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ABSTRACT

Security and trustworthiness are key considerations in designing modern processor hard-
ware. It has been shown that, among various data leakage attacks, side channel attacks are
one of the most effective and stealthy ones. In a side channel attack, an attacker can steal
encryption keys, monitor keystrokes or reveal a user’s personal information by leveraging
the information derived from the side effects of a program’s execution. These side effects
include timing information, micro-architecture states, power consumption, electromagnetic
leaks and even sound.
This thesis studies the important type of micro-architecture side channel attacks that

exploit the shared cache hierarchies. Recently, we have witnessed ever more effective cache-
based side attack techniques and the serious security threats posed by these attacks. It is
urgent for computer architects to redesign processors and fix these vulnerabilities promptly
and effectively.
We address the cache-based side channel security problems in two ways.
First, as modern caches are temporally and spatially shared across different security do-

mains, the shared cache hierarchy offers a broad attack surface. It provides attackers a
number of ways to interfere with a victim’s execution and cache behavior, which, in turn,
significantly increases side channel vulnerabilities. We study the role of cache interference
in different cache attacks and propose effective solutions to mitigate shared cache attacks by
limiting malicious interference.
According to our analysis, in a multi-level cache hierarchy, creating “inclusion victims” is

the key in a successful attack, since they give an attacker visibility into a victim’s private
cache and glean useful information. Based on this important observation, we present a secure
hierarchy-aware cache replacement policy (SHARP) to defeat cache attacks on inclusive
cache hierarchies by eliminating inclusion victims. In addition, we show that inclusion
victims also exist in non-inclusive cache hierarchies and that the non-inclusive property is
insufficient to stave off cache-based side channel attacks. We design the first two conflict-
based cache attacks targeting the directory structure in a non-inclusive cache hierarchy, and
prove that the directory structure is actually the unified attack surface for all types of cache
hierarchies, including inclusive, non-inclusive and exclusive ones. To address this problem,
we present the first scalable secure directory (SecDir) design to eliminate inclusion victims
by restructuring the directory organization.
Second, cache-based side channel attacks play an important role in transient execution
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attacks, leading to arbitrary information leakage and the violation of memory isolation policy.
Specifically, in transient execution attacks, speculative execution causes the execution of
instructions on incorrect paths. Such instructions potentially access secret, leaving side
effects on the cache hierarchies before being squashed. We study how to effectively defend
against transient execution attacks on the cache hierarchies by hiding the side effects of
transient load instructions. We call our scheme “Invisible Speculation” (InvisiSpec). It is the
first robust hardware defense mechanism against transient cache-based side channel attacks
for multiprocessors.
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CHAPTER 1: INTRODUCTION

Security and trustworthiness are key considerations in designing modern processor hard-
ware. It has been shown that, among various data leakage attacks, side channel attacks are
one of the most effective and stealthy ones. The potential threats of side channel attacks
were discussed by Butler W. Lampson in the early 1970s [1]. However, the problem did not
get high attention in the computer architecture community until the late 2000s, when the
first cache-based side channel attack successfully broke the AES encryption algorithm [2]. In
the beginning of 2018, the attacks suddenly became an urgent threat after the disclosure of
the first two transient execution attacks, i.e., Spectre [3] and Meltdown [4], which can com-
pletely break the fundamental software security mechanism – memory isolation. Important
secret information can be leaked in those attacks, such as encryption keys in a cryptography
algorithm, passwords stored in a password manager or browser, personal photos, emails and
even health information.
To the best of our knowledge, there does not exist a strict definition for side channel

attacks. Generally speaking, in computer security, a side channel attack leaks information
from the side effects of a victim program’s execution on a computer system. These side effects
include timing information, micro-architecture states, power consumption, electromagnetic
leaks and even sound. For instance, in a keyboard acoustic side channel attack, an adversary
learns what a victim is typing based on the sound produced by keystrokes.
This thesis studies the important type of micro-architecture side channel attacks that

exploit the shared cache hierarchies. They are called cache-based side channel attacks (cache
attacks for short). Among all the side channels, caches offer one of the most broad and
problematic attack surfaces. In a cache-based side channel attack [5–7], an attacker obtains
secret information from a victim based on the interaction between victim’s execution and
cache states. More specifically, most attacks exploit the difference in the access times of
cache hits and misses. It is extremely challenging to eliminate cache side channels efficiently,
mainly because caches are essential for processor performance, and timing difference is the
intrinsic property of cache structures [8].

1.1 THE PROBLEM: CACHE-BASED SIDE CHANNEL ATTACKS

There exist many variations of cache-based side channel attacks. To better understand
what exactly a cache attack is, we start with an intuitive example, and then summarize the
common attack procedure.
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Algorithm 1.1: Victim code in a cache-based side channel attack example.
Input: secret s, public array parray

1 Function victim(s):
2 load parray[s]
3 End Function

In this simple example, the attacker and the victim are in different security domains.
The attacker and the victim share a public data array parray, but only the victim can
access the secret value s. The size of each element in parray is the same as the size of a
cache block. Algorithm 1.1 lists the snippet of code executed by the victim. The victim
uses the secret value s as an index to access the public array parray. Assume the cache is
empty initially and all the elements in parray are located in the main memory. When the
victim executes the memory access instruction (line 2), the processor inserts the cache line
addressed by parray[s] into the cache. As a result, the cache state is changed by the victim
in a secret-dependent way.
The attacker in this example tries to steal the secret value s using a cache-based side

channel attack. The attacker accesses each element in parray and measures the access
latency. Since there exists a big timing difference between a cache hit and a cache miss, the
attacker can use the access latency to infer the cache state. Considering the cache state after
the victim’s execution, the attacker will get a short access latency when accessing parray[s],
and long latency when accessing other elements. Therefore, the index that exhibits the
shortest access latency is the secret value s. In this process, the attacker leverages a single
cache line access latency to detect the cache state.

The above example shows that a cache-based side channel attack consists of two proce-
dures: 1) a victim program performs secret-dependent memory accesses, which change the
state of the cache; and 2) an attacker program extracts the secret by detecting the state of
the cache. All the cache attacks follow the two procedures, while the concrete actions in the
two procedures can vary a lot. For example, the secret-dependent access performed by the
victim can be an instruction on a correct execution path, or it can be an instruction on an
incorrect execution path that is speculatively executed and has to be squashed later. The
latter case happens in a transient execution attack. In terms of the detection strategies,
an attacker could detect the cache state based on the latency of a single cache access, the
latency of multiple accesses, or the execution time of the victim program. Moreover, it has
been shown that attackers can detect not only cache occupancy state, but also coherence
state [9] and replacement information state [10].
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1.2 CHALLENGES IN DEFENDING AGAINST CACHE ATTACKS

Given the variety of cache-based side channel attacks, it is necessary to understand the
root cause of the attacks and the main challenges in designing effective defense solutions.
The micro-architecture side channel exists because processor optimizations create de-

tectable side effects. Modern processor hardware has always been aggressively optimized
for performance and energy efficiency without taking security into consideration. Further-
more, many optimizations are made transparent to the software for programmability pur-
pose. These innovations have made computation more ubiquitous in modern society, while
they also introduced many exploitable side effects, such as timing variations. Cache, as a
fast on-chip storage structure, was introduced to improve performance and naturally cre-
ated faster paths to access data. Note that the faster access paths that we leverage for
performance, are exactly the exploitable side effects used in most cache-based side channel
attacks.
We now consider the critical challenges in defeating cache-based side channel attacks.

From a hardware design perspective, modern caches are spatially and temporally shared
across different programs regardless of whether they are in the same security domain or
not. Thus, the shared caches have become a broad attack surface and provide attackers a
number of ways to interfere with victim’s execution, which, in turn, significantly increases
side channel vulnerabilities.
Considering the recent expansion of cloud computing and web applications, it has never

been easier for attackers to achieve co-location with victims than the present. On one
hand, popular cloud platforms, such as Amazon EC2 [11], Google Cloud [12] and Microsoft
Azure [13], provide convenient ways for users to access computing resources. Many companies
are using cloud services to deploy their applications, considering the configuration flexibility
and reduced maintenance cost. Even though cloud computing leverages virtual machines [14]
and containers [15] to provide software-level isolation, the security domain information has
been barely communicated to most hardware resources, including caches. On the other hand,
modern web applications are becoming dynamic and interactive, hosting programs written in
high-level languages. It has become easy for potential malicious applications to run on users’
private desktops or mobile devices, as it merely requires the user to click a link to access
a website. Even though these applications are guarded by software isolation techniques
and execute within sandboxes, again, the domain information is not communicated to the
cache management modules in hardware. In short, both trends give attackers easier chances
to co-locate onto the same computing machine as victim applications [16, 17], and achieve
temporal and spatial sharing of cache hierarchies.
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Obviously, a potential solution to close the channel is to disable cache sharing. Unfor-
tunately, trivially disabling sharing can cause system resource underutilization and serious
performance overhead. Disabling spatial sharing seriously hurts system throughput, as the
maximum number of parallel virtual processes have to be limited by the physical resources.
Disabling temporal sharing can significantly increase latency, as cache states have to be reset
upon every switch of security domains.
From a software development perspective, a potential solution to close the channel is

make cache access traces oblivious of any secret. For example, a vulnerable program can be
transformed by adding redundant memory accesses, so that cache states are changed in the
same way irrespective of the value of the secret. Even though this approach generally suffers
from serious performance overhead, it is effective and it has been used to fix vulnerabilities
in several important cryptography algorithms. However, recent transient execution attacks
have called such software defense solutions into question.
In transient execution attacks, attackers exploit hardware speculation to cause the execu-

tion of instructions on incorrect paths. Those instructions potentially access secret, leaving
side effects on the cache hierarchy before being squashed. Note that, those instructions are
outside of the scope of what programmers and compilers can reason about. Without the
control of the memory access instructions executed on a processor, software-only defenses
become ineffective.
In summary, we consider that the challenges of defending against cache-based side channel

attacks are two-fold. From the hardware design perspective, caches offer a broad attack
surface mainly due to the temporal and spatial sharing of cache hierarchies across different
security domains. From the software development perspective, software defense solutions
become ineffective because speculative execution can cause execution to proceed in ways
that were not intended by the programmer or compiler.

1.3 THESIS CONTRIBUTIONS AND ORGANIZATION

Given the aforementioned challenges in defending against cache-based side channel attacks,
this thesis proposes secure hardware processor designs to effectively and efficiently address
the side channel vulnerabilities on modern cache hierarchies.

This thesis makes two main contributions.
First, we study the role of cache interference in different cache attacks and propose effective

solutions to mitigate shared cache attacks by limiting malicious interference. Cache offers a
broad attack surface, mainly because modern cache hierarchies are temporally and spatially
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shared across different security domains. The shared cache hierarchy provides attackers a
number of ways to interfere with a victim’s execution and cache behavior.
According to our analysis, in a multi-level cache hierarchy, creating “inclusion victims” is

the key in a successful attack, since they give an attacker visibility into a victim’s private
cache and glean useful information. Based on this important observation, we present a secure
hierarchy-aware cache replacement policy (SHARP), which defeats cache attacks on inclusive
cache hierarchies by eliminating inclusion victims. In addition, we show that inclusion
victims also exist in non-inclusive cache hierarchies and that the non-inclusive property is
insufficient to stave off cache-based side channel attacks. We design the first two conflict-
based cache attacks targeting the directory structure in a non-inclusive cache hierarchy, and
prove that the directory structure is actually the unified attack surface for all types of cache
hierarchies, including inclusive, non-inclusive and exclusive ones. To address this problem,
we present the first scalable secure directory (SecDir) design to eliminate inclusion victims
by restructuring the directory organization.
Second, we study how to effectively defend against transient execution attacks on the

cache hierarchies. Cache-based side channel attacks play an important role in transient
execution attacks, leading to arbitrary information leakage and the violation of memory
isolation policy. Specifically, in transient execution attacks, speculative execution causes the
execution of instructions on incorrect paths. We present “Invisible Speculation” (InvisiSpec)
to hide the side effects of transient load instructions. It is the first robust hardware defense
mechanism against transient cache-based side channel attacks for multiprocessors.

The thesis is organized as follows.

Chapter 2 – Background and Related Work This chapter starts by providing a brief
background on modern micro-architecture features and cache hierarchy designs. We then
describe a generalized attack schema of cache-based side channel attacks. Based on key
procedures in the attack schema, we go through a deep dive of two taxonomies. Finally, we
review related work on countermeasures against cache attacks.

Chapter 3 – SHARP This chapter presents a secure hierarchy-aware cache replacement
policy (SHARP), an efficient and practical defense mechanism against cache-based side chan-
nel attacks for inclusive cache hierarchies. We made an important observation, which is that
when a cross-core cache attack happens, the attacker evicts the victim’s address from the
shared cache, and the address will also be evicted from the private cache of the victim process,
creating an “inclusion victim”. Inclusion victim is the key for the attacker to gain visibility
into the victim’s private cache and glean useful information. Consequently, to disable cache
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attacks, we propose to alter the line replacement algorithm of the shared cache to prevent
a process from creating inclusion victims in the caches of cores running other processes.
SHARP is an efficient defense mechanism, which requires minor hardware modifications and
induces negligible average performance degradation. The work is published in [18].

Chapter 4 – Directory Attacks This chapter presents the first two directory-based
side channel attacks on non-inclusive cache hierarchies. As modern caches move away from
inclusive cache hierarchies to non-inclusive ones, previous cache attack strategies have been
called into doubt, mainly due to the assumption that attackers should be unable to create
“inclusion victims”. However, we find that, on a non-inclusive cache, inclusion victim can be
created via directory conflicts. We present directory attacks and prove that the directory can
be used to bootstrap conflict-based cache attacks on any cache hierarchy, including inclusive,
non-inclusive and exclusive ones. We demonstrate the directory attacks by extracting key
bits during RSA operations in GnuPG on a state-of-the-art non-inclusive Intel Skylake-X
server. The work appears in [19].

Chapter 5 – SecDir This chapter presents the first design of a scalable secure direc-
tory (SecDir). Following the previous chapter, we have shown that directories need to be
redesigned for security. However, in an environment with many cores, it is hard or expen-
sive to block directory interference. To address this problem, we propose SecDir, a secure
directory design, to eliminate inclusion victims by restructuring the directory organization.
SecDir takes part of the storage used by a conventional directory and re-assigns it to per-core
private directory areas used in a victim-cache manner called Victim Directories (VDs). The
partitioned nature of VDs prevents directory interference across cores, defeating directory
side channel attacks. We show that SecDir has a negligible performance overhead and is
area efficient. The work is published in [20].

Chapter 6 – InvisiSpec This chapter presents the first robust hardware defense mech-
anism against transient cache-based side channel attacks for multiprocessors. It has been
shown that hardware speculation offers a major surface for micro-architectural side channel
attacks. Unfortunately, defending against speculative execution attacks is challenging. We
propose InvisiSpec, a novel strategy to defend against transient cache attacks in multipro-
cessors by making speculation invisible in the data cache hierarchy. In InvisiSpec, unsafe
speculative loads read data into a speculative buffer, without modifying the cache hierarchy.
When the loads become safe, InvisiSpec makes them visible to the rest of the system. We
show that InvisiSpec has modest performance overhead and it is able to defend against fu-
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ture transient execution attacks where any speculative load can pose a threat. This work is
published in [21].

Chapter 7 – Conclusion This chapter summarizes the results of the thesis and discusses
future research directions.

Appendix A – Cache Telepathy This appendix presents another example of cache-
based side channel attacks that targets the Deep Neural Networks (DNNs). A DNN’s archi-
tecture (i.e., its hyper-parameters) broadly determines the DNN’s accuracy and performance,
and is often confidential. We propose Cache Telepathy, an efficient mechanism to help obtain
a DNN’s architecture using the cache side channel. We evaluate our attacks by attacking
VGG and ResNet DNNs. We show that our attack is effective in helping obtain the archi-
tectures by very substantially reducing the search space of target DNN architectures. This
work appears in [22].
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CHAPTER 2: BACKGROUND AND RELATED WORK

2.1 MODERN PROCESSOR AND CACHE ORGANIZATION

2.1.1 Memory Hierarchy and Basic Cache Structures

Modern high-performance processors contain multiple levels of caches that store data and
instructions for fast access. The cache structures closer to the core, such as the L1, are the
fastest, and are called higher-level caches. The ones farther away from the core and closer
to main memory are slower, and are called lower-level caches. High-performance processors
typically feature two levels of private caches (L1 and L2), followed by a shared L3 cache—also
referred to as LLC for last-level cache.
The L1 cache is designed to be small (e.g., 32-64KB) and to respond very fast, typically

within a few cycles. The L2 cache is slightly bigger (e.g., 256KB-1MB) and takes around
10-20 cycles. Finally, the LLC is designed to be large (e.g., several to tens of MBs) and has
a latency of 40-60 cycles. The LLC latency is still much lower than the main memory access
latency, which is on the order of 200-300 cycles.
A cache consists of the data array, which stores the data or code, and the tag array, which

stores the high-order bits of the addresses of the data or code. The cache is organized in a
number of cache lines, each one of size B bytes. The cache is typically set-associative, with
S sets and W ways. A cache line occupies one way of a cache set. The set in which a cache
line belongs is determined by its address bits. A memory address is shown in Figure 2.1.

34																																				17 16 15																												6 5										 0

block	offset
log2B

L2	set	index
log2S_L2

LLC	slice	set	index
log2S_LLC

LLC	tag

L2	tag

bits	used	to	
compute	
LLC	slice	ID

Figure 2.1: Example of a memory address broken down into tag, index, and block offset
bits. The actual bit field sizes correspond to the L2 and the LLC slice of the Intel Skylake-X
system. We refer to the LLC slice set index as the LLC set index in this thesis.

The lower log2B bits indicate the block offset within a cache line. The next log2 S bits
form the index of the set that the cache line belongs to. The remaining bits of the address
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form the tag. The tags of all the lines present in the cache are stored in the tag array. When
a load or store request is issued by the core, the tag array of the L1 cache is checked to find
out if the data is present in the cache. If it is a hit, the data is sent to the core. If it is a
miss, the request is sent to the L2 cache. Similarly, if the request misses in L2 it is further
sent to the LLC and then to main memory. Note that, generally, lower levels of the cache
hierarchy have more sets than higher levels. In that case, cache lines that map to different
LLC sets may map to the same L2 set, due to the pigeonhole principle.

2.1.2 Multi-core Cache Organization

The LLC in a modern multi-core is usually organized into as many slices (partitions) as
the number of cores. Such an organization, shown in Figure 2.2, is helpful to keep the design
modular and scalable. Each slice has an associativity of W slice and contains Sslice sets. Sslice

is 1/N the total number of sets in the LLC, where N is the number of cores.

Core	0 LLC
Slice	0

LLC
Slice	4 Core	4

Core	1 LLC
Slice	1

LLC
Slice	5 Core	5

Core	2 LLC
Slice	2

LLC
Slice	6 Core	6

Core	3 LLC
Slice	3

LLC
Slice	7 Core	7

Figure 2.2: Example of a sliced LLC design with 8 cores.

Processors often use an undocumented hash function to compute the slice ID to which a
particular line address maps to. The hash function is designed to distribute the memory
lines uniformly across all the slices. In the absence of knowledge about the hash function
used, a given cache line can be present in any of the slices. Therefore, from an attacker’s
perspective, the effective associativity of the LLC is N ×W slice. The hash function used in
Intel’s Sandybridge processor has been reconstructed in prior work [23], and found to be an
xor of selected address bits. The slice hash function for the Skylake-X is more complex.
We now discuss two important cache design choices, and the tradeoffs behind them.

Inclusiveness The LLC can be either inclusive, exclusive, or non-inclusive of the private
caches. In an inclusive LLC, the cache lines in private L2 caches are also present in the LLC,
whereas in an exclusive LLC, a cache line is never present in both the private L2 caches and
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in the LLC. Finally, in a non-inclusive LLC, a cache line in the private L2 caches may or
may not be present in the LLC.
The inclusive design wastes chip area and power due to the replication of data. Typically,

as the number of cores increases, the LLC size must increase, and hence the average LLC
access latency increases [24, 25]. This suggests the use of large L2s, which minimize the
number of LLC accesses and, therefore, improve performance. However, increasing the L2
size results in a higher waste of chip area in inclusive designs, due to the replication of
data. The replication of data can be as high as the L2 capacity times the number of cores.
Therefore, non-inclusive cache hierarchies have recently become more common. For example,
the most recent server processors by Intel use non-inclusive caches [26,27]. AMD has always
used non-inclusive L3s in their processors [28].

Cache Coherence and Directories When multiple cores read from or write to the same
cache line, the caches should be kept coherent to prevent the use of stale data. Therefore,
each cache line is assigned a state to indicate whether it is shared, modified, invalid, etc. A
few state bits are required to keep track of this per-line state in hardware in the cache tag
array or directory.
Two types of hardware protocols are used to maintain cache coherence—snoop-based and

directory-based. The snoop-based protocols rely on a centralized bus to order and broadcast
the different messages and requests. As the number of cores is increased, the centralized
bus quickly proves to be a bottleneck. Therefore, most modern processors use a directory-
based protocol, which uses point-to-point communication. In a directory-based protocol, a
directory structure is used to keep track of which cores contain a copy of a given line in their
caches, and whether the line is dirty or clean in those caches.
In an inclusive LLC design, the directory information can be conveniently co-located with

the tag array of the LLC slice. Since the LLC is inclusive of all the private caches, the
directory state of all the cache lines in any private cache is present in such a directory. The
hardware can obtain the list of sharer cores of a particular line by simply checking the line’s
directory entry in the LLC. There is no need to query all the cores. However, the directory
in a non-inclusive cache hierarchy design is more complicated.

2.1.3 Out-of-order and Speculative Execution

Dynamically-scheduled processors [29] execute data-independent instructions in parallel,
out of program order, and thereby exploit instruction-level parallelism [30] to improve per-
formance. Instructions are issued (enter the scheduling system) in program order, complete
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(execute and produce their results) possibly out of program order, and finally retire (ir-
revocably modify the architected system state) in program order. In-order retirement is
implemented by queueing instructions in program order in a reorder buffer (ROB) [31], and
removing a completed instruction from the ROB only once it reaches the ROB head, i.e.,
after all prior instructions have retired.
Speculative execution is the execution of an instruction before its validity can be made

certain. If, later, the instruction turns out to be valid, it is eventually retired, and its
speculative execution has improved performance. Otherwise, the instruction will be squashed
and the processor’s state rolled back to the state before the instruction. (At the same time,
all of the subsequent instructions in the ROB also get squashed.) Strictly speaking, an
instruction executes speculatively in an out-of-order processor if it executes before it reaches
the head of the ROB.
There are multiple reasons why a speculatively-executed instruction may end up being

squashed. One reason is that a preceding branch resolves and turns out to be mispredicted.
Another reason is that, when a store or a load resolves the address that it will access, the
address matches that of a later load that has already obtained its data from that address.
Another reason is memory consistency violations. Finally, other reasons include various
exceptions and the actual squash of earlier instructions in the ROB.

Memory Consistency and Its Connection to Speculation A memory consistency
model (or memory model) specifies the order in which memory operations are performed
by a core, and are observed by other cores, in a shared-memory system [32]. When a store
retires, its data is deposited into the write buffer. From there, when the memory consistency
model allows, the data is merged into the cache. We say that the store is performed when
the data is merged into the cache, and becomes observable by all the other cores. Loads
can read from memory before they reach the ROB head. We say that the load is performed
when it receives data. Loads can read from memory and be performed out of order—
i.e., before earlier loads and stores in the ROB are. Out-of-order loads can lead to memory
consistency violations, which the core recovers from using the squash and rollback mechanism
of speculative execution [33].
Total Store Order (TSO) [34,35] is the memory model of the x86 architecture. TSO forbids

all observable load and store reorderings except store→load reordering, which is when a
load bypasses an earlier store to a different address. Implementations prevent observable
load→load reordering by ensuring that the value a load reads when it is performed remains
valid when the load retires. This guarantee is maintained by squashing a load that has
performed, but not yet retired, if the core receives a cache invalidation request for (or suffers
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a cache eviction of) the line read by the load. Store→store reordering is prevented by using
a FIFO write buffer, ensuring that stores perform in program order. If desired, store→load
reordering can be prevented by separating the store and the load with a fence instruction,
which does not complete until all prior accesses are performed. Atomic instructions have
fence semantics.
Release Consistency (RC) [36] allows any reordering, except across synchronization in-

structions. Loads and stores may not be reordered with a prior acquire or with a subsequent
release. Therefore, RC implementations squash performed loads upon receiving an invali-
dation of their cache line only if there is a prior non-retired acquire, and have a non-FIFO
write buffer.

2.2 CACHE-BASED SIDE CHANNEL ATTACKS

Cache-based side channel attacks (cache attacks for short) are serious threats to secure
computing, and have been demonstrated on a variety of platforms, from mobile devices
[37] and desktop computers [5, 38] to server deployments [6, 39, 40]. Side channel attacks
bypass software isolation mechanisms and are difficult to detect. They can be used to
steal coarse-grained information such as when a user is typing [37] down to much more
fine-grained information such as a user’s behavior on the web [41], and even RSA [6,42] and
AES [5,40,43–45] encryption keys. Jakub Szefer [7] presented an in-depth analysis of various
micro-architectural side channels and a comprehensive survey of existing defense proposals
before the year of 2016.
In this section, we start with a classical cache attack example on the RSA encryption

algorithm [42]. We then discuss a generalized attack schema, which is applicable to any
cache attack. Based on key procedures in the attack schema, we go through a deep dive of
two taxonomies, which define the defense scopes of this thesis.

2.2.1 An Example of Cache Attacks

A common type of cache-based side channel attack involves a victim process and an
attacker process. It usually consists of an offline phase and an online phase. In the offline
phase, the attacker identifies target addresses, which are addresses whose access patterns
can leak secret information about the victim’s program. Target addresses can be identified
by analyzing the victim’s program manually or with automatic tools [46, 47]. In the online
phase, the attacker observes the victim’s access patterns on target addresses and deduce the
value of secret information.
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Algorithm 2.1: Square-and-multiply exponentiation.
Input : base b, modulo m, exponent e = (en−1...e0)2
Output: be mod m

1 r = 1
2 for i = n− 1 downto 0 do
3 r = sqr(r)
4 r = mod(r,m)
5 if ei == 1 then
6 r = mul(r, b)
7 r = mod(r,m)

8 end
9 end

10 return r

Algorithm 2.1 shows the Square-and-Multiply algorithm [42] from GnuPG version 1.4.13,
which is vulnerable to side channel attacks. In the process of computing its output, the
algorithm iterates over exponent bits from high to low. For each bit, it performs a sqr and
mod operation. Then, if the exponent bit is “1”, the algorithm performs a mul and a mod

operation that are otherwise skipped. Effective target addresses are the entry points of the
sqr function in Line 3 (which tells that the iteration is executed) and of the mul function in
Line 6 (which tells that the bit is “1”). By observing access pattern on target addresses, the
attacker can recover all the bits in the exponent.

Time

t0

victim’s 
actions

attacker’s
actions

access ---

t1 --- evict

t2 access wait

t3 --- reload à hit

t4 --- evict

t5
no 

access wait

t6 --- reload à miss

conflict
address

target
address

Figure 2.3: Evict+reload attack example.
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There exist many different ways for an attacker to observe a victim’s cache access patterns.
We show an evict+reload [46] attack as an example. In this attack, the attacker and victim
processes share the target addresses — possibly because they use a shared library or due to
page deduplication [48]. The attack consists of multiple attack cycles, and each attack cycle
involves three steps: evict, wait and reload. Figure 2.3 shows a timeline of the state of the
6 cache lines in a set of a 6-way set-associative cache.
At time t0, the victim loads a line with the target address into the cache (black square).

At time t1, the attacker accesses 6 different addresses which are mapped to the same cache
set. The 6 cahe lines are brought into the cache, fill the set (gray squares), and evict the
target line from the cache. Next, the attacker idles and waits a designated amount of time
to allow the victim to potentially access the target address. In this example, at time t2, the
victim does perform an access and brings the target address back to the cache. At time t3,
the attacker reloads the target address and measures its access latency. The attacker gets a
cache hit, as the victim accessed the target address during the waiting interval.
The next attack cycle repeats the evict, wait, and reload steps (times t4, t5, and t6).

This time, the victim does not access the target address and the attacker records a cache
miss. The latency of the reload access is longer than before. The example shows that the
attacker can figure out whether the victim has accessed the target address during the wait
interval based on the access latency of the reload operation. By repeating the attack cycle
for multiple times, the attacker can collect a trace of the victim’s accesses.

2.2.2 Generalized Attack Schema

The example above can be generalized as an attack schema 1 shown in Figure 2.4. The
schema provides a good abstraction to understand the common procedures that are involved
in any cache-based side channel attack.

Victim’s domain Attacker’s domain

transmitter receiverchannel

Figure 2.4: Cache attack schema involves two procedures: 1) the transmitter changes cache
states in a secret-dependent way; and 2) the receiver detects the cache states and extracts
the secret.

1The attack schema was first proposed by Kiriansky et al. [10]. The schema can be used to describe side
channels other than cache states, such as branch predictors and TLBs.
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As shown in Figure 2.4 the attacker application and the victim application exist in different
security domains. Memory isolation techniques at the software layer guarantee that the
attacker cannot directly access private information inside the victim’s domain. However,
information can be leaked via the side effects of the victim’s execution on the computing
system, including the cache hierarchy.
The generalized side channel attack schema involves two procedures. First, a victim

program performs secret-dependent memory accesses, which change the states of the cache.
We call these memory accesses as transmitters. The transmitters modify the cache states
based on secret information, forming detectable side channels that can be observed outside of
the victim’s domain. Second, an attacker program extracts the secret by detecting the states
of the cache. The cache states that can be leveraged by attackers include cache occupancy
state, coherence state [9] and replacement information state [10].

2.2.3 Classifications of Cache Attacks

We now discuss two taxonomies of cache-based side channel attacks. The taxonomies help
define the defense scopes for later chapters.

Active and Passive Cache Attacks

We classify cache-based side attacks into active and passive cache attacks (Table 2.1),
based on whether the attack interferes with the channel states before the transmitters exe-
cute. In an active cache attack, the attacker leverages the spatial and temporal sharing of
cache hierarchies to bring the cache into a desired state before the execution of transmitters,
so that it is able to control the way that transmitters interact with the cache. However, a
passive attack does not involve such an interfere operation. It has been shown that active
attacks are more effective towards a wider range of victim applications than passive ones.
We consider why the interfere operation is important. As discussed in Section 2.2.2, a crit-

ical procedure in a successful cache attack is that the transmitters make detectable changes
to the cache state. However, many times, if without the attacker’s interference on the cache
state, the transmitters do not cause observable changes. For example, assuming a transmit-
ter tries to access a target cache line to bring it into the cache, but the target line was already
present in the cache before the access happens. In this case, the transmitter’s execution will
not change the cache occupancy state, and thus cannot create a detectable side channel.
Active attacks address this problem by interfering with the cache state. For example, in the
evict+reload (Section 2.2.1) attack, every time before the transmitter executes, the attacker
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resets the cache state by evicting the target line from the cache. In this way, the transmitter
will cause a cache miss, and the processor will insert the target line to the cache, leading to
detectable changes of cache occupancy state.

Evict Strategies Attacks

Active

Conflict-based prime+probe [2], evict+reload [46], evict+time [38]
alias-driven attack [49], evict+prefetch [50]

Flush-based flush+reload [48], flush+flush [51],
invalidate+transfer [28], flush+prefetch [50]

Passive – cache collision attack [45]

Table 2.1: Classification of cache-based side channel attacks based on whether the attack
interferes with the channel states before the transmitters execute.

Generally, an attack cycle in an active attack follows three steps: interfere, wait and
analyze.

1) Interfere: The attacker brings cache into a desired state so that the execution of
transmitters can cause detectable side effects. A common approach is to evict target
lines from the level of cache in which it is resident.

According to the approach used in the Interfere step, we can further classify attack
strategies into conflict-based and flush-based (Table 2.1). If using conflict-based strate-
gies, the attacker creates cache conflicts to evict cache lines containing target addresses.
Specifically, it accesses multiple addresses that map to the same cache set as a tar-
get address. Often, these addresses are called conflict addresses. If using flush-based
strategies, the attacker can access the target addresses — e.g., when the target ad-
dresses are in shared libraries. The attacker simply executes clflush instructions to
evict the target addresses from the cache [52]. clflush guarantees that the addresses
are written back to memory and invalidated from the cache.

2) Wait : The attacker waits a time period during which the victim may access the target
address. The waiting interval of the Wait step is carefully configured [48]. It should
be precisely long enough for the victim to access a target address exactly once before
the Analyze step. If the interval is too long, the attacker gets only one observation for
multiple accesses to the target address by the victim. If the interval is too short, the
chances of overlapping the Interfere or Analyze step with the victim’s target address
access increases. In both cases, accuracy of the attack decreases.

3) Analyze: the attacker determines whether the target address was accessed in the
Wait step. There are several ways to accomplish this goal, including measuring
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the access time of either the target or conflict addresses (prime+probe [2, 6, 40] and
flush+reload [41,48]), measuring the execution time of the victim program (evict+time [5,
38]), or reading values in main memory to see if the writebacks of cache lines have oc-
curred (alias-driven attack [49]).

Different from an active attacker, a passive attacker does not interfere with the cache
state when the victim executes. It simply monitors the victim’s cache accesses or execution
time, which may be affected by reuses or conflicts of cache lines within the victim itself (i.e.,
self-reuse and self-conflict). An example is the cache-collision attack [45].
The defense mechanisms presented in Chapter 3 and Chapter 5 target active cache attacks.

The attacks presented in Chapter 4 are conflict-based cache attacks.

Non-transient and Transient Cache Attacks

Spectre [3], Meltdown [4] and follow-up attacks [21,53–58] based on speculative execution,
or more precisely transient [59] execution, have significantly increased hardware vulnerabil-
ities, including the shared cache side channels. Depending on whether the transmitter in a
cache attack is a transient instruction, i.e., speculative instructions bound to squash, we can
classify cache-based side channel attacks into transient and non-transient cache attacks.
In a non-transient cache attack, the transmitter exists in the victim program, and its

execution is intended by the programmers. However, in a transient cache attack, the trans-
mitter is executed due to incorrect speculation and is not intended by programmers. Such
instructions are out the scope of what compilers or programmers can reason about.
Theoretically, memory trace oblivious programming [60] is an effective mitigation towards

non-transient cache attacks. Specifically, this technique changes the vulnerable code by
adding redundant memory accesses, so that transmitter will not cause secret-dependent
cache state changes. However, the transmitters used in transient cache attacks can not be
controlled by the software. Thus, traditional software defense solutions become ineffective
towards transient cache attacks.
The defense mechanism in Chapter 6 targets transient cache attacks.

2.3 COUNTERMEASURES AGAINST CACHE-BASED SIDE CHANNEL ATTACKS

In this section, we review related work on defending against side channel attacks on
shared cache hierarchies, followed by discussions on detection techniques. We classify defense
mechanisms into two categories, isolation-based and randomization-based.
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Isolation-based Defenses Isolation-based defense mechanisms rely on cache partitioning
techniques to block unintended cache interference. There are two types of cache-partitioning
techniques depending on the total number of partitions required.
The first type partitions the cache into as many regions as the number of security domains.

Static way-partition [61] provides isolation by statically assigning certain cache ways to each
security domain. Unfortunately, this approach can introduce serious performance overhead,
since the cache cannot be dynamically shared. Moreover, when the number of cores is higher
than the cache associativity, some cores cannot get a cache partition, resulting in serious
under-utilization of core resources. Note that it is very common to run a high number
of processes from different security domains on modern server processors, which calls for
scalable defense solutions.
DAWG [10], SecDCP [62] and NoMo cache [63] are dynamic way-partitioning techniques.

These mechanisms can dynamically adjust the number of ways for each security domain to
avoid cache under-utilization. However, when the number of security domains is higher than
the cache associativity, they are forced to re-assign cache ways from one domain to another.
These re-assignment operations can leak cache occupancy information from the victim to
the attacker.
The second type of partitioning technique, used by CATalyst [64] and StealthMem [65],

partitions the cache into two regions, i.e., a security-sensitive region and a non-secure shared
region. The first region is reserved for security-sensitive data accesses. Cache interference
within the security region is blocked via page coloring. The non-secure region can be dy-
namically shared by other applications. However, both approaches require programmers to
provide information about security-sensitive data or instruction accesses. Such information
is not easy to obtain for many applications.

Randomization-based Defenses There are several mitigation techniques that rely on
the randomization of the address mapping logic or system timing components. Newcache [66,
67], CEASER [68] and RPcache [69] randomize the mapping of addresses to cache sets to
prevent the attacker from evicting target lines from caches. For example, CEASER dynami-
cally remaps cache lines, so that the attacker cannot find an effective group of addresses that
are mapped to the same set as the target address. However, those techniques can only reduce
the bandwidth of cache attacks, instead of eliminating it. The attacker can still perform the
evict operation when it accesses enough lines across a large number of cache sets. Liu et
al. [70] proposed the random fill cache architecture for the L1 cache to defeat the cache-
collision attack. However, this approach may suffer substantial performance degradation if
applied to the much larger last-level cache.
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TimeWarp [71] and FuzzyTime [72] disrupt timing measurements by adding noise to the
system clock. They can protect against attacks which measure cache access latency and
execution time, but they are unable to prevent alias-driven attacks [49]. Furthermore, they
hurt benign programs that require a high-precision clock.

