into a species

tree; the difference between SVDquest and SVDquartets+PAUP* is the technique each uses

to combine the quartet trees. Instead of employing a heuristic search strategy, SVDquest uses

dynamic programming (an algorithm design technique) to find a provably optimal solution

to the MQSST problem within a constrained search space. The constraints are defined

by a set of allowed bipartitions on the species set, and we use the dynamic programming

algorithm from [30] to find a species tree that maximizes the quartet support score within

that constrained search space. If the search space is not constrained, then SVDquest finds a

globally optimal solution to MQSST but will run in time that is exponential in the number

of species, and so be too computationally intensive to use on datasets with more than

about 15-20 species. However, we show that we can constrain the search space so that

the algorithm runs in polynomial time and finds very good solutions to its optimization

problem. Furthermore, by selecting the bipartitions appropriately, the new method, which

we refer to as SVDquest*, is guaranteed to satisfy at least as many quartet trees computed

by SVDquartets as SVDquartets+PAUP*.

We present results from an extensive performance study using both simulated and bi-

ological datasets. We find that SVDquest* finds better MQSST scores than SVDquar-

tets+PAUP* under most conditions, particularly under higher levels of ILS and gene tree

estimation error. We compare SVDquest* to a set of leading species tree estimation meth-

ods. We include two summary methods ASTRAL [105, 106] and ASTRID [158], because

these two methods have been shown to have high accuracy under a wide range of model

conditions and are both statistically consistent under the MSC (again, under the assump-

tion that each is given true gene trees). We also include CA-ML (using RAxML), since (as

noted earlier) trees computed using CA-ML are often at least as accurate as trees computed

using summary methods. We do not include any of the co-estimation methods, as they are

too computationally intensive to use on the datasets we explore.

The relative performance between these methods depends on the model condition (and

in particular on the amount of gene tree estimation error), but SVDquest* has dramatic

improvements over the summary methods under conditions with high average gene tree

estimation error and many genes. CA-ML has the best accuracy of all methods under

conditions with low to moderate ILS, but the coalescent-based methods outperform CA-ML

103

when ILS is sufficiently high.

Finally, we also show that returning the strict consensus of the optimal trees computed

by SVDquest* provides further improvements in topological accuracy. Thus, SVDquest* is

a new method with improved accuracy compared to existing coalescent-based species tree

methods under a range of realistic model conditions.

7.2 MATERIALS & METHODS

7.2.1 SVDquest

The input to SVDquest is a set of sequence alignments (one alignment for each locus).

Phase 1 of SVDquest uses the SVDquartets implementation in PAUP* to compute a set of

quartet trees and Phase 2 combines these quartet trees into a species tree on the full set of

species. Thus, SVDquest is identical to SVDquartets+PAUP* in Phase 1, but differs from

SVDquartets+PAUP* in Phase 2. Specifically, SVDquest uses dynamic programming to

find an optimal solution to the MQSST problem within a constrained search space, similar to

how ASTRAL and FastRFS [159] (a method for the Robinson-Foulds Supertree problem) find

optimal trees for their optimization problems within constrained search spaces. Furthermore,

since there can be more than one optimal tree for the MQSST problem, we also consider an

optional Phase 3, in which a consensus tree is computed on the optimal trees found in Phase

2 using SIESTA [160], a method that can be used with dynamic programming methods

(such as SVDquest) that solve constrained optimization problems. As shown in [160], the

use of SIESTA with ASTRAL and FastRFS to compute the strict consensus tree typically

results in an improvement in overall topological accuracy, suggesting that SIESTA might

also improve SVDquest*.

Phase 1: computing the set Q of quartet trees. Phase 1 (the quartet tree estimation

phase) computes an unrooted binary tree for every set of four species. For each set of four

species, we use SVDquartets as implemented in PAUP* to select the best of the three possible

quartet trees, and we refer to the set of all quartet trees computed in this way by Q. In

some cases, SVDquartets will not return a tree on a set of four species because the scores

are too close (e.g., this can happen when there are too few variable sites).

Phase 2: computing an optimal species tree from using Q. Phase 2 (the species

tree estimation phase) uses the quartet trees computed in Phase 1, and attempts to find an

optimal solution to the MQSST problem. Since MQSST is NP-hard, algorithms for finding

104

the globally optimal solution are not scalable. Hence, SVDquest typically operates in a

mode where instead of searching for a globally optimal tree, it finds an optimal tree within

a constrained search space.

SVDquest has three modes: unconstrained, constrained-basic, and constrained-enhanced.

The unconstrained mode does not constrain the search space at all and hence is the most

computationally intensive; it can only be used when the number of species is small enough

(up to 15-20 taxa). In the two constrained modes, the search space is defined by a set X of

bipartitions on the species set, and the constraint is that the output species tree must draw

its bipartitions from X. Therefore, if X is all possible bipartitions on the species set then

there is no constraint on the set of species trees that can be returned; otherwise, there is a

reduction in the set of species trees that can be considered during the search for the best

tree.

To compute the basic set X of allowed bipartitions, SVDquest uses the following protocol.

First, it computes maximum likelihood trees on every gene; then, it runs a subroutine in

ASTRAL-II [105] to compute a set X of bipartitions that is guaranteed to include all the

bipartitions from the input gene trees. The enhanced set of allowed bipartitions is computed

by adding bipartitions to X. For example, we can add the bipartitions in the SVDquar-

tets+PAUP* tree to X; we refer to this constrained-enhanced variant as SVDquest*. Since

SVDquest exactly solves the MQSST optimization problem within the constrained search

space, the SVDquest* tree is guaranteed to have a MQSST score that is at least as good as

the SVDquartets+PAUP* tree’s MQSST score.

Phase 3: Returning the strict consensus of the set of optimal trees computed in

Phase 2. As noted, there can be more than one species tree that has an optimal MQSST

score within the constrained space. Hence we provide an optional Phase 3 in which we use

SIESTA to compute the strict consensus of all the trees in that set.

SVDquest and SVDquartets+PAUP* are techniques that compute a set Q of quartet

trees using SVDquartets and then attempt to find a species tree that satisfies the maximum

number of quartet trees in Q. The key difference between these methods is how each it

solves the MQSST problem. SVDquest and its variants use a polynomial time dynamic

programming algorithm from [30] to provably solve MQSST within a constrained search

space; in contrast, PAUP* uses other techniques to attempt to solve MQSST that do not

provide guarantees of optimality within any constrained search space, but have the benefit

of not being explicitly constrained to a subset of the search space.

105

7.2.2 Datasets

We explored performance on 10-, 15-, and 50-taxon simulated datasets. We also analyzed a

mammalian biological dataset with 37 species that was first studied in [139], and later used

to compare coalescent-based methods [18, 106, 140]. The mammalian dataset originally

included 447 loci, but 21 of these had mislabeled sequences and two were clear outliers [106],

so we excluded them from our analysis. This left 424 loci and a total of 1,338,678 sites in

the concatenated alignment. We obtained the alignments and RAxML gene trees from [139],

and we obtained the CA-ML tree on the 424 loci from [106]. The average bootstrap support

on the gene trees was 71%. The main questions are the positions of two groups: Chiroptera

and Scandentia.

The simulated datasets were derived from prior publications, described individually below.

Each dataset has model gene trees that evolve down model species trees under the multi-

species coalescent, and indel-free sequence alignments evolved down those gene trees under

standard site evolution models. Each gene is a proper c-gene (i.e., there is no recombination

within any gene), and unless specified otherwise, the strict molecular clock assumption is

not enforced. In some cases, we combined sequence data from different genes together (to

simulate failure to detect recombination) by concatenating sequences simulated on gene trees

with different topologies; this produces a set of “supergene” datasets.

Statistics for the simulated c-gene datasets are presented in Table 7.1. To characterize the

level of ILS, we use the AD value, which is the average normalized Robinson-Foulds (RF)

distance [121] between model gene trees and model species trees (i.e., the percentage of the

non-trivial bipartitions in the true gene tree that do not appear in the true species tree). We

also report gene tree estimation error (GTEE), which is the average normalized RF distance

between model gene trees and estimated gene trees.

The 50-taxon datasets were simulated with SimPhy [96] and were originally presented in

[105]. These datasets have 50 taxa, 1000 loci, and 300-1500 sites per locus. The original

versions of these datasets have 200 taxa, but 150 taxa have been randomly removed from each

replicate to reduce the time and memory requirements of the analysis. This dataset contains

three model conditions with three different ILS levels of 13%, 33%, and 72% AD. Loci were

originally of variable length, but we reduced the sequence lengths for these experiments

to 25, 50, 100, and 300 sites. These datasets have a speciation rate of 10−6, resulting in

speciation close to the tips of the model trees (i.e., recent divergence). Sequences evolved

with a GTR+Gamma model and no molecular clock.

There were 26 model conditions (all with very high ILS) on which SVDquartets+PAUP*

and SVDquest failed to return a tree. In these cases, PAUP* reported that there were

106

Number of taxa 50 15 10
Number of loci 50, 100, 500, 1000 50, 100, 1000 25, 50, 200

Locus length 25, 50, 100, 300 10, 100, 300 10, 50, 100
GTEE 15%-100% 15%-72% 40%-75%

AD% (ILS) 13%, 33%, 72% 82% 43%, 84%
Number of replicates 40-50 10 10

Strict molecular clock? No Yes No

Table 7.1: Summary of simulated datasets. GTEE is gene tree estimation error (i.e., the
average normalized Robinson-Foulds distance between the estimated and model gene trees).
AD% measures the average normalized Robinson-Foulds distance between the model gene
trees and the model species tree, and is due only to ILS.

“No informative quartets found”, and examining the sequences showed that there were very

parsimony-informative sites. Hence, we report results only on those replicates for which

all methods completed, a number that varies from 48 to 50 for each model condition. See

Section 7.5.1 for additional details.

The 15-taxon simulated datasets (from [16]) have very high ILS (82% AD), and have 1000

loci with 1000 sites evolved with a strict molecular clock using a GTR+Gamma model (i.e.,

the gene trees are ultrametric). Model species trees all have the same “caterpillar” topology,

and gene trees obey a strict molecular clock. We used 10, 100, and 1000 sites per locus,

with an average of 65%, 53%, and 18% GTEE, respectively. Each model condition has 10

replicates, and all of them completed successfully with all methods.

The 10-taxon simulated datasets (also from [16]) have two ILS levels (43% and 84% AD).

These datasets have 200 loci with 10, 50 and 100 sites per locus, and GTEE levels between

40% and 75%. Species trees were randomly generated under a Yule process, gene trees

are not ultrametric, and sequence data evolved under a GTR+Gamma model. Each model

condition has 20 replicates; however, as with the 50-taxon datasets, some replicates had too

few parsimony-informative sites, so that SVDquartets failed to compute any quartet trees.

This occurred for 10 replicates of each model condition (combination of ILS level, number of

genes, gene sequence length), and we report results for the other 10 replicates of each model

condition.

7.2.3 Species tree methods for comparison

We compared SVDquest* to ASTRAL v4.10.2 [105], ASTRID v1.4 [158], SVDquartets+PAUP*

as implemented in PAUP* v4.0a151 [149], and unpartitioned concatenated maximum likeli-

107

hood (CA-ML) under a GTR-GAMMA model using RAxML v8.2.6 [142]. The same version

of RAxML was used to estimate trees on gene sequence alignments and supergene sequence

alignments under a GTR-GAMMA model. We ran the Windows version of PAUP* using

WINE v1.6.2 due to its improved numerical routines compared to the Linux version. Exact

commands for all methods are supplied in the appendix.

7.2.4 Evaluation criteria

On the simulated datasets we use Dendropy [145] to evaluate estimated trees for topo-

logical accuracy. All model species trees are binary (i.e., fully resolved), but some of the

estimated species trees are not binary; hence, we report the average of the false positive and

false negative rates; this is identical to normalized Robinson-Foulds (RF) error rates [121]

when the estimated trees are binary.

On the mammalian biological dataset, we evaluated the estimated species trees using es-

tablished clades, taking branch support into account. For branch support on trees computed

using the summary methods and CA-ML, we used the local posterior probability branch sup-

port technique [132] in ASTRAL, which is based on the initial set of estimated gene trees

and has been shown to produce better estimates of the probability of a branch being accu-

rate than multi-locus bootstrapping [132]. Branch support of species trees computed using

site-based methods such as SVDquartets+PAUP* or CA-ML is commonly performed us-

ing non-parametric bootstrapping, but this approach is computationally intensive because

it requires the calculation of species trees for all the bootstrap replicates. For this reason,

we used a modified non-parametric bootstrap support technique described below (with 100

bootstrap replicates) to produce estimates of the branch support for the SVDquest* tree,

and we compare the branch support we obtained using this modified non-parametric boot-

strapping technique to the support we receive using the usual non-parametric bootstrapping

technique. The modification to non-parametric bootstrapping that we use is very simple,

and provides an approximation to the branch support that would be obtained using full

non-parametric bootstrapping. We compute the constraint set X of bipartitions using the

original dataset (i.e., not bootstrapped). Then, for each of the 100 bootstrap replicates, we

run SVDquartets to compute the quartet trees, and we run SVDquest on the quartet trees

computed by SVDquartets, using the constraint set X. In every other respect, the estima-

tion of branch support we use follows the same protocol as with the usual non-parametric

boostrapping procedure. Note that this approach has the benefit that for every bootstrap

replicate the quartet trees are based correctly on SVDquartets, and only differs from full

108

non-parametric bootstrapping in how the search space is constrained. Hence, this branch

support technique does not affect the MQSST score of any returned tree, and only constrains

which trees are considered permitted solutions.

7.2.5 Experiments

We ran six experiments to evaluate SVDquest* in comparison to SVDquartets+PAUP*

and other species tree estimation methods. We varied model conditions and used several

metrics for comparison.

Experiment 7.1: Comparing SVDquest* and SVDquartets+PAUP* on sim-

ulated c-genes with respect to MQSST scores. The goal of this experiment is to

determine whether SVDquest* finds better MQSST scores than SVDquartets+PAUP*. We

tested both methods on simulated and biological datasets and reported MQSST criterion

scores.

Experiment 7.2: Comparing coalescent-based species tree estimation methods

on simulated c-genes with respect to tree topology. In the second experiment, we

evaluated SVDquest*, SVDquartets+PAUP*, ASTRAL, and ASTRID, with respect to tree

topology accuracy on a wide range of simulated datasets where all genes are c-genes (i.e.,

for each gene, all the sites evolve down a common tree topology).

Experiment 7.3: Comparison of coalescent-based species tree methods on

multi-locus supergene datasets. In this experiment, we explored SVDquest*, SVDquar-

tets+PAUP*, ASTRAL, and ASTRID on multi-locus datasets where the c-genes are ran-

domly combined into supergenes (with the same number of c-genes), so that the assumption

that all the sites in a given locus evolve down the same tree is violated. This experiment is

motivated by the real-world challenge of failing to detect recombination events within gene

sequence alignments. We estimated ML trees on these supergene alignments, and then used

these “supergene trees” as the input for ASTRAL and ASTRID. Since SVDquartets com-

putes quartet trees using all the sites in the concatenated alignment, this does not impact

SVDquartets; it also does not change MQSST scores for any estimated species tree, as these

are based on the quartet trees computed using SVDquartets. Hence, the use of supergenes

does not impact SVDquartets+PAUP*. However, the use of supergenes instead of genes

impacts summary methods, since the supergene trees will not be equal to the gene trees.

It also affects SVDquest and SVDquest*, since it can change the constraint space that it

computes using ASTRAL.

Experiment 7.4: Comparison of coalescent-based methods to CA-ML on sim-

109

ulated datasets. In this experiment, we compared CA-ML to SVDquest*, ASTRAL,

and ASTRID on all simulated datasets with respect to the normalized Robinson-Foulds

topological error rates.

Experiment 7.5: Comparison of coalescent-based methods on a mammalian

biological dataset. We compare the SVDquest* tree on the mammalian biological

dataset to trees computed using SVDquartets+PAUP*, ASTRAL, and ASTRID (all three

trees computed by us), as well as to a concatenation analysis (obtained from [106]), with

respect to branch support for established and proposed clades.

Experiment 7.6: Running time. We explore running time for SVDquartets+PAUP*,

SVDquest, SVDquest*, and ASTRAL on the 37-taxon mammalian biological dataset.

7.3 RESULTS

7.3.1 Results for Experiment 7.1

Experiment 7.1 compares SVDquest, SVDquest* and SVDquartets+PAUP* with respect

to the MQSST scores they find. Although SVDquest does not always find better scores than

SVDquartets+PAUP*, by design SVDquest* is guaranteed to find scores that are at least

as large as those found by SVDquartets+PAUP*. In this section, we report the number of

cases where SVDquest* finds a better score than SVDquartets+PAUP* and the number of

cases where they have the same score; we also show the distribution of GTEE on the various

datasets.

On the 50-taxon data, shown in Figure 7.1, a few basic trends are clear. SVDquest* has

a much greater advantage over SVDquartets+PAUP* at higher ILS levels, almost always

finding better scores on the highest ILS model condition. SVDquest* also has a larger

advantage when there are 50 or 100 genes, as opposed to 500 or 1000 genes. Generally,

the advantage of SVDquest*’ over SVDquartets+PAUP* improves as gene tree estimation

error (GTEE) increases, until the very highest GTEE rates where the advantage starts

to fall. See also figures 7.14-7.16 for histograms of differences in MQSST scores between

SVDquartets+PAUP* and SVDquest* on these datasets.

Results on the 15-taxon data (AD=82%), shown in Figure 7.2, also show that SVDquest*

has a bigger advantage when there are fewer genes in the dataset. When there are 1000

genes, SVDquest* and SVDquartets+PAUP* almost always find trees with the same score,

but SVDquest* frequently finds better trees when there are 50 or 100 genes. The impact of

GTEE on the advantage with respect to MQSST score is less obvious on 50- and 100-gene

datasets, but this may be because the range of GTEE is less than in the 50-taxon data.

110

0

20

40

60
Co

un
t

13% AD, 50 genes 13% AD, 100 genes 13% AD, 500 genes 13% AD, 1000 genes

0

20

40

60

Co
un

t

33% AD, 50 genes 33% AD, 100 genes 33% AD, 500 genes 33% AD, 1000 genes

0.0 0.2 0.4 0.6 0.8 1.0
Gene Tree Estimation Error

0

20

40

60

Co
un

t

72% AD, 50 genes

0.0 0.2 0.4 0.6 0.8 1.0
Gene Tree Estimation Error

72% AD, 100 genes

0.0 0.2 0.4 0.6 0.8 1.0
Gene Tree Estimation Error

72% AD, 500 genes

0.0 0.2 0.4 0.6 0.8 1.0
Gene Tree Estimation Error

72% AD, 1000 genes

Figure 7.1: Results for Experiment 7.1 on 50-taxon data, showing how often SVDquest*
finds better MQSST scores than SVDquartets+PAUP*. Pink sections of bars represent
replicates where SVDquest* finds a better scoring tree; blue sections represent replicates
where both methods find the same scoring tree. It is impossible for SVDquartets+PAUP*
to find a better scoring tree than SVDquest*. Total heights of bars represent distribution
of gene tree estimation error (maximum possible value is 1.0) in datasets. Each subfigure
shows results for 200 replicates, with the exception of the AD=72% datasets, which have
195-200 replicates each.

