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Abstract

The non-equilibrium aerothermal environment during hypersonic flows is determined by the in-

teraction between a multitude of disparate physical phenomena with varying characteristic time

scales. The multi-physics nature of this flight regime renders the task of accurately estimating

vehicular characteristics both theoretically and computationally challenging. The rapid dissipation

of flow velocity into thermal energy in the post-shock region drives collisional-radiative processes

that alter the chemical and energy composition of the flowfield. Traditional thermochemical and

radiative models often introduce ad-hoc simplifications and rely on model parameters calibrated

for a limited range of experimental conditions. Recent advances in computing power have al-

lowed non-equilibrium internal state population distributions of gaseous species to be precisely

determined using ab-initio quantum-chemistry calculations, referred to as the state-to-state (StS)

approach. Similarly, first-principles based databases for different chemical species are now available

that can characterize radiative behavior by accounting for millions of individual radiative transi-

tions, referred to as line-by-line (LBL) modeling. Although exceedingly accurate, both StS and

LBL approaches are computationally expensive and cannot be viably applied for solving practical

physical problems. This thesis is aimed at developing a unified reduced-order framework for de-

scribing non-equilibrium thermochemistry and radiative heating which retains the physical fidelity

of the aforementioned approaches but at dramatically lowered computational costs.

A computationally tractable description of non-Boltzmann thermochemistry is obtained using

the multi-group maximum-entropy (MGME) framework. This involves dividing individual internal

states into bins and then reconstructing the state population distribution using the maximum en-

tropy principle. The current work introduces an adaptive grouping methodology that incorporates

state-specific kinetics for further improving the MGME method. Two strategies are considered –

Modified Island Algorithm and Spectral Clustering Method – for identifying clusters of states that
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are likely to equilibrate faster with respect to each other and then lumping them together into bins.

The efficacy of MGME-based model reduction is assessed by studying non-equilibrium character-

istics of two chemical systems, molecular nitrogen and carbon-dioxide, in a homogeneous chemical

reactor. The introduction of adaptive binning which correctly accounts for localized thermalization

due to preferential transition pathways allows the complex dynamics of about 9, 000 internal states

to be modeled using only 10-30 bins.

The multi-variate nature of radiative transfer is tackled by breaking it down into two compo-

nents: geometric transfer and spectral modeling. A combination of discrete-ordinate method and

finite-volume discretization with mesh sweeping is used to resolve generalized three-dimensional

radiation fields in the angular and spatial domains. A reduced-order representation of the spectral

variation in absorption/emission behavior is obtained through multi-group Planck-averaging. A for-

mal interpretation for Planck-averaging is obtained based on maximum entropy closure in frequency

space which allows a direct equivalence to be drawn with the MGME framework. Furthermore, a

new generalized grouping strategy for non-equilibrium radiation is proposed that considers both

absorption and emission coefficients while defining reduced-order groups. A detailed line-of-sight

analysis for various Earth and Jovian entry problems indicates that Planck-averaging combined with

the new grouping procedure allows reliable predictions while achieving a two orders-of-magnitude

speed-up with respect to narrow-band methods (and three to four orders with respect to full LBL

modeling).

The new simulation framework, with its focus on minimizing computational outlays, is ide-

ally suited for realizing flow-radiation coupled simulations on large computational meshes. This is

demonstrated by investigating, in conjunction with the US3D flow solver, the impact of vibrational

non-equilibrium on CO2 wake flows and resultant infrared radiation around NASA’s Mars 2020 ve-

hicle. Predictions for flowfield properties and radiative transfer are obtained using the conventional

two-temperature model, bin-based StS model, and for decoupled/coupled flow-radiation calcula-

tions. Conventional two-temperature models overestimate the rate of thermal equilibration in the

near-wake region resulting in the population of mid-lying and upper CO2 vibrational levels being

underpredicted by multiple orders of magnitude. Additionally, the two-temperature approach (in

comparison to bin-based StS) overpredicts the rate of CO2 dissociation thereby leading to erro-
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neous estimates for flow properties in the post-shock region (primary source of afterbody radiative

emission). This results in inflated values for surface radiative heat flux with conventional two-

temperature modeling, although overall differences in radiative behavior are moderated by factors

such as fast characteristic relaxation times for ground vibrational levels.
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Chapter 1

Introduction

1.1 Motivation

The pursuit of space exploration and national security objectives has fostered extensive research

in the field of hypersonic aerothermodynamics over the preceding decades. An oft-studied problem

in the hypersonic flow regime is the entry of space vehicles into a planetary atmosphere from outer

space [1]. The vehicle encounters denser atmospheric layers as it descends towards the surface,

resulting in dissipation of kinetic energy through drag. A strong bow shock develops upstream and

envelops the entire vehicle. The sheer magnitude of the incoming flow velocity causes the post-

shock temperature to rise up by several thousands of Kelvin [2]. This sudden transfer of flow kinetic

energy to thermal energy of the constituent gas particles triggers strong collisions among them,

inducing changes in chemical composition of the gas and exciting the internal energy modes of its

atoms and molecules [3]. Similarly, photochemical processes involving interactions with photons

are initiated, which redistribute energy around the vehicle and effect further chemical transfor-

mation and energy relaxation [4]. Thus, the characteristics of hypersonic flight are shaped by a

combination of disparate physical phenomena such as chemistry, radiation, fluid dynamics, and

ablation. The various physical facets associated with atmospheric entry are outlined in Fig. 1.1.

Owing to logistical and cost constraints, experimental testing cannot replicate exact flight condi-

tions in their entirety. Instead, a bulk of the vehicular design process is driven by computational

fluid dynamics (CFD) simulations. The accuracy of these calculations, in turn, is reliant upon

incorporating numerical models originating from a wide cross-section of fields such as fluid me-

chanics, chemistry, material science, high-performance computing, and applied mathematics that

can resolve both spatial and temporal scales of the physics-rich hypersonic flowfield.

The bow shock constitutes a sharp discontinuity in space across which certain flow properties
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undergo an instantaneous change. The translational mode of atoms and molecules, owing to the

small difference in energies between successive levels, equilibrates immediately to post-shock condi-

tions. Contrastingly, the internal energy modes (rotational, vibrational, electronic) require a finite

amount of time to respond to the rapid dissipation of flow kinetic energy downstream of the shock.

The properties of these modes are assumed to be invariant or “frozen” across the shock [4]. Simi-

larly, the chemical composition of the gaseous mixture cannot be altered abruptly. This engenders a

state of strong thermochemical non-equilibrium in the post-shock region. Finite-rate changes as the

flow proceeds further occur through distinct collisional-radiative (CR) processes involving atoms

and molecules. This includes both energy transfer between different internal modes and chemical

changes in the form of exchange, dissociation, and ionization reactions. Non-equilibrium ensues

wherever the characteristic times of CR processes are of the same order as the flow transit time.

Thus, in addition to the forebody, non-equilibrium effects can also become prevalent in regions with

expanding flows [5] such as the shoulder and afterbody region of the spacecraft (Fig. 1.1). Rapid

expansion results in a sharp decline in number density and the resultant collision frequency. Under

such conditions, the time for equilibration can become sufficiently large for the chemical/internal

Forebody Afterbody

Figure 1.1: Flowfield during hypersonic vehicular planetary entry.

(Source: NASA)
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energy make-up of the gaseous mixture to remain unvarying or “freeze” in the flowfield.

The occurence of radiative transfer adds another layer of complexity to non-equilibrium dynam-

ics during planetary entry [6]. An obvious modification to the flowfield is through the additional

mechanism of energy exchange between discontiguous regions in the form of radiative heat flux [7].

In a similar vein, radiative transitions – local emission and absorption of the globally determined

radiative intensity – can spur chemical changes/internal excitation [8, 9], especially in expansion

regions where collisional processes are retarded due to lowered number densities [10]. At the same

time, radiative properties are strongly dependent on the chemical constitution of the gaseous mix-

ture [11] and the exact internal state population distribution [12]. This particular two-way coupling

and the larger inter-dependency between various physical phenomena typical of hypersonic prob-

lems makes it imperative that finite-rate thermochemistry, radiation, fluid mechanics and other

phenomena be dealt with in a unified manner. An accurate assessment of non-equilibrium devia-

tions occurring in the flow is critical for determining thermal and aerodynamic loads experienced

by spacecraft [13]. A simulation methodology that can deliver such detailed predictions is ex-

pected to continue gaining relevance with both increasingly complex extraterrestrial landings and

Earth-return missions on the anvil. Another motivator is the focus on devising efficient designs

that employ more aggressive safety margins (in lieu of the traditional “over-engineering” [14]) to

improve the overall economic viability and scientific potential of planned missions.

1.2 Literature Review

A simulation framework for resolving non-equilibrium thermochemistry and coupled radiation hy-

drodynamics for complex three-dimensional domains can be structured in the manner outlined in

Fig. 1.2. The three interconnected components are: a) an improved non-equilibrium thermochemi-

cal model that sheds ad-hoc empiricism to provide a more complete description of chemical kinetics

and internal energy relaxation, b) detailed radiation calculations which account for non-equilibrium

in the internal energy modes of the gas and spatial variation in flowfield properties, c) and a compu-

tational fluid dynamics (CFD) solver that can resolve the multitude of flow structures characterizing

the forebody and wake regions. This section reviews some of the existing numerical approaches for

developing thermochemical and radiative response models (which represent the major thrust areas
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of this work) that are suitable for non-equilibrium hypersonic flows.

CFD

Thermo-
Chemical
Models

Radiation
Models

Reduced-
Order Models

Experimental
Data

Quantum
Chemistry Data

Figure 1.2: Numerical framework for performing radiation hydrodynamics simulations under
non-equilibrium conditions.

1.2.1 Non-equilibrium Thermochemistry

A wide gamut of techniques exist for describing non-equilibrium chemical reactions and energy

exchange, ranging from computationally tractable semi-empirical models that are calibrated us-

ing experimental data to highly accurate first-principles quantum chemistry methods which are

prohibitively expensive for use in complex CFD problems.

1.2.1.1 Multi-Temperature Models

The different multi-temperature (MT) models proposed in the literature share a foundational

paradigm. The total internal energy corresponding to individual quantum states of reacting species

is divided into contributions from translational, rotational, vibrational, and electronic modes. These

internal modes are assumed to be in equilibrium, with their populations defined using Maxwell-

Boltzmann distributions at a common temperature or multiple independent temperatures. An MT

approach was first used by Appleton and Bray [15] to describe non-equilibrium in ionized gases

using separate heavy particle and free-electron temperatures. An extension of this methodology

was later used by Lee [16] for detailing vibrational non-equilibrium during drag-induced braking

of spacecraft. An important step in the widespread proliferation of the MT framework was its

generalization by Park [4, 17, 18, 19] to include all internal energy modes of atoms and molecules
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(rotational, vibrational, and electronic). The system of hydrodynamic equations incorporating MT

modeling includes additional independent conservation equations for energy corresponding to dif-

ferent internal modes in addition to those for mass, momentum, and total energy. This translates

to distinct equations for translational-rotational and vibrational-electronic energies when using the

most common Park two-temperature (2-T) model. A detailed description of governing equations

and different constitutive properties when applying the two/three temperature models to compress-

ible flows can be found in [2, 20].

The additional conservation equations introduced through MT models require closure relation-

ships for source terms defining the rate of energy exchange between different energy modes. A

vast body of work has been dedicated to characterizing vibrational-translational (V-T) energy ex-

changes [21, 22], vibrational-vibrational (V-V) energy exchanges [23, 24], and the coupling between

vibrational mode and chemistry [25, 26]. The focus on these specific interactions stems from a) en-

ergy differences between individual vibrational levels being relatively large which results in longer

inter/intra modal equilibration times compared to rotational/translational modes, and b) chemical

processes such as dissociation being biased by vibrational excitation. The sluggish rate of vibra-

tional relaxation generates more complex non-equilibrium scenarios for polyatomic molecules with

multiple vibrational modes, e.g ., the CO2 molecule which has three distinct vibrational modes:

symmetric stretching, asymmetric stretching, and bending [27, 28]. The characteristic times for re-

laxation can vary between vibrational modes [29, 30]. A similar non-equilibrium can exist between

the vibrational modes of different molecules (with distinctly different arrangements of vibrational

levels). Thus, an accurate MT-based non-equilibrium description of such gaseous mixtures could

involve defining distinct temperatures corresponding to vibrational modes of different molecules or

even different types of vibrational modes for the same molecule [31, 32].

A popular choice for modeling vibrational-translational energy transfer is the Landau-Teller

model [33] which is based on characteristic relaxation times obtained either through theory or

experiments [34, 35, 36]. Additionally, this form for the V-T energy term is derived assuming

only mono-quantum transitions. Thus, its validity in high-enthalpy hypersonic flowfields which

produce significant multi-quantum jumps can become suspect [37, 38]. The two-way coupling

between vibrational energy and chemistry – vibrational energy lost due to dissociation and in
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return effective reaction rates being informed by vibrational excitation – needs to be resolved.

The first instance of such a coupled vibrational-dissociation (CVD) model, based on the idea of

dissociation probabilities being higher for upper vibrational levels, was formulated by Hammerling

et al. [39]. The large number of chemistry coupling models that have been developed over the

succeeding decades are reviewed in [40]. These range from experimentally calibrated empirical

approaches such as the Park model involving geometric averages of translational and vibrational

temperatures [4, 18] to more theoretical models that are rooted in fundamental theory [24, 41, 42].

Despite significant advances, these efforts are impeded by a common constraint – internal levels

being forced into Boltzmann distributions – and the semi-empiricism that stems from it. Thus,

MT models are fundamentally incapable of representing strong non-equilibrium effects which stem

from complicated non-Boltzmann dynamics of internal state population distributions.

1.2.1.2 State-to-State Models

The need to supplant the empirical MT approach has inspired the development of state-to-state

(StS) thermochemical models which treat individual internal energy levels as distinct species with

independent conservation equations. This allows the internal level population distribution in all

manner of flow conditions to be accurately computed by accounting for all relevant state-specific

collisional and radiative (CR) processes for a given gaseous mixture. StS models, based on the

number of underlying assumptions and the resultant level of accuracy, can be broadly classified

as electronic, vibrational, or rovibrational StS models. Electronic StS modeling [43, 44, 45, 46]

only considers transitions between different electronic states, while prescribing MT-based Boltz-

mann population distributions for the rotational and vibrational modes. Vibrational StS mod-

els [47, 48, 49, 50] provide a detailed characterization of processes between molecular vibrational

states while assuming the rotational energy mode is equilibrated. The most complete description

for non-equilibrium is obtained through rovibrational StS modeling [51, 52, 53, 54], which allows

the population of each rovibrational state to be directly computed without making any ad-hoc

assumptions. Although this approach is exceedingly accurate in resolving the dynamics of inter-

nal excitation, it introduces a large number of additional conservation equations corresponding to

rovibrational states (∼ 104−105) even for simple diatomic molecules. Thus, the practical utility of
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such models with regards to simulating large multi-dimensional flow problems using CFD solvers

is extremely limited.

The development of accurate StS models strongly hinges on ascertaining kinetics data for the

underlying processes between states. A large amount of research effort in this regard has focused

on evolving computationally efficient techniques that are based on empirical approaches such as the

ladder climbing model or variations of semi-classical theoretical frameworks like the Forced Har-

monic Oscillator (FHO) [26, 55] or the Schwartz-Slawsky-Herzfeld (SSH) [22, 56] models. Recent

advances in computational chemistry have allowed transition probabilities governing the collisions

between different internal states of atoms, molecules, electrons and photons to be computed accu-

rately using first principles quantum chemistry methods. These calculations are performed in two

steps: a) the potential energy surface (PES) [57], which characterizes the forces between nuclei

for different geometric configurations, is obtained by solving the Schrödinger’s equation or through

experimental data, b) reaction rates coefficients are then computed by simulating a large number

of collisions between particles, governed by Hamilton’s equations of motion and the previously

determined PES trajectory, using methods that vary from the quasi-classical trajectory (QCT)

model [58] to those that fully account for quantum mechanics [54]. This ab-initio approach com-

bining PES and trajectory calculations has been used to study state-specific kinetics of different

chemical species such as N2 and O2 that are relevant to planetary entry problems [48, 50, 59, 60].

1.2.1.3 Reduced-order Models

State-to-state modeling in the context of general CFD applications is usually computationally pro-

hibitive. Instead, a more prudent alternative is using the large amount of information encapsulated

in state-specific models to inform the development of more physics-based thermochemical models.

The most straightforward approach that ensures immediate compatibility with conventional hy-

personic flow codes is based around updating reaction parameters and coupling coefficients for MT

models using detailed quantum chemistry data. An illustration of this methodology can be found

in the work of Bender et al. [61] and Chaudhry et al. [62] who studied non-equilibrium dynamics for

nitrogen and oxygen within the two-temperature paradigm. However, the fundamental constraints

inherent in MT models, due to the assumption of Boltzmann state population distributions, per-
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sist despite these improvements. Singh and Schwartzentruber [63] have attempted to overcome

this limitation by deriving a functional form for rovibrational non-equilibrium population distri-

bution using surprisal analysis. Another viable alternative to MT modeling has been proposed by

Bellemans et al. [64] based on the application of principal component analysis for reducing the

complexity of StS reaction mechanisms.

Coarse grain methods alleviate the high computational costs of StS modeling by grouping

individual levels together into a reduced number of macroscopic bins (the term bins and groups

are used interchangeably while describing reduced-order thermochemical models in the current

work). Furthermore, states within bins are assumed to equilibrate locally whereas the overall

non-Boltzmann effects are captured since bins can remain in non-equilibrium with respect to one

another. This approach has been used to study non-equilibrium pertaining to both electronic and

rovibrational states during hypersonic flows [65, 66, 67]. The work by Liu et al. [68, 69, 70] –

referred to as the multi-group maximum entropy method (MGME) – establishes a mathematically

rigorous formulation for the time evolution of macroscopic bin properties (population, energy, and

higher-order moments) while retaining all microscopic processes from the StS model. Unlike StS

models, the populations of individual states no longer serve as system unknowns. Instead, they are

reconstructed using bin-specific distribution functions (polynomials of a given order) that maximize

entropy and are constrained by bin properties. The reduced system of governing equations for bin

properties is derived by summing up moments of the StS master equations. The MGME framework

allows for a generalized representation of non-equilibrium, yielding other coarse grain and MT

models with requisite simplifications.

Previous research incorporating coarse grain or MGME methods has largely overlooked the im-

portance of selecting a physically consistent grouping strategy to improve the quality of predictions.

The most common approach consists of defining bins as non-overlapping continuous intervals of

equal width in internal energy space. Individual energy levels are subsequently divided into these

bins irrespective of their rotational and vibrational states and without any regard for the details

of the kinetics of excitation. As a result, the conventional energy approach is inherently unable to

capture the composite structure of the time-varying internal energy distribution characterized by:

a multi-mode relaxation for the low-lying energy levels, where the rotational and vibrational states
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follow a very different path to relaxation; the middle of the distribution, where the internal energy

states relax independently of their rotational and vibrational state; and the tail of the distribu-

tion, where the probability of tunneling controls the population of the predissociated states [51].

More recently, Munafò et al. [71] have published a new grouping strategy based on kinetic con-

siderations for the N2(1Σ+
g ) − N(4Su) system. Although this approach improves predictions for

non-equilibrium relaxation, it requires manually selecting energy levels that would be placed in the

same bin based on an intrinsic knowledge of the N2(1Σ+
g ) − N(4Su) system. Thus, the underlying

grouping procedure is not general and cannot be easily extended to other chemical systems.

1.2.2 Radiation Modeling

The most complete description of radiative transfer can be obtained through quantum electrody-

namics (QED). However, this is a formidable proposition when dealing with the propagation of

electromagnetic waves through generalized participating media both in terms of developing the

underpinning theoretical framework and realizing cost-effective numerical predictions. The charac-

teristic length-scales associated with typical hypersonic applications are large enough for ignoring

wave effects. Therefore, techniques derived from QED or even the classical analogue based on

Maxwell’s equations are superfluous in terms of significantly improving estimates for the radiative

environment during atmoshperic entry. Instead, a more straightforward analysis can be obtained

using corpuscular theory (which is also equivalent to period-averaging for waves [72]), i.e., radia-

tive energy transfer occurs through a stream of photons with directional, spatial, and frequency

dependence [11]. This description allows radiative transitions to be viewed in the same manner as

collisional processes – only instead of collisions strictly being between atoms/molecules, interactions

with photons occur [9, 73]. The frequency variation in radiative properties also becomes obvious

when they are decomposed into a set of constitutive transition reactions between discrete internal

levels obtained through quantum mechanics calculations. Since each of these mechanisms (classi-

fied as spontaneous emission, absorption, and stimulated emission) involves photons with specific

energies, the absorption and emission behavior of chemical species can vary rapidly with respect to

frequency. In general, multi-dimensional asymmetric high-enthalpy flows engender radiative fields

that vary in the solid angle (direction), spatial, and frequency spaces [74]. The fundamental gov-
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erning equation – referred to as the radiative transfer equation (RTE) – describes the evolution of

monochromatic spectral intensity (radiant energy flux per unit area per unit per unit frequency) in

a given direction. Thus, a complete resolution of radiative transfer can be bifurcated into the ge-

ometric aspect involving spatial-angular integration of RTEs, and spectral modeling which defines

the manner in which emission/absorption coefficients are ascribed.

1.2.2.1 Geometric Component of Radiative Transfer

The angularly integrated RTE is an integro-differential equation in five independent variables (three

spatial and two directional coordinates). Thus, semi-analytical solutions for non-homogeneous me-

dia can only be obtained for either physically limiting regimes (diffusion approximation in optically

thick conditions) or for simplified domains with property variations limited to one-dimension such

as parallel-plane slab, infinitely-long cylinders, and spheres [11, 75]. A general numerical scheme

for tackling radiative transfer needs to address both spatial and angular dependencies. The central

theme amongst popular approaches is to effect a transformation from the original integro-differential

equation into a series of simultaneous partial differential equations (PDEs). The discrete ordinate

method (DOM), first introduced by Chandrasekhar [76] for stellar problems, approximates the

integral over the complete solid angle as a summation of calculations in discrete directions. The

resultant systems of PDEs, corresponding to fixed directions from a numerical quadrature scheme,

can then be solved using a broad range of techniques based on finite-difference schemes [77, 78],

finite-volume method [79, 80], finite-element discretization [81, 82], and ray-tracing [83]. Research

has also been directed towards minimizing this explicit separation between the directional and

spatial terms. This can involve using finite-volume or finite-element methods not only for spatial

discretization but for the angular domain as well [84, 85].

A holistic framework is provided by the method of spherical harmonics which expresses intensity

as a generalized Fourier series where each term consists of the product between position-dependent

coefficients and directional spherical harmonics [86, 87]. The governing equations for the unknown

position-dependent coefficients are obtained by taking angularly integrated moments of the RTE

with respect to spherical harmonics and then exploiting their orthogonality properties. A similar

approach based on taking moments of the RTE with increasing exponents of the directional unit
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vector was used by Eddington [88] to study radiative transfer in a one-dimensional parallel slab.

These angular moment equations have spawned an entire family of methods which prescribe an

optimal closed-form expression for describing the distribution of intensity over the solid angle. The

functional form for this reconstruction is based on maximizing a certain quantity (entropy [89, 90],

rate of entropy generation [91, 92]) in addition to satisfying constraints based on the moments of

intensity. Despite certain advantages, moment methods (especially with lower order reconstruction)

can introduce significant errors while characterizing strongly anisotropic intensities. Incorporating

higher order moments results in a rapid increase in mathematical/computational complexity with

often limited gains in accuracy [11].

Besides the aforementioned deterministic techniques, radiative transfer problems can also be

solved heuristically using Monte Carlo methods [93]. This involves tracking statistically meaningful

random bundles of photons or rays as they propagate through the medium while being attenuated

(absorption) or amplified (emission) at certain probabilities determined by the local gaseous mix-

ture. A major drawback for Monte Carlo-based approaches is the substantial sampling requirement

when analyzing large domains with complicated spatial distributions of flowfield properties. A com-

prehensive outline of different numerical methods for modeling radiative dynamics in participating

media can be found in [11, 94].

1.2.2.2 Frequency Variations

The interaction between photons and gas particles can trigger a multitude of fundamental processes

that can result in absorption (increasing the energy of gas), scattering, or emission (lowering the

energy of gas). These radiative transitions are differentiated into: a) bound-bound processes that

occur between bound or undissociated atomic or molecular states, b) bound-free (absorption) or

free-bound (emission) processes that occur between bound and unbound (such as a free electron)

states, c) and free-free processes between unbound particles. The bound-bound transitions in partic-

ular result in photons of certain energy being released or captured. This introduces strong spectral

variation in transition probabilities and the corresponding radiative behavior. The frequency dis-

tribution of radiative properties can be modeled with differing degrees of fidelity. The current work

uses the classification set forth in [11, 72] to summarize the different spectral modeling approaches
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in decreasing order of accuracy – line-by-line, narrow-band, wide-band, global models. The highest

spectral resolution is obtained using “line-by-line” (LBL) calculations. These are based on large

spectroscopic databases such as HITRAN [95], HITEMP [96], CDSD-4000 [97], NEQAIR96 [98],

and the National Standards and Technology online database [99], that give detailed descriptions

of emission and absorption due to every single spectral line. A complete resolution of radiative

transfer can involve evaluations at millions of individual frequencies (O(106 − 108)). Thus, the

LBL approach (analogous to StS thermochemical modeling) is cost prohibitive when applied to

radiation calculations for large-scale CFD problems.

The other family of methods, lower in the hierarchy of spectral modeling, attempt to limit

the number of frequency-wise calculations that are required to predict total radiative quantities.

This involves approximating the actual values of absorption coefficients (stemming from individ-

ual lines) with smoothed, appropriately-averaged constant values or functions over larger spectral

ranges. Subsequently, instead of repeating the RTE solution procedure for each line, this calcula-

tion is performed only once (or relatively fewer times) for the encompassing interval. Narrow-band

methods perform this averaging over relatively narrow spectral ranges. Nevertheless, the resultant

coarsening of the spectral grid still translates into O(105−106) distinct frequency points. A number

of models have been proposed to compute the effective narrow-band averages accurately. The most

straightforward of these is the Elasser model which assumes equally spaced lines with matching

shapes and strengths over the narrow-band interval [100]. A more nuanced description is obtained

through statistical models which abolish the equality assumption in favor of randomly distributed

lines (with dissimilar strength and overlap) in the narrow-band. The earliest such methods are

those proposed by Goody [101] and Malkmus [102] and prescribe an exponential form to the prob-

ability distribution function describing line strength. More recent examples include the statistical

narrow model [103, 104], narrow-band correlated-k method [11]), smeared-rotational band (SRB)

method [8, 105], and narrow-band weighted-sum-of-grey-gases (NBWSCG) method [106]. These

different approaches have been extensively applied to various radiative systems and often offer

levels of accuracy comparable to LBL calculations.

Realizing the fundamental two-way radiation-hydrodynamics coupling requires multiple com-

plete evaluations of radiative transport as the surrounding flowfield continues evolving. Thus,
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while LBL remains entirely out of the question, the cost of narrow-band models is also further

multiplied to the extent that detailed calculations for practical problems are rendered unfeasible.

This motivates the development of wide-band models which integrate LBL or narrow-band re-

sults so that the entire frequency space is reduced to O(102 − 103) groups. These methods differ

in how the net contribution of these wide-band spectral ranges (or reduced-order groups) to the

overall radiative field is accurately approximated. Two computationally inexpensive approaches –

Planck and Rosseland means – set the representative value of group absorption coefficients based

on simple weighted-averaging [76, 100]. The resultant averaged values are exact only in certain

limiting physical regimes such as optically thin (Planck) and optically thick (Rosseland) media.

However, numerical methods based on the previously mentioned maximum entropy closure (e.g .,

M-1 model [89, 90]) present a more generalized interpretation of Planck-averaging. According to

Bose-Einstein statistics, Planck blackbody spectral intensity represents the distribution function

that maximizes entropy subject to certain constraints. Thus, Planck-averaging should be viewed

as a piece-wise maximum entropy reconstruction in the absence of complete information [107], i.e.,

the exact distribution is unknown and only the summation of moments (total group intensity) is

available. This could serve to explain the high level of fidelity obtained using Planck-averaged

reduced-order models for a wide range of complex, non-equilibrium, and optically intermediate to

thick radiative problems [108, 109].

Paralleling the basic methodologies developed for narrow-band models, statistics-based tech-

niques can also inform the formulation of wide-band models. Two such approaches are the k-

distribution [11, 110] models and theory of homogenization [111, 112]. A switch to statistics-

based methods can often improve robustness, but results in more complex procedures for pre-

computing/tabulating reduced-order properties and modeling overlapping radiative systems [110].

The global model, at the extreme end of the spectral-fidelity ladder, specifies a single universal

(spectrally invariant) value for radiative coefficients. These can be determined in a variety of

ways, which include Planck/Rosseland averaging or k-distribution but applied to the entire spec-

tral range rather than smaller intervals. Despite the obvious reduction in computational overhead,

global models introduce far too many simplifications to be sufficiently representative of the radiative

environment during hypersonic planetary entry.
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1.3 Scope of this Thesis

This thesis presents self-consistent reduced-order models for thermochemistry and radiative transfer

under strong non-equilibrium conditions. These models are then assimilated into a computationally

tractable simulation methodology for coupled radiation-hydrodynamics calculations that allows a

unified description of different physical aspects – chemistry, energy relaxation, radiation, and fluid

dynamics – constituting hypersonic entry problems. Non-Boltzmann thermochemical response

is predicted using the MGME framework which allows optimal representation of internal state

population dynamics using constrained maximum entropy closure. The applicability of MGME-

based model reduction is further improved through the use of novel adaptive binning strategies that

leverage both state-specific kinetics and energies. Clusters of internal states that are more likely to

equilibrate locally due to preferential transition pathways are identified a priori. Consequently, the

two-layered resolution scheme inherently imposed by the multi-bin paradigm – locally thermalized

states within bins are estimated using bin-wise maximum entropy reconstruction while overall non-

equilibrium is still accurately captured through bin properties – becomes more reflective of the

actual population dynamics.

The multi-variate dependence of radiative transfer is resolved through a two-pronged approach.

The geometric aspect, i.e., solution of the system of RTEs in the angular and spatial domain, is

tackled through a combined discrete-ordinate and finite-volume method solver. This ensures a high

degree of commonality with conventional CFD codes (key to expeditious flow-radiation coupling)

while providing a desirable balance between speed and accuracy. Similarly, frequency distributions

of radiative properties are characterized through numerically efficient wide-band models. Planck-

averaging supplemented by a new generalized grouping strategy for non-equilibrium radiation allows

both total quantities-of-interest and detailed spectral features to be reproduced at a fraction of the

resources required for LBL or narrow-band methods. The thesis is organized as follows:

• Chapter 2 details the development of non-Boltzmann thermochemical models used in the

current work. The chapter begins with a brief insight into non-equilibrium gaseous mixtures

from a kinetic theory point of view. This is followed by a summary of the MGME method

including derivations for bin-wise kinetics and thermodynamics. Adaptive grouping based on

two strategies – island algorithm and spectral clustering – are discussed next.
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• The efficacy of MGME reduced-order models is analyzed using an ideal homogeneous chemi-

cal reactor in Chapter 3. Two chemical systems relevant for Earth and Mars planetary entry

problems are studied: N2(1Σ+
g ) − N(4Su) rovibrational StS system and CO2(X1

∑+
g ) − M

vibrational system. The introduction of kinetics-infused adaptive grouping has a conspicu-

ous impact on accuracy, allowing even complex state population distributions borne out of

high probability parity-preserving, intra-vibrational (N2) transitions or faster V-V relaxation

(CO2) to be accurately reproduced using O(10) bins.

• Numerical techniques for resolving radiative transfer in the spatial, angular, and spectral do-

mains are presented in Chapter 4. Angular and spatial discretization of the RTE is performed

using discrete-ordinate and finite-volume methods respectively. Three commonly used wide-

band reduced-order spectral models are discussed – Planck-averaging, k-distribution, and

theory of homogenization. These conventional techniques are shown to be equivalent and

strictly derived only for LTE radiation. Thus, a new generalized non-equilibrium radiation

grouping strategy is proposed for augmented predictive capabilities for a wider range of ra-

diative environments.