Detection Techniques of Cache Attacks Several approaches have been proposed to
detect cache-based side channel attacks. Chiappetta et al. [73] detect side channels based
on the correlation of last-level cache accesses between victim and attacker processes. Hex-
PADS [74] detects side channel attacks by the frequent cache misses caused by the attacker
process. These heuristic approaches are not robust, and tend to suffer high false positives and
false negatives. CC-Hunter [75] and ReplayConfusion [76] can effectively detect cache-based
covert channel attacks. The main challenge in designing detection mechanisms is to achieve
low false positives and low false positives together. Consider an advanced attacker who
mimics the behaviors of benign applications and communicates secret using an extremely
low bandwidth. Most of existing detection mechanisms are likely to miss such attacks.

2.4 COUNTERMEASURES AGAINST TRANSIENT EXECUTION ATTACKS

Wang et. al. [77] pointed out that control speculation can enable new covert and side
channels. Later in January 2018, the disclosure of Spectre [3] and Meltdown [4] highlighted
the broad attack surfaces offered by speculative execution in modern processors. Thereafter
transient execution attacks and defenses became an active research problem. A systemati-
zation of transient execution attacks and defenses is presented by Canella et. al. [59]. We
review software-based defense solutions, followed by hardware-based ones.

Software-based Solutions Existing software-based solutions use two strategies to miti-
gate transient execution attacks. First, most software-based solutions block information leak-
age by limiting potentially malicious speculative execution. The immediate mitigations after
the disclosure of Spectre and Meltdown are to place serializing instructions such as lfence
after sensitive branches [78,79], or replace branches with non-speculative cmovs. Alternative
approaches of limiting speculative execution include introducing extra data-dependencies or
control-dependencies between instructions, such as masking index bits before array look-ups
or using return trampoline [80]. Those solutions have performance, usability, or complete-
ness issues. To reduce the performance overhead, oo7 [81] uses taint analysis to identify the
branches that can be controlled by attackers, and only blocks speculative execution of those
branches.
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Second, other software-based solutions aim to block interference between different secu-
rity domains by providing better isolation. KAISER [82] proposes a practical kernel address
isolation mechanism. It creates a shadow page table which only contains user-space map-
pings. When a process is running in user mode, the shadow page table is used, and thus, the
user mode can not obtain any information about kernel-space mappings. Despite KAISER
is claimed to be able to close all hardware side channels on kernel address information,
follow-on work [83] demonstrates that information leakage is still possible via a small set of
kernel-space mappings in the shadow table, which are essential for handling system calls and
interrupts. As another example, the Chrome web browser and V8 used to rely on language-
enforced isolation, where untrusted code is sandboxed and executed in the same process as
trusted code. Mcilroy et. al. proposed to shift this isolation mechanism to process-based
isolation [84].

Hardware-based Solutions Existing hardware defense mechanisms can also be classi-
fied into two categories. The first category focuses on limiting the side effects of transient
instructions. InvisiSpec [21] and SafeSpec [85] prevent transient instructions from changing
cache states and use a shadow structure to hold speculative state for caches and TLBs. How-
ever, SafeSpec does not handle cache coherence or memory consistency model issues and,
therefore, cannot support multi-threaded workloads. A relatively more aggressive approach
is CleanupSpec [86], which allows speculative load instructions to change cache states and
“undo” the changes upon misspeculations. Those approaches introduce modest performance
overhead, but require extensive changes to both the core and the memory subsystem.
As oppose to introducing extensive hardware changes, a straightforward solution is to

delay the execution of speculative instructions. However, conservatively delaying all specu-
lative instructions can incur serious performance overhead. Several mechanisms have been
proposed to address the performance problem by selectively delaying instructions. Condi-
tional Speculation [87] and Delay-on-Miss [88] delay speculative load instructions only if
they miss the L1 cache. Context-Sensitive Fencing [89] and ConTExT [90] use traditional
taint tracking in cache and memory, and prevent user-marked secrets from being used by
transient instructions. NDA [91] and SpecShield [92] restrict propagation of any data to
speculative instructions that could form a side channel. They propose multiple design vari-
ants with different performance-security tradeoffs. STT [93] proposes a novel form of taint
tracking mechanism to identify transiently accessed data and block those data reaching side
channels. In addition, STT provides a comprehensive study of all variants of side channels
on speculative microarchitectures.
The second category aims to provide isolation of various hardware resources assuming the
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attacker and the victim are in different security domains. Cache partitioning techniques [10,
62,64] all fall in this category. In addition to cache states, MI6 [94] extends isolation to more
realistic memory hierarchies including MSHRs and page walks.
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CHAPTER 3: SHARP

This chapter presents Secure Hierarchy-Aware cache Replacement Policy (SHARP), an effi-
cient and practical defense mechanism against cache-based side channel attacks for inclusive
cache hierarchies. The design of SHARP is based on an important observation that in a cross-
core cache-based side channel attack, creating “inclusion victims” is the key for the attacker
to gain visibility into the victim’s private cache and glean useful information. Consequently,
we can alter the line replacement algorithm of the shared cache, to prevent a process from
creating inclusion victims in the caches of cores running other processes. SHARP requires
minor hardware modifications and induces negligible average performance degradation.

Shared caches offer a broad attack surface for side channel attacks, mainly due to the
spatial and temporal sharing of cache hierarchies across different security domains. This
chapter studies the most effective type of cache attack, that is, active cache-based side
channel attacks (Section 2.2.3) in a cross-core setup, where attacker and victim processes
execute on different cores, sharing the L2 or L3 cache of an inclusive cache hierarchy. The
reason for the attack’s effectiveness is that it leverages widely-used commodity hardware,
and is relatively easy to set up. Our goal is to defeat cross-core active cache attacks by
blocking cache interference.
We made the following observation: when the attacker wants to evict the target address

from the shared cache, the address is also practically always in the private cache of the core
running the victim process. This is because of the tight timing requirements to mount a
successful attack. Because caches are inclusive, the target address also needs to be evicted
from the private cache of the victim process. Hence, the target address becomes what
is referred to as an inclusion victim. Some authors have studied the impact of inclusion
victims on performance (e.g., [95,96]). In most designs, the cache replacement algorithm in
the shared cache only uses information on shared cache hits and misses, and is oblivious of
hits in the private caches.
The main proposal of this chapter is to alter a shared cache’s replacement algorithm

to prevent a process from creating inclusion victims in the caches of cores running other
processes. By enforcing this rule, the attacker cannot evict the target address from the
shared cache and, hence, cannot glimpse any information on the victim’s access patterns.
Cache attacks do not always use load instructions to force the eviction of a victim’s target
addresses from the cache; sometimes they use an instruction called clflush. Hence, our
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proposal also involves a slightly modified clflush instruction to thwart these attacks.
We call our proposal SHARP (Secure Hierarchy-Aware cache Replacement Policy). SHARP

is an efficient approach to defend against active cross-core cache attacks, which involve an
interfere step by attacker in each attack cycle. It requires minimal hardware modifications.
It works for all existing applications without requiring any code modifications. Finally, it
induces negligible average performance degradation.
To validate SHARP, we implement it in a cycle-level full-system simulator and test it

against real-world attacks. SHARP effectively protects against these attacks. In addition, we
run many workloads derived from SPEC and PARSEC applications on SHARP to evaluate
SHARP’s impact on performance.
The contributions of this chapter are:

• The insight that, to effectively prevent cache attacks in an inclusive cache hierarchy, we
can alter the shared cache replacement algorithm to prevent a process from inducing
inclusion victims on other processes.

• The design of SHARP, which consists of a new cache line replacement scheme that
prevents inclusion victims on other processes, and a slightly modified clflush instruc-
tion.

• A simulation-based evaluation of SHARP that shows that it is effective against real-
world attacks, and induces negligible average performance degradation.

3.1 ATTACK ANALYSIS

As discussed in Section 2.2.3, an active cache-based side channel attack always involves
an interfere step. In this section, we analyze the two interfere strategies.

3.1.1 Conflict-based Attacks

We find that all successful conflict-based attacks share two traits: (1) they generate inclu-
sion victims in the private cache of the core running the victim thread, and (2) they exploit
modern cache line replacement policies that do not properly defend against malicious cre-
ation of inclusion victims.
Consider the first trait. As discussed in Section 2.2.3, an attack cycle in an active cache

attack follows three steps: interfere, wait and analyze. Existing conflict-based attacks gen-
erate inclusion victims in the private cache of the victim process’ core. This is because the
duration of an attack cycle between consecutive interfere steps is usually very short — on
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the order of several thousand cycles. Attacks use such short cycles to reduce the noise in the
analyze step. As a result, if the victim accesses the target addresses during the wait step,
then such addresses will typically remain in the victim’s private cache by the next interfere
step. Hence, when the attacker performs the interfere step, it generates inclusion victims in
the private cache of the victim’s core.
The second trait concerns the fact that deployed cache line replacement algorithms and

deployed algorithms for inserting referenced lines in the replacement priority list, do not
take into consideration the possible creation of inclusion victims. This makes commercial
systems vulnerable to conflict-based attacks.
Recent proposals (e.g., [97–100]) take into account the requesting core ID when deciding

what line in the set to replace, or what priority in the replacement list to assign to the
referenced line. However, they do it to improve resource allocation or to enhance perfor-
mance, and do not try to eliminate inclusion victims. Only the TLA cache management
proposal [96] uses some hints that try to minimize the probability of creating inclusion vic-
tims. However, since TLA is focused on performance, it does not guarantee the elimination
of inclusion victims and, hence, cannot provide security guarantees.

3.1.2 Flush-based Attacks

The x86 clflush instruction invalidates a specific address from all levels of the cache
hierarchy [52]. The invalidation is broadcasted throughout the cache coherence domain. If,
at any cache, the line is dirty, it is written to memory before invalidation. In user space,
clflush is used to handle memory inconsistencies such as in memory-mapped I/O and self-
modifying codes. In kernel space, clflush is used for memory management, e.g., to flush
from the caches all the lines belonging to a page that is being swapped out.
Flush-based attacks rely on the clflush instruction to evict target addresses from the

cache. Entirely disabling the use of such instruction is impractical due to both legacy
issues and valid use cases. However, we make a key observation about the legitimate uses of
clflush: in user mode, clflush is only really needed in uses that update memory locations.
Specifically, it is needed to handle the case when the value of a location in caches is more
up-to-date than the value of the same location in main memory. In such cases, clflush
brings the memory to the right state.
We argue that there is no need to use clflush in user mode for pages that are read-only

or executable, such as those that contain shared library code. Allowing the use of clflush
in these pages only makes the system vulnerable to flush-based attacks.
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3.2 SHARP DESIGN

Secure Hierarchy-Aware cache Replacement Policy (SHARP) is composed of a new cache
replacement scheme to protect against conflict-based cache attacks, and a slightly modified
clflush instruction to protect against flush-based cache attacks. In the following, we discuss
SHARP’s two components, and then give some examples of defenses.

3.2.1 Protecting Against Conflict-based Attacks

To protect against conflict-based attacks, SHARP’s main idea is to alter a shared cache’s
replacement algorithm to minimize the number of inclusion victims that a process induces
on other processes. The goal is to prevent an attacker process from replacing shared-cache
lines from the victim process that would create inclusion victims in the private caches of
the victim process’ core. The result is that the attacker cannot create a conflict-based cache
attack.
Assume that a requesting process R (potentially an attacker) wants to load a line into a

set of the shared cache that is full. The hardware has to find a victim line to be evicted.
The high level operation of the SHARP replacement algorithm is shown in Figure 3.1. It
has three steps. In Step 1, SHARP considers each line of the set at a time (¬), in the
order based on its replacement priority. For each line, it checks if the line is in any private
cache ()–(®). As soon as a line is found that is not in any private cache, it is used as the
replacement victim (³). Victimizing this line will not create any inclusion victim. If no such
line is found, the algorithm goes to Step 2.
In Step 2, SHARP considers again each line of the set at a time (¬), in the order based

on its replacement priority. For each line, it checks if the line is present only in the private
cache of R (¯)–(°). As soon as one such line is found, it is used as the replacement victim
(³). Evicting this line will at worst create an inclusion victim in R. No other process will
be affected. If no such line is found, the algorithm goes to Step 3.
In Step 3, SHARP increments a per-core local alarm event counter (±) and selects a

random line as the replacement victim (²). In this case, SHARP may create a replacement
victim in a process that is being attacked. For this reason, when the alarm event counter
of any core reaches a threshold (´), a processor interrupt is triggered (µ). The operating
system is thus notified that there is suspicious activity currently in the system. Any relatively
low value of the threshold suffices, as a real attacker will produce many alarms to be able
to obtain any substantial information. In the worst case, a smart attacker, who is aware of
the threshold used by SHARP, can bypass the protection of SHARP by lowering the attack
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Figure 3.1: SHARP replacement algorithm.

bandwidth. We discuss potential attack strategies and the maximum attack bandwidth in
Section 3.3.
From this discussion, we see that SHARP has very general applicability, requires no code

modification (unlike [64,65]), and does not partition the cache among processes (unlike [62,
101]). It allows multiple processes to dynamically share the entire shared cache, while
transparently protecting against conflict-based side channel attacks.
SHARP requires hardware modifications to implement its replacement policy. Specifically,

SHARP must be aware of what lines within the shared cache are present in the private
caches. Such information is needed in operations  and ¯ of Figure 3.1. In the subsequent
subsections, we present three different ways of procuring this information.

Using Core Valid Bits In SHARP, each line in the shared cache is augmented with a
bitmap with as many bits as cores. The bit for core i is set if the line is present in core
i’s private cache. These are the Presence bits used in directory-based protocols [102]. For
example, in Intel, they are used in multicores since the Nehalem microarchitecture [103],
where they are called Core Valid Bits (CVB).
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In this first design, SHARP simply leverages these bits to determine the information
needed in operations  and ¯ of Figure 3.1. Note, however, that these bits carry conservative
information. This means that if bit i is set, core i may have the line in its private cache,
while if bit i is clear, core i is guaranteed not to have the line in its private cache. Such
conservatism stems from silent evictions of non-dirty lines from private caches; these evictions
do not update the CVB bits. As a result, the CVB bits will still show the evicting core as
having a copy of the line in its private cache. Overall, this conservatism will cause Steps 2
and 3 in Figure 3.1 to be executed more often than in a precise scheme. However, correctness
is not compromised.

Using Queries A shortcoming of the previous design is that it often ends-up assuming
that shared cache lines are present in more private caches than they really are. As a result, a
process may unnecessarily fail to find a victim in Step 1 and end-up victimizing its own lines
in Step 2, or unnecessarily fail to find a victim in Step 2 and end-up raising an exception.
To solve this problem, this second SHARP design extends the first one with core queries.

Specifically, Step 1 in Figure 3.1 proceeds as usual; it often finds a victim. In Step 2, however,
as each line is examined in order based on its replacement priority, the SHARP hardware
queries the private caches of the cores that have the CVB bit set for the line, to confirm that
the bit is indeed up to date.
The CVBs of the line are refreshed with the outcome of the query. With the refresh, the

CVBs may show that, in reality, the line is in no private cache, or only in the private cache of
the requesting processor. In this case, the line is victimized and the replacement algorithm
terminates; there is no need to examine the other lines.
As a line’s CVBs are refreshed, the line is considered to be accessed, and is placed in its

corresponding position in the replacement priority. This is done to ensure that such a line
is not considered and refreshed again in the very near future.
This design generally delivers higher performance than the first one. The reason is that

the queries of private caches refresh the CVB bits, obtaining a more accurate state of the
system for the future. Note that the queries are typically hidden under the latency of the
memory access that triggered them in the first place.
Similar query-based schemes have been proposed in the past. They have been used to

reduce inclusion victims with the aim of improving performance [96].

Using Core Valid Bits and Queries A limitation of the previous design is that it does
not scale well. For multicores with many cores, the latency of the queries may not be hidden
by the cache miss latency. Moreover, the traffic induced by the queries may slow down other
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network requests. Consequently, we present a third SHARP design that reduces the number
of queries.
Specifically, in Step 2 of Figure 3.1, SHARP only sends queries for the first N lines exam-

ined. For the remaining lines in the set, SHARP uses the CVBs as in the first scheme. As
usual, Step 2 finishes as soon a victim line is found. There are no other changes relative to
the second design.

3.2.2 Protecting Against Flush-based Attacks

As discussed in Section 3.1, there is no need to use clflush in user mode for pages that are
read-only or executable. Hence, in user mode, SHARP only allows clflush to be performed
on pages with write permissions.
With this restriction, sharing library code between processes and supporting page dedu-

plication do not open up vulnerabilities to flush-based attacks. Specifically, if attacker and
victim process share library code and the attacker invokes clflush, the attacker will suffer
an exception because the addresses are execution-only. Hence, the victim process will not
suffer inclusion victims in its cache. Similarly, if attacker and victim share a deduplicated
page and the attacker invokes clflush, since the page is marked copy-on-write, the OS will
trigger a page copy. All subsequent clflushes by the attacker will operate on the attacker’s
own copy. As before, the attack will be ineffective.
SHARP allows clflush to execute unmodified in kernel mode, as it is necessary for

memory management.

3.2.3 Examples of Defenses

We give two examples to show how SHARP can successfully defend against conflict-based
attacks. In the examples, victim and attacker share a target address, and the attacker uses
the evict+reload attack (Section 2.2.1). Private caches are 4-way set-associative, and the
shared one is 8-way. We consider first a single-threaded attacker and then a multi-threaded
attacker.

Attack Using a Single-threaded Attacker Figure 3.2 shows the cache hierarchy, where
the victim runs on Core 0 and the attacker on Core 1. In Figure 3.2(a), the victim has loaded
the target address, and the attacker has loaded four lines with conflict addresses. In Fig-
ure 3.2(b), the attacker loads four more lines with conflict addresses. Since the corresponding
set in the shared cache only had three empty lines, one of the existing lines has to be evicted.
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Cache 0 Cache 1 Cache 0 Cache 1

line with target address

lines with conflict addresses

Figure 3.2: SHARP defending against a single-threaded attack.

SHARP forces the eviction of one of the old lines of the attacker — not the one with the
target address.

Attack Using a Multi-threaded Attacker Figure 3.3 shows a cache hierarchy with four
private caches, where the victim runs on Core 0 and three attacker threads run on Cores 1,
2, and 3. In the figure, the victim has loaded the target address, and the attacker threads
tried to evict it. Attacker 1 loaded four conflicting lines, and Attacker 2 three conflicting
lines. If Attacker 2 now loads another conflicting line, it will only victimize one of its own
lines. The same is true for Attacker 1. SHARP is protecting the target address.

Cache 0 Cache 1 Cache 2 Cache 3

line with target address

Lines with conflict addresses

Figure 3.3: SHARP defending against a multi-threaded attack.

To have a chance to evict the target address, a third Attacker thread (Attacker 3) needs
to load a conflicting line. However, such access will only evict a random line in the set, and
it will increment the alarm counter. Additional lines loaded by Attacker 3 will only victimize
Attacker 3’s line. To be able to cause multiple random replacements, the Attacker threads
must be highly coordinated to ensure that, for each round of attack, at least one Attacker
thread does not occupy any line in the corresponding shared cache set.
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3.3 DISCUSSION

3.3.1 Handling Passive Attacks

SHARP only targets active cache-based side channel attacks. To put SHARP in perspec-
tive, we examine how it handles passive attacks.

Initial Access Vulnerability There is one type of passive cache-based side channel attack
where the attacker simply wants to know whether the program execution loaded a given
target address. For example, the attacker repeatedly loads the target address and evicts it,
while timing the latency of the load. After the victim loads the target address, the load by
the attacker is fast because it hits in the cache. We call this vulnerability the Initial Access
vulnerability. The SHARP designs that we have presented are not able to thwart it. This
is because, in these attacks, the attacker does not need to evict the lines that have been
accessed by the victim.
The Initial Access vulnerability can be thwarted by adopting the preloading techniques

proposed in [64, 104]. They involve loading all the security-sensitive addresses into the
cache, so that the attacker cannot know which address the victim really needs to access.
Such loading can be done with plain loads or with prefetches.

Exploiting Self-Conflicts Since the private cache used by the victim process has limited
size and associativity, it is possible that a target address gets evicted by its own accesses due
to lack of space. We call this eviction a cache self-conflict. After the eviction, the SHARP
designs that use queries may detect that the line is no longer in the private cache and pick
it as a replacement victim in the shared cache. Hence, it is possible for an attacker to
exploit victim’s self-conflicts in the private cache to bypass SHARP’s protection and mount
a cache-based side channel attack.
In practice, if the victim’s working set fits in the private caches, mounting such an attack

is very difficult. The reason is that the attacker has no control on the way that lines evict
each other in the private cache of the victim. In addition, the attacker can at best find out
when a line with the target address was evicted, but not when the target address was last
accessed before the eviction.
However, if an application’s working set is much larger than the private cache size, self-

conflicts can be exploited to leak useful information [105]. A potential solution is to mod-
ify the victim program to hide secret-dependent accesses inside the private cache, because
SHARP can help hide the victim’s private cache states.
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Exploiting Self-Reuses Another type of passive cache attack exploits data self-reuses
within the victim. For example, in a cache-collision attack [45], when the victim accesses
a sequence of addresses, a cache collision happens if two addresses point to the same cache
line. Depending on the number of collisions, the victim may take different amount of time
to execute. SHARP can not handle this attack. Potential solutions either require rewriting
the program or using Random Fill Cache [70].

3.3.2 Alarm Threshold and Attack Bandwidth

SHARP’s alarm mechanism aims to detect side channel attacks that bypassed the first
and second steps in the SHARP replacement algorithm. The alarm is incremented every
time an attacker generates an inclusion victim in another core’s private cache. As discussed
in Section 3.2, inclusion victims may also be caused by benign applications under SHARP.
Thus, we introduce an alarm threshold to filter false positives. Similar to other detection
mechanisms, using a threshold is effective in limiting the bandwidth of side channel attacks,
but cannot eliminate the channel. Kumar et al. [106] also pointed out the threshold dilemma.
If the threshold is too low, the detection mechanism misclassifies many benign applications
as attacks and suffers high false positives. If the threshold is too high, attackers can easily
reduce the attack bandwidth to trigger a small enough number of alarms and avoid being
detected.
We consider an implementation of SHARP which allows T alarms to be triggered for every

W cycles. Assume that every time an attacker creates an inclusion victim, the target line is
evicted from the victim’s private cache. In this case, the attacker can achieve the maximum
bandwidth as below.

BandwidthMAX =
T

W
(3.1)

Considering that SHARP uses a random replacement policy in Step 3, the attacker actually
has to trigger multiple inclusion victims to make sure the target line is successfully evicted.
If the LLC associativity isWLLC , when using the random replacement policy, the probability
of selecting the victim’s target address to evict is 1

WLLC
. Thus, the average bandwidth that

can be achieved by a real attacker should be lower.

BandwidthAV G ≤
T

W ×WLLC

(3.2)

Given a 2 GHz core with a 16-way LLC, T = 2000 andW = 109, which can help achieve ex-
tremely low false positives (Section 3.4), the maximum attack bandwidth allowed by SHARP
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is 4kbps and the average bandwidth is 0.25kbps. This is much lower than the bandwidth of a
practical LLC side channel attack [6], whose effective bandwidth is 200 to 1000kbps — trig-
gering an inclusion victim every 2,000-10,000 cycles. Note that the above attack bandwidth
can be achieved only if the attacker bypasses the first two steps in SHARP. It requires the
attacker to use more than one threads as discussed in Section 3.2.3. Moreover, the timing of
the requests from many attacker threads needs to be finely coordinated, to ensure that, at
every round of attack, at least one attacker thread does not occupy any line in the shared
cache set.

3.3.3 Hardware Needs and Performance Impact

SHARP has modest hardware requirements. As per Section 3.2.1, it needs presence bits in
the shared cache (i.e., the CVBs) and cache queries. The CVBs are already present in Intel
multicores to support cache coherence, and can be reused. In directory-based multiprocessors
that use limited-pointer directories, SHARP can be modified to also reuse the hardware.
To support queries, SHARP adds two additional messages to the coherence protocol,

namely a query request and a query reply. The cache controller needs corresponding states
to handle the two new messages. Such modification has also been used by Intel researchers
to improve cache management [96].
SHARP induces negligible average performance degradation. This is because, unlike

schemes that explicitly partition the shared cache among threads (e.g., [62, 101]), SHARP
allows multiple threads to dynamically share a cache flexibly. In addition, the queries are
performed in the background, in parallel to servicing a cache miss from memory. In practice,
the great majority of the replacements that use queries are satisfied with the first query.
It can be argued that, in some cases, SHARP will cause a thread to be stuck with a single

way of the shared cache, and repeatedly victimize its own private cache lines. This may
be the case with the victim thread in Figure 3.3. While such case is possible, it is rare.
Recall that the lines in a set in the private cache can map to multiple sets in the bigger,
shared cache (say around 8 or so). The pathological case happens when many referenced
lines across all cores map to the same set in both private and shared caches, and the shared-
cache associativity is not enough. While possible, this case is rare, only temporary, and only
affects the relevant cache set.
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3.4 EVALUATION

3.4.1 Experimental Setup

To evaluate SHARP, we modify the MARSS [107] cycle-level full-system simulator. We
model a multicore with 2, 4, 8, or 16 cores. Each core is 4-issue and out-of-order, and has
private L1 and L2 caches. All cores share a multi-banked L3 cache, where the attacks take
place. The chip architecture is similar to the Intel Nehalem [103]. The simulator runs a
64-bit version of Ubuntu 10.4. Table 3.1 shows the parameters of the simulated architecture.
Unless otherwise indicated, caches use the pseudo-LRU replacement policy.

Parameter Value
Multicore 2–16 cores at 2.5GHz
Core 4-issue, out-of-order, 128-entry ROB
Private L1 32KB each, 64B line, 4-way,
I-Cache/D-Cache Access latency: 1 cycle
Private L2 Cache 256KB, 64B line, 8-way,

Access latency: 5 cycles after L1
Query from L3 to L2 3 cycle network latency each way
Shared L3 Cache 2MB bank per core, 64B line, 16 way,

Access latency: 10 cycles after L2
Coherence Protocol MESI
DRAM Access latency: 50ns after L3

Table 3.1: Parameters of the simulated architecture.

We evaluate the 7 configurations of Table 3.2, which have different L3 line replacement
policies: baseline uses the conventional pseudo-LRU policy; cvb, query, and SHARPX use
the SHARP designs of Section 3.2.1. SHARPX includes 4 configurations (SHARP[1-4]),
which vary based on the maximum number N of queries emitted. Recall that, for a given
set, a query needs to be fully completed before a second one can be initiated.

Config. Line Replacement Policy in L3
baseline Pseudo-LRU replacement.
cvb Use CVBs in both Step 1 and 2.
query CVBs in Step 1 & queries in Step 2.
SHARPX CVBs in Step 1. In Step 2, limit the

max number of queries to X, where X = 1, 2, 3, or 4.

Table 3.2: Simulated LLC line replacement configurations.
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3.4.2 Proof-of-Concept Defense Analysis

In this section, we evaluate the effectiveness of SHARP against two real cache-based side
channel attacks. We implement the attacks using evict+reload, which consists of the attacker
evicting the target address and then accessing it. If, in between, the victim has accessed the
target address, the attacker’s reload access hits in the cache; otherwise, the attacker’s reload
access misses.
To achieve page sharing between attacker and victim, the attacker mmaps the victim’s

executable file or shared library into the attacker’s virtual address space. To select conflict
addresses, the attacker first accesses the system files (i.e., /proc/$pid/pagemap on Linux) to
identify the physical addresses of target addresses. It then selects 16 addresses that map to
the same L3 set as each of the target addresses to form an eviction set. When performing the
evict operation, the attacker accesses the 16 addresses twice to ensure that the target address
is replaced. When doing the reload operation, the attacker accesses the target address and
measures the access time using rdtsc. Based on the time measured, it determines if it is an
L3 hit. If so, it knows that the address has been accessed by the victim.
We measure the L3 hit and miss time for our architecture. We find that, on average, an

L3 hit takes 48 cycles, and an L3 miss 170 cycles. Hence, we use 100 cycles as a threshold
to decide if it is a hit or a miss.
In the following attacks, we launch the victim process on one core and the attacker on

another. We show results for the SHARP4 configuration; the other configurations work
equally well in terms of defense.

Defending against Attacks on GnuPG Our first attack example targets GnuPG, a
free implementation of the OpenPGP standard. The modular exponentiation in GnuPG
version 1.4.13 uses a simple Square-and-Multiply algorithm [42]. The calculation is shown
in Algorithm 2.1, and is described in Section 2.2.1.
In this attack, the attacker divides the time into fixed time slots of 5,000 cycles, and

monitors for 10,000 time slots. In each time slot, it evicts and reloads two target addresses:
the entry points of the sqr and mul functions (Algorithm 2.1). Figure 3.4 shows the result
of 100 time slots for the baseline and SHARP4 configurations. In the figure, a dot represents
a cache hit in the reload of the corresponding target address.
In baseline, when a hit occurs, it is because the victim has accessed the target address

during the interval between evict and reload. In Figure 3.4(a), we see the pattern of victim
accesses to sqr and mul. When a sqr hit is followed by a mul hit, the value of the bit in the
exponent vector is 1. The figure highlights three examples of this case with a shaded vertical
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Figure 3.4: Cache hits on the target addresses by the attacker process in GnuPG.

pattern. When a sqr hit is not immediately followed by a mul hit, the value of the bit in
the exponent vector is 0. The figure highlights two examples of multiple sqr hits in a row
with a shaded horizontal pattern. In some cases, the timing is such that the evict follows
the victim’s access. In that case, the reload may miss an access. The figure highlights one
such example with a circle. Even with some such misses, the attacker can successfully attain
most of the bits in the exponent vector, which is enough for the attack to succeed.
Consider now SHARP4. The first time that the victim calls sqr and mul, the target ad-

dresses are loaded into the shared cache and into the victim’s private cache. Then, SHARP4
prevents the attacker from evicting the target addresses from the shared cache. As a result,
every single reload by the attacker will hit in the cache. The result, as shown in Figure 3.4(b),
is that the attacker in unable to glean any information from the attack.

Defending against Attacks on Poppler Our second attack example targets Poppler, a
PDF rendering library that is widely used in software such as Evince and LibreOffice. We
select pdftops as the victim program. Pdftops converts a PDF file into a PostScript file. The
execution of pdftops is very dependent on the input PDF file. Hornby et al. [47] design an
attack that probes the entry points of four functions in pdftops that allow the attacker to
distinguish different input PDF files with high fidelity:

• Gfx::opShowSpaceText(Object*, int)

• Gfx::opTextMoveSet(Object*, int)
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• Gfx::opSetFont(Object*, int)

• Gfx::opTextNextLine(Object*, int)

Their attack consists of three stages: training, attack, and identification. In the training
stage, they collect the probing address sequence for different input PDF files multiple times,
to obtain the unique signature for each file. In the attack stage, the attacker records the
target address sequence of the victim as it executes pdftops with an input PDF file. In
the identification stage, the attacker computes the Levenshtein distance1 [108] between the
victim’s access sequence and all of the training access sequences. The training sequence with
the smallest Levenshtein distance to the victim’s is assumed to correspond to the input file
that the victim used. By using this approach, they can reliably identify 127 PDF files on a
real machine.
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(b) Using SHARP4.

Figure 3.5: Cache hits on the target addresses by the attacker process in Poppler.

In our attack, the attacker monitors the entry points of those functions using evict+reload.
The attacker divides time into fixed time slots of 10,000 cycles each. During each time slot,
it evicts and reloads the 4 target addresses. Figure 3.5 shows the reload hits in 300 slots.
In baseline (Figure 3.5(a)), we can clearly monitor the execution of the 4 functions over
time. Since each input PDF file results in a different execution order and frequency for
these functions, the pattern can be used as a signature to uniquely identify the input file. In

1Levenshtein distance is the smallest number of basic edits (single-character insertions, deletions, and
replacements) needed to bring one string to the other.
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SHARP4 (Figure 3.5(b)), the reloads always hit, which makes it impossible to distinguish
different input files by their probed cache behavior.

3.4.3 Performance Evaluation of Single-threaded Application Mixes

In this section and next section, we evaluate the performance impact of SHARP using both
mixes of single-threaded applications (SPECInt2006 and SPECFP2006 [109]), and multi-
threaded applications (PARSEC [110]).
We start by evaluating mixes of 2 SPEC applications at a time, using 2 cores with a

total L3 size of 4MB. To choose the mixes, we use the same approach as Jaleel et al. [96].
We group the applications into three categories according to their cache behavior [111]:
SW (small working set), MW (medium working set), and LW (large working set). SW
applications, such as sjeng, povray, h264ref, dealII, and perlbench, fit into the L2 private
caches. MW applications, such as astar, bzip2, calculix, and gobmk, fit into the L3. Finally,
LW applications, such asmcf and libquantum, have a footprint larger than the L3. We choose
a set of mixes similar to Jaleel et al. [96], which the authors suggest are representative of all
mixes of the SPEC applications.
We use the reference input size for all applications. In each experiment, we start two

applications and pin them to separate cores. We skip the first 10 billion instructions in each
application; then, we simulate for 1 billion cycles. We measure statistics for each application.
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Figure 3.6: Normalized IPC of SPEC application mixes with different replacement policies
on 2 cores.

Figure 3.6 shows the IPC of each application in each of the 9 mixes considered. For a
given application, the figure shows bars for baseline, cvb, query, and SHARP[1,4], which are
all normalized to baseline. In the figure, higher bars are better. Figure 3.7 shows the L3
misses per kilo instruction (MPKI). It is organized as Figure 3.6 and, as before, bars are
normalized to baseline.
From Figure 3.6, we see that the performance of the applications in query and SHARP[1,4]
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Figure 3.7: Normalized L3 MPKI of SPEC application mixes with different replacement
policies on 2 cores.

is generally similar to that in baseline. Hence, SHARP has a negligible performance impact.
In addition, the reason why query and SHARP[1,4] all behave similarly is that, in the large
majority of cases, the first query successfully identifies a line to evict.
The figure also shows that cvb is not competitive. For applications such as astar in MIX3

and perlbench in MIX6, cvb reduces the IPC substantially. The reason is that the imprecision
in the CVBs causes suboptimal line replacement. In particular, threads end up victimizing
themselves. In some of these applications, the relative MPKI increases substantially (Fig-
ure 3.7). Note, however, that these are normalized MPKI values. In these SW and MW
applications, while the bar changes may seem large, they correspond to small changes in ab-
solute MPKI. For example, the MPKI of dealII in MIX8 is 0.025 in baseline, and it increases
by 15x to a still modest value of 0.392 in cvb.
Some of the mixes expose the effects of SHARP more than others. For example, the mixes

that contain an SW and an LW application are especially revealing (e.g., MIX0). In these
workloads, SHARP[1,4] helps the SW application retain some L3 ways for itself — rather
that allowing the LW application to hog all the L3 ways as in baseline. As a result, the SW
application increases its IPC and reduces its MPKI (povray in MIX0). At the same time,
the LW application does not change its IPC or MPKI much (mcf in MIX0). The reason is
that the LW application already had a large MPKI, and the small increase in misses has
little effect.

3.4.4 Performance Evaluation of Multi-threaded Applications

We now evaluate PARSEC applications running on 4 cores with a total L3 size of 8MB.
The applications’ input size is simmedium, except for facesim, which uses simsmall. The
applications run for the whole region of interest, with at least 4 threads, and with threads
pinned to cores. For these applications, we report total execution time, rather than average
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IPC, as the performance metric. This is because these applications have synchronization
and, therefore, may execute spinloops.
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Figure 3.8: Normalized Execution Time of PARSEC applications with different replacement
policies on 4 cores.

blacks
choles bodyt

rack canne
al dedup facesi

m ferret
fluida

nimate
freqm

ine raytra
ce

swapt
ions x264 avera

ge
0.0

0.5

1.0

1.5

2.0

N
or
m
al
iz
ed

 L
3 
M
PK

I

baseline cvb query SHARP1 SHARP2 SHARP3 SHARP4

Figure 3.9: Normalized L3 MPKI of PARSEC applications with different replacement policies
on 4 cores.

Figures 3.8 and 3.9 show the normalized execution time and L3 MPKI, respectively, for
each application and for the average. These figures are organized as Figures 3.6 and 3.7. In
Figure 3.8, lower is better.
In this environment, threads share data and, therefore, a given cache line can be in multiple

private caches. As a result, a thread may be unable to evict data that it has brought into
the shared cache because another thread has reused the data and is caching it in its own
private cache.
This property may have good or bad effects on the MPKI (Figure 3.9). For example, in

ferret, the inability of a thread to evict shared data causes cache thrashing and a higher
MPKI. On the other hand, in fluidanimate, the MPKI decreases slightly.
If we look at the execution time (Figure 3.8), we see that query and SHARP[1,4] have

similar performance as baseline. The only difference is a modest slowdown of 6% in canneal.
This application has a large working set, and the new replacement policy ends up creating
more misses which, in turn, slow down the application. Overall, however, the impact of
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query and SHARP[1,4] on the execution time is negligible. cvb is slightly worse. The reason
is that the imprecision of the CVBs causes a higher MPKI and a slightly slower execution.

3.4.5 Performance Evaluation on Scalability

To assess the scalability of SHARP, we run SPEC application mixes and PARSEC applica-
tions with larger core counts. Specifically, the SPEC application mixes run on 8 cores with a
total L3 size of 16MB. The pairs of applications in each mix are the same as in Section 3.4.3,
except that we run 4 instances of each of the two applications. We use the reference input
sets, and collect statistics for 1 billion cycles after all applications have reached the region
of interest.
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Figure 3.10: Normalized IPC and L3 MPKI of SPEC application mixes with different re-
placement policies on 8 cores.