The results on the 10-taxon data, shown in Figure 7.3, once again show that increasing the

ILS level or decreasing the number of genes increases the frequency with which SVDquest

finds a tree with a better MQSST score than SVDquartets+PAUP*. Like the 15-taxon

datasets, which have similar levels of GTEE, the relationship between GTEE and the relative

performance of the two methods on these datasets is less clear than on the 50-taxon datasets.

7.3.2 Results for Experiment 7.2

Experiment 7.2 evaluates SVDquest*-strict (i.e., the strict consensus of all optimal trees

found by SVDquest*, computed using SIESTA) in terms of topological accuracy on simulated

c-gene datasets, and also compares it to ASTRID, ASTRAL, and SVDquartets+PAUP. The

comparison between SVDquest*-strict and SVDquartets+PAUP* on the 50-taxon datasets

(Figures 7.17-7.20) shows that although SVDquest*-strict and SVDquartets+PAUP* have

111

0.0 0.2 0.4 0.6 0.8 1.0
Gene Tree Estimation Error

0

5

10

Co
un

t

50 genes

0.0 0.2 0.4 0.6 0.8 1.0
Gene Tree Estimation Error

100 genes

0.0 0.2 0.4 0.6 0.8 1.0
Gene Tree Estimation Error

1000 genes

Figure 7.2: Results for Experiment 7.1 on 15-taxon data with 82% AD (high ILS), show-
ing how often SVDquest* finds a better scoring tree than SVDquartets+PAUP*. Pink
sections of bars represent replicates where SVDquest* finds a better scoring tree; blue sec-
tions represent replicates where both methods find the same scoring tree. It is impossible
for SVDquartets+PAUP* to find a better scoring tree than SVDquest*. Total heights of
bars represent distribution of gene tree estimation error (maximum possible value is 1.0) in
datasets. Each subfigure shows results for 30 replicates.

0

5

10

Co
un

t

25 genes, 43% AD 50 genes, 43% AD 200 genes, 43% AD

0.0 0.2 0.4 0.6 0.8 1.0
Gene Tree Estimation Error

0

5

10

Co
un

t

25 genes, 84% AD

0.0 0.2 0.4 0.6 0.8 1.0
Gene Tree Estimation Error

50 genes, 84% AD

0.0 0.2 0.4 0.6 0.8 1.0
Gene Tree Estimation Error

200 genes, 84% AD

Figure 7.3: Results for Experiment 7.1 on 10-taxon data, showing how often SVDquest* finds
a better scoring tree than SVDquartets+PAUP*. Pink sections of bars represent replicates
where SVDquest* finds a better scoring tree; blue sections represent replicates where both
methods find the same scoring tree. It is impossible for SVDquartets+PAUP* to find a
better scoring tree than SVDquest*. Total heights of bars represent distribution of gene
tree estimation error (maximum possible value is 1.0) in the datasets. Each subfigure shows
results for 30 replicates.

112

similar accuracy, SVDquartets+PAUP* has an advantage over SVDquartets+PAUP*.

A comparison between SVDquest*-strict, ASTRAL, and ASTRID on the 50-taxon datasets

with 500 genes is shown in Figure 7.4 (see Figure 7.22 for other numbers of genes). These

datasets do not evolve under a strict molecular clock and vary in ILS levels (reflected in AD

percentages), GTEE, and number of genes. ASTRAL and ASTRID have similar accuracy

levels under most conditions. At low levels of GTEE, all methods are fairly accurate. With

high GTEE, SVDquest*-strict is much more accurate than ASTRAL and ASTRID. At high

levels of ILS and low GTEE, ASTRAL and ASTRID are more accurate than SVDquest*-

strict. Across all model conditions, the crossover point where SVDquest*-strict becomes

more accurate is approximately 50% GTEE. SVDquest*-strict also has a bigger advantage

over ASTRAL and ASTRID when ILS levels are lower and there are more genes. In the

most extreme case with close to 100% GTEE, 13% AD, and 1000 genes (see Figure 7.22),

ASTRAL has approximately 75% estimation error while SVDquest*-strict has only 10%

estimation error.

Figure 7.5 shows results on the 15-taxon datasets (AD=82%), which evolve under a strict

molecular clock. ASTRAL is the most accurate method in all cases. The comparison between

SVDquest*-strict and ASTRID shows that SVDquest*-strict has an advantage for the model

conditions with largest number of genes (1000) and highest GTEE (40-60%), ASTRID has an

advantage for the model conditions with fewest genes (50-100) and lowest GTEE (0-20%),

and otherwise the two methods have similar species tree estimation error. However, this

dataset has a relatively limited range of gene tree error - no replicate has greater than 60%

average GTEE, which is the model condition where we would expect the best performance

from SVDquest*-strict.

Results on the 10-taxon data (which do not evolve under a strict molecular clock) are

shown in Figure 7.6. All three methods have similar levels of accuracy under most con-

ditions. However, ASTRAL frequently returns slightly more topologically accurate trees

than the other two methods, and ASTRAL and ASTRID are somewhat more accurate than

SVDquest*-strict when there is low GTEE. Like the 15-taxon data, this model condition has

no replicates with greater than 60% average GTEE.

7.3.3 Results for Experiment 7.3

Experiment 7.3 compares SVDquest*-strict to ASTRAL, ASTRID, and SVDquartets+PAUP*

on supergene datasets (i.e., when loci are not recombination-free). We report both MQSST

scores and topological accuracy.

113

0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0
Gene tree estimation error

0.0

0.2

0.4

0.6

Sp
ec

ie
s t

re
e

es
tim

at
io

n
er

ro
r 13% AD, 500 genes

Method
SVDquest*-strict
ASTRID
ASTRAL

0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0
Gene tree estimation error

33% AD, 500 genes

0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0
Gene tree estimation error

72% AD, 500 genes

Figure 7.4: Species tree topological error rates (maximum possible is 1.0) for 50-taxon
simulated data, as a function of percent gene tree estimation error (maximum possible is
1.0); the first two figures show results for 200 replicates and the last figure shows results for
198 replicates. Error bars show standard error.

0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0
Gene tree estimation error

0.0

0.2

0.4

0.6

Sp
ec

ie
s t

re
e

es
tim

at
io

n
er

ro
r 50 genes

Method
SVDquest*-strict
ASTRID
ASTRAL

0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0
Gene tree estimation error

100 genes

0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0
Gene tree estimation error

1000 genes

Figure 7.5: Species tree topological error rates (maximum possible is 1.0) for 15-taxon
simulated data (AD=82%), as a function of gene tree estimation error (maximum possible
is 1.0); each subfigure shows results on 30 replicates. Error bars show standard error.

114

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Sp
ec

ie
s t

re
e

es
tim

at
io

n
er

ro
r 42% AD, 25 genes

Method
SVDquest*-strict
ASTRID
ASTRAL

84% AD, 25 genes

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Sp
ec

ie
s t

re
e

es
tim

at
io

n
er

ro
r 42% AD, 50 genes 84% AD, 50 genes

0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0
Gene tree estimation error

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Sp
ec

ie
s t

re
e

es
tim

at
io

n
er

ro
r 42% AD, 200 genes

0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0
Gene tree estimation error

84% AD, 200 genes

Figure 7.6: Species tree topological error rates (maximum possible is 1.0) for 10-taxon
simulated data, as a function of gene tree estimation error (maximum possible is 1.0); each
subfigure shows results for 30 replicates. Error bars show standard error.

115

The comparison between SVDquartets+PAUP* and SVDquest*-strict shows that SVDquest*-

strict typically matches or improves on SVDquartets+PAUP* with respect to topological ac-

curacy (Figures 7.23-7.24). In fact, the advantage of using SVDquest*-strict over SVDquar-

tets+PAUP* is greater on the supergene datasets than on c-gene datasets. In what follows,

we compare SVDquest*-strict to ASTRAL and ASTRID.

Results on the 50-taxon datasets are shown in Figure 7.7. The recombination-free loci

have only 25 sites; all other lengths indicate supergenes obtained by combining c-genes. On

all the model conditions with 25-site loci, SVDquest*-strict has a substantial advantage over

ASTRID and ASTRAL. On the lowest ILS model condition, SVDquest*-strict retains the

same accuracy as the c-genes are combined into supergenes. However, as the number of

c-genes per supergene increases, ASTRAL and ASTRID become more accurate, eventually

equaling or improving over SVDquest*-strict. For example, on the 33% AD model condition,

SVDquest*-strict has an advantage when the supergenes have at most two c-genes, but then

only ties with ASTRAL and ASTRID when there are more c-genes per supergene. On the

72% AD model condition, SVDquest*-strict retains an advantage regardless of the number

of c-genes per supergene, but the advantage decreases with the length of the supergene.

Results on the 15-taxon datasets are seen in Figure 7.8. The c-genes have only 10 sites;

all other lengths indicate supergenes obtained by binning together different c-genes. At the

longest supergenes with 1000 sites (each composed of 100 recombination-free loci), ASTRAL

and ASTRID find more accurate trees than SVDquest*-strict, but at lower levels of binning,

SVDquest*-strict finds trees that are more accurate than ASTRID but less accurate than

ASTRAL. ASTRAL finds slightly more accurate trees when the loci are recombination-free,

while ASTRID improves substantially with increased binning, especially when there are 1000

loci. The impact of binning on SVDquest*-strict is minimal.

Relative performance on the 10-taxon data, shown in Figure 7.9, is similar to the 15-

taxon data. ASTRAL typically becomes less accurate at higher levels of binning, while

SVDquest*-strict is relatively unaffected, and ASTRID sometimes improves. These trends

are more evident at the 84% AD level; at the 43% AD level, there is relatively little change

with increased binning.

7.3.4 Results for Experiment 7.4

Experiment 7.4 compares coalescent-based methods to unpartitioned concatenation using

RAxML (i.e., CA-ML) on simulated datasets. On the 50-taxon data, seen in Figure 7.10 for

500 gene datasets (see Figure 7.22 for other numbers of genes), CA-ML and SVDquest*-strict

116

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r
13% AD, 50 genes

Method
SVDquest*-strict
ASTRID
ASTRAL

0.0

0.2

0.4

0.6

0.8

1.0 13% AD, 100 genes

0.0

0.2

0.4

0.6

0.8

1.0 13% AD, 500 genes

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

33% AD, 50 genes

0.0

0.2

0.4

0.6

0.8

1.0 33% AD, 100 genes

0.0

0.2

0.4

0.6

0.8

1.0 33% AD, 500 genes

25 50 100 300
Supergene length

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

72% AD, 50 genes

25 50 100 300
Supergene length

0.0

0.2

0.4

0.6

0.8

1.0 72% AD, 100 genes

25 50 100 300
Supergene length

0.0

0.2

0.4

0.6

0.8

1.0 72% AD, 500 genes

Figure 7.7: Species tree error rates (maximum possible is 1.0) on 50-taxon simulated data
using supergenes (concatenations of c-genes) that may not be recombination-free. Error
bars represent standard error of the mean. The c-genes in this experiment are 25 sites
long, and multiple loci were concatenated to form supergenes. Thus, the 25-site genes have
sites coming from one c-gene, the 50-site genes have sites coming from two c-genes, and
the 100-site genes have sites coming from four c-genes. Each data point in a particular
subfigure represents an analysis on the same number of sites. Each data point corresponds
to an average over 50 replicates, except for the AD=72% 25-site 50-gene data point, which
corresponds to 48 replicates, and 9 other AD=72% data points, each of which corresponds
to 49 replicates.

117

10 100 1000
Supergene length

0.0

0.2

0.4

0.6

0.8

1.0
Er

ro
r

50 genes

Method
SVDquest*-strict
ASTRID
ASTRAL

10 100 1000
Supergene length

0.0

0.2

0.4

0.6

0.8

1.0 100 genes

10 100 1000
Supergene length

0.0

0.2

0.4

0.6

0.8

1.0 1000 genes

Figure 7.8: Species tree error rates (maximum possible is 1.0) on 15-taxon simulated data
(AD=82%) for three different numbers of c-genes, then binned into supergenes (concatena-
tions of c-genes); results shown are averaged over 10 replicates with error bars representing
standard error of the mean. The c-genes in this experiment have 10 sites, so that longer loci
are supergenes. Each data point in a particular subfigure represents an analysis on the same
total number of sites.

tend to perform similarly, and better than ASTRID and ASTRAL when GTEE is greater

than 60%. On the lower ILS (13% AD) condition, CA-ML is somewhat more accurate than

SVDquest*-strict when there are fewer genes (Figure 7.22), but this advantage is reduced

for 500 or 1000 genes. At the highest ILS level, CA-ML is actually less accurate than

SVDquest*-strict when there are few genes and low GTEE, but both of these methods are

less accurate than ASTRAL and ASTRID.

On the 15-taxon data (AD=82%), shown in Figure 7.11, ASTRAL is always the most

accurate method. ASTRID performs worse than CA-ML and SVDquest*-strict when there

are 50 or 100 genes. With 1000 genes, all methods perform well, but ASTRAL and ASTRID

slightly outperform CA-ML and SVDquest*-strict.

On the 10-taxon data, shown in Figure 7.12, CA-ML is typically the best method on the

43% AD data. CA-ML slightly outperforms the other methods except when there are 50

genes and low GTEE, in which case ASTRAL and ASTRID perform slightly better. On

the 84% AD data, SVDquest*-strict and CA-ML are the worst performing methods, and

ASTRAL is typically the best method.

We calculated the rank correlation coefficient between the MQSST scores and topological

errors for PAUP* and SVDquest* in order to determine whether a better MQSST score was

correlated with a topologically more accurate tree. We found that there was a statistically

significant correlation (P < 0.05) with a Spearman rank correlation coefficient of ρ = 0.32

for the 50-taxon datasets.

118

0.0

0.2

0.4

0.6

0.8

1.0
Er

ro
r

25 genes; 43% AD
Method

SVDquest*-strict
ASTRID
ASTRAL

0.0

0.2

0.4

0.6

0.8

1.0 50 genes; 43% AD

0.0

0.2

0.4

0.6

0.8

1.0 200 genes; 43% AD

10 50 100
Supergene length

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

25 genes; 84% AD

10 50 100
Supergene length

0.0

0.2

0.4

0.6

0.8

1.0 50 genes; 84% AD

10 50 100
Supergene length

0.0

0.2

0.4

0.6

0.8

1.0 200 genes; 84% AD

Figure 7.9: Species tree error rates (maximum possible is 1.0) on 10-taxon simulated data
using supergenes (concatenations of c-genes), averaged over 10 replicates; error bars repre-
sent standard error of the mean. The c-genes in this experiment have 10 sites, and longer
sequences are supergenes. Each data point in a particular subfigure represents an analysis
on the same number of sites.

7.3.4.1 Results for Experiment 7.5

We compared SVDquest* to SVDquartets+PAUP*, CA-ML, ASTRAL, and ASTRID

trees on the mammalian biological dataset. CA-ML, ASTRAL, and ASTRID all return

the same tree, which recovers the major accepted mammalian clades and the relationships

between them, but SVDquest* returns a single tree that is different from the tree found

by the other methods. See Figure 7.13 for the SVDquest* tree with bootstrap branch sup-

port, and Figure 7.25 for the ASTRAL/ASTRID/CA-ML tree with ASTRAL branch sup-

port. The SVDquest* tree has very high bootstrap branch support on nearly all the edges

(100% support on all but four edges and 99% support on one edge), and the ASTRAL/CA-

ML/ASTRID tree has over 90% support using ASTRAL’s local posterior probability for all

of its branches.

The SVDquest* tree agrees with SVDquartets+PAUP* but differs from the tree found us-

119

ing CA-ML, ASTRID, and ASTRID in two ways: the placement of tree shrews (Scandentia)

and the topology of the clade Scrotifera with respect to the placement of bats (Chiroptera).

CA-ML, ASTRAL and ASTRID place Scandentia as sister to Glires, while SVDquest* places

Scandentia as sister to Primates. Both these placements have 100% support (bootstrap sup-

port for the SVDquest* tree, local support for the ASTRAL/CA-ML/ASTRID tree).

Scrotifera consists of three major clades - Chiroptera (bats), Cetartiodactyla (even-toed

ungulates and cetaceans), and Zooamata (odd-toed ungulates and carnivores). CA-ML,

ASTRAL and ASTRID resolve this clade with Chiroptera as the outgroup with 90% local

support. SVDquest* resolves this with Zooamata as the outgroup, but with very low support

(only 23% bootstrap support using the modified bootstrapping technique).

The existing literature presents varied hypotheses for Scrotifera. The SVDquest* analysis

presents support for a clade that consists of Cetartiodactyla and Chiroptera, which has

been presented by [67]. The CA-ML, ASTRAL, and ASTRID analyses present support for

Fereuungulata, which contains Cetartiodactyla and Zooamata. More recent analyses [180]

have found increased support for Fereuungulata over Cetartiodactyla+Chiroptera, but the

phylogeny is not yet settled. However, the bootstrap support for Cetartiodactyla+Chiroptera

in the SVDquest* tree is quite low (only 23%), and collapsing this edge makes the tree

compatible with both of these two possibilities. SVDquest* establishes Zooamata with 69%

support, which is only moderate. Collapsing edges in the SVDquest* tree with less than

75% bootstrap support resolves Cetartiodactyla, Chiroptera, Carnivora, and Perissodactyla

as clades, but does not determine a relationship between them.

Finally, we also performed the standard non-parametric bootstrapping analysis on the

SVDquest* tree, to evaluate the impact of using the modified bootstrapping technique for

defining branch support. The results from the two techniques were nearly identical. All but

three of the branches in the SVDquest* tree received exactly the same support using both

techniques (91% for one branch, 100% for all the others). The differences in the support for

the remaining three branches were very small. One branch that had 99% using the modified

technique had 100% using the standard technique. The remaining two branches had support

less than 75% using the modified bootstrapping technique, and their support changed by at

most 5%: Ceteratiodactyla+Chiroptera received branch support of 23% using the modified

technique and 19% using the standard technique, Zoomata received 69% support using the

modified technique and 74% using the standard technique. Thus, the modified bootstrapping

technique to provide branch support produces branch support values that are very close to

that produced using the standard bootstrapping technique, while being much faster.

