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Abstract 

Green infrastructure (GI) is becoming a common solution to mitigate stormwater-related problems. Despite 

wide acknowledgement of GI benefits, there is a lack of decision support tools that allow practitioners to 

interactively identify and evaluate the performance of small GI practices using hydrologic models under 

uncertainty. Also, the benefits and costs of GI practices are not fully understood when the analysis scale 

changes from a household to a subwatershed to an entire watershed. Moreover, recognition of optimal 

locations in a watershed, given the uncertainty in modelling parameters, is also another challenge for GI 

planning and design. To address these needs, an online Cloud-based interactive tool — called Interactive 

DEsign and Assessment System for Green Infrastructure (IDEAS_GI)— has been developed. This study 

demonstrates the application of the tool, using hydrologic and empirical models, to estimate life cycle cost, 

stormwater volume reduction and treatment, and air pollutant deposition. The tool was applied in two small 

watersheds in the Baltimore metropolitan area. The results show that GI properties do not significantly 

affect performance of individual GI practices during design storm events due to the intensity of the storms 

exceeding the capacity of GI practices to treat and capture stormwater. Using the tool to identify potential 

locations for GI placement, the study then provides a quantitative and comparative analysis of 

environmental benefits and economic costs of GI using two metrics [Benefit-Cost Ratios (BCRs) and 

nutrient removal costs] at household, subwatershed, and watershed scales. The results for a case study in 

Baltimore show that the unit cost of nutrient removal in some of the subwatersheds is lower than the unit 

costs at either the watershed or household scales, calling for optimization frameworks to determine the 

features that dictate optimality at the subwatershed level. Moreover, rain gardens provide far more efficient 

stormwater treatment at the household scale in comparison to watershed scale, for which large-scale dry or 

wet basins are more efficient. The results show that for BCR, smaller subwatersheds are more cost effective 

for GI implementation, while for nutrient removal cost, upstream subwatersheds are more suitable. 

Furthermore, self-installation of rain gardens greatly reduces nutrient removal costs. Finally, to identify 

preferable locations for GI implementation, the numerical hydrologic model used in IDEAS_GI, SWMM, 
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has been merged with a probabilistic noisy genetic algorithm (GA). The GA uses a probabilistic selection 

method that requires numerous sampling realizations to estimate the uncertainties associated with the fitness 

(objective function) values, which are cumulative stormwater volume reduction and GI life cycle cost. To 

overcome the computational challenge and to identify significant features for preferable locations, the GA 

is merged with artificial neural networks, which act as surrogates for the numerical models. The surrogate 

models use GA-generated archives as training datasets to predict the mean and standard deviation of 

cumulative stormwater volume reduction. The results show that the addition of meta-models decreases 

average computational time required to reach Pareto frontiers similar to the ones generated by the noisy 

GA by more than 95%.   
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Chapter 1: Introduction  

1.1. Green infrastructure  

Currently, Green Infrastructure (GI) is becoming one of the most commonly used practices in sustainable 

city development projects, as it presents a feasible solution to address stormwater management problems 

(Sandström 2002). Waste and pollution transported by stormwater are recurring issues that have led city 

planners and engineers to develop different strategies to control and mitigate surface runoff (Barbosa et al. 

2012). According to the Environmental Protection Agency (EPA 2014), GI refers to a patchwork of natural 

areas that promote healthier habitats, stronger flood protection, and cleaner water and air at city and regional 

scales. However, at the parcel scale, GI refers to stormwater management systems that mimic nature by 

absorbing and storing water. Currently in the US, rain gardens, bioswales, green roofs, urban forests, rain 

barrels, permeable pavements, planter boxes, trees, and constructed wetlands are commonly used as GI to 

manage stormwater (EPA 2014). Their structural design and  operational management are primarily geared 

towards their primary function: stormwater runoff control and treatment (Mell 2008; Berndtsson 2010a; 

Kabir et al. 2014). However, there are other GI benefits and trade-offs to incorporating semi-natural lands 

into highly urbanized areas that can potentially promote GI design and implementation (Tzoulas et al. 

2007).  

In addition to stormwater volume capture, GI has many other benefits that can improve health and the 

environment. GI design elements can remove nutrients, namely nitrogen and phosphorous, from surface 

water, leading to healthier ecosystem function (Berndtsson 2010a).  GI has also been demonstrated to 

reduce heavy metal and ion load from surface water runoff (Kabir et al. 2014). Additionally, GI has been 

shown to reduce air pollutant concentrations in urban areas (Nowak 2000; Yang et al. 2004; Nowak et al. 

2006). GI may also help mitigate urban heat island effect by reducing outdoor temperatures (Shin and Lee 

2005). Furthermore, GI has demonstrated positive effects on human health by different means, including  
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more active lifestyle choices, exposure to green spaces, etc. (Van den Berg et al. 2003; Hartig et al. 2014; 

Jiang et al. 2015;).  

1.2. Existing decision-making frameworks for GI placement and analysis  

GI has been increasingly implemented throughout the US as an environmental amenity in recent years. GI 

has mostly been implemented by the private sector (i.e., property owners). The entities responsible for urban 

planning generally either treat GI as ad hoc green initiatives or investment opportunities (Brown 2005; 

Chini et al. 2017). GI implementation can be significantly improved if planning, design, monitoring, and 

performance assessment of GI at larger scales are conducted using rigorous quantitative analysis with 

engineering models to assess trade-offs between different solutions (Nylen and Kiparsky 2015). The lack 

of monitoring programs and standardized widely accepted benefit evaluation processes are the two main 

problems resulting in knowledge gaps in the GI implementation decision-making process.  

A myriad of tools has been developed to address GI design and performance assessment, each having their 

own specific features and limitations. However, these tools are generally used to either simulate 

performance of GI or aid in the design of individual GI practices. These tools take advantage of different 

modeling approaches, including experimentally driven (empirical) formulations, analytical calculations, 

numerical simulations, or data-driven approaches. Experimentally-driven formulations are the first options 

to be used for stormwater capture, quality improvement, urban heat island mitigation, air pollutant 

deposition, etc. (Felson and Pickett 2005; Janhäll 2015). Numerical simulation methods have also been 

extensively developed for stormwater simulation and GI design (see Elliott and Trowsdale 2007, and  

Jayasooriya and Ng 2014 for reviews).  Data-driven approaches are generated based on input and output 

data collected from the real-world performance of a phenomenon and lack physics-based justifications 

(Khan et al. 2013). All these models provide valuable insight on how GI practice performs in the real world. 

However, they do not provide guidelines on suitable spatial scale and locations for GI to serve different 
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objectives. To locate suitable potential locations, a comprehensive framework is needed to evaluate benefits 

and costs of alternative scenarios and determine tradeoffs among different GI implementation objectives.  

Current tools, called Decision Support Systems (DSS), focus on stormwater quality and quantity, rather 

than other environmental benefits, as the main objectives for GI design (Matlock and Morgan 2010). Well-

known DSS for GI include System for Urban Stormwater Treatment and Analysis Integration, or SUSTAIN 

(Lee et al. 2012) and Model for Urban Stormwater Improvement Conceptualization, or MUSIC (Wong et 

al. 2002a). SUSTAIN uses the numerical hydrologic/hydraulics model SWMM (Rossman and Huber 2015) 

and the water quality estimation model HSPF (Rossman and Huber 2016) along with a life cycle cost 

database for different GI types to determine the optimal design scenario given certain design criteria. 

MUSIC helps determine the best arrangement of GI network to meet design criteria using total life cycle 

cost and performance assessment with the SimHyd model (Chiew and Siriwardena 2005). Despite the 

numerous benefits of these two decision support systems, they do not assess co-benefits, the environmental, 

social, and economic benefits of GI beyond stormwater functionality. Also, since they use deterministic 

simulation models, they do not assess how uncertainties inherent in the modeling approaches may affect 

their results. Ideally, a decision support analysis/system needs to provide insight on how uncertainties affect 

tradeoffs among optimal designs in the real world.  

Moreover, these frameworks do not assess uncertainties associated with the effects of spatial scale. In 

reality, the effects of GI projects involve different stakeholders. For instance, residential energy savings 

from green roofs are beneficial for homeowners, while peak flow reductions are tangible at the 

watershed/subwatershed scale and are useful for municipalities and eventually the whole contributing 

community. Therefore, benefits can be analyzed at multiple scales (e.g., household, neighborhood, 

watershed, etc.).  

Also, such models do not assess whether GI investment is financially justifiable. To do so, GI design 

scenarios require cost-benefit analysis that can inform practitioners of the potential outcomes of their 

investments. Therefore, tools are still needed that facilitate cost/benefit assessment and support decisions 
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on financial aspects of GI projects. This thesis develops such a decision-making framework that can address 

several spatial scales (including household, subwatershed, and watershed), provide insights on the 

uncertainties inherent in GI modeling, and determine optimal locations for GI practices given tradeoffs 

among different objectives.  

1.3. Dissertation outline and research questions 

This dissertation creates a decision-making framework, along with implementation guidelines, to help 

practitioners and decision makers recognize preferred locations for small GI practices in urban/ semi-

urbanized watersheds to address water quality and quantity functionalities of GI at multiple scales. This 

dissertation specifically focuses on rain gardens as small-scale practices that can be used throughout a 

watershed, although the framework can be applied to other types of GI. Numerical simulation models, 

uncertainty quantification methods, meta-heuristic optimization methods, and data-driven machine learning 

methods are used to determine where GI practices should be placed. This provides a generalizable approach 

and guidelines for sitting different types and potential locations of small GI practice under uncertainty.  

The second chapter of this dissertation specifies details of the case studies used in this study. The details 

include features and characteristics of the case studies, as well as descriptions, assumptions, and methods 

used for each numerical simulation model.  

The third chapter highlights the capabilities of a software platform developed to allow practitioners to 

interactively identify and evaluate the performance of small GI practices using scientific models. The online 

Cloud-based interactive tool — called IDEAS_GI, or Interactive DEsign and ASsessment of GI — assesses 

GI performance using hydrologic and empirical models to estimate cost, stormwater volume reduction and 

treatment, and air pollutant deposition. The tool is designed to be used as an initial screening platform to 

identify potential locations for GI implementation across case study watersheds and to provide an overview 

of GI performance across spatial scales. In other words, the chapter addresses the following research 

question: “How can the potential locations for GI implementation, as well as their performance, be assessed 

more interactively via an open source Cloud-based online software platform?” 
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The fourth chapter of this study examines how the scale of implementation (i.e., household, sub-watershed, 

or watershed), affects the cost and benefits of GI, focusing on rain gardens. This chapter assesses the extent 

of GI implementation and its effects on overall cost/benefit assessments of GI. However, one of the main 

challenges in addressing such questions is parameter uncertainty, which eventually contributes to 

uncertainty in the overall modeling results. Therefore, the following research question is addressed in this 

chapter: “How does spatial scale affect uncertainty and sensitivity in green infrastructure cost/benefit 

assessment?” 

The fifth chapter provides a framework for identifying preferable locations to place GI. This chapter, using 

water quality results from previous chapters, shows locations where subwatersheds are more suitable for 

GI placement from the standpoints of water quantity and life cycle cost. The chapter uses noisy meta-

heuristic optimization algorithms to find preferable arrangement and location of GI practices in a semi-

urbanized watershed. To search for preferable designs in an efficient manner and to overcome the 

computational burden of the search process, the genetic algorithms are merged with surrogate machine 

learning models. The surrogate models are trained to replace the computationally-intensive numerical 

models using datasets generated during the search process. By running the surrogate models, the 

optimization algorithms can run numerous times to address uncertainty and alternative scenarios, and 

subsequently drive more insight on preferred conditions for GI implementation locations. Therefore, the 

chapter addresses the following research questions: 

1. “What will be the preferable locations and arrangements of small-scale GI practices in 

urbanized/semi-urbanized watersheds to mitigate stormwater quantity problems as well as life cycle 

cost?” 

2. “What surrogate modelling approach can determine the preferable locations and arrangements of 

GI practices, considering the uncertainties in the objective values, in a more efficient manner than 

noisy heuristic optimization algorithms? 

The final chapter summarizes the conclusions and results drawn from this study, as well as future steps 

needed to further advance this study for practical and research purposes.   
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Chapter 2: Case studies  

2.1. General description  

Two watersheds, Dead Run and Stoney Run, serve as case studies for this research. Dead Run is located in 

Gwynns Falls Watershed, Baltimore County, Maryland, while Stoney Run is in the Jones Falls Watershed 

in Baltimore City, Maryland (Fig. 2.1). Data and models (e.g. streamflow and hydrograph data, rainfall 

data, and SWMM models) were based on the Baltimore Ecological Study (BES), which has collected long 

term stream discharge and nutrient loads in watersheds over a land use gradient in Baltimore and Baltimore 

County. One goal of the BES study has been to analyze and determine efficient methods to reduce water 

pollutant and nutrient load into Chesapeake Bay ( Pickett & Cadenasso 2006; Miles 2014; Duncan et el. 

2017a; Duncan et al. 2017b).  

2.1.1. Dead Run (Case Study I) 

Dead Run has a USGS streamflow gauge (USGS 2013) at the outlet of the watershed that has been 

monitoring and recording flows and water levels for a continuous period since August 1998. The watershed 

within Dead Run that is the subject of this study is referred to as Dead Run 5 (DR5), with an area of 1.5 

km2 and is geographically located in the Baltimore County. The watershed has been the subject of numerous 

hydrologic research studies (Miles & Band, 2015; Heidari et al. 2016; Minsker et al. 2017; Leonard et al. 

2019). Fig. 2.1.a shows the boundaries of the DR5 watershed and the subwatersheds modeled in SWMM 

5.0. SWMM provides a graphical user interface by which the entire watershed can be represented as 

connected subwatersheds with user-specified contributing areas (Rossman and Huber 2016).  

The SWMM model for the Dead Run case study was calibrated by engineers at Tetra Tech Inc. using 

streamflow gage data records from 2007 and 2010 with a one-minute routing time step. The calibrated 

model consists of 138 subwatersheds that vary in size from 0.0007 to 0.2 km2, and in slope from 0.01 to 

7.35 percent slope. Out of 138 subwatersheds, 67 subwatersheds have potential candidate areas for rain 

garden implementation. Approximately 20% of the watershed consists of impervious surfaces. The area 
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and extent of the subwatersheds are based on topography and pipeline and sewer shed maps. The 

conveyance network consists of pipes, mostly circular, ranging in diameter size from 1 to 5 feet.  

Infiltration follows Green-Ampt equations for clay loam soil with a suction head of 8.22 inches (20.9 cm) 

and hydraulic conductivity of 0.08 in/hr (2.0 mm/hr) assigned to all subwatersheds. The model did not 

include any GI practices. The kinematic flow routing method is used to carry stormwater across the open-

channels connecting one subwatershed outlet to the next. Also, the baseline model does not include any 

existing GI practices.  

2.1.2. Stoney Run (Case Study II) 

The Stoney Run Watershed is ~8.5 km2  and had an operating USGS streamflow gauge until 2015 (USGS 

2015).The watershed used in this study is an urbanized portion of Stoney Run with an area of 0.12 km2, 

with an imperviousness ratio of 50%, and is referred to as “SR5” in this study. This watershed is located in 

the city of Baltimore and contains an aging sewer system. Therefore, geographic maps that represent the 

existing network, its tributary area, and its capacity are lacking specific details. The author was provided 

with the calibrated SWMM 5.0 models for the area, which were designed to mimic the hydrograph at the 

USGS gages for the continuous period of 2007- 2011. Fig. 2.1.b shows the SR5 watershed boundaries and 

the subwatersheds that were modeled in SWMM 5.0. Similar to DR5, kinematic routing methods were used 

for routing from subwatershed outlet to subwatershed outlet. The conveyance network consists of pipes, 

mostly circular, ranging in diameter from 1 to 3 feet. The soil characteristics and infiltration methods for 

SR5 were similar to those of DR5.  
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Fig. 2.1. Boundaries of the modeled (a) DR5 and (b) SR5 watersheds in the state of Maryland, and their subwatersheds 

modeled in SWMM 5.0, along with their relative locations  
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Chapter 3: IDEAS_GI: Interactive DEsign and Assessment System for Green 

Infrastructure  

3.1. Introduction 

 This chapter presents a new online tool called IDEAS_GI, which was created to address some of the 

previously mentioned needs for assessment of green infrastructure practices. A myriad of tools exist to 

address GI design and performance assessment, each having its own specific features and limitations. 

Among the array of tools designed for GI planning, few tools can both simulate chemical/biological/ 

physical behavior of stormwater after GI implementation and provide economic analysis of GI projects.   A 

few well-known decision support systems are Urban Stormwater Treatment and Analysis INtegration, 

SUSTAIN, (Lee et al. 2012) and Model for Urban Stormwater Improvement Conceptualization, or MUSIC 

(Wong et al. 2002). SUSTAIN uses the numerical hydrologic/hydraulics model SWMM 5.0 (Rossman and 

Huber 2015) and the water quality estimation model HSPF (Bicknell et al. 1996), along with a life cycle 

cost database for different GI types, to recommend optimum design scenarios given certain design criteria. 

MUSIC is a decision support system that helps determine the best arrangement of a GI network to meet 

design criteria using total life cycle cost and performance assessment through the SimHyd model (Chiew 

and Siriwardena 2005).  

Jayasooriya & Ng (2014) reviewed the mentioned tools developed to address economic evaluation of GI 

practices and found that development of participatory Web-based simulation methods that account for 

modelling uncertainties, provide GIS capabilities, and support decision making are lacking and should be 

the future path in GI modelling and software development. Lerer et al. (2015) have also reviewed different 

GI design and planning tools, categorizing the tools based on the type of planning questions they are 

designed to address. The authors found that the key question of locations in which GI practices are most 

suited to be placed has not been fully addressed by existing frameworks, nor has the extent of their 

performance in providing benefits been fully quantified (Lerer et al. 2015). Bach et al. (2014), through 

review of literature in the integrated urban water system modelling domain, have identified model 



10 

 

complexity, user friendliness, administrative fragmentation, and communication as the main barriers 

against adoption of integrated GI modelling in engineering practices. Haris et al. (2016) reviewed and 

categorized existing stormwater management models based on stormwater management and economic 

analysis aspects. These reviews highlight the importance of providing integrated interactive decision 

support systems in the next generation of GI planning tools. 

Therefore, GI modelling and decision-making tools need improvement in three primary aspects: 

interactivity, uncertainty in modelling performance, and inter-connected modelling of different 

benefits/costs associated with their design. These shortcomings may be some of the reasons that decision 

support systems are not widely used for GI decision-making (Nylen and Kiparsky 2015). To address this 

need, this work develops a new decision support framework, called IDEAS_GI (Interactive DEsign and 

Assessment System for Green Infrastructure), that can interactively provide insights on the uncertainties 

inherent in modelling practices and assist in assessing other categories of environmental benefits associated 

with small GI practices at different spatial scales.  

3.1.1. SESYNC venture 

The requirements for the IDEAS_GI system emerged from a 3-year engagement with practitioners and 

stormwater engineers from five partner cities around the country as a collaborative “Venture” project 

sponsored by the National Science Foundation-funded National Socio-Environmental Synthesis Center 

(SESYNC). The Venture, which was in the form of a series of six hands-on workshops entitled “Research 

on the Perception, Role, and Function of Urban Green Infrastructure,” included a working group of 23 

stormwater engineers, hydrologists, ecologists, computer scientists, social scientists, and landscape 

architects and an advisory group of nine representatives from the cities and non-governmental organizations 

involved in GI implementation (see list of contributors in Appendix A).  

During the meetings, the advisory group emphasized that GI implementation and performance are poorly 

integrated and valued by users. The group mentioned that decision makers need to address the uncertainty 
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in benefits and costs associated with GI performance. Lack of quantification of the magnitudes of 

uncertainties in the benefits make it difficult for GI practitioners to communicate the value of GI to users. 

The uncertainty, or the miscommunication resulting from lack of uncertainty quantification, can result in 

challenges and issues with GI project prioritization, e.g. public opposition to new GI installations due to 

misconceptions about its value.  Furthermore, GI practitioners identified a lack of dedicated user interfaces 

to improve GI model implementation at the preliminary design and planning levels. The advisory group 

proposed developing specific online Cloud-based GI decision support tools to improve collaborative 

decision making given that the GI decision-making process and governance are complex and require multi-

stakeholder support. 

One pathway to address these needs is to use technology and online Cloud computing tools that can 

integrate different models, provide on-line computational resources without local software installation, and 

are flexible enough to account for different modelling needs (e.g. GI co-benefit modelling, tuning modelling 

parameters, and accounting for uncertainties in modelling results). Such platforms can vary from online 

scientific workflow sharing to high performance computing environments and virtual machines hosting 

computations at remote servers. Ideally, the objectives, scope, and capabilities of such software should 

address GI modelling needs at several spatial scales, from parcel to watershed impacts, at short-term and 

long-term time-scales, and at different social scales, from residents to community and governmental levels 

(see Fig. 3.1).  



12 

 

 

Fig. 3.1. Scope of the objectives that ideal GI design decision support software should address.  

According to Fig. 3.1., the ideal GI decision support software should address performance of proposed 

designs at different spatial scales, varying from parcel to watershed, as well as temporal scales, varying 

from instantaneous to long-term performance and impacts. On the other hand, GI practices and designs are 

implemented and will be affecting different social dimensions. Residents, as the primary individuals 

responsible for GI practices; communities, who benefit from networks of GI practices; and governments, 

who either regulate or incentivize GI network implementation, have different priorities that need to be 

accounted for via an ideal decision support tool. Despite the challenges, SESYNC venture meeting 

attendees came to the conclusion that the IDEAS_GI platform should address such scope of GI-related 

objectives. 
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IDEAS_GI was developed in response to decision support needs highlighted by the SESYNC working and 

advisory groups, providing an online platform to assist in the conceptual design phase of identifying 

locations and types of  small GI practices, prior to detailed site-scale design.  Leonard et al. (2019) provide 

details on the software architecture and GI visualization using the RHESSys distributed eco-hydrological 

model (Tague and Band 2004) to determine the hydrological performance of GI practices at high spatial 

resolution scales— i.e., patch  scales— with  interactive Jupyter notebooks. This chapter demonstrates the 

full set of IDEAS_GI capabilities, including hosting services, execution protocol, GI type selection criteria, 

GI performance metrics, and modelling approaches.  

The focus of this work is also on the application of IDEAS_GI with the SWMM 5.0 model and a set of 

empirical models. The SWMM 5.0 models determine performance of small GI practices in a watershed 

with respect to stormwater capture and treatment, while the empirical models estimate life cycle cost of GI 

practices, as well as air pollutant deposition over their leaf surface area throughout their life cycle. Both 

RHESSys and SWMM 5.0 can simulate the behavior of a watershed with respect to resulting hydrographs 

after rainfall events. However, SWMM 5.0 can also simulate the stormwater treatment functionality of GI 

practices in contrast to the version of RHESSys implemented in the previous version of IDEAS_GI 

(Leonard et al. 2019).   