Figures 3.10(a) and 3.10(b) show the normalized IPC and L3 MPKI, respectively, for the
SPEC mixes. For each mix, we show the average of the 8 applications and, due to space
limitations, only the baseline, query, and SHARP4 configurations. The figures also have
bars for the average of all mixes.

40



The changes in the line replacement algorithm affect what data is kept in the L3 caches.
Our SHARP designs try to avoid creating replacement victims in the private caches of other
cores. As shown in Figure 3.10(a), sometimes this causes the average IPC of the applica-
tions to decrease (povray+mcf) and sometimes to increase (h264ref+perlbench). However,
on average for all the mixes, the IPC under SHARP4 and query is about 3–4% higher than
baseline. Overall, therefore, we conclude that SHARP has a negligible average performance
impact.
As shown Figure 3.10(b), the L3 MPKI also goes up and down depending on the appli-

cation mix, but the average impact is small. Note that, for a given application mix, it is
possible that SHARP4 increases both the average IPC and the average MPKI. For exam-
ple, in libquantum+sjeng, the average IPC goes up because sjeng’s IPC increases more than
libquantum’s decreases. At the same time, libquantum’s average MPKI goes up more than
sjeng’s goes down.
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Figure 3.11: Normalized IPC and L3 MPKI of PARSEC applications with different replace-
ment policies on 16 cores.

We also run PARSEC applications on 16 cores with a total L3 size of 32MB. The appli-
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cations’ input size is simlarge. Given the long simulation time, we report statistics for the
first 1 billion cycles in the region of interest. Consequently, we report performance as IPC
rather than execution time. Figures 3.11(a) and 3.11(b) show the normalized IPC and L3
MPKI, respectively. The figures are organized as Figures 3.10(a) and 3.10(b).
In Figure 3.11(a), we see that most of the applications have similar IPCs for baseline, query,

and SHARP4. The one application where SHARP hurts IPC is canneal. This application has
a very large working set. In baseline, the L3 MPKI of canneal is 5.18, compared to an MPKI
lower than 1 for the other applications. In addition, there is fine-grained synchronization
between threads. Data that is brought into the cache by one thread is used by other threads.
This causes SHARP to avoid evicting such lines. The result is higher MPKI (Figure 3.11(b))
and lower IPC. This behavior is consistent with the one displayed for 4-core runs (Figure 3.8).
On average across all the applications, however, query and SHARP4 have negligible impact
on IPC and (to a lesser extent) on MPKI.

3.4.6 Alarm Analysis

Recall that when SHARP needs to evict a line from the shared cache, it looks for a victim
that is not in any private cache or only in the private cache of the requester. If SHARP
cannot find such a victim, it increments an alarm counter in the requesting core and evicts
a random line in the set. For normal applications, the number of alarm increments is low.
In an attack, however, the number of alarm increments will be very high. We now profile
benign applications to find the appropriate threshold.
Table 3.3 shows the maximum alarm count observed per 1 billion cycles in any core

while running benign workloads. Specifically, we run the 8-threaded SPEC mixes and 16-
threaded PARSEC applications of Section 3.4.5, and try the cvb, query, SHARP1, SHARP2,
SHARP3, and SHARP4 configurations. The last row of the table shows the maximum
number across applications for each configuration.
From the table, we see that cvb can trigger many alarms in multiple workloads. These

high numbers are due to the lack of precision of this replacement policy, where the CVBs
can be stale. Consequently, cvb is not recommended.
With the other policies, the number of alarms decreases substantially. This is because

the policies refresh CVBs. For most workloads, the number of alarms is less than 100
per 1 billion cycles. A few SPEC mixes, such as libquantum+sjeng and gobmk+mcf reach
several thousand alarms. These alarms occur because four instances of memory-intensive
applications (libquantum and mcf) cause contention on many cache sets, and force evictions
of cache lines belonging to their companion computation-intensive applications (sjeng and
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Applications. cvb query SHARP1 SHARP2 SHARP3 SHARP4
pov-mcf 285238 89 7285 171 121 84
lib-sje 1618715 1460 4747 2033 1820 1403
gob-mcf 549976 687 10001 1160 1426 1045
ast-pov 22701 19 1774 137 36 7
h26-gob 511 0 16 2 0 0
bzi-sje 38669 7 177 9 7 2
h26-per 60536 1 974 184 6 2
cal-gob 132169 0 37 25 33 1
dea-pov 3 0 0 1 0 0

blackscholes 0 0 0 0 0 0
bodytrack 0 0 0 0 0 0
canneal 153165 37 1192 39 43 37
dedup 145079 13 410 32 18 36
facesim 46409 12 97 32 16 1
ferret 91443 6 2097 102 15 9

fluidanimate 25643 2 556 144 26 3
freqmine 0 0 0 0 0 0
raytrace 10013 1 85 5 1 1
swaptions 0 0 0 0 0 0

x264 35897 2 423 10 5 14
MAX 1618715 1460 10001 2033 1820 1403

Table 3.3: Alarms per 1 billion cycles in benign workloads.

gobmk). SHARP is unable to find a line that only exists in the requester’s private cache,
and the alarm counter is incremented.
PARSEC applications with very little shared data, such as blacksholes and swaptions, have

no alarms. This is because SHARP can always find a line that exists only in requester’s
private cache. Applications with a larger amount of sharing between threads (ferret and
canneal) have a relatively higher number of alarms. Even in such cases, however, the number
of alarms is orders of magnitude lower than when an attack takes place.
Looking at the last row of the table, we see that SHARP4, SHARP3, and query have

less than 2,000 alarms per 1 billion cycles in the worst case. Of them, SHARP4 is the best
design. Hence, we recommend to use SHARP4 and use a threshold of 2,000 alarm events in
1 billion cycles before triggering an interrupt.

3.5 CONCLUSION

To combat the security threat of active cross-core cache-based side channel attacks, this
chapter made three contributions. First, it made an observation for an environment with an
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inclusive cache hierarchy: when the attacker evicts the target address from the shared cache,
the address will also be evicted from the private cache of the victim process, creating an
inclusion victim. Consequently, to disable cache attacks, the attacker should be prevented
from triggering inclusion victims in other caches.
Next, the chapter used this insight to defend against active cache-based side channel

attacks with SHARP. SHARP is composed of two parts. It introduces a new line replacement
algorithm in the shared cache that prevents a process from creating inclusion victims in the
caches of cores running other processes. It also slightly modifies the clflush instruction to
protect against flush-based cache attacks. SHARP is highly effective, needs only minimal
hardware modifications, and requires no code modifications.
Finally, this chapter evaluated SHARP on a cycle-level full-system simulator and tested

it against two real-world attacks. SHARP effectively protected against these attacks. In
addition, SHARP introduced negligible average performance degradation to workloads with
SPEC and PARSEC applications.
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CHAPTER 4: DIRECTORY ATTACKS

This chapter presents the first two directory-based side channel attacks on non-inclusive
cache hierarchies. As modern caches move away from inclusive cache hierarchies to non-
inclusive ones, previous cache attack strategies have been called into doubt, mainly due to the
assumption that attackers should be unable to create “inclusion victims”. However, we find
that, on a non-inclusive cache, inclusion victims can be created via directory conflicts. We
present directory attacks and prove that the directory can be used to bootstrap conflict-based
cache attacks on any cache hierarchy, including inclusive, non-inclusive and exclusive ones.

Despite the past successes of cache-based side channel attacks, the viability of shared
cache attacks has been called into question on modern systems due to recent trends in
processor design. To start with, many prior attacks [28, 39, 46, 48] can be mitigated out
of the gate, as virtualized environments are now advised to disable shared virtual memory
between VMs [112].
Without sharing virtual memory with a victim, the adversary must carefully consider

the cache hardware architecture in mounting a successful attack. This is where problems
arise. First, modern cache hierarchies are becoming non-inclusive or exclusive. Prior LLC
attacks without shared virtual memory (e.g., [6]) rely on LLCs being inclusive, as this gives
adversaries the ability to evict cache lines that are resident in the victim’s private caches.
Non-inclusive cache behavior is significantly more complicated than that of inclusive caches
(Section 4.1). Second, modern LLCs are physically partitioned into multiple slices. Sliced
LLCs notoriously complicate attacks, as the mapping between victim cache line address
and cache slice is typically proprietary. Taken together, these challenges cause current LLC
attacks to fail on modern systems (e.g., the Intel Skylake-X [27]).
Modern systems are moving to non-inclusive cache hierarchies due to the redundant storage

that inclusive designs entail. Indeed, AMD servers have always used exclusive LLCs [28],
and Intel servers are now moving to this design [27]. We expect the trend of non-inclusive
caches to continue, as the cost of inclusive caches grows with core count.
In this chapter, we design a novel cross-core cache attack that surmounts all of the above

challenges. Specifically, our attack does not require the victim and adversary to share cores
or virtual memory, and succeeds on state-of-the-art sliced non-inclusive caches, such as those
in Skylake-X [27]. Our key insight is that in a machine with non-inclusive cache hierarchies,
we can still attack the directory structure. Directories are an essential part of modern cache
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hierarchies, as they maintain tracking information for each cache line resident in the cache
hierarchy.1 Since the directory must track all cache lines, and not just cache lines in the LLC,
it offers an attack surface similar to that of an inclusive cache. Indeed, our work suggests
that conflict-based LLC attacks (on inclusive, non-inclusive or exclusive cache hierarchies)
should target directories, not caches, as directories are a homogeneous resource across these
different cache hierarchy designs.
To summarize, this chapter makes the following contributions:

• We develop an algorithm to find groups of cache lines that completely fill a given set
of a given slice in a non-inclusive LLC (called an Eviction Set). This modernizes prior
work on Eviction Set creation, which only works for sliced inclusive LLCs.

• Using our Eviction Sets, we reverse engineer the directory structure in Skylake-X, and
identify vulnerabilities in directory design that can be leveraged by cache-based side
channel attacks.

• Based on our insights into the directory, we present two attacks. The first is a
Prime+Probe attack on sliced non-inclusive LLCs. Our attack does not require the
victim and adversary to share cores or virtual memory. The second attack is a novel,
high-bandwidth Evict+Reload attack that uses multi-threaded adversaries to bypass
non-inclusive cache replacement policies.

• We use our two attacks to attack square-and-multiply RSA on the modern Intel
Skylake-X server processor. Both of these attacks are firsts: although prior work
implemented an Evict+Reload attack on non-inclusive LLCs, it cannot attack RSA
due to its low-bandwidth. Finally, we construct efficient covert channels for sliced
non-inclusive LLCs.

4.1 THE CHALLENGE OF NON-INCLUSIVE CACHES

Previous cross-core cache side channel attacks only work for inclusive cache hierarchies
(e.g., [6, 18]). In a non-inclusive cache hierarchy, attackers must overcome the two main
challenges that we describe next. In this discussion, we assume that the clflush instruction
is disabled [52] and that shared memory between attacker and victim has been disabled [112].

1This should not be confused with the “directory protocol” used in multi-socket attacks that assume
shared virtual memory between the adversary and victim [28].
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4.1.1 Lack of Visibility into the Victim’s Private Cache

In a non-inclusive cache hierarchy, an attacker running on a core seemingly cannot evict
an address from another core’s private cache — i.e., it cannot create an inclusion victim in
the second core’s cache. To see why, consider Figure 4.1, which shows a shared LLC and
two private caches. The attacker runs on Cache 1 and the victim on Cache 0. The target
line is shown in a light shade in Cache 0.
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target	address eviction	addresses

① from	DRAM

② insert	
to	LLC.
cache	conflict.

③ evict	an
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cache	0 cache	1

① from	DRAM

② insert	
to	LLC.
no	conflict

(a)	inclusive	cache (b)	non-inclusive	cache

private	
caches

shared
cache

Figure 4.1: Attempting to evict a target line from the victim’s private cache in inclusive (a)
and non-inclusive (b) cache hierarchies.

Figure 4.1(a) shows an inclusive hierarchy. An LLC set contains lines from the attacker (in
a dark shade) plus the target line from the victim (in a light shade). The attacker references
an additional line that maps to the same LLC set. That line will evict the target line from
the LLC, and because of inclusivity, also from private Cache 0, creating an inclusion victim.
The ability to create these inclusion victims on another cache is what enables cross-core
attacks.
Figure 4.1(b) shows a non-inclusive hierarchy. In this case, the target line is in the victim’s

cache, and not in the LLC. Consequently, when the attacker references an additional line
that maps to the same LLC set, there is no invalidation sent to Cache 0. The attacker has
no way to create inclusion victims in the victim’s cache.

4.1.2 Eviction Set Construction is Hard

An Eviction Set (EV) is a collection of addresses that are all mapped to a specific cache
set of a specific cache slice, and that are able to evict the current contents of the whole set in
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that slice. In a slice with W slice ways, an eviction set must contain at least W slice addresses
to occupy all the ways and evict the complete contents of the set. We refer to Eviction
Addresses as the addresses in an Eviction Set.
In a later section, we will show that we perform Prime+Probe and Evict+Reload attacks

in non-inclusive cache hierarchies using an Eviction Set (EV). However, the algorithm used
to create an EV in inclusive cache hierarchies [6] does not work for non-inclusive hierarchies.
Creating an EV in non-inclusive hierarchies is harder. The reason is that it is less obvious
what memory accesses are required to reliably evict the target line, which is currently in the
private cache, from the entire cache hierarchy.

target	address

(a)	inclusive	cache

private	
caches

shared
cache

slice	0 slice	1 slice	0 slice	1

(b)	non-inclusive	cache

eviction	address

② insert	to	
shared	cache

① from	
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② insert	
to	private	
cache

③ evict	to	
shared	cache

③ both	evict	
to	DRAM

① from	
DRAM

② also	insert	to	
private	cache

Figure 4.2: Attempting to evict a target line in inclusive (a) and non-inclusive (b) cache
hierarchies. Victim and attacker run on the same core.

To see why, consider Figure 4.2, which shows a private cache and two slices of the shared
LLC. Victim and attacker run on the same core. Figure 4.2(a) shows an inclusive hierarchy.
The target line is in the private cache and in one slice of the LLC. To evict the target from
the cache hierarchy, the attacker only needs to reference enough lines to fill the relevant set
in the corresponding slice of the LLC. This is because, as these lines fill the set, they will
also fill the set in the private cache, and evict the target line from it. This is the EV, shown
in a dark shade. The order and number of accesses to each of the lines in the EV required to
evict the target address is determined by the replacement algorithm used in the LLC slice.
Figure 4.2(b) shows a non-inclusive hierarchy. In this case, the target line is only in the

private cache. As the core accesses the same dark cache lines as in Figure 4.2(a), the lines go
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first to the private cache, bypassing the LLC. The replacement algorithm used in the private
cache will determine when the target line is evicted from the private cache into the LLC.
When the target is evicted, it will go to one of the LLC slices, depending on the mapping of
addresses to slices. Then, the core needs to evict enough lines into that LLC slice to create
enough conflicts to evict the target line from the slice.
Overall, the order and number of accesses to each of the lines in the EV required to evict the

target address is determined by multiple factors, including the replacement algorithm used
in the private cache, the mapping of the line addresses to LLC slices, and the replacement
algorithm used in the LLC slice. In the inclusive case, only the replacement algorithm in
the LLC affects evictions.
We note that, in non-inclusive cache hierarchies, the replacement algorithms in the pri-

vate caches and LLC slices can be quite sophisticated. What specific line is chosen as a
replacement victim depends not only on the number and order of accesses to the lines, but
also on the coherence state of the lines in the cache as well. Specifically, we have empirically
observed that the replacement algorithm in the LLC slices tries to minimize the eviction of
lines that are present in multiple private caches. This particular heuristic affects the ability
to create an effective EV for Evict+Reload attacks, where lines are shared between attacker
and victim.

We address these two challenges in two novel ways. To handle the difficulty of creating
EVs, we propose a novel way to create EVs for non-inclusive caches in Section 4.2. Using
EVs and other techniques, we reverse engineer the Intel Skylake-X directory structure in
Section 4.3. This process reveals key insights into directory entry replacement policies and
inclusivity properties. In particular, we derive conditions for when an attacker is able to
use the directory to create inclusion victims in the private caches of a non-inclusive cache
hierarchy. Based on our reverse engineering results, and the new EV construction methodol-
ogy, we design effective “Prime+Probe” and “Evict+Reload” attacks in non-inclusive caches
hierarchies in Section 4.4.

4.2 CONSTRUCTING EVICTION SETS

In this section, we present an EV construction algorithm for non-inclusive caches. Recall
that an EV is a collection of memory addresses that fully occupy a specific cache set of a
specific LLC slice. This is a core primitive that we use to reverse engineer the directory
(Section 4.3) and later complete our attacks (Section 4.4).
Liu et al. [6] proposed an EV construction algorithm for sliced inclusive caches. How-
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ever, it does not work for non-inclusive caches. We develop a new implementation for
check_conflict, an important subroutine in the EV construction algorithm, that works on
non-inclusive caches. We present evaluation results to demonstrate the effectiveness of our
algorithm in Section 4.5.1.

4.2.1 The Eviction Set Construction Algorithm on Inclusive Caches

We first describe the EV construction algorithm, and then discuss the important role of
the check_conflict function.

Algorithm 4.1: Constructing an eviction set.
Input : candidate set CS
Output: EV

1 Function find_EV(CS):
2 EV = {}
3 test_addr = get a random addr from CS
4 CS ′ = CS − test_addr

// make sure there are enough addresses to conflict with test_addr
5 if check_conflict(test_addr, CS ′)==false then
6 return fail
7 end
8 for each addr in CS ′ do
9 if check_conflict(test_addr, CS ′ − addr)==false then

// if conflict disappears, we know addr contributes to
// the conflict, and it should be in the EV

10 insert addr to EV
11 else
12 CS ′ = CS ′ − addr
13 end
14 end
15 for each addr in CS do
16 if check_conflict(test_addr, EV )==true then
17 insert addr to EV
18 end
19 end
20 return EV
21 end

The complete EV construction algorithm that we used for non-inclusive caches is a slightly
modified version of the algorithm proposed by Liu et al. [6], as shown in Algorithm 4.1. The
find_EV(Collection CS) function takes a collection of addresses, which we call a Candidate
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Set (CS) as input, and outputs an eviction set (EV ) for one slice as output. For the algorithm
to work, it is required that all the addresses in CS have the same LLC set index bits, and
CS contains more than W slice addresses for each slice. Such CS can be easily obtained by
using a large number of addresses. To find EVs for all the slices within CS, we need to run
the function the same number of times as the number of slices.
The function initializes EV as an empty set and selects a random address test_addr in CS

(line 2-3). It then tries to construct an EV containing all the addresses which are mapped
to the same slice and set as test_addr from CS. First, it creates a new set CS ′ by removing
test_addr from CS (line 4), and then performs a sanity check to make sure CS ′ contains
enough addresses to evict test_addr out of LLC using check_conflict (line 5-7).
The loop (line 8-14) performs the bulk of the work, checking whether an address is mapped

to the same slice as test_addr. Since CS ′ conflicts with test_addr, if removing an address
addr causes the conflict disappear, we know that addr contributes to the conflict, and addr
should be added to EV (line 9-10). Such addresses are kept in CS ′. Addresses which are not
strictly necessary to cause conflicts with test_addr are removed from CS ′ (line 12), and CS ′

should still conflict with test_addr after the remove operations. After the loop, we obtain
a minimal EV with exactly Wslice number of addresses.
It is possible that there are more than Wslice addresses from the same slice as test_addr

which have been conservatively removed in the loop. We use an extra loop (line 15-19) to
find these addresses, by iteratively checking each address in the original CS to determine
whether it conflicts with the obtained EV .

4.2.2 The Role of check_conflict in EV Construction Algorithm

The EV construction algorithm extensively uses a function 2 that we call

check_conflict(Address x, Collection U) (4.1)

This function checks if the addresses in Collection U conflict with x in the LLC. The
function should return true if U contains Wslice or more addresses, which are mapped to the
same slice and set as x. The function should return false otherwise. The EV construction
algorithm works only if this function has very low false positive and false negative rates.
To see why these requirements are important, consider how check_conflict is used in

the EV construction algorithm. The high-level idea is to use the function to test whether
removing an address from a set can cause LLC conflicts to disappear. Starting with a

2This function is probe in [6].
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collection U known to conflict with x in an LLC slice, one removes an address y from the
collection U and obtains a new collection U ′ = U−y. If the conflict with x disappears when
checking against U ′, then we know that y must contribute to the conflict. In such a case,
y is considered as an eviction address for x. Clearly, the operation needs low false positive
and false negative rates to precisely observe the disappearance of conflicts.

4.2.3 New check_conflict Function

We discuss why the check_conflict function designed by Liu et al. [6] has a high false
negative rate when applied naïvely to non-inclusive caches. We then show how the function
can be modified to work in non-inclusive caches. In the following discussion, we assume that
all the addresses in U have the same LLC set index bits as x.

Algorithm 4.2: Baseline check_conflict for inclusive caches.
1 Function check_conflict (x, U):
2 access x
3 for each addr in U do
4 access addr
5 end
6 t = measure time of accessing x
7 return t ≥ LLC_miss_threshold
8 end

Baseline check_conflict [6] In Algorithm 4.2, the base function first accesses the target
address x, ensuring that the line is cached. It then accesses all the addresses in U . If a later
access to line x takes a short time, it means that the line is still cached. Otherwise, it means
that the line has been evicted out of the cache due to cache conflicts caused by U . Thus,
the access latency can be used to determine whether U contains enough addresses to evict
x.
When applied to non-inclusive caches, this function has a high false negative rate. Specif-

ically, when U contains enough addresses that, if they all were in the LLC, they would evict
x, the function is supposed to return true. However, it may return false. To see how this
false negative happens, consider a minimal U , which has exactly Wslice addresses mapped to
the same LLC slice as x. On non-inclusive caches, when accessing U , some of these Wslice

lines may remain in L2 and never be evicted from the L2 into the LLC. Hence, these ad-
dresses do not have a chance to conflict with x in the LLC, and x is not evicted, resulting
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in a false negative. Moreover, since the replacement algorithm of L2 is neither LRU nor
pseudo-LRU, simply accessing U multiple times does not guarantee a small false negative
rate, as we validate in Section 4.5.1.

Naïve New check_conflict To reduce the false negative rate, we need to flush all the
lines in U from the L2 to the LLC. It would be convenient if we had a special instruction
to do so, but such an instruction does not exist in x86. Hence, we leverage L2 conflicts to
achieve the flush effect.
We create an extra collection of addresses, called L2_occupy_set, which contains W L2

addresses mapped to the same L2 set as U . When accessed, L2_occupy_set forces all
lines in U to be evicted to the LLC. Our modified check_conflict function is shown in
Algorithm 4.3. After accessing x and all the addresses in U as in the base function (line
2-5), the addresses in L2_occupy_set are accessed (line 6-8). In this way, every line in U
gets evicted to the LLC slice where x is, and we can significantly reduce the false negative
rate.

Algorithm 4.3: New check_conflict for non-inclusive caches.
1 Function check_conflict (x, U):
2 access x
3 for each addr in U do
4 access addr
5 end
6 for each addr in L2_occupy_set do // this evicts U from L2 to LLC
7 access addr
8 end
9 t = measure time of accessing x

10 return t ≥ LLC_miss_threshold
11 end

However, this naïve approach has a high false positive rate. A false positive can occur
when U does not contain enough addresses to evict x from the LLC slice, but with the help
of some addresses in L2_occupy_set that end up getting evicted to the LLC, they evict x
from the LLC. In this case, the function is supposed to return false, but it returns true.

Reliable New check_conflict In order to reduce the false positive rate in the naïve
new check_conflict function, we need to make sure accesses to L2_occupy_set do not
interfere with the conflicts between U and x in the LLC. We can achieve this by leveraging
the one-to-many set mapping relationship between L2s and LLCs.
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For a reliable design, we select L2_occupy_set such that its addresses are mapped to the
same L2 set as addresses in U , but to a different LLC set than used by addresses in U (and
x). As mentioned before, upper level caches like the L2 contain fewer cache sets than lower
level caches like the LLC. For example, in Skylake-X, the L2 has 1024 sets, while an LLC
slice has 2048 sets. Correspondingly, the L2 uses 10 bits (bits 6-15) from the physical address
as the set index, while the LLC slice uses 11 bits (bits 6-16). Therefore, L2_occupy_set
can be constructed by simply flipping bit 16 of WL2 addresses in U . Such addresses can be
used to evict U from the L2 but do not conflict with U in the LLC.
In summary, we design a reliable check_conflict function with both low false positive

rate and low false negative rate. This function can be used in the EV construction algorithm
of Liu et al. [6] to construct an EV for non-inclusive caches. We evaluate the effectiveness
of the function in Section 4.5.1. For independent interest, we use our EV creation routine
to partially reverse engineer the Skylake-X slice hash function in Section 4.5.4.

4.3 REVERSE ENGINEERING THE DIRECTORY STRUCTURE

We leverage our EV creation function to verify the existence of the directory structure in
an 8-core Intel Core i7-7820X processor, which uses the Intel Skylake-X series microarchi-
tecture. We also provide detailed information about the directory’s associativity, inclusivity,
replacement policies (for both private and shared data), and interactions with the non-
inclusive caches. These insights will be used for the attack in Section 4.4. Skylake-X is a
server processor for cloud computing and datacenters. A comparison of the cache parameters
in this processor with previous Skylake series processors is listed in Table 4.1.

Skylake-S Skylake-X/Skylake-SP
L1-I 32KB, 8-way 32KB, 8-way
L1-D 32KB, 8-way 32KB, 8-way
L2 256KB/core 1MB/core

16-way, inclusive 16-way, inclusive
LLC 2MB/core 1.375MB/core

16-way, inclusive 11-way, non-inclusive

Table 4.1: Cache structures in Skylake processors.

Relative to the older Skylake-S processor, the Skylake-X/SP LLC is non-inclusive and,
correspondingly, Skylake-X/SP can support larger L2 caches relative to the LLC. The L2 in
Skylake-X/SP grows to 1 MB per core, which is 4 times larger than before, while the LLC
size shrinks from 2 MB per core to 1.375 MB per core. The associativity in the LLC slice is

54



also reduced from 16-way to 11-way.

4.3.1 Timing Characteristics of Cache Access Latencies

We first conduct a detailed analysis of the timing characteristics of the cache access la-
tencies on Skylake-X. This information can be used to infer the location of a specified cache
line, and is useful in reverse engineering the directory structure.
For each cache location, we measure the access latency by using the rdtsc instruction

to count the cycles for one access. We use the lfence instruction to make sure we get the
timestamp counter after the memory access is complete as suggested in [113]. Thus, all the
latencies presented include delays introduced by the execution of lfence.

0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450
Access Latency (Cycles)

0%

20%

40%

60%

80%

100% L1 access
local L2 access
L3 access
remote L2 access
DRAM access

Figure 4.3: Latency of a cache line access when the line is in different locations in the Intel
Skylake-X cache hierarchy.

Figure 4.3 shows the distribution of latencies to access lines in different cache layers. For
each cache layer, we perform 1,000 accesses. The latency is for accessing a single cache line.
From the figure, we see that L1 and local L2 access latencies are below 50 cycles. An LLC
access takes around 100 cycles, and a DRAM access around 350 cycles.
A remote L2 access occurs when a thread accesses a line that is currently in another core’s

L2. From the figure, a remote L2 access takes around 200 cycles, which is shorter than the
DRAM latency. We leverage the difference between the remote L2 latency and the DRAM
latency in the “Evict+Reload” attack to infer the victim’s accesses.

4.3.2 Existence of the Sliced Directory

Our first experiment is designed to verify the existence of a directory and its structure. In
each round of the experiment, a single thread conducts the following three steps in order:

1. Access target cache line x.
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2. Access a set ofN eviction addresses. In a Reference setup, these are cache line addresses
that have the same LLC set index bits as x, and can be mapped to different LLC slices.
In a SameEV setup, these are cache line addresses that have the same LLC set index
bits as x, and are mapped to the same LLC slice as x.

3. Access the target cache line x again while measuring the access latency.

Generally, step 2 is repeated multiple times (100 times) to avoid the noise due to cache
replacement policy in both Reference and SameEV setups. The medium access latency over
1,000 measurements for step 3 is shown in Figure 4.4, as a function of the number of eviction
addresses accessed. We validated that the experiment results are consistent for x mapped
to different slices and sets.
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Figure 4.4: Target line access latency as a function of the number of eviction addresses, in
experiments to verify the existence of the directory.

According to the timing characteristics in Figure 4.3, we know that latencies around 40, 100
and 300 cycles indicate that the target line is in local L2, LLC and DRAM, respectively. In
the Reference configuration, if 16 or more lines are accessed in step 2, the target line is evicted
from L2 to LLC. These evictions are caused by L2 conflicts because the L2 associativity
(WL2) is 16. Later, we start to observe that the target line is evicted to DRAM when more
than 75 addresses are accessed in step 2. This number is less than 104 (W L2+Nslice×W slice)
because the hash function makes the addresses used in the experiment distribute unevenly
across the different slices.
In the SameEV setup, we observe L2 misses when 12 cache lines are accessed in step 2,

before reaching the L2 associativity. Moreover, the target line is evicted out of the LLC
when 21 lines are accessed, even though the L2 cache and one LLC slice should be able to

56



hold up to 27 lines (W L2+W LLC). The difference between 12 and 16 (L2 case), and between
21 and 27 (LLC case) indicates that there exists some bottleneck, other than the L2 and
LLC slice associativity. This indicates the presence of some set-associative on-chip structure,
where conflicts can cause L2 and LLC evictions. The structure’s associativity seen for L2
lines is 12, and the associativity seen for L2 and LLC lines is 21.
In addition, we know that the structure is sliced and looked-up using the LLC slice hash

function. Notice that addresses conflict in this structure only if they are from the same LLC
slice, as in the SameEV configuration. Addresses from different LLC slices do not cause
conflicts in this structure, as seen in the Reference configuration.
Finally, we can also reverse engineer the number of sets in each slice of the structure by

testing which bits are used to determine the set index. We analyzed the EVs that we derived
for this structure, and found that the addresses in a given EV always have the same value in
bits 6-16. The addresses that belong to the same EV are mapped to the same set and slice,
and should share the same set index bits and slice id. Since none of the bits 6-16 are used
for slice hash function (see Section 4.5.4), we know that these bits are used as set index bits.
Hence, the structure has 2048 sets, the same number of sets as an LLC slice.
To summarize, we have following findings in the Skylake-X non-inclusive cache hierarchy.

a) There exists a set-associative structure that operates alongside the non-inclusive caches.
Contention on this structure can interfere with cache line states in both the L2 and
LLC.

b) The structure is sliced and is looked up using the LLC slice hash function. Each slice
has the same number of sets as an LLC slice.

c) The associativity of the structure for L2 lines is 12; the associativity of the structure
for L2 and LLC lines is 21.

4.3.3 Inclusivity and Associativity for Private Cache Lines

We use the term Private cache line to refer to a line that has been accessed by a single core;
we use the term Shared cache line to refer to a line that has been accessed by multiple cores.
We observed that the non-inclusive LLC cache in Skylake-X behaves differently towards
private and shared cache lines.
We conduct a two-thread experiment to reverse engineer the inclusivity of the set-associative

structure that we found and the cache for private lines. The two threads are pinned to dif-
ferent cores.

1. Thread A accesses target line x.

57



2. Thread B accesses N eviction addresses. The addresses are selected for the Reference
and SameEV setups as in the previous experiment.

3. Thread A accesses target line x again and measures the access latency.

The access latencies in step 3 are shown in Figure 4.5, as a function of the number of eviction
addresses.
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Figure 4.5: Target line access latency as a function of the number of eviction addresses in
experiments to analyze the inclusive property for private lines.

In the Reference setup, the target line in thread A’s private L2 is never evicted. Due to
the non-inclusive property of the LLC, thread B is unable to interfere in thread A’s private
cache state, and hence loses any visibility into thread A’s private cache accesses. However, in
the SameEV setup, the target line is evicted from the L2 to LLC when 12 lines are accessed
by thread B, and it is further evicted to DRAM when thread B accesses 21 lines.
This experiment shows that the structure is shared by all the cores, and that conflicts

on this structure can interfere with L2 and LLC cache states. In particular, the SameEV
configuration shows that we can create inclusion victims across cores, since lines in the L2 can
be evicted due to the contention on the structure. We can safely conclude that the structure
is inclusive to all the lines in the cache hierarchy, including L2 and LLC. This characteristic
can be leveraged by an attacker to gain visibility into a victim’s private cache and build
Prime+Probe attacks. Moreover, the experiment also confirms the same associativity across
cores as the last experiment.
We have additional findings as follows.

d) The structure is shared by all cores.
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e) The structure is inclusive, and contention on the structure can cause inclusion victims
across cores.

4.3.4 Inclusivity and Associativity for Shared Cache Lines

To reverse engineer the inclusivity and associativity of the structure for shared cache lines,
we use 2 or 3 threads in different modes.

1. Thread A and B both access the target cache line x to ensure the line has been marked
as shared by the processor.

2. In 1evictor mode, thread B accesses N cache line eviction addresses; in the 2evictors
mode, thread B and C access N cache line eviction addresses to put those lines into the
Shared state. In both modes, different eviction cache lines are selected for Reference
and SameEV setups as in our previous experiments.

3. Thread A accesses the target line x again and measures the access latency.

From this discussion, in the 1evictor mode, only x is in the shared state; in the 2evictors
mode, both x and the N eviction lines are in the shared state. Figure 4.6 shows the access
latencies for step 3.
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Figure 4.6: Target line access latency as a function of the number of eviction addresses in
experiments to analyze the inclusive property for shared lines.

In the 1evictor_sameEV setup, the shared target line is never evicted out of thread A’s
private L2. However, we showed in Figure 4.5 that this pattern does cause remote L2
evictions of private lines. Comparing the two cases, we can infer that the cache coherence
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state–namely whether a line is shared or not–plays a role in the cache line replacement policy.
The replacement policy prefers not to evict shared cache lines.
In the 2evictors_sameEV setup, threads B and C are able to evict the target line out of the

LLC by accessing 11 shared lines, while in the 2evictors_ref setup, we begin to observe stable
LLC misses when around 85 lines are accessed. The characteristics in 2evictors_sameEV
indicates the associativity of the inclusive structure for shared cache lines is 11. Moreover,
this experiment indicates how an attacker can use shared eviction lines to evict a shared
target line out of the cache hierarchy, which we will leverage to build stable and efficient
Evict+Reload attacks.
To summarize, this section presents following findings.

f) The cache replacement policy takes into account the coherence state and prefers not
to evict cache lines which have been accessed by multiple cores.

g) The associativity of the inclusive structure for shared cache lines is 11.

4.3.5 Putting It All Together: the Directory Structure

We infer that the inclusive structure is a directory. Indeed, Intel has used a directory-based
coherence protocol since Nehalem [103]. Supporting a directory-based protocol requires
structures that store presence information for all the lines in the cache hierarchy. Thus
the directory, if it exists, must be inclusive, like the structure we found. In the rest of the
chapter, we will use the term directory to refer to the inclusive structure we found.

Overall Structure Figure 4.7 shows a possible structure of the directory in one LLC slice.
From Section 4.3.2, we found that the directory is sliced, is looked-up using the LLC slice
hash function, and has the same number of sets as the LLC. An LLC slice can co-locate with
its directory, enabling concurrent LLC slice and directory look-up.
From Section 4.3.4, each directory slice has 21 ways in total (denoted W dir = 21) for all

the lines in the cache, including the L2 and LLC. From Section 4.3.3, there are maximally
12 ways can be used for lines present in the L2 but not in the LLC. We call the directory for
these lines the Extended Directory (ED). We denote the ED associativity asWED = 12. From
the public documentation in Table 4.1, we know that the LLC slice and its directory (which
we call the Traditional Directory is 11-way set associative. We denote such associativity as
WTD = W slice = 11. One might expect W dir = WED +WTD, but 21 < 12 + 11. From this
mismatch, we infer that 2 ways in each directory slice are dynamically shared between the
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Figure 4.7: Reverse engineered directory structure.

traditional directory and the extended directory. How these ways are shared is determined
by the replacement policy, which prefers to hold lines that are in state shared.

Migration between Directories The migration between the ED and the traditional
directory operates as follows. An ED conflict causes a directory entry to be migrated from
the ED to the traditional directory, and the corresponding cache line to be evicted from
an L2 to the LLC. A conflict in the traditional directory causes a directory entry to be
removed from the whole directory slice, which causes the corresponding cache line to be
evicted out of the entire cache hierarchy. For private lines, 21 addresses are needed to cause
a traditional directory conflict. From Section 4.3.3, the private lines will take up the ED
and traditional directory, after which we see conflicts. For shared lines, only 11 addresses
are needed to cause conflicts. We found that shared lines, after being accessed a sufficient
number of times, allocate a data entry in the LLC and migrate their directory entry from
the ED to the traditional directory. In this case, the line lives in multiple L2s and in the
LLC at the same time.3 This is likely a performance optimization as LLC hits are faster
than remote L2 hits (Figure 4.3). Thus, heavily shared lines should be accessible from the
LLC.
This directory structure matches our reverse engineered results. Even though the actual
3This is consistent with the cache being non-inclusive. Non-inclusive means that the cache may be

inclusive for certain lines in certain circumstances.
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implementation may use a slightly different design, our interpretation of the structure is
helpful in understanding the directory and cache interactions, and in designing the attacks.