• A comparative study into the accuracy accorded by different wide-band models during hy-

personic Jovian and Earth entry is presented in Chapter 5. Reference solutions based on

detailed spectral models are computed for a reference line-of-sight. These are then used to

benchmark the aforementioned wide-band models and also delineate the impact of improved

radiation grouping.

• This unified reduced-order simulation framework is used in conjunction with the US3D flow

solver [113, 114, 115] to investigate non-equilibrium radiation-hydrodynamics in the afterbody

region of the Mars 2020 vehicle [116, 117] in Chapter 6. This choice of application further

highlights the collective qualities of the current methodology with regards to cost-effective

high-fidelity non-equilibrium predictions for large-scale three-dimensional CFD problems with

complex underlying flowfield dynamics.

• Finally, key conclusions and future work are summarized in Chapter 7.
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Chapter 2

Non-Boltzmann Thermochemical
Models

This chapter presents a detailed outline of the various thermochemical models for chemical kinetics,

energy exchange, and thermodynamics used in the present work. The high computational costs

associated with CFD simulations dictate that property models are designed for efficiency and often

incorporate crude approximations for bulk properties without necessarily replicating gas behavior

at the molecular level. Consequently, traditional non-equilibrium thermochemistry relies on sweep-

ing simplifications and is no longer representative of the detailed internal statistics of evolving

gaseous species. The MGME method in conjunction with adaptive grouping provides a framework

for computational tractability while retaining key features of elementary kinetic processes. This

chapter is organized as follows: a) Section 2.1 presents an overview of the kinetic theory approach

to thermochemical non-equilibrium modeling using Boltzmann and Maxwell transfer equations.

b) The state-to-state master equations which provide an exact description of the evolution of inter-

nal energy states due to particle collisions are described in Section 2.2. c) The different facets of the

MGME method, which applies the variational principle to entropy maximization for reduced-order

reconstruction of StS dynamics, are detailed in Section 2.3. d) Section 2.4 describes the adaptive

grouping strategy for improving the applicability of the MGME framework by accurate identifica-

tion of rapidly thermalizing clusters of states using StS data. e) A short summary for the chapter

is provided in Secion 2.5.

2.1 Boltzmann and Maxwell Transfer Equations

A gaseous mixture comprises of atomic and molecular species. This mixture is represented by set

S and contains individual species {A,B,C,D, . . .}. Individual particles can only possess internal

energy from a discrete set of values for a given chemical species. Contrastingly, the separation
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between translational energy levels is multiple orders of magnitude smaller and is assumed to vary

continuously. The discrete internal energy structure for atoms stems from all possible electronic

states. The internal energy for molecules introduces additional permutations based on rotational

and vibrational configurations. The set of internal energy levels of species A is denoted by IA

whereas individual levels are represented by {i, j, k, l, . . .}. The exact number of particles per unit

volume for species A in internal state i with velocity [cAi , cAi + dcAi ] at time t and located within

x + dx] can be defined through a velocity distribution function fAi :

dniA = fAi dcAi dx (2.1)

The spatio-temporal evolution of fAi is modeled using the Boltzmann equation:

∂tfAi + cAi ·∇xfAi = QAi (2.2)

where ∂t is the partial time derivative ∂/∂t, ∇x is the spatial gradient, and QAi is the collision

operator resulting from elastic, non-reactive inelastic (change of internal energy mode), and chem-

ically reactive collisions. The current work focuses only on a continuum description of gaseous

flows and therefore, the particle description afforded by the Boltzmann equations is unnecessarily

comprehensive. Thus, moments of Eq. 2.2 are integrated in the velocity space <3 to yield the

Maxwell transfer equations which govern changes in species (or mixture) averaged properties such

as density, momentum, and energy due to bulk motion and collisions of particles [118, 119]. This

entails defining particle-averaged φ̄Ai(x, t) and mixture particle-averaged properties φ̄(x, t) from a

particle property φAi(cAi):

φ̄Ai =

∫
<3

φAifAidcAi ∀ i ∈ IA , A ∈ S ; φ̄ =
∑
i∈IA
A∈S

φ̄Ai (2.3)

Following Eq. 2.3, state number and mass densities, and mixture mass density can be defined:

nAi =

∫
<3

fAidcAi ∀ i ∈ IA , A ∈ S ; ρAi = mAn
i
A ; ρ =

∑
i∈IA
A∈S

ρAi (2.4)
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The bulk hydrodynamic flow velocity is denoted by u. A peculiar velocity CAi = cAi −u is defined

for describing particle thermal motion in the absence of mean flow. These two quantities are then

used for computing the particle-averaged diffusion velocity VAi .

u =
∑
i∈IA
A∈S

mA

ρ

∫
<3

cAi fAidcAi ; VAi =
mA

ρAi

∫
<3

CAi fAidCAi ∀ i ∈ IA , A ∈ S (2.5)

The Maxwell transfer equations for the particle-averaged quantity φ̄Ai and its summation for a

mixture φ̄ can be recast as follows:

∂tφ̄Ai + ∇x ·
(
φ̄Ai u

)
+ ∇x ·

∫
<3

φ̄AiCAifAidCAi =

∫
<3

φ̄AiQAidCAi (2.6)

∂tφ̄ + ∇x ·
(
φ̄u
)

+ ∇x ·
∑
i∈IA
A∈S

∫
<3

φ̄AiCAifAidCAi =
∑
i∈IA
A∈S

∫
<3

φ̄AiQAidCAi (2.7)

The second term on the left hand side of equations 2.6 and 2.7 captures the effect of convective

flux due to the hydrodynamic velocity. The third term represents changes induced by the diffusive

or transport fluxes. The volumetric change through particle collisions constitutes the right hand

side. The system of hydrodynamic equations is developed from the Maxwell transfer equations by

choosing different collisional invariants, i.e. properties such as mass, momentum, and energy that

are conserved during particle collision, as φ̄ [120]. Additional constitutive relations for defining

transport fluxes and the collisional production term solely as functions of flow properties result in

a closed system of equations [118, 119, 121]. The different mathematically rigorous approaches for

obtaining these relations usually center around the Chapman-Enskog (CE) perturbation method

based on asymptotic solutions of the Boltzmann equations [121, 122, 123]. The convection-diffusion

hydrodynamic equations for describing multi-dimensional non-equilibrium flows will be revisited in

Chapter 6.

2.2 State-to-State Master Equations

The number density of particles in different internal states, the total momentum, and the total

energy is conserved during elastic collisions. Starting from these collisional invariants, while deriving
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the Maxwell transfer equations, results in the contribution of elastic collisions to the velocity integral

of the QAi operator becoming zero [119]. The resultant convection-diffusion system consists of

conservation equations for partial densities of individual internal energy levels for different chemical

species, mixture momentum, and mixture energy. Thus, the StS approach with independent state-

specific mass continuity equations serves as the most comprehensive characterization of a non-

equilibrium gaseous mixture transforming due to elementary collisional processes. Without any

loss in generality, the kinetic processes (induced by particle collisions) considered in this analysis

can be broadly classified in the following manner:

Excitation and de-excitation: Ai + B ←→ Aj + B (2.8)

Ionization, dissociation, and recombination: Ai + B ←→ C + D + B (2.9)

If i < j, then the forward reaction in Eq. 2.8 represents collisional excitation, whereas the backward

process results in de-excitation. Species without an index, such as the collision partner B, do not

undergo changes in their internal energies, or equivalently their internal structure, is not resolved

using a state-specific description. Thermochemistry models and the subsequent reduced-order

analysis presented here are centered on determining volumetric effects due to collisional processes

and do not depend on the presence of convective and/or diffusive fluxes. Thus, the microscopic state

equations governing the population of individual internal levels are presented for a zero-dimensional

homogeneous chemical reactor with no mean flow or spatial variance in properties:

∂ nAi

∂ t
=

∑
j∈IA
j 6=i

(
−κe

i,j nAi nB + κe
j,i nAj nB

)
+ (−κd

i nAi nB + κri nC nD nB) ∀i ∈ IA (2.10)

The frequency of elastic collisions in aerothermodynamic flows is much higher than those for in-

elastic and reactive collisions. Thus, the translational mode is assumed to instantly equilibrate in

a Maxwell-Boltzmann distribution at temperature T [124], whereas the internal state population

and mixture chemical composition require finite time to reach local equilibrium. The mass pro-

duction terms on the right hand side of Eq. 2.10 arise due to these finite-rate energy transfer and
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chemical change processes. The quantities κe
i,j and κe

j,i represent the forward and backward rate

coefficients for energy exchange between states i and j. The rate coefficients for the dissociation

and recombination reactions for i are denoted by κd
i and κri , respectively. The total number density

of species A is computed by summing the population of all its internal states. Consequently, the

time rate of change of total number density can be obtained by summing Eq. 2.10 for individual

levels of A. Similarly, the total internal energy of A and its time rate of change can be obtained

by performing a summation across all internal states weighted by the energy εiA of each individual

level. Mixture density and energy can then be computed by adding the contributions of all chemical

species included in S.

2.3 Reduced-order Modeling

State-to-state modeling requires the solution to a large system of equations, since different internal

energy levels of reacting particles are treated as distinct chemical species. This description al-

though exceedingly accurate, has limited applicability to multi-dimensional CFD problems due to

its prohibitive cost. The present work overcomes this limitation through the use of the multi-group

maximum entropy method [68]. The process of model reduction can be broken down into two steps:

• Local Representation and Reconstruction: Individual internal energy states are com-

bined into larger macroscopic energy bins. A bin-wise distribution function based on macro-

scopic quantities (bin population, energy, etc.) and the maximum entropy principle is used

to reconstruct the population of grouped levels.

• Macroscopic Moment Equations and Rate Coefficients: Governing equations for

macroscopic quantities are derived by taking moments of the microscopic master equations

and performing a summation over all internal states belonging to a common bin.

The use of bin-wise distribution functions allows the temporal evolution of state population to be

modeled accurately without solving the master equations for individual levels. The current study

employs a linear form for the distribution function, which results in a thermalized local Boltzmann
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distribution within individual bins. This function is defined as follows:

FbA (εAi) : log

(
gAi
niA

)
= αbA + βbAεAi (2.11)

where gAi and εAi represent the degeneracy and energy, respectively, of internal state i of species

A that has been assigned to the bth bin. Recent work on the MGME method has explored the

impact of introducing a quadratic term [125] in Eq. 2.11 which is akin to performing p-refinement

in computational fluid dynamics. However, the quadratic approach results in a significant increase

in overall complexity due to a) the introduction of an additional bin-specific governing equation

(corresponding to the second-order energy moment), b) development of fits/look-up tables and

then their evaluation for a larger number of bin-specific properties, and c) the inversion problem

for obtaining the reconstruction coefficients being numerically stiff. In light of these challenges,

quadratic and other higher-order reconstructions have not been incorporated into the present study.

The bin-specific coefficients αbA and βbA in Eq. 2.11 are formulated in terms of the macroscopic

constraints – total bin population N b
A and energy EbA per unit volume – using the maximum entropy

principle and the variational method outlined in [69]:

N b
A =

∑
i∈ÎbA

nAi , EbA =
∑
i∈ÎbA

nAi εAi (2.12)

The set of energy states belonging to the bth bin is denoted by ÎbA. This procedure matches the one

employed in classical thermodynamics for computing the equilibrium Boltzmann distribution using

the method of Lagrange multipliers [126]. The only difference is that instead of maximizing the

entropy of the total internal distribution for a chemical species (and subject to constraints on total

species population and energy), bin-wise entropy (representing only a subset of internal states ÎbA ⊂

IA) is now maximized while satisfying constraints on bin properties. Paralleling relations derived

for equilibrium Boltzmann distributions, βbA for the linear bin-wise state distribution function can

be recast in the following manner:

(
∂sbA
∂EbA

)
V,Nb

A

=
1

T bA
= kB β

b
A ; βbA = βbA

(
EbA
N b

A

)
(2.13)
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It can be deduced that βbA is only a function of the bin specific internal energy. Therefore, the

corresponding bin temperature T bA can be obtained from a non-linear inversion of EbA/N
b
A. The

coefficient αbA can be generalized to complete the bin-wise state distribution function FbA:

αbA = log

(
0QbA
N b

A

)
= log

(
1QbA
EbA

)
= . . . = log

mQbA

/ ∑
i∈ÎbA

nAi (εAi)
m

 (2.14)

where mQbA =
∑

i∈ÎbA
gAi exp(−βbAεAi) (εAi)

m is the mth order bin partition function. The method

of moments [127] is then applied to derive governing equations for the bin-specific macroscopic

constraints. This involves first taking successive moments of the master equations (Eq. 2.10) with

internal energy levels (εAi)
m |m ∈ {0, 1, 2, . . .}. Then, summing up the resultant equations for all

energy states included in a particular bin to obtain the corresponding equation for a bin property.

The reduced system of governing equations can be expressed as:

∑
i∈ÎbA

∂ nAi

∂ t
(εAi)

m =
∑
i∈ÎbA

∑
j∈ÎcA

[
− κe

i,j nAinB (εAi)
m + κe

j,i nAjnB (εAi)
m

]

+
∑
i∈ÎbA

[
− κd

i nAinB (εAi)
m + κri nCnDnB (εAi)

m

]
(2.15)

where m indicates the order of the moment. The total population and energies of the bins (Eq. 2.12)

serve as the set of unknowns for a reduced-order system based on linear reconstruction. The

macroscopic equations for these quantities corresponding to the bth bin can be recovered by setting

m equal to zero and one, respectively:

ω̇bcol,A ×NAv : ∂
∂tN

b
A =

∑
c

(
− 0Kb,cN

b
A nB + 0K̄c,bN

c
A nB

)
+

(
− 0CbN

b
A nB + 0C̄b nC nD nB

)
(2.16)

Ωb
col,A ×

NAv

Mb
A

: ∂
∂tE

b
A =

∑
c

(
− 1Kb,cE

b
A nB +

1
K̄c,bE

c
A nB

)
+

(
− 1CbE

b
A nB +

1
C̄b nC nD nB

)
(2.17)
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2.3.1 Bin-averaged Kinetics

The forward and backward bin-averaged rate coefficients for the mth moment, encapsulating all

internal excitation processes between the bth and the cth bins are denoted by mKb,c and
m
K̄c,b.

Similarly, the bin-wise dissociation and recombination coefficients for the bth bin are mCb and

m
C̄b. The bin-averaged rate coefficients are obtained directly from elementary StS processes after

defining internal state population distributions through equations 2.11, 2.14, and 2.13. Internal

energy exchange between the bth and the cth bins can be described as follows:

∑
i∈ÎbA

∑
j∈ÎcA

[
− κe

i,j nAinB (εAi)
m + κe

j,i nAjnB (εAi)
m

]

=
∑
i∈ÎbA

∑
j∈ÎcA

[
− κe

i,j

gAi exp{−εAi/(kB T
b
A)}

mQbA
(εAi)

m N b
AnB

+ κe
j,i

gAj exp{−εAj/(kB T
c
A)}

mQcA
(εAi)

m N c
AnB

]
(2.18)

The corresponding bin-averaged rate coefficients mKi
b,c and

m
K̄c,b are:

mKb,c =
1

mQbA

∑
i∈ÎbA

∑
j∈ÎcA

κe
i,j gAi exp{−εAi/(kB T

b
A)} (εAi)

m (2.19)

m
K̄c,b =

1
mQcA

∑
i∈ÎbA

∑
j∈ÎcA

κe
j,i gAj exp{−εAj/(kB T

c
A)} (εAi)

m (2.20)

A similar procedure for the dissociation and recombination processes yields:

mCb =
1

mQbA

∑
i∈ÎbA

κd
i gAi exp{−εAi/(kB T

b
A)} (εAi)

m (2.21)

m
C̄b =

∑
i∈ÎbA

κri (εAi)
m (2.22)

It should be noted that the bin-averaged rate coefficients only depend on the translational tem-

perature of the gas mixture and the bin internal temperatures T bA (forward excitation and disso-

ciation/recombination) and T cA (backward excitation). Therefore, they can be pre-computed and

stored as two-dimensional fits or look-up tables for use during actual simulations.
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2.3.2 Bin Thermodynamics

Standard operators from statistical thermodynamics can be applied to bin partition functions in

order to obtain bin-wise properties [126]. The total bin partition function can be defined as:

Qb(tot,A) = Q(tr,A)Q
b
(int,A) = Q(tr,A)

0QbA (2.23)

where Q(tr,A) is the translational partition function for species A and Qb(int,A) = 0QbA is the bin-

specific internal partition function. Enthalpy, specific heat capacity, and entropy due to internal

energy states included in the bth bin can be defined in a straightforward manner:

hb(int,A)

RT
= T

(
∂ lnQb(int,A)

∂T

)
V

(2.24)

Cbp,(int,A)

R
=

[
∂

∂T
T 2

(
∂ lnQb(int,A)

∂T

)]
V

(2.25)

sb(int,A)

R
= T

(
∂ lnQb(int,A)

∂T

)
V

+ lnQb(int,A) (2.26)

The MGME method can be applied to the whole hierarchy – vibronic, vibrational, electronic – of

StS models outlined in Chapter 1. A switch in the type of StS modeling would merely change the

form for the total bin partition function:

Qb(tot,A) = Q(tr,A)Q(rot,A)Q
b
(VE,A) , (Vibrational StS) (2.27)

Qb(tot,A) = Q(tr,A)Q(rot,A)Q(vib,A)Q
b
(el,A) , (Electronic StS) (2.28)

The rotational (for Vibrational/Electronic StS) and vibrational (for Electronic StS) partition func-

tions can be computed using standard models (rigid rotor, harmonic oscillator amongst oth-

ers) [126, 128] and are common across all bins for a given species. The bin-specific partition

functions only include the contribution of the explicit internal states (VE: vibrational-electronic,

E:electronic) listed for a specific StS model. Furthermore, analogous to multi-temperature mod-

eling, additional assumptions regarding thermal equilibrium between different types of internal

modes (bin or species wise) can be introduced, resulting in fewer independent energy conserva-
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tion equations. These different models (T bA = T cA = . . . = Const [129], T bA = T cA = . . . = T [73],

T bE,A = T cE,A = . . . 6= T [12]) for defining the underlying Boltzmann distributions simply alter the

temperatures at which the various partition functions and the resultant thermodynamic operators

are evaluated. Thus, the MGME framework can be repurposed for any desired level of fidelity

while making non-equilibrium thermochemical predictions.

2.4 Binning Strategy

The MGME method (or coarse-graining in general) with linear bin-wise distribution functions

implicitly assumes that energy levels that belong to the same bin are in a state of thermal equi-

librium. The present work is aimed at improving the applicability of the MGME methodology by

leveraging the details of state-specific chemical kinetics to construct a more physics-based grouping

strategy (referred to as Adaptive Binning hereafter). This allows the difference in time scales (de-

fined with respect to the characteristic flow time) between fast and slow processes to be identified

accurately [121, 130]. The reduced-order model needs to describe only the slow processes, while

the fast processes leading to localized equilibrium can be ignored. The impact of fast reactions

can be accounted for by grouping together the participating states into a common bin, with their

population accurately described using the maximum entropy principle [131]. To this aim, new

metrics shaped by both the energy difference and relevant reaction processes are proposed to ac-

curately characterize the strength of connection between different internal energy levels for a given

chemical species. Two different techniques are considered for clustering individual energy levels

into bins using these affinity metrics: the Modified Island Algorithm [132, 133] and the Spectral

Clustering [134, 135, 136] method.

Clustering of data with “similar behavior” is one of the most actively researched areas and can

be broadly categorized into supervised and unsupervised techniques [137]. Supervised clustering

relies on an input preliminary data-set that has already been divided (or labeled) appropriately

which can then inform how newer problems are tackled. No such initial classification can be

made about internal energy states without completely analyzing the myriad of possible interactions

included in StS kinetics. Additionally, a clustering solution that might be appropriate for a given

chemical system cannot be readily applied to another problem comprising of differing molecules
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and atoms. Instead, unsupervised strategies that are free of inadequately informed biases and

are driven by structures/features enshrined in the StS database can more reliably assess a general

system. The modified island algorithm and spectral clustering are two approaches, with different

levels of sophistication, for effecting unsupervised segmenting of internal states.

2.4.1 Modified Island Algorithm

This clustering technique borrows from existing algorithms that are designed to find connected

components in a system comprising of individual objects or nodes. Connected components are sets

of nodes (also described as islands of nodes) that are directly or indirectly linked to one another

but are disconnected from other islands. In the context of coarse grain modeling, the nodes are

analogous to internal energy levels and the islands represent prospective macroscopic bins which

group together states that quickly thermalize with each other.

A wide variety of formulations for the island algorithm have been proposed in the literature by

Dijkstra [138] and Kosaraju [139]. This work relies on a modified form of the depth-first search

technique, developed by Hopcroft and Tarjan [132, 133], to identify connected components in linear

time, i.e., the time complexity of the algorithm scales linearly with the number of nodes. In order to

be able to cluster the states into islands, this algorithm requires the definition of “fast” and “slow”

transitions. The following definition based on log-averaging is proposed in the present work:

log10 (κfast) = log10 (κlavg) + βI [ log10 (κmin) − log10 (κlavg) ]

⇒ κfast = κ
(1−βI)
lavg κβImin (2.29)

where βI is a tunable parameter whose optimal value varies between different chemical systems.

Threshold values κfast for the forward and backward processes of excitation reactions are calculated

separately. Any transition with a reaction rate coefficient greater than the corresponding value of

κfast in either the forward or backward direction is considered a fast reaction. The log averaged

value for the rate coefficient is denoted by κlavg and can be computed as follows:

log10 (κlavg) =

( Nr∑
i=1

log10κ
e
i

)/
Nr (2.30)
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where κe
i is the rate coefficient for the ith internal excitation reaction, and Nr is the total number

of excitation reactions. The lowest value of the reaction rate coefficient for all transitions included

in the kinetic scheme is represented by κmin in Eq. 2.29. This process of delineating “fast” and

“slow” transitions can also be supplemented by additional qualitative information regarding the

nature of different types of collisional processes. Certain StS models, such as the CO2(X1
∑+

g )

system [56, 140, 141] discussed in Chapter 3, comprise of various categories of state-specific tran-

sitions that are clearly separated in terms of their characteristic time scales. In such cases, these

physical distinctions can simply be employed to identify rapidly thermalizing processes instead of

characterizing the system through log-averaging and βI.

Figure 2.1: Recursive re-binning of internal states connected by “fast” transitions using island
algorithm. States with the same color occupy a common macroscopic bin.

Once states connected by “fast” transitions have been mapped out, the island algorithm can

proceed further. The subsequent recursive re-binning of internal states on the basis of these high

probability energy-exchange mechanisms is presented in Fig. 2.1. A preliminary bin assignment

for the internal states is obtained using the conventional energy-based grouping approach [68,

69]. States that are placed in a common energy bin have the same color initially in Fig. 2.1.

Subsequently, a loop over all possible energy levels i is initiated; all states connected to level i

through fast reactions are pulled from their original bins into the same bin as i. The next subfigure

in Fig. 2.1 represents this phase, with the first layer of connected states being re-assigned to the red
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bin. The algorithm then moves on to the states which were just processed. The same sequence of

steps – mapping out connected states and assigning them the same bin as i – is repeated recursively

until all connected components of the island have been visited. The possibility of getting caught

in an infinite loop is avoided by allowing the bin index of a particular state to be changed only

once. Thus, the recursive exploration (based on analyzing successive layers of connected states) is

stopped once a previously redistributed internal state is encountered. The algorithm then restarts

from the next state i in the main loop.

The island algorithm is a recursive exploratory method which relies on local searches to map

out strongly coupled internal states. The focus on evaluating the relationship only between a

pair of states at any given time limits the algorithm’s ability to analyze the entire system more

comprehensively. Additionally, the binary approach of classifying transitions as “fast” or “slow”

(Eq. 2.29) provides an incomplete picture of the impact of collisional processes included in the

state-specific chemistry model.

2.4.2 Spectral Clustering

Spectral clustering has emerged as the method of choice for identifying natural clusters in large sets

of data for a wide range of machine learning applications such as image processing, online traffic

analysis, and dimension reduction. This technique has evolved from graph partitioning theory

which allows all direct or indirect connections between individual states (and not just a localized

analysis) to shape the clustering process. Consequently, a major drawback of the island algorithm –

pairs of states being compared independently of all other internal energy levels – is eliminated and

the system is analyzed in its entirety. Additionally, by employing a more sophisticated coupling

metric instead of an arbitrary threshold value for defining fast transitions, spectral clustering yields

more physically representative clusters. The next two subsections provide a detailed roadmap

for effecting spectral clustering, starting from detailed StS models to a rigorous formulation for

partitioning undirected graphs.
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2.4.2.1 StS Model to Graph Partitioning

The first step towards implementing spectral clustering is a quantitative assessment of the degree of

connectedness between energy states, which encapsulates both energy and state-to-state kinetics.

The following expression for defining the strength of connection between levels i and j is proposed

in the current work:

S(i, j) : Sij =
|εAi − εAj |

βE

(κei,j)
βK

(2.31)

It must be emphasized that optimal values for parameters βE and βK can vary between different

chemical systems. Pairs of internal states that are less likely to be in equilibrium, due to the

combined effect of their energies being different and the transitions linking them being improbable,

are characterized by larger-valued elements in the strength of connection matrix S ∈ Rn×n. Con-

versely, lower values in S represent states that have stronger interactions and therefore, equilibrate

faster with respect to one another.

Figure 2.2: Recasting internal state binning as a graph partitioning problem: Green vertices
represent individual states and edges are weighted byW (Eq. 2.32).

The second step in effecting spectral clustering is the re-formulation of the original clustering

problem into a graph partitioning problem (Fig. 2.2). The different internal levels along with the

strength of connection matrix S are represented as an undirected similarity graph G. The internal

states constitute the set of vertices V in graph G. The edge between two states (or vertices) i and j

is assumed to be weighted by the appropriate non-zero term Wij from the graph adjacency matrix
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W ∈ Rn×n. The value of Wij lies in the interval [0, 1] , with a larger value indicative of a stronger

connection or higher degree of similarity. The graph adjacency matrix is derived from the strength

of connection matrix using a Gaussian similarity function in the following manner:

W(i, j) : Wij = exp
(
−Sij√
σi σj

)
(2.32)

where σi is the local scaling factor associated with state i. It determines how rapidly similarity

with state i falls off as the strength of connection with it decreases. The current study sets σi equal

to SiN which is the strength of connection between state i and its N th closest neighbor, i.e., the

state corresponding to the N th smallest element in the ith row of S [142]. This approach, unlike

using a single global scaling factor σ, allows vertices that are located at different scales of proximity

to be automatically accounted for while identifying optimal clusters. The graph adjacency matrix

W needs to be symmetric, in order to ensure that graph G is undirected, i.e., the edges have

no orientation and their weights are constant irrespective of direction. This requires that the

original strength of connection matrix S be symmetric as well. Therefore, only the rate constant

corresponding to the excitation process between i and j is used to define both Sij and Sji. Since,

κi,j and κj,i are assigned the same value (with the de-excitation process ignored), Eqn 2.31 yields

a system with Sij = Sji.

The computational cost of clustering is decreased by reducing the number of non-zero entries

in the graph adjacency matrix W . This can be achieved using various criteria [136], namely:

a) ε-neighborhood, b) k-nearest neighbors, c) and mutual k-nearest neighbors. The third criterion

based on mutual k-nearest neighbors is used in the present work. A non-zero value ofWij (computed

in Eq. 2.31) is retained only if both i is among the k-nearest neighbors of j, and j is among the

k-nearest neighbors of i. Otherwise, Wij is assigned a value of zero, thereby increasing the overall

sparsity of W . This process ensures that despite the original similarity graph being simplified,

the local neighborhood relationships between energy levels with the strongest connections are still

modeled accurately.
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2.4.2.2 Optimal Graph Cuts

The current clustering problem of dividing closely linked states into groups can finally be recast

as follows – graph G needs to partitioned in a manner that edges defined between different groups

carry low weights (states assigned to different clusters are dissimilar) while the edges within a group

are characterized by high weights (states within a common cluster are strongly coupled). The sum

of similarities [143] (SS) between two potential clusters Ci and Cj can be defined as:

SS (Ci,Cj) =
∑

u∈Ci,v∈Cj

Wuv (2.33)

An optimal clustering solution can be obtained by minimizing the normalized cut (Ncut) objective

function [134]:

FNC =

K∑
i=1

SS (Ci,Ci)
SS (Ci,V)

(2.34)

where K is the target number of clusters (or macroscopic bins) being sought for a given reduced-

order model. The numerator SS (Ci,Ci) ascertains how closely states in Ci are linked with the rest

of the data set Ci. The denominator term in Eq. 2.34 drives down disparity in the sizes of different

clusters and ensures a more balanced partitioning. The objective function FNC can be expounded

by defining an n×K cluster affinity matrix X:

Xij =


1 , if ith vertex ∈ jth cluster

0 , otherwise

(2.35)

The normalized cut (Eq. 2.34) minimization problem can be expressed more succinctly as:

min
X

FNC =
K∑
j=1

XT
∗j (D −W)X∗j

XT
∗jDX∗j

= Tr

(
XT (D −W)X

XT DX

)
(2.36)
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where X∗j is an n-dimensional vector comprising of the jth column of the affinity matrix. The

operator Tr ( . ) yields the trace of a matrix. The degree matrix D is defined as follows:

D(i, j) : Dij =


∑n

j=iWij , if i = j

0 , otherwise

(2.37)

Equation 2.36 can be further developed by defining a symmetric normalized graph Laplacian [135,

144] Lsy = I − D−1/2WD−1/2, with I being the identity matrix:

min
X

FNC =
K∑
j=1

XT
∗j (D − W)X∗j

XT
∗jDX∗j

=

K∑
j=1

XT
∗jD1/2 (I − D−1/2WD−1/2)D1/2X∗j

XT
∗jD1/2D1/2X∗j

=
K∑
j=1

Y T
∗j Lsy Y ∗j , Y ∗j = D1/2X∗j / ||D1/2X∗j || (2.38)

where || . || is the l2-norm. Equivalently, Eq. 2.38 can be expressed as a trace minimization problem:

min
Y

FNC = Tr (Y T Lsy Y ) , Y T Y = I (2.39)

A general optimization problem of the form outlined in Eq. 2.39 has been proven to be NP-hard [145]

and therefore, no direct solution for it can be easily obtained. Instead, spectral clustering attempts

to solve a relaxed form of the problem [134, 136] by doing away with the discrete nature of the

affinity matrix and allowing it to take any real value, i.e., Xij /∈ {0, 1}. A minimum bound for the

relaxed form of Eq. 2.39 can be obtained using K. Fan’s theorem [146, 147], which generalizes the

Rayleigh-Ritz theorem [148]:

min
Y

Tr (Y T Lsy Y ) ≥ λ1 + · · · + λK , Lsywm = λmwm

where λ1 ≤, · · · ≤ λK are the K smallest eigenvalues of Lsy. Since the normalized Laplacian is

positive semi-definite [149], its eigenvalues and the minimum value of FNC cannot be less than zero.

The normalized affinity matrix Y that results in this optimal solution comprises of the eigenvectors
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corresponding to these K eigenvalues. The ith row of Y represents a point in the <K space, with

component Yij representing the likelihood of the ith vertex being in the jth cluster. Individual

vertices are then grouped into clusters based on the cluster-affinity relationship encapsulated in

these absolute coordinates in a K-dimensional space instead of the original graph adjacency matrix.

Ng et al. [135, 136] employed arguments based on matrix perturbation theory [150] for proving that

Y based on Lsy requires a further row-normalization step Yi∗ / ||Yi∗|| to sufficiently eliminate noise

and correctly identify cluster connections. Instead, the use of the asymmetric normalized Laplacian

Lrw = I − D−1W in Eq. 2.40, as done by Shi and Malik [134], involves no such extra step while

solving for balanced optimal clusters. A formal equivalence can also be established with the random

walk interpretation of spectral clustering [151] which adds further credence to the use of Lrw. A

detailed analysis of the spectral clustering method, including different perspectives based on graph

cuts, random walk, and perturbation theory, can be found in [134, 135, 136, 152].

2.4.2.3 Solution Procedure

The present study is based on the asymmetric normalized spectral clustering approach proposed

by Shi and Malik [134], which can be summarized as follows:

• Construct a sparse n×n weighted adjacency matrixW using a Gaussian similarity function

and mutual k-nearest neighbors criterion.