More importantly, SWMM 5.0 works at a lower resolution then RHESSys, with each spatial unit 

corresponding to a subwatershed. This results in lower simulation times needed for SWMM 5.0 to predict 

the GI system performance, allowing rapid assessment of uncertainties. This chapter includes applications 

of the software to the two case studies presented in the previous chapter, the future path for software 

development, feedback received from stormwater practitioners during a hands-on software workshop, and 

discussion of the existing scope, capabilities, and limitations that impact the future of GI design using 

interactive platforms coupled with hydrologic models.  
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3.2. Software design 

This section describes the elements of the software architecture by explaining the Cloud hosting services, 

primary elements of the architecture, and IDEAS_GI execution protocol. Fig. 3.2 shows an overview of the 

main elements of the software design and the links between them.  

 

Fig. 3.2. Software architectural elements and hosting services. The zipped folder, which is accessible on HydroShare, 

contains several supporting files and a Jupyter Notebook (IDEAS_GI). IDEAS_GI contains several cells that facilitate: (a) 

GI Designer for placing and visualization of GI practices via bird view editor and street view editor, (b) execution of 

quantitative models, and (c) reporting the results.  

3.2.1. Hosting services and architectural elements  

The IDEAS_GI software package is available from HydroShare (Tarboton et al. 2014; Horsburgh et al. 

2016) , an online platform developed for open sharing of hydrologic data and models (CUAHSI 2019; 

Leonard et al. 2019). HydroShare allows users to access remote servers and conduct their analysis in the 

Cloud. The IDEAS_GI package is developed and published as a Resource Data+ Model publicly accessible 

to any registered HydroShare users (Heidari et al. 2017). Another version of IDEAS_GI that uses RHESSys 

is also publicly accessible on HydroShare (Leonard & Band, 2017). HydroShare allows users to access 
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remote servers and conduct their analysis in the Cloud. The IDEAS_GI package is published as a zipped 

folder that contains several files and folders (listed in Table 3.1).  

Table 3.1. Files included in zipped IDEAS_GI package 

Type of files  Contents of the files  

Jupyter notebook files 

(IDEAS)  

• Jupyter (iPython) notebook to communicate with users, to get inputs 

from users, to send command to Python kernels for numerical 

simulation of stormwater behavior throughout the watershed, and to 

publish outputs 

Input CSV and text files 

(Database), specific to 

case study area. (All the 

files in this category are 

designed and applied to 

the DR5 case study 

specified in Section 4.1)  

• Input text files for stormwater hydrologic model, i.e. SWMM, for 

design scenarios  

• Database of air pollutant ambient concentrations within analysis time-

periods  (US EPA 2018) 

• Coordinates of watershed boundaries using Universal Transverse 

Mercator (UTM) projection system 

• Multiple time series for hydrographs generated at the watershed outlet 

during design storms under a baseline scenario without GI 

implementation 

• Probabilistic distribution of the stormwater pollutants/nutrients at 

subwatershed and watershed outlets for baseline scenario generated 

by running Monte Carlo simulations  

HTML scripts (Database) • Supporting files to facilitate visualization of performance report  of 

each GI design scenario  

SWMM Folders 

(Database) 

• SWMM 5.0 python library for numerical simulation of stormwater 

flows and water quality adjusted to Linux system setup (Pathirana 

2018) 
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IDEAS_GI, like other similar Jupyter notebook resources in HydroShare, requires a kernel to execute every 

command that users specify (Leonard et al. 2019). These commands are executed on a remote server using 

a JupyterHub. JupyterHub is a multi-user server that manages multiple instances of the single-user Jupyter 

notebook. To access the JupyterHub, users need to log-in to HydroShare, navigate to the resource page, and 

follow instructions through their Web browser. Fig. 3.3 shows the architecture of JupyterHub and 

IDEAS_GI and how users interact with the interface.  

 

Fig. 3.3. Architecture of JupyterHub and its connection to IDEAS. Each user can access IDEAS_GI package using a Web 

browser and via the HydroShare website. The tool is executed using a JupyterHub environment (a). The IDEAS_GI 

package (b) contains several files, including the IDEAS_GI iPython notebook (c) and supporting files that are required for 

any case study (d). 

3.2.2. IDEAS_GI execution protocol  

IDEAS_GI is designed to allow decision makers to insert semi-representative schematics of rain gardens 

and trees (see Figs 3.4 and 3.5) into a real-world landscape and to estimate associated benefits and costs 

with their design. The Jupyter notebook includes several cells, i.e. multi-line text input fields, that are 

designed to execute Python scripts, provide an interface for GI design through Google ™ Street -view and 

Google ™ Satellite-view, provide a report of GI performance, or provide instructions to users. Each of the 

cells can be executed independently (by pressing the “enter + shift” keys), making the Jupyter notebook 
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modular. Once the initial cell is executed, required packages are loaded into the notebook environment. 

Then a page with a URL link to a remote server located at Pennsylvania State University is called, which 

enables users to geo-locate trees and rain gardens and a set of hydrologic and hydraulic settings assigned 

to each GI. This section of IDEAS_GI is called GI Designer. Fig. 3.4 shows the interface of GI Designer, 

including instructions for placing GI on the Google ™ map-view. Leonard et al. (2019) provide more details 

on the architectural elements of the IDEAS_GI Web application, GI visualization mechanisms, and 

JupyterHub interactive environment, as well as their relationship to each other.  

 

Fig. 3.4. GI Designer interface in IDEAS. The left-hand window provides an areal view of the region of interest to design 

and insert GI practices across the region.  

Users can select three different maps using the map view toolbox: Google ™ plan view, ESRI ™ plan view, 

and RHESSys HydroTerre Maps (if already created for the watershed) (Leonard and Duffy 2013, 2014, 

2016) (a). Users can also access either map view or Google ™ satellite view of the region using the map/ 

satellite view toolbox (b). To design GI features, users can specify the GI materials, edit and delete existing 

design features, and specify the size-related features of the trees using the toolbox on the left-hand side (c). 

Each design (tree or rain garden) can be inserted into the areal map or satellite view using the top center 

toolbox in the left-hand window (d). The right-hand window contains several tabs (e) that further assist 
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users in their design. Users can also review the instructions for designing GI features, view the Google ™ 

street view corresponding to their map/satellite view, prepare the features associated with GI practices, and 

save or load GI into their Jupyter notebook for further analysis. The Web application interface (Fig. 3.4) 

allows users to define a tree or rain garden type and geo-locate it in the region of interest.  

The GI representation of the area of interest can become more realistic using IDEAS_GI with the Google 

™ satellite and street view APIs. Once the GI is placed and its design is finalized, users can save GI-related 

designs to HydroShare. Upon saving GI designs to HydroShare, JavaScript Object Notation (JSON) data 

structures containing physical and geographical properties associated with a GI design scenario are stored 

in the user’s Jupyter notebook, which can also be downloaded to the user’s computer for use in simulation 

model executions (see Table 3.2 for details). All of the information in Table 3.2 can be modified in the GI 

Designer Web application using the “Edit GI properties” module (Fig. 3.5). 

Fig. 3.5 shows more realistic views of the region of interest for GI design. The left-hand side shows the 

satellite view of the region, while the right-hand side shows the street view of the same region from the 

Google Pegman™ point of view. The figure contains areal and street-level schematics of the trees and rain 

gardens associated with a hypothetical design. 

 

Fig. 3.5. GI Designer with Google ™ satellite and Google ™ street view interfaces.  
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Table 3.2. Information stored in JSON files and used for further simulation analysis 

Tree feature (units, if applicable) Rain garden features (units, if applicable) 

Patch type (Horse Chestnut, Allegheny 

Serviceberry, American Hornbeam, Common 

Hackberry, American Yellowwood, Honey 

Locust, and SweetGum) 

Total land area (m 2) 

Stratum type (evergreen, eucalyptus, and 

deciduous) 

Latitude and longitude for perimeter border points 

Soil type (clay, silty clay, silt- clay- loam, sandy 

clay, sandy- clay- loam, clay loam, silt, silt loam, 

sand, loamy sand, sandy loam, and rock) 

Soil type (clay, silty clay, silt- clay- loam, sandy 

clay, sandy- clay- loam, clay loam, silt, silt loam, 

sand, loamy sand, sandy loam, and rock) 

Soil depth (m) Soil depth (m) 

Saturated conductivity (m s-1) Saturated conductivity (m s-1) 

Soil porosity (unitless) Soil porosity (unitless) 

Field capacity (unitless) Field capacity (unitless) 

Soil available water content (unitless) Soil available water capacity (unitless) 

Tree size (m2)  

Latitude and longitude of the tree installation 

location 

 

By executing the next cell in the IDEAS_GI Jupyter notebook, the JSON files are imported to the Python 

kernel/ console and input parameters for the hydrologic, air pollutant deposition estimation, and life cycle 

cost models are adjusted according to the design specifications. More details on how the notebook can be 

executed step by step are presented in Appendices B and C. The modelling parameters are discussed in 

more detail in Chapter 4.  
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By running the following cells, the models (i.e. hydrologic, air pollutant deposition estimation, and life 

cycle cost) will be executed and their results will be stored into the Jupyter notebook environment. More 

details on the model types, their assumptions, and outputs are presented in the “Modelling Approaches’ 

section.  

After executing the model, results are visualized to provide a summary overview of the performance of the 

design at the watershed scale. Fig. 3.6 shows a sample of a report page for a hypothetical design. In addition 

to the report page, CSV files are generated upon successful execution of the notebook, which contain 

hydrograph data points at the outlets of subwatershed in which GI designs are implemented. 

Fig. 3.6 contains several sections pertaining to design features, life cycle cost, SWMM 5.0 simulation, and 

air pollutant deposition estimation results as a GI report. The first box (Fig. 3.6a), GI Design Summary, 

contains information on the entire area of the watershed, the number of GI features in the design scenario, 

the total area of GI practices in the design scenario used, and the impervious drainage area that is being 

treated in the design scenario. The second box (Fig. 3.6b) contains information on the costs of GI practices, 

including capital cost, present value of total life cycle cost, annual cost, and present and annual values of 

total life cycle cost per treated area.  The third box (Fig. 3.6c) presents results of a SWMM 5.0 hydrologic 

simulation captured at the watershed outlet after two design storms, including the average flow reduction 

throughout the simulation period, peak flow reductions, cumulative stormwater volume reduction, and 

average and standard deviation of the cumulative total nitrogen mass reduction. It also contains normalized 

hydrologic performance (i.e., divided by the total area that is supposed to be treated via GI) after the two 

design storms. Although the design storms for this case study are pre-defined based on design guidelines 

(Maryland Department of Environment 2009), they can be adjusted according to the modeler’s needs via 

the original uploaded SWMM 5.0 files as well as the report generating HTML files .  
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The next box (Fig. 3.6d), Co-Benefits, contains information on the mean annual ambient air pollutant 

deposition as the example co-benefit category used in this study. In Chapter 4, the justification for selecting 

this co-benefit for IDEAS_GI and the methods for quantification of this category of benefits are presented.  

The last box (Fig. 3.6e) contains a spider chart that compares the results of the latest design scenario to the 

average of previous scenarios that have been executed since the start of the Jupyter session. The chart 

provides a comparative assessment of the design in relation to several analysis metrics (e.g. peak flow, 

cumulative flow volume, nitrogen load for the two design storms, and life cycle cost). HTML files, stored 

within the IDEAS_GI zip folder, are the template files that facilitate the visualization of the GI report.   

The IDEAS_GI Jupyter notebook reads from zipped supporting files, listed in Table 1, that are uploaded to 

a HydroShare account and its associated JupyterHub remote server. To access such files, users need to open 

the Jupyter page and navigate to the work>notebooks folder. Upon execution of the analysis cell within the 

Jupyter notebook, new files are generated and stored in the same folder workspace. The files contain 

simulation results at the subwatershed level for the subwatersheds in which inserted GI designs are located. 

The files, which are stored as CSV, are also accessible for download.  
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Fig. 3.6. Sample of GI report.  The report consists of sections that contain (a) design summary features, (b) life cycle cost estimation outcomes, (c) hydrologic modelling 

performance outcomes, (d) air-pollutant deposition outcomes, and (e) comparative summary of the performance of the design to the average of prior designs.  
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3.3. Modelling approaches  

This section elaborates on the types of GI practices, the categories of benefits, and the modelling practices 

included in the IDEAS_GI software framework. 

3.3.1. Selection of GI practices  

IDEAS_GI is designed mainly for small GI practices (e.g., rain gardens and trees) that can be installed at 

the household level, although their environmental impacts, e.g. stormwater quantity and quality 

management, air pollutant deposition, etc., can extend to the watershed scale and beyond. For the initial 

implementation of this tool, only rain gardens and trees are selected due to their widespread use and general 

applicability to different environments. Trees are presented with 2.5-D schematic representations, while 

rain gardens are only represented with 2-D aerial views (Leonard et al. 2019). The GI schematics (see Fig. 

3.5) are only intended for initial conceptual designs, allowing stormwater practitioners and stakeholders to 

quickly understand the potential impact of GI designs. Users requiring detailed landscape designs and views 

would use Computer Aided Design (CAD) software as discussed in future directions.   

3.3.2. Selection of benefit categories  

As mentioned previously in the “Introduction” section, there is a suite of benefits and costs associated with 

GI implementation. Some of the benefits and costs are not easily quantified, including community cohesion, 

stress and anxiety reduction, and educational benefits. (Hartig et al. 2014; Jiang et al. 2014; Holtan, et al. 

2015; Li and Sullivan 2016). Among the quantifiable categories of benefits and costs, some are highly 

uncertain. For instance, the impact of GI on property values has no consensus in the literature 

(McConnelland Walls 2005; Adelaja et al. 2008). There has been extensive research to quantify the impacts 

of green space on urban heat island mitigation (Gill et al. 2007; Santamouris 2014; Norton et al. 2015; 

Zhang et al. 2017). However due to data needs, complexity of urban heat island modeling, and lack of 

confidence in the impacts of rain gardens on urban heat island (Cameron et al. 2012), this co-benefit is not 

included in IDEAS_GI initially. Therefore, the IDEAS_GI tool is designed to assess GI performance in 
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terms of stormwater peak flow reduction, stormwater volume reduction, stormwater quality improvement, 

life cycle cost, and air pollutant deposition through the life cycle of GI practices (Fig. 3.6b). Due to the 

modular nature of the IDEAS_GI software, tools to evaluate other benefits (e.g. urban heat island, flash 

flooding potential reduction, etc.) can easily be added in the future if desired. 

3.3.3. Cost/benefit assessment models 

As mentioned in Section 3.2 and 3.3.2, the quantitative models within IDEAS_GI estimate and quantify the 

benefits/ costs associated with each design. Fig. 3.7. shows the types of models in IDEAS_GI and their 

links to the other IDEAS_GI components.  

 

Fig. 3.7. Types of quantitative models and their links to other IDEAS_GI components 
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For each design scenario, as GI is inserted into the model, stormwater volume for the simulation period is 

generated using the selected hydrologic model. By executing the generated model with numerous Monte 

Carlo simulations specified by the users, uncertainty bounds and probabilistic distributions of the simulation 

results are computed to assess the GI design scenario performance.  

One key assumption of the SWMM 5.0 model relates to the area contributing stormwater to each GI 

practice. SWMM 5.0 is a lumped model that assumes a portion of each subwatershed, including impervious 

and pervious land, is being treated via the GI practices. The portion treated is usually based on the 

stormwater practitioner’s judgment or detailed engineering technical reports. In the current version of 

IDEAS_GI, the portion of the subwatershed, referred to as the contributing area, is assigned as an uncertain 

parameter. The lower uncertainty bound for the small GI contributing area is equal to the small GI area. 

The upper bound is computed as follows:  

𝑀𝑎𝑥𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑛𝑔 𝑎𝑟𝑒𝑎

=   𝐺𝐼 𝑎𝑟𝑒𝑎 + 
𝐺𝐼 𝑎𝑟𝑒𝑎

𝑠𝑢𝑏𝑤𝑎𝑡𝑒𝑟𝑠ℎ𝑒𝑑 𝑝𝑒𝑟𝑣𝑖𝑜𝑢𝑠 𝑎𝑟𝑒𝑎

∗  𝑠𝑢𝑏𝑤𝑎𝑡𝑒𝑟𝑠ℎ𝑒𝑑 𝑖𝑚𝑝𝑒𝑟𝑣𝑖𝑜𝑢𝑠 𝑎𝑟𝑒𝑎 

 

(Eq. 3.1) 

Eq. 3.1 assumes that small GI at their maximum capacity treat a contributing area smaller than their area 

plus a proportion of the subwatershed impervious area. In other words, the assumption is that the rest of the 

pervious area within the subwatershed should treat the rest of the impervious area. In the next chapter, it 

will be shown that pollutant removal cost does not significantly change, after accounting for uncertainty in 

modelling parameters, once contributing impervious area changes from a proportional portion of the 

subwatershed to the entire available impervious area of the subwatershed. Therefore, proportional 

contributing impervious area can be used as the upper bound in the uncertainties in stormwater quality 

performance assessment.   
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Moreover, initial saturation (i.e. antecedent moisture content) is treated as another uncertain parameter in 

IDEAS_GI, since the effects of initial soil saturation on GI functionality in SWMM has been shown to be 

significant for design storms (Merz and Plate 1997; Davis 2008). It is assumed that soil moisture does not 

fall below the wilting point because GI practices are typically watered in semi-urbanized environments. For 

small GI design purposes, it is assumed that the moisture content does not exceed field capacity, indicating 

that there is enough time lag between storm events to allow the excess moisture to drain from the GI 

practices. In the next chapter, the complete ranges for all the uncertain parameters required for the SWMM 

and cost/benefit models used in this study are demonstrated.  

To model rain garden practices, the pre-defined rain garden practices are used in SWMM 5.0. Once users 

specify rain garden parameters via the GI Designer Web application, IDEAS_GI uses the relevant 

parameters, based on the inputs given by the users (highlighted in Table 3.2), and generates new SWMM 

5.0 input files. The location feature is used to overlay the rain garden and tree area over the area specified 

by the SWMM 5.0 subwatersheds. In the instruction manuals for the supporting files (see Appendix D), the 

approach used for defining the relative coordinates for the SWMM model subwatershed boundaries is 

described. If the geo-locations of the subwatershed boundaries are defined accurately in SWMM 5.0, each 

rain garden and tree within the area of the watershed will be inserted into at least one subwatershed. If the 

area of the rain garden overlays multiple subwatersheds, the subwatershed that includes most of the area 

(>90%) is assumed to contain the entire rain garden area. Otherwise, the rain garden area is allocated 

proportionally among all of the subwatersheds that it overlays. The other soil-related parameters are 

imported directly into the rain garden module in the SWMM 5.0 model. To model stormwater capture of 

trees in SWMM, rain barrels with a geo-location equal to the location of the inserted tree are sued. The 

storage volume of rain barrels is assumed to be equal to the Leaf Area Index multiplied by a storage factor, 

which is a function of stratum type (Tague and Band 2004b). Since there is little evidence on the 

significance of stormwater nutrient treatment using trees (Denman et al. 2006; Read et al. 2008), stormwater 

treatment is excluded from the tree benefits estimation.  
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Once the SWMM 5.0 models are executed, masses of pollutants are compared to a baseline scenario, in 

which there is no GI present, and the flows are calibrated with data specific to the watershed area. In the 

next chapter, the modelling parameters and approaches used in SWMM 5.0 to quantify the uncertainties of 

pollutant masses at watershed and subwatershed outlets across the case study watersheds are specified. The 

baseline time series are located within CSV supporting files, to which results of SWMM 5.0 simulations 

are compared. The comparison includes total cumulative flow reduction, total pollutant load reduction, peak 

flow reduction and average flow reduction at the watershed outlet throughout the entire simulation period.  

To determine the life cycle cost of GI practices, the WERF SELECT model is used (WERF 2015). The 

model provides a flexible framework in which maintenance and life cycle costs of GI practices can be 

computed by entering user-specified parameters (e.g., installation type, maintenance frequency, and unit 

construction cost). The WERF model follows engineering economics concepts to determine return on 

investment of GI practices. To implement the model, it is extracted it from spreadsheets and embedded it 

as a function in the IDEAS_GI Python script.  

To determine the extent of air pollutant deposition, empirical deposition equations were deployed from the 

i-Tree Streets Model (Soares et al. 2011). This model estimates the mass of air pollutants that potentially 

deposit over the leaf area of GI practices throughout their life cycle. As with the cost estimation model, the 

empirical deposition equations were extracted and implemented them in the IDEAS_GI Python script with 

uncertainty ranges for ozone (O3), particulate matter (PM2.5), sulfur dioxide (SO2), nitrogen dioxide (NO2), 

and carbon monoxide (CO) throughout the entire simulation period. The simulation period for air pollutant 

deposition is different from the simulation period used for design storms, which is a few hours after the 

termination of rainfall. The air pollutant simulation period relies on the time-period specified by the users 

in the supporting files and should be at least a year, since the air pollutant deposition values are reported on 

an annual basis. For each day within the simulation period, average daily concentrations of each pollutant 

should be included in the supporting CSV files. It is assumed that the concentrations are uniformly 

distributed throughout the day and then, using empirical models from the i-Tree Streets model (Nowak et 
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al. 2006), the amount of pollutant deposition over the leaf surface area of the rain gardens and trees is 

computed for each scenario. The bounds for all uncertain parameters is provided in appendices G and H, 

which allows IDEAS_GI to provide ranges of results using Monte Carlo simulation for all categories of 

benefits and costs.  

3.4. Application of IDEAS_GI to case studies  

The two watersheds presented in Chapter 2, Dead Run and Stoney Run, serve as case studies for 

demonstrating IDEAS’ capabilities.  

3.4.1. Required steps to execute the two case studies 

The two case studies demonstrate two different ways that users can apply IDEAS. IDEAS_GI has been 

programmed and designed to handle Dead Run (DR5) as an embedded case study. Therefore, supporting 

files for Case Study I (See Fig. 3.3 and Table 3.1) are stored in the IDEAS_GI zip folder when users run 

IDEAS_GI for the first time. This means that users are already equipped with SWMM 5.0 models, results 

of the baseline simulation, and a database of annual ambient air pollutant concentrations. As a result, users 

only need to log in to HydroShare, navigate to the resource page, follow instructions to access IDEAS_GI 

Jupyter notebook, and then easily design GI scenarios using GI Designer and produce results in the output 

report (Fig. 3.8a).  