4.3.6 The Root Cause of the Vulnerability

The directory in non-inclusive caches is inclusive, since it needs to keep information for
all the cache lines that are present in the cache hierarchy. This inclusivity can be leveraged
to build cache-based attacks. An attacker can create conflicts in the directory to force cache
line evictions from a victim’s private cache, and create inclusion victims.
Considering the usage of directories, the directory capacity (W dir × Sdir) should be large

enough to hold information for all the cache lines. In this case, how can it be possible to
cause a directory conflict before causing cache conflicts? This section answers this question
by analyzing the root cause of the vulnerability that we exploit.
The root cause is that the directory associativity is smaller than the sum of the associa-

tivities of the caches that the directory is supposed to support. More specifically, a directory
conflict can occur before a cache conflict if any of the following conditions is true, where ED
indicates the directory entries used by L2 cache lines.

WED < W L2 ×NL2

or W dir < W L2 ×NL2 +W slice

(4.2)

where NL2 is the number of L2s in the system (usually equal to the number of cores).
We believe that, for performance reasons, these conditions should be common. First, as the

number of cores on chip increases, architects want to avoid centralized directory designs and,
therefore, create directory slices. At the same time, architects try to limit the associativity
of a directory slice to minimize look-up latency, energy consumption, and area. As a result,
it is unlikely that each directory slice will be as associative as the sum of the associativities of
all the L2 caches. For example, an 8-core Intel Skylake-X processor with 16-way L2s would
require each directory slice to have a 128-way ED to avoid ED conflicts before L2 conflicts.
This is expensive.
We found that the above conditions do not hold in some AMD processors. Consequently,

our attack does not work on these AMD processors. We also found that memory and
coherence operations on some AMD machines are slower than on Intel machines. This may
suggest that these AMD machines do not use sliced directories. Section 4.5.7 describes the
experiments we performed.
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4.4 ATTACK STRATEGIES

Leveraging the EV construction algorithm in Section 4.2 and our reverse engineering of
the directory structure in Section 4.3, we can now build effective side channel attacks in
non-inclusive cache hierarchies. In this section, we first present our Prime+Probe attack
targeting the ED. We then show a multi-threaded Evict+Reload attack to achieve fine-
grained monitoring granularity. Finally, for completeness, we provide a brief discussion on
Flush+Reload attacks.

4.4.1 Prime+Probe

To the best of our knowledge, this is the first Prime+Probe attack on non-inclusive caches.
We first present our customized cross-core attack on Skylake-X, and then discuss how to
generalize the attack to other vulnerable platforms.
On Intel Skylake-X, an attacker can leverage the inclusivity of the ED to gain visibility

into a victim’s private cache state. Before the attack, the attacker uses the EV construction
algorithm of Section 4.2 to construct an EV that is mapped to the same LLC slice and set
as the target address. Since the ED is both sliced and looked-up using the LLC slice hash
function, it follows that the EV is mapped to the same ED set and slice as the target address.
Thus, the EV can be used in the prime and probe steps.
Our cross-core Prime+Probe attack follows the same steps as a general Prime+Probe

attack. In the prime step, the attacker accesses WED EV lines to occupy all the ways within
the ED set, and evict the target line from the victim’s L2 to the LLC. During the wait
interval, if the victim accesses the target address, it causes an ED conflict and one of the
EV addresses will be evicted from the attacker’s private L2 cache to the LLC. In the probe
step, when the attacker accesses the EV addresses again, it will observe the LLC access.
Alternatively, if the victim does not access the target line in the wait interval, the attacker
will observe only L2 hits in the probe step. After the probe step, the ED set is fully occupied
by EV addresses, and can be used as the prime step for the next attack iteration.

Attack Granularity The attack granularity is determined by the time per attack itera-
tion, which is composed of the wait time and the probe time. The more efficient the probe
operation is, the finer granularity an attack can achieve.
In our ED-based Prime+Probe attack, the probe time is very short. The attacker only

needs to distinguish between local L2 latency and LLC latency, which is shorter than the
probe time in inclusive cache attacks, where the attacker needs to distinguish between LLC
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latency and DRAM latency.

Generalizing the Attack The attack above is customized for Intel Skylake-X. We now
discuss how to generalize the attack to other vulnerable platforms which satisfy the condi-
tions discussed in Section 4.3.6.
First, a characteristic of the Skylake-X is that the ED associativity is not higher than

the L2 associativity (WED ≤ W L2), which allows us to trigger ED conflicts using a single
attacker thread. If this condition is not satisfied, we can still mount a Prime+Probe attack
with multiple attacker threads, running on different cores, as long asWED ≤ W L2×(NL2−1).
For example, consider the case whereWED = W L2×(NL2−1). The attacker can use (NL2−1)
threads running on all the cores except for the victim’s core, where each thread accesses WL2

addresses to occupy the ED set.
Second, the directory in Skylake-X uses the same hash function as the LLC. Therefore,

we can directly use the EVs constructed for LLC slices to create directory conflicts. If the
sliced ED uses a different hash function, the attack should still work but will need a new EV
construction algorithm for the directory.

4.4.2 Evict+Reload

On non-inclusive caches, an attacker could leverage the directory’s inclusivity to build
Evict+Reload attacks using a similar approach as in Prime+Probe. However, the evict
operation in Evict+Reload is more challenging than the prime operation, since the target
line is shared by the attacker and the victim. As we showed in Section 4.3.4, the cache
replacement policy takes into account the coherency state—namely that the target line is
shared—and prefers not to evict the directory entries for shared lines.
We propose a novel multi-threaded Evict+Reload attack that can achieve fine-grained

monitoring granularity by taking advantage of the characteristics of the replacement pol-
icy. The attack involves two tricks, namely, to upgrade the eviction addresses to a higher
replacement priority, and to downgrade the target address to a lower replacement priority.
The attacker consists of three threads: a main thread which executes the evict and reload

operations, and two helper threads to assist evicting the shared target line. The two helper
threads share all the eviction addresses, and thus are able to switch the eviction addresses
to the shared coherence state, similar to the 2evictors_sameEV setup in Section 4.3.4. This
brings eviction addresses to the same replacement priority as the target address in the
directory. In addition, the main attacker thread evicts the target address from its private
cache to the LLC by creating L2 conflicts, which makes the target address non-shared.
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Throughout the entire attack, the helper threads run in the background, continuously
accessing the addresses in the EV in order to keep these addresses in their caches. In the
eviction step, the main attacker thread introduces conflicts in its L2 cache to evict the target
line from its L2 to the LLC. The helper threads then evict the target line (which they do
not share) from the LLC to DRAM, by accessing the shared EV lines. If the victim accesses
the target line during the wait interval, it will bring the line into its L2. Then, in the reload
step, the main attacker will see a remote L2 access latency. Otherwise, the attacker will
observe a DRAM access latency.

4.4.3 Flush+Reload

A Flush+Reload attack on non-inclusive caches follows the same procedure as the one on
inclusive caches. This process has been referred to as Invalidate+Transfer [28] on AMD’s
non-inclusive caches. We evaluate this attack on Intel’s platform for completeness, though
it is not necessary to demonstrate our new attack channel on directories.
The attacker uses the clflush instruction to evict the target address from all levels of

the cache hierarchy to DRAM. If, during the wait interval, the victim accesses the target
address, the line will be brought into the victim’s local L2. In the measurement phase,
the attacker reloads the target address and measures the access latency. If the victim had
accessed the line, the attacker will see a remote L2 access latency; otherwise, it will observe
a DRAM access latency.

4.5 EVALUATION

4.5.1 Effectiveness of the check_conflict Function

We evaluate the effectiveness of the check_conflict function by measuring the false
positive rates and the false negative rates. We consider three designs, the baseline function
proposed by Liu et al. (no_flushL2), and the two modified functions discussed in Section 4.2,
i.e. flushL2_naive and flushL2_reliable.
We obtained 8 EVs and confirmed their correctness by checking their conflicting behaviors

as in Section 4.3. All the addresses in the 8 EVs have the same LLC set index bits, and
each EV is mapped to a different LLC slice. To measure the false positive rate, we select
an address x and set the argument U of check_conflict to be a collection of addresses
with 10 addresses (< W slice) from the same EV as x, and 5 addresses from each of the
other EVs. The function should return false. We then count the number of times when the
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function mistakenly returns true. To measure the false negative rate, an extra address from
the same EV as x is added to the collection U , so that U contains 11 eviction addresses
(= W slice). The function should return true. Then, we count the number of times when the
function mistakenly returns false. In each of the three check_conflict implementations,
the eviction operation (line 3-5 of Algorithm 4.2, line 3-8 in Algorithm 4.3) is repeated
multiple times. Figure 4.8 shows how the false positive rate and the false negative rate
change with the number of eviction operations performed.
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Figure 4.8: Comparing effectiveness of different check_conflict functions.

In Figure 4.8(a), both no_flushL2 and flushL2_reliable have no false positives. flushL2_naive
has a much higher false positive rate due to the extra conflicts introduced by the L2_occupy_set.
In Figure 4.8(b), both flushL2_naive and flushL2_reliable can achieve very low false nega-
tive rate when eviction operations are repeated around 10 times. The false negative rate of
the no_flushL2 approach stays high even though the evictions are performed 20 times. In
conclusion, our reliable flushL2 approach in check_conflict function is effective and can
achieve both low false negative rate and false positive rate.

4.5.2 Extended Directory Timing Characteristics

As we leverage ED conflicts to construct our Prime+Probe attack, it is very important to
understand their timing impact on cache access latencies, as shown in Figure 4.9. The figure
shows the access latency of a number of addresses from the same EV. In the “no_EDconf”
case, we simply measure the latency of EV accesses. In the “1_EDconf” case, between two
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measurements, we use a different thread on another core to issue one access to the same ED
set to cause one ED conflict. Thus, the latency in “no_EDconf” is the expected probe latency
with no victim accesses during wait intervals, while the “1_EDconf” latency corresponds to
the expected probe latency when victim accesses the target line.
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Figure 4.9: Prime and probe latency.

A high-resolution low-noise Prime+Probe attack requires the probe operation to be ef-
ficient and clearly distinguishable. From Figure 4.9, WED (12) is the optimal number of
probe addresses we should use in Prime+Probe. First, the impact of ED conflicts is large
and clearly observable. The timing difference between no ED conflicts and a single ED con-
flict is around 80 cycles. Second, accessing 12 addresses takes very short time, around 230

cycles with a ED conflict. With such efficient prime/probe operation, we can do fine-grained
monitoring. It is also feasible to use 13-15 addresses, but it is not optimal due to the longer
access latency and larger variance. Note that the variance in Figure 4.9 is measured in a
clean environment, there is more noise when running the attacker code with the victim code.

4.5.3 Directory Replacement Policy Analysis

As discussed before, the directory uses a complex replacement policy. We analyze how
the replacement policy affects the effectiveness of eviction operations on a private and a
shared cache line in Figure 4.10. This is an important factor an attacker needs to consider
in designing efficient cache attacks.
Figure 4.10(a) shows the eviction rate of evicting a private cache line from a remote L2 to

the LLC by creating ED conflicts. To repeat the eviction operation, we simply re-access each
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Figure 4.10: Analysis of directory replacement policy.

address in the EV in the same order. When using 12 EV addresses, the eviction rate reaches
100% after accessing the EV for 14 times, while the eviction rate increases much faster when
we increase the size of the EV. For example, accessing 13 EV addresses for 5 times can
ensure eviction. Figure 4.10(b) shows the eviction rate of evicting a shared cache line from
a remote L2 to DRAM by creating directory conflicts with 2 eviction threads. It turns out
when using 14 EV addresses, it requires repeating the eviction operation 9 times to ensure
complete eviction. This indicates the necessity to downgrade the target line replacement
priority to achieve fine-grained attack granularity, as we discussed in Section 4.4.2.
In summary, due to the complexity of the directory replacement policy, we find it difficult

to come up with an efficient eviction strategy. A possible approach would be to try all the
combinations of EV sizes and access orders as in [37]. Nevertheless, in this chapter, we show
that our attacks can tolerate this imperfect eviction rate.

4.5.4 Skylake-X Slice Hash Function

Based on our EV construction results, we are able to reverse engineer part of the slice hash
function in the Intel Skylake-X processor. We found that the slice hash function is not a
simple XOR operation of selected physical address bits. This design is significantly different
from the one in previous Intel processors such as SandyBridge and IvyBridge. Considering
that all of the previous works on reverse-engineering slice hash functions [114, 115] rely on
the use of a simple XOR hash function, our results identify the need for more advanced
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reverse-engineering approaches.
We briefly discuss how to get the partial hash function. We select 128 addresses with the

same LLC set index bits to form a Candidate Set (CS). Bits 6-16 of these addresses are set
to the same value, while bits 17-23 are varied. The goal is to reverse engineer how bits 17-23
affect the output of the slice hash function.
First, we run find_EV on the 128-address CS and obtain 8 EVs. Each EV is mapped to

one cache slice. Second, we try to figure out the slice id for each EV. Since the Skylake-X
processor uses a mesh network-on-chip to connect L2s and LLC slices [27], a local LLC slice
access takes shorter time than a remote slice access. We check the access latency of each
EV from each core. We then get the id of the core from which the access latency is the
lowest, and assign the core id to the EV. Finally, we use the Quine-McCluskey solver [116]
to get the simplified boolean functions from the input bits to the slice id as below. In the
following, oi is the ith bit in the slice id, and bi is the ith bit in the physical address.

o2 =b
′
23b
′
19 + b′22b

′
19 + b23b22b19

o1 =(b23 + b22)(b20 ⊕ b19 ⊕ b18 ⊕ b17) + b′23b
′
22(b20 ⊕ b19 ⊕ b18 ⊕ b17)′

o0 =b
′
22(b19 ⊕ b18) + b22(b23 ⊕ b21 ⊕ b19 ⊕ b18)′

where {b63...b24} = 0x810

(4.3)

These functions can not be further reduced to a simple XOR function. According to our
observations, some of the higher bits (bits 24-63) also affect the hash function, which we
have not fully reverse engineered.

4.5.5 Covert Channel on Extended Directories

We demonstrate a covert channel between two different processors that utilizes the ex-
tended directory between two different processes. One process serves as the sender and the
other as the receiver. The sender and receiver run on separate cores, and each utilizes 7
addresses that are mapped to the same LLC slice. Together there are 14 addresses, which
are enough to cause measurable ED conflicts.
Since we have not reverse engineered the slice hash function, the sender and the receiver

cannot directly negotiate which slice to use. Before communication, the receiver scans all
slices to find the one the sender is using. The sender transmits a bit “0” by idling for 5000
cycles, and keeps accessing the 7 addresses for 5000 cycles to transmit a bit “1”. The receiver
decodes the two states by taking latency samples every 1000 cycles. On our 3.6GHz machine,
it takes 5000 cycles to transmit one bit, thus the bandwidth is 0.2Mbit/s. With a better
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Figure 4.11: The upper plot shows receiver’s access latencies on a slice not being used for
the covert channel, while the lower one shows the one used in the covert channel. Sender
transmits sequence “101010...”.

protocol than we are using, the bandwidth can be further improved.
Figure 4.11 shows the results of our reliable covert communication channel. The upper

plot shows the latencies that the receiver observes when accessing the wrong slice. All the
latencies are low, as they correspond to L1 cache hits. In the lower plot, it is clear to see
the sender’s message of “101010". The receiver observes a ∼ 400 cycle latency due to ED
conflicts when decoding a “1” bit, which is easily differentiated from the ∼ 80 cycle L1 hits
for a “0” bit.

4.5.6 Side Channel Attacks on Directories

We evaluate the effectiveness of our side channel attacks on the square-and-multiple ex-
ponentiation vulnerability in GnuPG 1.4.13. The implementation is similar to the one
presented in Algorithm 2.1 in Section 2.2.1. As discussed before, a victim’s accesses on
function sqr and mul can leak the value of exponent. In GnuPG, these two functions are
implemented recursively, thus the target address identifying each function will be accessed
multiple times throughout the execution of either operation. We show how this algorithm re-
mains vulnerable on non-inclusive caches by attacking it with Prime+Probe, Evict+Reload
and Flush+Reload attacks.
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Flush+Reload We evaluate a cross-core Flush+Reload attack on this new platform for
completeness. The victim and the attacker run on separate cores. The flush and reload
operations are used on the addresses located at the entry of the sqr and mul functions. We
use a wait time of 2000 cycles between the flush and reload.
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Figure 4.12: Access latencies measured in the reload operation in Flush+Reload. A sequence
of “1001110101” can be deduced as part of the exponent.

Figure 4.12 shows the time measurement of the reload operation for 100 samples. A low
latency reload operation, less than 250 cycles, indicates the victim has accessed the target
address during the wait interval. A high latency, around 350 cycles, means the victim has
not accessed the target address. According to the algorithm, an access on sqr followed by an
access on mul indicates a bit “1”, and two consecutive accesses on sqr without mul accesses
in the between indicate a bit “0”. From Figure 4.12, we can see that each sqr operation
completes after 3 samples, or about 6000 cycles. Leveraging this information, the attacker
is able to deduce part of the exponent as “1001110101”.
In Flush+Reload, errors stem from times when the attacker’s flush operation overlaps

with victim accesses. Such occurrences cause lost bits.

Prime+Probe In our Prime+Probe attacks, we use 12 probe addresses from an eviction
set for the target address, and use 500 cycles as the attacker wait interval. 4 We are able
to monitor with such small granularity due to the efficient probe operation on the ED. We
only monitor one target address, i.e. the address located at the entry of mul function, which
is good enough.

4We use 12 EV addresses instead of 13 addresses, because we can get more precise and clean measurements
of accessing 12 addresses, even though we suffer some noise due to relatively low eviction rate.
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Figure 4.13: Access latencies measured in the probe operation in Prime+Probe. A sequence
of “01010111011001” can be deduced as part of the exponent.

Figure 4.13 shows the access latencies measured in the probe operation as results of our
Prime+Probe attack for 400 samples. If there is no victim access of the target address, the
probe operation will see L2 hits for all the probe addresses without ED conflicts, taking
around 160 cycles. Otherwise, if the victim accesses the target address, ED conflicts will
be observed, resulting in long access latency, around 230 cycles. We do not track victim
accesses on the sqr function; this the same approach taken in [6]. Instead, the number
of sqr operations can be deduced from the length of the interval between two consecutive
multiply operations. The attacker can deduce a sequence of “01010111011001” as part of the
exponent from Figure 4.13.
In Prime+Probe attacks, most errors stem from the imperfect eviction rate, which leads

to observing a multiply operation for more samples than it actually executed.

Evict+Reload Our novel Evict+Reload attack utilizes 1 attacker thread and 2 helper
threads. The 2 helper threads access the same EV with 11 (WTD) addresses mapped to
the same LLC slice and set as the target address. The attacker thread accesses 16 (W L2)
addresses mapped to the same L2 set as the target line 6 times. We tested multiple eviction
approaches, and found this method is highly reliable, and also very efficient, only taking
around 1200 cycles. We monitor both the square and multiply operations and use 4000

cycles as the wait interval.
Figure 4.14 shows the access latencies measured in the reload step as the results for the

Evict+Reload attack for 100 samples. The figure can be interpreted in the same way as the
one for Flush+Reload, and the attacker can decode the part of the exponent as sequence
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Figure 4.14: Access latencies measured in the reload operation in Evict+Reload. A sequence
of “0101011110110101” can be deduced as part of the exponent.

“0101011110110101”.
Compared to Flush+Reload, the Evict+Reload attack on non-inclusive caches tends to

suffer more errors. Since the evict operation takes longer than the flush operation, the
probability that the evict step overlaps with the victim’s access is higher.

4.5.7 Attacking AMD Non-Inclusive Caches

We tried to reverse engineer the non-inclusive cache hierarchy in an 8-core AMD FX-8320
processor, which uses the AMD Piledriver microarchitecture. The cache parameters in this
processor are listed in Table 4.2.

AMD Piledriver AMD Zen (4-core CCX)
L1-I 64KB/2cores, 2-way 64KB, 4-way
L1-D 16KB, 4-way 32KB, 8-way
L2 2MB/2cores, 16-way, inclusive 512KB, 8-way, inclusive
LLC 8MB/8cores 2MB/core

64-way, non-inclusive 16-way, non-inclusive

Table 4.2: Cache structures in AMD processors.

We found that the L2 caches in this processor are inclusive and shared by two cores. We
verified that previous inclusive cache attacks work well, if the attacker and the victim are
located on neighboring cores and share the same L2.
To see whether the non-inclusive LLC is vulnerable to cache attacks, we tried the reverse
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engineering experiments in Section 4.3 to detect the existence of directories. We did not
observe extra conflicts besides cache conflicts. It is possible that the processor uses a snoopy-
based cache coherence protocol [117], in which case there is no directory. It is also possible
that the processor uses a centralized and high-associativity directory design, such that the
directory associativity is at least as high as the total cache associativity. In this case, the
directory for L2 lines needs to have ≥ 64 ways. Overall, the conditions in Section 4.3.6 do
not hold.
We also evaluated our attack on an 8-core Ryzen 1700 processor, which uses the latest

AMD Zen microarchitecture. The cache parameters are also listed in Table 4.2. The pro-
cessor consists of 2 Core Complexes (CCX). A CCX is a module containing 4 cores, which
can connect to other CCX modules via Infinity Fabric [118, 119]. We did not observe extra
conflicts other than the cache conflicts on this processor either. Given the small number
of cores on each die and low L2 associativity (8 on AMD CCX compared to 16 on Intel
Skylake-X), we hypothesize that this processor either uses a snoopy-based protocol or a
32-way centralized directory for L2 lines.

Performance Implications for AMD Designs We measured the remote L2 access
latency for the Piledriver processor, and found that it was about as long as a DRAM access.
This time is significantly longer than the corresponding operation in the Intel Skylake-X
(Figure 4.3). This observation backs up our claim that sliced directories are important
structures in high performance processors. For the Ryzen processor, we have a similar
result. Specifically, a cross-CCX access takes a similar amount of time as a DRAM access.
The Skylake-X/Skylake-SP processors can support up to 28 cores. Since each CCX is only
4 cores, constructing a similarly provisioned Ryzen system can mean that most cross-core
accesses turn into cross-CCX accesses.

4.6 CONCLUSION

In this chapter, we identified the directory as a unifying structure across different cache
hierarchies on which to mount a conflict-based side channel attack. Based on this insight,
we presented two attacks on non-inclusive cache hierarchies. The first one is a Prime+Probe
attack. Our attack does not require the victim and adversary to share cores or virtual
memory, and succeeds in state-of-the-art non-inclusive sliced caches such as those of Skylake-
X [27]. The second attack is a novel, high-bandwidth Evict+Reload attack that uses a
multi-threaded adversary to bypass non-inclusive cache replacement policies. We attacked
square-and-multiply RSA on the modern Intel Skylake-X processor, using both of our attacks.
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Moreover, we also conducted an extensive study to reverse engineer the directory structure
of the Intel Skylake-X processor. Finally, we developed a new eviction set construction
methodology to find groups of cache lines that completely fill a given set of a given slice in
a non-inclusive LLC.
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CHAPTER 5: SECDIR

This chapter presents the first design of a scalable secure directory (SecDir). Directories
need to be redesigned for security. However, in an environment with many cores, it is hard
or expensive to block directory interference. To address this problem, we propose SecDir, a
secure directory design, to eliminate inclusion victims by restructuring the directory organi-
zation. SecDir takes part of the storage used by a conventional directory and re-assigns it
to per-core private directory areas used in a victim-cache manner called Victim Directories
(VDs). The partitioned nature of VDs prevents directory interference across cores, defeating
directory side channel attacks. We show that SecDir has a negligible performance overhead
and is area efficient.

The design of directories for cache coherence has been an active area of research for many
years (e.g., [120–125]). Most of the research has focused on making the directories efficient
and scalable to large core counts. As a result, commercial machines have incorporated
directories (e.g., [126,127]).
In Chapter 4, we have shown that directories are vulnerable to conflict-based side channel

attacks. The insight is that every single line in the cache hierarchy has a corresponding
directory entry. Since directories are themselves cache structures organized into sets and
ways, an attacker can access data whose directory entries conflict in a directory set with
entries from the victim. The eviction of victim directory entries automatically triggers the
eviction of victim cache lines from the private caches of the victim — irrespective of whether
the cache hierarchy is inclusive, non-inclusive, or exclusive. As the victim re-accesses its
data, the attacker can indirectly observe the directory state changing, hence succeeding in
their purpose. These observations strongly indicate that directories have a fundamental
security problem. Hence, they need to be redesigned with security concerns in mind.
The key to a secure directory is to block interference between processes. Sadly, this is hard

or expensive to do in an environment with many cores. For example, an apparent solution
is to substantially increase the associativity of the directory structures. Unfortunately, it
is unrealistic to aim for a directory associativity as high as the associativity of the private
L2 cache times the number of cores — which is the total number of different live directory
entries that could be mapped to one directory set. A second approach is to way-partition the
directory. Each application is given some of the directory ways, to which it has uncontested
use. This solution is similar to cache partitioning schemes [10, 62, 64]. Unfortunately, this
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approach is inflexible, low performing, and limited, since servers can have many more cores
than directory ways.
In this chapter, our security goal is to prevent an attacker from creating inclusion victims

in the victim’s private caches through the eviction of the victim’s directory entries. Note that
we target an active attacker, rather than a passive one (Section 2.2.3). An active attacker is
one that interferes with the victim’s cache accesses by using directory conflicts, and exposes
some of the victim’s security-sensitive cache accesses. We consider that evictions of victim
cache lines or victim directory entries from the victim’s private caches or private directories
due to self-conflicts (i.e., conflicts between victim cache lines or victim directory entries) do
not leak information.
Ideally, a secure directory has to have several characteristics. First, it should set aside

some directory area to support many isolated partitions inexpensively and scalably. Second,
each partition should provide high associativity, so that a victim suffers few self-conflicts
under the pathological environment of an attack. Finally, the directory should have little
area overhead and provide fast look-ups.
We use these ideas to design a secure directory for a server multiprocessor. We call it

SecDir. SecDir takes part of the storage used by a conventional directory and re-assigns it
to per-core private directory structures of high effective associativity called Victim Directo-
ries (VDs). The partitioned design of VDs prevents directory interference across cores, thus
defeating directory side channel attacks. The VD of a core is distributed, and holds as many
entries as lines in the private L2 cache of the core. To provide high effective associativity,
a VD is organized as a cuckoo directory. Such a design also obscures victim self-conflict
patterns from the attacker. An insight in SecDir is that conventional directories need sub-
stantial storage to keep sharer information — especially in machines with large core counts
— while a core-private directory structure like a VD does not need such information. Hence,
a VD can boost the number of directory entries for a very modest storage cost.
We model with simulations the directory of an Intel Skylake-X server [27] without and

with SecDir. We run SPEC and PARSEC applications. Our results show that SecDir has
negligible performance overhead. Furthermore, SecDir is area-efficient: it only needs 28.5KB
more directory storage per core than the Skylake-X for an 8-core machine, while it uses less
directory storage than the Skylake-X for 44 cores or more. Finally, a cuckoo VD organization
eliminates substantial victim self-conflicts in a worst-case attack scenario.
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5.1 ATTACK ANALYSIS

Following the discussion in Chapter 4, we review the root cause of directory attacks.
Consider the parameters of the Skylake-X caches and simplified directories that we use in
this chapter. In a given slice, the TD and ED have associativities of WTD = 11 and WED =
12, respectively. Consequently, a given directory slice can hold at most 23 entries mapping
to the same set. On the other hand, the associativity of an LLC slice is WLLC = WTD =
11, and that of an L2 cache is WL2 = 16. Further, the machine can have many cores — i.e.,
from N = 8 to 28.

#sets
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………
N-1

L2

Directory Slice
LLC Slice

Cache line

Directory entryED TD

mapped
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Figure 5.1: Attackers exploiting the limited associativity of a directory slice.

An attacker can use up to N -1 cores to bring enough lines into L2 caches and into one LLC
slice to require more than 23 directory entries to be mapped into a single set of a directory
slice (Figure 5.1). The result is that any directory entry in that set belonging to the victim
process is evicted, automatically evicting the corresponding line from the victim’s L2 cache,
which is an inclusion victim. As the victim process later reloads the data, its directory entry
is automatically reloaded, which allows the attacker to indirectly observe the victim’s action.
For a victim running on a core to be able to keep at least one entry in the directory, a

directory slice would have to have an associativity WTD +WED such that

WTD +WED > WL2 × (N − 1) +WLLC (5.1)

which assumes that the attacker can use all the cores minus one. In a Skylake-X with 8 cores,
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this requires a directory slice with an associativity higher than 123. With more cores, the
required associativity increases rapidly. Since this is an unreasonable associativity, current
directories are easy targets of conflict-based side channel attacks.

5.2 SECDIR DESIGN OVERVIEW

The root cause of the directory vulnerability is the limited associativity of individual
directory slices, given the number of cores in current servers. To defeat directory attacks,
we need a new directory organization with three attributes. First, the directory should set
aside some storage to support inexpensive and scalable per-core isolated directory partitions.
Such support will provide victim isolation, and prevent the attacker from creating inclusion
victims. Second, each partition should have high associativity, so that a victim suffers
minimal self-conflicts under an attack. Finally, the directory should add little area overhead
and provide fast look-ups. In this chapter, we propose a new directory organization with
these three attributes called SecDir.
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Figure 5.2: Slice of a conventional directory (a) and SecDir (b).

Figure 5.2(a) shows a slice of a conventional directory for non-inclusive cache hierarchies,
such as that of Intel’s Skylake-X, and how we change it into SecDir in Figure 5.2(b). The key
idea of SecDir is to take a portion of the ED (e.g., some of its ways) and re-assign the storage
to per-core private directory structures called the Victim Directories (VDs) (Figure 5.2(b)).
We do not modify the TD because that would also require modifying the LLC.
A given core’s VD in the slice shown is only one bank of the core’s total VD. In other

words, a core has a VD bank in every slice, each mapping a different set of addresses.
This distributed VD of a core is sized such that it can hold as many directory entries as
cache lines can be in a private L2 cache. This size will minimize self-conflicts in the VD
in benign applications. Further, to provide high effective associativity, each VD bank uses
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Cuckoo hashing [125, 128]. Such a design also obscures any victim conflict patterns from
the attacker. Finally, since, to a large extent, VD access hits should occur mostly during
attacks, we simplify the hardware and access the VD only after ED and TD.
A slice has as many VDs as cores. Like the ED and TD, the VDs in a slice only contain

directory entries for lines mapped to the local slice. A VD is set associative and, because it
keeps information for a single core, it does not need sharer information bits. Such information
is effectively encoded in the VD ID.
The VD of a core loads an entry when the local ED plus TD have a conflict and need

to evict the directory entry for a line that lives in that core’s L2 cache. The VD evicts an
entry in two cases. The first one is when the entry suffers a conflict; in this case, if the entry
belonged to a dirty line, the line is written back from the core’s L2 to memory. The second
case is when the corresponding data line is evicted from the core’s L2 into the LLC; in this
case, the directory entry is moved from the VD to the TD. Full details of the VD operation
are presented in Section 5.3.
The VD is accessed after the ED/TD declare a miss. Hence, the VD complements the

ED/TD: the ED/TD provide fast directory lookup, while the VD blocks interference of
directory entries used by different cores in an attack. Overall, SecDir has the attributes
discussed above:

Provides Isolation Inexpensively and Scalably In a slice, there are as many VDs as
cores, each owned by a core. Hence, directory entries used by different cores are isolated,
and cannot interfere with each other. A given core has one VD bank in each slice. We size
the banks so that, together, all the banks for a core across slices can accommodate as many
entries as lines fit in an L2 cache. This helps minimize self-conflicts in the distributed VD
of a core running a victim program, as we can assume that the lines referenced by a benign
victim program are largely uniformly distributed across the different slices.
Note that the VD design is scalable with the number of cores in the machine: irrespective

of the number of cores in the machine, the size of the distributed VD for a core is practically
constant. As more cores are added, the size of a VD bank in each slice decreases, but the
number of slices and, therefore, the number of VD banks, increases.

Provides High Associativity A slice of SecDir has a high effective associativity. It has
the associativity of the ED plus TD (available to all processes) plus the associativity of the
private VD bank augmented with cuckoo hashing (Section 5.4). Under benign conditions,
the VD is unlikely to be highly utilized. Under attack conditions, the victim can utilize its
core’s VD banks across all the slices to isolate the directory entries corresponding to its L2
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lines.

Uses Low Area SecDir reassigns some storage from ED to VD. An important insight in
SecDir is that the ED needs substantial storage to keep sharer information, while a core-
private directory structure like VD does not need such information (Figure 5.2(b)). Hence,
SecDir takes ED tags, which include sharer information, and converts them to VD tags,
which do not. The VD is area efficient.
Importantly, the overhead of the sharer information in an ED entry tends to increase with

the number of cores in the machine (e.g., more presence bits). Hence, as the number of cores
increases, we can add more VD entries per core, as the VDs reuse more sharer information
bits.
This fact produces a surprising effect. Suppose that we redesign Skylake-X’s directory

into SecDir’s, using the following guidelines: the number of entries in an ED slice, and the
number of entries in a core’s VD machine-wide is each equal to the number of lines in a
private L2 cache. In this case, SecDir only needs 28.5KB more directory storage per slice
than the Skylake-X directory for an 8-core machine, and it uses less directory storage than
the Skylake-X for 44 cores or more. We present more details in Section 5.6.

Delivers Efficient Directory Lookup Under ordinary, attack-free conditions, most of
the directory hits are satisfied by the TD or ED. When TD and ED miss and a VD bank
is accessed, the VD typically misses. At that point, a main memory access is initiated.
Compared to a main memory access latency, a VD access latency is very small. However,
it is still important for the VD accesses to be efficient. Consequently, as we will see, VDs
have an Empty Bit (EB), which helps to avoid unnecessary VD accesses. The EB saves
substantial energy and some latency (Section 5.4.2).
Note that a given directory entry can be, at the same time, in multiple VD banks in the

slice (i.e., banks of different cores). This is a security requirement, as we will see. Hence, on
a VD access, we sometimes need to search all the banks. Searching multiple banks does not
increase the VD access latency, as the different banks are independent (Section 5.4.1).

5.3 SECDIR DIRECTORY OPERATION

Any line in the cache hierarchy has to have a corresponding directory entry. In this section,
we describe how the SecDir directory operates. First, however, we recall how a traditional
directory operates. For simplicity, the following discussion assumes a MESI cache-coherence
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protocol. SecDir can work with any protocol — e.g., our evaluation in Section 5.7.1 uses a
MOESI protocol.
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Figure 5.3: Operation of a traditional (a) and SecDir (b) directory.

5.3.1 Traditional Directory Operation

Figure 5.3(a) shows the operation of a traditional directory in a non-inclusive cache hi-
erarchy. When a core accesses a line that does not exist in the cache hierarchy, the line is
directly brought from main memory into the core’s private cache. No data is inserted into
the LLC. At the same time, a directory entry for the line is inserted in the ED (¬). As
discussed in Section 4.3.5, a directory entry can migrate from ED to TD due to a conflict in
an ED set, or due to a cache line eviction from an L2; a directory entry can migrate from
TD to ED due to a core writing to a line that has a directory entry in the TD.
When a TD conflict occurs, the conflicting TD entry cannot be moved to the ED (where

it could have possibly come from), as it could cause a conflict deadlock going back and forth.
Instead, the conflicting TD entry is discarded, which automatically causes all copies of the
corresponding cache line to be evicted from the cache hierarchy (). This is the transition
that an attacker uses to create an inclusion victim in the victim’s private cache. Specifically,
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the attacker first forces the eviction of a victim directory entry from ED, and then from TD.

5.3.2 SecDir Operation

Figure 5.3(b) shows the operation of SecDir. As in the traditional directory, when a line
is fetched from main memory to a core’s private cache, its directory information is stored in
the ED (¬). Further, the directory state can migrate between ED and TD. The migration
follows the operations in the traditional directory, except for one limitation in the Skylake
processor, which will be discussed shortly in Section 5.3.3. This limitation is not the root
cause of directory attacks.
The main difference between SecDir and traditional directory occurs on a TD conflict.

Depending on the sharer information in the conflicting directory entry, two different transi-
tions may occur. First, if the directory entry shows that there are no sharers of the cache
line (i.e., the cache line is only in the LLC), then the conflicting TD entry is discarded and,
if the cache line is dirty, the cache line is written back to main memory (). Note that it is
secure to allow attackers to evict victim lines in such a way. The reason is that, as we will
see, for a victim line to be only in LLC, it means that the victim process has evicted the line
from its private L2 due to a self-conflict. We do not consider a victim’s self-conflicts in its
private caches as part of the attack model, since they are not caused by an active attacker.
The second case is when the conflicting TD entry shows that there are one or more caches

with a copy of the cache line. Hence, evicting the cache line from the L2s would create
a vulnerability like in conventional directories (Section 5.3.1). Consequently, in this case,
the state in the conflicting TD entry is migrated to VD (®). Specifically, for each of the
sharers of the line, as specified in the TD entry, SecDir creates an entry in the corresponding
local VD bank. To be secure, every single sharer needs to have a VD entry, because every
sharer needs to retain the line in its L2. Fortunately, this operation is local to the directory,
does not generate cache coherence transactions, and has no impact on L2 cache states. In
particular, the victim process is unaffected: it continues to access the cache line out of its
L1/L2 caches, completely unaware that the directory entry has moved from the TD to the
VD. Further, after the entry is inserted in the VD, it cannot be tampered with by the actions
of other cores, thanks to the partitioned nature of the VD.
A directory entry in the VD can be moved out of the VD in two cases. The first one is

when, due to a conflict in an L2 cache, a cache line is evicted from an L2. In this case,
SecDir consolidates all the VD entries for the line (which result from multiple cores sharing
the line) into a single TD entry (¯). It also inserts the line into the LLC, so that future
accesses to this cache line get it from the LLC.
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Note that SecDir has to consolidate entries from as many VD banks as cores share the
line. Hence, this operation requires searching all the VD banks in the slice and, for each
match found, removing the entry from the VD bank and setting a bit in the presence bit
vector in the new directory entry in the TD. Fortunately, an L2 line eviction is not on the
critical path of serving cache accesses, and this search overhead can be hidden. Further,
Section 5.4 shows how to optimize this operation. Finally, note that this transition does not
create a vulnerability, since it is created by a victim self-conflict in the victim’s L2. The
resulting self-eviction is not part of our attack model because it is not caused by an active
attacker.
The second case when SecDir moves an entry out of the VD is a conflict in the VD. The

conflicting entry cannot be moved back to TD (where it came from) because it could cause
a conflict deadlock. Instead, SecDir discards the entry, and invalidates the corresponding
cache line from the corresponding L2 — writing it back to main memory if dirty (°). Any
other copies of the line in other L2s, together with their VD entries, are undisturbed.
This operation is secure according to our model because, as the VD is partitioned, such

VD conflicts can only be self-conflicts among directory entries owned by the same core. An
active attacker attempting a cross-core cache attack has no way to directly enforce such VD
self-conflicts. Also, recall that we size the distributed VD for a core across all the slices to
be similar to the size of the core’s L2. In this case, even in the worst case when an attacker
forces all of the victim’s directory entries into the victim’s VD, the victim will likely still be
able to retain most of its L2 lines.
The SecDir transitions are summarized in Table 5.1.