• Compute the asymmetric normalized graph Laplacian Lrw = I − D−1W .

• Compute eigenvectors u1, u2, . . . , uK corresponding to the K smallest eigenvalues of Lrw.

• Form an n×K matrix Ŷ with vectors u1, u2, . . . , uK as columns.

• Row vectors Yi∗ represent points in <K space. Finally, perform clustering on YT to obtain

C1,. . . , CK .

The final clustering of absolute coordinates in <K space has been performed using a popular

K-medoids algorithm called partitioning around medoids (PAM) [153]. PAM attempts to identify

medoids which are data points that are centrally located in clusters and can serve as their represen-

tatives. The remaining points in Y are then partitioned into clusters based on the closest medoid.
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The level of dissimilarity within clusters is iteratively minimized by selecting better medoids (av-

erage dissimilarity to all points in a cluster is minimal) and then re-grouping the data-set based

on the updated set of medoids. Unlike the more popular K-Means method [154, 155], K-medoids

clustering is less sensitive to outliers. Thus, its use in conjunction with spectral clustering allows

optimal clusters to be created for a wider variety of problems.

2.5 Summary

This chapter presents a detailed outline of the MGME framwork for obtaining reduced-order rep-

resentation of internal state population dynamics. This entails combining internal states for a

given chemical species into larger macroscopic bins. Thereafter, the bin-wise state population dis-

tribution is reconstructed using polynomials based on entropy maximization and constrained by

bin-specific properties. This paves the way for modeling non-equilibrium response in a computa-

tionally cost-effective manner by treating only bin properties as independent degrees of freedom.

The bin governing equations are derived in a consistent manner by applying maximum entropy

reconstruction and the method of moments to the StS master equations without further simplifi-

cations. Existing reduced-order models based on this multi-group paradigm rely on a simplistic

grouping strategy that can lead to erroneous predictions of non-equilibrium chemical kinetics and

energy exchange. These approaches group states solely based on energy considerations, completely

disregarding the characteristics of the StS kinetics and the presence of preferential transition path-

ways between certain states. This chapter introduces two new binning strategies that incorporate

state-specific chemistry to improve the accuracy of MGME reduced-order models: the Modified

Island Algorithm and the Spectral Clustering method. The modified island algorithm is a recur-

sive method based on mapping out islands (bins) of internal states that are connected directly or

indirectly by highly probable transitions. However, this approach is still limited by the binary classi-

fication of “fast”/“slow” transitions and analyzing only individual pairs of states at a time. Spectral

clustering remedies these shortcomings by evolving more sophisticated metrics for characterizing

localized equilibration and evaluating all possible connections in the StS system concurrently. The

resultant clustering procedure in conjunction with partitioning around medoids is able to extract

optimal macroscopic bins by analyzing the strength of connection between internal states based on
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kinetic processes and energy difference. The impact of different grouping techniques while evolving

physics-based MGME reduced-order models from different StS systems will be studied in the next

chapter.
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Chapter 3

Chemical Reactor Analysis of
Adaptive Multi-group Maximum
Entropy Method

The adaptive MGME paradigm outlined in Chapter 2 provides for computationally efficient pre-

dictions for complex non-Boltzmann kinetics while retaining key attributes of StS models. A

reduced-order description of collisional reaction mechanisms is sought for accurately estimating

volumetric source terms emanating from internal energy transfer and chemical change. Thus, an

idealized homogeneous chemical reactor with no spatial variation and devoid of convective/diffusive

fluxes serves as the ideal test-bed for characterizing MGME-based model reduction. Molecular ni-

trogen and carbon-dioxide represent two of the most abundant atmospheric species on planetary

bodies that are the focus of current and near-future hypersonic entry, descent, and landing (EDL)

missions. These include Mars [156]: 95.3 % CO2 and 1.9 % N2, Titan [157]: 98.4 % N2, Venus [158]:

96.5 % CO2 and 3.5 % N2, and Earth [159]: 78.1 % N2, with species concentration listed in percent-

age volume. The thermochemical response of the gaseous flowfield enveloping the vehicle during

such planetary entries would be dominated by N2 and CO2. The current chapter presents results

obtained using StS modeling of N2 and CO2 in an isochoric chemical reactor, which allows an

exact representation of thermal and chemical non-equilibrium in these species. Next, the accuracy

of different reduced-order MGME models based on binning strategies outlined in Section 2.4 is

assessed using the full StS solution. This chapter is organized as follows: a) Section 3.1 outlines

the numerical framework and computational tools employed for studying the unsteady chemical

reactor problem. b) The impact of binning strategies on the applicability of MGME models for the

N2(1Σ+
g ) − N(4Su) rovibrational StS system is studied in Section 3.2.1. c) Section 3.3.1 presents

a similar analysis for the CO2(X1
∑+

g ) −M vibrational system. d) The key conclusions from the

chapter are summarized in Section 3.4.
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3.1 Computational Methodology

State-to-state modeling in an isochoric chemical reactor with spatially invariant properties and no

bulk flow represents a system of nonlinear ordinary differential equations (ODEs) in time of the form

outlined in Eq. 2.10. The following approach is used for studying non-equilibrium dynamics in this

chapter: a) The initial conditions inside the reactor are defined by total pressure P0, temperature

T = T0, and total mole-fractions X0,i for different chemical species. Internal energy states are

assumed to be in thermal equilibrium with the translational mode at T0. Thus, the number density

of internal state i is obtained through the Maxwell-Boltzmann distribution:

nAi

NA

=
gAi exp{−εAi/(kB T0}

QA

(3.1)

b) At t = 0 s, the translational temperature T of the chemical reactor is increased instantly to

Tf which induces strong thermal and chemical non-equilibrium c) A time-accurate solution for

the internal population distribution is computed till equilibrium is reached at Tf . The isothermal

assumption for translational temperature results in state-specific rate coefficients (κei,j , κ
e
j,i, κ

d
i ,

κri ) remaining constant at Tf for the duration of the simulation. Reduced-order modeling of this

unsteady zero-dimensional problem involves solving equations 2.16 and 2.17. The change in bin

energy EbA requires the corresponding bin temperature T bA to be updated through a non-linear

inversion as the simulation proceeds. The varying bin internal state distribution (characterized by

T bA) results in the bin-averaged rate coefficients (mKb,c,
m
K̄c,b,

mCb) also evolving in time. The set

of internal states belonging to a given bin ÎbA is determined prior to non-equilibrium simulations

and does not change in time (or space for multi-dimensional problems discussed later). Three

observables are calculated and compared: chemical composition, total internal energy profiles, and

the populations of the internal states.

The ideal reactor ODE system with time-dependent parameters is not only large (number of

internal states for StS modeling are O(104)) but also extremely stiff due to state populations and

reaction rates varying by multiple orders of magnitude. Thus, performing time integration on this

system is a challenging and computationally expensive process. The present work makes extensive

use of the CVODE ODE solver [160] which is a part of the larger SUNDIALS package [161].
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Backward Differentiation Formulas (BDFs) of orders ranging from 1 to 5 are used to step forward

in time. The non-linear system obtained at each integration step is solved using the modified

Newton’s method. A dense direct solver from the OpenBLAS library [162, 163] has been employed

to tackle linear systems within the Newton sub-iterations. A shared memory parallel framework

based on OpenMP [164] is employed by OpenBLAS to speed-up the process of LU factorization and

subsequently, back-solving linear problems. The large number of possible state-to-state processes

yields a mass matrix with low sparsity. This precludes the use of preconditioned Krylov linear

solvers [165] which exhibit poor convergence behavior even while using a relatively high-dimensional

Krylov subspace.

The K-smallest eigenvalues and corresponding eigenvectors for asymmetric normalized graph

Laplacians Lrw during spectral clustering have been computed using the SLEPc [166, 167] software

library. The SLEPc library provides a range of methods for solving large-scale sparse eigenvalue

problems efficiently on parallel computers. The current study uses the Krylov-Schur approach [168]

to identify the required eigenvalues for Lrw. Although K-medoid clustering based on Partitioning

Around Medoids (PAM) is an expensive procedure (O(n2)), the second phase of PAM based on

improving clustering quality by swapping existing medoids with other data points can easily be

parallelized. This has been achieved using OpenMP, resulting in a computational implementation

that performs clustering at reduced time outlays.

3.2 N2(
1Σ+

g )−N(4Su) System

The NASA Ames ab-initio quantum chemistry database [59, 60, 169, 170] comprises a complete

and self-consistent set of thermodynamic and kinetic information needed to describe the elementary

state-to-state kinetics of N2 − N and N2 − N2 interactions. While the analysis carried out in this

work is restricted to the study of N2−N relaxation, an ongoing effort investigates the dynamics of

the N2−N2 system [129, 171, 172]. The database includes 9, 390 rovibrational energy levels N2(v, J)

for the electronic ground-state of nitrogen, where indices v and J represent the vibrational and

rotational quantum numbers, respectively. These levels can also be sorted by increasing energy

and then described using a single global index i. The relation between i and (v, J) notations is
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expressed as:

i = i(v, J), where v = 0, . . . , vmax and J = 0, . . . , Jmax(v)

and conversely by the relations:

v = v(i), J = J(i), i ∈ IN2
,

where IN2
is the set of internal energy levels for molecular nitrogen. The database for the N2 − N

system comprises more than 2× 107 individual reactions that can be classified into three types of

processes: collisional dissociation of bound and quasi-bound states; predissociation or tunneling of

quasi-bound states; and collisional excitation transitions between different states:

Ni
2(

1Σ+
g ) + N(4Su) ←→ Nj

2(
1Σ+

g ) + N(4Su) i, j ∈ IN2
(3.2)

Ni
2(

1Σ+
g ) + N(4Su) ←→ 2 N(4Su) + N(4Su) i ∈ IN2

(3.3)

Ni
2(

1Σ+
g ) ←→ 2 N(4Su) i ∈ IN2

(3.4)

The collisional excitation transitions include the contribution of both inelastic (non-reactive) and

exchange processes. The cross-sections for these reactions have been computed using the QCT

method with an analytical PES that was fit to accurate quantum chemistry calculations for the

N2 − N system. The NASA Ames database has been extensively used to study non-equilibrium

kinetics of the population distribution in gases undergoing dissociation [51, 52, 53, 68, 71]. These

results suggest that higher accuracy is required in the modeling of the distribution function of

the low-lying states, while quasi-bound states can be adequately described using the energy-based

grouping strategy discussed by Munafo et al . [173]. Consequently, only the bound states (the

first 7, 421 rovibrational levels) are considered in the present work. It is interesting to note that

adaptive grouping relies on identifying only the most probable pathways for transitions. Thus, even

if the current methodology is applied to low accuracy StS models which may ignore the less likely

processes (due to limited number of trajectories during QCT simulations), the overall impact on

the binning procedure and subsequently the dynamics of thermalization should be minimal.
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3.2.1 State-to-State Solution

The exact population distribution for rovibrational levels of N2 molecules requires solving 7, 421

coupled state-specific ODEs and an additional equation for the ground electronic state of N atoms.

The volumetric composition of the initial mixture is 95% N2 and 5% N. The internal states of

N2 are assumed to be in a Boltzmann distribution at Ti = 2, 000 K and Pi = 10, 000 Pa. Mass

fraction and internal energy profiles are presented in Fig. 3.1 for the two values of the final reactor

temperatures Tf being considered: 10, 000 K and 30, 000 K. In both cases, the initially cold N2

molecules rapidly undergo excitation due to the sudden increase in translational temperature. For

Tf = 10, 000 K, the thermal relaxation process takes up to 10 µs and is completed without any

significant changes to the composition of the reaction mixture. The onset of dissociation occurs

only after t = 5 × 10−6 s, causing a drop in the total internal energy of the molecules. It should

be noted that for this low temperature case internal energy relaxation and dissociation are distinct

processes, barring a brief period of overlap from t = 5× 10−6 s to t = 10−5 s. On the other hand,

internal excitation and dissociation take place simultaneously for Tf = 30, 000 K, with no clear

temporal separation between the two processes.
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Figure 3.1: Evolution of total mole fraction and internal energy of N2.

Figure 3.2 shows the population of different internal states of N2 at t = 3 × 107 s for Tf =

10, 000 K. The relaxation process for the low-lying levels (εi < 5 eV) appears to occur differently

compared to the rest of the distribution. In the early stages of thermal relaxation, these levels

form a fork-like structure consisting of multiple linear strands in a state of local equilibrium.
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Figure 3.2: Population distribution of N2 internal states at t = 3×10−7 s for Tf = 10, 000 K. The
inset figure magnifies the distinct fork-like structure formed in the region defined by internal energy
less than 5 eV. Internal states with even and odd rotational quantum numbers are represented by
orange and blue symbols, respectively.

Further analysis indicates that each strand is composed of states that have a common vibrational

quantum number v, but different rotational quantum numbers J . Individual vibrational strands are

further divided into sub-branches corresponding to states with even and odd rotational quantum

numbers [67]. This complex multi-modal structure is magnified in Fig. 3.2, with even rotational

quantum states represented by orange symbols and the odd rotational quantum states represented

by blue symbols. The pseudo-Boltzmann distributions defining individual strands are characterized

by different rotational temperatures, which appear to increase with v. This behavior is not observed

in the tail of the population distribution. States in this region are characterized by larger values

for rotational and vibrational quantum numbers which results in total rovibrational energy being

dominated by higher-order non-linear terms [126]. Additionally, internal energy exchange at higher

energies is more likely to occur through N2 exchanging one of the bound nitrogen atoms with

the colliding N rather than through a purely inelastic process [170]. This limits the process of

preferential thermalization between the same vibrational levels. Consequently, different linear

strands coalesce together into a narrow distribution as the rovibrational energy of the internal
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levels exceeds 5 eV, with no distinctive sub-branches for different v’s and J ’s.

The biggest challenge in developing a macroscopic multi-bin model for N2 is the ability to

accurately resolve the behavior of this fork like structure at the lower end of the internal energy

spectrum. A key feature of the microscopic population distribution in this region is that two

states despite having similar energies but different vibrational quantum numbers can be in strong

non-equilibrium with respect to each other. The same is true for states with the same vibrational

quantum number but characterized by different parity for the rotational quantum numbers. Thus,

a simple binning strategy that classifies states only on the basis of internal energy while ignoring

state-to-state kinetics can no longer be expected to have sufficient fidelity for this problem.

3.2.2 Maximum Entropy Linear Bins

The accuracy of the multi-bin model for a given grouping strategy is contingent only upon the

number of bins being employed and the form assumed for the group state distribution functions.

Thus, reduced-order predictions can be improved either by increasing the number of bins or in-

corporating higher order terms in the piecewise representation of state population within a bin.

The present work assumes a linear form for the reconstructed bin-wise state distribution functions.

Therefore, the accuracy of MGME reduced-order models is adjusted only by changing the number

of macroscopic groups or the grouping strategy. The current section compares results obtained for

the N2(1Σ+
g )−N(4Su) system using three binning methods:

i) The conventional strategy (referred to as “energy bins”) of dividing the internal energy space

uniformly and assigning bins only on the basis of a given state’s energy [68].

ii) Adaptive binning approach (referred to as “island bins”) that incorporates state-to-state

kinetics of N2 through the modified island algorithm outlined in Section 2.4.1. The threshold

value for defining fast reactions is obtained by setting βI = 0.8 in Eq. (2.29).

iii) The third binning technique (referred to as “spectral bins”) which combines internal energy

and state-to-state kinetics considerations using the spectral clustering method (Section 2.4.2).

The strength of connection (Eq. (2.31)) between states is defined using βE = 0.85 and

βK = 2.35. A value of N = 10 is used for determining the local scaling factor for state i in
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Eq. (2.32). The 10 nearest neighbors of each state are considered while assembling the final

sparse graph adjacency matrixW .

The aforementioned values of βI, βE, and βK for the N2 (1Σ+
g ) − N (4Su) system are an outcome of

parametric studies based on minimizing discrepancies between multi-bin models and the exact solu-

tion provided by StS calculations. More specifically, this choice of model parameters reduces errors

associated with the state distribution function (Fig. 3.10), and total mole fraction (Fig. 3.5a) and

internal energy (Fig. 3.5b) profiles. The variation in relative errors corresponding to global quan-

tities and the state population distribution with respect to βK and βE for Tf = Tbin = 10, 000 K is

presented in Appendix A. Additionally, since the adaptive binning methodology relies on a knowl-

edge of excitation/de-excitation rate coefficients to group internal states, an additional parameter

Tbin has been introduced. The value of Tbin indicates the translational temperature at which state-

specific kinetics rates are evaluated while performing binning. The solution of the master equations

outlined in the previous section is labeled as the “Full Set” solution in all subsequent discussion.

Results obtained by means of the reduced-order models are referred to using a combination of the

number of bins used; the binning strategy adopted; and the temperature at which kinetics data

was evaluated to construct the model. For example, “20 Spectral Bins - Tbin = 10, 000 K” repre-

sents a reduced system with 20 macroscopic bins developed using the spectral clustering procedure

performed at 10, 000 K. Similarly, “20 Energy Bins” describes a system with 20 macroscopic bins

based on the conventional energy-based binning strategy.

A comparison between the time evolution of total mole fraction and internal energy of N2, with

Tf = Tbin = 10, 000 K, predicted using different numbers of bins and binning strategies is presented

in figures 3.3 and 3.4. Figure 3.3 clearly demonstrates that reduced-order models based on uniform

energy bins are not able to accurately capture the dynamics of the global mole fraction of N2

after the onset of dissociation. This discrepancy is not rectified simply by increasing the number

of macroscopic bins, and reduced-order solutions appear to converge slowly to the exact solution.

The adaptive bins based on the island method, despite incorporating information on preferential

transition pathways into the grouping process, are also unable to overcome this problem. The use

of the more sophisticated spectral clustering grouping technique alleviates these shortcomings and

reduced-order solutions rapidly approach the full StS results as the number of bins is increased.
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(c) Adaptive binning using spectral clustering

Figure 3.3: Time evolution of the total mole fraction of N2 molecules for Tf = 10, 000 K, predicted
using different numbers of bins and binning strategies. Adaptive binning is performed at Tbin =
10, 000 K.

This behavior is also observed in Fig. 3.5a which compares the relative error in predicted values of

total mole fraction using 20 linear bins based on different grouping strategies and Tbin values. The

maximum error is decreased by more than a factor of two when using spectral clustering. A similar

analysis for the total internal energy of N2 is presented in Fig. 3.4, with the corresponding error

for reduced systems comprising of 20 linear bins shown in Fig. 3.5b. The reduced-order solution

when using energy bins and the island algorithm diverges from the exact solution in two distinct

time intervals – while the process of internal energy change is still ongoing and after the onset of

dissociation. A switch to spectral clustering results in improved predictions with consistently lower

errors at all time instances. Additionally, the accuracy of this technique appears to be relatively
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(b) Adaptive binning using island algorithm
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(c) Adaptive binning using spectral clustering

Figure 3.4: Time evolution of the total internal energy of N2 molecules for Tf = 10, 000 K,
predicted using different numbers of bins and binning strategies. Adaptive binning is performed at
Tbin = 10, 000 K.

invariant with respect to changes in Tbin.

An important motivation for this study is to enable high fidelity predictions for the population

distribution of individual energy levels using reduced-order modeling. The N2 state population

at different time instants obtained using 20 linear bins based on different binning strategies, with

Tf = Tbin = 10, 000 K, are compared with the full set solution in figures 3.6 and 3.7. Energy

binning is well-suited for providing an averaged approximation for the actual distribution because

the locally thermalized macroscopic bins are assumed to have no overlap in the energy space.

This is an adequate representation when excitation processes depend only on the internal energy

and not the quantum state of the molecule before and after collision. In such a regime, the rate
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Figure 3.5: Comparison of relative errors in predictions for global quantities with Tf = 10, 000 K,
obtained using 20 linear bins based on different binning strategies and Tbin values.

coefficients for reactions from a given level to other levels with similar energies (independent of their

quantum configuration) are comparable. Consequently, the time-varying population of states with

approximately the same energy are also similar. This behavior is observed at the upper end of the

internal energy spectrum for N2, resulting in a population distribution that has a smaller spread

and no underlying structures. This lack of distinct features in the distribution function can easily

be approximated using the averaged reconstruction provided by the energy bins. However, it is

evident from figures 3.6 and 3.7 that as energy relaxation proceeds, the lower end of the population

distribution eventually splits into a set of distinct overlapping linear strands characterized by a

common vibrational quantum number and constant parity associated with the rotational quantum

number. The energy bins cannot account for non-equilibrium between states with similar energies,

since they are grouped into the same macroscopic bin and are described using a single Boltzmann

distribution. Thus, the complex fork-like structure cannot be resolved using the non-overlapping

energy binning approach. The inability to correctly model the lower energy part of the distribution

results in significant errors while predicting macroscopic properties such as the total N2 mole

fraction and internal energy, as shown in Fig. 3.5.

The use of adaptive binning addresses this drawback by placing internal levels that are connected

by fast transitions in the same bin. These preferential pathways for energy transfer ensure that the

characteristic time for equilibration between strongly connected states is smaller. Therefore, both
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Figure 3.6: Comparison of time evolution of the N2 rovibrational state distribution for Tf =
Tbin = 10, 000 K, predicted using 20 linear bins based on the modified island algorithm, 20 linear
bins based on energy binning, and the full state-to-state model.
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Figure 3.7: Comparison of time evolution of the N2 rovibrational state distribution for Tf =
Tbin = 10, 000 K, predicted using 20 linear bins based on spectral clustering, 20 linear bins based
on energy binning, and the full state-to-state model.
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adaptive grouping strategies (island and spectral) yield far better predictions for both microscopic

state population and the macroscopic properties. The overlapping fork-structure obtained due to

selective local equilibration is correctly resolved through the reconstructed reduced-order solution.

Small discrepancies in the population of the middle part of the distribution observed during the

early stages of the relaxation process (t < 10−8 s) are due to the choice of linear reconstruction

within individual bins. Research is currently underway for including higher-order terms in the

bin-wise state distribution function defined in Eq. (2.11). This would introduce curvature in the

reconstructed microscopic state population distribution and allow a more accurate representation

of the full state-to-state solution [125].

Figures 3.8 and 3.9 compare predictions made using the two adaptive binning algorithms – island

method and spectral clustering – with those obtained through conventional energy-based binning

and the full StS model. Although bins developed using the island algorithm predict the basic

structure for the distribution function correctly, they are unable to accurately resolve individual

linear strands populated by states with the same values for v and the parity associated with J .

This problem is redressed by using spectral clustering which provides a superior description of the

population densities for the low-lying levels. The improved accuracy accorded by this method is a

direct outcome of the global, system-wide character of the underlying analysis driving the binning

procedure. The spectral clustering method allows different networks of states that would equilibrate

faster through a direct process, or more importantly through a series of intermediate transitions, to

be mapped out for the entire system. In other words, each group is the result of a holistic analysis

involving all possible transition mechanisms included in the StS model. The island algorithm on

the other hand divides individual states into different bins based on a local, pairwise analysis that

involves only states that are directly linked through fast processes. It is a recursive procedure

that moves from state to state without analyzing the entire system as a whole. Also, in order to

avoid infinite loops, the construction of each group is essentially sequential in nature. Any given

state can be moved between bins only once and therefore, the bin index of a previously evaluated

state cannot be updated based on the outcome of any subsequent analysis by the algorithm. This

introduces a degree of directional biasing and results in sub-optimal reduced-order models. In order

to better characterize the discrepancies between model predictions, the cumulative relative error
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Figure 3.8: N2 rovibrational state population, with Tf = Tbin = 10, 000 K, for 20 linear bins based
on the modified island algorithm, 20 linear bins based on energy binning, and the full state-to-state
description at t = 3× 10−7 s.
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Figure 3.9: N2 rovibrational state population, with Tf = Tbin = 10, 000 K, for 20 linear bins
based on spectral clustering, 20 linear bins based on energy binning, and the full state-to-state
description at t = 3× 10−7 s.
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in state population distribution is presented in Fig. 3.10 (at t = 3 × 10−7 s) for different binning

strategies. The least accurate prediction is obtained while using uniform energy bins, with the

higher errors stemming from an inability to capture the overlapping linear strands in the lower

part of the distribution. Results obtained using bins based on spectral clustering are significantly

more accurate when compared to the conventional energy-based approach over the entire energy

spectrum and independent of the choice of Tbin. Higher resolution solutions (albeit less accurate

when compared to spectral clustering) are also obtained while employing the island algorithm.

Although errors associated with island bins appear to be relatively invariant with respect to Tbin,

numerical investigations indicate that this appears to be the case only for Tbin ≥ 10, 000 K when

Tf = 10, 000 K. The accuracy of reduced-order models developed using the island algorithm is

rapidly degraded for Tbin < 10, 000 K. This sudden drop in predictive capabilities is not observed

for spectral clustering, leading to the conclusion that it is the most reliable technique for obtaining

consistently accurate reduced-order models for varying values of Tf and Tbin.
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Figure 3.10: Comparison of cumulative relative error in predictions for N2 rovibrational state
population for Tf = 10, 000 K, obtained using 20 linear bins based on different binning strategies
and Tbin values at t = 3× 10−7 s.
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(a) Energy-based binning
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(b) Adaptive binning using island algorithm
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(c) Adaptive binning using spectral clustering

Figure 3.11: Quantum configuration of individual states clustered into different bins. The color
map on the right represents the bin index for a reduce-order model comprising of 10 linear bins.
Adaptive binning is performed at Tbin = 10, 000 K.

Fig. 3.11 provides insight into the bin-wise distribution of states for various reduced-order

models by plotting the vibrational and rotational quantum numbers for individual states in different

bins. Energy-based binning, by disregarding kinetics information, is completely insensitive to the

quantum configuration of a given state. This results in a monotonic increase in bin-index as energy

of internal states (roughly represented by the distance from the origin in any given direction)

increases. The modified island algorithm, on the other hand, tends to group together states with
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similar vibrational quantum numbers. Although this biasing results in a better resolution of the

low-energy part of the distribution, it leads to significant errors in predictions for the population

of high lying states. Energy-based binning appears to be a better model reduction strategy for

this region where internal states appear to undergo relaxation independently of their rotational

and vibrational states. The macroscopic bins developed using spectral clustering can be viewed

as a convolution between reduced-order models based on energy binning and the island-algorithm.

Consequently, lower energy states that are characterized by multi-modal relaxation defined using v

and J are clustered in a manner similar to the island algorithm. The grouping for high lying states,

where anharmonic effects result in a breakdown of the fork-like structure, appears to be dominated

by energy considerations. This results in the quantum configuration of states in the higher bins

being comparable to results from energy-based binning. An additional feature that is only resolved

by spectral clustering is the stronger coupling between states with the same v and odd/even J .

This behavior stems from non-exchange reactions with ∆v = 0 and ∆J = 2n |n ∈ {0, 1, 2, . . .}

being favored. Consequently, the bin-index of states for a fixed value of v and increasing J appears

to alternate only for spectral clustering in Fig. 3.11.

Numerical investigations assessing the accuracy of the proposed model reduction techniques

have also been performed for Tf = 30, 000 K. The corresponding figures detailing predictions

for macroscopic properties and the state population distribution using different binning strategies

have been included in Appendix A. Spectral clustering is a computationally intensive method

due to the high costs associated with performing eigenvalue decomposition and the subsequent

partitioning around medoids (PAM). The island algorithm is relatively cheaper, involving simple

iterative reordering of internal states assigned between different bins. Therefore, reduced-order

modeling derived using the island algorithm can provide an inexpensive, first-order accurate insight

into the dynamics of large state-to-state (STS) systems. This is especially useful for applications

that require the reduced-order model (and therefore, bin assignment for internal states) to be

repeatedly recomputed on the fly in conjunction with other expensive simulations (e.g ., QCT).
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3.3 CO2(X
1
∑+

g )−M System

The current non-equilibrium framework incorporates the vibrational state-to-state thermochemistry

model developed by Kustova et al . [56, 140, 141]. Electronic excitation is neglected and only

the ground electronic state CO2(X1
∑+

g ) is considered. Carbon dioxide is a linear molecule and

possesses four vibrational modes – one symmetric stretching mode, two degenerate bending modes,

and one asymmetric stretching mode. The energy of individual CO2 vibrational levels is described

using the anharmonic oscillator expression [27]:

Ev1,vl2,v3
/ hPc =

3∑
k=1

ωk

(
vk +

dk
2

)
+

3∑
k=1

3∑
j≥k

χkj

(
vk +

dk
2

)(
vj +

dj
2

)

+
3∑

k=1

3∑
j≥k

3∑
i≥j≥k

ykji

(
vk +

dk
2

)(
vj +

dj
2

)(
vi +

di
2

)
+ ... (3.5)

where hP is the Planck constant, c is the speed of light, and indices i, j and k define parameters

associated with the symmetric, bending, and asymmetric vibrational modes, respectively. Spectro-

scopic constants such as ωk, χkj , and ykji that appear in Eq. 3.5 are obtained from experimental

data [174]. The vibrational quantum number and corresponding degeneracy for mode i are denoted

by vi and di, respectively. A simplified form of the anharmonic oscillator expression is employed

which retains only the first three summation terms in Eq. (3.5) and neglects higher-order con-

tributions. The existence of multiple vibrational modes allows states with otherwise distinctly

different vibrational quantum numbers to have comparable energies which has a strong impact on

the dynamics of the population distribution function. Furthermore, the carbon dioxide molecule is

assumed to have no quasi-bound states, and vibrational energy is capped at the dissociation energy

of CO2(X1
∑+

g ) (5.52 eV). Thus, the maximum vibrational quantum numbers are 34, 67, and 20

for the symmetric stretching, bending, and asymmetric stretching modes, respectively, resulting in

9, 056 vibrational levels.

The complex internal structure of the CO2 molecule results in a rich set of disparate reaction

mechanisms that shape vibrational relaxation. Quantum selection rules make inelastic interac-

tions between the translational and symmetric/asymmetric modes less likely. Thus, vibrational-

translational equilibration occurring through transitions involving only the bending mode while
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leaving the other two modes unchanged are considered:

V-T2 : CO2(v1, v2, v3) + M←→ CO2(v1, v2 ± 1, v3) + M (3.6)

where M denotes the collision partner whose internal state remains unaltered during the reaction.

The next category of collisional processes considered are inter-modal V-Vm−k exchanges resulting

in energy transfer between two or more vibrational modes:

V-V1−2 : CO2(v1, v2, v3) + M←→ CO2(v1 ± 1, v2 ∓ 2, v3) + M (3.7)

V-V2−3 : CO2(v1, v2, v3) + M←→ CO2(v1, v2 ± 3, v3 ∓ 1) + M (3.8)

V-V1−2−3 : CO2(v1, v2, v3) + M←→ CO2(v1 ± 1, v2 ± 1, v3 ∓ 1) + M (3.9)

Finally, state-specific dissociation/recombination reactions are also added to the kinetic scheme:

Dissociation : CO2(v1, v2, v3) + M←→ CO + O + M (3.10)

A common bottleneck while developing CO2 StS models is the paucity of state-specific rate data

available in the open literature. Additionally, experimental data is only available for transitions

between the lowest energy states. It is imperative that low energy experimental data be combined

with existing theoretical models to yield a self-consistent StS chemistry database. Consequently, the

hybrid approach propounded by Kustova and Nagnibeda [28, 140, 141] is used for computing rate

coefficients for vibrational states of CO2: a) rate coefficient data for transitions between the lowest

vibrational states are obtained directly from experimental measurements [175], b) rate coefficients

for higher states are calculated using SSH theory modified for polyatomic molecules [22]. Lastly, the

global dissociation rate constant (legacy values outlined in [36, 176]) is unpacked into state-specific

values using a generalized form of the Treanor – Marrone model [26].

3.3.1 State-to-State Solution

As outlined before, the full state-to-state model consists of different collisional transitions between

9, 056 vibrational energy states of the CO2 molecule. The rotational energy mode of CO2 is
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assumed to be in equilibrium with the translational mode, and characterized by the translational

temperature T . Similary, the internal energies of the products of dissociation of CO2: carbon

monoxide CO and atomic oxygen O, are also considered to be in equilibrium at the translational

temperature T . Thus, an exact description of CO2 vibrational state-specific population requires

solving a system of 9, 058 coupled ODEs.

Numerical simulations have been performed in an isochoric reactor to study CO2 vibrational

non-equilibrium under recombination conditions. The Arrhenius fits reported by Shevelev et al.