120

0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0
Gene tree estimation error

0.0

0.2

0.4

0.6

Sp
ec

ie
s t

re
e

es
tim

at
io

n
er

ro
r

13% AD, 500 genes
Method

SVDquest*-strict
ASTRID
ASTRAL
CA-ML

0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0
Gene tree estimation error

33% AD, 500 genes

0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0
Gene tree estimation error

72% AD, 500 genes

Figure 7.10: Species tree topological error rates (maximum possible is 1.0) for 50-taxon
simulated data, as a function of gene tree estimation error (maximum possible is 1.0). Each
figure shows means and standard error; results in the first two subfigures are for 200 replicates
and 198 replicates for the third subfigure.

7.3.4.2 Experiment 7.6: Running Time

We compare the (sequential) running times of ASTRAL, SVDquest*, and SVDquar-

tets+PAUP* on the 37-species mammalian dataset with 424 loci and a total of 1,338,678

characters. SVDquartets+PAUP* completed in under 4 minutes. ASTRAL and ASTRID

both finished in just under 3.5 hours (less than one second difference), of which all but 4 sec-

onds was spent computing ML gene trees. SVDquest* returned only one tree, and completed

in under 3 hours and 32 minutes, which was just seconds more than what was needed to

compute the ASTRAL and SVDquartets+PAUP* trees. The detailed running time analysis

for SVDquest* is as follows:

• Computing maximum likelihood gene trees: 210 minutes

• Applying ASTRAL to the set of maximum likelihood gene trees, to obtain the con-

straint set of bipartitions: 6 seconds.

• Using PAUP* to compute SVDquartets quartet weights: 3 minutes.

• Applying PAUP* to the quartet trees to return the species tree: < 1 second.

• Running the dynamic programming within SVDquest* to find the optimal tree: 1

second.

Thus, the running time for SVDquest* (and for SVDquest*-strict) is essentially no different

from that of running ASTRAL or ASTRID, and is dominated by the time used to com-

pute ML gene trees. Also, SVDquartets+PAUP* is much faster than SVDquest* because

SVDquartets+PAUP* does not need to compute gene trees.

121

0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0
Gene tree estimation error

0.0

0.2

0.4

0.6

Sp
ec

ie
s t

re
e

es
tim

at
io

n
er

ro
r 50 genes

Method
SVDquest*-strict
ASTRID
ASTRAL
CA-ML

0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0
Gene tree estimation error

100 genes

0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0
Gene tree estimation error

1000 genes

Figure 7.11: Species tree topological error rates (maximum possible is 1.0) for 15-taxon
simulated data (AD=82%), as a function of gene tree estimation error (maximum possible
is 1.0). Error bars show standard error over 10 replicates.

7.4 DISCUSSION

MQSST scores. By design, it is impossible for SVDquest* to produce a tree with

a worse MQSST score than SVDquartets+PAUP*. Hence, the question is how much bet-

ter SVDquest* is than SVDquartets+PAUP* at finding good MQSST scores, and how the

different model conditions affect the frequency with which SVDquest* improves on SVDquar-

tets+PAUP*.

Our data show that SVDquest* often finds better scores than SVDquartets+PAUP*, but

the frequency of this improvement depends on the model conditions, and is clearly related

to the difficulty of the MQSST problem instance. Obviously, if SVDquartets+PAUP* finds

an optimal solution, there is no better solution for SVDquest* to find. More generally,

conditions that make it easy to find near-optimal MQSST using PAUP*’s heuristic search

strategies will make it difficult for SVDquest* to do better than SVDquartets+PAUP*.

ILS levels and number of genes both impact the relative performance, with an increasing

advantage to SVDquest* over SVDquartets+PAUP* as ILS level increases or as the number

of genes decreases. Both these trends are consistent with the hypothesis that easy conditions

tend to reduce the advantage of SVDquest* over SVDquartets+PAUP* at finding good

solutions to MQSST. The impact of GTEE is more complicated. Below about 30% GTEE,

SVDquartets+PAUP* often finds a good MQSST score, so there is less room for SVDquest*

to find an improvement. Above approximately 80% GTEE, SVDquartets+PAUP* might not

find a good solution, but the gene trees have so much error that the constraint set computed

by SVDquest* does not include parts of the solution space where better trees can be found.

However, under other conditions (i.e., when GTEE is neither extremely low or extremely

high), SVDquest* tends to produce better MQSST scores than SVDquartets+PAUP*.

These observations provide insights into the impact of GTEE on SVDquest*. It is well

known that summary methods, such as ASTRAL and ASTRID, directly rely on estimated

gene trees, and compute species trees based on summary statistics on the gene trees - quartet

122

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Sp
ec

ie
s t

re
e

es
tim

at
io

n
er

ro
r 25 genes, 42% AD

Method
SVDquest*-strict
ASTRID
ASTRAL
CA-ML

25 genes, 84% AD

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Sp
ec

ie
s t

re
e

es
tim

at
io

n
er

ro
r 50 genes, 42% AD 50 genes, 84% AD

0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0
Gene tree estimation error

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

Sp
ec

ie
s t

re
e

es
tim

at
io

n
er

ro
r 200 genes, 42% AD

0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0
Gene tree estimation error

200 genes, 84% AD

Figure 7.12: Species tree topological error rates (maximum possible is 1.0) for 10-taxon
simulated data, as a function of gene tree estimation error (maximum possible is 1.0). Error
bars show standard error over 10 replicates.

123

distributions or average internode distances. In contrast, gene tree estimation error only

impacts how SVDquest* constrains the search space, and does not impact the criterion scores

of any trees it can examine. Furthermore, the only real problem with using poorly estimated

gene trees occurs when all the estimated gene trees are poor – because then the bipartitions

of the true species tree may not end up in the constraint set. Adding bipartitions from poor

gene trees to the constraint set expands the search space and hence increases the running

time, but will never reduce the criterion score produced by SVDquest*. This suggests a

general strategy of adding estimated species trees to the constraint set, even those that are

not likely to be highly accurate; these expand the search space for SVDquest*, and are useful

as long as they have a positive probability of containing a bipartition from a higher-scoring

tree.

Species tree accuracy. A comparison between SVDquartets+PAUP* and SVDquest*-

strict with respect to topological accuracy reveals that generally the differences are small,

but that when the trees are different there is usually an improvement obtained by using

SVDquest*-strict. The difference in accuracy is often small, but can be large (i.e., up to

10-15% in normalized RF). Hence, SVDquest*-strict provides an advantage (although slight)

over SVDquartets+PAUP* in terms of species tree topology estimation.

The relative performance of ASTRAL and ASTRID in our study generally favored AS-

TRAL, in the sense that although the two methods were often very close in accuracy (and

sometimes had identical accuracy), ASTRID was more impacted by GTEE than ASTRAL,

and so was less accurate for the conditions with very short loci.

Both summary methods had very good accuracy – outperforming the other methods –

when GTEE was sufficiently low and ILS was sufficiently high. However, CA-ML had the

best accuracy under sufficiently low ILS levels, and even had the best accuracy under high

ILS levels when GTEE was sufficiently high. SVDquest*-strict was less accurate than AS-

TRAL and ASTRID when GTEE was sufficiently low, but was as accurate as ASTRID and

ASTRAL, and sometimes more accurate, when GTEE was very high.

Finally, although CA-ML typically dominated SVDquest*-strict, there were a few 10-taxon

model conditions where SVDquest*-strict improved on the accuracy of CA-ML. Specifically,

on the 10-taxon model conditions with high ILS (84% AD), high GTEE, and at least 50

genes, SVDquest*-strict was slightly more accurate than CA-ML.

Comparison to prior studies. Several other studies (surveyed in [109]) have com-

pared coalescent-based methods and CA-ML under various simulated model conditions.

These studies made the same general observations about the relative performance between

the summary methods and CA-ML. Two prior studies [37, 109] have compared SVDquar-

tets+PAUP* to other methods, including ASTRAL, NJst, ASTRID, and CA-ML; although

124

SVDquartets+PAUP* sometimes improved over the summary methods when GTEE was

sufficiently high, it was only rarely more accurate than CA-ML. Although we report re-

sults for SVDquest*-strict (which directly improves on SVDquartets+PAUP* for optimizing

MQSST trees), our findings are also consistent with these general trends.

It is not clear what factors influence the relative accuracy of SVDquartets-based methods

and CA-ML, although these studies as a whole suggest that when ILS is low enough, then

CA-ML should be more accurate than SVDquest*-strict and SVDquartets+PAUP*. The

total number of sites also seems to influence the relative performance, so that under high

enough ILS and a large enough number of sites, SVDquartets-based methods may have an

advantage over CA-ML. However, in our studies, when there was an advantage, it was small.

Experiment 7.3 suggests that species trees based on supergene trees (instead of on trees

computed on c-genes) can sometimes improve the accuracy of species trees computed using

SVDquest*-strict, as well as ASTRAL and ASTRID. The improvement for ASTRAL and

ASTRID is consistent with a similar study (but applied to different summary methods)

where supergenes are also based on random collections of genes [18]; furthermore, [81] also

observed that coalescent-based summary methods were generally robust to recombination

within loci. The improvement is perhaps surprising, since current theoretical justifications

for using summary methods require that the loci be recombination-free. Furthermore, [140]

argue that recombination-free loci may be extremely short (as few as 12 base pairs), and

point out that on this basis the theoretical justification of summary methods is flawed. This

concern is justified. However, from an empirical standpoint the results in these experiments

suggest that failure to break loci into recombination-free regions may not be a substantial

problem - and may even lead to improvements in some (but not all) cases.

Running time considerations. Our study also examined running time, and showed

that SVDquest*-strict was reasonably fast. However, SVDquest* needs ASTRAL and SVDquar-

tets+PAUP* to compute the constraint set, and so is necessarily more computationally in-

tensive than both SVDquartets+PAUP* and ASTRAL. By far the dominant part of the

running time for SVDquest*-strict is the gene tree estimation part, but this can be paral-

lelized (i.e., each gene tree can be calculated independently of the others). In particular, it

is feasible to run SVDquest*-strict on any dataset on which the full set of quartet trees can

be computed using SVDquartets, which is also easily parallelized.

Future Work. This study suggests multiple directions for future research. We used the

default setting within PAUP* and we computed quartet trees for every four leaves; these

choices are supposed to maximize the accuracy of SVDquartets+PAUP*, but it is possible

that some other way of combining quartet trees within PAUP* would result in topologically

more accurate trees. Similarly, quartet tree amalgamation is a basic algorithmic problem,

125

and SVDquartets+PAUP* could be improved through the use of new quartet amalgamation

methods. In addition, a branch-swapping heuristic could be developed that begins with the

SVDquest* tree and searches for better solutions to MQSST; thus, SVDquartets+PAUP*

can also be improved by incorporating SVDquest* as a starting tree. Furthermore, the basic

strategy within SVDquest* of using other species tree methods to add bipartitions to the

constraint set enables SVDquest to remain useful, even as PAUP* improves through the use

of new quartet amalgamation heuristics.

Another interesting direction would be to modify the optimization problem that we solve.

Thus, in the MQSST problem, there is exactly one tree on every four species, and each of

these quartet trees has unit weight. A weighted version of MQSST would be very interesting

to examine, where instead of taking the best topology for each four taxa, the three possible

topologies are weighted based on their SVD scores or on the statistical support for the

quartet tree [54].

SVDquest*-strict could also be compared to PoMo [46] and its improved version revPoMo

[133], which estimate species trees from multi-locus datasets under a model of site evolution

that allows each node in the tree to be polymorphic. While these methods have not been

shown to be statistically consistent under the MSC, they have shown very good accuracy on

simulated data, even when gene tree heterogeneity due to ILS is present, and so may provide

excellent accuracy in practice.

The accuracy of SVDquartets for computing quartet trees on biological datasets is not

well understood, and this also presents multiple opportunities for future research. For ex-

ample, this study examined the use of SVDquest* with multi-locus datasets, and assumed

that gene trees can be computed on each of the loci. However, the basic algorithmic strategy

in SVDquest can be used with SNP data as well, as we now describe. When the number of

species is small enough (i.e., at most 20), then SVDquest could be used in its unconstrained

mode: quartet trees can be computed using SVDquartets, and then a species tree optimizing

the MQSST score can be found using the dynamic programming algorithm in SVDquest.

For datasets with larger numbers of species, the constrained version can be used in several

ways. For example, the constraint set can be initialized to the bipartitions in the SVDquar-

tets+PAUP* tree, and then enlarged using standard CA-ML analyses, PoMo and revPomo

(as described earlier), trees computed on bootstrap replicates, or other techniques. Similarly,

our study examined SVDquest* on supergene datasets (formed by randomly concatenating

c-genes) and showed good accuracy, but true recombination will produce patterns that are

somewhat different, and the impact of recombination on SVDquest* and summary methods

needs to be explored.

Another limitation of our study is that the simulations we performed evolved sequences

126

only with substitutions (i.e., no insertions and deletions), and so alignment estimation was

not necessary; yet alignment error is quite common in practice, especially when the datasets

span large evolutionary timescales. Although alignment error also increases gene tree esti-

mation error, several studies have shown that accurate gene trees can be computed even in

the presence of some alignment error [88], so that it is possible that SVDquest* and other

site-based methods could be more negatively impacted than summary methods. Hence, the

impact of alignment error is an important aspect to consider. If alignment error negatively

impacts SVDquartets, it may be that approaches that select sites within alignments to use

within SVDquartets will be helpful.

Finally, although SVDquest*-strict is fast enough to be used on whole genome datasets

with moderately large numbers of species, we only tested SVDquest*-strict under conditions

where all quartet trees could be computed. Therefore, when the number of species is large

enough (i.e., 200 or more), then this becomes computationally infeasible. For this reason,

when the number of species is too large, PAUP* uses random sampling on the quartets,

uses SVDquartets to compute quartet trees, and then combines these quartet trees using its

quartet amalgamation heuristics. In its current implementation, SVDquest cannot be used

with such inputs, but the dynamic programming algorithm in SVDquest can be used with

any way of weighting quartet trees, and so could be used with sparsely sampled quartet trees

by assigning equal weights to all three quartet trees on any unsampled quartet. However,

sparse sampling of quartet trees for use with quartet amalgamation methods has been shown

to have reduced accuracy compared to analyses that use all the quartet trees [148], suggest-

ing that when the number of species makes SVDquest* inapplicable, summary methods or

concatenation may be a better choice than SVDquartets-based approaches. Thus, the best

modifications to SVDquest* to enable it to be used to good advantage on datasets with large

numbers of species will require some investigation.

7.5 SUMMARY

We presented SVDquest*, a site-based method for species tree estimation. Like the im-

plementation within PAUP* (which we refer to as SVDquartets+PAUP*), SVDquest* oper-

ates by computing quartet trees using SVDquartets, and then seeks a species tree with the

largest MQSST score. Unlike SVDquartets+PAUP*, which uses a heuristic search through

treespace, SVDquest* uses an exact algorithm for this optimization problem, and achieves

polynomial time by constraining the search space using a set of bipartitions on the species

set that it computes from the input. By design, SVDquest* is guaranteed to obtain a score

127

that is at least as large as the score produced using SVDquartets+PAUP*. In practice,

SVDquest* typically finds trees with better MQSST scores than SVDquartets+PAUP*, es-

pecially on datasets with higher levels of gene tree estimation error and lower numbers of

genes.

Our study evaluated SVDquest*-strict in comparison to two summary methods (ASTRAL

and ASTRID), SVDquartets+PAUP*, and CA-ML under a wide range of ILS levels, numbers

of species, and numbers of genes. Although our study was limited to conditions with at most

1000 genes and 50 species, we observed several significant and interesting trends. While

ASTRAL and ASTRID can be more accurate than SVDquest*-strict when GTEE is low,

SVDquest*-strict is typically more accurate than these summary methods when GTEE is

high, as GTEE impacts summary methods directly, introducing error into the summary

statistics they use to construct species trees. CA-ML is surprisingly accurate, and more

accurate than the summary methods under conditions with high GTEE (even when ILS is

high); interestingly, we also observed that sometimes SVDquest*-strict improves on CA-ML.

Thus, the relative accuracy between these methods depends on the model condition, and in

particular on the ILS and GTEE levels, but SVDquest*-strict provides advantages over the

other coalescent-based methods under several biologically realistic conditions.

This study also shows that SVDquest*-strict is fast enough to use on genome-scale biolog-

ical datasets. SVDquest*-strict includes calls to both ASTRAL and SVDquartets+PAUP*,

and is otherwise very fast; hence, any dataset on which both of these methods can be run can

be analyzed by SVDquest*-strict. Furthermore, a comparison of running times between these

methods and concatenation suggests that for large enough datasets, concatenation analyses

are likely to become computationally extremely expensive. For example, a concatenated

maximum likelihood analysis of the 48-species avian phylogenomics dataset with 14,446 loci

took more than 200 CPU years [72], while an analysis using the new implementation of

ASTRAL took only 32 hours after the gene trees were computed [177]. The calculation of

14,446 ML gene trees is expensive, but completes in well under a month (and is very fast

if parallelized) [72]. Hence, summary methods are generally computationally much more

feasible than concatenation analyses for large datasets, which means that SVDquest*-strict

is a computationally feasible approach for many genome-scale datasets.

This study adds to the current literature evaluating site-based approaches to species tree

estimation. Although we did not find that SVDquest*-strict improved on the competing

coalescent-based approaches under all conditions, our study shows that SVDquest*-strict

can provide improved accuracy under some conditions with high GTEE. This trend suggests

the potential for SVDquest*-strict to be particularly beneficial for genome-scale datasets,

where GTEE is likely to be high as a result of either ILS or variable rates of evolution

128

across the genome. In addition, SVDquest*-strict had very good accuracy on supergene

datasets, suggesting it may be robust to failure to detect recombination events. Finally, the

relative performance between SVDquest*-strict (and other methods based on SVDquartets),

summary methods, and CA-ML might well depend on the number of loci, so that SVDquest*-

strict (or other methods based on SVDquartets) could become the method of choice when

the number of loci and ILS level are both very large.

7.5.1 Cases where SVDquartets failed to return any quartet trees

On several model conditions, SVDquartets+PAUP* and SVDquest failed to return a tree;

a review of these model conditions shows that SVDquartets returned the error message:

“No informative quartets were found in SVDQuartets analysis.” Analysis of these datasets

showed that each one had a very small number of parsimony-informative sites. The failing

dataset with the most parsimony-informative sites had 13, and no dataset had more than

one site exhibiting all four states. See https://doi.org/10.6084/m9.figshare.5946736 for some

of these datasets.

129

Lesser_Hedgehog_Tenrec

Platypus

Pig

Orangutan

Kangaroo_Rat

Rabbit

Shrew

Macaque

Chimpanzee

Hyrax

Dog

Rat

Armadillos

Mouse

Sloth

Guinea_Pig

Pika

Cow

Tarsier

Horse

Megabat

Microbat

Marmoset

Dolphin

Alpaca

Cat

Elephant

Mouse_Lemur

Galagos

Chicken

Gorilla

Tree_Shrew

Opossum

Hedgehog

Wallaby

Human

Squirrel

1

1

1

1

1

1

1

1

0.91

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0.19

1

1

1

1

1

1

1

0.74

Figure 7.13: Mammalian SVDquest* tree with branch support, computed using a modified
non-parametric bootstrapping approach, from 100 bootstrap replicates.