Transition VD Access Type Coherence Transaction Security
: TD →
Memory

— If cache line in Dirty state in
LLC, write it back to memory;
invalidate line from LLC

No leakage

®: TD →
VD

Insert the directory entry
into the VDs of all the
sharers

— No leakage

¯: VD →
TD

Search all VD banks to
remove any matching di-
rectory entry

Write back the cache line to the
LLC

Leak only L2 self-
conflicts (safe)

°: VD →
Memory

Remove the conflicting
directory entry from the
VD bank

Write back the corresponding
cache line from the core’s L2 to
memory if in Dirty state; invali-
date the line from that L2

Leak only VD self-
conflicts (safe)

Table 5.1: Summary of SecDir transitions.
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5.3.3 Fixing A Limitation in Skylake-X

Among the attacks discussed in Chapter 4 on the non-inclusive caches of Intel’s Skylake-
X processor, one of them does not exploit the limited associativity of the overall directory
structure — which, as discussed in Section 5.1, is the root cause of directory attacks. Instead,
our prime+probe attack exploits a limitation in the implementation of the cache coherence
states in Skylake-X’s cache hierarchy. In this section, we discuss this limitation and suggest
a simple method to fix it. Such a fix has been incorporated in our SecDir implementation.
Consider a victim with the target cache line in its private cache in the Exclusive coherence

state, and the line’s directory entry in the ED. The attacker creates conflicts in the ED,
evicting the target line’s directory entry from ED to TD. In Skylake-X, each TD entry
must be associated with data — i.e., it must have a corresponding cache line in the LLC.
Consequently, as the directory entry moves from ED to TD, the target line is copied to LLC.
Unfortunately, the line cannot remain, at the same time, in Exclusive state in the victim’s
private cache. Hence, it is invalidated from the victim’s private cache. This invalidation
causes an inclusion victim, which is leveraged by the attacker to complete the prime step.
This is a limitation of Skylake-X’s implementation, since this invalidation is unnecessary.
To fix this limitation, we suggest to allow TD entries to be associated with empty LLC

lines. In the example presented, as the directory entry is moved from ED to TD, we propose
to keep the LLC entry empty, and retain the Exclusive cache line in the private cache. In
this way, ED conflicts do not cause L2 evictions. After adopting this mechanism, the only
way to create an L2 eviction is to exploit the limited associativity of the combined TD plus
ED directory structure.

5.4 VICTIM DIRECTORY DESIGN

This section discusses how to access the VD, and VD’s features for security and efficiency.

5.4.1 Accessing the Victim Directory

The VD is accessed differently than the ED and TD. Let us assume that the ED and
TD have associativities equal to WED and WTD, respectively, and that they have the same
number of sets. As shown in Figure 5.4(a), the ED/TD are accessed as a conventional cache
structure ofWED+WTD associativity. For simplicity, the figure neglects the Coherence State
bits of each directory line. When an address tag match is found, the sharer information is
read.
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Figure 5.4: Accessing directories. For simplicity, we neglect the Coherence State bits.

In a VD bank, there is no sharer information field. An access only provides a single bit (hit
or miss). A directory entry can be in multiple VD banks. Hence, as shown in Figure 5.4(b),
SecDir needs to potentially search all the local VD banks. Each VD bank may match, in
which case it contributes with a set bit to a presence bit vector. The vector gives the sharing
information for the cache line.
Given the size of the ED and TD, most accesses under attack-free conditions hit in the

ED/TD. However, we still want the VD access to be fast and, therefore, SecDir keeps the
associativity of each VD bank (WV D) modest. Note that searching all the local banks in
parallel does not slow down the VD access, as the searches are independent. Unlike searches
in an associative cache, this design does not need an additional multiplexer to select one of
the banks, as it produces a bit vector.
There are three types of searches performed on the VDs of a slice. On a read request,

SecDir only needs to find one VD bank with the matching address tag. The coherence
protocol will access the L2 of the core that owns the bank, and retrieve the line. On a write,
SecDir searches all the local VD banks to obtain the complete sharer bit vector. A VD entry
for the writing core is allocated (if it does not exist already), and all the other matching
entries are invalidated. Finally, if SecDir performs transition ¯ in Table 5.1 (i.e., a cache line
is evicted from a private cache), the VD operation involves finding all the matching entries
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in VD, generating a complete sharer bit vector, creating a TD entry, and invalidating all the
matching entries in the VD.
In machines with many cores, SecDir can save hardware by performing the VD search

operation in batches — e.g., by accessing and searching 8 VD banks at a time. This imple-
mentation saves hardware, but results in slower searches. In this case, on a read operation,
SecDir calls off the search as soon as one matching entry is found.

5.4.2 Victim Directory Features

The VD has two features that are helpful in two different scenarios: one helps in patho-
logical directory conflicts caused by attackers, and the other in executions without attacks.

VD Bank Organization as a Cuckoo Directory In a directory attack, the attacker
tries to cache in the private caches of multiple cores many lines that map to a single set of
a single directory slice. In the worst case, the attacker completely fills the set of both ED
and TD in the slice, and SecDir has to move all the victim directory entries in that set to
the victim’s VD bank.
While the attacker concentrates its accesses on lines that map to specific directory sets and

slices, a benign victim application generally distributes its directory entries across directory
sets and slices evenly. Consequently, in our design, we size the distributed VD for a core
across all the slices so that it holds as many entries as the number of lines that fit in an L2
cache. This design should allow the VD to retain many of the directory entries needed by the
victim. However, the victim may still suffer self-conflicts in the VD. To minimize the number
of self-conflicts in the VD, SecDir organizes each VD bank as a Cuckoo Directory [125,128].
A cuckoo directory is an organization that increases the occupancy of a directory by using

multiple hash functions to insert an entry in the directory. The result is a higher effective
associativity and, hence, fewer evictions.
A cuckoo directory admits multiple organizations, some more sophisticated than others.

In SecDir, we use a very simple design, to show the potential of the scheme. Figure 5.5
shows an example of how to insert an item in a two-way set-associative directory that uses
SecDir’s design. When inserting a new item x, assume that the two hash functions h1(x)
and h2(x) select sets 1 and 3 (Figure 5.5(a)). Since both sets are full, one of them is selected
and one entry in that set is evicted to provide space for x. Assume that item f in set 3

is selected for eviction. After its eviction, f is re-inserted in a line of its alternative set —
Set 2 in the figure (¬). Since there is no space in Set 2, one item needs to be evicted and
relocated. Assume that it is item c, which is moved from Set 2 to 4 (). Since there is space
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Figure 5.5: Example of cuckoo directory insertion operation.

in Set 4, c is inserted and there is no additional eviction. Figure 5.5(b) shows the resulting
directory state. Shaded entries are those that have been moved. In the general case, the
relocation procedure is repeated until it either finds an empty slot in the directory, or until
a maximum number of relocations (NumRelocations) is reached. In the later case, an item
is kicked out of the directory structure, which is not likely to be from the same cache set as
the item that was first inserted. This fact confuses the attacker.
On a VD bank look-up, the two hash functions can return at most one hit. To confirm a

VD bank miss, both functions have to miss. Note that the cuckoo organization requires one
extra bit per VD entry, to indicate which hash function was used (Cuckoo bit).
The cuckoo operation is useful during an attack, as it increases the occupancy of victim

VD banks and reduces victim self-conflicts in VD. Moreover, even if the victim suffers self-
conflicts in its VD banks, the randomization of the conflicts obscures the conflict patterns
from the attacker. This increases the victim’s resistance against even a passive attacker.

Early Detection of VD Misses In an execution without attacks, the VD is likely to be
highly underutilized. In this case, it is desirable to quickly detect when a VD bank access is
guaranteed to miss, and save energy by skipping the access. SecDir supports this operation
by adding an Empty Bit (EB) to each set of each VD bank. The EB bit is wired to the NOR
of the Valid bits of all the entries in the set of the VD bank. Hence, if an EB bit is set, it
means that the corresponding set in the VD bank is empty.
With this support, VD bank queries that search for a certain directory entry proceed as

follows. First, the hardware accesses the EB arrays of the VD banks with the correct set
index bits. If an EB array returns a logic one, the hardware skips the ordinary access to the
VD bank array; otherwise, it proceeds with the access. This design saves energy. Moreover,
since accessing the EB arrays is faster than accessing the VD bank arrays, this design also
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saves some access latency.
The EB hardware can be organized in different ways. One implementation has a separate

EB array per VD bank. Another combines the EB bits of all the VD banks into a single EB
array of width N.

5.5 DICUSSION: VD TIMING CONSIDERATIONS

The fact that the VD is accessed after the ED/TD are accessed raises the question of
whether an attacker could exploit a timing side channel. Specifically, an attacker could push
a victim’s directory entries from the ED/TD to the VD, and then time the execution of the
victim’s program to find whether it takes longer.
If the victim is a single-threaded program, there is no such timing side channel. A victim’s

execution is oblivious to whether the directory entry is in ED/TD or VD. In either case, the
corresponding cache line is in the victim’s private cache. On accessing the line, the victim
hits in its private cache, and does not access the directory.
The situation is different in a multi-threaded victim where two or more victim threads

share writable data. Specifically, every time that one core writes a line and sends an inval-
idation to another core, the directory is accessed. Similarly, when a core accesses the line
and obtains it from another core’s cache, the directory is accessed. In both cases, accessing
the directory in the VD rather than in the ED/TD makes the coherence transaction take a
bit longer. For example, using the parameters of the system we evaluate in Section 5.7.1,
accessing the VD extends by about 7 cycles a transaction that would otherwise typically
take about 100 cycles.
While this timing side channel may be hard to exploit due to the non-determinism of cross-

thread communication (i.e., each thread’s accesses occur asynchronously to other threads’),
we need to disable this side channel. One way to do so is by artificially slowing down
a response from the ED/TD by the time it would take to additionally access the VD. A
naive solution would apply such slowdown to every ED/TD-satisfied transaction. A more
advanced solution would apply such slowdown only to ED/TD-satisfied transactions that
involve invalidating or querying another core’s cache. We leave the implementation and
evaluation of this solution to future work.
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5.6 A POSSIBLE DESIGN OF SECDIR

As an example of a possible SecDir design, we take the parameters of the Intel Skylake-
X directory [19] and modify them to support SecDir. We are interested in comparing the
Skylake-X and SecDir directories for the same total directory storage. For simplicity, in our
analysis, we make a few assumptions on the cache coherence protocol and the encoding of
the cache coherence states. Specifically, we use the MESI coherence protocol, and encode
the sharer information in each directory entry as a “full-mapped” bit vector of N presence
bits (where N is the number of cores in the machine) [120]. Using a full-mapped bit vector
is reasonable for modest core counts. Also, we neglect any extra bits needed to encode
transient cache coherence states. With these assumptions, the structures of Figure 5.2 only
need the following Coherence State bits: TD entries need a Dirty and a Valid bit, while ED
and VD entries only need a Valid bit.
The storage of the Skylake-X directory includes TD and ED; the storage of SecDir includes

TD, a new ED, and VD. To size VD, we partition the original (i.e., Skylake-X’s) ED into a
new (i.e., SecDir’s) ED and VD. Specifically, we take some ways off the original ED and give
the storage to the VD. Hence, the original ED and new ED have the same number of sets
but different number of ways. This is the simplest reorganization strategy. We use random
replacement in ED and VD, and conservatively neglect the storage taken by any replacement
algorithm bits in TD.
Table 5.2 lists the relevant parameters of Intel’s Skylake-X to the best of our knowledge.

They include physical address, L2 cache, TD, and ED parameters. The table also shows the
SecDir parameters for ED and VD. Since the values of SecDir’s parameters will change in
our experiments, we refer to them as variables WED, WV D, and SV D. Recall that each entry
in a VD bank has a Cuckoo bit, and each set in a VD bank has an Empty bit (EB).
The ED in Skylake-X has an associativity of 12, and the ED in SecDir has an associativity

of only WED. We use the difference in ways (i.e., 12−WED ways) to build the VD banks in
a slice. Specifically, we consider SecDir designs where WED is 6, 7, 8, 9, or 10. For a given
WED and core count, we design the VD as follows. We consider VD bank associativities
(WV D) ranging from 3 to 8. We choose the VD design with the highest directory entry count
and a power-of-two number of sets (SV D) that fits in the storage available.
Once we pick a VD design, we count the number of directory entries that such a design

provides to a single core across all the slices. In case of an attack, these are the directory
entries that the victim can use in an isolated manner. We compare this number to the number
of lines in an L2 cache. The ratio between these two numbers is shown in Figure 5.6. Values
above 1 mean that the per-core VD contains more directory entries than lines in L2.
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Parameter Value Parameter Value
Physical Address Extended Directory (ED) in SecDir

Line address 40 bits # ways WED

Line offset 6 bits # sets 2048
L2 Cache Victim Directory (VD) in SecDir

# ways 16 # VD banks/slice N
# sets 1024 # ways per VD bank WV D

Traditional Directory (TD) # sets per VD bank SV D

# ways 11 Cuckoo bit (per entry) 1 bit
# sets 2048 Empty bit (per set) 1 bit
Address tag 29 bits
Extended Directory (ED)
# ways 12
# sets 2048
Address tag 29 bits

Table 5.2: Parameters of the Intel Skylake-X directory and SecDir. The number of cores is
represented by N.

In SecDir, we want to have at least as many directory entries in the per-core VD as lines in
L2. The figure shows that, even allowing the ED to retain a large number of ways (i.e., WED

out of the original 12), we quickly attain a per-core VD that has as many entries as lines in
L2. This is because the VD, unlike the ED, does not store sharer information. Specifically,
the Skylake-X ED has 12 ways and holds 1.5× as many entries as L2 lines. SecDir can keep
8 ways for the ED (ensuring that the ED holds as many entries as L2 lines), and reassign
4 ways to the per-core VD. At 44 cores or more, such per-core VD can also hold as many
entries as L2 lines or more. If we only have 8 cores, which is the design we evaluate in
Section 5.7.1, and we still want to keep 8 ways for the ED, the per-core VD needs extra
storage to have as many entries as the L2. It can be easily computed that it only needs 28.5
Kbytes per slice to have as many entries as the L2. This is a very small overhead compared
to the sizes of an L2 and an LLC slice.

5.7 EVALUATION

5.7.1 Experimental Setup

We evaluate SecDir and compare it to Skylake-X’s directory using simulations with Gem5 [129].
The parameters of the architecture with SecDir are shown in Table 5.3, which augments the
parameters in Table 5.2. We implement a directory-based MOESI cache coherence proto-
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in an L2. We use a SecDir design with the same directory storage as a Skylake-X.

col. Recall from Section 5.6 that both SecDir and Skylake-X use the same cache and TD
configurations. As shown in the tables, the EDs of Skylake-X and SecDir in a slice have
the same number of sets (2048) but different set-associativity, namely 12 and 8, respectively.
This means that the ED of SecDir in a slice has as many entries as lines in L2. The VD
is designed so that, per core across all the slices, it also has as many entries as lines in
L2. As indicated in Section 5.6, with these parameters, SecDir needs 28.5KB more direc-
tory storage per slice than the Skylake-X directory for an 8-core machine. This is a very
small overhead considering the sizes of the L2 and the LLC slice. We call the Skylake-X
architecture Baseline.
In our cuckoo directory implementation, we use the skewing hash functions proposed by

Seznec and Bodin [130] as our h1(x) and h2(x) functions. These functions distribute cache
lines equally among sets, possess local and inter-bank dispersion properties, and can be easily
implemented in hardware. We set the cuckoo NumRelocations to 8.
We evaluate SecDir and Skylake-X with 12 mixes of single-threaded SPEC applications [109]

and 10 multi-threaded PARSEC applications [110]. We use the same approach as Jaleel
et al. [96] to pick the mixes of SPEC applications. Specifically, we run 23 individual
SPECInt2006 and SPECFP2006 applications on a single core and one slice of the non-
inclusive LLC structure. These applications are classified into three categories, namely core
cache fitting (CCF ), last-level cache fitting (LLCF ), and last-level cache thrashing (LLCT ),
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Parameter Value
Architecture 8 cores at 2.0GHz using MOESI dir coherence
Core 8 issue, out-of-order, no SMT, 32 load queue

entries, 32 store queue entries, 192 ROB entries
Private L1-I 32KB, 64B line, 4-way, 4 cycle round-trip (RT) latency
Private L1-D 32KB, 64B line, 8-way, 4 cycle RT latency
Private L2 1MB, 64B line, 16-way, 10 cycles RT latency
Shared L3 1.375MB, 64B line, 11-way, 30 cycles RT local
(per slice) latency, 50 cycles RT remote latency
Directory TD: 11-way, 2048 sets; ED: 8-way, 2048 sets; num VD
(per slice) banks: 8; VD bank: 4-way, 512 sets; NumRelocations: 8
Directory To TD/ED: same as L3. To VD: over L3, add 2 cycles
RT latency (EB access) and, if miss in EB, add 5 cycles (VD access)
Network 4×2 mesh, 128b link width
DRAM RT latency: 50 ns after L3

Table 5.3: Parameters of the SecDir architecture.

according to their L2 and L3 miss rates. We consider the 6 possible combinations of two of
these categories, and select 2 application mixes in each combination, as listed in Table 5.4.

Category Name & Applications Name & Applications
CCF, CCF mix0: 4 gobmk + 4 sjeng mix1: 4 hmmer + 4 gamess
LLCF, LLCF mix2: 4 bzip2 + 4 omnetpp mix3: 4 gromacs + 4 zeusmp
LLCT, LLCT mix4: 4 libquantum + 4 lbm mix5: 4 bwaves + 4 sphinx3
CCF, LLCF mix6: 4 sjeng + 4 omnetpp mix7: 4 h264ref + 4 zeusmp
CCF, LLCT mix8: 4 gobmk + 4 libquantum mix9: 4 namd + 4 bwaves
LLCF, LLCT mix10: 4 omnetpp + 4 bwaves mix11: 4 zeusmp + 4 lbm

Table 5.4: SPEC workload mixes.

We use the reference input size for the SPEC applications. When running these mixes on
8 cores, we run 4 copies of each application, and assign them to different cores. We skip
the first 10 billion instructions, and report simulation results for 500 million cycles. For the
PARSEC applications, we use the simmedium input size and report simulation results for
the region-of-interest (ROI).

5.7.2 Security Evaluation

We evaluate the security properties of SecDir on the AES encryption algorithm [131].
Software implementations of AES usually use 4 look-up tables, called T-tables, to improve
the performance of the cipher computation. The encryption process involves multiple rounds,
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and each round has a round key. To generate the result for a certain round, the algorithm
uses the last round’s result to look-up the T-tables, and then perform an XOR operation
on the obtained value and the round key. This implementation is known to be vulnerable
to conflict-based cache attacks [2], as the access patterns on the T-tables leak intermediate
encryption results and round keys.
In a conflict-based cache attack, the attacker aims to observe the victim’s access patterns

on the T-tables. First, it evicts all the T-table entries from the cache hierarchy, and then
tests which entries have been accessed by the victim in each round of encryption by analyzing
the resulting cache states.
SecDir can effectively block such attacks. In SecDir, the ED and TD are shared by all the

cores, but the VDs are per-core private. The most powerful adversary can take full control
of the ED and TD, but is unable to interfere with the entries in the victim’s VD. In order
to emulate such a powerful attacker, we simulate SecDir without ED or TD, assuming that
the attacker fully controls these two structures. This is the most pathological scenario that
an attacker can create.
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Figure 5.7: Trace of accesses to the T0 table in AES encryption. The application runs on
SecDir with VD but no ED or TD.

In this scenario, we run the AES encryption implementation from OpenSSL 0.9.8, and
record the access patterns on the T0 T-table. The table uses 16 memory lines. Figure 5.7
shows the addresses of the T0 memory lines accessed as a function of time. Accesses are
classified as: (i) main memory accesses or (ii) L1 or L2 hits. Note that, in this experiment, if
a line is evicted from L2, its VD entry is evicted too because there is no TD. Consequently,
since this is a single-threaded application, no L2 cache miss will hit in the VD; all L2 cache
misses will access main memory.
From the figure, we see that the first access to each memory line of the table misses in

the cache hierarchy and causes a main memory access. As the line is fetched from memory,
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its directory entry is inserted into VD, since there is no TD or ED. As seen in the figure,
all of the victim’s subsequent accesses to the T0 table lines hit in the private L1/L2 caches.
The attacker cannot observe these private cache hits, and cannot directly interfere with the
entries in the victim’s VD.
SecDir is effective at protecting other applications, such as the square-and-multiply op-

erations in the RSA encryption algorithm. The data in the leaky region of RSA is much
smaller than the T-table. Hence, it fits in the L2 cache and its directory entries fit in the
VD. An attacker cannot evict the target lines from L2.
If the victim’s security-sensitive data is large, the victim may suffer self-conflicts in its

L2 and/or in its VD. In this case, the victim may leak information. However, recall that
protecting against such leakage is not within the scope of SecDir, as such leakage is not
created by an active attacker.

5.7.3 Evaluation of SPEC Application Mixes

Figure 5.8 evaluates SecDir executing SPEC mixes. Figure 5.8(A) shows the average
instructions per cycle (IPC) of the SPEC mixes running on SecDir and Baseline. For each
mix, the bars are normalized to Baseline. From the figure, we see that the IPC of the mixes
changes little across architectures. The reason is that SecDir has a positive and a negative
effect on the execution time, and both effects tend to cancel out.
SecDir’s negative effect is that it slightly increases the latency of a main memory access.

This is because a request that misses in ED and TD checks the VD on its way to main
memory. As indicated in Table 5.3, checking the VD takes 2 cycles (if the EB array satisfies
the request) or 2 plus 5 cycles (if it does not). Under attack-free conditions, the VD is
not highly utilized, and most VD accesses miss. However, this does not mean that the VD
is ineffective, since whatever entries the VD contains are very useful. Indeed, such entries
enable the L2 to retain cache lines and, therefore, avoid an L2 miss and directory access in
the first place.
SecDir’s positive effect is that it reduces the number of directory entry conflicts and,

therefore, the number of cache line inclusion victims. In Baseline, a TD entry conflict
typically results in an L2 cache line eviction to DRAM. In SecDir, instead, the directory
entry is moved to VD and the corresponding cache line remains in L2, avoiding an inclusion
victim. Avoiding L2 inclusion victims results in fewer memory accesses and fewer ED/TD
accesses. This effect improves performance.
To understand the positive effect, Figure 5.8(B) shows the number of L2 misses and breaks

them into: (i) hits in the ED or TD, (ii) hits in the VD, and (iii) misses in the directory,
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(b) L2 miss characterization. In the figure, B is Baseline, and S is SecDir.

Figure 5.8: Evaluation of the SPEC mixes.

which cause main memory accesses. For each SPEC mix, the figure shows bars for Baseline
(B) and SecDir (S), which are normalized to the former.
From the figure, we see that SecDir decreases the number of L2 misses in practically all the

mixes. On average, the reduction is 11.4%. The reduction comes from reducing L2 inclusion
victims. It results in both fewer memory accesses and fewer ED/TD hits.
The bars show that there are no VD hits. This is the normal behavior in single-threaded

applications and, as indicated before, it does not mean that the VD is useless. On the
contrary, for VD entries in use, there is no reason to access the VD: the L1/L2 caches contain
the line and intercept any access to the line from the core. When the line is evicted from
L2 and written back to the LLC, SecDir migrates the VD entry to TD (¯ in Figure 5.3(b)).
Hence, subsequent L2 misses will either hit in the TD or, if the entry is evicted from TD
before the line is re-referenced, obtain the data from main memory. In none of the cases will
the VD hit.
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5.7.4 Evaluation of PARSEC Applications

Figure 5.9 shows the same data as Figure 5.8 for the PARSEC applications. Figure 5.9(A)
shows the execution time on Baseline and on SecDir, normalized to the Baseline. Similar to
Figure 5.8(A), SecDir has a very small impact on the performance of PARSEC applications.
As before, this is a combination of both positive and negative effects.
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(b) L2 miss characterization. In the figure, B is Baseline, and S is SecDir.

Figure 5.9: Evaluation of the PARSEC Applications.

Figure 5.9(B) shows the L2 miss count of PARSEC applications in Baseline and in SecDir,
normalized to Baseline. As in Figure 5.8(B), the bars are broken down into: (i) hits in the
ED or TD, (ii) hits in the VD, and (iii) main memory accesses. Like in SPEC mixes, SecDir
reduces the L2 misses in most applications, causing a reduction in the number of ED/TD hits
and, to a lesser extent, in the number of memory accesses. The average L2 miss reduction
is 7%.
The figure shows that, on average, the number of VD hits is very small. However, in the
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freqmine application, nearly 14% of the L2 misses are intercepted by VD. This scenario is
possible in multi-threaded applications. It occurs when the L2 of a core misses on a cache
line present in another core’s L2 and the line has its directory entry in the VD of the second
core. We expect this case to occur in applications with high data sharing between cores. In
this case, a fast VD would improve performance.
Overall, in both single-threaded and multi-threaded applications, SecDir provides an ef-

fective defense against directory based side channel attacks, while introducing a negligible
performance cost in the absence of attacks.

5.7.5 Evaluating VD Features

Table 5.5 examines two features of the VD, namely, the Empty bit (EB) and the cuckoo
organization. To assess the impact of the EB, we compare the number of VD bank look-ups
performed when using the EB (EBVD) to the number of VD bank look-ups performed when
not using the EB (NoEBVD). Recall that, without EB, we need to perform a look-up of the
N VD banks in a slice every time that we miss in the ED/TD directory.

SPEC EBVD / CKVD / PARSEC EBVD / CKVD /
Mix NoEBVD NoCKVD Appl. NoEBVD NoCKVD
mix0 0.45 0.75 blackschol. 0.01 0.63
mix1 0.18 0.95 bodytrack 0.18 0.55
mix2 0.36 0.53 canneal 0.09 0.51
mix3 0.53 0.93 ferret 0.23 0.59
mix4 0.38 1.00 fluidanim. 0.08 0.46
mix5 0.44 0.84 freqmine 0.38 0.62
mix6 0.43 0.41 vips 0.24 0.83
mix7 0.49 0.81 swaptions 0.01 0.56
mix8 0.45 0.96 x264 0.34 0.59
mix9 0.52 0.90 Avg. 0.17 0.59
mix10 0.48 0.73
mix11 0.47 1.03
Avg. 0.43 0.82

Table 5.5: Evaluating the Empty bit and cuckoo organization.

The columns in the table labeled EBVD/NoEBVD show the ratio between the two mea-
sures. Since the VD is under-utilized in executions without attacks, the EB effectively
decreases the number of VD bank look-ups across all applications. On average, only 43%

and 17% of the VD bank accesses are needed with EB in SPEC and PARSEC applications,
respectively. For two PARSEC applications, namely blackscholes and swaptions, EB elimi-
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nates practically all of the VD look-ups, as the VD remains highly unused during execution.
We also evaluate the effectiveness of using the cuckoo organization in the VD under the

worst possible attack conditions. Specifically, we assume the case where the adversary fully
controls the TD and ED directories, and the victim can only use the VD. Consequently, we
disable TD and ED, and the application can only use its VD. We compare the number of VD
self-conflicts when the VDs are used as cuckoo directories (CKVD) and when they are used
as plain directories (NoCKVD). CKVD uses two of the skewing hash functions proposed by
Seznec and Bodin [130] (Section 5.7.1); NoCKVD simply uses one of them.
The columns in the table labeled CKVD/NoCKVD show the ratio between the two self-

conflict counts. We see that the cuckoo organization often eliminates a substantial fraction
of the self-conflicts. The impact on a given application depends on a variety of factors,
including the application’s access patterns and its working set. On average, with SecDir’s
simple cuckoo organization, 82% and 59% of the VD self-conflicts remain in SPEC and
PARSEC applications, respectively. Note that there are two SPEC mixes (i.e., mix4 and
mix11) for which our cuckoo design does not reduce the number of conflicts. As shown
in Table 5.4, these mixes contain last-level cache thrashing (LLCT) applications. In these
cases, the VD bank in one or more slices is full, and the cuckoo approach is unable to reduce
self-conflicts. To reduce the self-conflicts in these mixes, we need to either increase the
size or associativity of VD, or make the cuckoo implementation more sophisticated — e.g.,
by improving the hash functions used, or by increasing NumRelocations. We leave these
avenues to future work. In any case, although our threat model does not target victim self-
conflicts, we note that the cuckoo operation effectively reduces self-conflicts and obscures
victim self-conflict patterns from the attacker.

5.7.6 Storage and Area Overhead

We compute the storage and area required by the directory of the baseline Skylake-X
architecture and of SecDir. We use the parameters of Section 5.7.1. We compute storage
in Kbytes and area in mm2 as given by CACTI 7 [132] using 22 nm technology. Table 5.6
shows the per-slice results for TD, ED, and VD.
We see that SecDir requires 28.5 KB additional storage per LLC slice, which is 12.9% more

than the baseline architecture. Also, the SecDir directory structures take 0.027 mm2 more
area, which is 16.2% more than the baseline. Overall, these are modest numbers. Also, this
analysis is for a machine with 8 cores. As indicated in Section 5.6, SecDir uses less directory
area than the baseline for 44 cores or more.
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Baseline Storage Area SecDir Storage Area
Structure (KB) (mm2) Structure (KB) (mm2)

TD 107.25 0.080 TD 107.25 0.080
ED 114.00 0.087 ED 76.00 0.057
— — — VD 66.50 0.057

Total 221.25 0.167 Total 249.75 0.194

Table 5.6: Storage and area used by the directory structures in a slice in the baseline
Skylake-X and in SecDir.

5.8 CONCLUSION

This chapter presented SecDir, a secure directory to defeat directory side channel attacks.
SecDir takes part of the storage used by a conventional directory and re-assigns it to per-
core private directory areas used in a victim-cache manner called Victim Directories (VDs).
To minimize victim self-conflicts in a VD during an attack, a VD is organized as a cuckoo
directory. Such a design also obscures victim self-conflict patterns from the attacker. We
modeled with simulations the directory of an Intel Skylake-X server and a modified design
that supports SecDir. Our results showed that SecDir has a negligible performance impact.
Furthermore, SecDir is area-efficient: it only needs 28.5KB more directory storage than the
Skylake-X per slice for an 8-core machine, while it uses less storage than the Skylake-X for 44
cores or more. Finally, a cuckoo VD organization eliminated substantial victim self-conflicts
in a worst-case attack scenario.
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CHAPTER 6: INVISISPEC

This chapter presents the first robust hardware defense mechanism against transient cache-
based side channel attacks for multiprocessors. It has been shown that hardware speculation
offers a major surface for micro-architectural side channel attacks. Unfortunately, defending
against transient execution attacks is challenging. We propose Invisible Speculation (Invi-
siSpec). The idea is to make speculation invisible in the data cache hierarchy. In InvisiSpec,
unsafe speculative loads read data into a speculative buffer, without modifying the cache hier-
archy. When the loads become safe, InvisiSpec makes them visible to the rest of the system.
We show that InvisiSpec has modest performance overhead, and it is able to defend against
future transient execution attacks where any speculative load can pose a threat.

The recent disclosure of Spectre [3] and Meltdown [4] has opened a new chapter in hardware
security pertaining to the dangers of speculative execution. Hardware speculation can cause
execution to proceed in ways that were not intended by the programmer or compiler. Until
recently, this was not thought to have security implications, as incorrect speculation is
guaranteed to be squashed by the hardware. However, these attacks demonstrate that
squashing incorrect speculative paths is insufficient for security.
Spectre and Meltdown monitor the micro-architectural footprint left by speculation, such

as the state left by wrong-path speculative loads in the cache. This footprint enables micro-
architectural covert or side channels, where an adversary can infer the speculative thread’s
actions. In Meltdown, a user-level attacker is able to execute a privileged memory load and
leak the memory contents using a cache-based covert channel, all before the illegal memory
load triggers an exception. In Spectre, the attacker poisons the branch predictor or branch
target buffer to force the victim’s code to speculate down specific paths of the attacker’s
choosing. Different types of attacks are possible, such as the victim code reading arbitrary
memory locations by speculating that an array bounds check succeeds—allowing the attacker
to glean information through a cache-based side channel. In this case, unlike in Meltdown,
there is no exception-inducing load.
It can be argued that Meltdown can be fixed with a relatively modest implementation

change: mark the data loaded by an exception-triggering load as unreadable. However, de-
fending against Spectre and other forms of transient execution attacks that do not cause
exceptions presents a two-fold challenge. First, potentially any instruction performing spec-
ulation can result in an attack. The reason is that speculations destined to be squashed
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inherently execute incorrect instructions (so-called transient instructions), outside the scope
of what programmers and compilers reason about. Since program behavior is undefined,
transient execution attacks will be able to manifest in many ways, similar to attacks ex-
ploiting lack of memory safety [133]. Second, speculative code that makes any change to
micro-architectural state—e.g., cache occupancy [38] or cache coherence [9] state—can create
side channels.
In this chapter, we propose InvisiSpec, a novel strategy to defend against hardware specu-

lation attacks in multiprocessors, by making speculation invisible in the data cache hierarchy.
The goal is to block micro-architectural side channels through the multiprocessor data cache
hierarchy due to speculative loads—e.g., channels stemming from cache set occupancy, line
replacement information, and cache coherence state. We wish to protect against not only
Spectre-like attacks based on branch speculation; we also want to protect against futuristic
attacks where any speculative load may pose a threat.
InvisiSpec’s micro-architecture is based on two mechanisms. First, unsafe speculative loads

read data into a new Speculative Buffer (SB) instead of into the caches, without modifying
the cache hierarchy. Data in the SB do not observe cache coherence transactions, which
may result in missing memory consistency violations. Our second mechanism addresses this
problem. When a speculative load is finally safe, the InvisiSpec hardware makes it visible
to the rest of the system by reissuing it to the memory system and loading the data into
the caches. In this process, if InvisiSpec considers that the load could have violated memory
consistency, InvisiSpec validates that the data that the load first read is correct—squashing
the load if the data is not correct.
To summarize, this chapter makes the following contributions:

• We present a generalization of speculative execution attacks that goes beyond current
Spectre attacks, where any speculative load may pose a threat.

• We present a micro-architecture that blocks side and covert channels during speculation
in a multiprocessor data cache hierarchy.

• We simulate our design on 23 SPEC and 9 PARSEC workloads. Under TSO, using
fences to defend against Spectre attacks slows down execution by 82% relative to a
conventional, insecure processor; InvisiSpec reduces the execution slowdown to only
5.2%. Using fences to defend against futuristic attacks slows down execution by 231%;
InvisiSpec reduces the slowdown to 17%.
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6.1 UNDERSTANDING TRANSIENT EXECUTION ATTACKS COMPREHENSIVELY

6.1.1 An Example of Transient Execution Attacks

Transient execution attacks exploit the side effects of transient instructions, which are the
instructions that are speculatively executed but are destined to be squashed. Algorithm 6.1
describes the Spectre Variant 1 attack, a.k.a. array bound bypassing attack.

Algorithm 6.1: Spectre Variant 1 attack.
1 uint8 array1 [array1_size];// secret value x is 1 byte
2 uint8 array2 [256 ∗ 64 ];// cache line size is 64 bytes
// victim code begins here:

3 Function victim(x):
4 if x < array1_size then // source of transient instruction
5 secret = array1 [x ];
6 junk = array2 [secret ∗ 64 ]; // transmitter
7 end
8 End
// attacker code begins here:

9 Function attacker(x):
10 train(); // train the branch predictor of line 4 to be taken
11 flush(array2 ); // flush every cache line of array2
12 call victim(Y −&array1 );// secret value is stored in address Y
13 scan(array2 ); // access each cache line of array2
14 End

The victim code (Line 3-8) is part of a function (e.g., a system call or a library function)
receiving an unsigned integer x from an untrusted source. If the given x is within the bound
of array1 , the code uses x as the index to access array1 and the returned value is later used
as the index to access another array array2 .
The attacker’s goal is to read content from arbitrary addresses (address Y in this example)

in the victim’s address space. It uses the following steps. First, the attacker trains the branch
predictor of the victim’s branch (Line 4) to be taken. This can be achieved by triggering the
victim function multiple times using a x smaller than the size of array1 . It also prepares
the cache states for the later attack steps by flushing all the cache lines of array2 from the
cache hierarchy.
Second, the attacker performs the exploitation. It gives the victim function a malicious

x = Y −&array1 to make array1 [x ] points to address Y . The branch in Line 4 should
guard the two loads in Lines 5 and 6, and prevent them from executing when x is out of
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the bound of array1 . However, due to speculative execution, the branch is predicted to be
taken and the two loads will be speculatively executed before the branch is resolved. The
first load (Line 5) accesses Y and brings the secret value into a register. The second load
(Line 6) uses the secret value as index to access array2 , brings a line into the cache and
changes the cache state. We call the second load a transmitter (Section 2.2.2), whose access
leaks the secret value. Note that both load instructions are transient instructions, as they
will be squashed after the branch is resolved.
Finally, the attacker scans array2 and measures access latency to each cache line in the

array (Line 13). Based on the access latency, the attacker can figure out which line has been
accessed by the victim and deduce the value of the secret.