[176] for CO2 global dissociation rate-coefficients is used in this analysis. The initial hot mixture,

at Ti = 5, 000 K and Pi = 5, 000 Pa, consists of equal mole fractions of CO and O (47.5 %)

seeded with a small amount of CO2 molecules (5 %). Then, the translational temperature is

instantaneously brought down to Tf = 1, 500 K. The parameters Ti, Pi, and Tf have been selected

to represent flight conditions in the back shell region of a spacecraft during Martian atmospheric

entry.

The temporal evolution of CO2 vibrational state population under cooling is presented in

Fig. 3.12. Starting from a Boltzmann distribution at Ti, the vibrational states require approxi-

mately 102 s to re-equilibrate at Tf . Population inversion is observed for states at the upper end of

the energy spectrum due to recombination processes dominating internal energy exchange. This is

also evident from the upper states quickly thermalizing at the final translational temperature Tf ,

while the rest of the population remains almost frozen at Ti. Eventually, starting from the lowest

energy levels, the state population distribution starts equilibrating to its final value. The interplay

between the recombination process and internal exchange processes produces a transient cloud of

states in the middle of the energy spectrum that is in strong non-equilibrium. This region shifts

towards higher vibrational energies with time, while correcting overpopulation in the upper levels.

The biggest challenge in developing reduced-order CO2 models is accurately predicting the

dynamics of this non-equilibrium region connecting equilibrated lower states and overpopulated

upper levels. The comb-like structure of this section, consisting of multiple linear strands of states in

local equilibrium, is highlighted in Figure 3.14. The current state-to-state collisional rate coefficient

database limits transitions to mono-quantum jumps between states with specific sets of quantum

numbers. This allows only a limited number of states to directly interact with each other. The
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Figure 3.12: Time-varying vibrational state population of CO2 vibrational states computed using
StS master equations.
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(a) T = 1, 500 K (b) T = 5, 000 K

Figure 3.13: Comparison of rate coefficients for inter-mode VVm−k and vibrational-translational
VT2 excitation processes with M = CO2.
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Figure 3.14: Population distribution of CO2 vibrational states at t = 10−4 s. The inset figure
magnifies the distinct comb-like structure of the non-equilibrium region.

formation of this distinctive comb-structure and the overall process of reaching the final distribution

via a transiting strong non-equilibrium region is an artifact of the limitations imposed by the current

SSH-based description for chemical kinetics. Kustova and Nagnibeda [140] have reported that the

characteristic times of various vibrational relaxation processes ( V-T2, V-V1−2, V-V2−3, V-V1−2−3 )

can differ by multiple orders of magnitude. The rate coefficients for VVm−k and VT2 processes are

evaluated for two temperatures relevant for Martian wake flows – T = 1, 500 K and T = 5, 000 K – in

Fig. 3.13. The horizontal axis in Fig. 3.13 corresponds to the initial vibrational level v (global index

based on sorting levels by increasing energy) for a given StS excitation process. It is evident that
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barring limited outliers, a clear separation exists between the bulk of VVm−k and VT2 processes.

Rate coefficient values for both 1, 500 K and 5, 000 K suggest that the most probable excitation

pathways in descending order are VV1−2, VV2−3, VV1−2−3, and VT2. This fact is reflected in

the composition of individual linear strands from the non-equilibrium comb structure. A careful

analysis of vibrational states occupying the same locally thermalized thread indicates that they

are connected through either V-V1−2, V-V2−3, or V-V1−2−3 processes. A visual representation is

provided in the inset of Fig. 3.14 where states enclosed within the same colored box have one or more

VVm−k transitions defined between them. It is also observed that states in two adjacent strands

are connected through slower V-T2 processes. Thus, a key feature of this unsteady population

distribution is that two states despite having similar vibrational energies but completely different

quantum numbers can be in non-equilibrium with respect to each other. Thus in the same vein as

N2, a simple binning strategy based on dividing the internal energy space uniformly can no longer

be expected to accurately describe this system.

3.3.2 Maximum Entropy Linear Bins

Analyzing the full StS solution indicates that characteristic time-scales of inter-modal V-Vm−k

exchanges and vibrational-translational relaxation V-T2 follow the general trend:

τ ( V-V1−2 ) < τ ( V-V2−3 ) < τ ( V-V1−2−3 ) � τ ( V-T2 ) (3.11)

This separation within the StS model renders the approximate classification for “fast” and “slow”

processes based on log-averaging and βI redundant. Instead, physically representative island bin-

ning can be more easily performed by identifying inter-modal V-Vm−k reactions as “fast” and the

remaining V-T2 transitions as “slow”. However, parametric studies indicate that an equivalent

reduced-order system can also be obtained by setting βI = 0.31 in Eq. 2.29, and then proceeding

with the fast/slow mathematical categorization outlined in Section 2.4.1. The current state-specific

chemistry model for CO2(X1
∑+

g ) (∼ 100, 000) consists of significantly fewer reactions compared to

the N2−N system (∼ 2×107) due to it being based on mono-quantum SSH scaling relations rather

than ab-initio QCT calculations. Furthermore, unlike N2 only a limited number of CO2 vibrational

states are able to directly interact with each other. Thus, simple pair-wise recursive exploration
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through the island algorithm is sufficient for identifying clusters of states connected through rapid

V-Vm−k transitions. Reduced-order models based on the more computationally onerous spectral

clustering do not improve accuracy and are not presented here.
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(b) Adaptive binning using island algorithm

Figure 3.15: Time evolution of the total mole fraction of CO2 molecules for Tf = 1, 500 K,
predicted using different numbers of bins and binning strategies.
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(b) Adaptive binning using island algorithm

Figure 3.16: Time evolution of the total vibrational energy of CO2 molecules for Tf = 1, 500 K,
predicted using different numbers of bins and binning strategies.

The same nomenclature as Section 3.2.2 is used while comparing reduced-order results for

energy-based binning (“Energy Bins”) and adaptive binning based on the island algorithm (“Island

62



10
10

10
12

10
14

10
16

10
18

10
20

10
22

 0  1  2  3  4  5  6

n
i C

O
2
 /

 g
i C

O
2
 [

m
-3

]

Energy [eV]

30 Island Bins
30 Energy Bins

Full Set

(a) t = 0 s

10
10

10
12

10
14

10
16

10
18

10
20

10
22

 0  1  2  3  4  5  6

n
i C

O
2
 /

 g
i C

O
2
 [

m
-3

]

Energy [eV]

30 Island Bins
30 Energy Bins

Full Set

(b) t = 10−8 s

10
10

10
12

10
14

10
16

10
18

10
20

10
22

 0  1  2  3  4  5  6

n
i C

O
2
 /

 g
i C

O
2
 [

m
-3

]

Energy [eV]

30 Island Bins
30 Energy Bins

Full Set

(c) t = 10−6 s

10
10

10
12

10
14

10
16

10
18

10
20

10
22

 0  1  2  3  4  5  6

n
i C

O
2
 /

 g
i C

O
2
 [

m
-3

]

Energy [eV]

30 Island Bins
30 Energy Bins

Full Set

(d) t = 10−4 s

10
10

10
12

10
14

10
16

10
18

10
20

10
22

 0  1  2  3  4  5  6

n
i C

O
2
 /

 g
i C

O
2
 [

m
-3

]

Energy [eV]

30 Island Bins
30 Energy Bins

Full Set

(e) t = 10−3 s
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(f) t = 10−1 s

Figure 3.17: Comparison of time evolution of the CO2 vibrational state distribution for Tf =
1, 500 K, predicted using 30 linear bins based on the island algorithm, 30 linear bins based on
energy binning, and the full state-to-state model
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Bins”) with the exact StS solution (“Full Set”). It should be noted that since fast/slow processes

are defined on the basis of process type (V-Vm−k / V-T2), the definition for island bins remains

invariant with respect to Tbin. Figure 3.15 compares the time-evolution of total mole-fraction of

CO2 computed using energy and island bins with the solution from StS master equations. A

similar analysis is presented for the total vibrational energy of CO2 molecules in Figure 3.16.

Predictive capabilities with regards to these macroscopic quantities of MGME models based on the

two binning strategies are starkly different. Energy bins converge slowly towards the exact value

of CO2 mole fraction and vibrational energy. This discrepancy is not rectified despite a significant

increase in the total number of bins. On the other hand, macroscopic solutions obtained using

only 10-30 island bins are in excellent agreement with the full-set simulation. Energy bins appear

to start deviating from results obtained using StS modeling at 10−7 s. At this time instance,

the population distribution breaks down into equilibrated low energy states, overpopulated upper

levels, and a distinctive non-equilibrium region in the middle.

Figure 3.17 presents the CO2 vibrational state populations at different time instances for 30

energy bins, 30 island bins and the full StS model. Energy bins, by disregarding StS kinetics, are

unable to describe vibrational levels in a state of local equilibrium only when connected through fast

transitions. This results in the reduced-order solution under-predicting the number density of upper

energy states and over-predicting the lower levels. Consequently, the total vibrational energy of CO2

appears to initially undershoot StS values (Figure 3.16a) while the contributions of higher levels is

significant. The trend is reversed once recombination is initiated and the higher population of lower

levels dominates total vibrational energy. These errors are minimized when switching to island bins

because selective thermalization through efficient state-specific pathways can be reproduced even

while using the MGME models [177]. The size and position of the transient non-equilibrium cloud

are tracked using only 10-30 island bins. Equilibrium distribution is attained at a given energy

value after the non-equilibirum region transits through it. This process of equilibration, beginning

from the lower states, is also reflected in Figures 3.15b and 3.16b. The upper bins appear to

reach equilibrium almost 10−2 s after the lower ones. Despite being a pronounced improvement

over previous approaches, island bins predict slightly lower number densities for states in the

transient non-equilibrium region and the thermalized over populated upper levels (εvCO2
> 1.5 eV
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at t = 10−4 s, εvCO2
> 2.5 eV at t = 10−3 s). This is a direct consequence of representing the

numerous linear strands of the non-equilibrium comb structure with fewer bins. The concomitant

error can be easily addressed by increasing the total number of bins in case a higher fidelity solution

for that section of the vibrational energy spectrum is desired.

3.4 Summary

The efficacy of the MGME model reduction methodology with adaptive grouping has been in-

vestigated using a homogeneous isochoric chemical reactor with no spatial variation. Strong

non-equilibrium conditions are induced by instantly changing reactor temperature. The ensu-

ing time-varying evolution of the reaction mixture is studied using different reduced-order models

and then compared to the exact StS solution. Two StS systems are considered in this chapter:

N2(1Σ+
g ) − N(4Su) with rovibrational description of N2 and CO2(X1

∑+
g ) − M with vibrational-

specific description of CO2. The full StS solution for N2−N indicates that energy change between

states with the same vibrational quantum number is favored, resulting in faster selective thermal

equilibration. Consequently, the lower end of the state population distribution splits up into a

fork-like structure, consisting of multiple linear strands that are in local equilibrium. Similarly, the

unsteady CO2 vibrational state population distribution is a composite of disparate thermochem-

ical dynamics: equilibrated lower levels, overpopulated upper levels, and a complex multi-strand

structure in the middle. This multi-modal response under non-equilibrium is a consequence of

localized thermalization through efficient V-Vm−k energy exchanges. MGME models derived us-

ing conventional energy-based binning cannot account for selective coupling between states due

to highly probable transitions. Consequently, predictions made for the change in state popula-

tion distribution and macroscopic properties do no match solutions of the StS master equations.

Adaptive grouping overcomes these shortcomings by allowing the inherently different time-scales

of state-specific kinetics to be reflected in choice of bins, i.e., networks of states linked through

faster processes constitute individual bins. This allows the dynamics of macroscopic quantities and

internal state population distributions for both N2 and CO2 to be accurately reproduced using only

10-30 bins based on adaptive grouping.
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Chapter 4

Solution Methods for Radiative
Transfer Problems

Once thermochemical characteristics, i.e. chemical composition and internal state population dis-

tribution, shaped by collisional processes have been determined, the radiative environment around

a spacecraft can be assessed. The computational methodology for resolving radiative transfer in

participating media under non-equilibrium conditions is discussed in this chapter. A generalized

three-dimensional radiative field is characterized by complex property variations in three separate

domains: solid angle, physical space, and frequency. The complex domain of dependence renders

solving such problems both theoretically challenging and computationally expensive. This chap-

ter presents different numerical approaches based on discretizing angular, spatial, and spectral

spaces while striking a balance between cost and accuracy. The solution procedure for radiation

is built on two key components: a compound DOM-FV solver for the radiative transfer equations,

and reduced-order wide-band spectral models for describing frequency-wise structures and their

cumulative effects. The current chapter is organized as follows: a) Section 4.1 presents the gov-

erning equations for directed radiative transfer. b) Numerical methods for resolving angular and

spatial components of three-dimensional radiation problems are discussed in Section 4.2. c) Differ-

ent reduced-order wide-band approaches for lowering computational complexity in the frequency

space are outlined in Section 4.3. d) Section 4.4 introduces a generalized grouping strategy for

reduced-order spectral models that is applicable to non-equilibrium radiation problems. e) A brief

summary of the current chapter is provided in Section 4.5.

4.1 Radiative Transfer Equation

The radiative field is assumed to instantaneously adjust to any changes in the flowfield in this

analysis. This is a consequence of radiative transport occurring at time-scales (defined by the
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Iν + dIν
Iν (x,Ω)

s

Ω ds

dA Jν (x)

κν (x)

Figure 4.1: Radiative energy balance in a infinitesimal, emitting, absorbing cylinder along a single
line-of-sight.

speed of light) which are much smaller than those for other hydrodynamic and chemical phenomena.

The changes in steady radiative intensity are described by the radiative transfer equation (RTE)

which is based on conservation of energy along a line-of-sight (LOS). Consider a beam of radiation

defined by monochromatic intensity Iν for frequency ν propagating in the direction Ω. Radiative

energy through participating media is attenuated by absorption and scattering into other directions

(out-scattering), and increases due to thermal emissions and incoming scattered energy from other

directions (in-scattering). Scattering is an important consideration for particle-laden multi-phase

flows [72] but can be ignored for the free-flight hypersonic applications discussed in the current work.

Thus, energy balance on a differential volume element in the form of a cylinder with cross-section

dA and length ds along direction Ω results in:

{Iν(x + Ω ds,Ω) − Iν(x,Ω)} dA = Jν(x) dAds − κν(x) Iν(x,Ω) dAds

⇒ dIν

/
ds = Jν(x) − κν(x) Iν(x,Ω) (4.1)

where spectral opacity and emission values corresponding to ν are κν and Jν , respectively. The

RTE can be viewed as a one-dimensional convection equation, with radiative intensity varying as a

function of distance s along direction Ω. Equation 4.1 can be recast as a partial differential equation

in the global cartesian reference frame which allows the computational grid for CFD simulations
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(and the same spatial discretization framework) to be reused for radiation calculations:

Ω ·∇x {Iν(x,Ω)} = Jν(x) − κν(x) Iν(x,Ω) (4.2)

A well-posed problem is obtained by prescribing the following boundary condition for domain-

directed intensity at the walls of the spacecraft:

Iν
∣∣
Sb

= Jν / κν if Ω · nb > 0 (4.3)

where nb is the unit vector normal to the boundary Sb and pointing into the domain. Similarly,

the latent domain-directed radiative intensity at the cold farfield boundary is set to zero. The net

heat flux at a given point in space is computed by integrating monochromatic intensity over the

entire solid angle and frequency space:

qrad =

∫ νf

νi

∮
4π
Iν Ω dΩ dν (4.4)

The corresponding volumetric source term for energy addition due to net radiative flux through an

infinitesimal element is obtained by applying the Green-Gauss theorem:

Ωrad : −∇x · qrad = −∇x ·
∫ νf

νi

∮
4π
Iν Ω dΩ dν (4.5)

4.2 Angular and Spatial Solutions of RTE

The current section outlines the numerical approach for solving a system of RTEs (Eq. 4.2) to obtain

angularly integrated, spatially resolved radiative heat flux corresponding to a given frequency ν.

This aspect of radiation transport is completely detached from the way properties such as κν and

Jν are modeled in the frequency space. The same solution procedure is used irrespective of the

level of fidelity for spectral property models: LBL, narrow-band, wide-band, and grey-gas. The

only differentiator is the number of complete angular-spatial evaluations required for computing

spectrally integrated quantities qrad. This can range from a single complete calculation for grey-gas

model to nearly O(106) calculations for the full LBL approach.
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4.2.1 Angular Discretization

The integral over the complete solid angle in Eq. 4.4 transforms the LOS RTE into integro-

differential equations. The discrete ordinate method (DOM) is an angular discretization procedure

which circumvents this complication by solving the RTE only for a representative finite set of di-

rections Ωm. The underlying idea behind this is to approximate the original angular integral by a

quadrature method based on a weighted sum of quantities computed for these discrete directions:

qrad =

∫ νf

νi

∮
4π
Iν Ω dΩ =

∫ νf

νi

∑
m

wm Imν Ωm dν (4.6)

The quadrature weight and radiative intensity associated with direction Ωm are denoted by wm and

Imλ . Quadrature schemes employed with DOM satisfy certain conditions pertaining to recovering

the solid angle (or the area of a unit sphere) and symmetry:

∮
4π
dΩ =

∑
m

wm = 4π (4.7)∮
4π

Ω dΩ =
∑
m

wm Ωm = 0 (4.8)

A more exhaustive list of conditions for such schemes is presented in [178]. Efficient angular quadra-

ture methods for radiative transfer have been the focus of extensive research [80]. Some notable

developments in this regard are simple angular discretization based on constant latitude/longitude

lines [179, 180], spherical rings arithmetic progression quadrature [181], piecewise quasilinear an-

gular quadrature [182], and spherical symmetrical equal dividing quadrature [183]. Comparative

studies [80, 178] suggest that Lebedev quadrature rules [184, 185] maximize accuracy for a fixed

number of discrete directions while minimizing distortions due to ray effects and false scattering.

These quadrature schemes have also been widely applied in fields as diverse as computational chem-

istry [186] and astrophysics [187]. Consequently, the current study uses Lebedev quadrature while

defining the set of discrete directions for DOM. A detailed description for the process of calculating

directions and corresponding weights by enforcing exact integration of polynomials upto a given

order on a unit sphere can be found in [185].
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Figure 4.2: Computational cells for finite-volume discretization of RTE in Ω direction.

4.2.2 Spatial Discretization

Angular discretization using DOM yields a system of RTEs for each of the discrete directions:

Ωm ·∇x {Imν (x)} = Jν(x) − κν(x) Imν (x) , Iν(x,Ωm) : Imν (x) (4.9)

Since, scattering is being ignored for hypersonic entry applications, radiative intensity in different

directions remains decoupled and each of the m PDEs in Eq. 4.9 can be solved independently.

As outlined in Section 1.2.2, spatial discretization of Eq. 4.9 can be done in a multitude of ways

which includes finite difference techniques, finite element methods (FEM), and finite volume meth-

ods (FVM). The proposed unified non-equilibrium simulation methodology is aimed at interfacing

with existing finite volume-based CFD solvers so that radiation and flowfield calculations can be

performed in a loosely coupled manner. Therefore, in the interest of greater compatibility, a finite

volume-based spatial discretization is adopted for resolving the RTE as well. It should be clarified

that the current solution procedure [80, 188, 189] differs from some other approaches which disre-

gard DOM and use finite volume discretization for both angular (solid angle element) and spatial

(computational cell) domains [79, 190]. Equation 4.9 for direction Ωm and frequency ν is recast

into the weak form by integration over the ith computational cell (Fig. 4.2):

∫
Si

Imν Ωm · dS =

∫
V i

(Jν − κνImν ) dV (4.10)

70



Standard finite volume simplifications are introduced by approximating volume integral as the

product between the value at cell center (xic) and the cell volume (∆V i), and surface integral

as the summation over faces of the product between the face-centered values (at xik) and the

corresponding areas (∆Sik):

∑
k

Iν(xik, Ωm) Ωm ·∆Sik =
{
Jν(xic)− κν(xic) Iν(xic, Ωm)

}
∆V i (4.11)

The surface summation can be further split into incoming (Ωm ·∆Sik < 0) and outgoing (Ωm ·∆Sik ≥

0) components. A wide variety of flux reconstruction schemes (often with direct CFD analogues)

have been used while solving the RTE using FVM. Some of the conventional approaches include

step scheme (first-order upwinding), diamond scheme (central difference), and schemes based on

exponential attenuation [189]. Several high-order schemes, originally developed for CFD, that have

been applied to the problem of radiative transfer are reviewed in [191]. The more sophisticated

schemes suffer from certain common drawbacks such as inability to guarantee bounded, positive

radiative intensity solutions and degradation in accuracy for multi-dimensional problems. Conse-

quently, the relatively simple step scheme which is positivity-preserving and ensures boundedness

is used in the present work. First-order upwinding on the ith computational cell results in outgoing

radiative intensities at different face-centers being set equal to the appropriate cell-center value in

the upstream direction:

Iν(xik, Ωm) =


Iν(xik,c , Ωm) , Ωm ·∆Sik < 0

Iν(xic, Ωm) , otherwise

(4.12)

where Iν(xik,c, Ωm) is the cell-center value for the neighboring computational cell across face k.

Combining equations 4.11 and 4.12 allows Iν(xic,Ω
m) to be expressed as:

Iν(xic, Ωm) =

∑
∀k3Ωm·∆Sik<0 Iν(xik,c , Ωm) |Ωm ·∆Sik| + Jν(xic) ∆V i∑

∀k3Ωm·∆Sik≥0 |Ωm ·∆Sik| + κν(xic) ∆V i
(4.13)

where | . | is the absolute value of a scalar. The incoming flux contribution in the numerator of

Eq. 4.13 depends on intensity values in cells that are upstream with respect to direction Ωm. The
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remaining terms constituting the right hand side can be evaluated using only the flowfield properties

and the resultant emission/absorption behavior of the current cell centered at xic.

4.2.3 Mesh Reordering

Finite-volume discretization of the spatial domain based on Eq. 4.13 represents a sparse system of

linear equations Am Imν = Bm for radiative intensity corresponding to the mth discrete direction.

However, Eq. 4.13 can be evaluated explicitly at a given cell in case Imν for all upstream neighboring

cells have already been ascertained. In other words, the solution to RTE (a first-order convection

equation) with upwinding is obtained by starting from a boundary surface and then marching

along a discretized line-of-sight (or characteristic). This is akin to permuting the original system

into a lower triangular system Âm Îmν = B̂m (4.3) and then performing forward substitution.

The sequence (referred to as the “advance-order list”) in which computational cells are accessed

Am =


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(a) Original Mass Matrix
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

�

�

� � �

� �

� � �

� � � �
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(b) Permuted Mass Matrix

Figure 4.3: Permuting spatially discretized linear system using mesh sweeping algorithm.

while solving for radiative intensity in a given direction is determined using space-marching or

mesh sweeping algorithms [192, 193]. Mesh sweep for direction Ωm starts from cells located at the

edge of the computational domain. These cells have a boundary surface with an outward normal

nb 3 Ωm · nb < 0. The remaining interior faces have an outward normal nik 3 Ωm · nik > 0, so

that cell intensity can be uniquely determined only using the prescribed boundary conditions. The

process continues along Ωm, and interior cells are visited once all upstream cells, i.e., cells adjacent

to faces with Ωm · nik < 0, have been added to the advance-order list. Additional details on the

algorithm can be found in Appendix B. This optimal marching order has to be computed and stored

for all discrete directions being considered for DOM. A potential roadblock when performing sweeps

on unstructured meshes is encountering regions of computational cells with circular dependencies.
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This can result in an incomplete advance-order lists unless explicit measures are introduced for

breaking out of such infinite loops. The current framework addresses the issue by first defining a

threshold value εi for individual cells once a circular dependency is detected:

εi = α min
k

(Ωm ·∆Sik) (4.14)

where α is a user-defined cut-off parameter. Subsequently, neighboring cells with Ωm ·∆Sik > εi

are not considered to be in the upstream direction even if Ωm · ∆Sik < 0. The mesh sweep

algorithm continues as before and the remainder of the advance-order list is assembled. The ε-

based tie-breaker is only resorted to in case another infinite loop is discovered. An optimal marching

sequence defined while adjusting for circular dependencies cannot accurately represent the spatial

dependence of radiative intensity. This deficiency precludes a direct solution for Imν and an iterative

procedure is employed instead [194]. An artificially manipulated advance-order list can result in a

computational cell being accessed before radiative intensity for all upstream cells have been updated

in the current iteration. In such cases, solutions from the previous iteration for upstream neighbors

are used when defining incoming fluxes. This process is comparable to the Gauss-Seidel method

and allows converged, accurate values for Imν to be computed even for complex meshes. A credible

alternative to mesh sweeping could be the use of non-stationary iterative methods such as the

generalized minimum residual (GMRES), generalized conjugate gradient (GCG), and generalized

conjugate gradient least-squares (GCG-LS) methods, which are well-suited to solving large sparse

linear systems [195]. These have been overlooked for the present work due to solver parameters for

optimal convergence varying between problems [196] and high complexity of implementation [80].

The mesh sweeping process is demonstrated on a simple 5 × 5 × 5 unstructured cube for dif-

ferent directions in Fig. 4.4. The sweep index is indicative of the relative dependence of radiative

intensity for a given cell on other interior cell solutions. The sweep index value starts from one at

the boundary cells, where intensity can be completely ascertained based on prescribed boundary

conditions, and rises as one moves through the domain in the downstream direction. In order to

ensure intensity can be explicitly evaluated (Eq. 4.13), computational cells are processed beginning

with the lowest sweep index value to the highest.
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(a) Direction Cosines = (1, 0, 0) (b) Direction Cosines = (0, 1, 0)

(c) Direction Cosines = (0, 1/
√

2, 1/
√

2)

Figure 4.4: Mesh sweeping on a 5 × 5 × 5 unstructured cube for different directions. A lower
sweep index value implies less dependence on other interior cell solutions.

4.3 Reduced-order Spectral Models

The system of angularly-spatially resolved RTEs (equations 4.6 and 4.13) must be solved in its

entirety for each discrete point included in a spectral property model. The fine spectral grid em-

ployed by LBL and narrow-band models results in nearly 104− 106 monochromatic transfer evalu-

ations [104, 197]. Thus, despite offering high fidelity in the frequency space, their use for detailed

flow-radiation coupled simulations of practical physical problems is unfeasible. The current section

outlines three popular wide-band multi-group methodologies that attempt to reduce computational

complexity (frequency-specific evaluations lowered to O(102)) while offering good agreement with

more detailed spectral databases. First, model reduction based on Planck-averaging [109, 198, 199]
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is presented along with an explanation based on the maximum entropy principle. Subsequently,

statistics-based wide-band approaches, namely, the k-distribution method [11, 110] and theory of

homogenization [111, 112] are summarized. The wide-band models outlined in the current work

can be applied without modification to both LBL and narrow-band models. Spectral descriptions

based on both LBL and narrow-band approaches are collectively referred to as “full set models”

while only wide-band approaches are referred to as “reduced-order models”.

4.3.1 Planck-Averaging

A typical starting point for reduced-order methods involves defining larger groups that individual

frequencies from a detailed spectral model can then be divided into. In order to better articulate

the process of model reduction, groups are defined as simple non-overlapping intervals in frequency

space [199]. The impact of more sophisticated grouping strategies is discussed later. The contribu-

tions of individual transitions constituting the ith group (ν ∈ [νi, νi+1]) can be integrated to obtain

the governing equation for total group intensity Îi along direction Ω (Eq. 4.2):

νi+1∫
νi

(
Ω ·∇xIν + κνIν − Jν

)
dν = 0

⇒ Ω ·∇xÎi + κ̂iÎi − Ĵi = 0 (4.15)

where κ̂i and Ĵi are the group-specific absorption coefficient and source term, respectively. The

frequency-wise classification into groups remains invariant in physical space and therefore, the

spectral integral in Eq. 4.15 has no angular/spatial dependence. The exact value of the group-

wise source term is simply Ĵi =
∫
Jν dν. However, the closure for group-wise absorption coefficient,

κ̂i =
∫
κν Iν dν /

∫
Iν dν, requires the spectral solution Iν . Setting Iν equal to the Planck blackbody

intensity yields reduced-order models based on Planck mean opacity. Turpault [89, 90] provides

a reinterpretation of Planck-averaging based on a maximum entropy closure of the angularly-

spectrally integrated RTE. The resultant M-1 reduced-order framework is built around piece-wise

reconstruction of radiative intensity in the angular and spectral domains using polynomials that

satisfy the maximum entropy principle. The governing equations for group-wise properties (and

reconstruction coefficients) are derived based on moments of the RTE. The current work already
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utilizes the DOM method to capture angular dependence. Thus, the approach outlined in [89]

can be simplified to account only for spectral variation in intensities. The starting point for re-

formulating Planck-averaging using the maximum entropy principle is the definition of entropy

associated with a stream of photons [200, 201] at frequency ν and monochromatic intensity Iν :

s (Iν , ν) =
2 kB ν

2

c3
[(nIν + 1) log(nIν + 1) − (nIν ) log(nIν )] , nIν =

c2

2 hP ν3
Iν (4.16)

The total entropy of the ith group is maximized while satisfying a single constraint based on group

bin intensity Îi:

max
Iν

Si =

νi+1∫
νi

s (Iν , ν) dν , with

νi+1∫
νi

Iν dν = Îi (4.17)

The modified objective function, Ŝi = Si + αi

(∫
Iν dν − Îi

)
, is maximized using the method of

Lagrange multipliers [202]:

(
∂Ŝi

/
∂Iν

)
ν

= 0

⇒ 2 kB ν
2

c3

[
n′Iν ln(nIν + 1) − (n′Iν ) ln(nIν )

]
+ αi = 0 , n′Iν =

(
∂nIν

/
∂Iν

)
ν

⇒ 2 kB ν
2

c3 n′Iν ln(1 + 1/nIν ) + αi = 0 (4.18)

Equation 4.18 can be further simplified by substituting n′Iν = c2/
(
2 hP ν

3
)
:

0 =
kB

hP ν c
ln(1 + 1/nIν ) + αi

⇒ (1 + 1/nIν ) = exp

(
−αi hP ν c

kB

)
⇒ nIν =

{
exp

(
−αi hP ν c

kB

)
− 1

}−1

⇒ Iν =
2 hP ν

3

c2

{
exp

(
−αi hP ν c

kB

)
− 1

}−1

(4.19)
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Eq. 4.19 can be recast into the more familiar Planck intensity form by defining an equivalent

blackbody temperature T irad = −1/(αi c) [203]:

Iν =
2 hP ν

3

c2

[
exp

(
hP ν c

kB T irad

)
− 1

]−1

= IBν
(
T irad

)
(4.20)

where IBν
(
T irad

)
is simply the Planck blackbody intensity evaluated at T irad for frequency ν. Group-

wise T irad can be obtained by inverting the non-linear relationship:
∫
IBν
(
T irad

)
dν = Îi. The current

work employs sub-iterations based on Picard’s method to get converged radiative properties along

a given line-of-sight. As a first approximation, Trad can be set equal to the relevant flowfield

temperature which simply yields the conventional Planck-averaging approach.

Multi-group Planck-averaging can now be viewed as group-wise (groups defined using frequency

intervals or other strategies) reconstruction using a constrained maximum entropy distribution func-

tion. This interpretation follows the development of the MGME model for optimal reduced-order

representation of unsteady thermochemical non-equilibrium presented in Section 2.3. Consequently,

the reduced-order governing equation Eq. 4.15 is obtained by taking the zeroth-order moment of the

original full set equations (Eq. 4.2) and integrating over the requisite frequency interval. Analogous

to CFD methods and MGME modeling, the accuracy of the resultant reduced-order solutions can

be improved either by increasing the number of groups (h-refinement) or by increasing the order

of reconstruction (p-refinement). It should be noted that a single constraint of the form outlined

in Eq. 4.17 suffices because only a zeroth-order reconstruction in frequency space is being sought.

Raising the order of reconstruction would introduce additional group-wise coefficients and require

supplementary constraints based on higher moments. Similarly, the possible inclusion of variation

in the angular domain (as done in M-1 models) would necessitate integrating Eq. 4.17 over the

complete solid angle, with moments (for deriving constraints or governing equations) computed

with respect to the direction vector Ω.