130

0

10

20

30

40

Co
un

t

bps = 25 | ngenes = 50 bps = 25 | ngenes = 100 bps = 25 | ngenes = 500 bps = 25 | ngenes = 1000

0

10

20

30

40

Co
un

t

bps = 50 | ngenes = 50 bps = 50 | ngenes = 100 bps = 50 | ngenes = 500 bps = 50 | ngenes = 1000

0

10

20

30

40

Co
un

t

bps = 100 | ngenes = 50 bps = 100 | ngenes = 100 bps = 100 | ngenes = 500 bps = 100 | ngenes = 1000

0 500 1000 1500 2000 2500
Change in MQSST

0

10

20

30

40

Co
un

t

bps = 300 | ngenes = 50

0 500 1000 1500 2000 2500
Change in MQSST

bps = 300 | ngenes = 100

0 500 1000 1500 2000 2500
Change in MQSST

bps = 300 | ngenes = 500

0 500 1000 1500 2000 2500
Change in MQSST

bps = 300 | ngenes = 1000

13% AD

Figure 7.14: Histogram of the difference in MQSST scores between SVDquartets+PAUP*
and SVDquest* on low ILS (AD = 13%) 50-taxon c-gene data with 40-50 replicates per model
condition (i.e. a specific combination of ILS level, number of genes, and sequence length).
Positive x-values indicate that SVDquest* finds a larger MQSST score than SVDquar-
tets+PAUP*.

131

0

10

20

30

40

Co
un

t

bps = 25 | ngenes = 50 bps = 25 | ngenes = 100 bps = 25 | ngenes = 500 bps = 25 | ngenes = 1000

0

10

20

30

40

Co
un

t

bps = 50 | ngenes = 50 bps = 50 | ngenes = 100 bps = 50 | ngenes = 500 bps = 50 | ngenes = 1000

0

10

20

30

40

Co
un

t

bps = 100 | ngenes = 50 bps = 100 | ngenes = 100 bps = 100 | ngenes = 500 bps = 100 | ngenes = 1000

0 1000 2000 3000 4000
Change in MQSST

0

10

20

30

40

Co
un

t

bps = 300 | ngenes = 50

0 1000 2000 3000 4000
Change in MQSST

bps = 300 | ngenes = 100

0 1000 2000 3000 4000
Change in MQSST

bps = 300 | ngenes = 500

0 1000 2000 3000 4000
Change in MQSST

bps = 300 | ngenes = 1000

33% AD

Figure 7.15: Histogram of the difference in MQSST scores between SVDquartets+PAUP*
and SVDquest* on high ILS (AD = 33%) 50-taxon c-gene data with 40-50 replicates per
model condition (i.e. a specific combination of ILS level, number of genes, and sequence
length). Positive x-values indicate that SVDquest* finds a larger MQSST score than
SVDquartets+PAUP*.

132

0

10

20

30

40

Co
un

t

bps = 25 | ngenes = 50 bps = 25 | ngenes = 100 bps = 25 | ngenes = 500 bps = 25 | ngenes = 1000

0

10

20

30

40

Co
un

t

bps = 50 | ngenes = 50 bps = 50 | ngenes = 100 bps = 50 | ngenes = 500 bps = 50 | ngenes = 1000

0

10

20

30

40

Co
un

t

bps = 100 | ngenes = 50 bps = 100 | ngenes = 100 bps = 100 | ngenes = 500 bps = 100 | ngenes = 1000

0 500 1000 1500 2000 2500 3000
Change in MQSST

0

10

20

30

40

Co
un

t

bps = 300 | ngenes = 50

0 500 1000 1500 2000 2500 3000
Change in MQSST

bps = 300 | ngenes = 100

0 500 1000 1500 2000 2500 3000
Change in MQSST

bps = 300 | ngenes = 500

0 500 1000 1500 2000 2500 3000
Change in MQSST

bps = 300 | ngenes = 1000

72% AD

Figure 7.16: Histogram of the difference in MQSST scores between SVDquartets+PAUP*
and SVDquest* on very high ILS (AD = 72%) 50-taxon c-gene data with 40-50 replicates
per model condition (i.e. a specific combination of ILS level, number of genes, and se-
quence length). Positive x-values indicate that SVDquest* finds a larger MQSST score than
SVDquartets+PAUP*.

133

0.0

2.5

5.0

7.5

10.0

12.5

Co
un

t

bps = 25 | ngenes = 50 bps = 25 | ngenes = 100 bps = 25 | ngenes = 500 bps = 25 | ngenes = 1000

0.0

2.5

5.0

7.5

10.0

12.5

Co
un

t

bps = 50 | ngenes = 50 bps = 50 | ngenes = 100 bps = 50 | ngenes = 500 bps = 50 | ngenes = 1000

0.0

2.5

5.0

7.5

10.0

12.5

Co
un

t

bps = 100 | ngenes = 50 bps = 100 | ngenes = 100 bps = 100 | ngenes = 500 bps = 100 | ngenes = 1000

−0.2 −0.1 0.0 0.1 0.2
Change in Top. Error

0.0

2.5

5.0

7.5

10.0

12.5

Co
un

t

bps = 300 | ngenes = 50

−0.2 −0.1 0.0 0.1 0.2
Change in Top. Error

bps = 300 | ngenes = 100

−0.2 −0.1 0.0 0.1 0.2
Change in Top. Error

bps = 300 | ngenes = 500

−0.2 −0.1 0.0 0.1 0.2
Change in Top. Error

bps = 300 | ngenes = 1000

13% AD

Figure 7.17: Histogram of the difference in topological error rates (maximum is 1.0) between
SVDquartets+PAUP* and SVDquest*-strict (in the cases where SVDquartets+PAUP* and
SVDquest* find trees with different MQSST scores) for the low ILS (AD=13%) 50-taxon data
with 40-50 replicates per model condition (i.e. a specific combination of ILS level, number
of genes, and sequence length). Negative x-values indicate that SVDquest*-strict finds a
topologically more accurate tree than SVDquartets+PAUP*. When SVDquest* found a
better MQSST score than SVDquartets+PAUP*, SVDquest*-strict was more accurate 40%
of the time, equally accurate 24% of the time, and less accurate 35% of the time.

134

0.0

2.5

5.0

7.5

10.0

12.5

Co
un

t

bps = 25 | ngenes = 50 bps = 25 | ngenes = 100 bps = 25 | ngenes = 500 bps = 25 | ngenes = 1000

0.0

2.5

5.0

7.5

10.0

12.5

Co
un

t

bps = 50 | ngenes = 50 bps = 50 | ngenes = 100 bps = 50 | ngenes = 500 bps = 50 | ngenes = 1000

0.0

2.5

5.0

7.5

10.0

12.5

Co
un

t

bps = 100 | ngenes = 50 bps = 100 | ngenes = 100 bps = 100 | ngenes = 500 bps = 100 | ngenes = 1000

−0.2 −0.1 0.0 0.1 0.2
Change in Top. Error

0.0

2.5

5.0

7.5

10.0

12.5

Co
un

t

bps = 300 | ngenes = 50

−0.2 −0.1 0.0 0.1 0.2
Change in Top. Error

bps = 300 | ngenes = 100

−0.2 −0.1 0.0 0.1 0.2
Change in Top. Error

bps = 300 | ngenes = 500

−0.2 −0.1 0.0 0.1 0.2
Change in Top. Error

bps = 300 | ngenes = 1000

33% AD

Figure 7.18: Histogram of the difference in topological error rates (maximum is 1.0) between
SVDquartets+PAUP* and SVDquest*-strict (in the cases where SVDquartets+PAUP* and
SVDquest* find trees with different MQSST scores) on high ILS (AD = 33%) 50-taxon data
with 40-50 replicates per model condition (i.e. a specific combination of ILS level, number
of genes, and sequence length). Negative x-values indicate that SVDquest*-strict finds a
topologically more accurate tree than SVDquartets+PAUP*. When SVDquest* found a
better scoring tree than SVDquartets+PAUP*, SVDquest*-strict was more accurate 52% of
the time, equally accurate 24% of the time, and less accurate 23% of the time.

135

0

5

10

15

Co
un

t

bps = 25 | ngenes = 50 bps = 25 | ngenes = 100 bps = 25 | ngenes = 500 bps = 25 | ngenes = 1000

0

5

10

15

Co
un

t

bps = 50 | ngenes = 50 bps = 50 | ngenes = 100 bps = 50 | ngenes = 500 bps = 50 | ngenes = 1000

0

5

10

15

Co
un

t

bps = 100 | ngenes = 50 bps = 100 | ngenes = 100 bps = 100 | ngenes = 500 bps = 100 | ngenes = 1000

−0.2 −0.1 0.0 0.1 0.2
Change in Top. Error

0

5

10

15

Co
un

t

bps = 300 | ngenes = 50

−0.2 −0.1 0.0 0.1 0.2
Change in Top. Error

bps = 300 | ngenes = 100

−0.2 −0.1 0.0 0.1 0.2
Change in Top. Error

bps = 300 | ngenes = 500

−0.2 −0.1 0.0 0.1 0.2
Change in Top. Error

bps = 300 | ngenes = 1000

72% AD

Figure 7.19: Histogram of the difference in topological error rates (maximum is 1.0) between
SVDquartets+PAUP* and SVDquest*-strict (in the cases where SVDquartets+PAUP* and
SVDquest* find trees with different MQSST scores) on very high ILS (AD = 72%) 50-taxon
data with 40-50 replicates per model condition (i.e. a specific combination of ILS level,
number of genes, and sequence length). Negative x-values indicate that SVDquest*-strict
finds a topologically more accurate tree than SVDquartets+PAUP*. When SVDquest*
found a better MQSST score than SVDquartets+PAUP*, SVDquest*-strict was a more
accurate tree 51% of the time, equally accurate 27% of the time, and less accurate 21% of
the time.

136

0.0

2.5

5.0

7.5

10.0

12.5

Co
un

t

13% AD, 50 genes 13% AD, 100 genes 13% AD, 500 genes 13% AD, 1000 genes

0.0

2.5

5.0

7.5

10.0

12.5

Co
un

t

33% AD, 50 genes 33% AD, 100 genes 33% AD, 500 genes 33% AD, 1000 genes

−0.2 −0.1 0.0 0.1 0.2
Change in Top. Error

0.0

2.5

5.0

7.5

10.0

12.5

Co
un

t

72% AD, 50 genes

−0.2 −0.1 0.0 0.1 0.2
Change in Top. Error

72% AD, 100 genes

−0.2 −0.1 0.0 0.1 0.2
Change in Top. Error

72% AD, 500 genes

−0.2 −0.1 0.0 0.1 0.2
Change in Top. Error

72% AD, 1000 genes

Figure 7.20: Histogram of the difference in topological error rates (maximum is 1.0) between
SVDquartets+PAUP* and SVDquest*-strict (in the cases where SVDquartets+PAUP* and
SVDquest* find trees with different MQSST scores) 25-site c-gene 50-taxon data with 40-50
replicates per model condition (i.e. a specific combination of ILS level, number of genes,
and sequence length). Negative x-values indicate that SVDquest*-strict finds a topologically
more accurate tree than SVDquartets+PAUP*.

10 100 1000
Supergene length

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

50 genes

Method
SVDquest*-strict
SVDquartets+PAUP*

10 100 1000
Supergene length

0.0

0.2

0.4

0.6

0.8

1.0 100 genes

10 100 1000
Supergene length

0.0

0.2

0.4

0.6

0.8

1.0 1000 genes

Figure 7.21: Species tree error rates (maximum is 1.0) on 15-taxon (AD 82%) simulated
data using supergenes (concatenations of c-genes), averaged over 10 replicates per model
condition (i.e. a specific combination of number of genes and sequence length). Error bars
represent standard error of the mean. The c-genes in this experiment are 10 sites long,
and multiple loci were concatenated to form supergenes. Thus, the 10-site genes have sites
coming from one locus, the 100-site genes have sites coming from 10 loci, and the 1000-site
genes have sites coming from 100 loci. Each data point in a particular subfigure represents
an analysis on the same number of sites.

137

0.0

0.2

0.4

0.6

Sp
ec

ie
s t

re
e

es
tim

at
io

n
er

ro
r 13% AD, 50 genes

Method
SVDquest*-strict
ASTRID
ASTRAL
CA-ML

33% AD, 50 genes 72% AD, 50 genes

0.0

0.2

0.4

0.6

Sp
ec

ie
s t

re
e

es
tim

at
io

n
er

ro
r 13% AD, 100 genes 33% AD, 100 genes 72% AD, 100 genes

0.0

0.2

0.4

0.6

Sp
ec

ie
s t

re
e

es
tim

at
io

n
er

ro
r 13% AD, 500 genes 33% AD, 500 genes 72% AD, 500 genes

0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0
Gene tree estimation error

0.0

0.2

0.4

0.6

Sp
ec

ie
s t

re
e

es
tim

at
io

n
er

ro
r 13% AD, 1000 genes

0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0
Gene tree estimation error

33% AD, 1000 genes

0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0
Gene tree estimation error

72% AD, 1000 genes

Figure 7.22: Species tree topological error rates (maximum is 1.0) for 50-taxon simulated
data, as a function of the normalized percent gene tree estimation error (maximum is 1.0),
averaged over 120-150 replicates. Error bars show standard error.

138

0.0
0.2
0.4
0.6
0.8
1.0

Er
ro

r

ils = 12% | ngenes = 50
Method

SVDquest*-strict
SVDquartets+PAUP*

0.0
0.2
0.4
0.6
0.8
1.0 ils = 12% | ngenes = 100

0.0
0.2
0.4
0.6
0.8
1.0 ils = 12% | ngenes = 500

0.0
0.2
0.4
0.6
0.8
1.0 ils = 12% | ngenes = 1000

0.0
0.2
0.4
0.6
0.8
1.0

Er
ro

r

ils = 31% | ngenes = 50

0.0
0.2
0.4
0.6
0.8
1.0 ils = 31% | ngenes = 100

0.0
0.2
0.4
0.6
0.8
1.0 ils = 31% | ngenes = 500

0.0
0.2
0.4
0.6
0.8
1.0 ils = 31% | ngenes = 1000

25 50 100 300
Supergene length

0.0
0.2
0.4
0.6
0.8
1.0

Er
ro

r

ils = 67% | ngenes = 50

25 50 100 300
Supergene length

0.0
0.2
0.4
0.6
0.8
1.0 ils = 67% | ngenes = 100

25 50 100 300
Supergene length

0.0
0.2
0.4
0.6
0.8
1.0 ils = 67% | ngenes = 500

25 50 100 300
Supergene length

0.0
0.2
0.4
0.6
0.8
1.0 ils = 67% | ngenes = 1000

Figure 7.23: Species tree error rates (maximum is 1.0) of SVDquest*-strict and SVDquar-
tets+PAUP* on 50-taxon simulated data using supergenes (concatenations of c-genes), av-
eraged over 40-50 replicates per model condition (i.e. a specific combination of ILS level,
number of genes, and sequence length). Error bars represent standard error of the mean.
The c-genes are 25 sites long, and multiple loci were concatenated to form supergenes. Thus,
the 25-site genes have sites coming from one locus, the 50-site genes have sites coming from
two loci, and the 100-site genes have sites coming from four loci. Each data point in a
particular subfigure represents an analysis on the same number of sites.

139

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

25 genes, 43% AD ILS
Method

SVDquest*-strict
SVDquartets+PAUP*

0.0

0.2

0.4

0.6

0.8

1.0 50 genes, 43% AD ILS

0.0

0.2

0.4

0.6

0.8

1.0 200 genes, 43% AD ILS

10 50 100
Supergene length

0.0

0.2

0.4

0.6

0.8

1.0

Er
ro

r

25 genes, 84% AD ILS

10 50 100
Supergene length

0.0

0.2

0.4

0.6

0.8

1.0 50 genes, 84% AD ILS

10 50 100
Supergene length

0.0

0.2

0.4

0.6

0.8

1.0 200 genes, 84% AD ILS

Figure 7.24: Species tree error rates (maximum is 1.0) on 10-taxon simulated data using
supergenes (concatenations of c-genes), averaged over 10 replicates per model condition (i.e.
a specific combination of ILS level, number of genes, and sequence length). Error bars
represent standard error of the mean. The c-genes in this experiment are 10 sites long,
and multiple loci were concatenated to form supergenes. Thus, the 10-site genes have sites
coming from one locus, the 100-site genes have sites coming from 10 loci, and the 1000-site
genes have sites coming from 100 loci. Each data point in a particular subfigure represents
an analysis on the same number of sites.

140

3.0

Mouse

Rat

Dog

Megabat

Hyrax

Wallaby

Cow

Guinea_Pig

Shrew

Human

Marmoset

Armadillos

Horse

Opossum

Tarsier

Dolphin

Squirrel

Galagos

Mouse_Lemur

Macaque

Lesser_Hedgehog_Tenrec

Tree_Shrew

Hedgehog

Elephant

Rabbit

Cat

Chimpanzee

Alpaca

Microbat

Kangaroo_Rat

Platypus

Chicken

Pika

Orangutan

Sloth

Gorilla

Pig

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

0.9
1

1

1

1

1

1

1

1

1

1

1

1

1

0.91

1

1

Figure 7.25: Mammalian ASTRAL/ASTRID tree with branch support calculated using
ASTRAL’s local posterior support technique.

141

CHAPTER 8: SPECIES TREE ESTIMATION WITH ILS AND HGT1

8.1 BACKGROUND

Some of the most commonly used coalescent-based summary methods for species tree

estimation encode each gene tree as a set of quartet trees (i.e., unrooted 4-leaf trees), and

then estimate the species tree from the quartet tree frequencies. The mathematical basis of

this approach is the following theorem, originally proved in [6]:

Theorem 8.1. Under the multi-species coalescent model, for every model species tree (T, θ)

(where θ denotes the branch lengths of T in coalescent units) and for every set X of four

leaves from T , the most probable unrooted gene tree topology on X is identical to the species

tree T restricted to leafset X.

Interestingly, nearly the same theorem was proven under two phylogenomic models that

addressed horizontal gene transfer (HGT)! When HGT is present, the evolutionary history

of the species is not really treelike, but rather requires a phylogenetic network [110]. Under

HGT models, a phylogenetic network consists of an underlying species tree T with horizon-

tal gene transfer edges (represented by directed edges) between branches in the tree, and

each locus evolves down a tree (though not necessarily the species tree) within this network.

Hence, while the species evolution is not purely treelike, the gene tree evolution is tree-

like. Furthermore, for this type of reticulate phylogeny, it is reasonable to ask whether the

underlying species tree T can be reconstructed from gene trees estimated on the different

loci.