However, IDEAS_GI is also capable of assessing performance of GI practices at other locations, as 

illustrated by Case Study II, Stoney Run Watershed. As mentioned previously, users can execute 

IDEAS_GI for their region and time frame of choice using the supporting documentation to guide them. 

Users can also modify the scripts to adjust parameters to their region of interest. The IDEAS_GI package, 

accessible on HydroShare, contains two Jupyter notebooks, i.e. “IDEAS_GI_DeadRun” and “IDEAS_GI”, 

“IDEAS_GI” notebook is the generic implementation for any watershed. Fig. 3.8 shows the steps required 

for each of the case studies.  
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Accessing the second version (Fig. 3.8b) requires similar steps to the first notebook. However, the second 

notebook requires users to upload SWMM 5.0 data and a model for their case study area into the Jupyter 

environment. Users also need to upload a database of the supporting files (see Table 3.1) specific to the 

case study area to the Jupyter compute environment. Then users navigate to the Jupyter IDEAS_GI 

notebook and execute initial cells to run baseline scenarios, as well as specify parameters needed for their 

analysis (e.g. period of the analysis and number of iterations that SWMM 5.0 models should be executed 

to generate probabilistic distributions of GI performance). The remaining steps (Fig. 3.8b) are similar to 

those of Case Study I with a pre-implemented SWMM 5.0 model. Appendix D shows the instructions and 

required parameters to run the second case study. More details about this version of IDEAS is provided in 

Appendices C and D.   

 

 

Fig. 3.8. Steps taken for the two case studies, demonstrating pre-implemented models (a. Case Study I) and generic models 

(b. Case Study II)  
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3.5. Results and discussion  

In this section, the results of IDEAS_GI executions to address two different questions are discussed: 

• How do IDEAS_GI simulation results differ between Case Study I and Case Study II (DR5 and 

SR5, respectively) for similar coverages of GI treatments? 

• How do soil depth, soil type, stratum type, and stratum size affect stormwater capture and treatment 

results?  

The first question addresses how implementation scale affects simulation results. Within the IDEAS_GI 

environment, in addition to location and geometric shape of GI features, users need to either specify or use 

pre-defined parameters to execute every GI scenario (Figs. 3.4d, and 3.4c). The parameters for rain gardens 

are soil depth and type, while trees require size, stratum type and species type. The second question focuses 

on how these parameters affect the results for the DR5 watershed, since the overall reduction of stormwater 

volume and peak flow were higher in DR5 compared to SR5. Moreover, SR5 had only a few potential 

locations to insert trees, and therefore it was not a representative case study to show the magnitude of tree 

impacts.  

3.5.1. Comparison of Case Study I and II simulation results  

To compare simulation results between the two watersheds, several design scenarios are defined in which 

a certain percentage of the total area available for GI implementation is allocated to GI, specifically rain 

garden practices. Then, benefits of the design scenarios are computed and compared for the two watersheds 

across 750 Monte Carlo simulations for all design scenarios. This minimum number of iterations was 

selected by simulating 100, 250, 500, 750, 1000, 1250, 1500, and 2000 Monte Carlo iterations for one 

individual subwatershed and observing the minimum value when the distribution of the total nitrogen load 

are stabilized.  Table 3.3 shows the results of the simulations for each scenario with different percentages 

of impervious area treated by GI.  
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As shown in Table 3.3, with an increase in overall GI implementation in the two watersheds, absorbed 

storm water volume increases during the two design storms and peak flow decreases as expected. However, 

the rate of change in additional benefits provided through GI implementation does not increase linearly 

with more GI implementation.  

It can be observed that, considering uncertainties in both nitrogen reduction and removal through treatment 

facilitated by GI, the amount of reduced nitrogen does not vary significantly across the GI coverage 

scenarios. This observation suggests that GI nitrogen treatment reaches its maximum capacity at a 

percentage equal to or lower than 16% for the two watersheds under the two design storms. It can be 

concluded that stormwater volume reduction and treatment, once normalized by the subwatershed area of 

GI, are generally larger for scenarios with a lower percentage of GI than those with higher coverages, with 

the modelling assumption used in this case study, (routing, lack of exchange between stormwater and 

underground water tables, etc.). This shows that covering the entire available area with GI does not yield 

higher efficiency in stormwater treatment and capture.  

Furthermore, comparing the two watersheds together, we notice that the percentages of stormwater volume 

removal and peak flow reduction are significantly lower for SR5 compared to DR5. In fact, the percentages 

in volume reduction for the DR5 watershed were higher than those for SR5, 5.0% ± 0.3% vs 0.6% ± 0.3% 

and 4.4% ± 1.1% vs 1.2% ± 0.1% for the 2-year design storm and 10-year design storm, respectively, 

compared to the SR5 watershed. Also, the percentages in peak flow reduction for the DR5 watershed were 

higher than those for SR5, 4.5% ± 0.3% vs 1.0% ± 0.5% and 0.43% ± 0.03% vs 0.08% ± 0.04% for the 2-

year design storm and 10-year design storm respectively, compared to SR5. SR5 is a highly urbanized 

watershed with few locations suitable for rain garden implementation. Since the volume of the two design 

storms is large, and the total area that is suitable for GI implementation is relatively small, the reduced 

portion of stormwater volume and peak flow is also relatively small. Also, as mentioned previously, IDEAS 

is also capable of air pollutant deposition and life cycle cost estimation. Appendix E contains results for 

these parameters for all design scenarios presented in Table 3.3. 
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Table 3.3. Performance of different rain garden scenarios for stormwater capture and treatment in each of the two case study watersheds at their respective watershed 

outlets (Number in parenthesis is the percentage reduction in comparison to the baseline.) 

DR5 

 2-year storm lasting for 120 minutes (4.3 cm of the rainfall) 10-year storm lasting for 120 minutes (6.6 cm of the rainfall) 

Percentage rain garden 

coverage 

Peak flow Reduction 

[m3s-1] (%) 

Total volume reduction 

[m3] (%)  

Total nitrogen load 

reduction (gr) 

Peak flow Reduction 

[m3s-1] (%) 

Total volume reduction 

[m3] (%) 

Total nitrogen load 

reduction (gr) 

100 0.151 (4.93) 870 (5.49) 63.3 ± 15.1 0.248 (0.48) 1653 (5.43) 124.8 ±31.6 

75 0.144 (4.68) 826 (5.21) 64.4 ± 16.8 0.234 (0.46) 1568 (5.15) 126.5 ±35.0 

64 0.140 (4.56) 805 (5.07) 66.1 ± 16.0 0.228 (0.44) 1530 (5.03) 129.9 ± 33.2 

50 0.136 (4.42) 780 (4.92) 66.7 ± 19.7 0.220 (0.43) 1482 (4.87) 130.6 ± 40.5 

32 0.130 (4.23) 744 (4.70) 66.1 ± 19.3 0.210 (0.41) 1419 (4.66) 129.2 ± 39.7 

16 0.124 (4.03) 708 (4.46) 67.6 ±21.00 0.200 (0.39) 1357 (4.46) 131.7 ± 42.7 

Baseline Scenario Peak flow [m3s-1] 3.072  Total volume [m3]  

15846 

Total nitrogen load (gr) 

3931.2 

Peak flow [m3s-1]  

51.622 

Total volume [m3]  

30450 

Total nitrogen load (gr) 

5768.7 

SR5 

100 0.007 (1.44) 28 (1.03) 9.0 ± 3.6 0.011 (0.14) 60 (1.24) 16.2 ± 6.6 

75 0.008 (1.56) 22 (0.82) 9.2 ± 3.7 0.008 (0.10) 58 (1.21) 16.5 ± 6.7 

64 0.006 (1.32) 18 (0.65) 9.0 ± 3.8 0.007 (0.08) 58 (1.21) 16.0 ± 6.9 

50 0.004 (0.91) 14 (0.51) 9.3 ± 3.8 0.006 (0.08) 57 (1.20) 16.4 ± 6.8 

32 0.002 (0.44) 8 (0.29) 9.3 ± 4.0 0.004 (0.05) 57 (1.19) 16.5 ± 7.0 

16 0.001 (0.30) 5 (0.17) 9.4 ± 4.2 0.003 (0.03) 57 (1.20) 16.6 ± 7.4 

Baseline Scenario Peak flow [m3s-1] 

0.482  

Total volume [m3] 

2740 

Total nitrogen load 

(gr) 314.5 

Peak flow [m3s-1]  

7.909 

Total volume [m3]  

4825 

Total nitrogen load (gr) 

461.5  
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Next, to see how these findings translate to real-world conditions, the performance of the GI networks is 

assessed for continuous rainfall records between 2007 and 2010. The number of Monte Carlo simulations 

used in this section is the same as for the previous analysis conducted for design storms. Table 3.4 shows 

the magnitude and percentage of reductions in peak flow, total flow volume, and total nitrogen load at the 

two watershed outlets for the three-year rainfall period. The percentage reduction in peak flow falls between 

that of the 2-year and 10-year design storms, suggesting that the most intense storm within the three-year 

period had an intensity higher than the 2-year storm and lower than the 10-year storm.  

Also, similar to the design storms, the percentage of stormwater volume that was reduced via GI is not 

significant. Although implementation of GI reduces the intensity of peak flow, the stormwater eventually 

follows its route to the outlet, assuming enough time has passed after the end of rainfall and the time of 

concentration. On the other hand, the reductions in nitrogen load are more significant than storm water 

volume and peak flow. This is due to the SWMM model assumption that a nutrient/ pollutant deposited on 

GI is removed from the system and does not end up in the watershed outlet.  
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Table 3.4. Performance of different rain garden scenarios for stormwater capture and treatment in each of the two case study watersheds at their respective watershed 

outlets (Number in parenthesis is the percentage reduction in comparison to the baseline.) 

DR5 

Percentage rain garden coverage Peak flow Reduction [m3s-1] (%) Total volume reduction [m3] (%)  Total nitrogen load reduction (gr) 

100 0.31 (3.1) 178,300 (4.2) 15,600 ± 2,200 

64 0.28 (2.8) 172,904 (4.0) 14,690 ± 2,260 

32 0.26 (2.6) 88,950 (2.1) 12,450 ± 2,400 

Baseline Scenario Peak flow [m3s-1] 10 Total volume [m3]  

4,277,500 

Total nitrogen load (gr) 131,720 

SR5 

100 0.019 (1.1) 10,600 (3.1) 770 ± 50 

64 0.017 (1.0) 8550 (2.5) 720 ± 35 

32 0.014 (0.8) 4100 (1.2) 630 ± 20 

Baseline Scenario Peak flow [m3s-1] 

1.751 

Total volume [m3] 

342,200 

Total nitrogen load 

(gr) 10,537 
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3.5.2. Effect of GI design parameters on simulation results   

To assess how the design features that users can specify via GI Designer affect the simulation results, two 

design scenarios for both trees and rain gardens were created. One design scenario consists of 3900 m2 of 

rain garden coverage across all potential pervious areas in four small subwatersheds in DR5. The second 

scenario consists of 133 tree installations covering the entire potential pervious area in the same four 

subwatersheds in DR5. The scenarios, detailed in Appendix F, explore how the soils and stratum parameters 

affect the design performance. The Jupyter notebook is executed for each scenario and the results are stored 

as CSV files in the JupyterHub environment. The simulation results at the subwatershed level are 

summarized in Tables 3.5-3.7 for different types and depths of raingarden soil and different sizes and 

stratum types for tree installations, respectively. The baseline scenario, in which there are no trees and 

raingardens inserted, computes flow and nitrogen load throughout the design storm simulation period, in 

addition to time of concentration, at the four subwatershed outlets.  

Table 3.5 shows that the amount of peak flow reduction, stormwater volume reduction, and nitrogen uptake 

at the four subwatershed outlets does not change significantly among different soil types, even for rain 

gardens with high hydraulic conductivity soils. Note that when a soil type is changed, all of its parameters, 

including suction head and hydraulic conductivity, are also changed to generate the results presented in 

Table 3.5. The table shows the hydraulic parameter values, soil suction head, and initial moisture deficit 

for each soil type at a soil depth of 0.5 meters, which is the median soil depth among the three depths 

available in IDEAS_GI (0.25m, 0.5m, 1m).  

The only parameter that seems to slightly affect stormwater capture and treatment is the depth of rain 

gardens, as shown in Table 3.6. To generate Table 3.6, soil depth is varied while soil type is consistent, i.e. 

clay, across all scenarios. According to the table, an increase in the depth of rain gardens results in a slight 

increase in stormwater capture and nutrient load reduction. Therefore, it can be concluded that using the 

presented modelling assumptions and approaches, and more importantly the magnitude of design storms, 

cumulative benefits even at the subwatershed scale show no significant differences between different soil 
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types from rain gardens and trees as small GI practices. From another point of view, once GI coverage 

increases across the watershed, the cumulative effects of the network of GI practices show higher reductions 

in peak flow and cumulative volume of absorbed stormwater (see DR5 case in Table 3.3).  

Comparing the performance of the rain garden installations between the two design storms for each of the 

soil types (see Table 3.5), it can be noticed that volume and peak flow reductions for the 10-year design 

storm is almost 1.5 times more than that of the 2-year design storm. However, the percentage reduction in 

peak flow and cumulative stormwater volume is not significantly different between the two design storms. 

Note that the reduction in peak flow and storm water volume for the two storms are small even at the 

subwatershed outlets, meaning that even numerous installations of rain garden and trees do not have 

significant overall impact for the given design storms.  

Table 3.6 shows the results of simulations for different soil depths, again for numerous rain garden 

installations. The results show a slight dependence of the results, computed at subwatershed scale, on the 

soil depth of the rain gardens. Rain gardens with a depth of one meter perform slightly better in stormwater 

capture and treatment in comparison to the rain gardens with lower depths. Despite the fact that the 

simulation results are compared at the four subwatershed outlets between baseline and design scenarios, 

and not at the watershed outlet, the impacts of the installations are small. More importantly, the design 

storms used in this study, although selected based on Maryland design guidelines, have a high rainfall 

volume. The magnitude and intensity of the rainfalls is a contributing factor in the low performance of small 

GI practices in capturing and treating stormwater in this case study.  

Table 3.7 shows the results of stratum type and tree size on the hydrologic performance of trees for 

stormwater capture and treatment. The design scenario consists of 133 installations, which is the total 

number of available locations for tree implementation, of three tree types (deciduous, eucalyptus, and 

evergreen) across four subwatersheds in DR5 Watershed. The locations of the tree installations can be found 

in Appendix E. Among the three canopy types that IDEAS_GI is capable of simulating (Leonard et al. 
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2018), deciduous performs slightly better in comparison to the other species.  Deciduous has a higher 

storage factor, 0.197, in comparison to those of the other two stratum types (0.0094, and 0.0394). As a 

result, the surrogate rain barrels, designed to represent trees in SWMM 5.0, have a higher storage volume, 

resulting in significantly larger reductions in stormwater volume.  

Also, an increase in tree size generally increases stormwater capture and peak flow reduction, since a larger 

tree has more leaf surface area to intercept stormwater. However, for such large storms, implementation of 

GI practices do not result in tangible hydrological benefits. A network of green infrastructure practices 

merged with conventional gray infrastructure practices may be a more viable solution to mitigate 

stormwater volume and peak flow reduction (Wang et al. 2013).  
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Table 3.5. Effect of soil type in stormwater capture and treatment at the DR5 subwatershed outlets in the rain garden scenario (numbers in parentheses show reductions 

in percentages compared to baseline scenario.) 

 2-year storm lasting for 120 minutes (4.3 cm depth of the rainfall) 10-year storm lasting for 120 minutes (6.6 cm depth of the rainfall) 

Soil type [average hydraulic 

conductivity (cm/hr), average 

capillary suction head (cm), 

Initial moisture deficit as 

fraction] 

Peak flow 

reduction range 

[m3s-1] (%) 

Total volume 

reduction range 

[m3] (%) 

Total nitrogen load 

reduction range 

(gr) 

Peak flow Reduction 

[m3s-1] range (%) 

Total volume 

reduction range 

[m3] (%) 

Total nitrogen 

load reduction 

range (gr) 

Sand [23.5, 4.9, 0.346] 0.02± 0.01 (1.1± 

0.5%) 

1.3± 0.6 (1.0± 0.7%) 1.0 ± 0.7 0.03± 0.01 (0.9± 0.4%) 2.4± 1.1 (0.8± 

0.4%) 

1.7 ± 1.0 

Loamy-Sand [6.0, 6.1, 0.312] 0.02± 0.01 (1.1± 

0.5%) 

1.3± 0.6 (1.0± 0.7%) 1.0 ± 0.7 0.03± 0.01 (0.9± 0.4%) 2.4± 1.1 (0.8± 

0.4%) 

1.7 ± 1.0 

Sandy-Loam [2.2, 11.0, 0.246] 0.02± 0.01 (1.1± 

0.5%) 

1.3± 0.6 (1.0± 0.7%) 1.0 ± 0.7 0.03± 0.01 (0.9± 0.4%) 2.4± 1.1 (0.8± 

0.4%) 

1.7 ± 1.0 

Silt-Loam [0.68, 16.7, 0.171] 0.02± 0.01 (1.1± 

0.5%) 

1.3± 0.6 (1.0± 0.7%) 1.0 ± 0.7 0.03± 0.01 (0.9± 0.4%) 2.4± 1.1 (0.8± 

0.4%) 

1.7 ± 1.0 

Loam [1.3, 8.9, 0.193] 0.02± 0.01 (1.1± 

0.5%) 

1.3± 0.6 (1.0± 0.7%) 1.0 ± 0.7 0.03± 0.01 (0.9± 0.4%) 2.4± 1.1 (0.8± 

0.4%) 

1.7 ± 1.0 
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Table 3.5 (cont.) Effect of soil type in stormwater capture and treatment at the DR5 subwatershed outlets in the rain garden scenario (numbers in parentheses show 

reductions in percentages compared to baseline scenario.) 

 2-year storm lasting for 120 minutes (4.3 cm depth of the rainfall) 10-year storm lasting for 120 minutes (6.6 cm depth of the rainfall) 

Soil type [hydraulic 

conductivity (cm/hr), 

capillary suction head 

(cm), Initial moisture 

deficit] 

Peak flow 

reduction range 

[m3s-1] (%) 

Total volume 

reduction range [m3] 

(%) 

Total nitrogen load 

reduction range (gr) 

Peak flow Reduction 

[m3s-1] range (%) 

Total volume 

reduction range [m3] 

(%) 

Total nitrogen load 

reduction range (gr) 

Sandy-Clay-Loam [0.3, 

21.9, 0.143] 

0.02± 0.01 (1.1± 

0.5%) 

1.3± 0.6 (1.0± 0.7%) 1.0 ± 0.7 0.03± 0.01 (0.9± 

0.4%) 

2.4± 1.1 (0.8± 0.4%) 1.7 ± 1.0 

Clay-Loam [0.2, 20.1, 

0.146] 

0.02± 0.01 (1.1± 

0.5%) 

1.3± 0.6 (1.0± 0.7%) 1.0 ± 0.7 0.03± 0.01 (0.9± 

0.4%) 

2.4± 1.1 (0.8± 0.4%) 1.7 ± 1.0 

Sandy-Clay [0.12, 23.9, 

0.091] 

0.02± 0.01 (1.1± 

0.5%) 

1.3± 0.6 (1.0± 0.7%) 1.0 ± 0.7 0.03± 0.01 (0.9± 

0.4%) 

2.4± 1.1 (0.8± 0.4%) 1.7 ± 1.0 

Silty-Clay-Loam [0.2, 

27.3, 0.105] 

0.02± 0.01 (1.1± 

0.5%) 

1.3± 0.6 (1.0± 0.7%) 1.0 ± 0.7 0.03± 0.01 (0.9± 

0.4%) 

2.4± 1.1 (0.8± 0.4%) 1.7 ± 1.0 

Clay [0.06, 31.6, 0.079] 0.02± 0.01 (1.1± 

0.5%) 

1.3± 0.6 (1.0± 0.7%) 1.0 ± 0.7 0.03± 0.01 (0.9± 

0.4%) 

2.4± 1.1 (0.8± 0.4%) 1.7 ± 1.0 

Silt-Clay [0.1, 29.2, 0.092] 0.02± 0.01 (1.1± 

0.5%) 

1.3± 0.6 (1.0± 0.7%) 1.0 ± 0.7 0.03± 0.01 (0.9± 

0.4%) 

2.4± 1.1 (0.8± 0.4%) 1.7 ± 1.0 
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Table 3.6. Effect of soil depth in stormwater capture and treatment at the DR5 subwatershed outlets in the rain garden scenario (numbers in parentheses show 

reductions in percentages compared to baseline scenario.) 

Depth 

(Meter) 

Peak flow reduction 

range [m3s-1] (%) 

Total volume 

reduction range 

[m3] (%) 

Total nitrogen load 

reduction (gr) 

Peak flow reduction 

range [m3s-1] (%) 

Total volume 

reduction range  

[m3] (%) 

Total nitrogen load 

reduction range  

(gr) 

0.25 0.02± 0.01 (1.1± 

0.5%) 

1.3± 0.6 (1.0± 

0.7%) 

1.0 ± 0.7 0.03± 0.01 (0.9± 

0.4%) 

2.4± 1.1 (0.8± 

0.4%) 

1.7 ± 1.0 

0.5 0.02± 0.01 (1.1± 

0.5%) 

1.3± 0.6 (1.0± 

0.7%) 

1.0 ± 0.7 0.03± 0.01 (0.9± 

0.4%) 

2.4± 1.1 (0.8± 

0.4%) 

1.7 ± 1.0 

1 0.02± 0.01 (1.1± 

0.5%) 

1.3± 0.6 (1.0± 

0.7%) 

1.2 ± 0.5 0.03± 0.01 (0.9± 

0.4%) 

2.4± 1.1 (0.8± 

0.4%) 

2.0 ± 1.0 
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Table 3.7. Effects of stratum type and tree size on stormwater capture and treatment at the DR5 subwatershed outlets in the tree scenario (numbers in parentheses show 

reductions in percentages compared to baseline scenario.) 