6.1.2 Sources of Transient Instructions

We discuss the events that can be the source of transient instructions leading to a security
attack. Table 6.1 shows examples of such attacks and what event creates the transient
instructions.

Attack What Creates the Transient Instructions
Meltdown Virtual memory exceptionL1 Terminal Fault
Lazy Floating Point

Exception reading a disabled or privileged registerRogue System
Register Read
Spectre Control-flow misprediction
Speculative Address alias between a load and an earlier storeStore Bypass

Futuristic

Various events, such as:
• Exceptions
• Control-flow mispredictions
• Address alias between a load and an earlier store
• Address alias between two loads
• Memory consistency model violations
• Interrupts

Table 6.1: Understanding transient execution attacks.

Exceptions. Several attacks exploit speculation past an exception-raising instruction. The
processor squashes the execution when the exception-raising instruction reaches the head
of the ROB, but by this time, dependent transmitting instructions can leak data. The
Meltdown [4] and L1 Terminal Fault (L1TF) [53,134] attacks exploit virtual memory-related
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exceptions. Meltdown reads a kernel address mapped as inaccessible to user space in the
page table. L1TF reads a virtual address whose page table entry (PTE) marks the physical
page as not present, but the physical address is still loaded.
The Lazy Floating Point (FP) State Restore attack [135] reads an FP register after the

OS has disabled FP operations, thereby reading the FP state of another process. The Rogue
System Register Read [135] reads privileged system registers.

Control-flow misprediction. Spectre attacks [3] exploit control-flow speculation to load
from an arbitrary memory address and leak its value. Variant 1 performs an out-of-bounds
array read, exploiting a branch misprediction of the array bounds check [3]. Other variants
direct the control flow to an instruction sequence that leaks arbitrary memory, either through
indirect branch misprediction [3], return address misprediction [56], or an out-of-bounds
array write that redirects the control flow (e.g., by overwriting a return address on the
stack) [136].

Memory-dependence speculation. Speculative Store Bypass (SSB) attacks [55] exploit
a speculative load that bypasses an earlier store whose address is unresolved, but will resolve
to alias the load’s address [137]. Before the load is squashed, it obtains stale data, which
can be leaked through subsequent dependent instructions. For example, suppose that a
JavaScript runtime or virtual machine zeroes out memory allocated to a user thread. Then,
this attack can be used to peek at the prior contents of an allocated buffer. We discovered
the SSB attack in the process of performing this work.

6.1.3 A Comprehensive Model of Transient Execution Attacks

Transient instructions can be created by many events. As long as an instruction can
be squashed, it can create transient instructions, which can be used to mount a transient
execution attack. Since we focus on cache-based covert and side channel attacks, we limit
ourselves to load instructions.
We define a Futuristic attack as one that can exploit any speculative load. Table 6.1

shows examples of what can create transient instructions in a Futuristic attack: all types
of exceptions, control-flow mispredictions, address alias between a load and an earlier store,
address alias between two loads, memory consistency model violations, and even interrupts.
In the rest of the chapter, we present two versions of InvisiSpec: one that defends against

Spectre attacks, and one that defends against Futuristic attacks.
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6.2 INVISISPEC DESIGN

6.2.1 Overview of the Techniques

Unsafe Speculative Loads Strictly speaking, any load that initiates a read before it
reaches the head of the ROB is a speculative load. In this work, we are interested in the
(large) subset of speculative loads that can create a security vulnerability due to speculation.
We call these loads Unsafe Speculative Loads (USLs). The set of speculative loads that are
USLs depends on the attack model.
In the Spectre attack model, USLs are the speculative loads that follow an unresolved

control-flow instruction. As soon as the control-flow instruction resolves, the USLs that
follow it in the correct path of the branch transition to safe loads—although they remain
speculative.
In our Futuristic attack model, USLs are all the speculative loads that can be squashed

by an earlier instruction. A USL transitions to a safe load as soon as it becomes either (i)
non-speculative because it reaches the head of the ROB or (ii) speculative non-squashable by
any earlier instruction (or speculative non-squashable for short). Speculative non-squashable
loads are loads that both (i) are not at the head of the ROB and (ii) are preceded in the ROB
only by instructions that cannot be squashed by any of the squashing events in Table 6.1 for
Futuristic. Note that in the table, one of the squashing events is interrupts. Hence, making
a load safe includes delaying interrupts until the load reaches the head of the ROB.
To understand why these two conditions allow a USL to transition to a safe load consider

the following. A load at the ROB head cannot itself be transient; it can be squashed (e.g.,
due to an exception), but it is a correct instruction. The same can be said about speculative
non-squashable loads. This is because, while not at the ROB head, they cannot be squashed
by any earlier instruction and, hence, can be considered a logical extension of the instruction
at the ROB head.

Making USLs Invisible The idea behind InvisiSpec is to make USLs invisible. This
means that a USL cannot modify the cache hierarchy in any way that is visible to other
threads, including the coherence states. A USL loads the data into a special buffer that we
call Speculative Buffer (SB), and not into the local caches. As indicated above, there is a
point in time when the USL can transition to a safe load. At this point, called the Visibility
Point, InvisiSpec takes an action that will make the USL visible—i.e., will make all the side
effects of the USL in the memory hierarchy apparent to all other threads. InvisiSpec makes
the USL visible by re-loading the data, this time storing the data in the local caches and
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changing the cache hierarchy states. The load may remain speculative.

Maintaining Memory Consistency The Window of Suppressed Visibility for a load is
the time period between when the load is issued as a USL and when it makes itself visible.
During this period, since a USL does not change any coherence state, the core may fail
to receive invalidations directed to the line loaded by the USL. Therefore, violations of the
memory consistency model by the load run the risk of going undetected. This is because such
violations are ordinarily detected via incoming invalidations, and are solved by squashing
the load. To solve this problem, InvisiSpec may have to perform a validation step when it
re-loads the data at the load’s visibility point.
It is possible that the line requested by the USL was already in the core’s L1 cache when

the USL was issued and the line loaded into the SB. In this case, the core may receive an
invalidation for the line. However, the USL ignores such invalidation, as the USL is invisible,
and any effects of this invalidation will be handled at the visibility point.

Validation or Exposure of a USL The operation of re-loading the data at the visibility
point has two flavors: Validation and Exposure. Validation is the way to make visible a USL
that would have been squashed during the Window of Suppressed Visibility (due to memory
consistency considerations) if, during that window, the core had received an invalidation for
the line loaded by the USL. A validation operation includes comparing the actual bytes used
by the USL (as stored in the SB) to their most up-to-date value being loaded from the cache
hierarchy. If they are not the same, the USL and all its successive instructions are squashed.
This is required to satisfy the memory consistency model. This step is reminiscent of Cain
and Lipasti’s value-based memory ordering [138].
Validations can be expensive. A USL enduring a validation cannot retire until the trans-

action finishes—i.e., the line obtained from the cache hierarchy is loaded into the cache, the
line’s data is compared to the subset of it used in the SB, and a decision regarding squashing
is made. Hence, if the USL is at the ROB head and the ROB is full, the pipeline stalls.
Thankfully, InvisiSpec identifies many USLs that could not have violated the memory

consistency model during their Window of Suppressed Visibility, and allows them to become
visible with a cheap Exposure. These are USLs that would not have been squashed by
the memory consistency model during the Window of Suppressed Visibility if, during that
window, the core had received an invalidation for the line loaded by the USL. In an exposure,
the line returned by the cache hierarchy is simply stored in the caches without comparison.
A USL enduring an exposure can retire as soon as the line request is sent to the cache
hierarchy. Hence, the USL does not stall the pipeline.
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To summarize, there are two ways to make a USL visible: validation and exposure. The
memory consistency model determines which one is needed. Figure 6.1 shows the timeline
of a USL with validation and with exposure.

Window of Suppressed Visibility

Point
Visibility

Retirement

Validation

Window of Suppressed Visibility

Point
Visibility

Retirement

Earliest Possible
Retirement

(a)

Exposure

Earliest Possible
Retirement

(b)

Load is a USL

Load is a USL Load is Safe

Load is Safe

Load is Issued
to Memory

Load is Issued
to Memory

Figure 6.1: Timeline of a USL with validation (a) and exposure (b).

6.2.2 InvisiSpec Operation

A load in InvisiSpec has two steps. First, when it is issued to memory as a USL, it accesses
the cache hierarchy and obtains the current version of the requested cache line. The line is
only stored in the local SB, which is as close to the core as the L1 cache. USLs do not modify
the cache coherence states, cache replacement algorithm states, or any other cache hierarchy
state. No other thread, local or remote, can see any changes. However, the core uses the
data returned by the USL to make progress. The SB stores lines rather than individual
words to exploit spatial locality.
When the USL can be made visible, and always after it has received its requested cache

line, the hardware triggers a validation or an exposure transaction. Such a transaction re-
requests the line again, this time modifying the cache hierarchy, and bringing the line to
the local caches. As detailed in Section 6.2.3, validation and exposure transactions operate
differently and have different performance implications.
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We consider two attack models, Spectre and Futuristic, and propose slightly different In-
visiSpec designs to defend against each of these attacks. In our defense against the Spectre
attack, a USL reaches its visibility point when all of its prior control-flow instructions re-
solve. At that point, the hardware issues a validation or an exposure transaction for the
load depending on the memory consistency model and the load’s position in the ROB (Sec-
tion 6.2.3). If multiple USLs can issue validation or exposure transactions, the transactions
have to start in program order, but can otherwise all overlap (Section 6.2.4).
In our defense against Futuristic attacks, a USL reaches its visibility point only when: (i) it

is not speculative anymore because it is at the head of the ROB, or (ii) it is still speculative
but cannot be squashed anymore. At that point, the hardware issues a validation or an
exposure for the load depending on the memory consistency model and the load’s position
in the ROB (Section 6.2.3). If multiple USLs can issue validation or exposure transactions,
the transactions have to be issued in program order. However, when a validation transaction
is issued, no subsequent validation or exposure transaction can overlap with it; they all have
to wait to be issued until the validation is complete (Section 6.2.4). On the other hand, when
an exposure transaction is issued, all subsequent exposure transactions up to, and including,
the next validation transaction can overlap with it (Section 6.2.4).
Overall, in the Spectre and Futuristic defense designs, pipeline stalls may occur when a

validation transaction holds up the retirement of a load at the head of the ROB and the
ROB is full. This is more likely in Futuristic than in Spectre.
We call these designs InvisiSpec-Spectre (or IS-Spectre) and InvisiSpec-Future (or IS-

Future). They are shown in the first row of Table 6.2. For comparison, the second row
shows how to defend against these same attacks using fence-based approaches—following
current proposals to defend against Spectre [139]. We call these designs Fence-Spectre and
Fence-Future. The former places a fence after every indirect or conditional branch; the latter
places a fence before every load.

Defense Against Spectre Defense Against Futuristic
InvisiSpec InvisiSpec-Spectre: InvisiSpec-Future:
Based 1) Perform invisible loads in the

shadow of an unresolved BR;
2) Validate or expose the loads
when the BR resolves

1) Perform an invisible load if the load
can be squashed while speculative; 2)
Validate or expose the load when it be-
comes either (i) non-speculative or (ii)
un-squashable speculative

Fence Fence-Spectre: Fence-Future:
Based Place a fence after every BR Place a fence before every load

Table 6.2: Summary of InvisiSpec designs (BR means indirect or conditional branch.)

109



Compared to the fence-based designs, InvisiSpec improves performance. Specifically, loads
are speculatively executed as early as in conventional, insecure machines. One concern is that
validation transactions for loads at the head of the ROB may stall the pipeline. However, we
will show how to maximize the number of exposures (which cause no stall) at the expense of
the number of validations. Finally, InvisiSpec does create more cache hierarchy traffic and
contention to various cache ports. The hardware should be designed to handle them.

6.2.3 When to Use Validation and Exposure

The memory consistency model determines when to use a validation and when to use an
exposure. Consider TSO first. In a high-performance TSO implementation, a speculative
load that reads when there is no older load (or fence) in the ROB will not be squashed by a
subsequent incoming invalidation to the line it read. Hence, such a USL can use an exposure
when it becomes visible. On the other hand, a speculative load that reads when there is at
least one older load (or fence) in the ROB will be squashed by an invalidation to the line it
read. Hence, such a USL is required to use a validation.
Now consider RC. In this case, only speculative loads that read when there is at least one

earlier fence in the ROB will be squashed by an invalidation to the line read. Hence, only
those will be required to use a validation; the very large majority of loads can use exposures.
From this discussion, we see that the design with the highest chance of observing valida-

tions that stall the pipeline is IS-Future under TSO. To reduce the chance of these events,
InvisiSpec implements two mechanisms. The first one enables some USLs that would use
validations to use exposures instead. The second one identifies USLs that would use vali-
dations, and squashes them early if there is a high chance that their validations would fail.
We consider these mechanisms next.

Transforming a Validation USL into an Exposure USL Assume that, under TSO,
USL1 initiates a read while there are earlier loads in the ROB. Ordinarily, InvisiSpec would
mark USL1 as needing a validation. However, assume that, at the time of issuing the read,
all of the loads in the ROB earlier than USL1 satisfy two conditions: 1) they have already
obtained the data they requested—in particular, if they are USLs, the data they requested
has already arrived at the SB and been passed to a register, and 2) if they needed to perform
validations, they have completed them. In this case, USL1 is not reordered relative to any
of its earlier loads. As a result, TSO would not require squashing USL1 on reception of
an invalidation to the line it loaded. Therefore, USL1 is marked as needing exposure, not
validation.
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To support this mechanism, we tag each USL with one bit called Performed. It is set when
the data requested by the USL has been received in the SB and passed to the destination
register. In addition, as we will see in Section 6.3.1, we tag each USL with two state bits to
indicate whether the USL needs a validation or an exposure, and whether the validation or
exposure has completed.

Early Squashing of USLs Needing Validations Assume that a core receives an inval-
idation for a line in its cache that also happens to be loaded into its SB by a USL marked
as needing validation. Receiving an invalidation indicates that the line has been updated.
Such update will typically cause the validation of the USL at the point of visibility to fail.
Validation could only succeed if this invalidation was caused by false sharing, or if the net
effect of all the updates to the line until the validation turned out to be silent (i.e., they
restored the data to its initial value). Since these conditions are unlikely, InvisiSpec squashes
such a USL on reception of the invalidation.
There is a second case of a USL with a high chance of validation failure. Assume that

USL1 needs validation and has data in the SB. Moreover, there is an earlier USL2 to the
same line (but to different words of the line) that also has its data in the SB and needs
validation. When USL2 performs the validation and brings the line to the core, InvisiSpec
also compares the line to USL1’s data in the SB. If the data are different, it shows that USL1

has read stale data. At that point, InvisiSpec conservatively squashes USL1.

6.2.4 Overlapping Validations and Exposures

To improve performance, we seek to overlap validation and exposure transactions as much
as possible. To ensure that overlaps are legal, we propose two requirements. The first one is
related to correctness: during the overlapped execution of multiple validation and exposure
transactions, the memory consistency model has to be enforced. This is the case even if
some of the loads involved are squashed and restarted.
The second requirement only applies to the Futuristic attack model, and is related to the

cache state: during the overlapped execution of multiple validation and exposure transac-
tions, no squashed transaction can change the state of the caches. This is because the essence
of our Futuristic model defense is to prevent squashed loads from changing the state of the
caches. For the Spectre attack model, this requirement does not apply because validations
and exposures are only issued for instructions in the correct path of a branch. While some of
these instructions may get squashed (e.g., due to memory consistency violations) and change
the state of the caches, these are correct program instructions and, hence, pose no threat
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under the Spectre attack model.
We propose sufficient conditions to ensure the two requirements. First, to enforce the

correctness requirement, we require that the validation and exposure transactions of the
different USLs start in program order. This condition, plus the fact that no validation or
exposure for a USL can start until that USL has already received the response to its initial
speculative request, ensures that the memory consistency model is enforced.
To enforce the second requirement for the Futuristic model, we require the following

conditions. First, if a USL issues a validation transaction, no subsequent validation or
exposure transaction can overlap with it. This is because, if the validation fails, it will
squash all subsequent loads. Second, if a USL issues an exposure transaction, all subsequent
exposure transactions up to, and including, the next validation transaction can overlap with
it. This is allowed because exposures never cause squashes. In the Spectre model defense,
validations and exposures can all overlap—since the cache state requirement does not apply.
Recall that validations and exposures bring cache lines. Hence, validations and/or expo-

sures to the same cache line have to be totally ordered.

Proving Correctness of Enforcing Memory Consistency As discussed above, vali-
dation and exposure transactions have to be initiated in program order to guarantee that
TSO memory consistency is maintained. To see why, recall that the only load-load reorder-
ing that leads to an observable violation of TSO is one in which two loads from processor
P1, which in program order are ld(y) first and ld(x) second, interact with two stores from
other processors, st(x) and st(y), such that they end up being globally ordered in a cycle
as: ld(x) → st(x) → st(y) → ld(y) [140]. In other words, ld(x) reads a value that gets
overwritten by st(x), st(y) is globally ordered after st(x), and ld(y) reads the value stored
by st(y). We now prove that such global order is not possible.
We start by defining what it means for a load ld(x) to be ordered between two writes

to the same variable as in the expression st(x) → ld(x) → st′(x). In InvisiSpec, the ld(x)
can be of one of three types: (i) a safe load, (ii) an unsafe speculative load (USL) that is
followed by an exposure, or (iii) a USL that is followed by a validation. For type (i), the order
expression above is clear. For type (ii), the ld(x) in the expression is the USL access and
not the exposure access, since the data returned by the exposure never reaches the pipeline.
Finally, for type (iii), the ld(x) in the expression is the validation access and not the USL
access, since the data returned by the validation is the one that confirms the correctness of
the transaction.
To prove that the cycle ld(x) → st(x) → st(y) → ld(y) is impossible, we consider nine

cases, namely the first load ld(y) ∈ {safe, USL with exposure, USL with validation} and the
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second load ld(x) ∈ {safe, USL with exposure, USL with validation}. We consider each case
in turn.

1. ld(x) is safe. In this case, the first load ld(y) can only be safe. Further, when both
ld(y) and ld(x) are safe, the conventional architecture design ensures that the cycle
cannot be formed.

2. ld(x) is a USL with validation. This is impossible because if ld(x)’s validation did read
a value that got overwritten by st(x) before ld(y) committed, the resulting invalidation
would squash ld(x).

3. ld(x) is a USL with exposure and ld(y) is safe. This case cannot create a cycle because
the condition for ld(x) to be a USL with exposure is that ld(y)’s read must have
received its requested data before ld(x) reads.

4. ld(y) and ld(x) are both USLs with exposures. This case cannot create a cycle for the
same reason as Case 3.

5. ld(x) is a USL with exposure and ld(y) is a USL with validation. This case cannot
create a cycle because one condition for ld(x) to be a USL with exposure is that ld(y)’s
validation is completed before ld(x) reads.

Therefore, our conditions of transforming validations to exposures (Sections 6.2.3) and the
condition of overlapping validations and exposures (this sections) are sufficient to maintain
the TSO consistency model.
RC does not prevent load-load reordering unless the loads are separated by a fence or syn-

chronization. Hence, the in-order validation/exposure initiation requirement can be relaxed.
For simplicity, InvisiSpec enforces this ordering for RC as well.

6.2.5 Reusing the Data in the Speculative Buffer

To exploit the spatial locality of a core’s speculative loads, a USL brings a full cache line
into the SB, and sets an Address Mask that identifies which part of the line is passed to a
register. If a second USL that is later in program order now requests data from the line that
the first USL has already requested or even brought into the SB, the second USL does not
issue a second cache hierarchy access. Instead, it waits until the first USL brings the line
into the first USL’s SB entry. Then, it copies the line into its own SB entry, and sets its
Address Mask accordingly.
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6.2.6 Reducing Main-Memory Accesses

A USL performs two transactions—one when it is first issued, and one when it validates
or exposes. Now, suppose that a USL’s first access misses in the last level cache (LLC) and
accesses main memory. Then, it is likely that the USL’s second access is also a long-latency
access to main memory.
To improve performance, we design InvisiSpec to avoid this second main-memory access

most of the time. Specifically, we add a per-core LLC Speculative Buffer (LLC-SB) next to
the LLC. When a USL’s first access reads the line from main memory, as the line is sent
back to the requesting core’s L1 SB, InvisiSpec stores a copy of it in the core’s LLC-SB.
Later, when the USL issues its validation or exposure, it will read the line from the core’s
LLC-SB, skipping the access to main memory.
If, in between the two accesses, a second core accesses the line with a validation/exposure or

a safe access, InvisiSpec invalidates the line from the first core’s LLC-SB. This conservatively
ensures that the LLC-SB does not hold stale data. In this case, the validation or exposure
transaction of the original USL will obtain the latest copy of the line from wherever it is in
the cache hierarchy.

6.3 DETAILED INVISISPEC DESIGN

6.3.1 Speculative Buffer in L1

Speculative Buffer Design InvisiSpec places the SB close to the core to keep the access
latency low. Our main goal in designing the SB is to keep its operation simple, rather then
minimizing its area; more area-efficient designs can be developed. Hence, we design the SB
with as many entries as the Load Queue (LQ), and a one-to-one mapping between the LQ
and SB entries (Figure 6.2).
This design makes several operations easy to support. Given an LQ entry, InvisiSpec can

quickly find its corresponding SB entry. Further, since the LQ can easily find if there are
multiple accesses to the same address, InvisiSpec can also identify multiple SB entries for the
same line. Importantly, it is trivial to (i) allocate an SB entry for the next load in program
order, (ii) remove the SB entry for a retiring load at the ROB head, and (iii) remove the SB
entries for a set of loads being squashed. These operations need simple moves of SB’s Head
and Tail pointers—which are the LQ’s Head and Tail pointers.
An SB entry does not store any address. It stores the data of a cache line plus an

Address Mask that indicates which bytes were read. Each LQ entry has some status bits:
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Figure 6.2: Speculative Buffer and its logical connection to the load queue.

Valid, Performed, State, and Prefetch. Valid records whether the entry is valid. Performed
indicates whether the data requested by the USL has arrived and is stored in the SB entry.
State are four bits that characterize the state of the load: “requiring an exposure when
it becomes visible” (E), “requiring a validation when it becomes visible” (V), “exposure or
validation has completed” (C), and “invisible speculation is not necessary for this load” (N).
The latter is used when invisible speculation is not needed, and the access should go directly
to the cache hierarchy. More than one of these bits can be set at a time. Recall that the
Performed bit and the State bits are used to change a validation to a cheaper exposure
(Section 6.2.3). Finally, Prefetch indicates whether this entry corresponds to a prefetch
(Section 6.3.2).

Operation of the Load Queue and Speculative Buffer We describe the LQ and SB
algorithms at key events.

• A load instruction is issued: The hardware allocates an LQ entry and an SB entry.
The LQ entry’s Valid bit is set.

• The address of a load is resolved: The load is ready to be sent to the cache hierarchy.
If the load is safe according to the attack model, the State bits in the LQ entry are set
to N and the load is issued to the cache hierarchy with a normal coherence transaction.
The SB entry will be unused.

Otherwise, the load is a USL, and the State is set to E or V, as dictated by the memory
consistency model (Section 6.2.3). The USL is issued to the cache hierarchy with a new
Spec-GetS transaction. This transaction requests the line in an invisible mode, without
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changing any state in any cache. The address mask in the SB entry is set. More details
on how Spec-GetS changes the coherence protocol are given in Section 6.3.5.

Similar to conventional core designs, as a Spec-GetS request is issued, the hardware
first tries to reuse any relevant local state. However, InvisiSpec reuses only state
allocated by prior (in program order) instructions, to avoid creating new side channels
(Section 6.4). Specifically, the LQ determines whether there is any prior load in the
LQ that already requested the same line. If so, and if the line has been received by
the SB, InvisiSpec obtains the line from the SB entry where it is, and copies it to
the requesting USL’s SB entry. If, instead, the line has not yet been received, the
requesting USL modifies the prior load’s MSHR waiting for the line, so that the line
is also delivered to its own SB entry on arrival. If there is a pending request for the
line by a later (in program order) load, the USL issues a Spec-GetS that allocates a
new MSHR. Having multiple Spec-GetS in flight for the same address does not pose a
problem because they do not change directory state (Section 6.3.5).

Finally, if there is a prior store in the ROB to the same address, the store data is
forwarded to the USL’s destination register, and to the USL’s SB entry. The Address
Mask of the SB entry is set. Then, a Spec-GetS transaction is still issued to the cache
hierarchy, while recording that, when the line is received, it should not overwrite the
bytes in the SB entry that are marked by the Address Mask. We choose this design
to treat all SB entries equally: they should contain the data line that their USLs have
read speculatively.

• The line requested by a USL arrives at the core: The line is copied to the SB entry
of the requesting USL, and the requested bytes are passed to the USL’s destination
register—unless, as indicated above, the data has already been forwarded by a store.
The Performed bit of the LQ entry is set. All these operations are performed for the
potentially multiple USLs waiting for this line. These operations are performed no
matter where the line comes from; in particular, it could come from the local L1 cache,
which remains unchanged.

• A USL reaches the visibility point: If the USL’s State in the LQ is V, InvisiSpec issues
a validation; if it is E, InvisiSpec issues an exposure. These transactions can also reuse
MSHRs of earlier requests (in program order) to the same line.

• The response to an exposure or validation arrives: The incoming line is saved in the
local cache hierarchy as in regular transactions. If this was an exposure response, the
requesting USL may or may not have retired. If it has not, InvisiSpec sets the USL’s
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State to C. If this was a validation response, the USL has not retired and needs to be
validated. The validation proceeds by comparing the bytes that were read by the USL
with the same bytes in the incoming cache line. If they match, the USL’s State is set
to C; otherwise, the USL is squashed—together with all the subsequent instructions.
Squashing moves the LQ and SB tail pointer forward.

All these operations are performed for the potentially multiple USLs waiting for this
line to become visible. At this point, InvisiSpec also can perform the early squash
operation of Section 6.2.3.

Note that, in IS-Spectre, squashing a USL can lead to squashing subsequent USLs
that have already become visible. Squashing such USLs does not cause any security
problem, because they are safe according to IS-Spectre, and so their microarchitectural
side-effects can be observed.

• An incoming cache line invalidation is received: In general, this event does not affect
the lines in the SB; such lines are invisible to the cache coherence protocol. However, we
implement the optimization of Section 6.2.3, where some USLs may be conservatively
squashed. Specifically, the LQ is searched for any USL with the Performed bit set
that has read from the line being invalidated, and that requires validation (i.e., its
State is V). These USLs are conservatively squashed, together with their subsequent
instructions. Of course, as in conventional cores, the incoming invalidation may affect
other loads in the LQ that have brought lines into the caches.

• A cache line is evicted from the local L1: Since the lines in the SB are invisible to the
cache coherence protocol, they are unaffected. As in conventional cores, the eviction
may affect other loads in the LQ that have brought lines into the caches.

Primitive Operations Table 6.3 shows the primitive operations of the SB. Thanks to the
SB design, all the operations are simple. Only the comparison of data in a validation is in
the critical path.

6.3.2 Supporting Prefetching

InvisiSpec supports software prefetch instructions. Such instructions follow the same two
steps as a USL. The first step is an “invisible” prefetch that brings a line to the SB without
changing any cache hierarchy state, and allows subsequent USLs to access the data locally.
The second one is an ordinary prefetch that brings the line to the cache when the prefetch
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Operation How It is Done Complexity? Critical Path?
Insert the data line Index the SB with the same Low No
requested by a USL index as the LQ. Fill the entry
Validate an SB entry Use the Address Mask to Low Yes

compare the data in the SB
entry to the incoming data

Copy one SB entry Read the data from one entry Low No
to another and write it to another

Table 6.3: Primitive operations of the SB.

can be made visible. This second access is an exposure, since prefetches need not go through
memory consistency checks.
To support software prefetches, InvisiSpec increases the size of a core’s SB and, conse-

quently, LQ. The new size of each of these structures is equal to the maximum number of
loads and prefetches that can be supported by the core at any given time. InvisiSpec marks
the prefetch entries in the LQ with a set Prefetch bit.
To be secure, InvisiSpec does not support speculative hardware prefetching. Only when a

load or another instruction is made visible, can that instruction trigger a hardware prefetch.

6.3.3 Per-Core Speculative Buffer in the LLC

InvisiSpec adds a per-core LLC-SB next to the LLC. Its purpose is to store lines that
USLs from the owner core have requested from main memory, and to provide the lines when
InvisiSpec issues the validations or exposures for the same loads—hence avoiding a second
access to main memory.
To understand the LLC-SB design, consider the case of a USL that issues a request that

will miss in the LLC and access the LLC-SB. However, before the USL receives the data, the
USL gets squashed, is re-issued, and re-sends the request to the LLC-SB. First, for security
reasons, we do not want the second request to use data loaded in the LLC-SB by a prior,
squashed request (Section 6.4). Hence, InvisiSpec forbids a USL from obtaining data from
the LLC-SB; if a USL request misses in the LLC, the request bypasses the LLC-SB and
accesses main memory. Second, it is possible that the two USL requests get reordered on
their way to the LLC-SB, which would confuse the LLC-SB. Hence, we add an Epoch ID
to each core, which is a counter that the hardware increments every time the core squashes
instructions. When a core communicates with its LLC-SB, it includes its Epoch ID in the
message. With this support, even if two USL requests from different epochs are reordered
in transit, the LLC-SB will know that, given two requests with different IDs, the one with
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the higher ID is the correct one.
We propose a simple design of the per-core LLC-SB, which can be easily optimized. It is

a circular buffer with as many entries as the LQ, and a one-to-one mapping between LQ and
LLC-SB entries. Each LLC-SB entry stores the data of a line, its address, and the ID of the
epoch when the line was loaded. USL requests and validation/exposure messages contain
the address requested, the index of the LLC-SB where the data should be written to or read
from, and the current Epoch ID. With this design, the algorithm works as follows:

• A USL request misses in the LLC: The request skips the LLC-SB and reads the line
from memory. Before saving the line in the indexed LLC-SB entry, it checks the entry’s
Epoch ID. If it is higher than the request’s own Epoch ID, the request is stale and is
dropped. Otherwise, line, address, and Epoch ID are saved in the entry, and the line
is sent to the core.

• A validation/exposure request misses in the LLC: The request checks the indexed LLC-
SB entry. If the address and Epoch ID match, InvisiSpec returns the line to the core,
therefore saving a main memory access. Otherwise, InvisiSpec accesses main memory
and returns the data there to the core. In both cases, InvisiSpec writes the line into
the LLC, and invalidates the line from the LLC-SBs of all the cores (including the
requesting core). This step is required to purge future potentially-stale data from the
LLC-SBs (Section 6.2.6). Invalidating the line from the LLC-SBs requires search, but
is not in the critical path, as InvisiSpec does it in the background, as the line is being
read from main memory and/or delivered to the requesting core.

• A safe load misses in the LLC: The request skips the LLC-SB and gets the line from
main memory. In the shadow of the LLC miss, InvisiSpec invalidates the line from the
LLC-SBs of all the cores, as in the previous case. The line is loaded into the LLC.

6.3.4 Disabling Interrupts

In IS-Future, the hardware can initiate a validation or exposure only when the USL be-
comes either (i) non-speculative because it reaches the ROB head or (ii) speculative non-
squashable by any earlier instruction. If we wait until the load reaches the ROB head to start
the validation, the pipeline may stall. Therefore, it is best to initiate the validation as soon
as the load becomes speculative non-squashable. As indicated in Section 6.2.1, speculative
non-squashable loads are loads that, while not at the ROB head, are preceded in the ROB
only by instructions that cannot be squashed by any of the squashing events in Table 6.1 for
Futuristic. As shown in the table, one of the squashing events is interrupts. Therefore, to
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make a load speculative non-squashable, interrupts need to be delayed from the time that
the load would otherwise be speculative non-squashable, until the time that the load reaches
the ROB head.
To satisfy this condition, InvisiSpec has the ability to automatically, transparently, and in

hardware disable interrupts for very short periods of time. Specifically, given a USL, when
the hardware notices that none of the instructions earlier than the USL in the ROB can be
squashed by any of the squashing events in Table 6.1 for Futuristic except for interrupts, the
hardware disables interrupts. The validation or exposure of the USL can then be initiatiated.
As soon as the USL reaches the head of the ROB, interrupts are automatically enabled again.
They remain enabled for at least a minimum period of time, to ensure that interrupts are
not starved.

6.3.5 Other Implementation Aspects

Changes to the Coherence Protocol InvisiSpec adds a new Spec-GetS coherence trans-
action, which obtains a copy of the latest version of a cache line from the cache hierarchy
without changing any cache or coherence states. For instance, in a directory protocol, a
Spec-GetS obtains the line from the directory if the directory owns it; otherwise, the di-
rectory forwards the request to the owner, which sends a copy of the line to the requester.
The directory does not order forwarded Spec-GetS requests with respect to other coherence
transactions, to avoid making any state changes. For this reason, if a forwarded Spec-GetS
arrives at a core after the core has lost ownership of the line, the Spec-GetS is bounced
back to the requester, which retries. The requesting USL cannot starve as a result of such
bounces, because eventually it either gets squashed or becomes safe. In the latter case, it
then issues a standard coherence transaction.

Atomic Instructions Since an atomic instruction involves a write, InvisiSpec does not
execute them speculatively. Execution is delayed as in current processors.

Securing the D-TLB To prevent a USL from observably changing the D-TLB state,
InvisiSpec uses a simple approach. First, on a D-TLB miss, it delays serving it via a page
table walk until the USL reaches the point of visibility. If the USL is squashed prior to
that point, no page table walk is performed. Second, on a D-TLB hit, any observable TLB
state changes such as updating D-TLB replacement state or access/dirty bits are delayed
to the USL’s point of visibility. A more sophisticated approach would involve using an SB
structure like the one used for the caches.
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No ABA Issues In an ABA scenario, a USL reads value A into the SB, and then the
memory location changes to B and back to A prior to the USL’s validation. An ABA scenario
does not violate the memory model in an InvisiSpec validation.

6.4 SECURITY ANALYSIS

InvisiSpec’s SB and LLC-SB do not create new side channels. To see why, we consider
the ways in which a transient, destined to be squashed USL (i.e., the transmitter) could try
to speed up or slow down the execution of a load that later retires (i.e., the receiver). We
note that if this second load is also squashed, there is no security concern, since a squashed
load does not have side effects, and hence does not pose a threat.

Speeding Up The transmitter could attempt to speed up the receiver’s execution by ac-
cessing the same line as the receiver, so that the latter would get its data with low latency
from the SB or LLC-SB entry allocated by the transmitter. For this to happen, the trans-
mitter has to execute before the receiver. In the following, we show that this side channel
cannot happen. To see why, consider the two possible cases:

a) The transmitter comes before the receiver in program order: In this case, the receiver
has to be issued after the transmitter is actually squashed. Otherwise, the receiver
would be squashed at the same time as the transmitter is. However, when the trans-
mitter is squashed, its entries in the SB and LLC-SB become unusable by a later
request: the SB entry’s Valid bit is reset, and the LLC-SB entry’s Epoch ID tag be-
comes stale, as the receiver gets a higher Epoch ID. As a result, the receiver cannot
reuse any state left behind by the transmitter.

b) The transmitter comes after the receiver in program order: This is the case when, be-
cause of out-of-order execution, the transmitter has already requested the line (and
maybe even loaded it into its own SB or LLC-SB entries) by the time the receiver
requests the line. The receiver could be sped-up only if it could leverage the trans-
mitter’s earlier request or buffered data. However, InvisiSpec does not allow a load
(USL or otherwise) to reuse any state (e.g., state in an SB entry or in an MHSR entry)
allocated by a USL that is later in program order. Instead, the receiver issues its own
request to the cache hierarchy (Section 6.2.1) and is unaffected by the transmitter. For
the LLC-SB, the only state reuse allowed occurs when a validation/exposure for a load
reuses the entry left by the Spec-GetS request of the same load.
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Slowing Down The transmitter could attempt to slow down the receiver’s execution by
allocating all the entries in one of the buffers. But recall that the receiver must retire for
the slow-down to be observable. Therefore, the receiver must come before the transmitter
in program order. However, SB and LLC-SB entries are allocated at issue time, due to their
correspondence to LQ entries. Therefore, allocation of SB or LLC-SB entries by the later
transmitter cannot affect the allocation ability of the earlier receiver. Finally, contention on
other resources, such as MSHRs or execution units, could slow down the receiver, but such
side channels are considered out of scope in this work.