4.3.2 Statistics-based Techniques

Reduced-order models developed using Planck-averaging prescribe a certain form for the spectral

intensity while deriving group-wise closure relationships. Statistics-based wide-band reduced-order

models attempt to eliminate this assumption and rely on capturing spectral variance through the use
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of probability distributions. Two such methods that are based on similar principles are considered:

k-distribution and theory of homogenization. It should be noted that the current study is primarily

focused on the use of Planck-averaging for reduced-order spectral modeling. The statistics-based

techniques are employed only for comparative analysis. Thus, in the interest of completeness, only

a brief review of these techniques is provided.

4.3.2.1 k-Distribution

The rapidly varying absorption coefficient is reordered into a monotonically increasing function over

narrow-bands, frequency groups (part spectrum) or full spectrum in the k-distribution method [11,

204, 205]. It has been previously applied to model various non-equilibrium atomic and molecular

radiation problems [110, 206]. Under non-equilibrium conditions, the Planck blackbody intensity

appearing in the original LTE formulation is replaced by the non-equilibrium emission intensity

Ineq
ν = Jν/κν . Equation 4.1 is sorted into a k-distribution (in the opacity space) by multiplication

with the Dirac-delta function δ(k − κref
ν ) and subsequent integration over the relevant frequency

interval:

Ω ·∇xIk = κk
[
fk I

neq

k − Ik
]
, Ik =

νi+1∫
νi

Iν δ(k − κref
ν ) dν (4.21)

It should be noted that κref
ν , J ref

ν , and Iref
ν = κref

ν / J ref
ν are the absorption coefficient, source term,

and emission intensity at a reference flowfield state. Therefore, κk = (κν : ν 3 κref
ν = k ) and

fk is the emission-intensity weighted probability density for the k-distribution at reference values.

The probability density function (PDF) fk is computed as follows:

fk =

νi+1∫
νi

Ineq
ν δ(k − κref

ν ) dν

/ νi+1∫
νi

Ineq
ν dν (4.22)

The k-distribution is ill-behaved around extrema values and so, a further transformation into the

smoother g-space is effected:

g =

∞∫
k

fk dk (4.23)
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Additional commentary on the subsequent solution procedure and the general validity of the k-

distribution method can be found in [204]. The total intensity emanating from a frequency group

is obtained by integration in the g-space which spans the range [0, 1]. This has been performed

numerically using Gaussian quadrature [207] in the present work. Thus, individual LOS evalua-

tions for a frequency group are performed at spectral points νm that correspond to the requisite

quadrature locations in g-space.

4.3.2.2 Theory of Homogenization

The method of homogenization developed by Haut et al. [111, 112] uses probability density functions

and the correlated assumption, in a manner similar to k-distribution, to characterize the spectral

variation in radiative properties. Non-equilibrium emission intensity Ineq
ν is employed in lieu of the

Planck blackbody function from the original LTE formulation. The exact value of the spectral

intensity Iν can be expressed (analogous to Eq. 4.21):

Iν =

∞∫
0

Iν(k) pν(k) dk (4.24)

where the exact probability density function pν(k) is a Dirac-delta function peaking at k = κν . The

probability density function is discretized using m opacity intervals for the ith frequency group at

reference conditions:

pν ≈ pij ∀ ν ∈ [νi, νi+1] 3 κj ≥ κref
ν ≥ κj+1 (4.25)

where pij is the probability of occupying the jth opacity interval [κj , κj+1] for the ith frequency

group [νi, νi+1]. This piece-wise probability density is computed as (equivalent to Eq. 4.22):

pij =

νi+1∫
νi

Ineq
ν P dν

/ νi+1∫
νi

Ineq
ν dν , P =


1 , if κref

ν ∈ [κj , κj+1]

0 , otherwise

(4.26)
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A weighted mean value of the absorption coefficient is also defined for the jth opacity interval using

P:

κ̂ij =

νi+1∫
νi

κν I
neq
ν P dν

/ νi+1∫
νi

Ineq
ν P dν (4.27)

The discrete homogenized RTE corresponding to ith frequency group and jth opacity interval is:

Ω ·∇xÎij = κ̂ij

 νi+1∫
νi

Ineq
ν dν − Îij

 (4.28)

Finally, the total intensity Ii for the frequency group is obtained through a discretized approxima-

tion of Eq. 4.24 based on Iij and pij :

Îi =

m∑
j=0

pij Îij (4.29)

It should be noted that pν and its discretized approximation pij play the same role as fk from

Eq. 4.21 in determining Ii. The homogenization approach and its multi-group form are discussed

at length in [112].

4.4 Generalized Radiation Grouping Strategy

The present work attempts to establish a generalized criteria for grouping individual spectral points

from a full set database while developing multi-group reduced-order models. This is crucial for

improving predictions as it identifies sections of the spectra whose cumulative contribution can be

replaced by group-wise properties κ̂i and Ĵi. Although the impact of the new grouping criteria

is only studied for Planck-averaging, it can easily be applied to other reduced-order models based

on a multi-group paradigm. The grouping procedure is performed using reference values for the

absorption coefficient κref
ν and the source term J ref

ν for different frequencies ν. This ensures that

group definitions – the full set to reduced-order group mapping – remain invariant in physical space.

A range of schemes have been proposed for setting the reference state by different authors [110,

208, 209]. The current study employs an unweighted volumetric average in linear/logarithmic scale
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to define κref
ν and J ref

ν :

κref
ν =

∫
V
κν dV

/
V or κref

ν = exp

{∫
V

log (κν) dV

/
V

}
(4.30)

Choosing the appropriate averaging scheme for a given physical problem can appreciably improve

accuracy for the same number of reduced-order groups. Additionally, numerical integration in

frequency space is performed using the rectangle rule. This approximation on a frequency interval

consisting of N spectral grid points results in:

νi+1∫
νi

Iν ≈
N−1∑
n=1

Iνn ∆νn (4.31)

A common approach for grouping individual frequencies while developing Planck-averaged reduced-

order models is Multi-Band Opacity-Binning (MBOB) [208, 210]. The MBOB strategy can be

broken down into two steps. The entire frequency range of the full set spectra is first divided into

x equal logarithmic bands (logarithmic scaling has been found to capture spectral features more

accurately). These bands are further sub-divided into opacity bins which are defined as contiguous

ranges in the absorption coefficient space. This is also equivalent to a coarse-grain approximation

of opacity distribution functions [211]. Following the recommendations of Scoggins et al. [209],

Band 1 Band 2

Bin 1

Bin 2

(a) Equal opacity intervals

Band 1 Band 2

Bin 1 Bin 1

Bin 2

Bin 2

(b) Equal number of frequencies per bin

Figure 4.5: Multi-Band Opacity-Binning (MBOB) on a representative spectra for a reduced-order
system with two frequency bands and two opacity bins.
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an equal number of spectral points are assigned to individual opacity bins. Previous approaches,

with predefined opacity intervals (similar to the way frequency bands are created), would yield a

large number of empty bins and consequently, suffer from poor resolution. In contrast, the MBOB

paradigm used in the current work first reorders spectral points within a band in ascending order

on the basis of κref
ν . These sorted points are then equally divided into y opacity bins. The two

techniques for defining opacity bins – intervals in opacity space and equally distributed spectral

points – are illustrated in Fig. 4.5 for a representative spectrum.

The current work argues that the accuracy afforded by all three conventional wide-band models

under study – Planck-averaging with MBOB and statistics-based k-distribution and theory of

homogenization – is expected to be comparable. This is a consequence of all the aforementioned

approaches effecting the same paradigm. A common frequency band is reordered in absorption

coefficient space either explicitly (k-distribution, homogenization) or implicitly by collating full

set spectral points on the basis of opacity intervals (Planck-averaged MBOB). This reordering

process is the critical step in transforming rapidly varying spectral intensity into a more monotonic

distribution which is more amenable to model-reduction [112]. The manner in which average

properties are ascribed to individual reduced-order groups can then said to be secondary in terms

of improving accuracy. This is analogous to different numerical integration schemes of the same

order of accuracy (since the number of reduced-order groups or discrete evaluation points remain

invariant) yielding similar results when applied to a smoothly varying distribution.

Furthermore, these conventional approaches share a common shortcoming – absorption coeffi-

cient κν being used as the sole determinant when grouping or computing probability distributions –

that stems from them being rigorously developed in the realm of Local Thermodynamic Equilibrium

(LTE) radiation. Under LTE conditions, all terms except the absorption coefficient that appear in

the RTE vary smoothly in frequency space. A breakdown of the LTE assumption results in the

emission source term (no longer equal to the product of absorption coefficient and Planck blackbody

intensity) exhibiting rapid oscillatory behavior independently of the absorption coefficient. Conven-

tional approaches by disregarding the variance in emission source terms or other cross/higher-order

terms can yield reduced-order models with diminished fidelity. Thus, a generalized grouping strat-

egy accounting for both κν and Jν is the most straightforward approach to compensate for these
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limitations when describing Non Local Thermodynamic Equilibrium (NLTE) radiation. This de-

velopment parallels the physically consistent adaptive grouping strategy described in Section 2.4

that is aimed at improving the applicability of MGME thermochemical models.

A non-intuitive binning strategy can be evolved by comparing LOS solutions for the detailed full

set and reduced-order systems. The current analysis is simplified by assuming no incident radiation

and a homogeneous medium with radiative properties set to their reference values (Eq. 4.30). The

exact solution (from the original full set model) along direction Ω for frequency point νn is:

Iνn(s) =

s∫
0

J ref
νn exp

− s∫
s′

κref
νn ds

′′

 ds′ +
��

���
���

���
��:0

Iνn(0) exp

− s∫
0

κref
νn ds

′


=

J ref
νn

κref
νn

{
1 − exp(−κref

νn s)
}

(4.32)

Subsequently, a reduced-order solution for the gth group (νn ∈ Ig, where Ig is the set of spectral

points assigned to group g) is computed. The full set solution for Iνn can now be compared to

group-intensity Îg that has been unpacked to obtain frequency-specific values:

Iνn(s) ≈ Fg(νn) Îg(s)

⇒ Jνn
κνn
{ 1 − exp(−κνn s) } ≈ Fg(νn)

Ĵg
κ̂g
{ 1 − exp(− κ̂g s) } (4.33)

where Îg, κ̂g, and Ĵg are the total intensity, absorption coefficient, and source term for group g.

The fraction of total group intensity emanating from frequency point νn is represented by Fg(νn).

The impact of different definitions for Fg is further outlined in Section 5.2.3. The superscript “ref”

indicating the reference value for a given quantity has been dropped for notational convenience.

It should be noted that since a homogeneous medium is being employed, both sides of Eq. 4.33

have the same dependence on the distance term s. Thus, a term-by-term comparison of the Taylor

series expansion (with s canceled out) yields the following relationship:

Jνn(κνn)p = Fg(νn) Ĵg(κ̂g)
p , p = 0, 1, 2, . . . (4.34)

This can be further simplified to obtain the following relationship between full set and reduced-order
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radiation properties:

Jνn

Ĵg
=

Jνn κνn

Ĵg κ̂g
=

Jνn (κνn)2

Ĵg (κ̂g)
2

= . . . = Const. (4.35)

A grouping strategy that satisfies Eq. 4.35 would allow an accurate representation of full set values

using only the reduced-order solution. Although this relationship is exact only in the limit of a

homogeneous medium at reference values, it serves as a powerful tool for guiding the development

of better reduced-order models for more complex physical problems. The present work retains

the MBOB paradigm while enforcing Eq. 4.35. The original frequency bands are replaced by

equal logarithmic intervals in the Jν space. These source-bands are further sub-divided into bins

which are again defined as equal logarithmic intervals in the (Jν κν) space. This simple procedure

attempts to minimize variations in Jν and (Jν κν) within a band-bin pair and conform better with

the new generalized criteria. Future work would entail incorporating higher-order terms and the use

of more sophisticated techniques such as spectral clustering (Section 2.4.2) and optimal k-means

unidimensional clustering [212] for imposing Eq. 4.35. It is interesting to note that opacity binning

represents only a subset of all grouping permutations allowed by Eq. 4.35. An ideal opacity bin is

composed of frequency points with the same reference values for the absorption coefficient. Such

a bin with (κνn = κ̂g = Const.) would trivially satisfy the generalized criteria. An invariant value

of the absorption coefficient within a bin is highly improbable for a general radiative system. The

new grouping methodology by incorporating Jν and (Jν κν) better enforces Eq. 4.35 and therefore,

would produce more accurate reduced-order models.

4.5 Summary

This chapter presents the numerical framework for evaluating three-dimensional radiative transfer

in participating media under non-equilibrium conditions. The domain of dependence for generalized

radiation problems covers three disparate spaces: angular, spatial, and spectral. Solution proce-

dures and the concomitant discretization for resolving variations in different physical spaces are

aimed at balancing fidelity with computational tractability. The discrete ordinate method is used

to reduce the dimensionality of angular-spatial integro-differential transfer equations. This is done
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by transforming the otherwise analytical integral over the complete solid angle into a weighted sum

of quantities computed for a discrete set of directions. The resultant system of spatially-varying

RTEs (each equation corresponds to a fixed direction) is solved using finite-volume discretization

and first-order upwinding. Further efficiency gains are realized through the mesh sweeping algo-

rithm which allows radiative intensity to be calculated explicitly by identifying the optimal sequence

in which computational cells are analyzed. In similar vein, three reduced-order wide-band meth-

ods – Planck-averaging, k-distribution, theory of homogenization – which allow complex variations

in the frequency domain to be accurately reproduced at significantly lowered costs are outlined.

Reinterpreting Planck-averaging using the maximum entropy principle allows an equivalence to

be drawn with the MGME method for non-equilibrium thermochemistry. Finally, a generalized

grouping criteria for combining individual frequencies into larger groups during model reduction is

evolved for non-equilibrium radiation. This analysis supersedes conventional viewpoints (which are

largely based on LTE assumptions) by taking into account rapid oscillatory behavior of both the

absorption coefficient and emission source term to devise reduced-order systems more reflective of

NLTE dynamics. A comparative analysis of wide-band models and grouping methodologies based

on LOS evaluations in different aerothermal environments is presented in the next chapter.
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Chapter 5

Line-of-Sight Analysis of
Reduced-order Spectral Models

A complete solution of three-dimensional radiative fields is obtained through a two-step process.

First, frequency-wise variation in medium absorption/emission behavior is described on a discrete

spectral grid. Next, angularly-integrated and spatially resolved transfer calculations are performed

for each discrete spectral unit (frequency/reduced-order group). Thus, the number of indepen-

dent evaluations in the frequency space required to correctly predict the effects of photochemical

transitions can determine the viability of realizing detailed radiative solutions. The reduced-order

wide-band spectral models outlined in Chapter 4 are critical for enabling cost-effective accurate

calculations for radiative transfer problems especially when coupled with CFD simulations. The

current chapter investigates the efficacy of these reduced-order spectral methods with regards to

modeling radiative environments encountered by different planetary entry missions. Since the focus

is on benchmarking spectral accuracy (and not the geometric spatial/angular aspects), the com-

parative analysis is performed along a single wall-normal line-of-sight. A simplified angular/spatial

domain allows radiative intensity to be modeled precisely using detailed approaches such as LBL or

narrow-band models which require a large number of frequency-wise evaluations (∼ 104−106). This

reference solution is then used to assess different wide-band models (Section 4.3) and the impact

of generalized radiation grouping (Section 4.4). This chapter is organized as follows: a) Section 5.1

details the discretized formulation for resolving radiative behavior along a single LOS. b) The accu-

racy of different conventional wide-band models is analyzed for Earth and Jovian planetary entry

problems in Section 5.2. c) Next, improvements to reduced-order predictions due to the introduc-

tion of non-equilibrium radiation grouping and group-wise equivalent blackbody temperatures T irad

are presented in Section 5.3. d) Section 5.4 summarizes the key findings of the chapter.
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Figure 5.1: One-dimensional discretization of RTE in the wall-directed normal direction Ω.

5.1 Computational Methodology

The current chapter limits radiative transfer calculations to a single LOS along the wall-directed

normal and concentrates on spectral characteristics. The numerical procedure outlined in Sec-

tion 4.2 for angularly integrated heat flux in three-dimensional domains is excessively complicated.

Instead, the one-dimensional RTE (Eq. 4.1) is integrated and then discretized to adequately de-

scribe the variation in radiative intensity along a given LOS. The exact radiative intensity [72]

corresponding to frequency ν at distance s along the requisite LOS direction Ω is:

Iν(s) = Iν(0) exp

−
s∫

0

κν(s′) ds′

 +

s∫
0

Jν(s′) exp

−
s∫

s′

κν(s′′) ds′′

 ds′ (5.1)

The incident radiation Iν(0) from the cold farfield boundary is set to zero. Equation 5.1 is also

further simplified by introducing the optical thickness τν along a LOS:

Iν(s) =

s∫
0

Jν(s′) exp {−τν(s)} exp
{
τν(s′)

}
ds′ , τν(s) =

s∫
0

κν(s′′) ds′′ (5.2)

Figure 5.1 presents the discretization of the one-dimensional space in s. The integral in Eq. 5.2 is

replaced by a summation of contributions from individual one-dimensional cells:

Iν(sn) =

n−1∑
i=1

si+1∫
si

Jν(s′) exp {−τν(sn)} exp
{
τν(s′)

}
ds′ (5.3)

The current work uses the approach developed by Hartung [105] for approximating properties

within each cell defined by s ∈ [si−1, si]. The source term is set equal to the average between the
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end-point values:

Jν(s) =
Jν(si) + Jν(si−1)

2
∀s ∈ [si−1, si] (5.4)

However, a more detailed treatment for κν is required for accurately solving Eq. 5.3. Hartung

proposes a piecewise linear reconstruction of τν within cells which minimizes errors while evaluating

intensity for strongly absorbing spectral regions:

τν(s) = αiν + βiν s ∀s ∈ [si−1, si] (5.5)

αiν =
τν(si−1) si − τν(si) si−1

si − si−1
(5.6)

βiν =
τν(si) − τν(si−1)

si − si−1
(5.7)

Applying Eq. 5.5 to Eq. 5.3 results in a definite integral of the form:

si∫
si−1

exp
{
τν(s′)

}
ds′ =

si∫
si−1

exp
(
αiν + βiν s

′) ds
=

1

βiν

{
exp

(
αiν + βiν si

)
− exp

(
αiν + βiν si−1

)}
=

si − si−1

τν(si) − τν(si−1)
[ exp {τν(si)} − exp {τν(si−1)} ] (5.8)

Equations 5.3, 5.4, and 5.8 are now combined to produce the final one-dimensional discretized

formulation:

Iν(sn) =

n−1∑
i=1

(
1

2

Jν(si) + Jν(si−1)

τν(si) − τν(si−1)
(si − si−1)

exp {−τν(sn)} [ exp {τν(si)} − exp {τν(si−1)} ]

)
(5.9)

The integral over frequency space [ν0, νf ] is approximated using the rectangle rule (Section 4.4).

Monochromatic intensity Iνj is evaluated at discrete points in the spectral grid for LBL/narrow-
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band models. Then, the total radiative intensity I is obtained as follows:

νf∫
ν0

Iν ≈
V−1∑
j=1

Iνj ∆νj (5.10)

where the frequency space is discretized into V points for a given spectral model. Radiative

transfer calculations for reduced-order wide-band models are also performed using Eq 5.9. The only

difference is that individual LOS evaluations rather than being frequency specific, now attempt to

predict the collective characteristics of reduced-order groups.

5.2 Comparison Between Conventional Reduced-order

Methodologies

This section first compares the applicability of various reduced-order methodologies – maximum en-

tropy enforcing Planck-averaging with conventional frequency bands and opacity binning (MBOB),

homogenization, k-distribution – to a range of radiative systems. The conventional MBOB ap-

proach is realized by setting Trad equal to the vibrational-electronic temperature from the flowfield.

The impact of the proposed non-equilibrium grouping strategy on the accuracy of Planck-averaged

reduced-order models is studied in the next section. Three hypersonic entry problems and the

associated radiation field are considered: a) Earth entry of the Stardust probe, b) meteor entry

that includes precursor radiation, c) and entry of Galileo probe into Jupiter.

Flow simulations for the current study have been performed using the LAURA non-equilibrium

Navier-Stokes solver[213]. Radiative calculations have been conducted using the HARA radiation

code [214]. A hybrid approach is adopted for describing frequency variance of radiative properties:

SRB method is used for molecular bands with an LBL treatment of atomic radiation [7, 8, 215].

A spectral grid consisting of approximately 50, 000 points reproduces LBL characteristics with

sufficient fidelity for hypersonic aerothermal applications. Since the objective of the current study is

to contrast the aforementioned wide-band paradigms, no commentary is provided on the suitability

of narrow-bands models. Additional discussion on the subject can be found in [216]. Results

obtained using the hybrid-SRB method are considered exact and used as the reference solution
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for assessing different wide-band models. Spectral models based on the hybrid-SRB approach are

referred to as “full set models” while only wide-band approaches are referred to as “reduced-order

models”.

A two-step process is employed while analyzing each physical system. Firstly, a converged

solution with flow-radiation coupling based on the full set model and tangent slab approximation is

obtained using the LAURA-HARA framework [217]. Then, radiation along individual lines-of-sight

(LOSs) is analyzed through the one-dimensional discretization procedure outlined in Section 5.1.

These LOS calculations are repeated for both full set and reduced-order approaches, while keeping

the flowfield fixed. It should be noted that the current work focuses on assessing the efficacy

of spectral reduced-order modeling for different relevant entry problems. Thus, the underlying

flowfield simulations, which have been reported at length in previous studies, are only briefly

summarized. A more detailed discussion is presented for LOS variation in radiative response and

the comparative characteristics of various reduced-order models.

Stardust entry is simulated using a two-temperature thermochemical non-equilibrium model

comprising of 11 species air (N, N+, O, O+, NO, NO+, N2, N2
+, O2, O2

+, and e–) and kinetic rates

presented by Johnston and Panesi [218] that also account for non-Boltzmann behavior in atomic

nitrogen. The characteristic freestream velocities for meteoroids is higher and therefore, additional

ionized species (N++ and O++) are added to the air 11 gaseous mixture [219]. A comprehensive

set of spectral data and non-Boltzmann models for diatomic molecules and atomic species relevant

to high temperature air are considered in HARA while computing radiative properties [216, 220].

The impact of ablation is ignored for both Earth entry problems. The freestream gas during Jovian

entry for the Galileo probe is modeled using seven species [221]: H2, H2
+, H, H+, He, He+, and e–.

The ablation product gas requires the inclusion of an additional 18 species: C, C+, C2, C3, C4, C5,

CH, C2H, C3H, C4H, C5H, CH2, C2H2, O, O+, O2, CO, CO. Radiation transitions that involve H,

H+, C, C2, C3, O, O2, and CO and can be classified as atomic lines, molecular bands, bound-free

continuum, or free-free continuum have been accounted for in the present calculations [221].

The current work attempts to present a fair comparison between different methods by ensuring

that grouping strategies and number of reduced-order groups are uniform. This can have different

connotation for each technique. Thus, an x×y reduced-order system implies: a) x frequency bands
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with y opacity bins for conventional MBOB Planck averaging; b) identical x frequency bands and

y opacity intervals as MBOB for the method of homogenization; c) the same x frequency bands as

before with y quadrature points for integration within bands while using k-distribution.

5.2.1 Stardust Entry

The performance of the three reduced-order techniques is assessed for a LOS located in the wake

region and originating from the backshell of the Stardust capsule. The flowfield properties and

radiative environment have been analyzed at the 46 s trajectory point with freestream velocity

V∞ = 11.69 km/s and density ρ∞ = 1.05 × 10−4 kg/m3. Additional details on the computational

setup, mesh configuration, and LOS properties can be found in [12]. The spectrally integrated wall-

directed radiative intensity computed using the full set and differently sized reduced-order models

is presented in Fig. 5.2. Linear averaging (Eq. 4.30) has been performed in order to define the

reference value of absorption coefficients and source term for individual frequencies. The radiative

field in the afterbody region is shaped by the overlap in the VUV region between molecular bands

and atomic lines [110]. Emission from strong atomic nitrogen and oxygen lines (self-absorbing with

significant non-Boltzmann effects) and molecular NO is absorbed by molecular species such as N2

in the boundary layer. A comparison between the different 20×20 reduced-order systems indicates

that Planck-averaging produces a larger overshoot while predicting the initial rise in radiative

intensity through the far-wake and outlying shocked flow. Additionally, both Planck-averaging

and homogenization (converse for k-distribution) over-predict the degree of absorption through

the near-wall region. The use of a larger 25 × 50 reduced-order model improves some of these

shortcomings resulting in smaller deviations from the the full set results. Fig. 5.2b clearly indi-

cates that results for Planck-averaged MBOB are comparable to the more complex statistics-based

methods. This outcome is interesting because the wake region is characterized by optically thick,

spectrally overlapping atomic and molecular radiative processes and an inhomogeneous medium

driving non-local absorption. According to the conventional rationale (Section 4.3.1), standard

Planck-averaging should conspicuously fail under such conditions. However, it should be noted

that both Planck-averaged MBOB and k-distribution continue to yield incorrect lower estimates at

the wall. This highlights a common shortcoming of most reduced-order models while reproducing
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radiative intensities for Planck-limited sections of the spectra in optically thick regions.

(a) 20× 20 reduced-order models (b) 25× 50 reduced-order models

Figure 5.2: Total wall-directed intensity along a backshell LOS during Stardust entry.

It is interesting to note that predictions based on homogenization are more error-prone at

distances greater than 12 cm. The flowfield beyond that point is in a state of strong thermochemical

non-equilibrium due to a combination of expanding flows and proximity to the oblique shock [217].

Thus, non-equilibrium emission intensity Ineq
ν = Jν/κν , especially near atomic line centers, deviates

strongly from the corresponding blackbody Planck intensity IBν . The theory of homogenization has

a rigorous mathematical framework for establishing accurate reduced-order models only for LTE

radiation with the emission source term Jν = κν I
B
ν . Under thermal non-equilibrium, both κν and

Ineq
ν exhibit rapid spectral variation. Model reduction based on homogenization cannot accurately

account for this behavior, resulting in erroneous results for non-equilibrium radiation.

5.2.2 Meteor Precursor Radiation

The second physical problem considered is the Earth entry of a meteoroid. Coupled flow and

radiative field calculations have been performed for a spherical meteoroid with radius equal to 1 m,

freestream velocity V∞ = 20 km/s, and altitude set to 50 km. Additionally, both precursor radiation

and the impact of photochemical source terms on the species continuity equations are modeled in

these simulations [219]. Meteoroids pose a unique challenge for reduced-order spectral approaches

because of the higher entry speeds at lower altitudes as compared to reentry vehicles. This can result

in the shock layer having a significantly larger optical thickness. Radiation coupling also yields
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thicker boundary layers and greater non-local absorption of wall-directed radiation [219, 222]. The

total radiative intensity for current conditions is dominated by contributions from atomic nitrogen

and oxygen lines and continuum emission. Predictions based on different reduced-order techniques

and the full set for the stagnation LOS are compared in Fig. 5.3. These results have been obtained

using the linear averaging scheme (Eq. 4.30) for defining κref
ν and J ref

ν . The smaller 10× 10 Planck-

averaged reduced-order model fails to accurately model emission through the hot shock layer.

However, a switch to the larger 25× 50 system remedies these issues. It is evident from Fig. 5.3b

that the Planck-averaged MBOB offers more reliable results through the entire LOS. The two

statistics-based methods over-predict (by differing degrees) the rise in radiative intensity through

the thick post-shock region.

(a) 10× 10 reduced-order models (b) 25× 50 reduced-order models

Figure 5.3: Total wall-directed intensity along stagnation LOS during meteor entry.

A key challenge while characterizing this system is ensuring that precursor absorption in the

freestream gas beyond the bow shock (∼ 4.5cm) is captured accurately. This is also crucial for

correctly modeling photoionization and photodissociation which dominate over collisional processes

that are impeded by low freestream densities [219, 223]. Thus, precursor influence can significantly

alter flow composition and enthalpy as it approaches the shock front, besides increasing the total

wall-directed radiative flux. Planck-averaging is able to resolve radiative features in the large pre-

cursor region with wall-directed intensity indistinguishable from the corresponding full set values.

Predominance of non-equilibrium phenomena (high entry velocities and low freestream densities)

also has an adverse impact on the accuracy of reduced-order models derived using homogenization.
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Additionally, the error associated with reduced-order solutions based on homogenization does not

monotonically decrease with increasing number of reduced-order groups. The discrepancy with the

full set solution in Fig. 5.3 actually rises when going from the 10 × 10 to 25 × 50 systems before

eventually decaying at higher number of band/bin combinations.

5.2.3 Galileo Entry

Flow calculations have been performed with radiative energy transfer and mass injection through

ablation for the Galileo probe entry. A converged solution for the peak heating trajectory point

(51.16 s) is obtained [221]. This corresponds to freestream velocity V∞ = 41.6 km/s and density

ρ∞ = 3.49 × 10−4 kg/m3. Previous studies [221, 224] indicate that ablation product gases are

abundant in the near-wall region along the stagnation line. Furthermore, atomic species such as C

can diffuse upstream to the high-temperature shock region and contribute further to wall-directed

radiation. Thus, the total radiative intensity is defined by strong emissions from H and C lines

in the shock layer and subsequent absorption through a complex interaction between overlapping

molecular bands of C2H and C3. Results obtained using different reduced-order models and the

original detailed spectral database for the stagnation LOS are presented in Fig. 5.4. Reference

frequency-wise absorption coefficients and source terms are computed through logarithmic averag-

ing (Eq. 4.30). Wall-directed intensity is over-predicted by k-distribution method for the smaller

(a) 15× 15 reduced-order models (b) 20× 20 reduced-order models

Figure 5.4: Total wall-directed intensity along stagnation LOS during Galileo entry.

15 × 15 reduced-order system. The values obtained using MBOB and homogenization are almost
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alike and reproduce the full set solution for the majority of the LOS. However, both methods

under-predict intensity at the wall. This suggests that for current flow conditions Ineq
ν ≈ IBν , which

renders both methods almost identical from a mathematical standpoint when using the same fre-

quency bands and opacity intervals. The use of a larger 20×20 system improves agreement with the

full set solution although k-distribution is slightly inaccurate while capturing radiation attenuation

through the ablation dominated near-wall region.

(a) Spectral Intensity (b) Cumulative Intensity

Figure 5.5: Spectral and cumulative wall-directed intensities at the wall computed using the full
set and 25× 25 reduced-order systems for Galileo entry.

Numerical experiments by the author indicate that the strategy employed by Johnston et al.

[109] for unpacking reduced-order solutions to obtain a frequency-wise distribution offer the best

agreement with the full LBL spectra. This involves defining the fraction Fij(νm) of total intensity

(or other radiative quantity such as heat flux) from the ith band and jth bin pair that can be

attributed to frequency point νn as:

Fij(νn) = 1

/ ∑
νn∈{ν}ij

∆νn (5.11)

A comparison between the full set spectra and unpacked reduced-order solution from a 25×25 sized

system at the wall is presented in Fig. 5.5. It should be noted that the unpacking procedure requires

simple post-processing of the reduced-order solution. Prominent spectral features are captured after

only 25×25 evaluations along a LOS (corresponding to the number of reduced-order groups) rather

than the original ∼ 50, 000 evaluations for the original detailed spectral approach. An analysis of
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LOS radiative distributions indicates that conventional MBOB offers the most accurate estimates

for both total and frequency-wise quantities amongst the different model reduction techniques

studied here.

5.3 Impact of Generalized Grouping Strategy

The impact of the generalized grouping strategy on improving total and spectral predictions is

analyzed in this section. It should be noted that Trad (Eq. 4.20) is updated while applying the

proposed grouping strategy to the convetional MBOB method. A maximum of four sub-iterations

have been found to be sufficient while converging Trad and other radiative properties for the current

physical problems. Radiative properties for Galileo entry are well resolved using conventional

MBOB. The new methodology yields no significant improvement in term of a smaller reduced-

order model that can accurately reproduce the full set solution. Therefore, only the Stardust and

meteor entry problems are discussed in the interest of brevity.