This question has been partially answered for two models of HGT. The first models

HGT events between lineages using a continuous-time Poisson process [55], and is called

the stochastic HGT model. In a stochastic HGT model, the HGT events happen between

contemporaneous lineages, either uniformly at randomly or with probability that depends

on the distance between the lineages (so that events are less likely if the lineages are more

distantly related). The second type of model assumes that there are HGT edges between

specific pairs of branches in a species tree, commonly referred to as highways, along which

1This chapter contains material previously published in [45], which was a joint work with Ruth Davidson,
Siavash Mirarab, and Tandy Warnow. It has been edited slightly for brevity. RD performed ASTRAL-2
analyses of the simulated and biological data sets, the CA-ML on the simulated data for 10 genes, and wrote
the first draft of the paper. PV performed the wQMC and NJst analyses of the simulated data sets and
made figures. SM generated the simulated data, performed the CA-ML analysis for 50, 200, and 1000 genes,
and made figures. TW conceived of the project, supervised the research, proved the theorems, and wrote
the final paper. All authors read and critiqued drafts of the paper.

142

HGT events are far more likely to occur than elsewhere in the tree; this is called the highways

HGT model [21].

The theoretical framework for estimating the underlying species tree under these two HGT

models was established in [143] (for estimating rooted species trees from rooted gene trees)

and in [125] (for estimating unrooted species trees from unrooted gene trees). Specifically,

[125] proved theorems that under both the stochastic HGT model and highways model,

but with bounded amounts of HGT per gene, the most probable quartet tree would be

topologically identical to the species tree. Note that these theorems are the equivalents of

Theorem 8.1 under the two bounded HGT models.

Some species tree estimation methods operate by computing gene trees, encoding each

computed gene tree as a set of quartet trees, and determine the dominant quartet tree for

every four species (i.e., the quartet tree that appears the most frequently of the three possible

unrooted quartet trees). Then, these dominant quartet trees are combined using a quartet

amalgamation method (e.g., Quartets Max Cut [137] or QFM [120]). This type of species

tree estimation method can be statistically consistent under the MSC model, and also under

these bounded HGT models – depending on the quartet amalgamation method, as we now

show.

Theorem 8.2. Let M be a summary method (i.e., a method that constructs a species tree

from an input set of gene trees). Suppose that M has the property that it is guaranteed to

return the unique tree compatible with the dominant quartet trees defined by its input set

of gene trees, whenever the dominant quartet trees are compatible. Then M is statistically

consistent under the MSC model, and also under the bounded HGT models given in [125].

Proof. To establish statistical consistency, we only need to prove that as the number of sites

per locus and the number of loci both increase, the tree returned by the method converges in

probability to the species tree. As the number of sites per locus and the number of loci both

increase, the dominant quartet tree converges to the most probable quartet tree on every

set X of four species. Under the MSC model and also under the bounded HGT models in

[125], the most probable quartet tree on any set X is topologically identical to the species

tree. Hence, for a large enough number of loci and large enough number of sites per locus,

with probability converging to 1, the input to the quartet-based methods will be a set of

gene trees such that the dominant quartet trees are all compatible with the species tree.

Furthermore, the species tree will be the unique such compatibility tree, and so the method

will return the true species tree. QED.

Similarly, we can prove the following:

143

Theorem 8.3. ASTRAL and ASTRAL-2 are statistically consistent under the bounded

HGT models of [125].

This proof uses Theorem 8.1, but is essentially identical to the proofs of statistical consis-

tency for ASTRAL and ASTRAL-2 under the MSC model [105]; see Methods for the proof

of this theorem.

Very little is known about the theoretical guarantees of any species tree estimation meth-

ods under models in which both HGT and ILS can occur. In fact, to the best of our

knowledge, no methods have yet been proven statistically consistent under these conditions.

We also do not know much about the empirical performance of any species tree estimation

methods under these conditions. As far as we know, the only simulation study to date of

the impact of both ILS and HGT on the performance of species tree estimation methods is

[39], which explored the performance of two coalescent-based methods, BUCKy and BEST,

on data that evolved under both processes. However, both of these methods are computa-

tionally intensive, and cannot run on even moderately large datasets (e.g., BEST is slower

than *BEAST, and *BEAST is too computationally intensive to use on datasets with more

than about 100 loci) [172, 181].

We report on a study evaluating the accuracy of ASTRAL-2, NJst, and weighted Quartets

Max Cut (wQMC) [11], as well as unpartitioned maximum likelihood concatenation analysis

(CA-ML), on simulated datasets in which gene tree discord is due to both HGT and ILS. The

simulation protocol evolved gene trees down 50-taxon species trees under the MSC model

with a moderately high level of ILS, and allowed gene trees to then evolve with six different

HGT rates (see Fig. 8.1). HGT rate (1) has no HGT events, and HGT rates (2)-(6) have

0.08, 0.2, 0.8, 8.0, and 20.0 expected HGT events per gene, respectively. Finally, sequences

evolved down each gene tree under the GTR+Gamma model.

We estimated gene trees on each locus using the FastTree-2 maximum likelihood software

[118], and then used the summary methods on these estimated gene trees to estimate the

species tree. We also concatenated the sequence alignments and ran unpartitioned FastTree-2

maximum likelihood on the concatenated superalignment. Finally, we analyzed a Cyanobac-

teria dataset with 11 species and 1128 genes [179], which is believed to have evolved under

high levels of HGT and has been used to evaluate methods for inferring species trees in the

presence of HGT [11, 12]. See Methods for additional details.

8.2 RESULTS

We ran 28 experiments using ASTRAL-2, NJst, wQMC, and an unpartitioned concate-

144

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Normalized RF distance between the species tree and true gene trees

S
c
a

le
d

 d
e

n
s
it
y

(1)

(2)

(3)

(4)

(5)

(6)

(1) (2) (3)

(4) (5) (6)

0

10

20

30

40

50

0

10

20

30

40

50

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

Number of transfer events per gene

N
u

m
b

e
r

o
f

g
e

n
e

s
 (

th
o

u
s
a

n
d

s
)

Figure 8.1: Properties of the simulated datasets. (Top) The histogram of the number
of transfer events per gene across all 50,000 gene trees (50 replicates, each with 1000 genes)
for all six model conditions. Note that the tree has only 51 species (50 ingroup species and
one outgroup species), and therefore, model conditions (5) and (6) constitute high numbers
of transfers per gene. (Bottom) The normalized Robinson-Foulds (bipartition) distance
between the true gene trees and the species tree for all six model conditions. Note that the
gene tree discordance generally increases as the transfer rate increases, but also that model
condition (3) has less discordance than model condition (2) despite having a slightly higher
number of transfers.

145

nated maximum likelihood analysis (CA-ML) using FastTree-2 on 51-taxon datasets that

evolved under a moderate amount of ILS but with varying rates of HGT under the stochas-

tic HGT model. In our analyses, all methods produced binary trees; hence, we report the

normalized bipartition distance (also called the Robinson-Foulds [121] distance) between es-

timated species trees and true species trees. We report results for both true and estimated

gene trees, with 10 to 1000 genes. To evaluate the relationship between topological accuracy

and performance with respect to the optimization problem that ASTRAL-2 and wQMC

attempt to solve, we compared the quartet support scores and topological accuracy of trees

computed by ASTRAL-2 and wQMC.

1 2 3 4 5 6
HGT rate

10

15

20

25

30

35

40

45

R
F
To
po

lo
gi
ca
l E

rro
r (
%
) ASTRAL-2

NJst
wQMC
CA-ML

Figure 8.2: Mean Robinson-Foulds error rate on datasets with 10 genes. We show
mean RF error rates for summary methods applied to estimated gene trees as well as for
an unpartitioned maximum likelihood concatenation analysis. Error bars indicate standard
error; 50 replicates per dataset.

8.2.1 Results on estimated gene trees

For datasets with 10 genes (Fig. 8.2), all the methods are very similar when there is no

HGT (i.e., HGT rate (1)), with error rates varying from 13.0% (ASTRAL-2 and wQMC) to

14.5% (NJst). Error rates increase with increasing HGT rates, but the increases are generally

small until HGT rate (4), where all methods have error between 14.9% (ASTRAL-2) and

16.8% (CA-ML). Furthermore, the differences between methods remain small (no more than

1.9% between the methods) through HGT rate (4). However, there are substantial differences

between methods under the two highest HGT rates (5) and (6), with CA-ML having the

highest error (26.6% and 40.2%, respectively) and ASTRAL-2 having the least error (18.4%

and 28.1%, respectively). While the differences between wQMC and NJst were often small,

typically wQMC was more accurate than NJst.

146

1 2 3 4 5 6
HGT rate

0

5

10

15

20
R

F
To

po
lo

gi
ca

l E
rro

r (
%
)

a) 50
ASTRAL-2
NJst
wQMC
CA-ML

1 2 3 4 5 6
HGT rate

b) 200

1 2 3 4 5 6
HGT rate

c) 1000

Figure 8.3: Mean Robinson-Foulds error rates on datasets with 50, 200, and 1000 estimated
gene trees. We show results for summary methods applied to estimated gene trees as well
as for an unpartitioned maximum likelihood concatenation analysis. Error bars indicate
standard error; 50 replicates per dataset.

The same trends hold on datasets with larger numbers of genes (Fig. 8.3); in particular,

ASTRAL-2 remains typically the most accurate method (or close to the most accurate

method) and CA-ML is typically the least accurate. However, as the number of genes

increase, the species tree estimation error drops for all methods, and the differences between

methods become even smaller. For example, on 50 genes the maximum error for HGT

rates (1)-(4) is 7.8% (CA-ML) and the smallest error is 7.3% (ASTRAL-2 and NJst). By

200 genes, the maximum error of all methods on HGT rates (1)-(4)) is 5.1% (NJst) and

the smallest is 4.5% (ASTRAL-2). With 1000 genes, the maximum error on HGT rates

(1)-(4) is only 3.1% (wQMC and NJst) and the lowest is 2.5% (CA-ML). However, under

the two higher HGT rates (HGT rates (5) and (6)), the differences between methods can

be noteworthy, even with large numbers of genes. More importantly, under these higher

HGT rates, CA-ML is substantially less accurate than all of the summary methods. As an

example, under HGT rate (6), CA-ML has 16.8% error on 50 genes, while ASTRAL-2 has

10.3% error. One interesting trend that is hard to explain is that error rates do not always

increase with increases in HGT rates; for example, results on 1000 estimated trees show some

small decrease in error for ASTRAL-2 and NJst between HGT rates (4) and (6). Finally,

while ASTRAL-2 is the most accurate of the summary methods, but the difference between

ASTRAL-2 and the other summary methods is small (ranging from 0.3% to 1.9%). Indeed,

the differences between the summary methods given 400 or more genes are very small — at

most 0.9%.

147

8.2.2 Results on true gene trees

We show results on true gene trees in Figures 8.4 and 8.5. Unsurprisingly, error rates of

1 2 3 4 5 6
HGT rate

5

10

15

20

25

30

35

R
F
To
po

lo
gi
ca
l E

rro
r (
%
) ASTRAL-2

NJst
wQMC

Figure 8.4: Mean Robinson-Foulds error rates on 10 true gene trees. We show mean RF
error rates of summary methods applied to true gene trees; error bars indicate standard
error. 50 replicates per model condition.

1 2 3 4 5 6
HGT rate

−2

0

2

4

6

8

10

12

R
F

To
po

lo
g

ca
l E

rro
r (
%
)

a) 50
ASTRAL-2
NJst
wQMC

1 2 3 4 5 6
HGT rate

b) 200

1 2 3 4 5 6
HGT rate

c) 1000

Figure 8.5: Mean Robinson-Foulds error rates on 50, 200, and 1000 true gene trees. We show
mean RF error rates of summary methods applied to true gene trees; error bars indicate
standard error. 50 replicates per model condition.

species trees estimated on true gene trees are lower than those estimated on estimated gene

trees; while the reduction depended on the model condition, for the ASTRAL-2 datasets with

1000 genes and HGT rate (1), we see a reduction of more than 50%. Differences between

methods were reduced on the true gene trees, but otherwise, all the trends are the same as

for estimated gene trees.

148

8.2.3 Comparing quartet scores of trees produced by ASTRAL-2 and wQMC

While the differences between ASTRAL-2 and wQMC are often small, ASTRAL-2 nearly

always matches or improves on wQMC with respect to tree topology. Both ASTRAL-2 and

wQMC attempt to solve the Maximum Quartet Support Species Tree problem (MQSST,

see Methods), but use very different techniques. In particular, ASTRAL-2 constrains the

search space based on the input gene trees, and then finds an optimal solution within that

constrained space, but wQMC uses a greedy heuristic and does not constrain the search. One

hypothesis for the improved topological accuracy of ASTRAL-2 compared to wQMC is that

ASTRAL-2 finds better solutions to the MQSST optimization problem, and a competing

hypothesis is that the higher topological accuracy achieved by ASTRAL-2 is due in part to

the constraint it imposes on the solution space.

We examined the quartet scores for wQMC and ASTRAL-2 across the different model

conditions. For 57.2% of all cases involving estimated gene trees, the species trees returned

by the two methods had the same quartet support. ASTRAL-2 returned a tree with a

better quartet score than wQMC 29.8% of the time while wQMC returned a tree with a

better quartet score 13.0% of the time. Thus, in general ASTRAL-2 does a better job than

wQMC of finding good solutions to MQSST. However, there are cases in which wQMC

produces trees with better scores, and the cases are typically cases with high HGT levels

(i.e., there are no cases with HGT rate (1), and more than half of the cases occurred for

HGT rate (6)).

We investigated the 29 replicates for which wQMC has a better quartet support score, and

therefore does a better job of solving the MQSST problem (Fig. 8.4). ASTRAL-2 and wQMC

had the same topological accuracy on 8 datasets, ASTRAL-2 was more topologically accurate

on 12, and wQMC was more topologically accurate on 9. Thus, even for those cases where

wQMC finds trees with better quartet support scores, ASTRAL-2 tends to match wQMC

with respect to accuracy, or produce topologically more accurate trees. Since wQMC does

not constrain the search space, this means that wQMC can find trees with better quartet

scores but which are outside the constrained search space, and that constraining the search

space seems to be beneficial with respect to topological accuracy. In other words, although

ASTRAL-2 generally is a better heuristic for the MQSST problem, part of the reason it is

more topologically accurate is due to the constraint it imposes on the search space.

8.2.4 Cyanobacterial Data

We analyzed a cyanobacterial data set from [179] using ASTRAL-2 with multi-locus boot-

149

strapping (see Methods) to estimate a species tree. Two estimated species trees were reported

in [179]: one is the “plurality tree”, which has served as the reference tree for this dataset.

The plurality tree is a supertree (computed using MRP [15]) on a set of quartet trees rep-

resented in a plurality of the gene trees that have high support. The other tree is a PhyML

[61] maximum likelihood tree. The ASTRAL-2 majority consensus tree (see Methods) has

100% bootstrap support on all its branches, and is identical to the plurality tree; that has

served as the reference tree for this dataset. The wQMC tree was previously reported for

this dataset in [11], and is also topologically identical to the plurality tree.

8.3 DISCUSSION

While all methods had very good accuracy on the simulated datasets under the lowest

HGT rates, they were clearly differentiated on the higher HGT rates, especially when the

number of genes was not too large. Specifically, on the higher HGT rates, concatenation

using maximum likelihood and NJst were both less accurate than ASTRAL-2 and wQMC.

However, all summary methods we explored were impacted by gene tree estimation error.

Furthermore, there are no proofs of convergence to the true species tree if the gene trees have

estimation error for these or other standard summary methods [127, 163]. Since many of the

lower HGT model conditions had substantial gene tree heterogeneity resulting from ILS, this

study shows that many methods — and even unpartitioned concatenation using maximum

likelihood - can be highly accurate under these highly heterogeneous model conditions.

Results on the biological dataset showed that ASTRAL-2 and wQMC both matched the

reference “plurality tree”, and hence may be correct. But this analysis is perhaps less helpful,

since the reference tree is based on the MRP analysis of a set of quartet trees, and MRP on

quartet trees is a heuristic for the unweighted version of the optimization problem addressed

by wQMC and ASTRAL-2. Thus, the three methods are closely related in terms of their

optimality criteria, and this may explain why they produce the same tree on this input.

This experimental study evaluated the performance of these methods when HGT is also

present, and demonstrated that wQMC and ASTRAL-2 maintained good accuracy even in

the presence of HGT, while NJst tended to be more impacted by high levels of HGT. The

explanation as to why NJst is not as robust to high HGT levels as ASTRAL-2 and wQMC

is likely to be that the theoretical justification for NJst only applies to the MSC model, and

not to the bounded HGT models. On the other hand, both ASTRAL-2 and wQMC attempt

to solve the MQSST problem, for which optimal solutions are statistically consistent under

the MSC model, and also under the bounded HGT models discussed in [125].

Finally, the slight advantage ASTRAL-2 had over wQMC in terms of topological accuracy

150

is largely due to its better ability to find good solutions to the MQSST problem, but con-

straining the search space is also part of the reason that ASTRAL-2 has good topological

accuracy, even under conditions with very high rates of HGT.

8.4 CONCLUSIONS

This study evaluated ASTRAL-2, NJst, wQMC, and concatenated analysis using un-

partitioned maximum likelihood (CA-ML) on one biological and several simulated datasets

in which ILS and HGT were both present. We observed that the quartet-based methods

(ASTRAL-2 and wQMC) generally had better accuracy than NJst, and that CA-ML could

be more accurate than all methods under conditions with low HGT rates. In particular,

ASTRAL-2, a species tree estimation method that was initially designed to estimate species

trees in the presence of ILS, had excellent accuracy and generally gave somewhat more accu-

rate results than the other methods we explored. However, all methods were highly accurate

under the low to moderate HGT levels, and were only differentiated under the two highest

HGT levels. The methods based on quartets (i.e., wQMC and ASTRAL-2) had the highest

robustness to HGT. While the study is limited in scope, the results suggest that highly

accurate species trees can be constructed, even in the presence of both HGT and ILS, using

quartet-based methods.

As noted, ASTRAL-2 and NJst are statistically consistent under the MSC model (in which

only ILS occurs), and ASTRAL-2 is also statistically consistent under the bounded HGT

models addressed by [125]. However, NJst has not been shown to be statistically consistent

under the bounded HGT models, and wQMC may not be statistically consistent under either

model (because it is not guaranteed to solve its optimization problem exactly, even when

all the dominant quartet trees are compatible). Because the proof of statistical consistency

for ASTRAL-2 depends only on the requirement that for all sets of four taxa, the most

probable quartet tree is topologically identical to the induced species tree on the four taxa,

we conjecture that ASTRAL-2 will be statistically consistent under models in which both

ILS and HGT occur but at bounded rates (where the bounds on one process will depend on

the other’s bounds).