6.5 EVALUATIONS

6.5.1 Experimental Setup

To evaluate InvisiSpec, we modify the Gem5 [129] simulator, which is a cycle-level simu-
lator with support for modeling the side effects of squashed instructions. 1

We run individual SPECInt2006 and SPECFP2006 applications [109] on a single core, and
multi-threaded PARSEC applications [110] on 8 cores. For SPEC, we use the reference input
size and skip the first 10 billion instructions; then, we simulate for 1 billion instructions.
For PARSEC we use the simmedium input size and simulate the whole region-of-interest
(ROI). Table 6.4 shows the parameters of the simulated architecture. When running a
SPEC application, we only enable one bank of the shared cache.

Parameter Value
Architecture 1 core (SPEC) or 8 cores (PARSEC) at 2.0GHz
Core 8-issue, out-of-order, no SMT, 32 Load Queue entries, 32

Store Queue entries, 192 ROB entries, Tournament
branch predictor, 4096 BTB entries, 16 RAS entries

Private L1-I Cache 32KB, 64B line, 4-way, 1 cycle round-trip (RT) lat., 1 port
Private L1-D Cache 64KB, 64B line, 8-way, 1 cycle RT latency, 3 Rd/Wr ports
Shared L2 Cache Per core: 2MB bank, 64B line, 16-way, 8 cycles RT local

latency, 16 cycles RT remote latency (max)
Network 4×2 mesh, 128b link width, 1 cycle latency per hop
Coherence Protocol Directory-based MESI protocol
DRAM RT latency: 50 ns after L2

Table 6.4: Parameters of the simulated architecture.

We model the 5 processor configurations shown in Table 6.5: Base is a conventional,
1The implementation has been open sourced at https://github.com/mjyan0720/InvisiSpec-1.0.
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insecure processor, Fe-Sp inserts a fence after every indirect/conditional branch, IS-Sp is
InvisiSpec-Spectre, Fe-Fu inserts a fence before every load, and IS-Fu is InvisiSpec-Future.
We model both TSO and RC.

Names Configurations
Base UnsafeBaseline Conventional, insecure baseline processor
Fe-Sp Fence-Spectre Insert a fence after every indirect/conditional branch
IS-Sp InvisiSpec-Spectre USL modifies only SB, and is made visible after

all the preceding branches are resolved
Fe-Fu Fence-Future Insert a fence before every load instruction
IS-Fu InvisiSpec-Future USL modifies only SB, and is made visible when it

is either non-speculative or spec non-squashable

Table 6.5: Simulated processor configurations.

In InvisiSpec-Future, a USL is ready to initiate a validation/exposure when the following
is true for all the instructions before the USL in the ROB: (i) they cannot suffer exceptions
anymore, (ii) there are no unresolved control-flow instructions, (iii) all stores have retired
into the write buffer, (iv) all loads have either finished their validation or initiated their
exposure transaction, and (v) all synchronization and fence instructions have completed. At
that point, we temporarily disable interrupts and initiate the validation/exposure. These
are slightly more conservative conditions than those listed in Table 6.1 for Futuristic.

6.5.2 Proof-of-Concept Defense Analysis

We evaluate the effectiveness of InvisiSpec-Spectre at defending against the attack in
Section 6.1.1. We set the secret value stored at address Y to 84. After triggering the
misprediction in the victim, the attacker scans array array2 and reports the access latency.
Figure 6.3 shows the median access latency for each cache line measured by the attacker
after 100 times.
From the figure, we see that under Base, the attacker can obtain the secret value. Only

the access to the line corresponding to the secret value hits in the caches, and takes less than
40 cycles. All the other accesses go to main memory, and take over 150 cycles. However,
with IS-Sp, the attack is successfully thwarted. All the accesses to all the lines go to main
memory because loads in the mispredicted path of a branch do not change the cache state,
and the SB does not leak information from squashed loads as discussed in Section 6.4.
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Figure 6.3: Access latency measured in the PoC attack.

6.5.3 Performance Evaluation of the SPEC Applications

Execution Time Figure 6.4 compares the execution time of the SPEC applications on
the 5 processor configurations of Table 6.5. From left to right, we show data for each
application under TSO, for the average application under TSO, and for the average under
RC (RC-Average). Each set of bars is normalized to Base. For IS-Sp and IS-Fu, we show
the contribution of the stall caused by validation operations.
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Figure 6.4: Normalized execution time of the SPEC applications.

If we focus on the fence-based solutions, we see that they have high overhead. Under TSO,
the average execution time of Fe-Sp and Fe-Fu is 88% and 246% higher, respectively, than
Base. The overhead of InvisiSpec is very small. Under TSO, the average execution time of
IS-Sp and IS-Fu is 7.6% and 18.2% higher, respectively, than Base.
There are three main reasons for the slowdowns of IS-Sp and IS-Fu: validation stalls,
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TLB miss stalls, and contention due to two accesses per load. We consider each of them in
turn.
For IS-Sp and IS-Fu, the figure shows the contribution of the stall caused by validation

operations. However, such stalls are so small that they can barely be seen in the figure. The
reason is that most of the validations hit in the L1 cache and are served quickly.
In IS-Sp, the application with the highest execution overhead is omnetpp (around 80%).

The main reason is the omnetpp suffers many TLB misses. In Base, TLB misses are not
delayed and served speculatively. In contrast, IS-Sp and IS-Fu delay serving TLB miss
requests until USLs reach their visibility points. In IS-Fu, applications with a high rate
of memory system accesses such as libquantum, GemsFDTD and milc have the highest
execution time increase (around 35-90%). About 35% of the instructions in these applications
are load instructions. The resulting high rate of USLs, many inducing two cache hierarchy
accesses, causes contention in the cache hierarchy and slows down execution.
In RC, the average execution time in IS-Sp and IS-Fu is 8.2% and 16.8% higher than in

Base.

Network Traffic We record the network traffic, measured as the total number of bytes
transmitted between caches, and between cache and main memory. Figure 6.5 compares the
traffic in the 5 processor configurations of Table 6.5. The bars are organized as in Figure 6.4.
For IS-Sp and IS-Fu, we show the fraction of the traffic induced by USLs (SpecLoad) and
exposures/validations. The rest of the bar is due to non-speculative accesses.
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Figure 6.5: Normalized network traffic of the SPEC applications.

Under TSO, the average network traffic in IS-Sp and IS-Fu is 35% and 59% higher,
respectively, than Base. The traffic increase is about the same under RC.
On average, the traffic in IS-Sp and IS-Fu without the exposures/validations is a bit

higher than in Base. On top of that, we have the exposure and validation traffic. How-
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ever, in some applications—most notably sjeng—the traffic without exposures/validations
is already much higher than Base. The reason is that these programs have a high branch
misprediction rate. This leads to many USLs that get squashed, increasing the SpecLoad
category. Note that a given load may be squashed multiple times in a row, if it is in the
shadow of multiple mispredicted branches—inducing a large SpecLoad category. In programs
with a large SpecLoad category, the Expose/Validate category is usually small. The reason is
that, by the time a USL is squashed for its last time, it may be reissued as a non-speculative
load, and not require exposure/validation.
On average, the traffic in Fe-Sp and Fe-Fu is like in Base. Intuitively, it should be lower

than Base because Fe-Sp and Fe-Fu do not execute speculative instructions. In reality, it
can be shown that, while the data traffic is lower, the instruction traffic is higher, and the
two effects cancel out. The reason is that our simulation system still fetches speculative
instructions (since this paper only focuses on the data cache hierarchy), without executing
them. Fences in the pipeline cause a larger volume of instructions fetched in mispredicted
branch paths.

6.5.4 Performance Evaluation of the PARSEC Applications

Execution Time Figure 6.6 shows the normalized execution time of the PARSEC appli-
cations on our 5 processor configurations. The figure is organized as in Figure 6.4. We see
that Fe-Sp and Fe-Fu increase the average execution time over Base by a substantial 67%
and 190% under TSO, respectively. Similar numbers are attained with RC. On the other
hand, under TSO, IS-Sp decreases the average execution time by 0.8% and IS-Fu increases
the average execution time by 14%. Under RC, we see that IS-Sp and IS-Fu increase the
average execution time over Base by 3% and 15%, respectively. These slowdowns are smaller
than in SPEC programs.
From Figure 6.6, we see that validation stalls in IS-Sp and IS-Fu are minimal. This is

because many of the validations are satisfied by the L1 cache. The main reason for slowdowns
in most applications is the resource contention caused by two accesses per speculative load.
However, among all the applications, blackscholes and swaptions perform better under IS-Sp
and IS-Fu than Base. This happens because of a reduction in the number of pipeline squashes
due to L1 evictions. Base conservatively squashes any in-flight load upon an invalidation or
an L1 eviction of the cache line read by the load. In contrast, InvisiSpec does not squash
the pipeline on an invalidation or an L1 eviction of the line read by a load marked as only
needing exposure, which saves a lot of squashes. For example, blackscholes suffers from
more than 2M squashes due to L1 evictions in Base, while almost zero in IS-Sp and IS-Fu.
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Figure 6.6: Normalized execution time of the PARSEC applications.

swaptions has more than 5 times of squashes due to L1 evictions in Base than IS-Sp and
IS-Fu. Excluding blackscholes and swaptions, under TSO, IS-Sp and IS-Fu increase the
average execution time of the rest applications by 8% and 24%, over Base.

Network Traffic Figure 6.7 shows the normalized traffic of the PARSEC applications in
our 5 configurations. The figure is organized as usual. The IS-Sp and IS-Fu bars are broken
down into traffic induced by USLs (SpecLoad), by exposures/validations, and (the rest of the
bar) by non-speculative accesses.
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Figure 6.7: Normalized network traffic of the PARSEC applications.

On average, Fe-Sp and Fe-Fu have less traffic than Base. The main reason is that they do
not execute speculative instructions. Under TSO, IS-Sp and IS-Fu increase the traffic by an
average of 13% and 33%, respectively, over Base. Similar numbers are obtained under RC.
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Generally, IS-Sp and IS-Fu exhibit modest traffic increases. However, in two applications—
blackscholes and swaptions—the traffic is lower in the fence-based and InvisiSpec-based
configurations than Base. The reason is that, as mentioned before, the two applications
have higher pipeline squashes due to L1 evictions under Base. This leads to many memory
accesses being re-executed, resulting in higher traffic.

6.5.5 Characterization of InvisiSpec’s Operation

Exposures and Validations L1-SB LLC-SB
Application % L1 Hit % L1 Miss Hit Rate Hit Rate
Name % Exposures Validations Validations (%) (%)

Sp Fu Sp Fu Sp Fu Sp Fu Sp Fu

SP
E
C

sjeng 26.6 37.5 68.9 62.5 4.4 0.0 0.0 0.0 100.0 99.7
libquantum 13.9 13.4 0.1 0.0 86.0 86.6 5.6 5.4 100.0 100.0
omnetpp 43.9 44.9 47.0 46.9 9.1 8.2 4.8 4.4 100.0 100.0
Average 14.7 15.7 71.3 73.3 14.0 11.0 0.6 1.9 99.9 99.8

PA
R
SE

C bodytrack 4.2 3.3 87.3 90.5 8.5 6.2 0.5 0.8 99.7 99.4
fluidanimate 6.4 6.7 92.9 92.4 0.7 0.9 0.1 3.5 100.0 99.9
swaptions 4.5 5.6 88.0 92.3 7.5 2.1 3.5 0.8 99.6 98.8
Average 9.0 6.8 83.7 87.8 7.3 5.4 1.5 2.4 99.3 99.5

Table 6.6: Characterization of InvisiSpec’s operation under TSO. Sp and Fu stand for IS-Sp
and IS-Fu.

Table 6.6 shows some statistics related to InvisiSpec’s operation under TSO. It shows data
on 3 SPEC applications, the average of SPEC, 3 PARSEC applications, and the average of
PARSEC. Columns 3-8 break down the total number of exposures and validations into
exposures, validations that hit in the L1 cache, and validations that miss in the L1 cache.
We see that a modest fraction of the transactions are exposures (e.g., 16% in SPEC and 7%
in PARSEC for IS-Fu). Further, a big fraction are validations that hit in L1 (e.g., 73% in
SPEC and 88% in PARSEC for IS-Fu). That is why most applications do not suffer from
long validation stalls.
Columns 9-12 show the hit rates in the L1-SB, and in the LLC-SB. The LLC-SB hit rates

only apply to validations and exposures. On average, L1-SB hit rates are very low (1.9%
in SPEC and 2.4% in PARSEC for IS-Fu), while LLC-SB hit rates are very high (99.8% in
SPEC and 99.5% in PARSEC for IS-Fu). High LLC-SB hit rates boost performance.
Table 6.7 shows statistics related to the squash events under IS-Sp and IS-Fu under TSO.

It shows data for the same SPEC and PARSEC applications as in Table 6.6. On average,
PARSEC applications have a lower squash rate than SPEC applications. Columns 5-10 break
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# Squashes Reason for Squash (%)
Application Per Branch Consistency Validation
Name 1M Instructions Misprediction Violation Failure

Sp Fu Sp Fu Sp Fu Sp Fu
SP

E
C

sjeng 73,752 73,996 100.0 100.0 0.0 0.0 0.0 0.0
libquantum 0 0 100.0 100.0 0.0 0.0 0.0 0.0
omnetpp 15,890 16,139 100.0 100.0 0.0 0.0 0.0 0.0
Average 14,816 14,905 97.1 97.4 2.9 2.6 0.0 0.0

PA
R
SE

C bodytrack 1,974 1,735 95.4 94.3 4.6 5.7 0.0 0.0
fluidanimate 4,961 4,983 99.8 99.9 0.2 0.1 0.0 0.00
swaptions 4,556 4,724 61.8 62.4 38.2 37.6 0.0 0.0
Average 4,527 4,524 87.7 87.7 12.3 12.3 0.0 0.0

Table 6.7: Characterization of InvisiSpec’s execution squashes under TSO. Sp and Fu stand
for IS-Sp and IS-Fu.

these events into the reason for the squash: branch misprediction, consistency violation, and
validation failure. The large majority are caused by branch mispredictions (e.g., 97% in
SPEC and 88% in PARSEC for IS-Fu), and only a few by consistency violations (e.g., 2.6%
in SPEC and 12% in PARSEC for IS-Fu). There are practically no validation failures.
To give an idea of the range of values observed, the tables also show data for a few

individual applications. Finally, we collected the same statistics under RC. Under RC, there
are practically no validations (i.e., practically all are exposures). Further, there are very few
consistency violations, and practically all squashes are due to branch mispredictions.

6.5.6 Estimating Hardware Overhead

Metric L1-SB LLC-SB
Area (mm2) 0.0174 0.0176
Access time (ps) 97.1 97.1
Dynamic read energy (pJ) 4.4 4.4
Dynamic write energy (pJ) 4.3 4.3
Leakage power (mW) 0.56 0.61

Table 6.8: Per-core hardware overhead of InvisiSpec.

InvisiSpec adds two main per-core structures, namely, the L1-SB (a cache) and the LLC-
SB (a CAM). We use CACTI 5 [141] to estimate, at 16nm, their area, access time, dynamic
read and write energies, and leakage power. These estimates, shown in Table 6.8, do not
include their random logic. Overall, these structures add modest overhead.
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6.6 CONCLUSION

This chapter presented InvisiSpec, a novel approach to defend against hardware transient
execution attacks in multiprocessors by making speculation invisible in the data cache hier-
archy. In InvisiSpec, unsafe speculative loads read data into a speculative buffer, without
modifying the cache hierarchy. When the loads are safe, they are made visible to the rest of
the system through validations or exposures. We proposed an InvisiSpec design to defend
against Spectre-like attacks, and one to defend against futuristic attacks where any specula-
tive load may pose a threat. Our evaluation showed that, under TSO, using fences to defend
against Spectre attacks slows down execution by 82% relative to a conventional, insecure
processor; InvisiSpec reduces the execution slowdown to only 5.2%. Using fences to defend
against futuristic attacks slows down execution by 231%; InvisiSpec reduces the slowdown
to 17%.

130



CHAPTER 7: CONCLUSION

This thesis studied cache-based side channel attacks. We proposed secure hardware pro-
cessor designs to effectively and efficiently address the side channel vulnerabilities on modern
cache hierarchies. Despite the high volume of related work, the thesis made the following
contributions and helped the community to better understand the threats.
First, we studied the role of cache interference in different cache attacks and proposed

effective solutions to mitigate shared cache attacks by limiting malicious interference. The
thesis provided an important insight that creating inclusion victims is the key in active
cache attacks, since they give an attacker visibility into a victim’s private cache. We used
the insight to design an effective and practical defense mechanism (SHARP) for inclusive
cache hierarchies. In addition, we showed that inclusion victims also exist in non-inclusive
cache hierarchies and that the non-inclusive property is insufficient to stave off cache-based
side channel attacks. We showed that directory structure is the unified attack surface for all
types of cache hierarchies. Moreover, we proposed the first scalable secure directory design
(SecDir) to address the directory side channel vulnerability.
Second, we studied how to effectively defend against transient execution attacks on cache

hierarchies. The thesis developed a comprehensive attack model—the Futuristic attack
model, which considers attacks beyond Spectre and Meltdown. “Invisible Speculation” (Invi-
siSpec), as the first robust hardware defense mechanism, is a novel and effective strategy for
multiprocessors. It protects against cache-based attacks triggered by any speculative load.
The lessons learned from the design have inspired our recent work, Speculative Taint Track-
ing [93], and will influence more future work on designing comprehensive defense solutions.

Moving forward, we would like to ask, is micro-architecture side channel a solved problem?
The answer is obliviously no. We are now entering a new era of computer architecture when
security and trustworthiness play an increasingly important role. It is insufficient to merely
patch existing systems for known attacks. We need to redesign processor hardware and
systems to defeat future attacks. There are a lot of research opportunities and challenges
ahead. We conclude by discussing three open challenges.
First, while the thesis did a thorough study on cross-core cache attacks, there exist other

attack contexts, which require different security and performance considerations. The ma-
jority of side channel vulnerabilities stem from the sharing of system resources. It has been
shown that same-core attacks and even same-thread attacks are feasible in Javascript [3,41]
or SGX [142,143] environments. In those attack contexts, the attacker and the victim share
more system resources, including the private caches and pipeline structures. For example,

131



prior mitigation techniques which leverage cache partitioning or randomization have to be
redesigned to achieve satisfactory security and performance tradeoffs. Overall, how to design
holistic defense solutions is still an open research problem.
Second, even though the thesis proposed hardware-only defense mechanisms, it is worth-

while to think about how software and hardware co-designs can help address side channel
vulnerabilities. For example, many hardware-only defense mechanisms such as SHARP are
ineffective towards passive cache attacks, where the attacker exploits the victim’s self-reuses
or self-conflicts of cache lines. To address this problem, we could redesign the software and
hardware interfaces to provide programmers easier ways to control cache interference caused
by itself. As another example, when defending against transient execution attacks, Invi-
siSpec considers that all speculative loads are vulnerable, and their side effects need to be
hidden. It is promising to leverage software analysis to identify safe loads in advance, and
selectively enable InvisiSpec to reduce its performance overhead.
Third, we see the lack of effective and practical methodologies to verify security proper-

ties [144] of hardware designs. Currently, we have to manually analyze security properties
of hardware defense mechanisms based on our understanding of the existing attacks. As the
attack strategies always evolve, the security goals become moving targets. As oppose to us-
ing case-by-case analysis, it is necessary to pursue formal analysis. One possible direction is
to use information flow tracking [145,146] to enforce the non-interference property between
different security domains. However, in practice, such a strong security property can only
be achieved at the cost of performance and programmability. Another direction is to design
effective tools to quantify information leakage if non-interference can not be achieved.
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APPENDIX A: CACHE TELEPATHY

This chapter presents another example of cache-based side channel attacks that targets the
Deep Neural Networks (DNNs). A DNN’s architecture (i.e., its hyper-parameters) broadly
determines the DNN’s accuracy and performance, and is often confidential. We propose
Cache Telepathy: an efficient mechanism to help obtain a DNN’s architecture using the
cache side channel. We show that our attack is effective in helping obtain the architectures
by very substantially reducing the search space of target DNN architectures.

For the past several years, Deep Neural Networks (DNNs) have increased in popularity
thanks to their ability to attain high accuracy and performance in a multitude of machine
learning tasks — e.g., image and speech recognition [147, 148], scene generation [149], and
game playing [150]. An emerging framework that provides end-to-end infrastructure for using
DNNs is Machine Learning as a Service (MLaaS) [151,152]. In MLaaS, trusted clients submit
DNNs or training data to MLaaS service providers (e.g., an Amazon or Google datacenter).
Service providers host the DNNs, and allow remote untrusted users to submit queries to the
DNNs for a fee.
Despite its promise, MLaaS provides new ways to undermine the privacy of the hosted

DNNs. An adversary may be able to learn details of the hosted DNNs beyond the official
query APIs. For example, an adversary may try to learn the DNN’s architecture (i.e., its
hyper-parameters). These are the parameters that give the network its shape, such as the
number and types of layers, the number of neurons per layer, and the connections between
layers.
The architecture of a DNN broadly determines the DNN’s accuracy and performance.

For this reason, obtaining it often has high commercial value. Furthermore, once a DNN’s
architecture is known, other attacks are possible, such as the model extraction attack [153]
(which obtains the weights of the DNN’s edges), and the membership inference attack [154,
155] (which determines whether an input was used to train the DNN).
Yet, stealing a DNN’s architecture is challenging. DNNs have a multitude of hyper-

parameters, which makes brute-force guesswork unfeasible. Moreover, the DNN design space
has been growing with time, which is further aggravating the adversary’s task.
This chapter demonstrates that despite the large search space, attackers can quickly reduce

the search space of DNN architectures in the MLaaS setting using the cache side channel.
Our insight is that DNN inference relies heavily on tiled GEMM (Generalized Matrix Multi-
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ply), and that DNN architecture parameters determine the number of GEMM calls and the
dimensions of the matrices used in the GEMM functions. Such information can be leaked
through the cache side channel.
We present an attack that we call Cache Telepathy. It is the first cache side channel attack

targeting modern DNNs on general-purpose processors (CPUs). The reason for targeting
CPUs is that CPUs are widely used for DNN inference in existing MLaaS platforms, such
as Facebook’s [156] and Amazon’s [157].
We demonstrate our attack by implementing it on a state-of-the-art platform. We use

Prime+Probe and Flush+Reload to attack the VGG and ResNet DNNs running OpenBLAS
and Intel MKL libraries. Our attack is effective at helping obtain the architectures by very
substantially reducing the search space of target DNN architectures. For example, when
attacking the OpenBLAS library, for the different layers in VGG-16, it reduces the search
space from more than 5.4×1012 architectures to just 16; for the different modules in ResNet-
50, it reduces the search space from more than 6× 1046 architectures to only 512.
This chapter makes the following contributions:

• It provides a detailed analysis of the mapping of DNN hyper-parameters to the number
of GEMM calls and their arguments.

• It implements the first cache-based side channel attack to extract DNN architectures
on general purpose processors.

• It evaluates the attack on VGG and ResNet DNNs running OpenBLAS and Intel MKL
libraries.

A.1 BACKGROUND ON DNN AND DNN PRIVACY ATTACKS

A.1.1 Deep Neural Networks

Deep Neural Networks (DNNs) are a class of Machine Learning (ML) algorithms that
use a cascade of multiple layers of nonlinear processing units for feature extraction and
transformation [158]. There are several major types of DNNs in use today, two popular
types being fully-connected neural networks (or multi-layer perceptrons) and Convolutional
Neural Networks (CNNs).

DNN Architecture The architecture of a DNN, also called the hyper-parameters, gives
the network its shape. DNN hyper-parameters considered in this chapter are:
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a) Total number of layers.

b) Layer types, such as fully-connected, convolutional, or pooling layer.

c) Connections between layers, including sequential and non-sequential connections such
as shortcuts. Non-sequential connections exist in recent DNNs, such as ResNet [148].
For example, instead of directly using the output from a prior layer as the input to a
later layer, a shortcut involves summing up the outputs of two prior layers and using
the result as the input for a later layer.

d) Hyper-parameters for each layer. For a fully-connected layer, this is the number of
neurons in that layer. For a convolutional layer, this is the number of filters, the filter
size, and the stride size.

e) The activation function in each layer, e.g., relu and sigmoid.

DNN Weights The computation in each DNN layer involves many multiply-accumulate
operations (MACCs) on input neurons. The DNN weights, also called parameters, specify
operands to these multiply-accumulate operations. In a fully-connected layer, each edge
out of a neuron is a MACC with a weight; in a convolutional layer, each filter is a multi-
dimensional array of weights, which is used as a sliding window that computes dot products
over input neurons.

DNN Usage DNNs usage has two distinct phases: training and inference. In training,
the DNN designer starts with a network architecture and a training set of labeled inputs,
and tries to find the DNN weights to minimize mis-prediction error. Training is generally
performed offline on GPUs and takes a relatively long time to finish, typically hours or
days [156, 159]. In inference, the trained model is deployed and used to make real-time
predictions on new inputs. For good responsiveness, inference is generally performed on
CPUs [156,157].

A.1.2 Prior Privacy Attacks Need the DNN Architecture

To gain insight into the importance of DNN architectures, we discuss prior DNN privacy
attacks [153–155,160]. There are three types of such attacks, each with a different goal. All
of them require knowing the victim’s DNN architecture. In the following, we refer to the
victim’s network as the oracle network, its architecture as the oracle DNN architecture, and
its training data set as the oracle training data set.
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In the model extraction attack [153], the attacker tries to obtain a network that is close
enough to the oracle network. It assumes that the attacker knows the oracle DNN archi-
tecture at the start, and tries to estimate the weights of the oracle network. The attacker
creates a synthetic data set, requests the classification results from the oracle network, and
uses such results to train a network that uses the oracle architecture.
The membership inference attack [154, 155] aims to infer the composition of the oracle

training data set, which is expressed as the probability of whether a data sample exists in
the training set or not. This attack also requires knowledge of the oracle DNN architecture.
Attackers create multiple synthetic data sets and train multiple networks that use the oracle
architecture. Then, they run the inference algorithm on these networks with some inputs in
their training sets and some not in their training sets. They then compare the results to find
the patterns in the output of the data in the training sets. The pattern information is used
to infer the composition of the oracle training set. Specifically, given a data sample, they
run the inference algorithm of the oracle network, obtain the output and check whether the
output matches the pattern obtained before. The more the output matches the pattern, the
more likely the data sample exists in the oracle training set.
The hyper-parameter stealing attack [160] steals the loss function and regularization term

used in ML algorithms, including DNN training and inference. This attack also relies on
knowing the oracle DNN architecture. During the attack, attackers leverage the model
extraction attack to learn the DNN’s weights. They then find the loss function that minimizes
the training misprediction error.

A.2 THREAT MODEL

This chapter develops a cache-timing attack that quickly reduces the search space of DNN
architectures. The attack relies on the following standard assumptions.
Black-box Access. We follow a black-box threat model in an MLaaS setting similar to
[153]. In a black-box attack, the DNN model is only accessible to attackers via an official
query interface. Attackers do not have prior knowledge about the target DNN, including its
hyper-parameters, weights and training data.
Co-location. We assume that the attacker process can use techniques from prior work [16,
39, 161–165] to co-locate onto the same processor chip as the victim process running DNN
inference. This is feasible, as current MLaaS jobs are deployed on shared clouds. Note that
recent MLaaS, such as Amazon SageMaker [166] and Google ML Engine [167] allow users
to upload their own code for training and inference, instead of using pre-defined APIs. In
this case, attackers can disguise themselves as an MLaaS process and the cloud scheduler
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will have difficulty in separating attacker processes from victim processes.
Code Analysis. We also assume that the attacker can analyze the ML framework code
and linear algebra libraries used by the victim. These are realistic assumptions. First, open-
source ML frameworks are widely used for efficient development of ML applications. The
frameworks supported by Google, Amazon and other companies, including Tensorflow [168],
Caffe [169], and MXNet [170] are all public. Our analysis is applicable to almost all of
these frameworks. Second, the frameworks’ backends are all supported by high-performance
and popular linear algebra libraries, such as OpenBLAS [171], Eigen [172] and MKL [173].
OpenBLAS and Eigen are open sourced, and MKL can be reverse engineered, as we show
in Section A.6.

A.3 ATTACK OVERVIEW

The goal of Cache Telepathy is to substantially reduce the search space of target DNN
architectures. In this section, we first discuss how our attack can assist other DNN privacy
attacks, and then give an overview of the Cache Telepathy attack procedure.

Cache Telepathy’s Role in Existing DNN Attacks In settings where DNN archi-
tectures are not known, our attack can serve as an essential initial step for many existing
DNN privacy attacks, including model extraction attacks [153] and membership inference
attacks [154].

①construct	
dataset

② query	oracle	
network

③ get	a	DNN	
architecture	from	
a	search	space

④ train	a	
substitute	
network

⑥ output	substitute	
architecture	and	

weights

⑤ accuracy	
enough?

training	
data

training	
labels

no

yes

Figure A.1: Cache Telepathy assists model extraction attacks.

Figure A.1 demonstrates how Cache Telepathy makes the model extraction attack feasible.
The final goal of the model extraction attack is to obtain a network that is close enough to
the oracle network (Section A.1.2). The attack uses the following steps. First, the attacker
generates a synthetic training data set (¬). This step can be achieved using a random feature
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vector method [153] or more sophisticated techniques, such as hill-climbing [154]. Next, the
attacker queries the oracle network via inference APIs provided by MLaaS providers to get
labels or confidence values (). The synthetic data set and corresponding query results will
be used as training data and labels later. In the case that the oracle architecture is not
known, the attacker needs to choose a DNN architecture from a search space (®) and then
train a network with the chosen architecture (¯). Steps ®-¯ repeat until a network is found
with sufficient prediction accuracy (°).
This attack process is extremely compute intensive, since it involves many iterations of

step ¯. Considering the depth and complexity of state-of-the-art DNNs, training and vali-
dating each network can take hours to days. Moreover, without any information about the
architecture, the search space of possible architectures is often intractable, and thus, the
model extraction attack is infeasible. However, Cache Telepathy can reduce the architecture
search space (®) to a tractable size and make the attack feasible in settings where DNN
architectures are unknown.
Membership inference attacks suffer from a more serious problem if the DNN architecture

is not known. Recall that the attack aims to figure out the composition of the oracle training
data set (Section A.1.2). If there are many different candidate architectures, the attacker
needs to consider the results generated by all the candidate architectures and statistically
summarize inconsistent results from those architectures. A large search space of candidate
architectures, not only significantly increases the computation requirements, but also poten-
tially hurts attack accuracy. Consider a candidate architecture which is very different from
the oracle architecture. It is likely to contribute incorrect results, and in turn, decrease the
attack accuracy. However, Cache Telepathy can reduce the search space to a reasonable
size. Moreover, the candidate architectures in the reduced search space have the same or
very similar hyper-parameters as the oracle network. Therefore, they perform very similarly
to the oracle network on various data sets. Hence, our attack also plays an important role
in membership inference attacks.

Overall Cache Telepathy Attack Procedure Our attack is based on two observa-
tions. First, DNN inference relies heavily on GEMM (Generalized Matrix Multiply). We
conduct a detailed analysis of how GEMM is used in ML frameworks, and figure out the
mapping between DNN hyper-parameters and matrix parameters (Section A.4). Second,
high-performance GEMM algorithms are vulnerable to cache-based side channel attacks, as
they are all tuned for the cache hierarchy through matrix blocking (i.e., tiling). When the
block size is public (or can be easily deduced), the attacker can use the cache side channel
to count blocks and learn the matrix sizes.
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The Cache Telepathy attack procedure includes a cache attack and post processing steps.
First, it uses a cache attack to monitor matrix multiplications and obtain matrix parameters
(Sections A.5 and A.6). Then, the DNN architecture is reverse-engineered based on the
mapping between DNN hyper-parameters and matrix parameters (Section A.4). Finally,
Cache Telepathy prunes the possible values of the remaining undiscovered hyper-parameters
and generates a pruned search space for the target DNN architecture (Section A.8.3). We
consider the attack to be successful if we can generate a reasonable number of candidate
architectures whose hyper-parameters are the same or very similar to the oracle network.

A.4 MAPPING DNNS TO MATRIX PARAMETERS

DNN hyper-parameters, listed in Section A.1.1, can be mapped to GEMM execution.
We first discuss how the layer type and configurations within each layer map to matrix
parameters, assuming that all layers are sequentially connected (Section A.4.1 and A.4.2).
We then generalize the mapping by showing how the connections between layers map to
GEMM execution (Section A.4.3). Finally, we discuss what information is required to extract
the activation functions of Section A.1.1 (Section A.4.4).

A.4.1 Analysis of DNN Layers

There are two types of neural network layers whose computation can be mapped to matrix
multiplications, namely fully-connected and convolutional layers.

Fully-connected Layer

In a fully-connected layer, each neuron computes a weighted sum of values from all the
neurons in the previous layer, followed by a non-linear transformation. The ith layer com-
putes out i = fi(in i ⊗ θi) where in i is the input vector, θi is the weight matrix, ⊗ denotes a
matrix-vector operation, f is an element-wise non-linear function such as tanh or sigmoid,
and out i is the resulting output vector.
The feed-forward computation of a fully-connected DNN can be performed over a batch

of a few inputs at a time (B). These multiple input vectors are stacked into an input matrix
In i. A matrix multiplication between the input matrix and the weight matrix (θi) produces
an output matrix, which is a stack of output vectors. We represent the computation as
Oi = fi(In i · θi) where In i is a matrix with as many rows as B and as many columns as Ni

(the number of neurons in the layer i); Oi is a matrix with as many rows as B and as many
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columns as Ni+1 (the number of neurons in the layer i+ 1); and θi is a matrix with Ni rows
and Ni+1 columns. Table A.1 shows the number of rows and columns of all the matrices.

Matrix n_row n_col
Input: Ini B Ni

Weight: θi Ni Ni+1

Output: Oi B Ni+1

Table A.1: Matrix sizes in a fully-connected layer.

Convolutional Layer

In a convolutional layer, a neuron is connected to only a spatial region of neurons in the
previous layer. Consider the upper row of Figure A.2, which shows the computation in the
ith layer. The layer generates an output out i (right part of the upper row) by performing
convolution operations on an input in i (center of the upper row) with multiple filters (left
part of the upper row). The input volume in i is of size Wi ×Hi ×Di, where the depth (Di)
also refers to the number of channels of the input. Each filter is of size Ri ×Ri ×Di.
To see how a convolution operation is performed, the figure highlights the process of

generating one output neuron in out i. The neuron is a result of a convolution operation –
an elementwise dot product of the filter shaded in dots and the subvolume in in i shaded in
dashes. Both the subvolume and the filter have dimensions Ri × Ri × Di. Applying one
filter on the entire input volume (in i) generates one channel of the output (out i). Thus, the
number of filters in layer i (Di+1) is the number of channels (depth) in the output volume.
The lower row of Figure A.2 shows a common implementation that transforms the multiple

convolution operations in a layer into a single matrix multiply. First, as shown in arrow ¬,
each filter is stretched out into a row to form a matrix F ′i . The number of rows in F ′i is the
number of filters in the layer.
Second, as shown in arrow , each subvolume in the input volume is stretched out into

a column. The number of elements in the column is Di × R2
i . For an input volume with

dimensions Wi × Hi × Di, there are (Wi − Ri + Pi)(Hi − Ri + Pi) such columns in total,
where Pi is the amount of zero padding. We call this transformed input matrix in ′i. Then,
the convolution becomes a matrix multiply: out ′i = F ′i · in ′i (®).
Finally, the out ′i matrix is reshaped back to its proper dimensions of the out i volume

(arrow ¯). Each row of the resulting out ′i matrix corresponds to one channel in the out i

volume. The number of columns of the out ′i matrix is (Wi−Ri+Pi)(Hi−Ri+Pi), which is
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Figure A.2: Mapping a convolutional layer (upper part of the figure) to a matrix multipli-
cation (lower part).

the size of one output channel, namely, Wi+1 ×Hi+1. Table A.2 shows the number of rows
and columns of the matrices involved.

Matrix n_row n_col
in ′i Di ×R2

i (Wi −Ri + Pi)(Hi −Ri + Pi)

F ′i Di+1 Di ×R2
i

out ′i Di+1 (Wi −Ri + Pi)(Hi −Ri + Pi) =Wi+1 ×Hi+1

Table A.2: Matrix sizes in a convolutional layer.

The matrix multiplication described above processes a single input. As with fully-connected
DNNs, CNN inference can consume a batch of B inputs in a single forward pass. In this
case, a convolutional layer performs B matrix multiplications per pass. This is different from
fully-connected layers, where the entire batch is computed using only one matrix multipli-
cation.
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A.4.2 Resolving DNN Hyper-parameters

Based on the previous analysis, we can now map DNN hyper-parameters to matrix oper-
ation parameters assuming all layers are sequentially connected.

Fully-connected Networks

Consider a fully-connected network. Its hyper-parameters are the number of layers, the
number of neurons in each layer (Ni) and the activation function per layer. As discussed in
Section A.4.1, the feed-forward computation performs one matrix multiplication per layer.
Hence, we extract the number of layers by counting the number of matrix multiplications
performed. Moreover, according to Table A.1, the number of neurons in layer i (Ni) is the
number of rows of the layer’s weight matrix (θi). The first two rows of Table A.3 summarize
this information.

Structure Hyper-Parameter Value
FC network # of layers # of matrix muls
FC layeri Ni: # of neurons n_row(θi)

Conv network # of Conv layers # of matrix muls / B
Conv layeri Di+1: # of filters n_row(F ′i )

Ri: filter
√

n_row(in′i)
n_row(out′i−1)width and height1

Pi: padding difference between:
n_col(out′i−1), n_col(in

′
i)

Pooli or pool or stride ≈
√

n_col(out′i)
n_col(in′i+1)Stridei+1 width and height

Table A.3: Mapping between DNN hyper-parameters and matrix parameters. FC stands for
fully connected.