 2-year storm lasting 120 minutes (4.3 cm rainfall depth) 10-year storm lasting 120 minutes (6.6 cm rainfall depth) 

Stratum type 

Peak flow Reduction [m3s-1] 

(%) 

Total volume reduction [m3] 

(%) 

Peak flow Reduction [m3s-1] 

(%) 

Total volume reduction [m3] 

(%) 

Evergreen 0.02± 0.01 (1.1± 0.5 %) 1.0± 0.7 (0.9± 0.7%) 0.02± 0.02(0.8± 0.5%) 1.8± 1.4 (0.7± 0.4%) 

Eucalypt 0.02± 0.01 (1.1± 0.5 %) 1.0± 0.7 (0.9± 0.7%) 0.02± 0.02(0.8± 0.5%) 1.8± 1.4 (0.7± 0.4%) 

Deciduous 0.03± 0.01 (1.6± 0.5 %) 1.0± 0.7 (0.9± 0.7%) 0.03± 0.02(1.2± 0.5%) 1.8± 1.4 (0.7± 0.4%) 

Tree size 

(radius) 

Peak flow Reduction [m3s-1] 

(%) 

Total volume reduction [m3] 

(%) 

Peak flow Reduction [m3s-1] 

(%) 

Total volume reduction [m3] 

(%) 

Large (4 ft) 0.02± 0.01 (1.1± 0.5 %) 1.0± 0.7 (0.9± 0.7%) 0.02± 0.02(0.8± 0.5%) 1.8± 1.4 (0.7± 0.4%) 

Medium (2 ft) 0.02± 0.01 (1.1± 0.5 %) 1.0± 0.7 (0.9± 0.7%) 0.02± 0.02 (0.8± 0.5%) 1.8± 1.4 (0.7± 0.4%) 

Small (1 ft) 0.02± 0.01 (1.1± 0.5 %) 1.0± 0.7 (0.9± 0.7%) 0.02± 0.02(0.8± 0.5%) 1.8± 1.4 (0.7± 0.4%) 
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3.6. Summary of the case study results 

Several sets of simulations were conducted to assess the sensitivity of the simulation results to GI 

parameters, as well as the difference in simulation results across the two case studies in portions of Stoney 

Run and Dead Run Watersheds in Baltimore City and County, respectively.  The results show that variations 

in soil depth and rain garden parameters do not lead to tangible reductions in peak flow and cumulative 

flow at the DR5 outlet for the design storms specified by the government design manuals used in this study. 

Also, the choice of storm event frequency greatly affects the significance of GI design, even after 

implementing GI at all potential locations across a watershed, to the extent that the GI installations might 

not show promising stormwater volume and peak flow reduction under some design storms. Therefore, 

future research can further investigate the magnitude of design storms that are most suitable and practical 

in the design guidelines for small GI practices.  

Comparing the simulation results for both design storms and continuous rainfall records in SR5 and DR5 

watersheds, the effects of GI practices in SR5, which is smaller and highly urbanized, are not as significant 

as in DR5, even after implementation in all potential locations across the watershed. DR5 is a semi-

urbanized watershed with considerably more suitable area to implement GI practices, which enables higher 

benefits. Future research is needed to further investigate the impacts of different types of GI, including 

larger-scale and networks of GI, in other types of watersheds and for different design storms.  

Moreover, the overall percentages of reductions in peak flow and stormwater volume for continuous rainfall 

records are not significantly higher than those for the design storms. This observation suggests that the 

rainfalls within the three-year simulation period were similar to the design storms and that most of the 

stormwater captured across the watershed via GI eventually finds its way to the watershed outlet. However, 

nitrogen load reduction shows more promise over the long term, suggesting that more focus should be given 

to design for stormwater quality improvement via GI practices.  
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The next chapter explores the stormwater-related performance and other benefits/costs associated with 

different GI networks at different spatial scales in more depth. IDEAS_GI is used for detection of potential 

locations for GI implementation and preliminary assessment of GI performance prior to a more detailed 

design and planning process.  

 

3.7. IDEAS_GI capabilities and future development directions 

The IDEAS_GI software provides an interface for interactive modelling of GI practices at site to watershed 

scales. Considering the scope and features, Table 3.8 summarizes how IDEAS_GI can address specific 

needs of different types of users.  

Table 3.8. Potential IDEAS_GI users for different applications 

User Application  

Stormwater engineers and planners Initial off-site assessment of GI installation 

feasibility  

Property owners  Preliminary analysis of GI-provided costs and 

benefits, previews of GI appearance after 

installation 

Municipalities as potential large-scale planners Simulation of watershed behavior after 

implementation of numerous GI practices 

throughout the network of subwatersheds. 

Identification of the most promising areas for more 

detailed investigations of GI suitability.  

IDEAS_GI is open source and allows users to upload datasets and models of any watershed, navigate to the 

latitude and longitude of interest, insert GI practices, and obtain preliminary estimates of costs and benefits 

of such practices. The software also provides a framework for other modelling practices to be merged with 

the Google ™ Satellite-view and Google™ Street-view editors. 
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IDEAS_GI provides a reasonable representation of estimated hydrographs based on selections of routing 

time steps, routing method, infiltration method, resolution of subwatersheds, and parameters used for each 

subwatershed. Therefore, IDEAS_GI users must calibrate and verify their models to address these factors 

prior to uploading to the Jupyter environment. The hydrologic/hydraulic models that are coupled with 

IDEAS_GI can vary in terms of execution time, spatial and time scale, routing and infiltration approaches, 

and rainfall duration. Therefore, IDEAS_GI can assist hydrologists, engineers, and practitioners as a 

flexible modeling package with an interactive representation of landscapes that can be shared with 

stakeholders to support GI implementation. IDEAS_GI can also provide a comparative estimation of how 

GI design scenarios perform in terms of stormwater quantity reduction and quality improvement in 

comparison to other scenarios.     

IDEAS_GI was presented at a workshop entitled “IDEAS_GI Software: Interactive Visual Design Tool for 

Exploring Green Infrastructure Potential at Neighborhood to Watershed Scales” in April 2017 at the USGS 

Center in Catonsville, MD. The workshop involved practitioners and stormwater engineers, mostly from 

the Baltimore area. Participants found the tool useful in providing insights on cost/benefit assessments of 

future GI practices. One future direction, based on the feedback received from participants, is to 

demonstrate the degree of mitigation in flood hazard potential and associated costs for each type of GI 

design. Rivera (2018) used data-driven approaches to assess changes in flash and river flooding potential, 

considering social vulnerability and urban heat island. Future versions of the software can incorporate such 

approaches.  

Attendees were also interested in adding a feature to assess the impervious area treated for each design. 

According to Maryland Department of Environment regulations, property owners are required to allocate 

20% of their pervious land to GI practices in order to treat their respective impervious land, thus satisfying 

a municipal separate storm sewer system (MS4) permit (Maryland Department of the Environment 2009). 

Thus, attendees wanted to see if the IDEAS_GI  tool can specify geographic areal boundaries of the area 

treated for each GI practice. Leonard et al. (2019) introduced the IDEAS_GI version merged with 
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RHESSys, which provides a high-resolution patch-based map in which contributing cells to every patch 

have already been assigned. Future versions of the software would integrate the two modelling approaches 

to address this need. 

IDEAS_GI can also be used to investigate whether candidate designs will help municipalities meet 

stormwater-related objectives or regulations, e.g. Total Maximum Daily Load (TMDL) management. 

Incentives (e.g., stormwater trading permits, taxes, or rebates) can be applied at neighborhood or watershed 

scales to encourage sufficient GI installation.  Therefore, one future software development path would add 

a capability in IDEAS_GI to examine whether GI designs are complying with regulations. Considering the 

ranges of uncertainties that IDEAS_GI provides for every design scenario, the software could provide a 

probability that a given scenario will meet environmental regulations in the case study area. IDEAS_GI 

could also be adapted to assess the impacts of proposed regulations on GI installation and performance. 

Lastly, workshop attendees discussed that more realistic representations of rain gardens and bioswales 

could encourage users, particularly homeowners, to implement GI. Regarding co-benefits, sustainability 

offices and advocates as well as capital investors might also be interested to use IDEAS_GI to justify their 

investments.  Having a more realistic representation of GI implementations in neighborhoods should assist 

decision makers and planners in assessing and communicating the benefits of proposed installations, thus 

facilitating GI installation at larger scales. This can then support more detailed design studies at the most 

promising locations. 
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Chapter 4: Spatial Scale Effects on Uncertainty and Sensitivity in Green 

Infrastructure Cost/Benefit Assessment 

4.1. Introduction 

GI has been implemented increasingly throughout the US as an environmental amenity, mostly as individual 

projects by the private sector (i.e., property owners), rather than integrated, community-wide efforts (Young 

2011). One significant barrier to community-wide planning is the lack of standardized modeling approaches 

as well as consideration of uncertainty (Nylen and Kiparsky 2015). As mentioned in Chapter 1, there are a 

myriad of tools to address GI design and performance assessment, each having their own specific features 

and limitations ( Zoppou 2001; Elliott and Trowsdale 2007; Jayasooriya and Ng 2014). These tools don’t 

assess co-benefits or cost/benefit impacts at multiple scales to assess whether GI investment is financially 

justifiable. Also, since they use deterministic simulation models, they do not assess how uncertainties 

inherent in the modeling approaches affect their results (CNT 2010; Environmental Protection Agency 

2014). More detailed cost/benefit analyses are needed to better inform practitioners of the outcomes of their 

investments and potentially lead to more use of GI (Vandermeulen et al. 2011). These shortcomings are 

some of the reasons that such tools are not widely used for real-world decision-making.  

In the peer-reviewed literature, Niu et al. (2010) have analyzed benefits and costs of green roof 

technologies, with more focus on energy savings, relative to conventional roof systems in Washington DC. 

Liu et al. (2016) have also conducted a cost-benefit analysis of different green infrastructure options in a 

case study in Beijing. However, neither of these studies considered the impacts of uncertainty and spatial 

scales. Clark et al. (2008) performed a probabilistic economic analysis of the environmental benefits of 

green roofs, but focused solely on a single installation.  Kousky et al. (2013) estimated avoided flood 

damages in a case study in Wisconsin, and concluded that with careful placing of green infrastructure in a 

watershed, benefits can exceed costs. However, they did not address uncertainty and focused solely on 

flooding reduction. Some other studies have primarily focused on comparative trade-off analyses between 

green and gray (i.e. conventional drainage and pipe system) stormwater infrastructure using a regret-based 
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approach and life cycle assessment (Casal-Campos et al. 2015; Wang et al. 2013). These studies 

demonstrate that combinations of gray and green infrastructure provide a more robust option for combined 

sewer overflow (CSO) reduction and water quality improvement compared to using each option 

individually.  

To build on this work, this study analyzes the uncertainty of GI benefits and costs at multiple spatial scales 

(i.e. household, subwatershed and watershed scales) for the DR5 case study watershed described in Chapter 

2. To compute benefits and costs of GI practices, two analysis metrics are used: Benefit-Cost Ratio (BCR) 

and nutrient removal costs from stormwater. It is worth noting that the definition of the BCR metric is one 

of the contributions of this study. This metric facilitates comparison of different GI practices’ stormwater 

treatment efficiency by using treated volume of stormwater, which is determined based on design 

guidelines.  

This chapter specifically focuses on rain gardens and permeable pavements as small-scale practices that 

can be used throughout a watershed, typically on residential properties and parking lots, respectively.  The 

methodology section highlights the rationale for selecting raingardens and permeable pavements as the GI 

practices, the categories of benefits and costs considered, the approaches used for modeling costs and 

benefits, and how uncertainties are quantified. In the results section, cumulative density functions of BCRs 

and nutrient removal costs, referred to as analysis metrics/ metrics, are presented at household, 

subwatershed and watershed scale via two different scenarios of uncertainty quantification approaches. The 

effect of uncertain parameters, as well as subwatershed-related parameters, on the analysis metrics is also 

investigated. Finally, in the discussion and conclusions section, the findings are summarized and 

suggestions for future research are provide.  

4.2. Case study watershed  

The case study area is the DR5 watershed (Fig. 4.1), located in Gwynns Falls Watershed in Baltimore 

County, Maryland (MD), that was described in Chapter 2. To identify locations suitable for GI 
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implementation, IDEAS_GI (Chapter 3) is used as an initial assessment tool. To model stormwater flow 

across the watershed, the SWMM numerical model is used (Rossman 2004) as in the previous chapter. To 

add rain garden practices to the SWMM 5.0 model, a percentage of potential candidate pervious area is 

assigned to rain gardens, referred to as the GI design scenario. To add permeable pavement, a percentage 

of impervious parking area is assigned for the GI design scenario. Then, the GI practices are modelled using 

the LID module in SWMM. The module assumes each practice consists of several layers, including surface 

and soil layers for rain gardens and surface, pavement, storage and seepage layers for permeable pavements 

(Rossman and Huber 2016).   

Also, the models were calibrated for the nutrient loads, meaning that to create baseline scenarios with 

respect to nutrient load, there is a need to create baseline water quality scenarios based on the subwatershed 

and conveyance network arrangements. Literature review and probabilistic Monte Carlo simulations to 

assign SWMM input values to the layers for all GI practices were conducted. More details will be 

thoroughly explained in the next sections. Also, in the later sections, the details of results are presented with 

respect to four randomly selected subwatersheds that are shown in Fig. 4.1.  
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Fig. 4.1. Boundaries of DR5 Watershed and its subwatersheds as modeled in SWMM with four randomly selected 

subwatersheds 

4.3. Methodology  

This section elaborates on the methods and assumptions used in this chapter. First, justification for the types 

of GI practices is provided. Then, the categories of benefits and costs are specified, along with the two 



50 

 

analysis metrics, BCR and nutrient removal costs. Next, the details on the deployed models, the types and 

uncertainty bounds of the modeling parameters from the literature, and the economic valuation of 

environmental benefits are presented. Finally, how the uncertainty analysis is conducted and how the effects 

of the uncertain parameters on the final results are assessed at the three spatial scales (household, 

subwatershed, and watershed) are discussed. Fig. 4.2 summarizes the overall steps of the methodology, 

which can be applied to any case study. The first main step in the methodology is (a) the selection of GI 

types, relevant benefits and costs along with their assessment models, analysis metrics, uncertain modelling 

parameters, and economic valuation methods. This step allows the analysis to be customized to a particular 

case study. The second main step (b) involves uncertainty quantification. The last major step (c) consists 

of different methods to analyze the factors affecting analysis metric distributions. Later in this section, 

details about each of these steps are presented in more detail and descriptions of how each step has been 

applied to this case study are given.   
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Fig. 4.2. Flow chart describing steps of the methodology 
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 4.3.1. Selection of GI practices  

Implementation of small GI practices needs to consider environmental feasibility and meet regulatory 

standards, which are specific to the case study area. Since environmental concerns in different urban 

environments vary, municipalities tend to emphasize types of GI practices that meet their environmental 

goals (Zuniga-Teran et al. 2019). Thus, city- and state-level regulations can significantly change the choice 

of GI practices in any given environment.  

For this case study, Dead Run 5 Watershed (DR5) is semi-urbanized, hence most of its land cover consists 

of residential and commercial buildings and the types of feasible GI practices are limited. Retention ponds 

require a minimum contributing area of ten acres, according to Maryland guidelines (Maryland Department 

of Environment 2009), which is greater than the contributing areas of potential GI locations in the 

watershed. However, since there are 280 residential properties in Dead Run, numerous rain gardens could 

be implemented throughout the watershed on residential properties.    

Furthermore, there are multiple commercial buildings within the watershed. Each commercial building in 

the case study area provides an opportunity for two types of GI: green roofs and permeable pavements. 

Implementation of other GI practices, rain gardens and bioswales, are not well-suited within the boundaries 

of commercial buildings in this case study, since the available area to implement such practices does not 

abide by the state of Maryland regulations for GI installations (Maryland Department of Permitting Services 

2012). Green roofs, despite reducing peak flows from storm events, have not shown promising performance 

in reducing stormwater nutrients and pollutants (Berndtsson 2010b; Teemusk and Mander 2007). Thus, the 

focus is solely on permeable pavements and rain gardens as target GI practices in this study. 

 4.3.2. Selection of benefit categories  

The benefits associated with GI implementation are not limited to stormwater management and air quality 

improvement. In fact, GI practices have been shown to have social benefits, which are not easily quantified, 

including community cohesion, stress and anxiety reduction, educational benefits, etc. (Li and Sullivan 
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2016; Holtan, et al. 2015; Hartig et al. 2014; Jiang et al. 2014). Among the quantifiable categories of 

benefits and costs, some are highly uncertain. For example, property value increase may be a quantifiable 

benefit, but there is no consensus in the literature to assess its impact (Adelaja et al. 2008; McConnell and 

Walls 2005). Furthermore, there has been extensive research to quantify the impacts of green space on 

urban heat mitigation (Rivera 2018; Zhang et al. 2017). However, assessing impacts on urban heat requires 

extensive data and computational power to address the complexities of the urban environment. Therefore, 

this study focuses on stormwater quality improvement, life cycle cost, and air pollutant deposition 

throughout the life cycle of GI practices. These categories are quantifiable and the literature supports 

quantification of their benefits and associated uncertainties. The reason stormwater quantity is excluded 

from the benefits is that monetary valuation methods typically rely on water treatment and water quality 

volume (WQV) instead of flash flooding (Weiss et al. 2007). More importantly, Total Maximum Daily 

Load (TMDL) for water quality improvement is one of the most important considerations for the case study 

watershed, which ultimately drains into Chesapeake Bay (Linker et al. 2013). The importance of TMDL 

highlights why water quality treatment has the highest priority in comparison to other environmental 

objectives in the case study area.  

It is worth noting that the focus on water quality is due to TMDL concerns in the Chesapeake Bay. In fact, 

any given case study might have a unique environmental priority and objective, ranging from biodiversity 

preservation to pluvial flooding. Therefore, the category of benefit and costs, and subsequently the choice 

of modelling approach, will be specific to the case study.  

4.3.3. Selection of cost/benefit assessment models 

Similar to the selection of benefit categories, the choice of modelling approach is tailored to the scope, 

location, spatial scale and other specific properties associated with each case study. As mentioned in Section 

4.2, in this study SWMM 5.0 is used to simulate stormwater quantity and quality before and after GI 

implementation at different spatial scales. As GI is inserted into the model, stormwater volume for the 

simulation period is generated. Then, masses of nutrients at watershed and subwatershed outlets throughout 
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the entire continuous rainfall period are compared to baseline scenario, in which there is no GI present. The 

baseline models, which were provided to us, were calibrated to mimic the hydrograph at the watershed 

outlet throughout the continuous simulation period. Therefore, the model did not account for nutrient load 

in the stormwater. To create baseline scenarios for nutrient loads at the subwatershed outlet, a series of 

probabilistic baseline simulations are executed without addition of GI. The probabilistic baseline 

simulations follow 750 Monte Carlo simulations that will be discussed in the “Uncertainty quantification” 

section, with the exception that GI practices are not included in the SWMM models. The SWMM model 

requires format of equation for nutrient build-up and wash-off during dry and wet periods of the simulation. 

The probabilistic parameters that are used to generate these scenarios are build-up constants applied in a 

power function for the nutrients during dry periods, wash-off constants applied in an event mean 

concentration formulation for nutrients during wet periods, and concentration of the nutrient in the rainfall. 

The specific ranges of these parameters are listed in Appendix G. It is worth noting that the three sets of 

aforementioned parameters are independent of each other.  

To determine the life cycle cost of GI practices, the WERF SELECT model is used (WERF 2015). The 

model provides a framework in which maintenance and life cycle costs of GI practices can be computed by 

entering user-specified parameters (e.g., installation level, maintenance frequency, and unit construction 

cost). Since the model follows engineering economics concepts and is flexible, it was decided to extract its 

framework from spreadsheets, and write it in several Python scripts for its different modules, each 

associated with one of its life cycle elements.  

To determine the extent of air pollutant deposition, empirical deposition equations from i-Tree Street Model 

(Soares et al. 2011) were used. This model estimates the mass of air pollutants that potentially deposit over 

the leaf area of GI practices throughout the simulation period. As with the cost estimation model, the 

equations used in the model were extracted and implemented in a Python script, which provides the range 

of ozone (O3), particulate matter (PM2.5), sulfur dioxide (SO2), nitrogen dioxide (NO2), and carbon 

monoxide (CO) throughout the entire simulation period. For each day within the simulation time period, 
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average daily concentrations of each pollutant are computed assuming the concentrations are uniformly 

distributed throughout the day. Then, using empirical models from the i-Tree Streets model (Nowak et al. 

2006), the amount of air pollutant deposition over leaf surface area of rain gardens is computed for each 

scenario. In reality, such air pollutants that are deposited throughout the dry period over leaf area of rain 

gardens and vegetated surfaces are washed off during rainfall events and advected to downstream water 

bodies. However, since many of these air pollutants are not primary nutrients in stormwater quality 

monitoring and are not heavily regulated from a regulatory standpoint, soluble air pollutants are not traced 

in stormwater runoff downstream. Thus, in this study, only the monetary benefits of air pollutant deposition 

over leaf area of rain gardens are considered with regard to air pollutant deposition.  

4.3.4. Selection of analysis metrics 

To account for the benefits and costs mentioned in Section 4.3.3, two metrics are used in this study: nutrient 

removal cost and Benefit-Cost Ratio (BCR). BCR  is highly dependent on the volume of treated water  as 

a primary design criterion based on state of Maryland guidelines (Maryland Department of the Environment 

2009). Volume of treated water is the storage needed to capture and treat the runoff from most of the average 

annual rainfall. The volume of treated water generally relies on subwatershed contributing area and its 

runoff coefficient, and assumes that GI designs should treat a certain depth of each rainfall and that the rest 

is left untreated (Weiss et al. 2007). Therefore, its computation might not represent real-world physical 

behavior of the watershed during every rainfall event. In this analysis, for each design scenario, depending 

on the area of GI practices and their contributing area, the depth of rainfall that is supposed to be treated 

according to the guidelines published for residents in nearby counties (Department of Environmental 

Protection 2017) were computed, as no rain garden installation guidelines were found for the residents in 

the Baltimore county. Using the depth of treated stormwater along with the area of the subwatershed, runoff 

coefficients of the subwatersheds, and rainfall records of the continuous simulation period, the average 

annual amount of rainfall volume that is supposed to be treated, i.e. volume of treated water, is computed. 
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Then, the equivalent treatment technology, chosen from sand filters, dry basins, and wetlands (as large 

concentrated GI practices) to treat the same volume of water (Weiss et al. 2007), is compared.  

Then annualized life cycle cost of the technology is computed for its entire life cycle [assumed to be 25 

years as in the WERF SELECT model (WERF, 2012)] using the methods explained in the previous section. 

However, since the BCRs are designed as comparative metrics between benefits and costs, it was assumed 

that the annualized life cycle cost is consistent throughout the simulation period (for this case study, 2007-

2010). The computed cost for the simulation period is equivalent to avoided cost or monetary benefit for 

stormwater treatment and is used as the monetary benefit in the BCR analysis. Therefore, there is no need 

to simulate the watershed and GI behavior in treating stormwater to compute the BCRs. More details on 

the approach are provided in the “Selection of economic valuation method” section below.  