5.3.1 Stardust Entry

The same calculations outlined in Section 5.2.1 along the backshell LOS for Stardust entry are now

repeated using the new generalized grouping strategy. These results, labeled “Planck (New)”, are

presented in Fig. 5.6. A switch to the Jν and (Jν κν) informed grouping scheme not only mitigates

shortcomings plaguing the original MBOB method (Fig. 5.2a) but also surpasses the more complex

statistics-based schemes in terms of accuracy. The smaller 20 × 20 system is now sufficient for

accurately resolving total intensity through non-uniform media with differing dominant radiative

processes (atomic lines in shock layer versus molecular bands in near-wall region). Conventional

reduced-order spectral models by disregarding the importance of grouping are not able to converge

to full set results even with the significantly larger 25×50 system. Additional investigation indicates

the use of an independent Trad has minimal impact, with change in reduced-order solution between

the first (Trad equal to vibrational-electronic temperature) and final sub-iterations being less than

0.1%. Therefore, it can be concluded that accuracy gains in Planck-averaged predictions are mainly

through the improved grouping strategy.

The unpacked spectral distribution from a 25 × 25 reduced-order system developed using the
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Figure 5.6: Total wall-directed intensity along a backshell LOS during Stardust entry. Reduced-
order solutions based on 20× 20 systems.

new grouping scheme is compared to the full set model in Fig. 5.7a. The behavior of key atomic lines

that are impacted by non-Boltzmann effects, such as the 174 nm (7.1 eV) atomic nitrogen line, is

accurately predicted by the reduced-order solution. Surprisingly, spectral decomposition based on

a Planck blackbody IBν (Trad) weighted fraction Fij(νm) (instead of the spectrally invariant Fij(νm)

defined in Eq. 5.11) fails to match the actual full set spectra. Although the larger discrete peaks are

accurately reproduced, the IBν (Trad) weighted Fij(νm) under-predicts the lower continuum spectral

intensity. Instead, a constant Fij(νm), which can also be viewed as a uniform spectral probability

density, allows the frequency-wise variance from the full set solution to be captured as a simple

post-processing step on an almost 2000 times smaller reduced-order system. Results obtained using

only the more accurate constant fraction Fij(νm) approach (Eq. 5.11) are presented in Fig 5.7 and

while analyzing spectral distributions in subsequent sections. High fidelity in the frequency space

is particularly important while designing self-consistent coupled radiation reduced-order models

for gaseous mixtures characterized by non-Boltzmann state population distributions [12, 225]. The

same unpacking procedure is also applied to the conventional MBOB (labeled “Planck (Old)”)

and statistics-based approaches. The cumulative intensity at the wall for both the full set and

reduced-order models is presented in Fig. 5.7b. Results obtained using homogenization deviate

notably from the reference full set predictions and have not been presented here. It is evident that

the new generalized binning strategy ensures more reliable estimates for both spectral and total
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(a) Spectral Intensity (b) Cumulative Intensity

Figure 5.7: Spectral and cumulative wall-directed intensities at the wall computed using the full
set and 25× 25 reduced-order systems for Stardust entry.

radiative quantities of interest as compared to legacy methods.

5.3.2 Meteor Entry

The total wall-directed intensity along the stagnation LOS for the meteoroid problem is computed

using the new grouping strategy. Results obtained for 10× 10 reduced-order models are presented

in Fig. 5.8. Despite the limited number of reduced-order groups employed, Planck-averaging in con-

junction with generalized grouping successfully reproduces full set results across the entire length of

the stagnation line. This case further highlights the suitability of the proposed approach in dealing

with a complex set of interacting radiative systems for a large non-homogeneous physical domain.

A comparison of spectral intensity at the wall between post-processed reduced-order solutions and

direct full set values is presented in Fig. 5.9. Results obtained using only a 10 × 10 system based

on the new grouping strategy are in excellent agreement with the original detailed spectra. Spec-

tral intensity is slightly over-predicted for certain frequencies in the 12-14 eV region. However,

the maximum error in the corresponding cumulative intensity remains bounded at approximately

3.5%. Fig. 5.9b also highlights the larger inconsistencies in spectral details while using conven-

tional MBOB and k-distribution approaches. Frequency-wise unpacking for homogenization-based

reduced-order models diverges from full set values by introducing large errors in the 0-4 eV region.
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Figure 5.8: Total wall-directed intensity along stagnation LOS during meteor entry. Reduced-
order solutions based on 10× 10 systems.

(a) Spectral Intensity (b) Cumulative Intensity

Figure 5.9: Spectral and cumulative wall-directed intensities at the wall computed using the full
set and 10× 10 reduced-order systems for meteor entry.
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5.4 Summary

This chapter examines the suitability of three reduced-order spectral modeling techniques – Planck-

averaging, and statistics-based k-distribution and theory of homogenization – and the proposed

non-equilibrium radiation grouping strategy. The geometric aspect of this study is simplified to

solving the RTE along a single wall-directed normal direction. This allows reference solutions

capturing minute spectral variations in the radiative environment to be computed using the hybrid

SRB-LBL method. The same analysis is then repeated using reduced-order spectral models. The

accuracy of different model reduction methods is assessed using both total radiative intensity and

its distribution in frequency space. Radiative transfer calculations along stagnation line / wake

flow LOSs are performed for different Earth and Jupiter entry problems. Planck-averaging and

the two statistics-based approaches offer comparable levels of accuracy. However, convergence to

the reference full set solution is slow and a large number of reduced-order groups are required to

eliminate errors in total intensity predictions. A switch to Planck-averaging based on the new

non-equilibrium grouping criteria allows not only total quantities of interest but also their detailed

spectral variation to be predicted with a limited number of reduced-order groups. The model-

reduction methodology outlined in the current work represents a two orders-of-magnitude speed-

up with respect to narrow-band methods (and three to four orders with respect to original LBL

approaches) and is ideal for coupled flow-radiation applications.
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Chapter 6

Three-Dimensional
Radiative-Hydrodynamics:
Application to CO2 Wake Flows

The current chapter combines different model-reduction techniques for resolving non-Boltzmann

thermodynamics, chemical kinetics, and radiative transfer into a unified simulation procedure for

solving complex three-dimensional flows. The MGME approach with adaptive binning allows for

time-varying optimal reduced-order representation of the internal state population distribution

while accounting for all collisional processes included in the state-to-state model. Similarly, radia-

tive transfer calculations are performed efficiently by discretization in the spectral, angular, and

spatial spaces. This reduction in computational overhead allows truly non-Boltzmann simulations

with two-way coupling between the flow and radiation fields to be realized without simplifying

approximations based on the tangent-slab method or local escape-factors.

Recent work on Martian atomspheric entry [226, 227, 228, 229] indicates that CO2 infrared

radiation (IR) dominates the total heat flux received by the backshell of spacecraft. These findings

further underscore the impact of radiation on flowfield properties and flight characteristics at

hypersonic entry speeds. However, simulations for CO2 wake flows and associated IR radiation have

largely been limited to the use of conventional MT models. Researchers have also modeled CO2

vibrational non-equilibrium by defining independent temperatures for different modes (symmetric

stretching, bending, asymmetric stretching) [230, 231]. Despite significant advances, these efforts

still share a common shortcoming – internal vibrational states are forced into common mode-

spanning Boltzmann distributions – which can lead to erroneous predictions under strong non-

equilibrium. Additionally, existing research on the subject completely disregards the two-way

coupling between thermochemistry and radiative transitions, with the radiative field computed

simply as a post-processing step. Consequently, the proposed non-equilibrium methodology is

applied in conjunction with the US3D flow solver to analyze the flowfield and radiative environment

in the afterbody region of the Mars 2020 vehicle. This allows the present work to probe the possible

101



influence of non-Boltzmann effects and non-local radiative emissions on CO2 vibrational relaxation,

bulk flow properties, and IR heating with unprecedented accuracy.

The current chapter is organized as follows: a) Section 6.1 presents the system of hydrodynamic

equations while incorporating the MGME framework. b) The development of computationally effi-

cient formulations for spectral properties and radiation-induced source terms from the CDSD-4000

database is delineated in Section 6.2. c) Results for non-equilibrium CO2 wake flows and the re-

sultant IR radiation around the Mars 2020 vehicle are discussed in Section 6.3. d) A summary for

the chapter is provided in Section 6.4.

6.1 Hydrodynamic Governing Equations

The Maxwell transfer equations presented in Section 2.1 describe the evolution of bulk properties

corresponding to individual internal states of chemical species and for the entire mixture under

the combined effects of convection, diffusive or transport fluxes, and collision-induced volumetric

changes. The familiar hydrodynamic equations of the Navier-Stokes form are derived using the

Chapman-Enskog (CE) perturbation method [120, 121, 122]. This involves modeling the velocity

distribution function fAi
as a finite-order polynomial of the perturbation parameter ε [119]:

fAi
= f0

Ai

(
1 + ε φ1

Ai
+ ε2 φ2

Ai

)
+ O(ε3) ∀ i ∈ IA , A ∈ S (6.1)

where f0
Ai

is the zeroth-order distribution function and φ1
Ai

and φ2
Ai

are its first and second-order

perturbations, respectively. The perturbation parameter ε << 1 in the hydrodynamic limit (similar

to Knudsen number) where the gaseous mixture is collision dominated. The aforementioned form

of fAi
is substituted in the Boltzmann equation (Eq. 2.2). Comparing terms corresponding to the

same order of ε yields the governing equations for f0
Ai

, φ1
Ai

and φ2
Ai

. A detailed description of the

subsequent solution procedure and the requisite assumptions for ensuring uniqueness can be found

in [119, 120]. Only the key observations from these detailed theses are highlighted here to better

contextualize the flow governing equations used in the current study. The zeroth-order equations

associated with ε0 and defined using f0
Ai

and φ1
Ai

constitute the system of Euler equations. The

first-order equations, which introduce φ2
Ai

, translate into the more general Navier-Stokes system
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with transport/diffusive fluxes and volumetric source terms.

The different conservation equations are obtained based on the set of macroscopic collision

invariants, i.e., quantities that are conserved during collisions, assumed for a particular analysis.

Thus, state-to-state CE method results in independent conservation equations for the density of

individual internal states ρAi , in addition to those for mixture momentum and total energy. Multi-

temperature non-equilibrium models [4, 20] assume that different internal energy modes (vibration,

rotation, electronic) equilibrate to Boltzmann distributions due to rapid intra-modal and selective

inter-modal collisions (for equilibrium between disparate modes). This separation of time-scales

between various types of collisional processes leads to the formulation of new collisional invariants.

For instance, the two-temperature model assumes that the vibrational mode remains in equilibrium

due to fast resonant vibrational (VV) transitions [19, 232]. The characteristic time for vibrational-

translational (VT) interactions is much larger, engendering a state of non-equilibrium between the

two modes. Thus, vibrational energy is defined as a collisional invariant because VT and other

inelastic/reactive processes which transfer energy away from/to the vibrational modes cannot man-

ifest themselves at such time-scales [121, 233]. This equilibration assumption replaces state-specific

conservation equations with those for total species density ρA =
∑

i∈IA ρAi and total vibrational

energy.

Macdonald [130] provides a similar treatment for the MGME framework. The constitutive StS

inelastic/reactive collisional processes are categorized as follows:

τreact ' τ bb
′

inel >> τ bbinel (6.2)

where τreact, τ
bb′
inel, and τ bbinel are the characteristic times associated with reactive processes (e.g .,

dissociation, recombination, exchange), non-reactive transitions between bins (inter-bin), and non-

reactive transitions within bins (intra-bin). The separation outlined in Eq. 6.2 is implicitly forced

by the maximum entropy linear bin framework which assumes localized equilibrium within bins.

Consequently, the mass and internal energy of groups are introduced as collisional invariants. In

return, the hydrodynamic governing equations now include conservation equations for bin density

and bin internal energy. The current study amalgamates these equations (for chemical species that

are resolved using a multi-group reduced-order description) into the conventional two-temperature
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(2-T) model [20]. It should be reiterated that the 2-T model assumes translational energy states

to be in equilibrium at temperature T while vibrational and electronic modes are equilibrated at

TV . The hybrid system of conservation equations for mass, momentum, and energy are briefly

summarized next. Readers are directed to [18, 20, 40] for a more comprehensive overview of flow

equations, thermodynamics, chemical kinetics, transport properties, and energy coupling under the

2-T assumption.

6.1.1 Mixture Definition

The gaseous mixture comprising of atomic and molecular species is represented by R. Chemical

species for which a multi-group reduced-order StS description is obtained are included in set S. The

internal states for species i ∈ S are combined into b(i) macroscopic bins. The remaining species

modeled in the conventional manner as a unitary entity, with each internal mode described by only

a single Boltzmann distribution, are included in B. The present work focuses on low-speed Martian

entry which translates into low predicted values (∼ 0.5%) for the degree of ionization [234]. Thus,

ionized species and free-electrons are neglected while developing the system of equations. The

contributions of individual species (and bins) is summed to yield mixture mass density ρ and

pressure P :

ρ =
∑∑

i∈S

∑
b

ρbi +
∑
j∈S

ρj (6.3)

P =
∑
i∈S

∑
b

ρbi Ri T +
∑
j∈S

ρj Rj T (6.4)

The same process is repeated while defining internal energy e (including translational energy),

enthalpy H, and total energy E = e +
1

2
u · u per unit mass for the mixture. The Gordon-

Mcbride thermodynamic database [235] (in its 9-coefficient polynomial form) is used to evaluate

the enthalpy, entropy, and specific heat capacity for species j ∈ B. Properties in this database are

computed using the rigid-rotor harmonic-oscillator approximation with necessary modifications for

anharmonicities, vibration-rotation interactions, rotational stretching, low-temperature quantum

rotation, Fermi and Darling-Dennison resonance, and internal rotation [236]. The equilibrated

translation and rotation modes are assumed to be fully excited with invariant heat capacities.
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Thus, vibrational-electronic energy/entropy/heat capacity is easily computed by evaluating the

total value of the required thermodynamic quantity at TV and then subtracting the translational-

rotational/formation components (rotational mode is modeled as a rigid rotor) [20, 237]. Section 2.3

provides a detailed description of bin-wise thermodynamics for the MGME framework. It should

be noted that aggregate properties for species i ∈ S (to be used with conventional 2-T modeling)

are obtained by forcing the constituent bins into a single Boltzmann distribution [238]. Both bin-

wise and Boltzmann-aggregate thermodynamic properties have also been fitted using the NASA

9-coefficient polynomials (Appendix C). Furthermore, vibrational-electronic and translational-

rotational components are split for S in the same manner as B.

6.1.2 Mass Continuity Equations

The mass continuity equations comprise of independent conservation equations for bin-wise densi-

ties (species included in S) and total species-wise densities (species included in B):

∂tρ
b
i + ∇x ·

[
ρbi

(
u + Vbi

)]
= Mb

i ω̇
b
i b = 1, . . . , b(i) , ∀i ∈ S (6.5)

∂tρj + ∇x · [ρj (u + Vj)] = Mj ω̇j ∀j ∈ B (6.6)

where symbol ∂t is the partial time derivative ∂/∂t. The mass production term due to chemical

reactions for all species j ∈ B is formulated using the law of mass action:

ω̇j =

Nj
r∑

r=1

(βj,r − αj,r) (Rf,r −Rb,r) (6.7)

Rf,r = Kr

∏
s

(ρs /Ms)
αs,r (6.8)

Rb,r = K̄r

∏
s

(ρs /Ms)
βs,r (6.9)

where N j
r is the total number of reactions included in the kinetics scheme for species j. The stoi-

chiometric coefficients for reactants and products participating in the rth reaction are represented

by αs,r and βs,r. The forward and backward rates are determined in equations 6.8 and 6.9 using

the rate coefficients Kr and K̄r. Forward rate coefficients are evaluated using Arrhenius fits from

different kinetics databases [35, 36, 239, 240]. The corresponding coefficient for the backward di-
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rection is then calculated from the equilibrium constant and Kr through detailed balance. The

net production rate for bins ω̇bi is broken down into contributions from particle collisions and pho-

tochemical transitions. The collisional component stemming from state-specific energy exchange

and chemical change is outlined in Appendix D. The impact of photochemistry during a two-way

coupling between flow and radiation is discussed in Section 6.2.2. Although radiative transitions

can induce chemical changes for all participating species (both in S and B) [8, 49, 241], the present

analysis is evolved strictly in the context of CO2 IR radiation. However, the general form remains

applicable while incorporating chemical effects generated by any radiative system into the MGME

framework.

6.1.3 Mixture Momentum Equation

The mixture momentum equation requires no modifications and retains its original form from the

2-T model:

∂t (ρu) + ∇x · (ρu⊗ u + pI) = ∇x · τ (6.10)

6.1.4 Energy Equations

The 2-T assumption is derived on the basis of fast intra-modal and (selective) inter-modal pro-

cesses resulting in translational-rotational equilibrium at T and vibrational-electronic equilibrium

at TV . Thus, the energy composition of the mixture is described using two independent equations

associated with vibrational-electronic (eV ) and total (E) energies:

∂tρeV +∇x · (ρ eV u) +∇x·
∑
i∈S

∑
b

ρbi Vbi ebV,i +∇x·
∑
j∈B

ρj Vj eV,j

= −∇x · qV + ΩC + ΩVT + Ωrad (6.11)

∂tρE +∇x · (ρHu) +∇x·
∑
i∈S

∑
b

ρbi Vbi hbi +∇x·
∑
j∈B

ρj Vj hj

= τ :∇xu−∇x · q + Ωrad (6.12)
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The heat flux vector resulting from vibrational-electronic and total energies is denoted by qV and q,

respectively. The terms ΩC, ΩVT, and Ωrad describe energy change due to vibrational-translational

relaxation, chemistry vibrational-electronic coupling, and radiative heat transfer. Ideally, only the

contributions of chemical species included in B should be included in defining eV and the corre-

sponding governing equation. A complete solution for MGME models with linear reconstruction

requires independent equations for both bin-wise density ρbi and internal energy eb
int,i. Thus, the

set of governing equations would be augmented by energy equations of the form [130]:

∂tρ
b
i e
b
int,i +∇x ·

(
ρbi e

b
int,i u

)
+∇x·Vbi ebint,i

= −∇x · qbint,i + Ωb
col,i + Ωb

rad,i b = 1, . . . , b(i) , ∀i ∈ S (6.13)

where Ωb
col,i and Ωb

rad,i represent changes in bin internal energy due to collisional and radiative pro-

cesses, respectively. Equation 2.17 provides a general definition for Ωb
col,i. A closed-form expression

for Ωb
rad,i can be derived in a similar manner using the analysis in Section 6.2.2. However, as a

first approximation, no independent bin energy equations are solved in the current calculations

and the total internal energy of bins is divided between the mixture translational-rotational and

vibrational-electronic energies (as evidenced by Eq. 6.11) [242]. In the MGME context, this implies

that vibrational states within individual bins are in localized Boltzmann distributions at TV . Ef-

forts are currently underway to suitably modify the US3D flow solver and model bin-wise energies

(and corresponding temperatures) through independent equations.

6.1.5 Non-equilibrium Closure Relationships

The Park model [20, 35] is used to account for thermal non-equilibrium (T 6= TV ) while computing

rate-constants for non-StS species in B. This involves defining a single rate-controlling tempera-

ture for both forward and backward directions based on geometric averaging: T 1−q and TV
q. The

parameter q is specific to a particular reaction and can vary between the forward/backward di-

rections. Property fits for bin-averaged rate coefficients relevant to the current study (CO2 is the

only species included in S) are presented in Section 2.3. The Blottner viscosity model is used to
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compute shear viscosity µ for the multi-species mixture [243]:

τ = µ

(
∇xu + ∇x

Tu − 2

3
(∇x · u)I

)
(6.14)

The thermal conductivities corresponding to different energy modes are modeled using the Eucken

approximation [244, 245] with the Wilke mixing rule [246, 247]:

qV = − (λvib + λel)∇xTV , q = − (λtr + λrot)∇xT + qV (6.15)

where λvib, λel, λtr, and λrot are mixture thermal conductivities for the vibrational, electronic, trans-

lational, and rotational modes, respectively. The diffusion velocities V obey Fick’s law and are

approximated using the self-consistent effective binary diffusion model [248, 249]. The vibrational-

translational energy exchange is computed assuming a Landau-Teller type relaxation form for

ΩVT [33, 250]. The inter-species relaxation time for V-T exchange is based on the Millikan-White

formula [34] and includes Parks high-temperature correction [4, 19]. The vibrational-electronic

coupling term ΩC is computed using a non-preferential dissociation model [20]. It should be noted

that Chapman-Enskog analysis [251] can yield more rigorous descriptions for transport/diffusive

fluxes and the coupling terms. However, these are overlooked in favor of semi-empirical approaches

due to the present analysis focusing on low-speed planetary entry (lower peak temperatures and

negligible ionization). Furthermore, in the interest of limiting complexity, the Blottner viscosity

fits of all reduced-order bins for species i ∈ S are assigned a common value equal to the stan-

dard species model. Internal energy relaxation for bins is modeled using Landau-Teller relaxation

with the same Millikan-White relaxation parameters as the complete species, as reported in the

literature [35, 36]. These assumptions allow straightforward comparisons with traditional non-

equilibrium modeling approaches. A first-order estimate of non-Boltzmann effects is obtained with

bin-densities ρbi no longer forced to adhere to a Boltzmann distribution. Conversely, a standard

2-T flowfield is recovered in case such non-Boltzmann deviations are absent.
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6.2 Radiation Database for CO2

The current section describes the reformulation of rovibrational IR radiative transitions for CO2

in order to ensure consistency with an MGME-based reduced-order description for vibrational

non-equilibrium. This entails extending the smeared band method [8, 105, 252] to compute spec-

tral variation in absorption and emission behavior directly from non-Bolzmann bin properties.

This modification is advantageous in two regards: a) Additional costs associated with unpacking

bins into state-specific population distributions and then modeling state-to-state radiative transi-

tions (traditionally done when introducing non-Boltzmann effects [49, 73, 253, 254]) are avoided.

b) Absorption and emission coefficients due to photochemical processes between each bin-pair are

separated. This allows radiative contributions to bin-specific mass change source terms ω̇bi to be

obtained in a straightforward manner.

6.2.1 Smeared Band Method

The starting point for the current analysis on CO2 IR radiation is the CDSD-4000 database [97, 255].

The characteristics of radiative transitions in the CDSD database are determined from detailed

quantum chemistry calculations involving effective Hamiltonian and dipole moment operators. The

various operator parameters for these calculations are calibrated in order to obtain good agreement

with experimentally determined line positions [256] and intensity values [257]. This database in-

cludes approximately 574 million unique transitions for the primary isotopologue of CO2 divided

into three distinct bands located at 1.5 µm, 2.7 µm, and 4.5 µm. Additionally, the maximum en-

ergy considered in CDSD-4000 corresponds to the dissociation limit of the ground electronic state

of CO2. This ensures better compatibility with the CO2 chemistry StS model (Section 3.3) be-

ing used in the current study which also excludes electronic excitation. However, a key difference

still remains: CDSD-4000 details radiative transitions between rovibrational states whereas the

CO2 chemistry model based on the work of Kustova et al . [140, 141] is vibrational state-specific.

A rovibrational description (potentially involving O(106) individual states) of state-to-state CO2

chemistry is computationally impractical in the current context. Thus, the more reasonable al-

ternative based on reducing the fidelity of CDSD-4000 from rovibrational to vibrational specific is

developed in this section. More rigorous formulations for effecting this transformation are under
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development [258, 259] but have not been considered here.

A line-by-line approach based on CDSD-4000 (574 million unique transitions) is ill-suited to

three-dimensional flow-radiation coupled simulations. Instead, the database is reduced to a more

convenient form using the smeared band method [8, 105]. The resultant spectral model is developed

as a function of frequency, temperature, lower rovibrational level, and upper rovibrational level.

First, the molecular band is divided into intervals ∆ν to create a spectral grid consisting of discrete

frequencies νm. Then, the absorption cross-sections within grid intervals are summed as follows:

σi−jν (TV ) =
∑
∀k

νCL
k ∈ [ν,ν+ ∆ν]

[
Ii−jk

∆ν

1

1− exp{−hP ν/(kBTref )}

QCO2
(Tref )

QCO2
(TV )

exp
{
−εiCO2

/(kBTV )
}

exp
{
−εiCO2

/(kBTref )
} ] (6.16)

where i and j represent the lower and upper rovibrational levels of the transition, respectively, and

QCO2
is the total CO2 rovibrational partition function. The transition strength of the kth line from

CDSD-4000 is denoted by Ii−jk and has a centerline frequency νCL
k . Equation 6.16 is evaluated for

each spectral grid point and the subscript in νm has been dropped for notational convenience. The

smeared band method assumes a constant line shape of (1/∆ν) over the spectral interval – νCL
k ∈

[νm, νm+1 = νm + ∆ν] – in which a particular transition k is located, instead of a complex function

that varies with temperature, pressure, and |νCL
k − ν|. This description of line broadening not only

simplifies calculations but also ensures that centerline radiative properties are exactly recovered

from a spectral integral. Additional details on the smeared band method and its application to

non-equilibrium radiation problems can be found in [8, 105]. The smeared band method has been

previously used to study CO2 IR [109, 225, 227] and other molecular band [216, 260, 261] radiation

tranfer in hypersonic flows. The normalized absorption cross-sections in Eq. 6.16 can simply be

scaled by total CO2 number density NCO2 to obtain the absorption/emission terms for rovibrational

levels in a Boltzmann distribution at temperature TV . The breakdown of the Boltzmann equilibrium

assumption requires the following non-equilibrium correction factor for rovibrational level number
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densities [4, 109]:

φi−j =
njCO2

nj,Bol
CO2

ni,Bol
CO2

niCO2

=
njCO2

niCO2

giCO2

gjCO2

exp

{
−(εiCO2

− εjCO2
)

kBTV

]
(6.17)

where njCO2
and nj,Bol

CO2
are the predicted (could be non-Boltzmann) and corresponding Boltzmann

(at TV ) rovibrational number densities, respectively. Using φ, the absorption (κi,jν ) and emission

(ji,jν ) spectrum is defined in terms of σi,jν as follows [4, 109]:

κi−jν =
niCO2

ni,Bol
CO2

NCO2 σ
i−j
ν

[
1 − φi−j exp {−hP ν/(kBTV )}

]
(6.18)

J j−iν = κi−jν

2hP ν
3

c2

φi−j

[exp {hP ν/(kBTV )} − φi−j ]
(6.19)

These relationships indicate that only σi−jν needs to be pre-computed as a function of frequency

and T for each combination of i and j. This represents an excessive amount of data which is

not even immediately congruous with the current vibrational-specific chemistry model. The first

step in mitigating these shortcomings is splitting the total rovibrational energy into rotational

and vibrational contributions [238]. The quantum state of internal state i is defined as (vi :

(v1, v2, v3), Ji), where vi and Ji represent the vibrational (Section 3.3) and rotational configurations,

respectively. The splitting operation on state i yields the following relationship:

εiCO2
(vi, Ji) = εi(vib,CO2)

(vi) + εi(rot,CO2)
(Ji) (6.20)

The vibrational and rotational components are considered to be uncorrelated. The energy of the

rotational mode is computed using the rigid-rotor model [126]. These approximations also posit that

the number of possible rotational configurations (and their corresponding energies/degeneracies)

is the same for each vibrational state. Furthermore, since this study focuses on low-speed Martian

entry which previous studies [227] indicate experience little thermal non-equilibrium, the rotational

mode is assumed to be in equilibrium at TV as well. The total internal partition function QCO2

is now expressed as a product of rotational Q(rot,CO2)
and vibrational Q(vib,CO2)

partition functions.

The state-specific description for σi−jν is reduced further by introducing assumptions enshrined in

the MGME framework. Thus, vibrational levels are assumed to be in a state of thermal equilibrium
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(at TV ) within their respective bins, whereas rotational modes continue remaining in equilibrium

at TV . The reconstructed number density is:

niCO2
= N l

CO2

giCO2
exp
{
−εi(rot,CO2)

/(kB TV )
}

exp
{
−εi(vib,CO2)

/(kB TV )
}

Q̂lCO2

(6.21)

where vibrational level vi (corresponding to rovibrational state i) belongs to the lth bin and N l
CO2

is the requisite bin density. The bin partition function Q̂lCO2
is defined as:

Q̂lCO2
= Q̂l(vib,CO2)

(TV ) Q(rot,CO2)
(TV ) (6.22)

The rotational contribution is constant for all bins. On the other hand, vibrational component

Q̂l(vib,CO2)
is obtained by summing over all individual vibrational levels included in the lth bin. The

bin-wise thermalization assumption allows an aggregate absorption cross-section to be defined,

combining all radiative transitions from vibrational levels in bins l to u:

σ̂l−uν =
∑
∀j

vj∈Iu

∑
∀i

vi∈Il

σi−jν

QCO2

Q̂lCO2

=
∑
∀j

vj∈Iu

∑
∀i

vi∈Il

σi−jν

Q(vib,CO2)
(TV )

Q̂l(vib,CO2)
(TV )

(6.23)

where Iu and Il represent the set of vibrational levels included in bins u and l, respectively. The

bin-invariant rotational partition function cancels out. Thus, the rotational component, with the

assumption that it is uncorrelated with vibrational configuration, never needs to be separately

evaluated while computing the aggregate cross-section and the resultant radiative properties. The

bin-pair absorption and emission coefficients are obtained in a straightforward manner after scaling

with the appropriate bin density (instead of total CO2 density):

κ̂l−uν = N l
CO2

σ̂l−uν

{
1 − φl−u exp [−hP ν/(kBTV )]

}
(6.24)

Ĵu−lν = κ̂l−uν

2hP ν
3

c2

φl−u

{exp [hP ν/(kBTV )] − φl−u}
(6.25)

The non-equilibrium correction factor φl−u is now computed using the predicted and corresponding

Boltzmann bin number densities. Using these equations, emission coefficients for the 4.5µm band

originating from a Boltzmann distribution at 4, 100 K for different bin-pairs and normalized for
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number density are presented in Fig. 6.1.

Figure 6.1: Normalized emission coefficients for the 4.5µm band originating from a Boltzmann
distribution at 4100 K.

Although the smeared band assumption can become inaccurate in optically-thick regions (error

in total surface flux upto 20% in some cases), these discrepancies are significantly smaller in the

afterbody region which is characterized by intermediate optical thickness. Moreover, any bias intro-

duced through the smeared band method relative to line-by-line modeling is the same for both the

reduced-order StS and conventional flow simulations. Therefore, the spectral modeling approach

presented here represents a computationally efficient means of enabling consistent comparisons be-

tween the two flowfield models and isolating the impact of non-Boltzmann population distributions.

The CO2 IR bands encompass narrow regions in frequency space (∼ 0.1 eV) as compared to the

much wider spectral distributions (> 15 ev) encountered in Earth/Jovian entry problems discussed

in Chapter 5. A relatively fine grid resolution ∆ν = 1 cm−1 yields a discretized spectral space

consisting of only about 1000 points. Spectral models based on the application of the smeared

band method to such spectral grids offer excellent agreement with the exact line-by-line approach.

The reduced-order wide-band models presented in Section 4.3 would only provide limited gains in

terms of computational efficiency but introduce additional sources of uncertainty. Therefore, they

have not been incorporated into the current study on CO2 IR radiation. However, it should be

noted that implementing any alternative spectral models such as the line-by-line approach or the
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wide-bands models would only require modifications to Eq. 6.16.