Although the results in this study are encouraging, future work needs to evaluate the per-

formance of species tree estimation methods under a broader set of conditions. In particular,

we only evaluated performance under the stochastic HGT model; future work should evalu-

ate methods under the highways model as well. Our datasets had only one level of ILS, and it

is possible that under conditions with higher or lower levels of ILS, the effect of HGT would

be different. This study was limited to gene trees in which heterogeneity was due only to ILS

151

and HGT; future studies should examine other sources of discord, including gene duplication

and loss, and/or orthology detection errors. Larger numbers of taxa, and/or gene trees with

missing taxa, are also likely to present significant analytical challenges, and accurate estima-

tion may not be as easily obtained. Hence, future studies should also evaluate accuracy on

larger and more challenging datasets, in order to determine whether the good accuracy we

saw for the quartet-based methods is maintained under more difficult conditions. Similarly,

it is possible that some methods might provide highly accurate results on smaller numbers

of species, and that the relative performance of methods could change on those conditions.

Thus, performance on small datasets (with perhaps only 10 species) should also be explored.

This study was limited in terms of the methods that were explored, in that we restricted

the analysis to reasonably fast methods, and of these fast methods we only explored those

methods that had been shown to perform well under ILS-only scenarios. However, it is pos-

sible that some coalescent-based species tree estimation methods, such as MP-EST, STAR,

etc., might perform well under HGT+ILS scenarios. It is also likely some computationally

intensive methods, such as BUCKy-pop, *BEAST, and BEST, might provide better accu-

racy than ASTRAL-2 on datasets with HGT+ILS. There are also methods designed to infer

species trees in the presence of gene tree discordance resulting from duplication and loss, and

it is possible that some of these methods (e.g., PhylDog [26] and MixTreEM [156]) might

have good accuracy under the MSC. Future work should also explore CA-ML using different

ML heuristics (e.g., PhyML [61], nhPhyML [25], IQTree [115]) and under more complex

sequence evolution models. In addition, it would be very interesting to explore fully parti-

tioned ML analyses, since these have very different statistical properties than unpartitioned

analyses [163].

8.5 METHODS

8.5.1 Species tree estimation methods

8.5.1.1 Maximum Quartet Support Species Tree Problem

ASTRAL, ASTRAL-2, and wQMC all address the same optimization problem, which we

now explain. Given an input set G of gene trees on a species set S and a quartet tree q on

four species from S, we let n(G, q) denote the number of gene trees in G that induce the

quartet tree q. Then, the quartet support of T given G, denoted wG(T), is
∑

q∈Q(T) n(G, q),
where Q(T) denotes the set of all quartet trees in T . Hence, we can define the Maximum

Quartet Support Species Tree Problem (MQSST), as follows.

152

• Input: a set of gene trees G on a species set S.

• Output: a tree T on the species set S maximizing wG(T), the quartet support of T

given G.

MQSST is NP -hard when the input set of gene trees induce only one tree for each set of

four taxa in S [73], and is of unknown computational complexity when all the gene trees are

complete (i.e., have all the species in S).

8.5.1.2 Weighted Quartets MaxCut

The quartet amalgamation method wQMC [11] is a greedy heuristic for a weighted version

of the MQSST problem, in which the input can have weights on each quartet tree. The

wQMC heuristic uses a greedy strategy to find good solutions to its optimization problems,

but is not guaranteed to solve its optimization problem (weighted MQSST) exactly. To use

wQMC as a summary method, we define the weight of a quartet tree q to be the quartet

support n(G, q) of q in the input set of gene trees G.

We wrote scripts (available in our supporting online material at http://goo.gl/0p4IGD)

that use a previously published code [74] to compute the weights of each quartet tree. After

we calculate these weights (saving them in a file called <quartetscores>), we run wQMC

version 3.0 using the following command:

./max-cut-tree qrtt=<quartetscores> weights=on otre=<speciestree>

8.5.1.3 ASTRAL and ASTRAL-2

ASTRAL [106] and its improved version, ASTRAL-2 [105], also attempt to solve the

MQSST problem. Both have exact versions that provably solve the MQSST problem but

run in exponential time, and faster versions that constrain the search space (using the input

set of gene trees), and then provably solve the constrained problem exactly. ASTRAL and

ASTRAL-2 differ in how they constrain the search space (ASTRAL-2 searches a larger part

of tree space than ASTRAL) and how they are implemented (ASTRAL-2 is faster). Here

we focus on ASTRAL-2, since it is faster and more accurate than ASTRAL.

Given the input set of gene trees, ASTRAL-2 defines a set X of bipartitions on the taxon

set S; when all the gene trees are complete (i.e., have no missing taxa), then X will contain all

the bipartitions from the input gene trees as well as potentially other bipartitions. ASTRAL-

2 runs in O(nk|X |2) time, where n is the number of species and k is the number of genes,

153

and thus can be fast whenever |X | is not too large. While |X | is not theoretically bounded

by a polynomial in n and k, for many datasets |X | is not very large, so that ASTRAL-2 is

able to complete analyses within 24 hours on 1000 species and 1000 genes [105].

ASTRAL-2 finds a globally optimal solution to the constrained optimization problem

where we restrict the output species tree to draw its bipartitions from X . ASTRAL and

ASTRAL-2, run in their default versions (which use the constrained search), are both sta-

tistically consistent under the multispecies coalescent model when all the gene trees are

complete (i.e., this restriction to the set X of bipartitions does not change their statistical

guarantees) [105].

We now provide a proof for Theorem 8.3, establishing that ASTRAL and ASTRAL-2,

run in default mode, are statistically consistent under the MSC model and also under the

bounded HGT models.

Proof for Theorem 8.3. As proved in [105, 106], ASTRAL and ASTRAL-2 are guaranteed

to find globally optimal solutions to the constrained MQSST problem. The default settings

for the constraint set X of bipartitions allowed in the output species tree always includes

all bipartitions from the input gene trees; hence, as the number of genes increases, with

probability converging to 1, every bipartition from the species tree will be in the set X .

Therefore, with probability converging to 1, the true species tree will be a feasible solution

(i.e., within the constrained search space) as the number of loci and number of sites per locus

both increase (as established in [105, 106]). Recall that the quartet support score of a tree T

is the total, over all quartet trees in T , of the number of gene trees that contain that quartet

tree. As shown in [125], under the bounded HGT models in [125], the most probable quartet

tree on any four taxon set A is topologically identical to the quartet tree on X induced by

the true species tree. Hence, with probability converging to 1, under these bounded HGT

models, the most frequent quartet tree on any set A of four leaves will be the true species

tree on A. Given any set of gene trees in which for all four-leaf sets A the most frequent

quartet tree on A is the true species tree on A, the quartet support score of the true species

tree T ∗ will be the maximum possible quartet support score (since any other species tree T

cannot have larger quartet support for any quartet tree). Furthermore, given any set of gene

trees in which the most frequent quartet tree is unique for all four taxa and equal to the

species tree on the four taxa, the true species tree T ∗ will have the unique maximum quartet

support score. Hence, as the number of loci and number of sites per locus both increase,

the tree returned by an exact solution to the constrained MQSST problem, using default

settings for X , will converge in probability to the true species tree T ∗. Therefore, ASTRAL

and ASTRAL-2 are statistically consistent under the bounded HGT models of [125].

We ran ASTRAL-2 version 4.7.6 on the simulated data using the following command:

154

java -jar astral.4.7.6.jar -i <genetrees> -o <speciestree>

where <genetrees> is a file containing the gene trees in newick format, and <speciestree>

is the output.

For the biological data, we used ASTRAL-2 with multi-locus bootstrapping (MLBS), using

the following commands:

java -jar astral.4.7.6.jar -i < bootstrap replicates >

-o <species replicate>

where bootstrap replicates is the collection of 1128 gene trees generated by taking the

nth line of the gene tree file n = {1, . . . , 100}, and species replicate is the nth bootstrap

replicate species tree Tn. To calculate the final species tree T with bootstrap support values,

we computed the majority consensus tree using Dendropy version 3.12.2 [145].

8.5.1.4 NJst

NJst is a summary method that has two steps. In the first step, it computes a distance

matrix on the species set, where D[x, y] is the average leaf-to-leaf topological distance be-

tween x and y among all the gene trees. In the second step, it runs neighbor joining [130], a

popular distance-based phylogeny estimation method. NJst is statistically consistent under

the MSC model because the distance matrix it computes converges in probability to an ad-

ditive matrix defining the true species tree, and neighbor joining will return the true species

tree once the computed distance matrix is sufficiently close to the additive matrix for the

species tree; see [90] for this proof.

To run NJst, we used phybase version 1.4 [91] and custom scripts, available in our sup-

plementary material at http://goo.gl/0p4IGD.

8.5.2 Gene tree estimation

To compute gene trees, we ran FastTree-2 version 2.1.4, using the following command:

fasttree -nt -gtr -quiet -nopr -gamma -n 1000 [input] > [output]

where [input] is a file that includes all the alignments of all 1000 genes and [output] will

be one file with all 1000 estimated gene trees.

155

8.5.3 CA-ML

To perform the concatenated analyses under maximum likelihood, we ran FastTree-2 ver-

sion 2.1.4, with the following command:

fasttree -nt -gtr -nopr [input] > [output]

8.5.4 Computing Error Rates

The coalescent-based methods ASTRAL-2, wQMC, and NJst used in this study all return

binary species trees. We also verified that all trees returned in our CA-ML analysis were

binary, and all simulated data used in this study contained only binary model species trees.

Error rates were computed by finding the missing branch rate using custom scripts available

in our supporting online materials at http://goo.gl/0p4IGD.

8.5.5 Measuring Quartet Support Scores of ASTRAL-2 and wQMC

The command used to measure the quartet support score was

java -jar astral.4.7.6.jar -q <speciestreefile> -i <genetreesfile>

8.5.6 Data

HGT+ILS Simulated Data The simulated dataset was simulated using SimPhy [96]

version 1.0 (downloaded January 20, 2015). There are 6 data sets containing 50 replicates

apiece: each replicate has its own 51-taxon species tree. For every model species tree, one

taxon is an outgroup, and so is actually a 50-taxon rooted species tree. These model trees

were simulated under a Yule process, with birth rates set to 0.000001 (per generation) and

the maximum tree length set to 2 million generations.

Then, on each species tree, 1000 locus trees are simulated, where each can differ from the

species tree due to HGT events, and we used HGT rates (1)-(6) given by 0, 2×10−9, 5×10−9,

2 × 10−8, 2 × 10−7, and 5 × 10−7. These values correspond to expected numbers of HGT

events per gene of 0, 0.08, 0.2, 0.8, 8, and 20. Thus, HGT rate (1) is no HGT events, HGT

rate (2) is 0.08 HGT events per gene, up to HGT rate (6) of 20 HGT events per gene. Note

that in our simulations, for each HGT event, the probability of a branch being chosen as the

receptor of the transfer is proportional to its distance from the donor.

Once locus trees are simulated, a gene tree is simulated for each locus tree according to

the MSC model, with population size parameter set to 200,000. Thus, at the end, we have

156

1000 true genes that differ from the species tree due to both ILS and also potentially HGT

(when the HGT rate is positive).

The SimPhy command used to generate a model replicate in the data sets is

simphy -rs 50 -rl U:1000,1000 -rg 1 -st U:2000000,2000000 -si U:1,1

-sl U:50,50 -sb U:0.000001,0.000001 -cp U:200000,2000000

-hs L:1.5,1 -hl L:1.2,1 -hg l:1.4,1 -cu E:10000000 -so U:1,1 -od 1

-or 0 -v 3 -cs 293745 -o model.50.2000000.0.000001.<transferrate>

-lt U:<transferrate>,<transferrate> -lk 1

On each simulated true gene tree, we used INDELible [53] v. 1.03 to simulate sequence

alignments according to the GTR+Γ model, with model parameters estimated from three

different real datasets (these parameters are identical to those used in [105]). This simulation

produces GTR parameters that vary from one gene to another, where the parameters are

drawn for each gene from a distribution at random. See [105] for details about the simu-

lation process. The alignment length is set to 1000bp for all genes. After simulating gene

alignments, we used FastTree-2 [118] to estimate gene trees under the GTR model. Thus

for each replicate, we have both true and estimated gene trees.

For HGT rate (1) (where all the discordance is due to ILS), the average RF [121] distance

between true gene trees and the species tree is 30.4%. Therefore, the amount of ILS in these

data sets is moderately high.

Cyanobacterial Data The cyanobacterial data set has 1128 genes on 11 taxa, and was

first analyzed in [179], which suggested that the 11 genome sequences may have acquired

between 9.5% and 16.6% of their genes through HGT. We obtained 100 bootstrap replicate

gene trees for each of the 1128 genes from the first author of [12], and computed an ASTRAL-

2 tree on these data using multi-locus bootstrapping.

8.6 TABLES AND FIGURE

Tables show the results of the 28 experiments we ran on the simulated data set. Rows are

labeled by the number of genes input to each experiment, and columns are labeled by the

method run on the input set of genes. Entries in the table are the mean error rate over all

50 replicates analyzed in each experiment, given as a percentage of branches is the model

species tree missing in the estimated species tree. For all numbers of genes and all HGT

rates, the number of taxa in the input gene trees, model species tree, and estimated species

157

tree are fixed at 51.

Tables (1)-(6) show error rates on estimated gene trees, which include CA-ML results for

some numbers of genes. Tables (7)-(12) show error rates on true gene trees. Both Tables

(1)-(6) showing results for estimated gene trees and Tables (7)-(12) showing results for true

gene trees are labeled by increasing HGT rate. In all tables, the lowest error rate returned

by a method in each row is in bold text.

Number of Genes ASTRAL wQMC NJst CA-ML
10 13.0 13.0 14.5 14.1
25 8.6 8.6 9.5
50 6.0 6.0 6.6 7.8

100 4.5 4.5 4.6
200 3.0 3.2 3.6 3.8
400 2.4 2.6 2.7

1000 1.8 2.0 2.1 2.0

Table 8.1: Average Robinson-Foulds error rates of estimated species trees (50 replicates) on
estimated gene trees for HGT rate (1): 51 taxa, 1000 bp true alignments

Number of Genes ASTRAL wQMC NJst CA-ML
10 13.4 13.5 13.7 16.0
25 8.5 8.8 8.7
50 5.7 5.9 5.8 7.2

100 3.4 3.5 4.0
200 2.7 2.8 3.1 4.0
400 2.1 2.2 2.3

1000 1.7 1.8 2.2 1.7

Table 8.2: Average Robinson-Foulds error rates of estimated species trees (50 replicates) on
estimated gene trees for HGT rate (2): 51 taxa, 1000 bp true alignments

158

Number of Genes ASTRAL wQMC NJst CA-ML
10 15.5 15.5 15.6 16.3
25 9.0 9.1 9.9
50 6.7 7.0 8.0 8.0

100 4.9 5.3 5.6
200 3.9 4.2 4.4 4.0
400 3.1 3.2 3.5

1000 2.7 2.8 3.0 2.2

Table 8.3: Average Robinson-Foulds error rates of estimated species trees (50 replicates) on
estimated gene trees for HGT rate (3): 51 taxa, 1000 bp true alignments

Number of Genes ASTRAL wQMC NJst CA-ML
10 14.9 15.2 15.7 16.8
25 9.3 9.6 10.2
50 7.3 7.5 7.3 7.8

100 5.8 5.8 5.5
200 4.5 4.7 5.1 4.8
400 3.5 3.7 3.9

1000 3.0 3.1 3.1 2.5

Table 8.4: Average Robinson-Foulds error rates of estimated species trees (50 replicates) on
estimated gene trees for HGT rate (4): 51 taxa, 1000 bp true alignments

Number of Genes ASTRAL wQMC NJst CA-ML
10 18.4 19.7 21.6 26.6
25 10.7 11.5 12.5
50 6.8 7.6 8.3 10.0

100 5.2 5.9 6.5
200 3.5 4.3 4.2 5.7
400 3.2 3.8 3.6

1000 2.3 2.6 2.7 3.5

Table 8.5: Average Robinson-Foulds error rates of estimated species trees (50 replicates) on
estimated gene trees for HGT rate (5): 51 taxa, 1000 bp true alignments

159

0.000 0.002 0.004 0.006 0.008 0.010
wQMC q artet s pport

score advantage

−0.15

−0.10

−0.05

0.00

0.05

0.10

w
Q
M
C
 b
ra
nc
h
ra
te
 a
dv
an

ta
ge

wQMC better

ASTRAL-2 better

Figure 8.6: Scatterplot of differences in quartet support scores and topological error of
wQMC and ASTRAL-2 trees. Each point (x, y) represents a dataset in which wQMC
produced a tree with quartet support score x points higher than produced by ASTRAL-2,
and with tree topological error y points lower. All values of x are strictly positive (we are only
showing cases where wQMC produces a better quartet support score than ASTRAL-2), but
values of y can be arbitrary. Points with y < 0 indicate datasets where ASTRAL-2 produces
a topologically more accurate tree than wQMC, points with y = 0 indicate datasets where
ASTRAL-2 and wQMC produce trees of equal accuracy, and points with y > 0 indicate
datasets where ASTRAL-2 produces a tree that is topologically less accurate than wQMC.
Of the points that are not on the y = 0 line, more are below the y = 0 line than above (i.e.,
12 below compared to 9 above), indicating that ASTRAL-2 tends to produce more accurate
tree topologies than wQMC on these datasets. Also, when wQMC is more accurate, the
improvement is lower than when ASTRAL-2 is more accurate. Thus, even when wQMC finds
trees with better quartet scores, ASTRAL-2 tends to produce more topologically accurate
trees. Plots in the margins are histograms of the x− and y−axes.