Next, nutrient removal costs are computed as the second analysis metric by first calculating pollutant mass 

at each outlet within the watershed. Each outlet corresponds to either a subwatershed, a household, or 

watershed outlet. One assumption, which is made in the models developed for this study, is that once 

nutrients are removed from the watershed, they are not transported back into surface water through 

subsurface flow. As a result, the nutrients deposited at any locations within the watershed are not considered 

at subsequent subwatershed outlets. The computed areas under pollutographs, i.e. graphs representing the 

concentration of a certain pollutant over time, are generated for the GI design scenario. Then the average 

of the baseline scenarios, in which there is no GI present, are compared to obtain the reduced concentrations 

after GI implementation. Then, the differences are divided by the life cycle cost of GI technology used in 

the household, subwatershed, or entire watershed for each GI design scenario to achieve their corresponding 

removal costs. It is worth noting that air pollutant deposition is only used to compute BCR values and not 

the nutrient removal costs, since BCRs compute the comparative benefits of small GI technologies in 

comparison to other conventional large-scale practices. On the other hand, nutrient removal costs consider 

the effects of GI practices in relation to implementation locations across a watershed.  
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To compute BCR at watershed scale, the volume of treated water in the watershed needs to be determined. 

To do so, it was assumed that the depth of water treated by a rain garden is an uncertain parameter consistent 

throughout the watershed, bounded by minimum and maximum depth of stormwater that can be treated via 

GI practices according to state guidelines (for this case study, 0.2 and 5 inches respectively). This allows 

computation of the cost of equivalent wetland technology to achieve the same volume of treated water. 

However, the nutrient removal costs at the watershed scale are simulated the same way as those at the 

subwatershed scale.  

4.3.5. Selection of modeling parameters  

Appendix G gives detailed parameter uncertainty bounds for continuous parameters and Appendix H gives 

the categories of values used for categorical variables used in this study, along with literature sources. If a 

specific distribution is not available in the literature, a triangular distribution is used to define minimum, 

median, and maximum values. These values were extracted from the literature and are specified in 

Appendices G and H.  

4.3.6. Selection of economic valuation methods  

Once the volume of treated stormwater and deposited air pollutants are estimated, their magnitudes are 

translated into monetary benefit through economic valuation. The valuation method used in this study is 

the avoided cost method (Farber et al. 2006), which computes how much cost will be avoided through the 

environmental benefits that GI provides. For the water quality portion of the benefits, the volume of treated 

stormwater for each GI installation across the subwatersheds is first determined. Upon calculation of the 

volume of treated stormwater for each GI design scenarios for every subwatershed, the cost of equivalent 

stormwater treatment technology is calculated to treat equivalent stormwater volume (Weiss et el. 2007). 

The life cycle costs of such technologies are assumed to be monetary benefit, i.e. avoided costs of water 

treatment. The parameters used for avoided cost computations are also probabilistic (Weiss et el. 2007).  
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To account for uncertainties in the modelling parameters, Monte Carlo simulations are conducted to 

determine ranges of BCR values for all GI design scenarios (see Appendices G and H). Weiss et al. (2007) 

have found that the cost of stormwater treatment depends on the GI practice used to treat stormwater. They 

developed equations to estimate life cycle cost of sand filters, dry basins, bioretention filters, wetlands, and 

infiltration trenches for different ranges of the volume of treated stormwater. For all of the equations, the 

volume of treated stormwater is the only independent variable. The equations use the volume of treated 

stormwater in a power function, with a given ranges of multiplier (B0) and power (B1) values. To use the 

equations, first the equivalent technology to achieve the same volume of treated water as GI design 

scenarios is computed. Then, the life cycle cost of the equivalent technology is determined as the avoided 

cost, i.e. monetary benefit of stormwater treatment.  

To conduct valuation of air pollutant deposition, the cost of air pollutant removal from power plants is used 

with the parameters and uncertainty bounds listed in Appendices G and H.  

Once these monetary benefits are calculated, Benefit Cost Ratios (BCRs) are computed using the following 

equations: 

𝐵𝐶𝑅𝑟𝑎𝑖𝑛 𝑔𝑎𝑟𝑑𝑒𝑛 =  
𝐵𝑒𝑛𝑒𝑓𝑖𝑡 𝑠𝑡𝑜𝑟𝑚𝑤𝑎𝑡𝑒𝑟 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 + 𝐵𝑒𝑛𝑒𝑓𝑖𝑡 𝑎𝑖𝑟 𝑝𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡 𝑟𝑒𝑚𝑜𝑣𝑎𝑙 

𝐿𝑖𝑓𝑒 𝑐𝑦𝑐𝑙𝑒 𝑐𝑜𝑠𝑡
 

(Eq. 4.1) 

𝐵𝐶𝑅𝑝𝑒𝑟𝑚𝑒𝑎𝑏𝑙𝑒 𝑝𝑎𝑣𝑒𝑚𝑒𝑛𝑡 =  
𝐵𝑒𝑛𝑒𝑓𝑖𝑡 𝑠𝑡𝑜𝑟𝑚𝑤𝑎𝑡𝑒𝑟 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡

𝐿𝑖𝑓𝑒 𝑐𝑦𝑐𝑙𝑒 𝑐𝑜𝑠𝑡
 

(Eq. 4.2) 

where 𝐵𝑒𝑛𝑒𝑓𝑖𝑡 𝑎𝑛𝑛𝑢𝑎𝑙 𝑠𝑡𝑜𝑟𝑚𝑤𝑎𝑡𝑒𝑟 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 is equal to the annualized avoided cost of a comparable 

technology to treat the same volume of stormwater and 𝐵𝑒𝑛𝑒𝑓𝑖𝑡 𝑎𝑛𝑛𝑢𝑎𝑙 𝑎𝑖𝑟 𝑝𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡 𝑟𝑒𝑚𝑜𝑣𝑎𝑙  is equal to the 

annualized avoided cost of the same magnitude of air pollutants.  

4.3.7. Integration of modeling approaches 

As models and parameters are selected, they need to be integrated to conduct further analysis. Modeling 

approaches for air pollutant deposition and life cycle estimation, extracted from i-Tree and WERF models, 

are used in a series of python scripts. Then, SWMM models for the watershed are created using SWMM 
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package (Pathirana 2018). Also, a random number generator function is assigned to each uncertain 

parameter. For each set of random values for uncertain parameters, inputs to cost and air pollutant 

deposition models are modified and input SWMM files for the case study are overwritten.  

An important aspect of the analysis is the coverage and contributing area of GI practices for each set of 

Monte Carlo simulations. To account for these two parameters, the areal coverage of GI, i.e. GI design 

scenario, is changed for each set of Monte Carlo simulations. Specifically, for each GI design scenario the 

coverage of GI is assumed to be equal to 32%, 64%, and 100% of suitable GI locations for all 

subwatersheds. Also, to account for GI contributing area, two cases in this study for each GI coverage 

scenario are designed. One case assumes that the entire subwatershed impervious area contributes to GI 

practices in the subwatershed and the other assumes that a proportional portion of the subwatershed is 

contributing to each GI coverage case. For example, for a design scenario in which it was assumed that GI 

coverage is 32% of the entire possible locations for all subwatersheds throughout the watershed, Monte 

Carlo simulations are executed assuming that both 32% and 100% of impervious area across all 

subwatersheds are contributing to GI practices. The two types of simulations are referred to as “variable” 

and “fixed” contributing area allocation scenarios, respectively.  These two types of simulation are designed 

to address the lack of availability of routing information within each subwatershed by considering two 

extents of the contributing impervious area.  

This type of multi-coverage scenario analysis is not considered for permeable pavement, which can only 

be allocated to a few candidate locations with known GI coverage and known contributing area. Therefore, 

“fixed” and “variable” contributing area scenarios are only for rain gardens. The SWMM models used in 

this work were originally prepared at subwatershed and watershed scales. The models were then modified 

to simulate the household scale. A new SWMM model is created for each household, assuming that the 

households as small independent subwatersheds, each having their own outlet. For the case study 

considered herein, 280 households have land area suitable for implementation of GI practices and hence 

280 subwatersheds are modeled. Since these household-level models are constructed to assess the level of 
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highly local nutrient removal, the routing between the households is ignored. In fact, the only sets of 

distributions that are used are those at the single household level, each acting independently from the other 

households. For all households, baseline scenarios are run, GI installations are assigned, and Monte Carlo 

simulations are executed. At the household scale, the contributing area is set to the entire land area of the 

household; thus, fixed and variable contributing area are not executed at this scale.   

4.3.8. Uncertainty quantification 

The Monte Carlo simulations to compute BCR and nutrient removal cost are conducted with two types of 

uncertainty assessments: 

Monte Carlo Type I.  Varying GI-related parameters within all subwatersheds and between Monte Carlo 

runs  

In this set of Monte Carlo simulations, parameters pertaining to subwatershed configurations (i.e. 

area, imperviousness ratio, percentage of pervious area suitable for GI) are fixed throughout the 

simulations and only uncertain parameters related to GI practices are changed. This enables the 

effects of uncertainty in GI parameters on total BCR and nutrient removal at all spatial scales to be 

quantified. To also consider the importance of GI area for each subwatershed, each rain garden 

Monte Carlo scenario is evaluated with different area coverages using “fixed” and “variable” 

contributing area, as explained previously.  

750 iterations of Monte Carlo Type I simulations were conducted for both rain gardens and 

permeable pavements. This minimum number of iterations was selected by simulating 100, 250, 

500, 750, 1000, 1250, 1500, and 2000 Monte Carlo iterations for one individual subwatershed and 

observing the minimum value when the distribution of nutrient removal costs and BCRs stabilized.  

Monte Carlo Type II. Varying GI-related parameters between Monte Carlo simulations, but consistent 

across the watershed for each simulation 
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In this type of simulation, GI-related parameters are fixed and identical throughout the watershed, 

including all subwatersheds, for each iteration. As a result, the only parameters that vary from one 

subwatershed to another during each iteration are those pertaining to subwatershed properties (i.e. 

area, imperviousness ratio, percentage of pervious area suitable for GI, and distance to watershed 

outlet). The subwatershed properties vary from one subwatershed to another but are not changed 

from one Monte Carlo iteration to the next. On the other hand, the GI-related parameters, while 

fixed throughout the watershed for one simulation, are changed from one iteration to the next one. 

This type of analysis identifies the effects of subwatershed-related parameters on overall rain 

garden BCR and nutrient removal costs, highlighting which subwatersheds show more efficiency 

in stormwater treatment. Since only a handful of subwatersheds have potential locations for 

permeable pavements, Monte Carlo Type II does not apply to permeable pavements. The same 

number of Monte Carlo iterations, 750, were used for Type I as Type II. This was the minimum 

number of simulations to stabilize the distributions of the metrics for this case study.  

For better clarity, Fig. 4.3 summarizes the different design scenarios analyzed in this study.  Please note 

that the two types of Monte Carlo simulations are not in the order of complexity. 



62 

 

 

Fig. 4.3. Flow chart of the design scenarios showing the two types of Monte Carlo simulations 

4.3.9. Analysis of the factors affecting the metrics  

Once distributions of the BCRs and nutrient removal costs are computed using Monte Carlo Type I, the 

distributions across the different design scenarios shown in Fig. 4.3 are compared in order assess the effects 

of uncertain parameters, as well as GI coverage, on each metric’s distributions. Also, to determine which 

rain garden-related parameters have the most impact on the metric distributions, individual subwatersheds, 

and their metric’s distributions generated under Monte Carlo Type I are investigated. Then, the effects of 

any of the categorical parameters, listed in Appendix I, on classification of the distribution of the metrics 

are explored. Possible correlations between uncertain numerical parameters, listed in Appendix G, and 

metrics across all subwatersheds are also investigated. Moreover, as the distributions of the metrics at 

subwatershed scale are compared, the corresponding distribution of the metrics at watershed scale is also 

computed. Doing so, the distributions can be compared and checked for any emerging patterns using 
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univariate cumulative distribution function (CDF) comparisons (for reference, see Taylor 1990). The same 

type of analysis is conducted at the household scale. Doing so, the distributions of the metrics at household 

scale can be computed and compared to the metric distributions at the other spatial scales.  

To identify numeric rain garden-related parameters that contribute the most to cost-benefit metrics, Pearson 

correlation analysis is conducted between uncertain numeric input parameters listed in Appendix I and 

metrics in all of the subwatersheds for all Monte Carlo Type I simulations. P-values and R-coefficients 

result from correlation analysis between independent uncertain parameters (for reference, see Taylor 1990). 

If the p-value is less than the significance level (usually 0.05) then the model fits the data well and the null 

hypothesis that the slope of the regression model is not statistically different from zero can be rejected. R-

coefficients measure the level of variation in the analysis metrics that can be explained by the linear model 

generated from uncertain parameters within all subwatersheds that have candidate feasible locations for GI 

implementation.   

By running Monte Carlo Type II, the effect of subwatershed-related parameters on each metric’s 

distributions is analyzed. Subwatershed-related parameters include subwatershed area, imperviousness 

ratio, area of rain garden candidates, distance from subwatershed outlet to the watershed outlet along the 

stream, runoff coefficient for the continuous rainfall period, and Shreve order number.  

For each set of simulations, the value of the metrics across all subwatersheds are computed and then Pearson 

correlations are calculated between the subwatershed-related parameters and the metrics (Pearson 1895). 

Any emerging patterns across the subwatersheds are also checked to see if any hypotheses can be 

developed. To do so, the distributions of the metrics over all Monte Carlo simulations for all subwatersheds 

are compared to distributions at the watershed scale using two-sample Kolmogorov-Smirnov tests for each 

of the three design scenario cases. The test is a nonparametric test of the equality of two distributions with 

two resulting parameters: D statistic and a p-value (Marsaglia et al. 2003). D statistic shows the absolute 
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maximum vertical distance between the cumulative distribution functions of the two samples, and thus 

represents similarity of the two CDFs.  

4.4. Results and discussion 

Each sub-section below presents results for one type of uncertainty and parameter significance analysis 

(rain garden Type I, Section 4.4.1, and Type II, Section 4.4.2; permeable pavements, Section 4.4.3) at 

subwatershed, watershed, and household scales. The significance of each uncertain parameter in relation to 

BCR values is also analyzed.  

4.4.1. Results for uncertainty assessment with rain-garden-related parameters (Type I) 

Fig. 4.4 shows the cumulative density function (CDF) of BCRs generated from Monte Carlo Type I 

simulations for four randomly-selected subwatersheds, each showing three different GI design scenarios 

(i.e. GI coverages): 32, 64, and 100 percent. Properties of the four subwatersheds, presented in Fig. 4.1, are 

detailed in Table 4.1. Table 4.1 also summarizes the averages of BCR distributions, as well as nutrient 

removal costs that are presented in subsequent figures, for the four subwatersheds across all design 

scenarios.    
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Table 4.1. Properties and mean of analysis metrics of the randomly selected subwatersheds 

Properties/ mean of simulation results Subwatershed 1 Subwatershed 2 Subwatershed 3 Subwatershed 4 

Area (hectares) 1.26 1.51 3.43 1.05 

Imperviousness ratio (%) 29.1 30.8 73.9 22.5 

Percentage of pervious area for GI (%) 4.1 12.7 31.3 35.9 

Distance to watershed outlet (m) 606 417 1302 471 

Mean of BCRs 

32% GI coverage -fixed 

contributing area 

52.9 17.9 31.5 5.2 

32% GI coverage -variable 

contributing area 

47.3 18.2 34.5 5.4 

64% GI coverage -fixed 

contributing area 

25.2 9.1 17.2 2.6 

64% GI coverage -variable 

contributing area 

25.5 9.4 16.4 2.6 

100% GI coverage 17.1 6.0 10.6 1.8 

Mean of 

phosphorous 

removal costs 

($/kg) 

32% GI coverage -fixed 

contributing area 

2.5 4.0 45.5 17.2 

32% GI coverage -variable 

contributing area 

2.8 4.0 42.2 16.3 

64% GI coverage -fixed 

contributing area 

5.2 8.1 83.0 34.4 

64% GI coverage -variable 

contributing area 

5.2 7.7 87.3 35.2 

100% GI coverage 8.2 12.3 140.1 54.9 

Mean of nitrogen 

removal costs 

($/kg) 

32% GI coverage -fixed 

contributing area 

1.2 1.1 23.7 7.5 

32% GI coverage -variable 

contributing area 

1.3 1.0 20.1 7.3 

64% GI coverage -fixed 

contributing area 

2.2 2.1 36.4 14.4 

64% GI coverage -variable 

contributing area 

2.4 2.0 42.0 15.1 

100% GI coverage 3.3 3.2 57.0 21.6 
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Fig. 4.4. CDFs of BCR for four subwatersheds in Dead Run showing GI design scenarios for 32%, 64%, and 100% under 

both contributing impervious area scenarios (fixed and variable) 

According to Table 4.1, the mean BCR value is considerably greater than one for most of the subwatersheds. 

Since the BCR values defined in this study heavily rely on comparisons of rain gardens or permeable 

pavements to other technologies that, according to the guidelines, are expected to treat the same WQV 

volume, exceeding one does not mean that the investments will result in monetary return. Rather, it can be 

concluded that implementation of small GI practices is more cost effective in comparison to more 

concentrated alternative GI practices, i.e. dry and wet basins, for the given subwatershed.  

In Fig. 4.4, the range of BCRs changes from one subwatershed to the next, meaning that, regardless of the 

uncertainty in rain garden parameters, some subwatersheds show more benefits than others. Moreover, as 

rain garden coverage increases, BCRs tend to show less uncertainty (i.e., the CDF shows less variability), 

as well as lower mean values for all subwatersheds.  

To understand these results, recall that the BCR calculation considers avoided water quality treatment costs 

under the WQV concept, as explained under section “Economic Valuation”. As rain garden area increases 

under higher design scenarios, WQV is also increasing. As a result, the avoided cost of the comparable 

technology providing the WQV (sand filter, dry basin, or wet basin) is also increasing. Although the cost 
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of dry and wet basins increases with higher capacity, the rate of their increase is not as high as those for 

rain gardens. In other words, the economies of scale associated with the avoided costs of wet and dry basins 

show that more rain garden coverages do not necessarily result in higher efficiency stormwater treatment.  

For all subwatersheds, the BCR values show that the avoided cost of using comparable WQV treatment for 

all subwatersheds is higher than the rain garden life cycle cost, meaning that rain gardens are more cost 

efficient than basins and ponds for semi-urbanized subwatersheds modeled with the assumptions used in 

this study (routing, depth of treated rainfall for raingardens, lack of exchange between stormwater and 

underground water tables, etc.).  

Figs. 4.5 and 4.6 show the CDFs of nutrient removal costs for the same four subwatersheds. These Figs 

show that the comparative trend between nutrient cost removal in the four subwatersheds differs 

significantly from the trend for BCRS. For instance, based on Fig. 4.4, Subwatershed 3 should be the most 

suitable location for GI installation, as it has the highest BCR values. However, based on Figs 4.5 & 4.6, 

Subwatershed 2 is the most suitable area. More details on how subwatershed-related parameters affect 

metrics, and why this shift in suitable subwatersheds occurs when the metrics change, will be presented in 

the section on Monte Carlo Type II results and discussions below.      

According to Figs 4.5 and 4.6, there is a general increase in nutrient removal cost as GI coverage increases 

from 32% to 100% in different subwatersheds. The results show that accumulated nutrient removal masses 

do not increase at the same rate as the life cycle cost of rain gardens installed to treat nutrients at the 

examined GI coverage ranges. Similar to trends observed for BCRs, because higher mean values correspond 

to higher standard deviations, the uncertainty in nutrient removal costs is highest for maximum GI coverage.   

Also, the results show that fixed versus variable contributing area (e.g., 100% vs 32% of impervious area 

for the 32% GI design scenario), does not change the distribution of BCRs and nutrient removal costs 

significantly for most subwatersheds. This implies that whether the rain garden is receiving water from a 

portion of the subwatershed or the entire subwatershed, the installation cost affects nutrient removal costs 
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more than the amount of nutrients removed. Another important factor is that even for the variable GI 

coverage scenario, the amount of nutrient removal is reaching the maximum treatment capacity, most likely 

because the available candidate area for the subwatershed is a relatively small portion of the impervious 

area for all subwatersheds (see Table 4.1). Therefore, further increases in the contributing area do not 

significantly improve nutrient reduction during the simulation period (in this case, from 2007 to 2010).  

Comparing ranges of nitrogen vs phosphorous removal costs (Figs 4.5& 4.6), note that the costs of 

phosphorous removal are significantly higher than those of nitrogen. The reason is that the amounts of 

phosphorous nutrients during rainfall and dry build-up periods are significantly smaller than those of 

nitrogen.  

Comparing Subwatersheds 2 and 4 among Figs. 4.4- 4.6, observe that although their BCRs differ almost by 

a factor of two, their nutrient removal costs differ by a factor of 14-20. This discrepancy shows that, 

although commonly used, BCRs based on WQV might not realistically reflect the comparative performance 

of GI in treating stormwater across a watershed. The WQV calculations assume that a certain depth of 

rainfall would be treated throughout the watershed, while the simulation results indicate that the 

concentrations at the subwatershed outlet vary from one subwatershed to the other. These results indicate 

that the accuracy of GI siting decisions based on BCRs could potentially be affected. More explanation is 

given in the results section for Monte Carlo Type II simulations. 
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Fig. 4.5. CDFs of total nitrogen removal costs for four subwatersheds under different GI design scenarios with fixed and 

variable contributing impervious areas 

 

Fig. 4.6. CDFs of total phosphorous removal costs for four subwatersheds under different GI design scenarios with fixed 

and variable contributing impervious areas 
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Fig. 4.7. Type I CDFs of BCRs and nutrient removal costs at watershed scale for different GI design scenarios 

Fig. 4.7 shows that as the percentage of GI coverage decreases, benefits increase but the results have higher 

uncertainty. The pattern is similar to those presented in Figs. 4.4 to 4.6 for variations in GI parameters.  

To further investigate how the uncertainties in Monte Carlo analysis Type I are generated, the parameters, 

from all of the rain garden-related parameters, that are contributing the most to BCR and nutrient removal 

cost uncertainty across all subwatersheds have to be determined.  One observation in Figs 4.4 to 4.6 is that 

the CDFs tend to have inflection points at about 50% cumulative probability, meaning that the distributions 

are clustered around two different modes, one less and the other more than 50% cumulative probability. 

These inflection points are the result of bi-modal distributions of the metrics across the two spatial scales, 

subwatersheds and household.  