6.2.2 Self-consistent Radiation-Flowfield Coupling

The development of bin-wise absorption and emission coefficients allows changes in bin densities

due to photochemical processes to be determined in a straightforward manner. Spontaneous emis-

sion based on the radiative transitions from vibrational levels included in CO2 bin u (upper) to

vibrational levels in CO2 bin l (lower) are a result of the following kinetic process:

Spontaneous Emission: CO2(vj) −→ CO2(vi) + hP ν i ∈ Il , j ∈ Iu (6.26)

where hPν is the emitted photon. Thus, the angularly-spectrally integrated emission term corre-

sponds to the rate at which radiative transitions that result in de-excitation from bins u to l. A

bin-averaged rate coefficient that is consistent with the law of mass action form for chemical change

can be defined as follows:

K̄em
u−l =

Mu

ρu NA

∫ νf

νi

Ĵu−lν

hP ν
4π dν (6.27)

where Ĵu−lν is the emission coefficient for transitions between vibrational bins u and l for frequency

ν, and ρu and Mu (= MCO2
) are the partial density and molar mass of the uth CO2 vibrational

bin. Similarly, kinetic processes that are initiated by an interaction with a photon can result in

stimulated emission and absorption:

Stimulated Emission: CO2(vj) + hP ν −→ CO2(vi) + 2 hPν i ∈ Il , j ∈ Iu (6.28)

Absorption: CO2(vi) + hP ν −→ CO2(vj) i ∈ Il , j ∈ Iu (6.29)

The effective rate of absorption is obtained by subtracting out the rate of stimulated emission which

reverses the effect of the kinetic process in Eq. 6.29. This is done while defining the operative

value of the absorption coefficient in the line-by-line spectral model itself. Thus, the resultant

absorption rate represents excitation of vibrational levels from bins l to u through energy gained

from the incoming photon. The rate coefficient for this process depends on both κ̂l−uν and the
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angularly/spectrally integrated radiative intensity at a given spatial location:

Kab
l−u =

Ml

ρl NA

∫ νf

νi

(
κ̂l−uν

hP ν

∮
4π
IνdΩ

)
dν (6.30)

where κ̂l−uν is the absorption coefficient for transitions between vibrational bins l and u for frequency

ν. The evaluation of Kab
l−u for the LBL approach is computationally challenging because of the

dependence on non-local radiative intensity and the need to recompute absorption coefficients

for individual transitions for all relevant frequency ranges. The current framework overcomes

this problem through a combination of reduced-order models for thermochemistry and radiative

properties, and an efficient RTE solver based on finite volume and discrete ordinate methods. The

following chemical change source terms arising from radiative transitions are added to the species

continuity equation for the lth CO2 vibrational bin:

ω̇lrad,CO2
=

∑
∀u|u6=l

(
−Kab

l−u
ρl
Ml

+ K̄em
u−l

ρu
Mu

)
(6.31)

Similarly, volumetric energy addition due to net radiative heat flux is defined as [262]:

Ωrad = −∇x · qrad = −∇x ·
∫ νf

νi

∮
4π
Iν Ω dΩ dν (6.32)

This source term is included in both the mixture total energy and vibrational-electronic energy

hydrodynamic equations. The IR radiation transitions being studied here occur between the dif-

ferent vibrational levels (or the reduced-order bins). The resultant radiative heat flux represents a

spatial redistribution of vibrational energy in the domain. Thus, the energy change term Ωrad has

been added to the vibrational-electronic energy conservation equation as well. Although the rate

coefficients stemming from photochemical processes are developed for CO2, a similar approach can

be applied when describing radiation-induced chemical change within the MGME framework. A

more general overview of the radiation-chemistry coupling, including state-to-state analysis, can be

found in [8, 9, 263]. It should be noted that equations 6.26 and 6.30 can be reformulated using the

fundamental Einstein coefficients Aji, Bij , and Bji [8, 12, 218]. However, it is the author’s view

that the functional definitions for K̄em
u−l and Kab

l−u presented here provide a more physically intuitive
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link between bin-wise chemical changes and the underlying radiative processes (which have Aji,

Bij , Bji embedded in them).

6.3 Results

The new reduced-order state-specific non-equilibrium framework has been used to improve predic-

tive capabalities of the US3D flow solver [113, 114, 115]. The US3D code solves the chemically

reacting non-equilibrium Navier-Stokes equations on unstructured grids using implicit data-parallel

line-relaxation based on upwind numerical flux functions. This entails computing inviscid fluxes

using the modified Steger-Warming flux splitting method [264, 265] with second-order accurate

MUSCL extrapolation and a Min-Mod limiter [266]. Viscous fluxes are computed using gradients

based on the weighted least-squares fit method. The US3D solver has been used extensively to study

a wide variety of hypersonic flow problems including afterbody wakes [115, 267, 268, 269, 270]. The

standard Mars gaseous mixture comprising of five species – CO2, CO, O2, C and O – is considered

in the present analysis [240]. Reduced-order StS calculations replace CO2 with 10 vibrational bins

(Section 3.3), which provides an optimal trade-off between accuracy and computational speed. All

other species in the mixture are treated conventionally.

Absorption/emission spectra and subsequent radiative transfer calculations are performed us-

ing the non-equilibrium radiation (NERO) library [225]. This library is being developed by the

author to analyze complex three-dimensional radiative fields at reduced computational outlays by

incorporating efficient numerical discretization techniques for RTEs and reduced-order modeling

in frequency space. The three main bands for CO2 IR radiation – 1.5µm, 2.7µm and 4.5µm –

are considered in the present work. The smeared band technique is used to formulate band-wise

spectral models, each comprising of 1000 frequency points. A total of 170 discrete quadrature di-

rections and 10 sub-iterations (to correct for circular dependencies during mesh-sweeps) are found

to be sufficient for accurately modeling the radiation field around typical afterbody geometries.

The finite-volume based RTE solver has been verified using canonical test cases such as radiative

transfer inside a sphere with prescribed temperature profiles [11]. Additionally, afterbody sur-

face radiative heat flux estimates obtained using NERO for the conventional 2-T flowfield are in

excellent agreement with previous studies based on detailed line-by-line models and ray-tracing
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calculations [13, 227]. Verification test problems are discussed in greater detail in Appendix E.

The flowfield solution is accessed by NERO after a pre-defined number of iterations (set to 5, 000

for this study). This information is used to update the spectral properties and re-compute spatially

resolved, angularly integrated radiative intensity. Furthermore, in coupled mode, the volumetric

radiative source terms for both species (Eq. 6.31) and energy (Eq. 6.32) equations are determined

and then passed on to the flow solver.

6.3.1 Simulation Methodology

The present work is aimed at characterizing the interactions between flow structures, thermo-

chemistry, and radiation for the Mars 2020 vehicle [116, 117]. The upstream flow conditions are:

V∞ = 3.9 km/s, ρ∞ = 1.84×10−3 kg/m3, and angle-of-attack in the x−z plane α = 15.8 deg. These

conditions correspond to the trajectory point at t = 91.5 s and result in high backshell radiative

heat flux as identified by previous studies [13, 227]. Supersonic inflow and outflow conditions are

imposed on the outer periphery of the flow-domain. The surface of the spacecraft is assumed to be

a no-slip, isothermal (Twall = 523 K), super-catalytic wall. The super-catalytic boundary condition,

as outlined in [271], is a conservative limiting case for design purposes when not modeling exact

finite-rate surface reactions. It assumes that the gaseous mixture is forced back to its freestream

composition and the available mixture chemical enthalpy is entirely reclaimed at the wall. This

approximation has been widely used in aerothermal analysis of previous Martian missions such as

the Mars Exploration Rover (MER), Phoenix, and Mars Science Laboratory (MSL). The flowfield

is assumed to be laminar and no special turbulence models are employed for the present work.

The computational mesh for the current study is illustrated in Fig. 6.2. Certain features, such

as a sharp step between the heatshield-backshell juncture, which were present in the original outer

mold line of the Mars 2020 capsule have been simplified in the interest of reducing simulation

complexity. The resultant point-matched, multiblock structured mesh comprises of 1, 740, 800

volumetric elements and 13, 600 elements on the vehicle surface. The original mesh has also been

tailored at the outer grid boundary while clustering off-wall normal cells to allow sufficient resolution

of the bow shock and boundary layer. Additional details on grid generation, element distribution,

and mesh convergence for the Mars 2020 afterbody envrioment can be found in [13, 272, 273].
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(a) Surface grid (b) Along the y = 0 m plane

Figure 6.2: Computational mesh for modeling the Mars 2020 wake flow.

Aerothermodynamic simulation best practices favored by previous work on afterbody heating

for the Mars 2020 and Mars Science Laboratory missions [13, 274] have been adopted to obtain

statistically converged flowfield and surface results. This involves first converging the forebody

flowfield and then performing unsteady calculations with global time-stepping while computing

running means of afterbody surface heat flux. The flowfield is considered to be converged once

the change in the running means is below a certain threshold. All subsequent analysis is then

performed on the mean flowfield and the resultant radiation transfer phenomenon. Three sets of

simulations are compared – first using the conventional 2-T Boltzmann approach (decoupled from

radiation), next based on the reduced-order state-specific thermochemistry model (decoupled from

radiation), and lastly with coupled reduced-order thermochemistry and radiation.

6.3.2 Decoupled Radiation

6.3.2.1 Flow Phenomenology

This section compares the difference in flowfield characteristics for the conventional 2-T and the ten

bin-based StS approaches [275]. Figure 6.3 presents the distribution of the translational-rotational

temperature T , vibrational-electronic temperature TV , and total CO2 mass-fraction YCO2
along

the y = 0 m plane. Individual streamlines and lines-of-sight (LOSs) for analyzing the evolution of

flowfield and radiative intensity are also outlined. The typical dynamics of wake flows are clearly
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(a) Translational-rotational temperature T

(b) Vibrational-electronic temperature TV (c) Total CO2 density

Figure 6.3: Distribution for T , TV , and ρCO2
along the y = 0 m plane for the 10 bin-based StS

model. Individual streamlines and LOSs for analyzing flowfield and radiative intensity, respectively,
are also defined.
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captured through the flow streamlines in Fig. 6.3a. A detached bow shock is formed ahead of the

spacecraft which rapidly converts kinetic energy into internal energy resulting in a sharp increase

in temperature and the onset of thermochemical non-equilibrium. The strength of the shock,

characterized by the sudden change in properties across it, diminishes as it stretches downstream

of the vehicle. The flow undergoes rapid expansion as it travels around the shoulder. The rate at

which this temperature/pressure change occurs and the likelihood that the flow would be “frozen”

in a state of non-equilibrium decreases as distance from the spacecraft surface increases. Despite

this drop in temperature, the flowfield continues to be dominated by CO, O, and O2 due to the

large characteristic time-scales for CO2 recombination [276]. Viscous and pressure forces (which

dominate inertial forces in the near-wake region) together result in the boundary layer originating

from the vehicle surface separating and forming a free shear layer. A combination of viscous effects

and an adverse pressure gradient in the immediate vicinity of the vehicle results in the flow past the

shoulder eventually separating and forming a recirculation region. Since, the current simulation

has been performed for α = 15.8 deg, the system of rotating vortices typifying this region are no

longer symmetric. Instead, the delay in separation on the windward side results in the recirculation

region being skewed towards the leeward side with large vortices on the leeward first cone and the

base and smaller vortices near the windside second cone. Further downstream the flow turns into

itself and undergoes compression upon reaching the outer wake. The asymmetry due to a non-zero

angle of attack also induces higher angles of deflection for streamlines moving from the windward

side to the leeward side and results in stronger compression shocks and higher temperatures on the

leeward side.

6.3.2.2 Non-Boltzmann Thermochemistry

The trajectory profile for Mars entry is characterized by relatively low freestream velocities. Con-

sequently, the conventional 2-T model, barring narrow isolated zones around the bow shock and

the shoulder, yields similar predictions for both T and TV . This behavior has also been observed

in previous studies focusing on wake flows during Mars entry [227, 277]. Minimal differences

in T and TV values further underpins the fact that conventional multi-temperature models fail

to sufficiently resolve non-equilibrium effects stemming from complex thermal relaxation mech-
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Figure 6.4: Percentage difference in predicted translational-rotational temperature T between
bin-based StS and 2-T models: (T StS − T 2-T) / T 2-T × 100%.

anisms and non-Boltzmann state population distributions. Figure 6.4 compares predictions

for the translational-rotational temperature T obtained using the bin-based StS and 2-T mod-

els. The percentage difference between quantities of interest from the two approaches is computed

as: (QStS −Q2-T) / |Q2-T| × 100%. Similarly, the difference in partial densities of CO2 vibrational

bins 1, 2, 5, and 8 are presented in Fig. 6.5. The corresponding bin-wise properties for the conven-

tional 2-T model are obtained as a post-processing step by assuming that CO2 vibrational states

lie on a Boltzmann distribution at TV . StS modeling in an ideal chemical reactor (summarized in

Section 3.3) allows a rough interpretation of non-equilibrium dynamics for wake flows. The first

three bins already reach a Boltzmann distribution at t = 10−4 s (∼ average flow transit time) once

the reactor is suddenly cooled. The high energy states (> 1.5 eV) on other hand are overpopulated

and form a complex non-Boltzmann comb-like structure which is equilibrated only at t ∼ 101 s.

This disparity in equilibration time scales is also observed Fig.6.5, with partial density estimates

varying by multiple orders of magnitude between the StS and 2-T approaches for the upper bins.

The difference for the first three bins, which represent about 99% of all CO2 molecules, is signifi-

cantly lower. Thus, the sparsely populated upper bins have minimal impact on the bulk T (which

also includes contributions from other mixture species) and despite their strongly non-Boltzmann
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(a) Bin 1 (b) Bin 2

(c) Bin 5 (d) Bin 8

Figure 6.5: Percentage difference in predicted partial densities of CO2 vibrational bins 1, 2, 5,
and 8 between bin-based StS and 2-T models: (ρStS

bin − ρ2-T
bin ) / ρ2-T

bin × 100%.

behavior, |%∆T | < 4% for most of the afterbody.

The streamlines defined in Fig. 6.3b are characterized by different rates at which the flow

expands while traveling around the shoulder to the afterbody region. Thus, while streamlines 1

and 2 experience “freezing” in the near-wake region, streamline 4 completely skips the core viscous

wake and experiences no concomitant expansion after the oblique shock. Figure 6.6 highlights the

variation in rate of expansion and the subsequent recovery due to compression along streamlines 2

and 3. It is clear that both T (black) and TV (red) match each other except for a narrow region

around the shoulder. Additionally, T and TV values computed using the bin-based StS (solid)

model are slightly lower than those for the conventional 2-T (dashed) model. Bin densities for both
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(a) Streamline 2 (b) Streamline 3

Figure 6.6: Distribution of T (black) and TV (red) along streamlines 2 and 3. Solid and dashed
lines represent bin-based StS and conventional 2-T models, respectively.

(a) Streamline 1 (b) Streamline 2

(c) Streamline 3 (d) Streamline 4

Figure 6.7: Partial densities of CO2 vibrational bins along different streamlines. Solid and dashed
lines represent bin-based StS and conventional 2-T models, respectively. Bin indices increase from
top to bottom of each figure.
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Figure 6.8: Non-Boltzmann factor (Eq. 6.33) for CO2 vibrational bins 1 to 4 along streamline 2.

bin-based StS (solid) and 2-T (dashed) models along the four streamlines are plotted in Fig. 6.7.

A simple rule of thumb for the reduced-order model is that a higher density value corresponds to

a lower bin index. A common theme for all four streamlines is the limited dissimilarity between

results for the first four bins which constitute the lower end of the state population distribution.

On the contrary, partial densities for the last four bins differ by almost nine orders of magnitude.

Low number densities and temperatures during expansion severely restricts thermal relaxation and

renders the state population distribution unable to respond to changes in flow conditions. This

behavior is particularly pronounced for the upper bins with high characteristic relaxation times,

resulting in the conventional 2-T model under-predicting bin populations due to the assumption

of instantaneous equilibration at TV . It is interesting to note that relaxation time-scales for the

last two bins are so large that non-equilibrium behavior is induced even in streamline 4 once the

flow has moved sufficiently away from the high temperature region around the bow shock. A non-

Boltzmann factor to quantify deviation from a Boltzmann state population distribution for the ith

bin can be defined as:

NBi = ρi
/
ρBol
i (6.33)

where ρi is the bin density obtained directly from the reduced-order StS simulation and ρBol
i is the
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(a) Streamline 1

(b) Streamline 2 (c) Streamline 3

Figure 6.9: Non-Boltzmann factor (Eq. 6.33) for CO2 vibrational bins 5 to 10 along different
streamlines.

corresponding bin density based on a Boltzmann distribution at TV and total CO2 density ρCO2

from the same simulation. The non-Boltzmann factor for the first four bins remains close to 1

except for the strong expansion region near the shoulder of the spacecraft (Fig 6.8). The strong

non-equilibrium experienced by the upper bins is illustrated in Fig. 6.9 with NBi for different bins

ranging between 101 and 109. The increasing distance from the vehicle surface and easing rate of

expansion between streamlines 1 and 3 allows thermalization to proceed further and reduces the

peak value of NBi from 109 to 104. Non-Boltzmann effects persist longer along streamline 1 on the

windward side as compared to streamline 2 on the leeward side (as evidenced by figures 6.7 and

6.9) despite more rapid expansion and a larger re-circulation zone on the leeward side. This is a
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direct consequence of weaker recompression and lower temperature recovery on the windward side

which reduces the collision rates and retards equilibration.

6.3.2.3 Radiative Transfer

Although the current framework computes the three-dimensional angularly integrated radiation

field, it is still instructive to compare flowfield properties and the resultant radiative intensity

along individual LOSs for the two approaches [278]. The two LOSs outlined in Fig. 6.3c are normal

to the first cone and the base of the afterbody on the leeward side. A parameter called flow

factor Fi−j is defined which attempts to condense the impact of bin densities, TV , and degree of

non-Boltzmann behavior on radiative transitions between the ith and jth bins into one convenient

term:

Fi−j = ρi
NBj
NBi

exp

(
−hP ν

kBTV

)
(6.34)

where hP is the Planck’s constant, kB is the Boltzmann constant, and ρi is bin density either ob-

tained directly from the reduced-order StS simulation or post-processed in the case of conventional

2-T modeling. The flow factor term appears in the expression for absorption κi−jν and J i−jν emission

coefficients for a given bin pair (equations 6.24 and 6.25):

κ̂i−jν =
σi−jν

NA

(ρi − Fi−j) (6.35)

Ĵ j−iν =
σi−jν

NA

2hP ν
3

c2
Fi−j (6.36)

where σi−jν is the absorption cross-section at ν, NA is Avogadro’s number, and c is the speed of

light. A larger value of Fi−j implies more emission and less absorption emanating from radiative

transitions between bin pair i− j and would increase radiative intensity along a LOS. In order to

simplify the flow factor analysis, ν is set equal to the frequency at the middle of the dominant 4.5µm

band. Figure 6.1 indicates that emission coefficients per unit bin density for radiative transitions

between bin pairs 1− 1, 2− 1, 2− 2, 3− 2, 3− 3, 4− 3, and 4− 4 are comparable. However, the

partial densities of the first two bins are much larger compared to the remaining bins. Flow factors

and resulting radiative emissions from transitions involving these two bins are significantly higher
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Figure 6.10: Flow factors (Eq. 6.36) for the first four CO2 vibrational bins along LOS 1.

as well. Thus, IR radiation for the afterbody region is shaped entirely by the characteristics of bin

1 and to a lesser extent bin 2.

Figure 6.11 presents the variation in temperatures (both T and TV with solid and dashed lines

corresponding to bin-based StS and conventional 2-T models, respectively), percentage difference

in flow factors, and total radiative intensity along the two LOSs. The total radiative intensity

for the first LOS reaches ∼ 90% of its peak value approximately 5 m from the wall surface. This

location is marked as a white dot in Fig. 6.12 which also presents the percentage different in total

CO2 density between bin-based StS and 2-T models. Figure 6.12 indicates the rise in radiative

intensity occurs almost exclusively in a region bounded by the bow shock and streamline 4 which

comprises of dissociating flow that undergoes no expansion. Kustova et al. [279] have previously

shown that conventional 2-T modeling overpredicts the rate of dissociation when compared to the

current StS model. Thus, %∆ρCO2
> 0, and T/TV are lower for the bin-based StS model. One

possible explanation for this could be that a higher CO2 mass-fraction results in larger mixture heat

capacity. This trend is reversed in the case of the second bin, with partial density (Figure 6.5) being

smaller for the bin-based StS model due to lower TV . The two competing effects of higher density

and lower temperature characterizing the first bin appear to cancel each other out with %∆F1−1

being only slightly negative. Conversely, %∆F2−2 has a more pronounced negative value due to
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(a) LOS 1 (b) LOS 2

(c) LOS 1 (d) LOS 2

(e) LOS 1 (f) LOS 2

Figure 6.11: Temperatures - T and TV (solid and dashed lines correspond to bin-based StS and
conventional 2-T models, respectively), %∆Fi−j , and total radiative intensity along different LOSs.
Percentage difference is computed as: (QStS −Q2-T) / |Q2-T| × 100%.
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Figure 6.12: Percentage difference in total CO2 density between bin-based StS and 2-T models:
(ρStS

CO2
− ρ2-T

CO2
) / ρ2-T

CO2
× 100%.

both density and temperature effects reinforcing each other. It should be noted that %∆F2−1 and

%∆F3−2 follow %∆F1−1 and %∆F2−2, respectively, except for the recirculation region where non-

equilibrium effects dominate. The utility of analyzing local radiative behavior using flow factors

is evident in Fig. 6.11, with changes in %∆I mirroring the behavior of %∆Fi−j . The percentage

difference in radiative intensity at the wall is approximately the weighted mean value along the

LOS of %∆Fi−j for the dominant bin-pairs. The same behavior borne out of slower dissociation

for the StS approach is seen along the middle-section of LOS 2. Crucially, non-Boltzmann effects

are more pronounced further into the viscous wake (∼ 12 m onwards) which results in Fi−j being

higher for the StS model. An important conclusion that can be drawn from this analysis is that

radiative energy emanating from the bow shock is much higher compared to the rest of the wake.

Figure 6.13 presents divergence of the total radiative heat flux ∇x · qrad along the y = 0 m

plane for the bin-based StS simulation and the percentage difference between the two models. A

positive (negative) value for ∇x · qrad indicates that the flow at a particular location is a net

emitter (absorber) of radiative energy and adds to the radiative heat flux received by the vehicle.

The consistently high magnitude of the∇x ·qrad term associated with the hot dissociating flow after
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(a) Bin-based StS (b) Percentage difference

Figure 6.13: Negative value of volumetric radiative heating term. Percentage difference computed
as: (∇x · qStS

rad −∇x · q2-T
rad ) / |∇x · q2-T

rad | × 100% (right).

the oblique shock further confirms that radiative surface heat flux is dominated by the properties

of this small section of the flowfield. Figure 6.14 compares the total radiative heat flux received

by the afterbody and the difference between the two approaches along the y = 0 m edge. The

conventional 2-T model clearly overpredicts surface heat flux which is in line with the previous LOS

analysis. It is interesting to note that the percentage difference in estimates for incident radiative

flux continues to hover around the same value as %∆I at the wall for LOS 1 and %∆ (∇x · qrad)

near the bow shock region. The enclosed expanding wake despite experiencing significant non-

Boltzmann behavior (resulting in higher %∆ (∇x · qrad) and %∆I for LOS 2) is rendered radiatively

non-participating due to a significant drop in CO2 density. Thus, its role in determining vehicle

radiation characteristics is largely limited even for the base (z ∈ [−0.37, 0.37] m) which has a

comparatively smaller view factor with respect to the bow shock. Furthermore, unlike atomic

radiation [12] the impact of non-Boltzmann effects on total CO2 IR heating is further minimized

due to the preponderance of radiative transitions within the ground vibrational bin which has

a short thermal relaxation time period. This also leads the author to conclude that increasing

the total number of vibrational bins would not appreciably change estimates for surface radiative

flux. The dominant lower bins (although now more in number) would continue to remain in an

equilibrium Boltzmann distribution, matching the behavior implicitly obtained through the 2-T

model.
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(a) Afterbody surface (b) Along y = 0 m edge

Figure 6.14: Total radiative surface heat flux qwall from StS and 2-T models. Percentage difference
computed as: (qStS

wall − q2-T
wall) / q

2-T
wall × 100%.

6.3.3 Coupled Radiation

Previous studies on earth entry flows with low density wakes [12] have indicated that radiative

transitions outlined in Section 6.2.2 can have a significant on the population of higher energy

levels. Conventional techniques for coupling radiation to flow chemistry / thermal relaxation rely

on the escape factor approximation [98] for computing reaction rate coefficients due to absorption

Kab
l−u. An escape factor parameter EFl−u with a value between 0 (optically thick transitions) and 1

(optically thin transitions) is used to express Kab
l−u as a fraction of the total spontaneous emission

from a given location:

Kab
l−u = (1 − EFl−u) K̄em

u−l
ρu
ρl

(6.37)

The escape factor EFl−u is either prescribed a constant value [280] or computed solely on the

basis of local properties at a given location [98]. Additionally, this approach is unable to model

strong absorption of non-local emission because EFl−u cannot be assigned negative values. The

current framework eschews these simplifications in order to accurately assess the possible effects of

absorption of non-local IR radiation emanating from surrounding flows. This is computationally

prohibitive without the use of model-reduction techniques, and apart from a few exceptions involv-
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ing atomic species [12, 241], has typically been avoided while studying complex three-dimensional

flow problems. An exact value for EFl−u is later computed as a post-processing step using the

detailed values of K̄em
u−l and Kab

l−u in order to gain useful insights into the coupling between local

thermochemistry and the global radiative field:

EFl−u = 1 −
Kab
l−u ρl

K̄em
u−l ρu

(6.38)

(a) LOS 1 (b) LOS 2

(c) LOS 1 (d) LOS 2

Figure 6.15: Escape factor and total radiative intensity along different LOSs. Percentage differ-
ence is computed as: (QStS −Q2-T) / |Q2-T| × 100%.

The escape factors for transitions involving the upper vibrational bins such as 3-2, 4-3, 5-

4, and 6-5 along the two LOSs for 10 bins-based StS simulations with self-consistent non-local

radiation coupling are outlined in Fig. 6.15. It should be noted that unlike approximate escape

factor methods, the lower limit for escape factors is not set to zero in the current study. Large

negative values in Fig. 6.15 indicate that owing to the global radiation field (represented by the
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scalar integral
∮

4πIνdΩ in Eq. 6.30), transition rates due to absorption are significantly higher

than those due to emission. This is a direct consequence of photochemical transitions involving

different CO2 vibrational levels (or bins for the current reduced-order StS description) overlapping

in frequency space as outlined in Fig 6.1. Thus, emission by the dominant first bin becomes available

for absorption by the upper bins. This radiative environment is fundamentally different from those

for atomic species [220] where the underlying spectra largely consists of separated lines. However,

Fig. 6.10 and the subsequent analysis indicate that absorption/emission coefficients for the upper

bins are smaller than those of the first bin by multiple orders of magnitude. Additionally, the

characteristic radiative intensity for Martian missions is lower than that for Earth-return profiles

due to the large difference in entry speeds. Consequently, there is no significant repopulation of the

upper bins and their contribution to total radiative emission remains minimal even for the coupled

simulation. Moreover, lower radiative intensity also results in internal dynamics of the first two bins

being dominated by collisional processes in the strongly emitting regions with radiative processes

having a discernible impact only in the radiatively insignificant near-wake zone.

Figure 6.16: Percentage difference in total radiative surface heat flux coupled/uncoupled bin-
based StS and 2-T models along the y = 0 m edge: (qStS

wall − q2-T
wall) / q

2-T
wall × 100%

The energy source term from Eq. 6.32 has a more pronounced impact on total radiative heat

flux. The majority of the flowfield barring the recirculation zone are net emitters of radiative

energy (Fig. 6.13). This loss of energy results in a drop in temperature and subsequently, lowered
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spontaneous emissions. Thus, radiative intensities for StS simulations with radiative coupling are

lower than those for the uncoupled StS and 2-T cases. A comparison between the total radiative

surface heat flux along the y = 0 m edge obtained using the 2-T, uncoupled StS, and coupled StS

simulations is presented in Fig. 6.16.

6.4 Summary

Reduced-order approaches outlined in previous chapters are combined into a unified methodology

for modeling non-equilibrium thermochemistry and radiative transfer in complex three-dimensional

flows. The resultant non-equilibrium toolset is employed with the US3D flow solver for character-

izing CO2 wake flows during planetary entry of the Mars 2020 vehicle. Thermochemical response

stemming from non-Boltzmann vibrational state population distributions is resolved using the

MGME framework. Similarly, the expansive CDSD-4000 rovibrational CO2 radiation database

is reduced to a more computationally tractable spectral model that is also compatible with the

multi-bin paradigm. Further efficiency gains are realized through DOM and finite-volume based

solutions of the radiative transfer problem.

Statistically converged solutions for hypersonic flows around the Mars 2020 vehicle are ob-

tained using the conventional 2-T model and a 10 bin-based StS model for CO2 vibrational non-

equilibrium. This includes both decoupled radiative calculations (by post-processing the final flow-

field) and flow-radiation two-way coupled simulations. The translational-rotational temperature

is found equal to the vibrational-electronic temperature for most of the flowfield. This strongly

suggests that non-Boltzmann deviations in vibrational state population distributions cannot be fun-

damentally accounted for through conventional multi-temperature approaches. Streamlines that

pass through the near-wake region undergo rapid expansion resulting in the population of mid-

lying and upper CO2 vibrational levels being frozen. The bin-based StS approach captures this

non-equilibrium behavior whereas the 2-T model by forcing thermal equilibration underpredicts

the population distribution by multiple orders of magnitude. However, both ideal chemical reac-

tor and flowfield simulations suggest that the lowest vibrational levels (bins 1 and 2) reach their

final equilibrium state fairly rapidly. Hence, bulk properties such as temperature, density, and

total CO2 mass-fraction do not differ significantly between the bin-based StS and 2-T approaches.
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An analysis of the resultant radiative transfer indicates that its dynamics are completely domi-

nated by the ground vibrational levels (bin 1) owing to their considerably higher number densities.

Furthermore, radiative intensities along LOSs crossing the bow shock reach their final values exclu-

sively in a narrow high density/temperature region around the shock that undergoes no discernible

expansion. Thus, the impact of non-Boltzmann effects induced in near-wake flows on the total af-

terbody radiative heat flux are largely minimized. Nevertheless, surface heat flux predicted by the

2-T model is almost 10% greater due to higher post-shock temperatures. Coupled flow-radiation

simulations accentuate the difference in surface flux estimates between the two approaches to a

slightly higher 12%. Non-local absorption (negative escape factors) of radiative energy emitted by

the shock result in re-population of the higher levels in the wake. But, lower Martian entry speeds

(less total radiative intensity) and the dynamics of ground vibrational levels still being informed

by collisional processes restricts the overall influence of flow-radiation coupling.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The current work develops a unified methodology comprising of self-consistent reduced-order mod-

els for describing thermochemical changes and radiative transfer under strong non-equilibrium

conditions. An optimal trade-off between fidelity and computational efficiency ensures that this

simulation procedure can be applied to practical CFD problems involving complex geometries.

Thus, a definitive pathway originating from detailed chemistry and radiation databases to realiz-

able large-scale three-dimensional radiation hydrodynamics calculations is forged.

The MGME method provides a robust reduced-order framework for predicting non-Boltzmann

internal state population distributions. Individual internal states included in the larger macroscopic

bins are assumed to equilibrate instantly and their population is reconstructed using piece-wise

linear polynomials that maximize entropy. The governing equations and concomitant phenomeno-

logical coefficients describing bin properties are developed through moment closure while retaining

key details from the original StS model. The introduction of adaptive grouping allows clusters of

rapidly thermalizing states to be identified a priori based on state-specific kinetics and energies.

This allows the multi-fidelity description adopted by the MGME method to be better aligned with

the exact state population dynamics. The chemical reactor analysis presented in Chapter 3 high-

lights the level of accuracy offered by the combination of the MGME method and adoptive grouping

even under unrealistically severe non-equilibrium conditions. Reduced-order models, by being in-

formed by STS kinetics through the modified island algorithm and spectral clustering, are able

to reproduce complex multi-modal behavior of the evolving state population distribution function.

This includes the low energy fork-like splitting in N2 (due to rotational parity preserving transitions

between same vibrational quantum numbers) or the mid-energy multi-strand structure (selective
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V-V relaxation) for CO2. The improvements in computational tractability are outstanding as well

– a full StS simulation takes approximately two hours on a single core while the same procedure

with 10-30 bins (sufficiently accurate predictions for both macroscopic properties and state-specific

distributions) is completed under three minutes. In addition to their utility in developing MGME-

based models, both the island algorithm and spectral clustering can also be used as exploratory

tools to automatically map out key mechanisms for internal energy transfer and chemical change

from voluminous state-specific databases.

Owing to the multi-variate domain of dependence, radiative response in participating media can

be more expediently solved if segmented into geometric transfer and spectral modeling problems.