160

Number of Genes ASTRAL wQMC NJst CA-ML
10 28.1 31.8 32.1 40.2
25 15.7 17.3 19.3
50 10.3 11.7 13.0 16.8

100 7.3 8.5 9.0
200 5.2 6.1 7.1 8.7
400 3.5 4.4 4.0

1000 2.1 3.2 2.5 5.0

Table 8.6: Average Robinson-Foulds error rates of estimated species trees (50 replicates) on
estimated gene trees for HGT rate (6): 51 taxa, 1000 bp true alignments

Number of Genes ASTRAL wQMC NJst
10 8.4 8.7 9.1
25 5.0 5.2 5.5
50 3.4 3.4 3.2

100 2.5 2.6 2.5
200 2.0 2.2 1.9
400 1.4 1.5 1.4

1000 0.8 0.8 0.9

Table 8.7: Average Robinson-Foulds error rates of estimated species trees (50 replicates) on
true gene trees for HGT rate (1): 51 taxa, 1000 bp true alignments

Number of Genes ASTRAL wQMC NJst
10 10.1 10.3 10.1
25 5.9 6.0 5.8
50 3.9 4.0 4.2

100 2.7 2.9 3.0
200 2.0 2.0 2.1
400 1.3 1.3 1.4

1000 0.9 1.0 0.9

Table 8.8: Average Robinson-Foulds error rates of estimated species trees (50 replicates) on
true gene trees for HGT rate (2): 51 taxa, 1000 bp true alignments

161

Number of Genes ASTRAL wQMC NJst
10 10.3 10.4 10.3
25 5.0 5.3 5.1
50 3.5 3.7 3.5

100 2.3 2.5 2.3
200 1.4 1.5 1.5
400 0.7 0.7 0.9

1000 0.4 0.5 0.5

Table 8.9: Average Robinson-Foulds error rates of estimated species trees (50 replicates) on
true gene trees for HGT rate (3): 51 taxa, 1000 bp true alignments

Number of Genes ASTRAL wQMC NJst
10 9.9 10.0 10.8
25 5.8 6.2 6.4
50 3.9 4.1 4.5

100 2.6 2.7 2.6
200 1.9 2.2 2.0
400 1.2 1.4 1.3

1000 0.7 1.0 0.8

Table 8.10: Average Robinson-Foulds error rates of estimated species trees (50 replicates)
on true gene trees for HGT rate (4): 51 taxa, 1000 bp true alignments

Number of Genes ASTRAL wQMC NJst
10 12.0 13.0 17.6
25 7.1 7.4 8.9
50 3.8 4.3 5.5

100 3.3 3.5 3.6
200 1.8 2.1 2.2
400 1.5 1.8 1.6

1000 0.7 1.0 0.9

Table 8.11: Average Robinson-Foulds error rates of estimated species trees (50 replicates)
on true gene trees for HGT rate (5): 51 taxa, 1000 bp true alignments

162

Number of Genes ASTRAL wQMC NJst
10 23.6 25.7 29.4
25 11.5 13.5 16.3
50 7.3 8.0 10.1

100 4.8 6.0 6.8
200 3.5 4.3 5.0
400 2.0 2.8 2.8

1000 1.2 2.2 1.7

Table 8.12: Average Robinson-Foulds error rates of estimated species trees (50 replicates)
on true gene trees for HGT rate (6): 51 taxa, 1000 bp true alignments.

163

CHAPTER 9: CONCLUSIONS AND FUTURE WORK

9.1 SUPERTREE ESTIMATION

FastRFS and ASTRID are both effective methods for supertree estimation. FastRFS

with SIESTA is more accurate than other supertree methods and can scale to datasets with

thousands of taxa. ASTRID can run on even larger datasets, with tens of thousands of

taxa, although it is slightly less accurate than FastRFS in some cases. The most promising

avenues of future work have to do with improving FastRFS’s search space. Currently, the

most accurate version of FastRFS uses MRL as a subroutine to expand its search space, but

this is computationally intensive on large datasets. Replacing this with ASTRID may allow

for larger and faster analyses without sacrificing accuracy. FastRFS uses subroutines from

ASTRAL to compute its search space, but these are designed for a species tree context.

There may be ways to compute a search space that are better suited for the supertree

context, perhaps using OCTAL [38] to complete input trees and analyzing their clades.

9.2 SPECIES TREE ESTIMATION

ASTRID is among the most accurate methods for species tree estimation. It is also by

far the fastest coalescent-aware summary method. Improvements to ASTRID are possible,

both in terms of accuracy and in terms of speed. ASTRID’s sample complexity is known

to be theoretically limited by variance in its internode distance matrix [124]. Since variance

estimates of the average distance matrix are easy to calculate, it may be possible to incorpo-

rate these into the distance-based estimation methods used in the second stage of ASTRID.

Some methods, like BIONJ [56], can already take into account variance estimates and would

be good candidates to test this approach. From a performance perspective, ASTRID should

be fairly straightforward to parallelize, and this could reduce the amount of time used to

estimate the average distance matrix.

SVDquest presents an improvement over the implementation of SVDquartets in PAUP*.

In most cases, however, either SVDquartets method is less accurate than CA-ML or sum-

mary methods like ASTRAL and ASTRID. Newer versions of PAUP* have added additional

local search heuristics for improving its estimate; it may be possible to combine these with

SVDquest’s tree to find an even better tree. There may also be regions of parameter space,

perhaps with even higher ILS or even shorter loci than those studied in Chapter 7, where

SVDquest does actually outperform its competitors.

164

Further research into species tree estimation methods with both HGT and ILS will be

important for larger analyses, simply due to the fact that datasets with more species are more

likely to display both of these processes. It seems as though methods that are effective under

ILS are also effective under ILS and HGT, but more datasets should be tested, including

those with “highways” of HGT.

Finally, the most effective strategies for large scale estimation will likely involve combina-

tions of methods. These could range from using methods like ASTRID or MRL to expand

the search space of ASTRAL, FastRFS, or SVDquest in various ways, or using divide and

conquer methods to allow SVDquest to run on larger datasets.

165

REFERENCES

1. Akanni, W., Creevey, C., Wilkinson, M. & Pisani, D. L.U.-st: a tool for approximated

maximum likelihood supertree reconstruction. BMC Bioinform. 15, 183 (2014).

2. Akanni, W., Wilkinson, M., Creevey, C., Foster, P. & Pisani, D. Implementing and

testing Bayesian and maximum-likelihood supertree methods in phylogenetics. Royal

Soc. open science 2, 140436 (2015).

3. Akanni, W. et al. Horizontal gene transfer from Eubacteria to Archaebacteria and what

it means for our understanding of eukaryogenesis. Phil. Trans. R. Soc. B, 20140337

(2015).

4. Alexander, A. M. et al. Genomic data reveals potential for hybridization, introgression,

and incomplete lineage sorting to confound phylogenetic relationships in an adaptive

radiation of narrow-mouth frogs. Evolution 71, 475–488 (2017).

5. Allen, J. M. et al. Phylogenomics from whole genome sequences using aTRAM. Sys-

tematic biology 66, 786–798 (2017).

6. Allman, E., Degnan, J. & Rhodes, J. Identifying the rooted species tree from the

distribution of unrooted gene trees under the coalescent. Journal of Mathematical

Biology 62, 833–862 (2011).

7. Allman, E. S., Ané, C. & Rhodes, J. A. Identifiability of a Markovian model of molecu-

lar evolution with gamma-distributed rates. Advances in Applied Probability 40, 229–

249 (2008).

8. Alvarado-Serrano, D. F. & D’Elia, G. A new genus for the Andean mice Akodon

latebricola and A. bogotensis (Rodentia: Sigmodontinae). Journal of Mammalogy 94,

995–1015 (2013).

9. Anderson, B. M., Thiele, K. R., Krauss, S. L. & Barrett, M. D. Genotyping-by-

Sequencing in a Species Complex of Australian Hummock Grasses (Triodia): Method-

ological Insights and Phylogenetic Resolution. PloS one 12, e0171053 (2017).

10. Anderson, E. Introgressive hybridization. Biological Reviews 28, 280–307 (1953).

11. Avni, E., Cohen, R. & Snir, S. Weighted quartets phylogenetics. Systematic biology

64, 233–242 (2014).

12. Bansal, M. S., Banay, G., Harlow, T. J., Gogarten, J. P. & Shamir, R. Systematic

inference of highways of horizontal gene transfer in prokaryotes. Bioinformatics 29,

571–579 (2013).

166

13. Bansal, M. S., Burleigh, J. G., Eulenstein, O. & Fernández-Baca, D. Robinson-Foulds

supertrees. Algorithms for molecular biology 5, 18 (2010).

14. Bansal, M. S., Dong, J. & Fernández-Baca, D. Comparing and aggregating partially

resolved trees in Latin American Symposium on Theoretical Informatics (2008), 72–

83.

15. Baum, B. R. Combining Trees as a Way of Combining Data Sets for Phylogenetic

Inference, and the Desirability of Combining Gene Trees. Taxon 41, 3–10 (1992).

16. Bayzid, M. S., Mirarab, S., Boussau, B. & Warnow, T. Weighted statistical bin-

ning: enabling statistically consistent genome-scale phylogenetic analyses. PloS one

10, e0129183 (2015).

17. Bayzid, M. S., Mirarab, S. & Warnow, T. J. Inferring optimal species trees under gene

duplication and loss. in Pacific Symposium on Biocomputing 18 (2013), 250–261.

18. Bayzid, M. S. & Warnow, T. Naive binning improves phylogenomic analyses. Bioin-

formatics 29, 2277–2284 (2013).

19. Bayzid, M. S., Hunt, T. & Warnow, T. Disk covering methods improve phylogenomic

analyses. BMC Genomics 15 (Suppl 6), S7 (2014).

20. Beck, R., Bininda-Emonds, O., Cardillo, M., Liu, F. & Purvis, A. A higher-level MRP

supertree of placental mammals. BMC Evolutionary Biology 9 (2006).

21. Beiko, R. G., Harlow, T. J. & Ragan, M. A. Highways of gene sharing in prokaryotes.

Proceedings of the National Academy of Sciences 102, 14332–14337 (2005).

22. Betancur-R, R. & Orti, G. Molecular evidence for the monophyly of flatfishes (Carangi-

morpharia: Pleuronectiformes). Molecular Phylogenetics and Evolution 73, 18–22 (2014).

23. Bininda-Emonds, O. R. Phylogenetic supertrees: combining information to reveal the

”Tree of Life” (Springer Science & Business Media, Dordrecht, 2004).

24. Boucher, F., Casazza, G., Szövényi, P. & Conti, E. Sequence capture using RAD probes

clarifies phylogenetic relationships and species boundaries in Primula sect. Auricula.

Molecular phylogenetics and evolution 104, 60–72 (2016).

25. Boussau, B. & Gouy, M. Efficient likelihood computations with nonreversible models

of evolution. Systematic biology 55, 756–768 (2006).

26. Boussau, B., Szöllősi, G. & Duret, L. Genome-scale coestimation of species and gene

trees. Genome Research 23, 323–330 (Dec. 2013).

167

27. Boykin, L. M., Kubatko, L. S. & Lowrey, T. K. Comparison of methods for rooting

phylogenetic trees: A case study using Orcuttieae (Poaceae: Chloridoideae). Molecular

phylogenetics and evolution 54, 687–700 (2010).

28. Bryant, D., Bouckaert, R., Felsenstein, J., Rosenberg, N. A. & RoyChoudhury, A.

Inferring species trees directly from biallelic genetic markers: bypassing gene trees in

a full coalescent analysis. Molecular biology and evolution 29, 1917–1932 (2012).

29. Bryant, D. & Steel, M. Computing the distribution of a tree metric. IEEE/ACM

Transactions on Computational Biology and Bioinformatics 6, 420–426 (2009).

30. Bryant, D. & Steel, M. Constructing optimal trees from quartets. Journal of Algo-

rithms 38, 237–259 (2001).

31. Campillo, L. C. Use of genomic data to resolve gene tree discordance in a South-

east Asian genus: Readdressing paraphyly in the spiderhunter (Nectariniidae, Arach-

nothera) phylogeny MA thesis (University of Kansas, 2016).

32. Cardillo, M., Bininda-Emonds, O., Boakes, E. & Purvis, A. A species-level phyloge-

netic supertree of marsupials. Journal of Zoology 264, 11–31 (2004).

33. Chai, J. & Housworth, E. A. On Rogers’ proof of identifiability for the GTR+ Γ+ I

model. Systematic biology 60, 713–718 (2011).

34. Chaudhary, R., Fernández-Baca, D. & Burleigh, J. G. MulRF: a software package for

phylogenetic analysis using multi-copy gene trees. Bioinformatics 31, 432–433 (2014).

35. Cheng, S. et al. 10KP: A phylodiverse genome sequencing plan. Gigascience 7, giy013

(2018).

36. Chifman, J. & Kubatko, L. Quartet inference from SNP data under the coalescent

model. Bioinformatics 30, 3317–3324 (2014).

37. Chou, J. et al. A comparative study of SVDquartets and other coalescent-based species

tree estimation methods. BMC Genomics 16, S2 (2015).

38. Christensen, S., Molloy, E. K., Vachaspati, P. & Warnow, T. OCTAL: Optimal Com-

pletion of gene trees in polynomial time. Algorithms for Molecular Biology 13, 6

(2018).

39. Chung, Y. & Ané, C. Comparing two Bayesian methods for gene tree/species tree re-

construction: simulations with incomplete lineage sorting and horizontal gene transfer.

Systematic Biology 60, 261–275 (2011).

40. Criscuolo, A. & Gascuel, O. Fast NJ-like algorithms to deal with incomplete distance

matrices. BMC bioinformatics 9, 166 (2008).

168

41. Critchlow, D. E., Pearl, D. K. & Qian, C. The triples distance for rooted bifurcating

phylogenetic trees. Systematic Biology 45, 323–334 (1996).

42. Crowl, A. A., Myers, C. & Cellinese, N. Embracing discordance: Phylogenomic analy-

ses provide evidence for allopolyploidy leading to cryptic diversity in a Mediterranean

Campanula (Campanulaceae) clade. Evolution 71, 913–922 (2017).

43. Darwin, C. On the origin of species (John Murray, 1859).

44. Dasarathy, G., Nowak, R. & Roch, S. Data Requirement for Phylogenetic Inference

from Multiple Loci: A New Distance Method. IEEE/ACM Trans Comp Biol Bioin-

formatics 12. DOI: 10.1109/TCBB.2014.2361685, 422–432 (2 2015).

45. Davidson, R., Vachaspati, P., Mirarab, S. & Warnow, T. Phylogenomic species tree

estimation in the presence of incomplete lineage sorting and horizontal gene transfer.

BMC genomics 16, S1 (2015).

46. De Maio, N., Schrempf, D. & Kosiol, C. PoMo: An Allele Frequency-Based Approach

for Species Tree Estimation. Systematic Biology 64, 1018–1031 (2015).

47. De Oca, A. N.-M. et al. Phylogenomics and species delimitation in the knob-scaled

lizards of the genus Xenosaurus (Squamata: Xenosauridae) using ddRADseq data re-

veal a substantial underestimation of diversity. Molecular Phylogenetics and Evolution

106, 241–253 (2017).

48. DeGiorgio, M. & Degnan, J. H. Robustness to divergence time underestimation when

inferring species trees from estimated gene trees. Syst. Biol. 63, 66–82 (2014).

49. DeGiorgio, M. & Degnan, J. H. Fast and consistent estimation of species trees using

supermatrix rooted triples. Molecular Biology and Evolution 27, 552–69 (Mar. 2010).

50. Desper, R. & Gascuel, O. Fast and accurate phylogeny minimum-evolution principle.

J Comput Biol 9, 687–705 (2002).

51. Felsenstein, J. Evolutionary trees from DNA sequences: a maximum likelihood ap-

proach. Journal of molecular evolution 17, 368–376 (1981).

52. Fleischauer, M. & Böcker, S. Bad Clade Deletion supertrees: a fast and accurate

supertree algorithm. Molecular biology and evolution 34, 2408–2421 (2017).

53. Fletcher, W. & Yang, Z. INDELible: A Flexible Simulator of Biological Sequence

Evolution. Molecular Biology and Evolution 26, 1879–1888 (2009).

54. Gaither, J. & Kubatko, L. Hypothesis tests for phylogenetic quartets, with applications

to coalescent-based species tree inference. J. Theoretical Biology 408, 179–186 (2016).

169

55. Galtier, N. A model of horizontal gene transfer and the bacterial phylogeny problem.

Systematic Biology 56, 633–642 (2007).

56. Gascuel, O. BIONJ: an improved version of the NJ algorithm based on a simple model

of sequence data. Molecular biology and evolution 14, 685–695 (1997).

57. Gascuel, O. & Steel, M. Neighbor-joining revealed. Molecular biology and evolution

23, 1997–2000 (2006).

58. Gatesy, J. & Springer, M. Phylogenetic analysis at deep timescales: Unreliable gene

trees, bypassed hidden support, and the coalescence/concatalescence conundrum. Mol

Phylog Evol 80, 231–266 (2014).

59. González-Ittig, R. E., Rivera, P. C., Levis, S. C., Calderón, G. E. & Gardenal, C. N.

The molecular phylogenetics of the genus Oligoryzomys (Rodentia: Cricetidae) clarifies

rodent host–hantavirus associations. Zoological Journal of the Linnean Society 171,

457–474 (2014).

60. Gu, X., Fu, Y.-X. & Li, W.-H. Maximum likelihood estimation of the heterogeneity of

substitution rate among nucleotide sites. Molecular Biology and evolution 12, 546–557

(1995).

61. Guindon, S. & Gascuel, O. A simple, fast, and accurate algorithm to estimate large

phylogenies by maximum likelihood. Systematic biology 52, 696–704 (2003).

62. Hallett, M. T. & Lagergren, J. New algorithms for the duplication-loss model in “Pro-

ceedings of the fourth annual International Conference on Computational Molecular

Biology (RECOMB)” (2000), 138–146.

63. He, K. et al. Talpid mole phylogeny unites shrew moles and illuminates overlooked

cryptic species diversity. Molecular Biology and Evolution 34, 78–87 (1 2017).

64. Heled, J. & Drummond, A. J. Bayesian inference of species trees from multilocus data.

Molecular Biology and Evolution 27, 570–80 (Mar. 2010).

65. Hime, P. M. et al. The influence of locus number and information content on species

delimitation: an empirical test case in an endangered Mexican salamander. Molecular

Ecology 25, 5959–5974 (2016).

66. Hosner, P. A., Braun, E. L. & Kimball, R. T. Rapid and recent diversification of curas-

sows, guans, and chachalacas (Galliformes: Cracidae) out of Mesoamerica: Phylogeny

inferred from mitochondrial, intron, and ultraconserved element sequences. Molecular

Phylogenetics and Evolution 102, 320–330 (2016).

170

67. Hou, Z.-c., Romero, R. & Wildman, D. E. Phylogeny of the Ferungulata (Mammalia:

Laurasiatheria) as determined from phylogenomic data. Molecular phylogenetics and

evolution 52, 660–664 (2009).

68. Huang, H., He, Q., Kubatko, L. S. & Knowles, L. L. Sources of error inherent in

species-tree estimation: impact of mutational and coalescent effects on accuracy and

implications for choosing among different methods. Systematic Biology 59, 573–583

(2010).

69. Huson, D., Nettles, S. & Warnow, T. Disk-Covering, a fast converging method for

phylogenetic tree reconstruction. Journal of Computational Biology 6, 369–386 (1999).

70. Huson, D. H. & Bryant, D. Application of phylogenetic networks in evolutionary

studies. Molecular biology and evolution 23, 254–267 (2005).

71. Jain, R., Rivera, M. C. & Lake, J. A. Horizontal gene transfer among genomes: the

complexity hypothesis. Proceedings of the National Academy of Sciences 96, 3801–

3806 (1999).

72. Jarvis, E. D. et al. Whole-genome analyses resolve early branches in the tree of life of

modern birds. Science 346, 1320–1331 (2014).

73. Jiang, T., Kearney, P. & Li, M. A polynomial time approximation scheme for infer-

ring evolutionary trees from quartet topologies and its application. SIAM Journal on

Computing 30, 1942–1961 (2001).

74. Johansen, J. & Holt, M. K. Computing triplet and quartet distances PhD thesis

(Aarhus University, 2013).