Analyzing the results against all independent categorical variables (see Appendix F), the installation option 

for rain gardens (i.e., professional versus self-installation) appears to be a significant factor that divides the 

simulation results into two clusters (see Fig. 4.8). According to Fig. 4.8, self-installation of GI practices not 

only decreases the cost of nutrient removal, but also increases BCRs. The importance of installation option 

suggests that promotion of self-installation through different outreach methods could result in significantly 

lower surface water treatment costs compared to concentrated water treatment technologies such as dry and 

wet basins. In fact, when restricted by areal limitations to implement GI practices, self-installation seems 

to be the predominant factor that increases stormwater treatment efficiency. Also, the occurrence of the 
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inflection points around 50% is the result of assigning equal probabilities, 50%, to the self and professional 

installations, which is one of the assumptions made in this study (See Appendix F).  

  

Fig. 4.8. Simulation results vs installation option for a sample subwatershed  

Rain garden monetary benefits considered in this study are air pollutant deposition and stormwater 

treatment benefits. Table 4.2 shows the distribution of monetary benefits associated with air pollutant 

deposition in the four subwatersheds from Table 4.2 among all Monte Carlo Type I simulations.  

Table 4.2 Distribution of the benefits associated with air pollutant deposition across all Monte Carlo Type I simulations 

for the four randomly selected subwatersheds (Mean percentage ± standard deviation) 

Design Scenario 

Subwatershed 

1 

Subwatershed 

2 

Subwatershed 

3 

Subwatershed 

4 

32% with fixed contributing area 0.26± 0.16 0.75± 0.45 0.43± 0.24 2.52± 1.50 

32% with variable contributing 

area 

0.25± 0.15 0.73± 0.42 0.41± 0.22 2.54± 1.41 

64% with fixed contributing area 0.55± 0.32 1.46± 0.83 0.81± 0.48 4.87± 2.92 

64% with variable contributing 

area 

0.54± 0.33 1.40± 0.80 0.80± 0.50 5.25± 3.21 

100% 0.78± 0.41 2.22± 1.42 1.24± 0.67 8.13± 4.06 

Table 4.2 shows that the share of air pollutant deposition in comparison to water quality benefits is 

insignificant. Therefore, all of the trends observed for raingarden BCR computations are driven by water 

quality treatment functionality.   
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Next, as mentioned in Section 4.3.9, all of the numeric rain garden parameters are investigated to see which 

have significant correlations with the metric distributions at the subwatershed level. Table 4.3 shows pairs 

of variables that have P-values less than 0.05.  

Table 4.3. Number of subwatersheds (out of 67 subwatershed with candidate locations for rain gardens) with statistically 

significant correlations (P-values < 0.05) between independent input parameters and analysis metrics under the 100% GI 

design scenario. 

 

Input parameter               Metrics
 

Benefit Cost Ratio TN removal cost ($/kg) TP removal cost ($/kg) 

Interest Rate 60 31 30 

Multiplier (B1) constant for WQV benefit  57   

According to Table 4.3, interest rate has the highest correlation to dependent variables, confirming that cost 

estimations are highly dependent on interest rates. Constants used for valuation of water quality treatment 

benefits also tend to have positive correlations with BCRs and nutrient removal costs.  

Since the magnitude of monetary benefits associated with total air pollutant deposition is smaller than the 

stormwater-related benefits, their effects on metrics are negligible. The results, as expected, show that BCR 

calculations, which rely on monetary valuation of environmental benefits, are mostly sensitive to monetary 

valuation parameters.  

Fig. 4.9 shows the distribution of household-level BCR and pollutant removal costs for all 280 households 

with candidate GI locations, as well as more detailed results for a randomly selected household. The results 

show the same trend in reduction of BCRs with coverage, suggesting that the life cycle cost of rain gardens 

increases at a higher rate in comparison to the life cycle cost of the equivalent technologies to treat the same 

WQV as rain gardens (i.e. sand filters in this case). 
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Fig. 4.9. CDFs of BCRs and nutrient removal costs at all households (top row) and a randomly selected individual household 

with an area equal to average household size in the watershed (bottom row) 

The results also show an inflection trend similar to the one observed at the subwatershed scale as a result 

of the choice between self-installation and professional installation. To draw more conclusions on the effect 

of household-related parameters on the metrics and decision-making process, more discussions on the 

comparison between household, subwatershed and watershed are conducted in the sections below. It is 

worth noting the general pattern that BCRs exceed one, meaning that implementation of residential rain 

gardens would be more beneficial for stormwater treatment in comparison to sand filters, the equivalent 

alternative technology. In fact, according to the WQV results, to treat the same level of rainfall at the 

household level, more sand filter area is needed compared to rain gardens, mostly due to its lower efficiency 

in stormwater treatment compared to rain gardens, resulting in BCRs exceeding one.  

4.4.2. Results of uncertainty assessment for Monte Carlo simulations Type II 

In the Monte Carlo Type II uncertainty analysis, rain garden-related parameters are fixed throughout all 

implemented locations in the watershed for each Monte Carlo simulation, enabling effects of subwatershed 

parameters on BCRs and nutrient removal costs to be identified. Fig. 4.10 shows the distribution of the 

mean subwatershed BCR and nutrient removal costs over 750 Monte Carlo simulations.  
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Fig. 4.10. Distribution of simulation results for subwatersheds averaged across all Monte Carlo Type II simulations (the 

bars represent ranges of distributions across subwatersheds) 

Notice that the BCR ranges to decrease once GI coverage increases, which is consistent with the results 

from Fig. 4.4. The trends for nutrient removal costs are in accordance consistent with Figs 4.5 and 4.6. 

Next, the metrics distribution at the subwatershed level is compared to those at the watershed level using 

the tests explained in Section 4.3.9. Table 4.4 shows the distribution of the D statistic values for all tests. 

The p-values for all tests are extremely small, less than 0.05, suggesting that the distributions at the 

subwatershed scales are statistically different from the watershed scale.  

Table 4.4. Distributions of D statistics for all comparative Kolmogorov-Smirnov tests between subwatersheds and 

watersheds 

Percentage GI Coverage (%) Metrics Mean ± standard deviation P-value 

32 BCR 0.68± 0.20 <0.00001 

32 P removal cost 0.80± 0.26 <0.00001 

32 N removal cost 0.79± 0.22 <0.00001 

64 BCR 0.67± 0.19 <0.00001 

64 P removal cost 0.79± 0.26 <0.00001 

64 N removal cost 0.81± 0.20 <0.00001 

100 BCR 0.66± 0.18 <0.00001 

100 P removal cost 0.78± 0.26 <0.00001 

100 N removal cost 0.83± 0.20 <0.00001 
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To visually compare the metrics’ distributions, the mean of the metrics’ distributions at subwatershed and 

watershed levels are presented in Fig. 4.11. Household-scale CDFs based on analysis metrics for 280 

households in the case study area are also shown in Fig. 4.11.  

  

Fig. 4.11. Comparison of CDFs of mean household, subwatershed, and watershed BCRs and nutrient removal costs for 

100% GI coverage under the Monte Carlo Type II scenario  

 Considering Fig. 4.11.a and 4.11.b, the results show that some subwatersheds have average nutrient 

removal costs lower than the watershed scale. Therefore, these subwatersheds would be the most efficient 

locations for GI investment across the study area; this result is investigated in more detail later in this 

section. In fact, the results show that uniform implementation of GI practices across all potential locations 

in a watershed is not as efficient as targeted implementation in these subwatersheds.  

Comparing the CDF of N removal costs for households with the other two scales [Fig. 4.11(c)] shows that 

some  households have removal costs higher and lower than the watershed and subwatershed scale, 

suggesting that nitrogen removal costs are higher for some households than the average removal costs at 

the watershed and subwatershed scale. Identifying the specific locations of such households would require 

further research into optimization of the GI network at patch scales using a model such as RHESSys.  

On the other hand, the BCR metric results [Fig. 4.11(a)] suggest that GI installation in any of the 

subwatersheds yields higher average BCR than uniform installation across the entire watershed. 

Furthermore, GI implementation at any of the households yields higher BCR than at the watershed and 

subwatershed scales. The results also suggest that rain gardens are more efficient for treating stormwater at 
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the household scale, while large scale concentrated practices, such as wet and dry basins, are more efficient 

at the watershed scale.  

To determine which subwatershed-related parameters are most influential in providing environmental 

benefits, the correlations are analyzed between metrics averaged over Monte Carlo Type II runs and 

independent subwatershed parameter realizations (i.e., area, imperviousness ratio, total GI candidate area, 

total pervious area, percentage of pervious area that is suitable for GI siting, and distance from each 

subwatershed outlet to the watershed outlet). The averages of the metrics are right skewed and do not follow 

a normal distribution. Therefore, a generalized linear model with gamma distribution function, which had 

the best fit to the metric averages, is used to assess which independent parameters are correlated with the 

mean of the metrics. Table 4.5 shows the pairs of independent subwatershed parameters and metrics for 

each design scenario, averaged across all Monte Carlo Type II simulations, that show significant 

correlations, along with statistics associated with such correlations.  

Table 4.5. Pairs with significant correlations in the GLM analysis conducted between metrics averaged across Monte Carlos 

Type II simulations and across all design scenarios for all subwatershed and subwatershed-related independent parameters 

Metrics 

Design 

Scenario 

Correlation 

coefficient 

Standard 

error 

z-

statistics P-value 

Area (km2) vs. BCR 32% -9.0727 1.884 -4.817 <0.001 

Area (km2) vs. BCR 64% -20.8303 6.98 -2.984 0.003 

Area (km2) vs. BCR 100% -28.642 8.469 -3.382 0.001 

Distance to watershed outlet 

(m) vs. P removal cost ($/kg) 

64% -2.58×10-06 1.05×10-06 -2.467 0.014 

Distance to watershed outlet 

(m) vs. P removal cost ($/kg) 

100% -1.78×10-06 8.80×10-06 -2.027 0.043 

Distance to watershed outlet 

(m) vs. N removal cost ($/kg) 

64% -8.23×10-06 3.41×10-06 -2.411 0.016 
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Table 4.5. (cont.) Pairs with significant correlations in the GLM analysis conducted between metrics averaged across Monte 

Carlos Type II simulations and across all design scenarios for all subwatershed and subwatershed-related independent 

parameters 

Metrics 

Design 

Scenario 

Correlation 

coefficient 

Standard 

error 

z-

statistics P-value 

Distance to watershed outlet 

(m) vs. N removal cost ($/kg) 

100% -7.07×10-06 3.27×10-06 -2.159 0.031 

Table 4.5 shows that BCR decreases with subwatershed area regardless of the GI design scenario. This 

suggests that the ratio of WQV treatment effectiveness using rain garden practices vs large stormwater 

treatment technologies (i.e. basins) is higher in smaller subwatersheds compared to larger subwatersheds. 

This observation suggests that more concentrated technologies, such as dry and wet basins, are 

recommended for planning stormwater treatment at larger scales (i.e. large subwatersheds and watersheds) 

when using WQV and BCR as analysis metrics. As the area of a subwatershed increases, the technology 

needed to treat WQV, according to guidelines, requires more areal coverage. Therefore, substitution of 

numerous rain garden installations with a large concentrated GI is more beneficial if land and resources are 

available.  Furthermore, Table 4.5 shows there is a correlation between distance to watershed outlet and 

nutrient removal cost. To illustrate this relationship better, Fig. 4.12 shows the distribution of average BCRs 

and nutrient removal costs for subwatersheds with potential locations to implement GI.  
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Fig. 4.12. Map of average BCRs and nitrogen and phosphorous removal costs (Figs a, b, and c respectively) for Dead Run 

subwatersheds with potential locations for GI implementation, under the 100 percent design scenario for Monte  Carlo 

Type II (The numbers within subwatersheds in Figs b and c represent the orders of subwatershed outlets using Shreve 

stream order.) 
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One trend that can be observed in Fig. 4.12 is that subwatersheds located on the watershed boundary show 

higher nutrient removal costs. Fig. 4.12 also shows that subwatersheds receiving run-on from several 

subwatersheds, those having higher Shreve order numbers (Shreve 1966), have lower nutrient removal costs 

relative to subwatersheds with low orders.  

 

Fig. 4.13. Distribution of the mean nutrient removal costs vs subwatershed Shreve orders numbers in the Dead Run 

watershed for 100% GI design scenario and Monte Carlo Type II 

Fig. 4.13 shows the distribution of nutrient removal costs vs the Shreve order of the 67 subwatershed outlets, 

which represents the number of subwatersheds contributing to each outlet. Under the watershed modeling 

assumptions used in this study, the results in Fig. 4.13 indicate that nutrient removal costs are directly 

affected by subwatershed outlet orders. Since the SWMM modelling framework has no routing capability 

within the individual subwatersheds, no conclusions can be drawn on how GI should be placed within 

subwatersheds from this study. However, at the watershed scale, surface water is routed from upstream 

subwatersheds to downstream subwatersheds using dynamic simulation routing (Rossman 2004). With the 

current modeling assumptions, nutrients are therefore deposited at upstream/ low-order subwatersheds. 

Once the pollutants are deposited, they are assumed to be taken out of the system (i.e., subsurface flows are 
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assumed not to bring nutrients back into downstream flows. Therefore, the concentration of nutrients at 

downstream subwatersheds’ outlets is significantly lower than the baseline. By contrast, upstream 

subwatersheds experience significantly higher nutrient levels since the nutrients are deposited both within 

connecting subwatersheds and contributing upstream subwatersheds.  

4.4.3. Results of uncertainty analysis for permeable pavement  

Among the 138 subwatersheds in Dead Run, only three had potential locations for installing permeable 

pavement in commercial buildings with parking lots or in vacant parking lots suitable for renovation. Since 

the number of candidate locations in this case is small, uncertainty assessment is only conducted for 

permeable-pavement-related parameters using Monte Carlo Type I. Fig. 4.14. shows the CDFs of BCRs 

and nutrient removal costs at the three subwatershed outlets as well as the entire watershed.  

 

Fig. 4.14. CDFs of BCR and nutrient removal costs using permeable pavement at the subwatershed and watershed levels 

Fig. 4.14 shows that BCR values resulting from permeable pavement implementation are significantly 

lower than those from rain garden installation (See Fig. 4.4). Also, nutrient removal costs are significantly 

higher than those associated with rain gardens implemented at subwatershed scales (See Figs 4.5, 4.6, and 

4.8). There are three primary reasons for such differences. First, construction and maintenance costs for 

each permeable pavement installation are significantly higher than those of rain gardens (See Appendix H). 

Second, construction and maintenance of permeable pavements, in contrast to rain gardens, cannot be done 

using common household practices and requires professional expertise, which is costly. Since there is no 

self-conducted maintenance and installation, the CDFs in Fig. 4.14 do not have multiple inflection points, 
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in contrast to the CDFs from the rain garden scenarios (shown in Figs 4.4 to 4.6). Third, nitrogen and 

phosphorous removal ratios for permeable pavements are generally lower than those of rain gardens, 

resulting in less nutrient removal and higher nutrient removal costs (See Appendix H). 

4.5. Conclusions and discussion  

This study investigates and the effects of parameter uncertainty on GI cost/benefit assessment at several 

spatial scales through Monte Carlo, regression analysis, and Kolmogorov-Smirnov tests of a case study in 

the state of Maryland. The results showed that higher GI coverage at subwatershed and watershed scales 

results in lower mean and standard deviation of BCRs. Since avoidance costs from WQV treatment are 

used to determine BCR and the cost of rain gardens and permeable pavements increase at a higher rate than 

equivalent technologies (i.e., wet basins, dry basins, and sand filters), higher coverages result in lower 

BCRs. However, BCRs are generally larger than one, suggesting that using rain gardens is more beneficial 

than large-scale practices and the benefits exceed the cost. The only scale at which rain garden life cycle 

costs exceed the benefit is the watershed scale. This suggests that when the GI planning focus is shifted to 

stormwater treatment and capture at the watershed outlet, implementation of large-scale and concentrated 

practices is more efficient if land and resources are available. The results also show that areal coverage of 

GI is more influential than GI contributing area on overall BCRs and nutrient removal costs.  

The BCR results suggest that at the household scale, rain garden practices are more efficient for stormwater 

treatment, while at the watershed scale concentrated dry/wet basins show more promise for stormwater 

treatment efficiency. Considering nutrient removal costs, there are households and subwatersheds at which 

removal costs are less than those at the watershed scale. These results call for a more fine-scale optimization 

approach to recognize such optimal locations within subwatersheds.  

Among rain garden-related parameters, installation option has a significant effect on nutrient removal costs, 

clustering the results into lower and higher ranges. This indicates that training homeowners to perform self-

installation could significantly reduce costs. Second, interest rates show the highest correlation with the GI 
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performance metrics. Also, the constants used to value stormwater capture are more strongly correlated 

with BCRs than nutrient removal efficiency, indicating that environmental benefit valuation is an important 

area for further research to reduce uncertainties. Therefore, there is a need for further research to better 

monetize such benefits. For example, valuation methods could be improved by tracking water treatment 

cost vs time and adding avoided costs of water treatment to the monetary benefits of GI installations.  

Analyzing BCRs, it is observed that the portion of monetary benefits resulting from air pollutant deposition 

is significantly smaller than water-quality-related benefits. Therefore, the share and effects of air pollutant 

deposition parameter uncertainties on the overall BCRs are insignificant. Also, monetary valuation of GI 

stormwater treatment functionality is far more dominant than air pollutant deposition, due to the low 

magnitude of total air pollutant deposition over leaf area of rain gardens and their relatively low monetary 

benefits. These findings suggest that more emphasis should be given to water quality control rather than 

ambient air health in urban GI design guidelines.  

Among physical subwatershed-related parameters, subwatershed area shows a correlation with BCR 

results. This could be due to the relationship between contributing area and GI: As more area contributes 

to a rain garden, stormwater treatment benefits increase; however, if the subwatershed is small, the benefits 

increase even more. Also, the distance to watershed outlet is correlated with nutrient removal costs. The 

distributions of nutrient removal costs also show that for subwatersheds located on the boundary of the 

watershed, and those located upstream, the cost of nutrient removal is higher than those located 

downstream, due to run-on transported from upstream to downstream having already been treated by GI 

implementation upstream. As a result, GI downstream only needs to reduce nutrient concentrations from 

already-treated run-on, resulting in lower nutrient removal costs.   This result indicates a need for incentive 

programs (e.g., property tax breaks, GI installation subsidies, or trading programs) that would encourage 

homeowners, especially those in upstream areas with the highest nutrient uptake costs, to invest in small-

scale GI installations. This result is consistent with previous studies that have recommended 
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implementation of GI practices at upstream subwatersheds (Kuller et al. 2016), as well as the importance 

of run-on consideration in the GI implementation planning (Miles and Band 2015).   

Also, comparing nutrient removal costs between permeable pavements and rain gardens, it is clear that rain 

garden implementation throughout a watershed is more cost effective than permeable pavement installation 

in commercial parking lots. This result occurs because construction and maintenance of permeable 

pavements is considerably more expensive and efficiency of these technologies in treating stormwater is 

generally lower.  

Furthermore, monitoring and data gathering on GI benefits can also significantly reduce results uncertainty. 

Actual daily loads of nutrients can be monitored, especially at the case study area, at both permeable 

pavement and rain gardens as well as outlets, along with types, costs, and locations of GI installations to 

compute actual costs of nutrient load reductions (Mayer et al. 2012; Koch et al. 2014; Miles and Band 2015; 

Perales-Momparler et al. 2017). This would allow the marginal value of nutrient load reduction cost to be 

calculated for both practices.  

To summarize the conclusions drawn from this study, the following take-aways can be highlighted: 

• GI coverage in subwatersheds or in front of households does not guarantee improvement in 

treatment efficiency. Sand filter, dry basins, or wet basins (as concentrated GI practices) are more 

beneficial for WQV treatment efficiency under higher coverage scenarios, while rain gardens are 

better for lower coverage scenarios.  

• Contributing area is not as important as GI coverage area for each of the subwatersheds with respect 

to stormwater treatment efficiency.  

• Among the uncertain modeling parameters, installation option affects the metrics greatly, 

suggesting that more self-installation of GI practices results in higher water treatment efficiency.  

• The parameters used for WQV treatment valuation are more crucial in benefit-cost assessment of 

stormwater treatment efficiency in comparison to other physical simulation-related parameters.  
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• Some subwatersheds have higher nutrient removal efficiencies and some watersheds have lower 

removal efficiencies, calling for a systematic way to determine the most suitable subwatershed 

candidates, as given in the next chapter.  

• The choice of metrics changes the selection results. Using BCR and treated WQV as the metric, 

smaller subwatershed areas are more suitable for rain garden implementation. However, the 

nutrient removal cost metric suggests that implementation of GI in upstream subwatersheds 

benefits downstream subwatersheds and results in higher downstream nutrient removal efficiency.  

• The benefits at the household scale are similar to the ones at the watershed scale. Therefore, the 

highest efficiencies can be observed by siting GI in some subwatersheds, and even in a portion of 

the subwatersheds rather than uniform GI coverage across the entire area. However, the results 

show that even at the household scale, rain gardens are more cost effective for stormwater treatment 

than comparable technologies such as sand filters.   

• Finally, the results showed that permeable pavements are considerably less effective than rain 

gardens. Also, considering the few locations in suitable for permeable pavements in semi-urbanized 

watershed, more emphasis should be given to rain garden practices.  

This study uses historical continuous rainfall data in a calibrated hydrologic model, which does not account 

for longer-term climate change impacts on GI investment effectiveness. Further research with climate 

change scenarios is needed to determine the most effective long-term GI types and locations for each 

scenario.  

This study uses existing models and literature to estimate environmental benefits and economic costs of GI 

projects and identify uncertainties in modeling parameters. However, some of the uncertain parameters did 

not have clear and defined uncertainty boundaries in the literature and simple triangular distributions were 

used. Further research is needed to develop appropriate distributions for all parameters and assess the 

impacts of other types of distributions (e.g. uniform, log-normal) on overall costs and benefits.   
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It is important to note that some benefits/costs may be consequential but are secondary to the primary effects 

of GI implementation. For instance, if nutrients are extracted from stormwater, stormwater treatment plants 

downstream that might extract such minerals and use them for energy recovery may lose some of their 

energy sources. Depending on the system boundaries, there could be numerous secondary uncertain effects, 

such as water treatment plant energy recovery processes and ecosystem stabilization due to nutrient 

removal, that need additional research.  

Finally, further research is needed to quantify and monetize other benefits of GI, such as flood reduction, 

urban heat island mitigation, noise abatement, changes in real estate values, and micro-climate regulation. 

This would allow more accurate assessment of the trade-offs between different types of benefits and the 

optimal arrangement and location of GI for each category of benefits. 



86 

 

Chapter 5: Optimization of green infrastructure networks to maximize 

stormwater-related benefits and minimize life cycle cost using genetic 

algorithms and surrogate models 

5.1. Introduction  

As mentioned in Chapter 1, there are no clear guidelines on the optimal arrangements of GI practices across 

a watershed, given all of the installation and placement limitations. In fact, there is no consensus on a 

generalizable practical and quantitative framework to recognize optimum candidate locations for GI 

placement across a watershed. Most of the frameworks that are proposed in this domain, primarily in the 

scientific community, are subjective, not comprehensive, or do not provide quantifiable guidelines. One of 

the generalizable quantitative approaches is optimization.  