The current study employs the discrete-ordinate method coupled with finite-volume discretization

based on first-order upwinding to obtain angularly-spatially resolved solutions of the RTE. Ad-

ditionally, this geometric evaluation is transformed into an explicit problem through the use of a

mesh sweeping algorithm. The hybrid DOM-FVM solver is ideally suited for flow-radiation coupled

calculations since it limits any redundancies in the number of LOSs that are solved to completely

characterize the radiative field. Similarly, cost-savings are targeted in the spectral domain through

the use of wide-band models. A multi-group paradigm based on Planck-averaging (which can also

be viewed as the maximum entropy closure in frequency space) is an uncomplicated yet reliable

choice for reduced-order spectral modeling of radiative properties. It can also be argued that with

the requisite grouping strategy (MBOB), Planck-averaging is comparable to the more complex

statistics-based approaches. This is also reflected in the LOS analysis presented in Chapter 5

focusing on various Earth and Jovian entry problems. Furthermore, the underlying assumptions

guiding the development of these wide-band models are strictly applicable in an LTE setting. This

serves as the motivation for evolving a generalized grouping strategy that is more appropriate for

non-equilibrium radiation by accounting for the rapid frequency variation in both absorption and

emission (ignored in previous LTE-inspired approaches) coefficients. The application of this gener-

alized grouping allows both total quantities-of-interest and detailed spectral features to be reliably

predicted while enabling a two orders-of-magnitude speed-up with respect to narrow-band methods

(and three to four orders with respect to full LBL modeling).

Finally, this combined non-equilibrium methodology in conjunction with the US3D flow solver
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is used to investigate the impact of non-Boltzmann deviations in shaping flow physics and the

resultant IR field in the afterbody region of the Mars 2020 vehicle. These calculations entail

solving composite MGME-MT hydrodynamics equations coupled to the system of RTEs. Spectral-

reduced order models that are compatible with the MGME multi-bin description of CO2 vibra-

tional non-equilibrium are developed from the detailed CDSD-4000 database. This congruity also

allows volumetric mass source terms corresponding to absorption and emission to be developed

in a straightforward manner. The DOM-FVM RTE solver together with reduced-order spectral

modeling ensures that the cost of each radiation update is commensurate to approximately 5000

flow iterations. Thus, while the cost of techniques such as ray-tracing for determining surface

radiative heat flux could be lower, the current approach is the more efficient alternative when com-

puting directionally resolved radiative intensity in the entire computational domain. Statistically

converged solutions for the combined radiation-hydrodynamics problem, with radiation updates

at every 5000 iterations, are obtained at only a two-fold increase in computing time as compared

to purely flowfield simulations. Results obtained using MGME-based bins capture non-Boltzmann

deviations in the vibrational population distribution induced by the rapid expansion in the near-

wake region. This effect is particularly pronounced in the upper bins that have a low collisional

frequency, resulting in bin densities becoming frozen and unable to respond to changes in flowfield

conditions. The conventional 2-T model, by forcing exact conformity to a Boltzmann distribution,

i.e., instantaneous thermal equlibration, underpredicts state population in the mid to high energy

region by multiple orders of magnitude. In similar vein, radiation coupling enables absorption of

photons emitted from spatially distant regions which repopulates upper levels. However, the over-

all impact of non-Boltzmann effects and flow-radiation coupling on the total surface radiative heat

flux is tempered by various factors that are detailed in Chapter 6.

7.2 Future Work

The current work provides a cost-effective modular framework that can be applied to the study of

non-equilibrium dominated problems ranging from hypersonic planetary entry to low-temperature

plasmas in material processing and manufacturing. However, further improvements can still be

made to the constituent reduced-order models. The current implementation of adaptive grouping is
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still reliant on a complete knowledge of state-specific kinetics for optimizing the division of internal

states in macroscopic bins. This can become a major impediment when computing rate-coefficients

for all possible StS transitions (as in the case of N2 −N2 collisions) is computationally unfeasible.

Recently, Macdonald et al. [129, 172] have integrated the MGME method with QCT calculations

which circumvents formulating state-specific databases and allows bin-averaged rate coefficients to

be directly calculated. Nevertheless, bin indices for internal states still have to be assigned a priori

either through energy binning or incorporating the kinetics of a simpler chemical system such as

N2 − N. A more optimal strategy can be evolved by leveraging QCT data (on-the-fly binning)

and salient features of the diatomic potential/PES for a given chemical system [281]. Another

important facet of the MGME paradigm that needs to explored pertains to developing closed-

form expressions for bin-wise transport properties. Reference [130] develops the MGME governing

equation starting from the Boltzmann equation and could serve as the ideal starting point for this

endeavor. The further application of the Chapman-Enskog method would allow Navier-Stokes type

hydrodynamics equations and constitutive relations for coefficients such as viscosity and thermal

conductivity to be derived.

The geometric component of resolving radiative transfer can potentially be made more effi-

cient through the use of M-1 models [89, 90]. This would also enable greater symmetry in the

non-equilibrium methodology with constrained maximum entropy distributions describing inten-

sity variation in solid angle space, in addition to intensity in frequency space (Planck-averaging)

and the state population distribution (MGME method). A more obvious avenue for future research

is an investigation into other hypersonic entry problems (Earth-return, Titan entry). Higher en-

try speeds and a preponderance of atomic species could see two-way flow-radiation coupling with

correct treatment for non-Boltzmann behavior having a more pronounced impact on vehicle pa-

rameters [12]. Under such conditions, the current simulation framework can provide more refined

predictions as compared to state-of-the-art approaches.

The validity of the original StS databases have a strong bearing on the accuracy of the re-

sultant reduced-order thermochemistry models. The current work relies on a vibrational-specific

description of CO2 that is derived using modified-SSH theory and legacy experimental data. Con-

ventional multi-temperature models for thermochemical non-equilibrium also attempt to reproduce
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these experimental results. This common reliance could explain the limited contrast between the

current 2-T and bin-based StS predictions. Research is being currently performed to develop CO2

StS model from first-principles quantum chemistry calculations [276] that can introduce two key

improvements: a) eliminate selective vibrational transitions that are an artifact of extrapolating

low energy rates through SSH theory, and b) correctly replicate CO2 recombination which involves

a transient electronically-excited triplet state being formed from ground CO and O and then de-

caying to the ground singlet state CO2(X1
∑+

g ). The results from Chapter 6 will be reexamined in

future once these ab-initio rates for CO2 become available.
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Appendix A

Additional Analysis for Ideal
Chemical Reactor Simulations of
N2(1Σ+

g )−N(4Su) System

This appendix provides supplementary details for the reduced-order dynamics of the N2(1Σ+
g ) −

N(4Su) system that was studied using an ideal chemical reactor in Section 3.2.2. Two additional

aspects of the original analysis are outlined: the impact of spectral binning parameters (βK, βE) on

overall error and unsteady thermochemical response for final reactor temperature Tf = 30, 000 K.

A.1 Impact of Model Parameters on Spectral Clustering

Model parameters βE and βK that define the strength of connection (Eq. 2.31) between individual

states during spectral clustering have been adjusted to obtain the best possible agreement between

predictions from reduced-order and StS modeling for non-equilibrium relaxation. The current

study achieves this by computing errors associated with the state distribution function (Fig. 3.10),

and total mole fraction (Fig. 3.5a) and internal energy (Fig. 3.5b) profiles for different values of

βE and βK. The optimal values (Section 3.2.2) which minimize the different errors have been

subsequently used to characterize adaptive binning and assess its efficacy. The variation in relative

errors corresponding to global quantities and the state population distribution with respect to βK

for a fixed value of βE (0.85) at Tf = Tbin = 10, 000 K is presented in Fig. A.1. The same analysis

is repeated in Fig. A.2 for different values of βE with βK = 2.35. The ability of the reduced-order

model to correctly predict both global quantities and the state distribution is degraded when βK

and βE deviate from their optimal values of 2.35 and 0.85, respectively. Future work will focus on

the use of different optimization techniques that can simplify this analysis and reliably determine

the model parameters.
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Figure A.1: Comparison of relative errors in predictions for global quantities and state population
distribution, with Tf = 10, 000 K and βE = 0.85, obtained using 20 linear bins based on different
βK values.
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Figure A.2: Comparison of relative errors in predictions for global quantities and state population
distribution, with Tf = 10, 000 K and βK = 2.35, obtained using 20 linear bins based on different
βE values.
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A.2 Maximum Entropy Linear Bins with Tf = 30, 000 K

Numerical investigations for Tf = 30, 000 K indicate that energy relaxation and dissociation do

not occur as disparate processes, and there is significant overlap between them. This results in

the low energy fork-like structure becoming less pronounced due to the limited time for localized

thermalization before the onset of dissociation. Consequently, the accuracy of energy-based binning

improves due to energy equilibration occurring with a distinctively weaker quantum bias (∆v = 0

and odd/even J). However, the errors associated with predictions for macroscopic properties such as

N2 mole-fraction and rovibrational energy indicate that spectral clustering continues to outperform

both the island algorithm and the conventional energy approach. Reduced-order solutions based

on spectral clustering also better resolve individual linear strands corresponding to similar values

of v and the parity of rotational levels J . The general trends previously observed for the quantum

composition of individual bins using different grouping strategies remain unchanged when Tbin =

30, 000 K.
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Figure A.3: Comparison of relative errors in predictions for global quantities, with Tf = 30, 000K,
obtained using 20 linear bins based on different binning strategies and Tbin values.
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(e) t = 3× 10−7 s
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Figure A.4: Comparison of time evolution of the N2 rovibrational state distribution for Tf =
Tbin = 30, 000 K, predicted using 20 linear bins based on the modified island algorithm, 20 linear
bins based on energy binning, and the full state-to-state model.
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(e) t = 3× 10−7 s
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Figure A.5: Comparison of time evolution of the N2 rovibrational state distribution for Tf =
Tbin = 30, 000 K, predicted using 20 linear bins based on spectral clustering, 20 linear bins based
on energy binning, and the full state-to-state model.
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(a) Energy-based binning
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(b) Adaptive binning using island algorithm
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(c) Adaptive binning using spectral clustering

Figure A.7: Quantum configuration of individual states clustered into different bins. The color
map on the right represents the bin index for a reduced-order model comprising of 10 linear bins.
Adaptive binning is performed at Tbin = 30, 000 K
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Appendix B

Mesh Sweeping Algorithm

Figure B.1: Mesh sweep workflow while looping over all computational cells.

The mesh sweeping algorithm introduced in Section 4.2 allows radiative intensity along a given

direction to be solved explicitly. This is done by identifying the optimal sequence (the “advance-

order list”) in which computational cells are accessed and the associated intensity values updated.

Individual cells are positioned subsequent to all upstream neighbors in the advance-order list

for direction Ωm. Combining mesh sweeping with first-order upwinding while defining incoming

fluxes ensures that cell-centered intensities are obtained through a simple closed-form expression

(Eq. 4.13). The typical workflow while adding computational cells to the advance-order list is

outlined in Fig. B.1. Mesh sweeping starts at boundary cells with no dependence on the domain

interior, i.e. all interior faces have outward normals nb 3 Ωm · nb < 0. Consequently, radiative

intensity is computed using only the stipulated boundary conditions for these cells. The algorithm

then marches through the rest of the domain, adding cells only after their upstream neighbors in

direction Ωm have been included in the advance-order list.
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Appendix C

Polynomial Fits for Thermodynamic
Properties

The current work employs the NASA 9-coefficient parameterization [235] for storing both bin-

averaged and the equivalent Boltzmann-aggregate species thermodynamic properties. These fits

can be evaluated during CFD calculations to obtain reference state specific heat capacity, enthalpy,

and entropy in the following manner:

C◦p(T )

R
=

a1

T 2
+
a2

T
+ a3 + a4 T + a5 T

2 + a6 T
3 + a7 T

4 (C.1)

h◦(T )

RT
= − a1

T 2
+ a2

lnT

T
+ a3 + a4

T

2
+ a5

T 2

3
+ a6

T 3

4
+ a7

T 4

5
+
b1
T

(C.2)

s◦(T )

R
= − a1

2T 2
− a2

T
+ a3 lnT + a4 T + a5

T 2

2
+ a6

T 3

3
+ a7

T 4

4
+ b2 (C.3)

The thermodynamic coefficients for the 10 CO2 vibrational bins (Chapter 6) in the standard FOR-

TRAN format are:

CO2(1) Lopez-2018

3 g 7/88 1.00 2.00 0.00 0.00 0.00 0 44.0095000 -393492.770

200.000 1000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 9382.699

0.99468936D+05 -0.14980760D+04 0.11333191D+02 -0.18470760D-01 0.38304057D-04

-0.35146526D-07 0.11169238D-10 -0.41289507D+05 -0.39235789D+02

1000.000 6000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 9382.699

-0.72928174D+07 0.19288645D+05 -0.10420361D+02 0.51536616D-02 -0.10434884D-05

0.10962035D-09 -0.46679256D-14 -0.17579344D+06 0.11521378D+03

6000.000 20000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 9382.699

0.10978903D+08 -0.37224683D+04 0.41600422D+01 -0.59009145D-04 0.27355714D-08

-0.60321372D-13 0.45462189D-18 -0.13268833D+05 0.36183845D+01

CO2(2) Lopez-2018

3 g 7/88 1.00 2.00 0.00 0.00 0.00 0 44.0095000 -338058.094

200.000 1000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 64817.375

0.55673195D+05 -0.86572396D+03 0.83154769D+01 -0.95564158D-02 0.16543340D-04

-0.13999977D-07 0.43073904D-11 -0.37714804D+05 -0.18916145D+02

1000.000 6000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 64817.375

-0.24230496D+07 0.57456743D+04 0.10293232D+01 0.47992601D-03 -0.29954276D-07
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-0.24530551D-11 0.29736478D-15 -0.80708996D+05 0.31448096D+02

6000.000 20000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 64817.375

0.17646002D+07 0.19802601D+03 0.35431842D+01 -0.15535154D-04 0.16278834D-08

-0.73239392D-13 0.12170311D-17 -0.40498478D+05 0.11041172D+02

CO2(3) Lopez-2018

3 g 7/88 1.00 2.00 0.00 0.00 0.00 0 44.0095000 -290696.101

200.000 1000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 112179.368

0.65887218D+05 -0.90484641D+03 0.86451877D+01 -0.98071407D-02 0.14643499D-04

-0.10950287D-07 0.31004606D-11 -0.31837134D+05 -0.19530836D+02

1000.000 6000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 112179.368

-0.12497220D+07 0.20015694D+04 0.50247920D+01 -0.13184923D-02 0.38174599D-06

-0.49567083D-10 0.24344047D-14 -0.51205138D+05 0.35097442D+01

6000.000 20000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 112179.368

-0.42327945D+05 0.11168887D+04 0.34817015D+01 -0.24325500D-04 0.31276462D-08

-0.15096491D-12 0.25963898D-17 -0.42312426D+05 0.13083280D+02

CO2(4) Lopez-2018

3 g 7/88 1.00 2.00 0.00 0.00 0.00 0 44.0095000 -236158.053

200.000 1000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 166717.416

0.25627475D+05 -0.17126189D+03 0.53421085D+01 -0.19727956D-02 0.42220849D-05

-0.39522947D-08 0.12428405D-11 -0.28876694D+05 0.47198413D+00

1000.000 6000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 166717.416

-0.97226880D+06 0.15685159D+04 0.50780715D+01 -0.12464247D-02 0.35117091D-06

-0.44942866D-10 0.21871248D-14 -0.41430101D+05 0.37535156D+01

6000.000 20000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 166717.416

0.13311042D+07 0.34266150D+03 0.36466917D+01 -0.41926252D-04 0.41374584D-08

-0.18079896D-12 0.29532469D-17 -0.29594237D+05 0.12537922D+02

CO2(5) Lopez-2018

3 g 7/88 1.00 2.00 0.00 0.00 0.00 0 44.0095000 -182699.186

200.000 1000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 220176.283

-0.10156851D+06 0.12197148D+04 0.79211298D+00 0.57143422D-02 -0.27504975D-05

-0.11243866D-08 0.88877589D-12 -0.29727818D+05 0.28881045D+02

1000.000 6000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 220176.283

-0.13085793D+07 0.32871782D+04 0.26531970D+01 -0.44884040D-04 0.61729882D-07

-0.10751315D-10 0.60270702D-15 -0.45236015D+05 0.21693034D+02

6000.000 20000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 220176.283

-0.13045841D+07 0.19419045D+04 0.31340476D+01 0.34990931D-04 -0.17828800D-08

0.45734023D-13 -0.45832603D-18 -0.35842256D+05 0.17367728D+02

CO2(6) Lopez-2018

3 g 7/88 1.00 2.00 0.00 0.00 0.00 0 44.0095000 -137922.486

200.000 1000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 264952.983

-0.78381625D+04 -0.69097002D+03 0.13135647D+02 -0.27595017D-01 0.42036816D-04

-0.30810687D-07 0.86793424D-11 -0.15682167D+05 -0.38860660D+02

1000.000 6000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 264952.983
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-0.93148237D+06 0.19676921D+04 0.43169298D+01 -0.81484488D-03 0.23836217D-06

-0.30874822D-10 0.15105222D-14 -0.31569137D+05 0.10282293D+02

6000.000 20000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 264952.983

-0.84595983D+07 0.64179313D+04 0.21199356D+01 0.15413460D-03 -0.94360590D-08

0.30097476D-12 -0.39150310D-17 -0.65702643D+05 0.26924737D+02

CO2(7) Lopez-2018

3 g 7/88 1.00 2.00 0.00 0.00 0.00 0 44.0095000 -86887.691

200.000 1000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 315987.778

0.26234246D+06 -0.42942207D+04 0.29876115D+02 -0.62596632D-01 0.80031001D-04

-0.51832162D-07 0.13373166D-10 0.81601591D+04 -0.13565394D+03

1000.000 6000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 315987.778

-0.85600450D+06 0.21624540D+04 0.39766313D+01 -0.63107200D-03 0.19143205D-06

-0.25060236D-10 0.12293067D-14 -0.26306811D+05 0.13179037D+02

6000.000 20000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 315987.778

0.15521322D+07 0.50320633D+03 0.35192379D+01 -0.16268769D-04 0.18461849D-08

-0.85011834D-13 0.14250803D-17 -0.12325091D+05 0.15238387D+02

CO2(8) Lopez-2018

3 g 7/88 1.00 2.00 0.00 0.00 0.00 0 44.0095000 -37101.008

200.000 1000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 365774.461

0.23739092D+06 -0.34405313D+04 0.21490057D+02 -0.31560947D-01 0.29490262D-04

-0.13583706D-07 0.23620190D-11 0.10697456D+05 -0.92258327D+02

1000.000 6000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 365774.461

-0.11890340D+06 0.27364072D+03 0.60277143D+01 -0.15375039D-02 0.39543221D-06

-0.48098142D-10 0.22632788D-14 -0.80784825D+04 -0.13101823D+01

6000.000 20000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 365774.461

0.96580823D+07 -0.42571212D+04 0.47584819D+01 -0.17874225D-03 0.13248423D-07

-0.49355767D-12 0.72855543D-17 0.31725999D+05 0.51423387D+01

CO2(9) Lopez-2018

3 g 7/88 1.00 2.00 0.00 0.00 0.00 0 44.0095000 17874.679

200.000 1000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 420750.148

0.61183110D+05 -0.68876666D+03 0.56052195D+01 0.10519508D-01 -0.24784530D-04

0.20442901D-07 -0.60390301D-11 0.43220200D+04 -0.37436839D+01

1000.000 6000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 420750.148

-0.10028968D+07 0.32644081D+04 0.29781568D+01 -0.20765331D-03 0.98488714D-07

-0.14796745D-10 0.77793419D-15 -0.20446857D+05 0.21419489D+02

6000.000 20000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 420750.148

0.62428701D+07 -0.21210994D+04 0.41426866D+01 -0.92204771D-04 0.68701043D-08

-0.25673635D-12 0.37986470D-17 0.21636332D+05 0.10652079D+02

CO2(10) Lopez-2018

3 g 7/88 1.00 2.00 0.00 0.00 0.00 0 44.0095000 63983.025

200.000 1000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 466858.494

-0.55832869D+05 0.86296109D+03 -0.17509587D+01 0.26245779D-01 -0.39690694D-04

0.25730495D-07 -0.62897919D-11 0.22496120D+04 0.38726879D+02

152



1000.000 6000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 466858.494

-0.20601034D+07 0.72842207D+04 -0.18200516D+01 0.20283331D-02 -0.42443338D-06

0.46005749D-10 -0.20144186D-14 -0.39858520D+05 0.56197147D+02

6000.000 20000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 466858.494

0.25343141D+07 0.26269925D+03 0.33088614D+01 0.36562915D-04 -0.31713624D-08

0.13018645D-12 -0.20512744D-17 0.84726156D+04 0.17490589D+02

Combined properties for the entire species can be defined by constraining the constituent reduced-

order bins into a single Boltzmann distribution. The fit coefficients for Boltzmann-aggregate prop-

erties of CO2 are:

CO2 Lopez-2018

3 g 7/88 1.00 2.00 0.00 0.00 0.00 0 44.0095000 -393492.770

200.000 1000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 9382.699

0.28921359D+05 -0.32914874D+03 0.36107385D+01 0.74241524D-02 -0.77103798D-05

0.50154596D-08 -0.14889774D-11 -0.46701555D+05 0.22822403D+01

1000.000 6000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 9382.699

0.21424733D+07 -0.78102971D+04 0.15194992D+02 -0.39197053D-02 0.10768108D-05

-0.13993445D-09 0.64261166D-14 -0.76168213D+03 -0.75868447D+02

6000.000 20000.0007 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 0.0 9382.699

-0.34147621D+09 0.13415783D+06 -0.58143271D+01 -0.18435983D-03 0.48795708D-07

-0.20587385D-11 0.28157023D-16 -0.11949701D+07 0.11402940D+03
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Appendix D

Fitting Procedure for CO2
Bin-averaged Rate Coefficients

The present study is primarily aimed at characterizing flowfield properties and radiative response

during low-speed Martian atmospheric entry. The low freestream velocity encountered during

such missions allows ample time for the gaseous mixture to thermalize completely [227]. Figures

6.6 and 6.11 add further credence to this claim, with translational-rotational temperature T and

vibrational-electronic temperature TV remaining equal almost in the entire domain. In the context

of MGME reduced-order modeling, bin internal and translational temperatures being alike simpli-

fies the process of computing bin-averaged rate coefficients (Section 2.3). The single temperature

dependence then allows rate-coefficients to be fitted using the Arrhenius form:

K = ATn exp

(
−Ea
T

)
(D.1)

Additionally, the micro-reversibility principle can be applied to bin-wise reactions under thermal

equilibrium conditions. Thus, the backward rate-coefficient K̄r is computed using the equilibrium

constant and Kr. Although not required in the current analysis, a simple first-order approximation

of thermal non-equilibrium (T 6= TV ) effects can be obtained by using Park geometric-averaged

temperatures [20, 35] in Eq. D.1.

Arrhenius fit coefficients due to bin-wise collisional processes for the 10 CO2 vibrational bins

used in Chapter 6 are presented next. It should be noted that only rate coefficients for bin-

specific mass change stemming from StS reactions are discussed here. The first process considered

is bin-wise dissociation. The global CO2 dissociation rate-coefficient that is then unpacked into

state-specific values can be found in [36].

CO2(i) + M ←→ CO + O + M (D.2)
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A [m3/(kmol s)]

Bin (i) M = CO2,CO,O2 M = C,O n Ea

1 3.598E+09 7.1960E+09 -3.66E-02 6.5832E+04

2 6.038E+08 1.2076E+09 1.97E-01 5.9297E+04

3 1.837E+09 3.6740E+09 1.46E-01 5.3623E+04

4 2.972E+09 5.9440E+09 1.59E-01 4.7045E+04

5 2.773E+09 5.5460E+09 2.19E-01 4.0558E+04

6 1.045E+10 2.0900E+10 1.44E-01 3.5148E+04

7 2.378E+10 4.7560E+10 1.20E-01 2.8962E+04

8 1.039E+11 2.0780E+11 3.55E-02 2.2967E+04

9 1.770E+11 3.5400E+11 4.07E-02 1.6322E+04

10 9.691E+10 1.9382E+11 1.40E-01 1.0722E+04

Table D.1: Bin-specific dissociation for 10 bin CO2 model.

Next, excitation/de-excitation between vibrational bins for different collisional partners is detailed:

CO2(i) + M ←→ CO2(j) + M (D.3)

Collisional Partner M = CO2

Initial Bin (i) Final Bin (j) A [m3/(kmol s)] n Ea

2 1 3.423E+03 1.78E+00 1.5534E+03

3 2 8.763E+03 1.75E+00 1.5854E+03

4 3 1.128E+04 1.78E+00 1.5763E+03

5 4 8.683E+03 1.86E+00 1.5410E+03

6 5 1.528E+04 1.81E+00 1.5526E+03

7 6 1.741E+04 1.82E+00 1.5504E+03

8 7 2.790E+04 1.77E+00 1.5701E+03

9 8 2.072E+04 1.83E+00 1.5556E+03

10 9 7.407E+03 2.00E+00 1.5132E+03

Table D.2: Bin-specific excitation/de-excitation with M = CO2 for 10 bin CO2 model.
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Collisional Partner M = CO

Initial Bin (i) Final Bin (j) A [m3/(kmol s)] n Ea

2 1 5.594E+03 1.69E+00 1.7143E+03

3 2 1.432E+04 1.65E+00 1.7463E+03

4 3 1.843E+04 1.68E+00 1.7372E+03

5 4 1.419E+04 1.76E+00 1.7019E+03

6 5 2.498E+04 1.71E+00 1.7135E+03

7 6 2.846E+04 1.72E+00 1.7113E+03

8 7 4.561E+04 1.68E+00 1.7310E+03

9 8 3.387E+04 1.74E+00 1.7165E+03

10 9 1.211E+04 1.90E+00 1.6741E+03

Table D.3: Bin-specific excitation/de-excitation with M = CO for 10 bin CO2 model.

Collisional Partner M = O2

Initial Bin (i) Final Bin (j) A [m3/(kmol s)] n Ea

2 1 9.485E+03 1.76E+00 2.0246E+03

3 2 2.428E+04 1.73E+00 2.0566E+03

4 3 3.125E+04 1.76E+00 2.0475E+03

5 4 2.406E+04 1.84E+00 2.0122E+03

6 5 4.235E+04 1.79E+00 2.0238E+03

7 6 4.825E+04 1.80E+00 2.0216E+03

8 7 7.732E+04 1.75E+00 2.0413E+03

9 8 5.742E+04 1.82E+00 2.0268E+03

10 9 2.053E+04 1.98E+00 1.9844E+03

Table D.4: Bin-specific excitation/de-excitation with M = O2 for 10 bin CO2 model.

Collisional Partner M = C,O

Initial Bin (i) Final Bin (j) A [m3/(kmol s)] n Ea

2 1 6.646E+04 1.69E+00 2.3092E+03

3 2 1.702E+05 1.65E+00 2.3412E+03

4 3 2.190E+05 1.68E+00 2.3321E+03

5 4 1.686E+05 1.77E+00 2.2968E+03

6 5 2.968E+05 1.71E+00 2.3084E+03

7 6 3.381E+05 1.72E+00 2.3062E+03

8 7 5.419E+05 1.68E+00 2.3259E+03

9 8 4.023E+05 1.74E+00 2.3114E+03

10 9 1.438E+05 1.90E+00 2.2690E+03

Table D.5: Bin-specific excitation/de-excitation with M = C,O for 10 bin CO2 model.
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Atomic oxygen exchange reactions do not presently have a state-specific description. Therefore,

the same Arrhenius coefficients are prescribed for every CO2 vibrational bin. The other reactions

that make up the rest of the kinetic scheme for the five species Mars gaseous mixture are:

Reaction A [m3/(kmol s)] n Ea

CO2(i) + O ←→ O2 + CO 2.710274E+11 0.00E+00 3.3797E+04

CO + M ←→ C + O + M 1.2E+18 -1.00E+00 1.2900E+05

M = CO2,CO,O2

CO + M ←→ C + O + M 1.8E+18 -1.00E+00 1.2900E+05

M = C,O

O2 + M ←→ O + O + M 2.0E+18 -1.50E+00 5.9360E+04

M = CO2,CO,O2

O2 + M ←→ O + O + M 1.0E+19 -1.50E+00 5.9360E+04

M = C,O

Table D.6: Remaining reactions for five species Mars gaseous mixture.
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Appendix E

Verification Studies for NERO
Radiative Transfer Solver

The NERO solver (Chapter 6) for computing angularly-spectrally resolved radiative fields on three-

dimensional unstructured computational grids has been verified using two different problems.

E.1 Sphere with Radially Variant Temperature

The first verification case considered is radiative transfer through a sphere occupied by an 11-species

air mixture [245] at local thermodynamic equilibrium (LTE). The following Gaussian temperature

profile is imposed in the radial direction:

T (r) = Tmax − (Tmax − Tmin)
1− exp

{
(0.01 r /∆T )2

}
1− exp

{
(0.01 rmax /∆T )2

} (E.1)

where Tmax = 12, 000 K, Tmin = 1, 000 K, rmax = 1.5 × 10−2 m, and ∆T = 7.1 × 10−5 m are

profile parameters. A constant value of pressure P = 1 atm is used throughout the domain.

Spectral properties of the LTE mixture are modeled using a Planck-averaged wide-band model

derived using 100 frequency bands. Additional details on spectral modeling for 11-species air can

be found in [209]. Two sets of calculations are performed: a) Numerical solution computed using

the NERO solver, and b) reference solution based on the semi-analytical tangent-sphere method

for one-dimensional spherical medium [11].

The computational mesh used for numerically solving the current spherical radiative transfer

problem is presented in Figure E.1. Although the mesh is stored in an unstructured format, it has

been constructed using a multi-block structured approach to ensure greater control over grid point

distribution. The final mesh consists of 578, 125 cells split into seven blocks: six identical truncated

spherical segments and one central cube. The cubic block is necessary for avoiding singularities
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(a) Multi-block Structure (b) Along y = 0 m plane

Figure E.1: Computational mesh for modeling spherical radiative transfer.

at the center. The total number of discrete quadrature directions and sub-iterations (required to

compensate for circular dependencies during mesh-sweeps) are set equal to 170 and 10, respectively.

The radial distribution of divergence of total radiative heat flux (negative of volumetric radiative

heating) is presented in Fig E.2. Numerical predictions converge to the reference solution obtained

using the semi-analytical tangent-sphere method. However, there is a slight discrepancy (error

∼ 1%) between the two approaches for radial distances less than 0.05 cm. The deviation from

reference values in close proximity to the center occurs while transiting from the spherical segments

to the cubic core. This abrupt change introduces misalignment in the mesh and aggravates cell

skewness. Consequently, there is a marginal dip in accuracy.

Figure E.2: Numerical and semi-analytical reference solutions for divergence of radiative heat
flux along radial direction.
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E.2 Comparison with HARA-LAURA Framework

Next, the afterbody radiative surface heat flux computed in the current study (Fig. 6.14) is com-

pared to results using the HARA-LAURA combined framework [227, 229]. The Langley Aerother-

modynamic Upwind Relaxation Algorithm (LAURA) [213] is a structured grid hypersonic CFD

solver that has been widely used for performing non-equilibrium Navier-Stokes calculations. The

High-temperature Aerothermodynamic Radiation (HARA) radiation solver [216, 220] is capable

of accurately modeling both spectral variation in absorption/emission behavior and the geomet-

ric aspect of radiative transfer in a three-dimensional domain. The flowfield is first computed

using LAURA. Then, HARA provides radiative surface heat flux values using a full angular in-

tegration methodology based on ray-tracing [83]. The same models for species thermodynamics,

chemical kinetics, and absorption/emission spectra have been employed while computing radiative

and aerothermal behavior with the NERO-US3D and HARA-LAURA frameworks. Figure 6.14

presents the total radiative heat flux received by the Mars 2020 afterbody along the y = 0 m edge

for the standard 2-T model and t = 91.5 s trajectory point. It should be noted that radiation-flow

calculations are not coupled during these comparisons.

Figure E.3: Surface radiative heat flux along y = 0 m edge on the Mars 2020 afterbody at
the t = 91.5 s trajectory point for the standard 2-T model. Flowfield and radiative behavior is
computed using the US3D-NERO (present work) and LAURA-HARA frameworks.
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Good agreement between results obtained using the two disparate flow-radiation solvers is ob-

served. The slight discrepancies in predicted values arise due to marginally dissimilar computational

meshes and inherent differences in the numerical schemes and treatment of boundary conditions

employed by US3D and LAURA flow solvers [227]. These verification tests, both canonical ra-

diation problems and comparisons with LAURA-HARA, lend confidence to the numerical results

reported in the current work.
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