Convolutional Networks

A convolutional network generally consists of four types of layers: convolutional, Relu,
pooling, and fully connected. Recall that each convolutional layer involves a batch B of
matrix multiplications. Moreover, the B matrix multiplications that correspond to the same
layer, always have the same dimension sizes and are executed consecutively. Therefore, we

1Specifically, we learn the filter spatial dimensions. If the filter is not square, the search space grows
depending on factor combinations (e.g., 2 by 4 looks the same as 1 by 8). We note that filters in modern
DNNs are nearly always square.
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can count the number of consecutive matrix multiplications which have the same computa-
tion pattern to determine B.
In a convolutional layer i, the hyper-parameters include the number of filters (Di+1), the

filter width and height (Ri), and the padding (Pi). We assume that the filter width and
height are the same, which is the common case. Note that for layer i, we consider that the
depth of the input volume (Di) is known, as it can be obtained from the previous layer.
We now show how these parameters for a convolutional layer can be reverse engineered.

From Table A.2, we see that the number of filters (Di+1) is the number of rows of the filter
matrix F ′i . To attain the filter width (Ri), we note that the number of rows of the in′i matrix
is Di ×R2

i , where Di is the number of output channels in the previous layer and is equal to
the number of rows of the out′i−1 matrix. Therefore, as summarized in Table A.3, the filter
width is attained by dividing the number of rows of in′i by the number of rows of out′i−1 and
performing the square root. In the case that layer i is the first one, directly connected to
the input, the denominator (out′0) of this fraction is the number of channels of the input of
the network, which is public information.
Padding results in a larger input matrix (in′i). After resolving the filter width (Ri), the

value of padding can be deduced by determining the difference between the number of
columns of the output matrix of layer i − 1 (out′i−1), which is Wi ×Hi, and the number of
columns of the in′i matrix, which is (Wi −Ri + P )(Hi −Ri + P ).
A pooling layer can be located in-between two convolutional layers. It down-samples

every channel of the input along width and height, resulting in a small channel size. The
hyper-parameter in this layer is the pool width and height (assumed to be the same value),
which can be inferred as follows. Consider the channel size of the output of layer i (number
of columns in out ′i) and the channel size of the input volume in layer i + 1 (approximately
equals to the number of columns in in ′i+1). If the two are the same, there is no pooling layer;
otherwise, we expect to see the channel size reduced by the square of the pool width. In
the latter case, the exact pool dimension can be found using a similar procedure used to
determine Ri. Note that a non-unit stride operation results in the same dimension reduction
as a pooling layer. Thus, we cannot distinguish between non-unit striding and pooling.
Table A.3 summarizes the mappings.

A.4.3 Connections Between Layers

We now examine how to map inter-layer connections to GEMM execution. We consider
two types of inter-layer connections, i.e., sequential connections and non-sequential connec-
tions.
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Mapping Sequential Connections

A sequential connection is one that connects two consecutive layers, e.g., layer i and layer
i + 1. The output of layer i is used as the input of its next layer i + 1. According to the
mapping relationships in Table A.3, a DNN places several constraints on GEMM parameters
for sequentially-connected convolutional layers.
First, since the filter width and height must be integer values, there is a constraint on

the number of rows of the input and output matrices in consecutive layers. Considering the
formula used to derive the filter width and height in Table A.3, if layer i and layer i+ 1 are
connected, the number of rows in the input matrix of layer i + 1 (n_row(in′i+1)) must be
the product of the number of rows in the output matrix of layer i (n_row(out′i)) and the
square of an integer number.
Second, since the pool size and stride size are integer values, there is another constraint

on the number of columns of the input and output matrix sizes between consecutive layers.
According to the formula used to derive pool and stride size, if layer i and layer i + 1 are
connected, the number of columns in the output matrix of layer i (n_col(out′i)) must be very
close to the product of the number of columns in the input matrix of layer i+1 (n_col(in′i+1))
and the square of an integer number.
The two constraints above help us to distinguish non-sequential connections from sequen-

tial ones. Specifically, if one of these constraints is not satisfied, we are sure that the two
layers are not sequentially connected.

Mapping Non-sequential Connections

In this chapter, we consider that a non-sequential connection is one where, given two
consecutive layers i and i + 1, there is a third layer j, whose output is merged with the
output of layer i and the merged result is used as the input to layer i+1. We call the extra
connection from layer j to layer i+ 1 a shortcut, where layer j is the source layer and layer
i+ 1 is the sink layer. Shortcut connections can be mapped to GEMM execution.
First, there exists a certain latency between consecutive GEMMs, which we call inter-

GEMM latency. The inter-GEMM latency before the sink layer in a non-sequential con-
nection is longer than the latency in a sequential connection. To see why, consider the
operations that are performed between two consecutive GEMMs: post-processing of the
prior GEMM’s output (e.g., batch normalization) and pre-processing of the next GEMM’s
input (e.g., padding and striding). When there is no shortcut, the inter-GEMM latency is
linearly related to the sum of the prior layer’s output size and the next layer’s input size.
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However, a shortcut requires an extra merge operation that incurs extra latency between
GEMM calls.
Second, the source layer of a shortcut connection must have the same output dimensions

as the other source layer of the non-sequential connection. For example, when a shortcut
connects layer j and layer i + 1, the output matrices of layer j and layer i must have the
same number of rows and columns. This is because one can only merge two outputs whose
dimension sizes match.
These two characteristics help us identify the existence of a shortcut, its source layer, and

its sink layer.

A.4.4 Activation Functions

So far, this section discussed how DNN parameters map to GEMM calls. Convolutional
and fully-connected layers are post-processed by elementwise non-linear functions, such as
relu, sigmoid and tanh, which do not appear in GEMM parameters. We can distinguish
relu activations from sigmoid and tanh by monitoring whether the non-linear functions
access the standard mathematical library libm. relu is a simple activation which does
not need support from libm, while the other functions are computationally intensive and
generally leverage libm to achieve high performance. We remark that nearly all convolutional
layers use relu or a close variant [148,174–177].

A.5 ATTACKING MATRIX MULTIPLICATION

We now design a side channel attack to learn matrix multiplication parameters. Given
the mapping from the previous section, this attack will allow us to reconstruct the DNN
architecture.
We analyze state-of-the-art BLAS libraries, which have extensively optimized blocked ma-

trix multiply. Examples of such libraries are OpenBLAS [171], BLIS [178], Intel MKL [173]
and AMD ACML [179]. We show in detail how to extract the desired information from the
GEMM implementation in OpenBLAS. In Section A.6, we generalize our attack to other
BLAS libraries, using Intel MKL as an example.

A.5.1 Analyzing GEMM from OpenBLAS

Function gemm_nn from the OpenBLAS library performs blocked matrix-matrix multipli-
cation. It computes C = αA · B + βC where α and β are scalars, A is an m × k matrix, B
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is a k × n matrix, and C is an m × n matrix. Our goal is to extract m, n and k.
Like most modern BLAS libraries, OpenBLAS implements Goto’s algorithm [180]. The

algorithm has been optimized for modern multi-level cache hierarchies. Figure A.3 depicts
the way Goto’s algorithm structures blocked matrix multiplication for a three-level cache.
The macro-kernel at the bottom performs the basic operation, multiplying a P ×Q block
from matrix A with aQ × R block from matrix B. This kernel is generally written in assembly
code, and manually optimized by taking the CPU pipeline structure and register availability
into consideration. The block sizes are picked so that the P ×Q block of A fits in the L2
cache, and the Q × R block of B fits in the L3 cache.
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Figure A.3: Blocked GEMM with matrices in column major.

As shown in Figure A.3, there is a three-level loop nest around the macro-kernel. The
innermost one is Loop 3, the intermediate one is Loop 2, and the outermost one is Loop 1.
We call the iteration counts in these loops iter3 , iter2 , and iter1 , respectively, and are given
by:

iter3 = dm/Pe

iter2 = dk/Qe

iter1 = dn/Re

(A.1)
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Algorithm A.1 shows the corresponding pseudo-code with the three nested loops. Note
that Loop 3 is further split into two parts, to obtain better cache locality. The first part
performs only the first iteration, and the second part performs the rest.

Algorithm A.1: gemm_nn in OpenBLAS.
Input : Matrix A, B, C; Scalar α, β; Block size P,Q,R; UNROLL
Output: C := αA · B + βC

1 for j = 0, n, R do // Loop 1
2 for l = 0, k, Q do // Loop 2

// Loop 3, 1st iteration
3 itcopy(A[0 , l ], buf_A,P ,Q)
4 for jj = j , j + R, 3UNROLL do // Loop 4
5 oncopy(B [l , jj ], buf_B + (jj − j )×Q ,Q , 3UNROLL)
6 kernel(buf_A, buf_B + (jj − j )×Q ,C [l , j ],P ,Q , 3UNROLL)

7 end
// Loop 3, rest iterations

8 for i = P,m, P do
9 itcopy(A[i , l ], buf_A,P ,Q)

10 kernel(buf_A, buf_B ,C [l , j ],P ,Q ,R)

11 end
12 end
13 end

The first iteration of Loop 3 (Lines 3-7) performs three steps as follows. First, the data in
the P ×Q block from matrix A is packed into a buffer (bufferA) using function itcopy. This
is shown in Figure A.3 as arrow ¬ and corresponds to line 3 in Algorithm A.1. Second, the
data in the Q × R block from matrix B is also packed into a buffer (bufferB) using function
oncopy. This is shown in Figure A.3 as arrow  and corresponds to line 5 in Algorithm A.1.
The Q × R block from matrix B is copied in units of Q × 3UNROLL sub-blocks. This breaks
down the first iteration of Loop 3 into a loop, which is labeled as Loop 4. The iteration
count in Loop 4, iter4 , is given by:

iter4 = dR/3UNROLLe

or iter4 = d(n mod R)/3UNROLLe
(A.2)

where the second expression corresponds to the last iteration of Loop 1. Note that bufferB,
which is filled by the first iteration of Loop 3, is also shared by the rest of iterations. Third,
the macro-kernel (function kernel) is executed on the two buffers. This corresponds to line
6 in Algorithm A.1.
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The rest iterations (line 8-11) skip the second step above. These iterations only pack a
block from matrix A to fill bufferA and execute the macro-kernel.
The BLAS libraries use different P , Q, and R for different cache sizes to achieve best

performance. For example, when compiling OpenBLAS on our experimental machine (Sec-
tion A.7), the GEMM function for double data type uses P = 512 ; Q = 256 , R = 16384 ,
and 3UNROLL = 24 .

A.5.2 Locating Probing Addresses

Our goal is to find the size of the matrices of Figure A.3, namely, m, k, and n. To do so,
we need to first obtain the number of iterations of the 4 loops in Algorithm A.1, and then
use Formulas A.1 and A.2. Note that we know the values of the block sizes P , Q, and R (as
well as 3UNROLL) — these are constants available in the open-source code of OpenBLAS.
In this chapter, we propose to use, as probing addresses, addresses in the itcopy, oncopy

and kernel functions of Algorithm A.1. To understand why, consider the dynamic invoca-
tions to these functions. Figure A.4 shows the Dynamic Call Graph (DCG) of gemm_nn in
Algorithm A.1.

itcopy itcopyoncopy kernel kernel

#pairs=iter4 #pairs=iter3-1

Figure A.4: DCG of gemm_nn, with the number of invocations per iteration of Loop 2.

Each iteration of Loop 2 contains one invocation of function itcopy, followed by iter4

invocations of the pair oncopy and kernel, and then (iter3 − 1 ) invocations of the pair
itcopy and kernel. The whole sequence in Figure A.4 is executed iter1 × iter2 times in
one invocation of gemm_nn. We will see in Section A.5.3 that these invocation counts are
enough to allow us to find the size of the matrices.
We now discuss how to select probing addresses inside the three functions—itcopy,

oncopy and kernel—to improve attack accuracy. The main bodies of the three functions
are loops. To distinguish these loops from the GEMM loops, we refer to them in this chap-
ter as in-function loops. We select addresses that are located inside the in-function loops
as probing addresses. This strategy helps improve attack accuracy, because such addresses
are accessed multiple times per function invocation and their access patterns can be easily
distinguished from noise (Section A.8.1).
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Figure A.5: Visualization of execution time of a gemm_nn where Loop 1, Loop 2, and Loop3
have 5 iterations each (a), and value of iter4 for each first iteration of Loop 3 (b).

A.5.3 Procedure to Extract Matrix Dimensions

To understand the procedure we use to extract matrix dimensions, we show an example in
Figure A.5(a), which visualizes the execution time of a gemm_nn where Loop 1, Loop 2 and
Loop 3 have 5 iterations each. The figure also shows the size of the block that each iteration
operates on. Note that the OpenBLAS library handles the last two iterations of each loop in
a special manner. When the last iteration does not have a full block to compute, rather than
assigning a small block to the last iteration, it assigns two equal-sized small blocks to the
last two iterations. In Figure A.5(a), in Loop 1, the first three iterations use R-sized blocks,
and each of the last two use a block of size (R + n mod R)/2 . In Loop 2, the corresponding
block sizes are Q and (Q + k mod Q)/2 . In Loop 3, they are P and (P +m mod P)/2 .
Figure A.5(b) shows additional information for each of the first iterations of Loop 3.

Recall that the first iteration of Loop 3 is special, as it involves an extra packing opera-
tion that is performed by Loop 4 in Algorithm A.1. Figure A.5(b) shows the number of
iterations of Loop 4 in each invocation (iter4 ). During the execution of the first three it-
erations of Loop 1, iter4 is dR/3UNROLLe. In the last two iterations of Loop 1, iter4

is d((R + n mod R)/2 )/3UNROLLe, as can be deduced from Equation A.2 after applying
OpenBLAS’ special handling of the last two iterations.
Based on these insights, our procedure to extract m, k, and n has four steps.
Step 1: Identify the DCG of a Loop 2 iteration and extract iter1 × iter2 . By

probing one instruction in each of itcopy, oncopy, and kernel, we repeatedly obtain the
DCG pattern of a Loop 2 iteration (Figure A.4). By counting the number of such patterns,
we obtain iter1 × iter2 .
Step 2: Extract iter3 and determine the value of m. In the DCG pattern of a Loop

2 iteration, we count the number of invocations of the itcopy-kernel pair (Figure A.4).
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This count plus 1 gives iter3 . Of all of these iter3 iterations, all but the last two execute a
block of size P ; the last two execute a block of size (P +m mod P)/2 each (Figure A.5(a)).
To estimate the size of this smaller block, we assume that the execution time of an iteration
is proportional to the block size it processes — except for the first iteration which, as we
indicated, is different. Hence, we time the execution of a “normal” iteration of Loop 3 and
the execution of the last iteration of Loop 3. Let’s call the times tnormal and tsmall . The value
of m is computed by adding P for each of the (iter3 - 2) iterations and adding the estimated
number for each of the last two iterations:

m = (iter3 − 2 )× P + 2 × tsmall

tnormal

× P (A.3)

Step 3: Extract iter4 and iter2 , and determine the value of k. In the DCG pattern
of a Loop 2 iteration (Figure A.4), we count the number of oncopy-kernel pairs, and obtain
iter4 . As shown in Figure A.5(b), the value of iter4 is dR/3UNROLLe in all iterations of
Loop 2 except those that are part of the last two iterations of Loop 1. For the latter, iter4
is d((R + n mod R)/2 )/3UNROLLe, which is a lower value. Consequently, by counting the
number of DCG patterns that have a low value of iter4 , and dividing it by 2, we attain iter2 .
We then follow the procedure of Step 2 to calculate k. Specifically, all Loop 2 iterations but
the last two execute a block of size Q; the last two execute a block of size (Q + k mod Q)/2

each (Figure A.5(a)). Hence, we time the execution of two iterations of Loop 2 in the first
Loop 1 iteration: a “normal” one (t ′normal) and the last one (t ′small). We then compute k like
in Step 2:

k = (iter2 − 2 )×Q + 2 × t ′small

t ′normal

×Q (A.4)

Step 4: Extract iter1 and determine the value of n. If we take the total number
of DCG patterns in the execution from Step 1 and divide that by iter2 , we obtain iter1 .
We know that all Loop 1 iterations but the last two execute a block of size R; the last two
execute a block of size (R + n mod R)/2 each. To compute the size of the latter block, we
note that, in the last two iterations of Loop 1, iter4 is d((R + n mod R)/2 )/3UNROLLe.
Since both iter4 and 3UNROLL are known, we can estimate (R + n mod R)/2 . We neglect
the effect of the ceiling operator because 3UNROLL is a very small number. Hence, we
compute n as:

n = (iter1 − 2 )× R + 2 × iter4 × 3UNROLL (A.5)

Our attack cannot handle the cases when m or k are less than or equal to twice their
corresponding block sizes. For example, when m is less than or equal to 2 × P , there is no
iteration of Loop 3 that operates on a smaller block size. Our procedure cannot compute
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the exact value of m, and can only say that m ≤ 2P .

A.6 GENERALIZATION OF THE ATTACK ON GEMM

Our attack can be generalized to other BLAS libraries, since all of them use blocked
matrix-multiplication, and most of them implement Goto’s algorithm [180]. We show that
our attack is still effective, using the Intel MKL library as an example. MKL is a widely
used library but is closed source. We reverse engineer the scheduling of the three-level nested
loop in MKL and its block sizes. The information is enough for us to apply the same attack
procedure in Section A.5.3 to obtain matrix dimensions.

Constructing the DCG We apply binary analysis [39, 181] techniques to construct the
DCG of the GEMM function in MKL, shown in Figure A.6. The pattern is the same as
the DCG of OpenBLAS in Figure A.4. Thus, the attack strategy in Section A.5 also works
towards MKL.

copybn copybncopyan ker0 ker0

#pairs=iter4 #pairs=iter3-1

Figure A.6: DCG of blocked GEMM in Intel MKL, with the number of invocations per
iteration of Loop 2.

Extracting Block Sizes Similar to OpenBLAS, in MKL, there exists a linear relationship
between matrix dimensions and iteration count for each of the loops, as shown in Formu-
las A.1 and A.2. When the matrix size increases by a block size, the corresponding iteration
count increases by 1. We leverage this relationship to reverse engineer the block sizes for
MKL. Specifically, we gradually increase the input dimension size until the number of iter-
ations increments. The stride on the input dimension that triggers the change of iteration
count is the block size.

Special Cases According to our analysis, MKL follows a different DCG when dealing
with small matrices. First, instead of executing three-level nested loops, it uses a single-level
loop, tiling on the dimension that has the largest value among m, n, k. Second, the kernel
computation is performed directly on the input matrices, without packing and buffering
operations.
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For these special cases, we slightly adjust the attack strategy in Figure A.5. We use side
channels to monitor the number of iterations on that single-level loop and the time spent
for each iteration. We then use the number of iterations to deduce the size of the largest
dimension. Finally, we use the timing information for each iteration to deduce the product
of the other two dimensions.

A.7 EXPERIMENTAL SETUP

Attack Platform We evaluate our attacks on a Dell workstation Precision T1700, which
has a 4-core Intel Xeon E3 processor and an 8GB DDR3-1600 memory. The processor has
two levels of private caches and a shared last level cache. The first level caches are a 32KB
instruction cache and a 32KB data cache. The second level cache is 256KB. The shared last
level cache is 8MB. We test our attacks on a same-OS scenario using Ubuntu 4.2.0-27, where
the attacker and the victim are different processes within the same bare-metal server. Our
attacks should be applicable to other platforms, as the effectiveness of Flush+Reload and
Prime+Probe has been proved in multiple hardware platforms [6, 48].

Victim DNNs We use a VGG [176] instance and a ResNet [148] instance as victim DNNs.
VGG is representative of early DNNs (e.g., AlexNet [175] and LeNet [182]). ResNet is rep-
resentative of state-of-the-art DNNs. Both are standard and widely-used CNNs with a large
number of layers and hyper-parameters. ResNet additionally features shortcut connections.
There are several versions of VGG, with 11 to 19 layers. All VGGs have 5 types of layers,

which are replicated a different number of times. We show our results on VGG-16.
There are several versions of ResNet, with 18 to 152 layers. All of them consist of the

same 4 types of modules, which are replicated a different number of times. Each module
contains 3 or 4 layers, which are all different. We show our results on ResNet-50.
The victim programs are implemented using the Keras [183] framework, with Theano [184]

as the backend. We execute each DNN instance with a single thread.

Attack Implementation We use Flush+Reload and Prime+Probe attacks. In both at-
tacks, the attacker and the victim are different processes and are pinned to different cores,
only sharing the last level cache.
In Flush+Reload, the attacker and the victim share the BLAS library via page de-

duplication. The attacker probes one address in itcopy and one in oncopy every 2,000
cycles. There is no need to probe any address in kernel, as the access pattern is clear
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enough. Our Prime+Probe attack targets the last level cache. We construct two sets of con-
flict addresses for the two probing addresses using the algorithm proposed by Liu et al. [6].
The Prime+Probe uses the same monitoring interval length of 2,000 cycles.

A.8 EVALUATION

We first evaluate our attacks on the GEMM function. We then show the effectiveness of
our attack on neural network inference, followed by an analysis of the search space of DNN
architectures.

A.8.1 Attacking GEMM

Attack Examples Figure A.7 shows raw traces generated by the two side channel attacks,
i.e. Flush+Reload and Prime+Probe, when monitoring the execution of the GEMM function
in OpenBLAS. Due to space limitations, we only show the traces for one iteration of Loop
2 (Algorithm A.1).
Figure A.7(a) is generated under Flush+Reload. It shows the latency of the attacker’s

reload accesses to the probing addresses in the itcopy and oncopy functions for each mon-
itoring interval. In the figure, we only show the instances where the access took less than
75 cycles. These instances correspond to cache hits and, therefore, cases when the victim
executed the corresponding function. Figure A.7(b) is generated under Prime+Probe. It
shows the latency of the attacker’s probe accesses to the conflict addresses. We only show
the instances where the accesses took more than 500 cycles. These instances correspond to
cache misses of at least one conflict address. They are the cases when the victim executed
the corresponding function.
Since we select the probing addresses to be within in-function loops (Section A.5.2), a

cluster of hits in the Flush+Reload trace (or misses in the Prime+Probe trace) indicates the
time period when the victim is executing the probed function.
In both traces, the victim calls itcopy before interval 2,000, then calls oncopy 11 times

between intervals 2,000 and 7,000. It then calls itcopy another two times in intervals 7,000
and 13,000. The trace matches the DCG shown in Figure A.4. We can easily derive that
iter4 = 11 and iter3 = 3 .

Handling Noise Comparing the two traces in Figure A.7, we can observe that Prime+Probe
suffers much more noise than Flush+Reload. The noise in Flush+Reload is generally sparsely
and randomly distributed, and thus can be easily filtered out. However, Prime+Probe has

153



0 2000 4000 6000 8000 10000 12000
Time (Interval ID)

55

60

65

70

75
La

te
nc

y 
(C

yc
le

s)

itcopy oncopy

(a)

2000 4000 6000 8000 10000 12000
Time (Interval ID)

600

900

1200

La
te

nc
y 

(C
yc

le
s)

itcopy oncopy

(b)

Figure A.7: Flush+Reload (a) and Prime+Probe (b) traces of the GEMM execution. The
monitoring interval is 2,000 cycles.

noise in consecutive monitoring intervals, as shown in Figure A.7(b). It happens mainly
due to the non-determinism of the cache replacement policy [185]. When one of the cache
ways is used by the victim’s line, it takes multiple “prime” operations to guarantee that the
victim’s line is selected to be evicted. It is more difficult to distinguish the victim’s accesses
from such noise.
We leverage our knowledge of the execution patterns in GEMM to handle the noise in

Prime+Probe. First, recall that we pick the probing addresses within tight loops inside each
of the probing functions (Section A.5.2). Therefore, for each invocation of the functions, the
corresponding probing address is accessed multiple times, which is observed as a cluster of
cache misses in Prime+Probe. We count the number of consecutive cache misses in each
cluster to obtain its size. The size of a cluster of cache misses that are due to noise is smaller
than size of a cluster of misses that are caused by the victim’s accesses. Thus, we discard
the clusters with small sizes. Second, due to the three-level loop structure, each probing
function, such as oncopy, is called repetitively with consistent interval lengths between each
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invocation (Figure A.4). Thus, we compute the distances between neighboring clusters and
discard the clusters with abnormal distances to their neighbors.
These two steps are effective enough to handle the noise in Prime+Probe. However,

when tracing MKL’s special cases that use a single-level loop (Section A.6), we find that
using Prime+Probe is ineffective to obtain useful information. Such environment affects the
accuracy of the Cache Telepathy attack, as we will see in Section A.8.3.

A.8.2 Extracting Hyper-parameters of DNNs

We show the effectiveness of our attack by extracting the hyper-parameters of VGG-
16 [176] and ResNet-50 [148]. Figures A.8(a), A.8(b), and A.8(c) show the extracted values
of the n, k, and m matrix parameters, respectively, using Flush+Reload. In each figure,
we show the values for each of the layers (L1, L2, L3, and L4) in the 4 distinct modules in
ResNet-50 (M1, M2, M3, and M4), and for the 5 distinct layers in VGG-16 (B1, B2, B3, B4,
and B5). We do not show the other layers because they are duplicates of the layers shown.
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Figure A.8: Extracted values of the n, k, and m matrix parameters for VGG-16 and ResNet-
50 using Flush+Reload on OpenBLAS.
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The figures show three data points for each parameter (e.g., m) and each layer (e.g., L1 in
ResNet-M2): a hollowed circle, a solid square or rectangle, and a solid circle. The hollowed
circle indicates the actual value of the parameter. The solid square or rectangle indicates the
value of the parameter detected with our side channel attack. When the side channel attack
can only narrow down the possible value to a range, the figure shows a rectangle. Finally,
the solid circle indicates the value of the parameter that we deduce, based on the detected
value and some DNN constraints. For example, for parameter m in layer L1 of ResNet-M2,
the actual value is 784, the detected value range is [524, 1536], and the deduced value is 784.
We will discuss how we obtain the solid circles later. Here, we compare the actual and the

detected values (hollowed circles and solid squares/rectangles). Figure A.8(a) shows that
our attack is always able to determine the n value with negligible error. The reason is that,
to compute n, we need to estimate iter1 and iter4 (Section A.5.3), and it can be shown that
most of the noise comes from estimating iter4 . However, since iter4 is multiplied by the
small 3UNROLL parameter in the equation for n, the impact of such noise is small.
Figures A.8(b) and (c) show that the attack is able to accurately determine the m and k

values for all the layers in ResNet-M1 and VGG, and for most layers in ResNet-M4. However,
it can only derive ranges of values for most of the ResNet-M2 and ResNet-M3 layers. This is
because the m and k values in these layers are often smaller than twice of the corresponding
block sizes (Section A.5.3).
In Figure A.9, we show the same set of results by analyzing the traces generated using

Prime+Probe. Compared to the results from Flush+Reload, there are some differences of
detected values or ranges, especially in ResNet-M3 and ResNet-M4.
In summary, our side channel attacks, using Flush+Reload or Prime+Probe, can either

detect the matrix parameters with negligible error, or can provide a range where the actual
value falls in. We will next show that, in many cases, the imprecision from the negligible
error and the ranges can be eliminated after applying DNN constraints (Section A.8.3).

A.8.3 Size of Architecture Search Space

In this section, we compare the number of architectures in the search space without Cache
Telepathy (which we call original space), and with Cache Telepathy (which we call reduced
space). In both cases, we only consider reasonable hyper-parameters for the layers as fol-
lows. For fully-connected layers, the number of neurons can be 2i, where 8 ≤ i ≤ 13. For
convolutional layers, the number of filters can be a multiple of 64 (64× i, where 1 ≤ i ≤ 32),
and the filter size can be an integer value between 1 and 11.
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Figure A.9: Extracted values of the n, k, and m matrix parameters for VGG-16 and ResNet-
50 using Prime+Probe on OpenBLAS.

Size of the Original Search Space

To be conservative, when computing the size of the original search space, we assume that
the attacker knows the number of layers and type of each layer in the oracle DNN. There
exist 352 different configurations for each convolutional layer without considering pooling
or striding, and 6 configurations for each fully-connected layer. Moreover, considering the
existence of non-sequential connections, given L layers, there are L× 2 L−1 possible ways to
connect them.
A network like VGG-16 has five different layers (B1, B2, B3, B4, and B5), and no shortcuts.

If we consider only these five different layers, the size of the search space is about 5.4× 1012

candidate architectures. A network like ResNet-50 has 4 different modules (M1, M2, M3,
and M4) and some shortcuts inside these modules. If we consider only these four different
modules, the size of the search space is about 6× 1046 candidate architectures. Overall, the
original search space is intractable.
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Determining the Reduced Search Space

Using the detected values of the matrix parameters in Section A.8.2, we first determine the
possible connections between layers by locating shortcuts. Next, for each possible connection
configuration, we calculate the possible hyper-parameters for each layer. The final search
space is computed as

search space =
C∑
i=1

(
L∏

j=1

xj) (A.6)

where C is the total number of possible connection configurations, L is the total number of
layers, and xj is the number of possible combinations of hyper-parameters for layer j.

Determining Connections Between Layers We show how to reverse engineer the con-
nections between layers using ResNet-M1 as an example.
First, we leverage inter-GEMM latency to determine the existence of shortcuts and their

sinks using the method discussed in Section A.4.3. Figure A.10 shows the extracted matrix
dimensions and the inter-GEMM latency for the 4 layers in ResNet-M1. The inter-GEMM
latency after M1-L4 is significantly longer than expected, given its output matrix size and
the input matrix size of the next layer. Thus, the layer after M1-L4 is a sink layer.
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Figure A.10: Extracting connections in ResNet-M1.

Next, we check the output matrix dimensions of previous layers to locate the source
of the shortcut. Note that a shortcut only connects layers with the same output matrix
dimensions. Based on the extracted dimension information (values of n andm) in Figure A.8,
we determine that M1-L1 is the source. In addition, we know that M1-L1 and M1-L2 are
not sequentially connected by comparing the output matrix of M1-L1 and the input matrix
of M1-L2 (Section A.4.3).
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Figure A.10 summarizes the reverse engineered connections among the 4 layers, which
match the actual connections in ResNet-M1. We can use the same method to derive the
possible connection configurations for the other modules. Note that this approach does
not work for ResNet-M3 and ResNet-M4. In these layers, the input and output matrices
are small and operations between consecutive layers take a short time. As a result, the
inter-GEMM latency is not effective in identifying shortcuts.

Determining Hyper-parameters for Each Layer We plug the detected matrix pa-
rameters into the formulas in Table A.3 to deduce the hyper-parameters for each layer. For
the matrix dimensions that cannot be extracted precisely, we leverage DNN constraints to
prune the search space.
As an example, consider reverse engineering the hyper-parameters for Layer 3 in ResNet-

M2. First, we extract the number of filters. We round the extracted nM2-L3 from Fig-
ure A.8(a) (the number of rows in F ′) to the nearest multiple of 64. This is because, as
discussed at the beginning of Section A.8.3, we assume that the number of filters is a multi-
ple of 64. We get that the number of filters is 512. Second, we use the formula in Table A.3
to determine the filter width and height. We consider the case where L2 is sequentially
connected to L3. The extracted range of kM2-L3 from Figure A.8(b) (the number of rows in
in ′ of current layer) is [68, 384], and the value for nM2-L2 from Figure A.8(a) (the number
of rows in out ′ of the previous layer) is 118. We need to make sure that the square root of
kM2-L3/nM2-L2 is an integer, which leads to the conclusion that the only possible value for
kM2-L3 is 118 (one of the solid circles for kM2-L3), and the filter width and height is 1. The
same value is deduced if we consider, instead, that L1 is connected to L3. The other solid
circle for kM2-L3 is derived similarly if we consider that the last layer in M1 is connected to
layer 3 in M2.
We apply the same methodology for the other layers. With this method, we obtain the

solid circles in Figures A.8 and A.9.

Determining Pooling and Striding We use the difference in the m dimension (i.e., the
channel size of the output) between consecutive layers to determine the pool or stride size.
For example, in Figure A.8(c) and A.9(c), the m dimensions of the last layer in ResNet-M1
and the first layer in ResNet-M2 are different. This difference indicates the existence of a
pool layer or a stride operation. In Figure A.8(c), the extracted value ofmM1-L4 (the number
of columns in out′ for the current layer) is 3072, and the extracted range of mM2-L1 (the
number of columns in in′ for the next layer) is [524, 1536]. We use the formula in Table A.3 to
determine the pool or stride width and height. To make the square root of mM1-L4/mM2-L1
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an integer, mM2-L1 has to be 768, and the pool or stride width and height have to be 2.

Size of the Reduced Search Space

Using Equation A.6, we compute the number of architectures in the search space without
Cache Telepathy and with Cache Telepathy. Table A.4 shows the resulting values. Note
that we only consider the possible configurations of the different layers in VGG-16 (B1, B2,
B3, B4, and B5) and of the different modules in ResNet-50 (M1, M2, M3, and M4).

DNN ResNet-50 VGG-16
Original: No Cache Telepathy > 6× 1046 > 5.4× 1012

Flush+Reload OpenBLAS 512 16
MKL 6144 64

Prime+Probe OpenBLAS 512 16
MKL 5.7× 1015 1936

Table A.4: Comparing the original search space (without Cache Telepathy) and the reduced
search space (with Cache Telepathy).

Using Cache Telepathy to attack OpenBLAS, we are able to significantly reduce the search
space from an intractable size to a reasonable size. Both Flush+Reload and Prime+Probe ob-
tain a very small search space. Specifically, for VGG-16, Cache Telepathy reduces the search
space from more than 5.4 × 1012 architectures to just 16; for ResNet-50, Cache Telepathy
reduces the search space from more than 6× 1046 to 512.
Cache Telepathy is less effective on MKL. For VGG-16, Cache Telepathy reduces the search

space from more than 5.4 × 1012 to 64 (with Flush+Reload) or 1936 (with Prime+Probe).
For ResNet-50, Cache Telepathy reduces the search space from more than 6× 1046 to 6144

(with Flush+Reload) or 5.7 × 1015 (with Prime+Probe). The last number is large because
the matrix dimensions in Module M1 and Module 4 of ResNet-50 are small, and MKL
handles these matrices with the special method described in Section A.6. Such method is
not easily attackable by Prime+Probe. However, if we only count the number of possible
configurations in Modules M1, M2, and M3, the search space is 41472.

Implications of Large Search Spaces A large search space means that the attacker
needs to train many networks. Training DNNs is easy to parallelize, and attackers can
request many GPUs to train in parallel. However, it comes with a high cost. For example,
assume that training one network takes 2 GPU days. On Amazon EC2, the current price for
a single-node GPU instance is ∼$3/hour. Without Cache Telepathy, since the search space
is so huge, the cost is unbearable. Using Cache Telepathy with Flush+Reload, the reduced
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search space for the different layers in VGG-16 and for the different modules in ResNet-50
running OpenBLAS means that the training takes 32 and 1024 GPU days, respectively.
The resulting cost is only ∼$2K and ∼$74K. When attacking ResNet-50 running MKL, the
attacker needs to train 6144 architectures, requiring over $884K.

A.9 COUNTERMEASURES

We overview possible countermeasures against our attack, and discuss their effectiveness
and performance implications.
We first investigate whether it is possible to stop the attack by modifying the BLAS

libraries. All BLAS libraries use extensively optimized blocked matrix multiplication for
performance. One approach is to disable the optimization or use less aggressive optimization.
However, it is unreasonable to disable blocked matrix multiplication, as the result would be
very poor cache performance. Using a less aggressive blocking strategy, such as removing
the optimization for the first iteration of Loop 3 (lines 4-7 in Algorithm A.1), only slightly
increases the difficulty for attackers to recover some matrix dimensions. It cannot effectively
eliminate the vulnerability.
Another approach is to reduce the dimensions of the matrices. Recall that in both Open-

BLAS and MKL, we are unable to precisely deduce the matrix dimensions if they are smaller
than or equal to the block size. Existing techniques, such as quantization, can help reduce
the matrix size to some degree. This mitigation is typically effective for the last few layers
in a convolutional network, which generally use small filter sizes. However, it cannot protect
layers with large matrices, such as those using a large number of filters and input activations.
Alternatively, one can use existing cache-based side channel defense solutions. One ap-

proach is to use cache partitioning, such as Intel CAT (Cache Allocation Technology) [186].
CAT assigns different ways of the last level cache to different applications, which blocks cache
interference between attackers and victims [64]. Further, there are proposals for security-
oriented cache mechanisms such as PLCache [69], SHARP [18] and CEASER [68]. If these
mechanisms are adopted in production hardware, they can mitigate our attack with moder-
ate performance degradation.

A.10 CONCLUSION

In this chapter, we proposed Cache Telepathy, an efficient mechanism to help obtain a
DNN’s architecture using the cache side channel. We identified that DNN inference relies
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heavily on blocked GEMM, and provided a detailed security analysis of this operation.
We then designed an attack to extract the matrix parameters of GEMM calls, and scaled
this attack to complete DNNs. We used Prime+Probe and Flush+Reload to attack VGG
and ResNet DNNs running OpenBLAS and Intel MKL libraries. Our attack is effective at
helping obtain the architectures by very substantially reducing the search space of target
DNN architectures. For example, when attacking the OpenBLAS library, for the different
layers in VGG-16, it reduces the search space from more than 5.4 × 1012 architectures to
just 16; for the different modules in ResNet-50, it reduces the search space from more than
6× 1046 architectures to only 512.
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