Optimization has been conducted for many different purposes in water resources planning and management 

(Nicklow et al. 2010; Reed et al. 2013). Specifically, the EPA-SUSTAIN model for stormwater 

management can do LID optimization utilizing GIS information (Lee et al. 2012). The tool is a decision 

support system developed to evaluate alternative plans for stormwater quality management and flow 

abatement techniques in urban and developing areas. The tool uses a multi-objective optimization model, 

scatter search + Non-dominated Sorting Genetic Algorithm-II (NSGA-II), to locate optimal locations and 

types of GI.  

Ciou et al. (2012) used a GA optimization model for the optimal placement of GI practices at the watershed 

scale to achieve water quality objectives at a downstream reservoir. Karamouz et al. (2010) developed a 

cost-effective GA optimization model with coupled watershed-reservoir and water quality models to design 

GI strategies. Kaini et al. (2012) used GA with a semi-distributed hydrologic model, Soil and Water 

Assessment Tool (SWAT), to find optimum GI networks for water quality goals at the watershed scale. 

Maringanti et al. (2009) used GA for BMP network optimization to control nonpoint source pollutant, with 

a specific focus on pesticides. Damodaram and Zechman (2013) developed a methodology to select sites 
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for placing LID practices by merging a GA with a hydrologic model, a hydraulic model, and curve-number-

based models for peak flow reduction under different monetary budget scenarios.  

Zhang and Chui (2018) have conducted a comprehensive review of existing spatial allocation optimization 

tools and strategies for GI placement in different catchments. According to their review, most studies have 

not addressed uncertainty in GI performance and its impact on optimal siting. Despite inherent uncertainties 

in parameter estimation for all of the models used in these studies, there has been no research published on 

how uncertainties affect GI placement. Uncertainty in system performance prediction has been a topic of 

considerable research on other water resources management problems, however. One of the first approaches 

to address uncertainty in optimization is the chance-constrained optimization approach (Charnes and 

Cooper 1959). The method has been applied to many different water resource management applications, 

including aquifer remediation planning (Wagner and Gorelick 1989), ground-water contamination 

prevention planning (Gailey and Gorelick 1993), reservoir planning for water supply and shortage (Houck 

1979; Mariño and Simonovic 1981; Feiring, Sastri, and Sim 1998), and integrated agricultural and water 

resources management (Lu et al. 2016). The approach requires computing the deterministic equivalents of 

the constraints, which simplifies the optimization process but is only feasible for normal- or log-normal- 

distributed parameters.  

Another common strategy to address uncertainty is the scenario-based optimization approach, which 

involves generating numerous parameter realizations from the prior distribution and evaluating the 

objective function for each sampled realization. This method has been applied in many water resources 

applications, including watershed management (Yong Liu et al. 2007) and monitoring network design for 

a contaminated site ( Gopalakrishnan, et al. 2003; Chadalavada et al. 2011).  

One scenario-based stochastic optimization approach, which is adopted in this research, is the noisy genetic 

algorithm (noisy GA). Noisy GAs use the traditional GA concepts to handle nonconvex, discrete problems, 

such as the GI application considered in this study. Noisy GAs are designed to maximize the fitness function 
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expectation by sampling from several realizations of the objective function for each solution throughout the 

optimization process. The technique has been applied to different applications such as groundwater 

remediation design (Gopalakrishnan, et al. 2003; Singh and Minsker 2008; Yan and Minsker 2011) and 

water allocation during extreme events (Zhao 2017). The method requires extensive sampling and 

realization evaluations to evaluate each solution over multiple parameter realizations, although low 

numbers of samples per realization (e.g., 5 per realization) are possible due to the population-based GA 

convergence process (Gopalakrishnan, et al. 2003). Since the GA does not analytically guarantee 

convergence to global optimal solutions, we refer to the solutions found in this study as preferable solutions.  

To address and overcome the computationally-intensive sampling of noisy heuristic optimizations, 

surrogate objective functions or constraint models have been extensively proposed and used ( Yan and 

Minsker 2006; Razavi, Tolson, and Burn 2012). In water resources management, surrogate models have 

been extensively used (Aly and Peralta 1999; Baú and Mayer 2006; Yan and Minsker 2006, 2011; Zhao 

2017). 

This chapter is the first study to develop and apply noisy heuristic optimization with surrogate models to 

GI design. A multi-objective, noisy genetic algorithm framework is developed to identify preferable GI 

networks that maximize environmental benefits and minimize economic costs. The environmental benefits 

include total runoff reduction and stormwater treatment, but the approach can be generalized with the 

addition of models of other types of benefits. The economic objectives include life cycle cost of the GI 

network.  

One of the objectives of this study is to determine preferable patterns of GI networks across a watershed. 

SWMM models are coupled with a noisy multi-objective GA that trains data-driven machine learning 

algorithms as surrogate models. This approach helps validate the conclusions drawn from previous chapters 

and, more importantly, assists in driving the simulation-optimization results in a more efficient manner. It 

also helps to recognize patterns of preferable GI practices that can be used as implementation guidelines.  
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This chapter also applies post-optimization analytics techniques to investigate the patterns and parameters 

that indicate preferability of a subwatershed in siting GI practices. Several studies have used various post-

optimization approaches to investigate the trade-offs between different solutions on the Pareto frontier 

(Reed and Minsker 2004; Antipova et al. 2015; Bandaru et al. 2017; Z. Wang and Rangaiah 2017). This 

study divides solutions among four budgetary scenarios and uses decision trees to classify each group of 

solutions, and their corresponding decision variables, based on subwatershed-related features. Decision 

trees and other data mining techniques have been applied to Pareto optimal solutions in the manufacturing 

domain (Dudas et al. 2015). Several green infrastructure optimization studies have focused either on “what-

if” scenarios to meet stormwater treatment and management goals as well as regulatory needs (Neilson and 

Turney 2010; Liu et al. 2016), or on the choice between green and grey stormwater infrastructure (Lucas 

and Sample 2015; Alves et al. 2016). Therefore, post-optimization analytics to recognize emerging patterns 

from the array of potential solutions along a noisy Pareto frontier in the water resources domain is a novel 

contribution of this study.  

In the next section, detailed descriptions of the methodology are presented, including steps required to 

define the optimization framework, algorithms developed and used, and the surrogate models. 

5.2. Methodology 

In this section, the case studies and their objective functions are briefly described. Then, the entire 

optimization framework is explored with a detailed explanation of the probabilistic optimization algorithm. 

Next, the surrogate modelling framework is presented. And finally, the post-optimization analysis is fully 

explained and presented. Fig. 5.1 summarizes the overall steps of the methodology, which can be applied 

to any case study. The first major step in the methodology is (a) correct definition of case study, GI 

practices, fitness values, objective functions, constraints, and uncertain modelling parameters. The second 

major step (b) involves application of a noisy genetic algorithm to the problem. The third step (c) is about 

training, testing, and tuning the surrogate models. The fourth and fifth steps (d and e) include applications 

of offline and online optimization methods. The last major step (e) involves application of post-optimization 
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analytics to determine patterns in the configurations of GI coverage across all subwatersheds based on the 

derived Pareto frontiers.   

5.2.1. Case study  

The case study watershed considered in this chapter is DR5, which was described in Chapter 2. The 

modelling parameters, settings, and SWMM models are the same as those discussed in Chapters 2 and 4. 

In the previous chapters the different distributions of benefits and costs across different spatial scales were 

presented. In Chapter 3, the impacts of GI practices in a semi-urbanized watershed, such as DR5, were 

shown for design storms. It was shown in Chapter 3 that, even after full coverage of GI at all potential 

locations, the magnitudes of the stormwater related benefits during storm events were relatively small. 

Therefore, in this chapter the focus is on the performance of GI practices during continuous rainfall 

simulations, using the same continuous rainfall records as in Chapter 4.  
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Fig. 5.1. Flow chart describing steps of the methodology
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5.2.2. Optimization formulation and algorithms  

To find preferable GI networks for the DR5 watershed, it is necessary to see the performance of each 

proposed network/arrangement (i.e., solution) in terms of its objective function value (or fitness function 

value in GA terminology). To determine a set of fitness values that encompass stormwater capture, 

treatment, and life cycle cost associated with each design, GI coverage and nutrient load and stormwater 

volume reduction costs are considered, same as the analysis metrics in Chapter 4.  

Fig. 5.2 shows the nutrient load reductions and stormwater volume reduction costs at the DR5 outlet 

resulting from 500,000 realizations of GI coverage throughout the watershed. These results were generated 

using the same methodology as in Chapter 4, Monte Carlo Simulation Type I. Fig 5.2. shows that these two 

metrics are highly correlated, with a correlation coefficient of 0.96. Therefore, only cumulative flow 

reduction and life cycle cost are used as the two fitness values for each potential solution within the 

optimization framework. 

  

Fig. 5.2. Nitrogen removal cost vs cumulative flow reduction costs for numerous realizations of GI coverage scenarios 

To evaluate the fitness of each solution, the same models were used as in Chapter 4 (i.e. WERF SELECT 

model to determine life cycle cost of GI projects and SWMM 5.0. to determine cumulative flow reduction). 
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This optimization problem does not have a linear objective function. In fact, the relationship between inputs 

and outputs is complex due to uncertainties inherent in the modeling process (See Appendix I). As a result, 

linear or non-linear optimization approaches cannot be applied to this problem without sacrificing accuracy. 

Therefore, running a meta-heuristic noisy genetic algorithm is a suitable strategy to optimize the watershed 

for GI coverage.  

Noisy GA is a stochastic optimization algorithm that uses traditional GA mechanisms (selection, crossover, 

and mutation) in a noisy environment for fitness functions that are prone to uncertainty (Fitzpatrick and 

Grefenstette 1988). Noisy GAs are designed to maximize the conditional fitness expectation for each 

solution via realization sampling and averaging the fitness values. The number of samples used for fitness 

averaging is a factor that dictates optimization robustness and efficiency. Even a low sampling number, e.g. 

as low as five, has been shown to be sufficient for  discovery of a reliable solution using noisy GA 

(Gopalakrishnan et al. 2001).  This efficiency occurs because the population contains many individual 

solutions; as the population converges, multiple samples of a particular solution’s fitness will eventually be 

found in the population. Therefore, even with noise, any individual solution that fails under different 

sampled conditions will be excluded in the evolution process.  

Selection is an important mechanism in this process. Tournament selection, a common practice in GA 

applications, consists of comparative assessment of two or more solutions, based on fitness value, to select 

the fittest for the mating mechanisms (i.e., crossover). For this application, each population generated in 

each generation of the GA process has individual solutions whose fitness function is computed via 

numerical simulation models, trained surrogate models, or a mix of both simulation and surrogate models. 

The three categories described above are referred to as the scenario without surrogate models, the scenario 

with surrogate model trained offline, and the scenario with surrogate models trained online, respectively.  

Equations 5.1 to 5.2 show the two fitness (objective) function formulations for the GI optimization model, 

F1 and F2. The decision variable in this portion of the study is 𝐴𝑖 – ratio of GI area over total candidate area 



94 

 

in the i-th subwatershed. Since SWMM is a lumped parameter model, these sets of decision variables 

determine the portion of the subwatershed allocated to GI implementation. 

𝐹1 = min ( ∑
∑ 𝑐𝑜𝑠𝑡𝑖,𝑠

𝑛𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠
𝑠=1

𝑁

𝑛𝑠𝑢𝑏𝑤𝑎𝑡𝑒𝑟𝑠ℎ𝑒𝑑

𝑖=1

) 

 

(Eq. 5.1) 

𝐹2 = min( ∑
∑ 𝑅𝑖,𝑠

𝑛𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠
𝑠=1

𝑁

𝑛𝑠𝑢𝑏𝑤𝑎𝑡𝑒𝑟𝑠ℎ𝑒𝑑

𝑖=1

) 

 

(Eq. 5.2) 

Where: 

𝑐𝑜𝑠𝑡𝑖,𝑠: Life cycle cost of GI implementation in i-th subwatershed generated from s-th simulation (Indirect 

function of 𝐴𝑖; For more details on this relationship, see Appendix I. 

𝑅𝑖,𝑠: Total runoff volume at i-th subwatershed outlet throughout rainfall period generated from s-th SWMM 

simulation (Indirect function of 𝐴𝑖) 

𝑁 : Number of realizations for each solution  

This objective function formulation accounts for uncertainty in probabilistic uncertain parameters used in 

the SWMM and WERF models (listed in the case study Section 5.2.1) by taking simple averages of several 

simulations for each fitness evaluation. In other words, as new sets of solutions are generated (i.e., GI 

coverage in different subwatersheds), the SWMM model is executed multiple times and use the 

average/expected values of their solutions in Equations 5.2 and 5.3. The multi-objective optimization 

formulation used in this study is a classic Non-dominated Sorting Genetic Algorithm (NSGA), which 

creates an archive of the solutions evolved throughout the simulation period and compares each new 

solution to the best points in the archive (Deb et al. 2000; Singh and Minsker 2008).  
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To set up the noisy NSGA-II platform, “deap” package was used and modified to include uncertainty in the 

objective functions (Fortin et al. 2012). For mutation and crossover algorithms, polynomial mutation and 

simulated binary crossover methods are used, respectively (Deb and Agrawal 1995; Liagkouras and 

Metaxiotis 2013). The algorithms enable the use of real numbers as decision variables and have been shown 

to outperform many alternatives (Liagkouras and Metaxiotis 2013). Based on GA guidelines (Minsker 

2005), the mutation and crossover probabilities were set at 0.9 and 0.01, respectively, for this case study.  

The population size and number of GA generations have been decisive factors in the computational burden 

of the optimization process (Gibbs et al. 2006). For this case study, the population size was set to 100 based 

on a trial and error process in which several population sizes (10, 25, 50, 100, and 200) were tested and 

their corresponding evolved Pareto frontiers were compared. In the first three trials, the small population 

size resulted in drift and lack of solution exploration. The population sizes of 100 and 200 resulted in similar 

Pareto fronts. Due to lower computational time, the results associated with a population size of 100 is 

presented in this chapter. Through trial and error with the population size of 100, the maximum number of 

generations was set to 3000, which was sufficient for convergence of the Pareto front.  

Also through trial and error, the number of realizations for each solution was set to 10 to provide sufficient 

but not excessive samples to train the surrogate models and generate the uncertainty bounds that are used 

for probabilistic selection in the multi-objective noisy GA. Multiobjective GAs explore the fitness function 

response surface and find the Pareto optimal solutions, for which any of the objective functions cannot be 

improved without compromising improvements in others. To do so, individual solutions are compared to 

all others in the population and ranked based on their level of nondominance. The overall goal of the NSGA-

II multiobjective GA used in this work is to minimize the overall rank of the solutions (Deb et al. 2000). 

For noisy GAs, hypothesis testing is used for the comparison to give a higher level of confidence for the 

dominance ranking process (Singh and Minsker 2008).  In this study, the confidence level for the hypothesis 

test, i.e. student’s t- test, is set to 0.95. Also, the noisy GA was executed on a GPU NVIDIA M5000 node 

with 36 cores and 256 GB of memory using high-performance computing (HPC) capabilities on a SLURM 

system at SMU. 
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5.2.3. Surrogate models to quantify uncertainties in stormwater capture at 

subwatershed and watershed levels 

As mentioned, the watershed optimization under uncertainty is a computationally-intensive process. Two 

computationally intensive modules in the proposed framework contribute to this burden. The first 

computationally-intensive process is quantification of uncertainties in stormwater capture and cost of each 

set of GI coverages at the subwatershed level, which result from uncertainties in rain garden modeling 

parameters. In Chapter 1, these uncertainties are quantified for limited coverage ratios. However, within 

the optimization process, these uncertainties have to be quantified for any given set of GI coverages, as 

explained in Section 4.2.  Also, after quantifying the stormwater capture and life cycle cost for all 

subwatersheds, there is a need to compute their corresponding values at the watershed outlet. Although the 

life cycle costs at the subwatershed level can simply be added together to obtain the corresponding value at 

the watershed outlet, the same cannot be applied to stormwater capture, which is nonlinear. Therefore, there 

is a need to train another surrogate model to predict stormwater capture at the watershed outlet given the 

stormwater capture in each subwatershed.  

The second computationally intensive process is genetic algorithm optimization to determine preferable 

subwatersheds and their GI coverages using the SWMM simulation models. This process requires 

numerous realizations of the SWMM model, each generating different sets of GI coverages. Considering 

the computational time required for every simulation, as well as the probabilistic nature of genetic 

algorithm convergence to preferable solutions, the multi-objective GA requires significant computational 

time to generate a probabilistic Pareto frontier.  

Considering all of these processes, the entire framework is extremely computationally intensive. For the 

case study considered here, each SWMM simulation requires up to 20 minutes to generate one evaluation 

of a fitness function. Conducting the evaluations for numerous realizations to generate a posterior 

distribution of the fitness function therefore requires significant computational power. Furthermore, the 

meta-heuristic nature of the optimization framework relies on numerous population generations of 
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generating the fitness function’s posterior distribution. For this case study, approximately 1,500,000 fitness 

function evaluations are required in total, which is 790 hours, assuming that the computational scripts are 

not parallelized.   

Therefore, despite the generalizability of the simulation-optimization framework, the imposed 

computational burden is likely to hinder application of the framework to real-world case studies. In this 

chapter, we explore the use of surrogate models to reduce computational time by decreasing executions of 

the SWMM model. 

Feedforward artificial neural networks (ANNs), especially multilayer perceptrons (MLPs), are flexible 

models that are commonly used as surrogate models (Maier et al. 2010). The models rely heavily on the 

number of hidden layers, number of perceptrons within the layers, and the type of transfer function, which 

are specific to the case study and need to be selected by the user. Neural networks are capable of emulating 

and approximating any function, given that the network features are set appropriately (Maier and Dandy 

2000; Maier et al. 2010) However, creating an exact emulator is not usually the primary focus of most 

surrogate model users, especially when data contain uncertainty and the number of input features is 

relatively large.  

ANN have been extensively used in the field of hydrology as surrogates for physics-based numerical models 

(Khu and Werner, 2003; Riad et al. 2004; Zou, Lung, and Wu 2007; Behzadian et al. 2009; Kourakos and 

Mantoglou 2009; Broad 2014), primarily for watershed-level responses to rainfall events. The proposed 

methodology works at a smaller scale, i.e., subwatershed. Also, input parameters in the models developed 

here are subwatershed features, which are different from rainfall input used in the reviewed literature. 

Specifically, the surrogate models are designed to predict the mean and standard deviation of cumulative 

flow reductions at the subwatershed level. As mentioned in Section 5.2.3, the surrogate models require 

training and validation using the archives of fitness values and their corresponding decision variables. The 

Scikit-learn ANN package is used for this, with sigmoid activation functions and constant learning rate of 
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0.0001. The remaining parameters that must be tuned are: number of hidden layers, number of perceptrons, 

and the number of iterations for backpropagation training. To determine the minimum number of training 

iterations at which the testing errors would be minimized, the mean squared errors (MSEs) of model training 

and testing are plotted against different maximum numbers of training iterations for a simple network with 

one hidden layer and 20 perceptrons. Fig. 5.3. shows the MSE versus the total number of iterations to 

predict the mean cumulative flow reduction at the subwatershed level.  

 

Fig. 5.3. MSE vs. maximum number of iterations for ANN training and testing to predict the mean cumulative flow 

reductions at the subwatershed level  

The figure shows that 100 iterations is sufficient for the ANN to converge and stabilize. To be conservative, 

200 iterations are used to tune the other two parameters. Fig. 5.4. shows the MSE for different layer sizes 

with 200 training iterations.  
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Fig. 5.4. MSE vs. different layer sizes for 200 iterations of ANN training  

The MSEs for 200 iterations tend to be stable and close to zero for six layers or less. However, as the 

number of layers exceeds six, the MSE, especially during testing, tends to increase significantly, suggesting 

the ANN model is overfit to the training dataset. Therefore, a network of six layers is used to tune the model 

for the optimal number of perceptrons.  

Through grid search, available on Scikit-learn package in python, a “fit” and “score” method is 

implemented that optimizes the hyper-parameter by cross-validated search over a parameter grid with an 

interval of one. This search indicated that the optimal number of perceptrons in each layer for this case 

study is 20, while the other two parameters, i.e. number of layers and number of iterations, were fixed. Fig. 

5.5. shows the resulting MSE plots for training and testing datasets to predict the mean flow reductions at 

the subwatershed level with six layers and 20 perceptrons. After 200 iterations, the training MSE is 0 and 

the testing MSE is 3.5 m3 (2.1% of the average of mean flow reductions at the subwatershed level).  
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Fig. 5.5. MSE vs. maximum number of iterations for ANN training and testing to predict mean cumulative flow reductions 

at the subwatershed level (network with six layers and 20 perceptrons) 

As mentioned previously, the cumulative flow reduction at the watershed outlet, which is one of the fitness 

function values, is not equal to a linear summation of the reductions at the subwatershed levels based on 

the assumptions used in this study. Thus, two alternative indicators for the prediction of cumulative flow 

reduction at the watershed outlet via surrogate models are compared: cumulative flow reduction at the 

watershed outlet and the difference between the sum of subwatershed cumulative flow reductions and the 

cumulative flow reduction at the watershed outlet.  

After tuning the ANN models for the two metrics, the R2 values associated with the cumulative flow 

reduction at the watershed outlet and the difference between the sum of subwatershed and watershed flow 

reductions are 0.80 and 0.96, respectively. The higher prediction accuracy associated with the second metric 

suggests that predicting the difference between the sum of subwatershed and watershed flow reductions is 

more accurate than predicting watershed flow reduction directly. Therefore, the surrogate models are 

trained to predict the mean and standard deviation of the flow reductions at the subwatershed levels, use 

the predicted values to calculate the mean and standard deviation of the summation of the flow reductions 

at the subwatershed level, and finally predict the mean and standard deviation of the difference between the 

summation and flow reductions at the watershed outlet.  
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The ANN models developed in this work are black-box tools for the SWMM models that can be used to 

rapidly predict uncertainty ranges for subwatershed simulation results for a given storm or a continuous 

rainfall record. The ANN models assist the optimization process via the following approaches, as explained 

briefly in Section 5.2.2: 

1. Offline surrogate models: 

In this approach, the surrogate models are pre-trained and pre-tested using the database archive 

generated during execution of the noisy GA without surrogate. These models then substitute for 

the numerical simulations in predicting the mean and standard deviations of the fitness values 

throughout the noisy GA execution.  