75. Jones, D. T., Taylor, W. R. & Thornton, J. M. The rapid generation of mutation data

matrices from protein sequences. Bioinformatics 8, 275–282 (1992).

76. Jukes, T. H., Cantor, C. R., et al. Evolution of protein molecules. Mammalian protein

metabolism 3, 132 (1969).

77. Kennedy, M. & Page, R. D. Seabird supertrees: combining partial estimates of pro-

cellariiform phylogeny. The Auk 119, 88–108 (2002).

78. Knowles, L. L. Estimating species trees: methods of phylogenetic analysis when there

is incongruence across genes. Systematic Biology 58, 463–467 (2009).

79. Koepfli, K.-P., Paten, B., of Scientists, G. 1. C. & O’Brien, S. J. The Genome 10K

Project: a way forward. Annu. Rev. Anim. Biosci. 3, 57–111 (2015).

80. Kupczok, A. Split-based computation of majority-rule supertrees. BMC evolutionary

biology 11, 205 (2011).

171

81. Lanier, H. & Knowles, L. Is recombination a problem for species-tree analyses? Sys-

tematic Biology 61, 691–701 (2012).

82. Leaché, A. D. et al. Phylogenomics of phrynosomatid lizards: conflicting signals from

sequence capture versus restriction site associated DNA sequencing. Genome Biology

and Evolution 7, 706–719 (2015).

83. Leavitt, S. D. et al. Resolving evolutionary relationships in lichen-forming fungi using

diverse phylogenomic datasets and analytical approaches. Scientific reports 6 (2016).

84. Lefort, V., Desper, R. & Gascuel, O. FastME 2.0: a comprehensive, accurate, and

fast distance-based phylogeny inference program. Molecular biology and evolution 32,

2798–2800 (2015).

85. Levine, R. i5k: the 5,000 insect genome project. American Entomologist 57, 110–113

(2011).

86. Lin, Y., Rajan, V. & Moret, B. M. A metric for phylogenetic trees based on matching.

IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB) 9,

1014–1022 (2012).

87. Linkem, C. W., Minin, V. N. & Leaché, A. D. Detecting the anomaly zone in species

trees and evidence for a misleading signal in higher-level skink phylogeny (Squamata:

Scincidae). Systematic biology 65, 465–477 (2016).

88. Liu, K., Raghavan, S., Nelesen, S., Linder, C. R. & Warnow, T. Rapid and Accurate

Large-Scale Coestimation of Sequence Alignments and Phylogenetic Trees. Science

324, 1561–1564 (2009).

89. Liu, L. BEST: Bayesian estimation of species trees under the coalescent model. Bioin-

formatics 24, 2542–2543 (2008).

90. Liu, L. & Yu, L. Estimating species trees from unrooted gene trees. Systematic biology

60, 661–667 (2011).

91. Liu, L. & Yu, L. Phybase: an R package for species tree analysis. Bioinformatics 26,

962–963 (2010).

92. Liu, L., Yu, L. & Edwards, S. V. A maximum pseudo-likelihood approach for estimat-

ing species trees under the coalescent model. BMC Evol Biol 10, 302 (2010).

93. Machado, L. F., Leite, Y. L., Christoff, A. U. & Giugliano, L. G. Phylogeny and

biogeography of tetralophodont rodents of the tribe Oryzomyini (Cricetidae: Sigmod-

ontinae). Zoologica Scripta 43, 119–130 (2014).

172

94. Maddison, W. P. Gene trees in species trees. Systematic biology 46, 523–536 (1997).

95. Maestri, R. et al. The ecology of a continental evolutionary radiation: Is the radiation

of sigmodontine rodents adaptive? Evolution 71, 610–632 (2017).

96. Mallo, D., Martins, L. D. O. & Posada, D. SimPhy: phylogenomic simulation of

gene, locus, and species trees. Systematic biology 65. 10.1093/sysbio/syv082, 334–

344 (2016).

97. Manthey, J. D., Campillo, L. C., Burns, K. J. & Moyle, R. G. Comparison of target-

capture and restriction-site associated DNA sequencing for phylogenomics: a test in

cardinalid tanagers (Aves, Genus: Piranga). Systematic biology, syw005 (2016).

98. Manthey, J. D., Geiger, M. & Moyle, R. G. Relationships of morphological groups in

the northern flicker superspecies complex (Colaptes auratus & C. chrysoides). Sys-

tematics and Biodiversity 15, 183–191 (2017).

99. McCormack, J. E. et al. A Phylogeny of Birds Based on Over 1,500 Loci Collected by

Target Enrichment and High-Throughput Sequencing. PLoS One 8, e54848 (2013).

100. McMahon, M. & Sanderson, M. Phylogenetic supermatrix analysis of GenBank se-

quences from 2228 papilionoid legumes. Systematic Biology 55, 818–836 (2006).

101. Meiklejohn, K. A., Faircloth, B. C., Glenn, T. C., Kimball, R. T. & Braun, E. L.

Analysis of a rapid evolutionary radiation using ultraconserved elements: evidence

for a bias in some multispecies coalescent methods. Systematic biology 65, 612–627

(2016).

102. Mir Arabbaygi, S. Novel Scalable Approaches for Multiple Sequence Alignment and

Phylogenomic Reconstruction PhD thesis (The University of Texas at Austin, 2015).

103. Mirarab, S., Bayzid, M., Boussau, B. & Warnow, T. Statistical binning enables an

accurate coalescent-based estimation of the avian tree. Science 346, 1250463 (2014).

104. Mirarab, S., Bayzid, M. S. & Warnow, T. Evaluating summary methods for multilocus

species tree estimation in the presence of incomplete lineage sorting. Systematic biology

65, 366–380 (2014).

105. Mirarab, S. & Warnow, T. ASTRAL-II: coalescent-based species tree estimation with

many hundreds of taxa and thousands of genes. Bioinformatics 31, i44–i52 (2015).

106. Mirarab, S. et al. ASTRAL: genome-scale coalescent-based species tree estimation.

Bioinformatics 30, i541–i548 (2014).

107. Mirarab, S. et al. PASTA: ultra-large multiple sequence alignment for nucleotide and

amino-acid sequences. Journal of Computational Biology 22, 377–386 (2015).

173

108. Mitchell, N., Lewis, P. O., Lemmon, E. M., Lemmon, A. R. & Holsinger, K. E. An-

chored phylogenomics improves the resolution of evolutionary relationships in the

rapid radiation of Protea L. American Journal of Botany 104, 102–115 (2017).

109. Molloy, E. K. & Warnow, T. To include or not to include: the impact of gene filtering

on species tree estimation methods. Systematic biology 67, 285–303 (2017).

110. Morrison, D. A. An introduction to phylogenetic networks (RJR productions, 2011).

111. Mossel, E., Roch, S., et al. Distance-based species tree estimation under the coales-

cent: information-theoretic trade-off between number of loci and sequence length. The

Annals of Applied Probability 27, 2926–2955 (2017).

112. Moyle, R. G. et al. Tectonic collision and uplift of Wallacea triggered the global song-

bird radiation. Nature Communications 7 (2016).

113. Nam-phuong, D. N., Mirarab, S., Kumar, K. & Warnow, T. Ultra-large alignments

using phylogeny-aware profiles. Genome biology 16, 124 (2015).

114. Nelesen, S., Liu, K., Wang, L.-S., Linder, C. R. & Warnow, T. DACTAL: divide-and-

conquer trees (almost) without alignments. Bioinformatics 28, i274–i282 (2012).

115. Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and

effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molec-

ular biology and evolution 32, 268–274 (2014).

116. Nguyen, N., Mirarab, S. & Warnow, T. MRL and SuperFine+MRL: new supertree

methods. Algorithms for Molecular Biology 7, 3 (2012).

117. Patel, S., Kimball, R. & Braun, E. Error in Phylogenetic Estimation for Bushes in the

Tree of Life. J Phylogen Evolution Biol 1, 110 (2013).

118. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2–approximately maximum-

likelihood trees for large alignments. PloS one 5, e9490 (2010).

119. Ragan, M. A. Phylogenetic inference based on matrix representation of trees. Molec-

ular phylogenetics and evolution 1, 53–58 (1992).

120. Reaz, R., Bayzid, M. S. & Rahman, M. S. Accurate phylogenetic tree reconstruction

from quartets: A heuristic approach. PloS one 9, e104008 (2014).

121. Robinson, D. F. & Foulds, L. R. Comparison of phylogenetic trees. Mathematical

biosciences 53, 131–147 (1981).

122. Robinson, D. F. & Foulds, L. R. in Combinatorial mathematics VI 119–126 (Springer,

1979).

174

123. Roch, S. Towards extracting all phylogenetic information from matrices of evolutionary

distances. Science 327, 1376–1379 (2010).

124. Roch, S. On the variance of internode distance under the multispecies coalescent in

RECOMB International conference on Comparative Genomics (2018), 196–206.

125. Roch, S. & Snir, S. Recovering the treelike trend of evolution despite extensive lateral

genetic transfer: a probabilistic analysis. Journal of Computational Biology 20, 93–

112 (2013).

126. Roch, S. & Steel, M. Likelihood-based tree reconstruction on a concatenation of align-

ments can be statistically inconsistent. Theoretical Population Biology 100, 56–62

(2015).

127. Roch, S. & Warnow, T. On the Robustness to Gene Tree Estimation Error (or lack

thereof) of Coalescent-Based Species Tree Methods. Systematic Biology 64, 663–676

(2015).

128. Ronquist, F. et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model

choice across a large model space. Systematic biology 61, 539–542 (2012).

129. Rothfels, C. J. et al. The evolutionary history of ferns inferred from 25 low-copy

nuclear genes. American Journal of Botany 102, 1089–1107 (2015).

130. Saitou, N. & Nei, M. The neighbor-joining method: a new method for reconstructing

phylogenetic trees. Molecular biology and evolution 4, 406–425 (1987).

131. Sand, A. et al. tqDist: a library for computing the quartet and triplet distances between

binary or general trees. Bioinformatics 30, 2079–2080 (2014).

132. Sayyari, E. & Mirarab, S. Fast coalescent-based computation of local branch support

from quartet frequencies. Molecular biology and evolution 33, 1654–1668 (2016).

133. Schrempf, D., Minh, B. Q., Maio, N. D., von Haeseler, A. & Kosiol, C. Reversible

polymorphism-aware phylogenetic models and their application to tree inference. Jour-

nal of Theoretical Biology 407, 362–370 (2016).

134. Sharanowski, B. J. et al. Expressed sequence tags reveal Proctotrupomorpha (minus

Chalcidoidea) as sister to Aculeata (Hymenoptera: Insecta). Molecular Phylogenetics

and Evolution 57, 101–112 (2010).

135. Simonsen, M., Mailund, T. & Pedersen, C. N. Inference of large phylogenies using

neighbour-joining in International Joint Conference on Biomedical Engineering Sys-

tems and Technologies (2010), 334–344.

175

136. Simonsen, M., Mailund, T. & Pedersen, C. N. Rapid neighbour-joining in International

Workshop on Algorithms in Bioinformatics (2008), 113–122.

137. Snir, S. & Rao, S. Quartet MaxCut: a fast algorithm for amalgamating quartet trees.

Molecular phylogenetics and evolution 62, 1–8 (2012).

138. Sokal, R. R. A statistical method for evaluating systematic relationship. University of

Kansas science bulletin 28, 1409–1438 (1958).

139. Song, S., Liu, L., Edwards, S. V. & Wu, S. Resolving conflict in eutherian mammal

phylogeny using phylogenomics and the multispecies coalescent model. Proceedings of

the National Academy of Sciences 109, 14942–14947 (2012).

140. Springer, M. & Gatesy, J. The gene tree delusion. Molecular Phylogenetics and Evo-

lution 94, 1–33 (2016).

141. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis

of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

142. Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses

with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006).

143. Steel, M., Linz, S., Huson, D. H. & Sanderson, M. J. Identifying a species tree subject

to random lateral gene transfer. Journal of theoretical biology 322, 81–93 (2013).

144. Steel, M. & Rodrigo, A. Maximum likelihood supertrees. Systematic biology 57, 243–

250 (2008).

145. Sukumaran, J. & Holder, M. T. DendroPy: a Python library for phylogenetic com-

puting. Bioinformatics 26, 1569–1571 (2010).

146. Swenson, M. S., Barbançon, F., Warnow, T. & Linder, C. R. A simulation study

comparing supertree and combined analysis methods using SMIDGen. Algorithms for

Molecular Biology 5, 8 (2010).

147. Swenson, M. S., Suri, R., Linder, C. R. & Warnow, T. SuperFine: fast and accurate

supertree estimation. Systematic biology 61, 214 (2011).

148. Swenson, M. S., Suri, R., Linder, C. R. & Warnow, T. An experimental study of

Quartets MaxCut and other supertree methods. Algorithms for Molecular Biology 6,

7 (Apr. 2011).

149. Swofford, D. PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods).

Version 4. (Sinauer Associates, Sunderland, Massachussets, 2003).

176

150. Szöllősi, G. J., Rosikiewicz, W., Boussau, B., Tannier, E. & Daubin, V. Efficient

exploration of the space of reconciled gene trees. Systematic biology, syt054 (2013).

151. Tang, C. Q., Humphreys, A. M., Fontaneto, D. & Barraclough, T. G. Effects of phylo-

genetic reconstruction method on the robustness of species delimitation using single-

locus data. Methods in Ecology and Evolution 5, 1086–1094 (2014).

152. Tavaré, S. Some probabilistic and statistical problems in the analysis of DNA se-

quences. Lectures on mathematics in the life sciences 17, 57–86 (1986).

153. Than, C. & Nakhleh, L. Species tree inference by minimizing deep coalescences. PLoS

Computational Biology 5, e1000501 (2009).

154. Thomas, C. M. & Nielsen, K. M. Mechanisms of, and barriers to, horizontal gene

transfer between bacteria. Nature reviews microbiology 3, 711 (2005).

155. Tian, Y. & Kubatko, L. Rooting phylogenetic trees under the coalescent model using

site pattern probabilities. BMC evolutionary biology 17, 263 (2017).

156. Ullah, I., Parviainen, P. & Lagergren, J. Species tree inference using a mixture model.

Molecular biology and evolution 32, 2469–2482 (2015).

157. Vachaspati, P. Simulated Data for SIESTA paper 2017.

158. Vachaspati, P. & Warnow, T. ASTRID: accurate species trees from internode dis-

tances. BMC genomics 16, S3 (2015).

159. Vachaspati, P. & Warnow, T. FastRFS: fast and accurate Robinson-Foulds Supertrees

using constrained exact optimization. Bioinformatics 33, 631–639 (2017).

160. Vachaspati, P. & Warnow, T. SIESTA: enhancing searches for optimal supertrees and

species trees. BMC genomics 19, 252 (2018).

161. Vachaspati, P. & Warnow, T. SVDquest: Improving SVDquartets species tree estima-

tion using exact optimization within a constrained search space. Molecular phyloge-

netics and evolution 124, 122–136 (2018).

162. Wang, L.-S. et al. The Impact of Multiple Protein Sequence Alignment on Phylogenetic

Estimation. IEEE/ACM Trans. Comput. Biol. Bioinformatics 8, 1108–1119 (July

2011).

163. Warnow, T. Concatenation analyses in the presence of incomplete lineage sorting.

PLOS Currents: Tree of Life (2015).

177

164. Warnow, T., Moret, B. M. E. & St. John, K. Absolute phylogeny: true trees from short

sequences in Proc. 12th Ann. ACM/SIAM Symp. on Discr. Algs. SODA01 (SIAM

Press, 2001), 186–195.

165. Warnow, T. Computational phylogenetics: an introduction to designing methods for

phylogeny estimation (Cambridge University Press, 2017).

166. Warnow, T. Supertree construction: Opportunities and challenges. arXiv preprint

arXiv:1805.03530 (2018).

167. Whelan, S. & Goldman, N. A general empirical model of protein evolution derived from

multiple protein families using a maximum-likelihood approach. Molecular biology and

evolution 18, 691–699 (2001).

168. White, N. D., Barrowclough, G. F., Groth, J. G. & Braun, M. J. A multi-gene estimate

of higher-level phylogenetic relationships among nightjars (AVES: CAPRIMULGI-

DAE). Ornitologia Neotropical 27, 223–236 (2016).

169. White, N. D., Mitter, C. & Braun, M. J. Ultraconserved elements resolve the phylogeny

of potoos (Aves: Nyctibiidae). Journal of avian biology 48, 872–880 (2017).

170. Wilson, D. E. & Reeder, D. M. Mammal species of the world: a taxonomic and geo-

graphic reference (JHU Press, 2005).

171. Wojciechowski, M. F., Sanderson, M. J., Steele, K. P. & Liston, A. Molecular phy-

logeny of the “temperate herbaceous tribes” of papilionoid legumes: a supertree ap-

proach. Advances in legume systematics 9, 277–298 (2000).

172. Yang, J. & Warnow, T. Fast and accurate methods for phylogenomic analyses. BMC

Bioinformatics 12, S4 (2011).

173. Yang, Z. Molecular evolution: a statistical approach (Oxford University Press, 2014).

174. Yin, J., Zhang, C. & Mirarab, S. ASTRAL-MP: scaling ASTRAL to very large datasets

using randomization and parallelization. Bioinformatics (2019).

175. Yu, Y., Ristic, N. & Nakhleh, L. Fast algorithms and heuristics for phylogenomics

under ILS and hybridization in BMC bioinformatics 14 (2013), S6.

176. Yu, Y., Warnow, T. & Nakhleh, L. Algorithms for MDC-based multi-locus phylogeny

inference: beyond rooted binary gene trees on single alleles. Journal of Computational

Biology 18, 1543–1559 (2011).

178

177. Zhang, C., Sayyari, E. & Mirarab, S. ASTRAL-III: Increased Scalability and Impacts

of Contracting Low Support Branches in Comparative Genomics: Proceedings of the

15th International Workshop, RECOMB-CG 2017, Barcelona, Spain, October 4-6,

2017 (eds Meidanis, J. & Nakhleh, L.) (Springer International Publishing, Cham,

Switzerland, 2017), 53–75.

178. Zhang, G. Genomics: Bird sequencing project takes off. Nature 522, 34 (2015).

179. Zhaxybayeva, O., Gogarten, J. P., Charlebois, R. L., Doolittle, W. F. & Papke, R. T.

Phylogenetic analyses of cyanobacterial genomes: quantification of horizontal gene

transfer events. Genome Research 16, 1099–1108 (2006).

180. Zhou, X. et al. Phylogenomic Analysis Resolves the Interordinal Relationships and

Rapid Diversification of the Laurasiatherian Mammals. Systematic Biology 61, 150

(2012).

181. Zimmermann, T., Mirarab, S. & Warnow, T. BBCA: Improving the scalability of

*BEAST using random binning. BMC Genomics 15 (Suppl 6), S11 (2014).

179