2. Online surrogate models: 

In this approach, for the first five generations of the noisy GA process, only the numerical 

simulation model is used for evaluating fitness. After the first 5 generations, with each generation 

having a population of 200 individuals and each individual having 10 realizations to quantify 

uncertainties, the online surrogate model is trained and tested. The features for the online surrogate 

model are similar to the ones used for the offline version (i.e., the same number of layers, same 

number of perceptrons, and same number of iterations). Five generations were selected as the 

surrogate training threshold because the resulting 5,000 available simulation runs (5x100*10) 

ensures that every potential percentage GI coverage within any subwatershed is 99% likely to 

occur. Eq.5.3 shows how this number is computed, assuming that percentage coverages are rounded 

to integer variables. 

𝑃(𝑜) = 1 − 𝑃(𝑛𝑜) = 1 − 𝑛 ∗ 𝑃(𝑟𝑛𝑜 )𝑟 (Eq. 5.3) 

 

Where: 

𝑃(𝑜): probability of a particular coverage occurring within the first five generations  

𝑃(𝑛𝑜): probability of a particular coverage not occurring within the first five generations 
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𝑛: number of potential solutions (100 for this case study) 

𝑃(𝑟𝑛𝑜 ): probability of a solution not occurring within each run (0.99) 

𝑟: total number of simulation runs (5,000 for this case study) 

After five generations, just the surrogate models are used for the remaining generations. 

5.2.4. Post-optimization analytics  

 

As the optimization converges to preferable solutions, GI coverages in different subwatersheds for each 

point on the Pareto frontier are determined. By dividing the Pareto frontier into several sections and sorting 

the sections by life cycle cost from low to high, average coverages for sets of budgetary scenarios can be 

determined. Then, for each budgetary scenario, the distribution of GI coverage scenarios can be determined 

by computing decision variable statistics for each solution. Doing so, the watersheds can be classified into 

five categories, based on mean preferable GI coverage, for each budgetary scenario. Then, supervised 

classification methods, specifically decision trees, are used to assess the importance of different watershed-

related features on GI coverage within each of the four budgetary scenarios.  

Decision trees are structures where each node pertains to a test on an attribute, each branch represents the 

outcome of the test, and each leaf node holds a subset of data categories. The criterion to construct the trees 

is Gini impurity, i.e. the probability of incorrectly classifying a randomly chosen element in the dataset if 

it were randomly labeled according to the class distribution in the dataset. Eq. 5.4. shows the Gini impurity 

equation. 

𝐺 = ∑ 𝑃𝑖(1 − 𝑃𝑖)

𝐶

𝑖=1

 (Eq. 5.4) 

Where: 

𝐶 : number of classes  

𝑃𝑖: the probability of randomly picking an element of class i 
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To construct the decision trees, the objective is to find the best split of the dataset by maximizing the Gini 

Gain, which is computed by subtracting the weighted impurities of the branches from the original impurity 

(Coppersmith et.al. 1999). In this case study, for each budgetary scenario, the prediction classes are the GI 

coverage classes of the solutions. The attributes are subwatershed-related parameters, which were discussed 

in Section 4.3.9. The decision trees are constructed using “Scikit-learn” package in python. Also, the 

maximum depth of the decision trees is set to three to identify only the most predictive subwatershed-related 

parameters in determining the five categories of preferable GI coverages for each budgetary scenario.  

5.3. Results 

In this section, the results of the genetic algorithm without surrogate models are first presented in Section 

5.3.1 as a benchmark, as well as to explore how levels of GI investment affect GI siting across the 

watershed. Then the focus in Section 5.3.2 is shifted to comparative results from the two surrogate modeling 

approaches considered in this study.  

5.3.1. Noisy multi-objective genetic algorithm results  

Fig. 5.6. shows the Pareto frontier of the preferable GI strategies found among 3,000,000 evaluations 

(equivalent to 3000 generations, each with a population size of 200 individuals and 10 realizations for each 

individual) after 35 days of computing time. This Pareto frontier is treated as a benchmark case for the other 

optimization scenarios.  
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Fig. 5.6. Pareto frontier generated via noisy multi-objective GA for DR5 watershed 

The preferable patterns of GI coverage across the watershed are investigated by dividing the solutions on 

the Pareto frontier into four budgetary scenarios representing the four quantiles of life cycle cost shown in 

Fig. 5.6. Fig. 5.7 shows the average coverage of GI among the solutions on the Pareto frontier for each 

budgetary scenario. The maximum GI coverage among the subwatersheds changes from 37% to 99%, 

comparing Fig 5.7.a to Fig. 5.7.d, as the investment budget increases. The coverage classes for the 

subwatersheds also change, implying that the preferable coverage of GI within subwatersheds depends on 

budgetary constraints.  

Next, the effects of subwatershed-related features (subwatershed area, imperviousness ratio, area of rain 

garden candidates, distance from subwatershed outlet to the watershed outlet along the stream, runoff 

coefficient for the continuous rainfall period, and Shreve order number) on the level of GI coverage in 

Pareto frontier solutions is investigated. For each budgetary scenario, the preferable GI coverage is divided 

into five quantiles, sorted based on GI coverage from low to high. The ranges of the classes for the four 

budgetary scenarios are presented with different colors in Fig. 5.7. Then, decision trees (described in 
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Section 5.2.3.) were created to determine the effects of subwatershed-related parameters on the coverage 

classes for each of the four budgetary scenarios given in Section 5.2.2.  

Fig. 5.6 shows the four classification trees generated for the four budgetary scenarios. Within each node, 

except for nodes at the end of branches, five rows of information show the criteria for subsequent branches: 

(1) the sample attribute (i.e., subwatershed characteristic) used for branching and the threshold for 

branching, (2) the Gini value for the node, (3) total number of samples (subwatersheds) that are classified 

into the node, (4) number of samples in each of the five coverage classes for  that node, and (5) coverage 

class in which the samples can be classified. If an ending node, i.e. a leaf, has a Gini value of zero then its 

samples (subwatersheds) in brackets (third row) can no longer be classified into different coverage classes 

and they all belong to the coverage class associated with that leaf. For any node that does not have a Gini 

value of zero, the classification associated with the node, and the number of samples in brackets for the five 

coverage classes (row 3 or 4), have to be further classified in order to reliably select a coverage class. Note 

that, because the trees are limited to three levels to reduce model complexity, some leaf nodes do have non-

zero Gini values and could be split further on other attributes if a more complex model is desired. 

Fig. 5.8 suggests that for the highest (Fig. 5.8d) and lowest (Fig. 5.8a) budgetary scenarios, the distance to 

watershed outlet is the decisive factor in GI siting. When the budgetary scenario is lowest, GI practices 

should be installed only in subwatersheds closest to the watershed outlet. When the budgetary scenario is 

highest, GI is sited across the watershed but highest priority is still given to subwatersheds closest to the 

watershed outlet. 

On the other hand, according to Figs 5.8.b and 5.8.c, the importance of total distance to the watershed outlet 

is lower for the middle budgetary scenarios. In fact, the impacts of different features for preferable GI 

coverage for these solutions are more complex, don’t follow a consistent pattern, and require more depth 

for their corresponding classifier decision trees.  
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Fig. 5.7. Average GI coverage for points on the Pareto frontier in the (a) first, (b) second, (c) third, and (d) fourth quantile 

of life cycle cost. 
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Fig. 5.8. Decision trees to classify subwatersheds based on GI coverage classes within (a) 1st life cycle quantile, (b) 2nd life cycle quantile, (c) 3rd life cycle quantile, (d) and 

4th life cycle quantile budgetary scenarios  
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5.3.2. Results of optimization with offline and online surrogate models  

This section compares results from the offline and online surrogate models, described in Section 5.2.3, with 

the benchmark results from the previous section that used the computationally-intensive numerical model.  

The computation time for the offline surrogate model was 0.85 days, as compared to 35 days for the 

benchmark case without the surrogate. Fig. 5.7 compares the Pareto frontier generated with the offline 

surrogate model to the benchmark case without the surrogate model. To ensure comparability of the two 

Pareto fronts, the surrogate solutions were evaluated with the numerical model after the optimization was 

completed. 

  

Fig. 5.9. Comparison of Pareto frontiers generated from noisy GA without the surrogate models and with the offline 

surrogate model. The solutions on both frontiers are evaluated using the numerical model. (The band shows the 90% 

confidence interval of the ten realizations associated with each solution.) 

According to Fig. 5.9, the fitness values from the surrogate models are similar to those found by the noisy 

GA without the surrogate models. A 2-D Kolmogorov-Smirnov test for similarity of the two distributions 
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of fitness values resulted in D statistics and p-value of 0.06 and 0.67 respectively. This means that the two 

Pareto frontiers are statistically similar at a confidence level of 99%. Table 5.1. shows the mean and 

standard deviation of the differences in preferable GI coverages from the noisy GA with and without offline 

surrogate models in each of the four quantiles of life cycle cost and five categories of subwatershed 

coverages (shown in Fig. 5.5).  

Table 5.1. Mean and standard deviation of differences in preferable GI coverage from Noisy GA to offline surrogate model 

(positive sign in parentheses shows an increase in mean coverage compared to the noisy GA without surrogate models.) 

 

 

1st coverage 

class  

2nd coverage 

class 

3rd coverage 

class 

4th coverage 

class 

5th coverage 

class 

1st quantile of life 

cycle cost 

(+) 2%± 2% (+) 3%± 2% (+) 4%± 2% (+)3%± 3% (+) 3%± 2% 

2nd quantile of life 

cycle cost 

(+) 2%± 2% (+) 3%± 2% (+) 3%± 2% (+) 4%± 2% (+) 4%± 1% 

3rd quantile of life 

cycle cost 

(+) 5%± 3% (+) 5%± 3% (+) 6%± 4% (+) 5%± 3% (+) 6%±3% 

4th quantile of life 

cycle cost 

(+) 7%± 2% (+) 7%± 2% (+) 6%± 3% (+) 7%± 3% (+) 8%± 4% 

Table 5.1 shows that the most significant differences are observed in the 4th quantile category. The 

coverages in the first and second quantiles did not change significantly, meaning that the preferable 

locations for GI installations and the order of GI coverage across subwatersheds did not change significantly 

with implementation of the offline surrogate model compared to the benchmark case.  

The online surrogate model also significantly reduced computational time, from 35 days to 1.9 days, but 

not as much as the offline surrogate, which required 0.85 days. However, to be comparable, time spent 

generating the training set for the offline surrogate must be considered, which was 35 days. Overall 

execution time for the online surrogate model was thus significantly lower than the offline surrogate model. 

Fig. 5.10 compares the Pareto frontier generated by the online surrogate model with the benchmark case 

without surrogate model. Another 2-D Kolmogorov-Smirnov test of the similarity of the two distributions 

of fitness values was conducted and the resulting D statistics and P-value were 0.1 and 0.74 respectively, 

suggesting that there the two distributions are not statistically different from each other with 99% 

confidence.  
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Fig. 5.10. Comparison of Pareto frontiers generated from noisy GA with and without the online surrogate models  

Fig. 5.11 shows the average GI coverage identified with the online surrogate model for the four budgetary 

scenarios. The patterns of preferable GI coverage across the subwatersheds remain the same as those 

presented in Fig 5.7.  

Table 5.2 compares the GI coverages across subwatersheds between the noisy GA with and without online 

surrogate models in the four quantiles of life cycle cost and five categories of coverages. The positive sign 

in parentheses shows an increase in coverage compared to the noisy GA without surrogate models in Table 

5.2. As with the offline surrogate results in Table 5.1, the largest differences can be observed in the 2nd and 

3rd quantile categories, especially in the subwatershed with the highest coverage (i.e., the 5th coverage 

class).  

However, the results consistently show that regardless of the method used, i.e. noisy GA with no surrogate, 

online surrogate model, or offline surrogate model, the distributions of preferable coverages, comparing 
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Fig. 5.11 to Fig. 5.7, within the four different budgetary scenarios remain the same. Consequently, the 

decision trees created for this optimization scenario would be the same as the ones presented in Fig. 5.6 

without surrogate models. This observation suggests that both surrogate models perform accurately enough 

to identify the preferable arrangement patterns of GI coverages across the watershed, despite the differences 

observed in Tables 5.1 and 5.2.  

Table 5.2. Differences in preferable GI coverage across subwatersheds from Noisy GA to online surrogate model 

 

 

1st coverage 

class  

2nd coverage 

class 

3rd coverage 

class 

4th coverage 

class 

5th coverage 

class 

1st quantile of life 

cycle cost 

(+) 3%± 3% (+) 4%± 2% (+) 4%± 2% (+) 4%± 2% (+) 4%± 3% 

2nd quantile of life 

cycle cost 

(+) 5%± 4% (+) 4%± 3% (+) 5%± 2% (+) 7%± 2% (+) 4%± 3% 

3rd quantile of life 

cycle cost 

(+) 5%± 3% (+) 6%± 4% (+) 5%± 5% (+)8%± 4% (+) 6%±2% 

4th quantile of life 

cycle cost 

(+) 10%± 2% (+) 8%± 4% (+) 8%± 5% (+) 10%± 4% (+) 8%± 4% 
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Fig. 5.11. Average GI coverage for solutions on the Pareto frontier found via online surrogate models in the (a) first, (b) 

second, (c) third, and (d) fourth quantile of life cycle cost  
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5.4. Conclusions and future work  

This chapter presented an optimization framework for planning green infrastructure networks considering 

for stormwater and life cycle objectives. The optimization process involves a multi-objective, noisy genetic 

algorithm that accounts for uncertainties associated with GI modeling parameters. The approach integrates 

two simulation models (i.e., SWMM and WERF), which work at subwatershed scales to predict the 

cumulative flow at the watershed outlet, with three different optimization algorithms: noisy NSGA-II 

without surrogate models, noisy NSGA-II with offline surrogate models, and noisy NSGA-II with online 

surrogate models.  

Classifying the preferable GI coverages obtained without surrogate models via decision trees shows that 

for the budgetary scenario with the highest and lowest budgets, distance to the watershed outfall is the most 

important factor in GI siting. In the lowest budgetary scenario, the decision trees suggest that the highest 

(and perhaps only) investments should be allocated to subwatersheds closest to the watershed outlet. The 

highest budgetary scenario also gives highest priority to this region, but GI is sited in other subwatersheds 

as well, with the lowest priority given to subwatersheds with the highest distance to the watershed outlet.  

Other studies have also found that implementation of GI practices would be most beneficial at downstream 

subwatersheds closest to the watershed outlet (Di Vittorio and Ahiablame 2015; Giacomoni and Joseph 

2017). However, there has not been a consensus on best locations for GI implementation, and Zhen et al. 

(2004) have argued that catchment characteristics and environmental goals should be taken into 

consideration. The framework developed in this study would facilitate further optimization-simulation 

analysis for diverse watersheds and environmental goals in order to investigate what GI siting arrangement/ 

network is the most beneficial for a given case study.  

Obtaining these results with the noisy GA without surrogate model is extremely computationally 

demanding. Therefore, surrogate models were created using ANNs to reduce the computational effort. The 

online and offline surrogate models, which rely on archives of decision variable inputs and fitness value 
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outputs, were able to predict the mean and standard deviation of cumulative flow reductions at the 

subwatershed and watershed outfall with R2 of 80% and 96%, respectively. Both online and offline 

surrogate models required 95% to 97% less computational effort during the optimization process and 

generated Pareto frontiers that were statistically similar to the benchmark noisy GA without surrogate 

models at a 95% confidence level. Furthermore, the preferable patterns of GI coverages across 

subwatersheds, despite having different ranges of GI coverages, remained the same across the three types 

of fitness functions (no surrogate, online surrogate, and offline surrogate). However, the offline surrogate 

required pre-training of the ANN with a prior noisy GA execution, and hence the overall computational 

savings is not significant unless multiple GA executions are needed (e.g., for many design scenarios). 

Therefore, the online surrogate approach is recommended for the greatest overall computational savings 

without significant loss of accuracy. 

In this chapter, the best-performing values for the ANN hyper-parameters (number of hidden layers, number 

of perceptrons, and number of iterations of backpropagation) were determined using an archive of decision 

variables and their corresponding fitness values from a prior noisy GA execution. We then used the same 

model parameters in both the online and offline surrogate models. Therefore, the successful execution of 

both the offline and online methods relied on the initial computationally demanding noisy GA optimization 

execution. Future research should optimize the hyperparameters of the online surrogate after the first few 

generations of the online optimization process to ensure the model is truly independent of prior executions.  

For future research, other novel neural network platforms and packages, such as keras (Chollet 2015) and 

tensor flow (Abadi et al. 2015), could be explored to further increase the accuracy and robustness of the 

predictive surrogate models. Executing individual fitness evaluations in parallel would reduce overall clock 

time to identify the Pareto frontier, with and without the surrogate models.  

Other future research could focus on multi-scale optimization of GI networks considering other objectives. 

Distributed hydrologic models (e.g., RHESSys, Tague and Band 2004) would more accurately capture 
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patch-by-patch performance of GI for water quality treatment and water quantity management and identify 

preferable locations of GI practices at smaller scales (individual plot to patch). Doing so, the importance of 

different patch-related features in the preferable subwatersheds can be investigated, thus providing 

guidelines on the best types of patches for GI implementation.  The optimization framework developed in 

this work could easily be extended to evaluate such more complex scenarios, although the computational 

effort would be considerably higher and the surrogate models would be even more important.  
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Chapter 6: Conclusions and future research 

This dissertation creates a decision-making framework to assist decision makers with recognition of the 

potential locations for small GI practices in urban/ semi-urbanized watersheds, and conducts quantitative 

analysis on the functionality of the GI practices with respect to spatial scale and uncertainty in their 

performance. This dissertation specifically focuses on rain gardens as small-scale practices that can be 

implemented across two case study watersheds, DR5 and SR5 in the state of Maryland. Numerical 

simulation models, uncertainty quantification methods, meta-heuristic optimization methods, and data-

driven machine learning methods are used to determine where GI practices should be placed.  

After presenting the details of the case studies, the third chapter of this dissertation highlights the 

capabilities of a software platform developed to allow practitioners to interactively identify and evaluate 

the performance of small GI practices using hydrologic models. The online Cloud-based interactive tool — 

called IDEAS_GI, or Interactive DEsign and ASsessment of GI — assesses GI performance using 

hydrologic and empirical models to estimate cost, stormwater volume reduction and treatment, and air 

pollutant deposition. The tool is designed to be used as an initial screening platform to identify potential 

locations for GI implementation across case study watersheds and to provide an overview of GI 

performance across spatial scales, as well as its inherent uncertainties.  

IDEAS_GI provides a reasonable representation of estimated hydrographs based on selections of routing 

time steps, routing method, infiltration method, resolution of subwatersheds, and parameters used for each 

subwatershed. The hydrologic/hydraulic models that are coupled with IDEAS_GI can vary in terms of 

execution time, spatial and time scale, routing and infiltration approaches, and rainfall duration. Therefore, 

IDEAS_GI can assist hydrologists, engineers, and practitioners as a flexible modeling package with an 

interactive representation of landscapes that can be shared with stakeholders to support GI implementation.     

The IDEAS demonstrated the sensitivity of the simulation results to GI parameters as well.  The results 

showed that soil depth and type of rain garden installations do not lead to tangible reductions in peak flow 



117 

 

 

and cumulative flow reduction at the DR5 outlet for the design storms specified by government design 

manuals. Instead, increasing the coverage in all subwatersheds with potential locations for GI, i.e. a network 

of GI practices, will result in slightly higher performance in stormwater capture and treatment. Also, the 

choice of storm event frequency greatly affected the overall performance of GI networks.  

Future research can further investigate the level of significance and magnitude of stormwater-related 

functionalities (e.g. stormwater volume reduction, peak flow reduction and nutrient removal) associated 

with GI designs in different watersheds with respect to different design storms, and not the only ones from 

the design manuals. In fact, assessing the magnitude of design storms that is most appropriate for small GI 

practices for different climates, given different environmental goals, could significantly improve 

understanding of their performance, thus reducing the uncertainty in predicting GI performance assessment 

for design and planning purposes.   

Comparing the results of simulations between two case study watersheds, SR5 and DR5, the effects of GI 

practices in SR5, which is smaller and highly urbanized, is not as promising as those of DR5, even after 

implementation at all potential locations across the watershed. DR5 is a semi-urbanized watershed with a 

considerably larger suitable area to implement GI practices, which enables higher impacts. Also, looking 

at the performance of GI for the design storms and continuous rainfall records, the results show that the 

percentage decrease in nitrogen reduction is higher than that of stormwater volume and peak reductions.  

More investigations are needed to assess the impacts of other factors, such as relative locations within a 

subwatershed, connectivity to impervious contributing area, or land use type, on the performance of GI 

practices.  

In Chapter 4, the stormwater-related performance of GI practices and other benefits/costs associated with 

different GI networks at different spatial scales were analyzed. IDEAS_GI was used for detection of 

potential locations for GI implementation and facilitation of initial off-site assessment of GI practices. 

Based on the results from Chapter 2, the focus of Chapter 3 shifted to GI functionality during continuous 
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rainfall records. The chapter demonstrated how the scale of implementation (i.e., household, sub-watershed, 

or watershed), affects the cost and benefits of GI, focusing on rain gardens and the uncertainties inherent in 

estimation of their performance. This chapter assessed the extent of GI implementation and its effects on 

overall cost/benefit assessments of GI.  

The chapter concluded that GI coverage in subwatersheds or in front of households does not guarantee 

improvement in treatment efficiency. Sand filter, dry basins, or wet basins (as concentrated GI practices) 

are more beneficial for WQV treatment efficiency under higher coverage scenarios, while rain gardens are 

better for lower coverage scenarios. It was also found that contributing area is not as important as GI 

coverage area for each of the subwatersheds with respect to stormwater treatment efficiency, based on the 

assumptions used in SWMM 5.0. Also, among the uncertain modeling parameters, installation option 

affects the metrics greatly, suggesting that more self-installation of GI practices results in higher water 

treatment efficiency. Furthermore, the parameters used for WQV treatment valuation are more crucial in 

benefit-cost assessment of stormwater treatment efficiency in comparison to other physical simulation-

related parameters.  

The chapter also showed that the choice of metrics changes the selection results. Using BCR and treated 

WQV as the metric, smaller subwatershed areas are more suitable for rain garden implementation. 

However, the nutrient removal cost metric suggests that implementation of GI in upstream subwatersheds 

benefits downstream subwatersheds and results in higher downstream nutrient removal efficiency.  

The benefits at the household scale are similar to the ones at the watershed scale. Therefore, the highest 

efficiencies can be observed by siting GI in some subwatersheds, and even in a portion of the subwatersheds 

rather than uniform GI coverage across the entire area. However, the results show that even at the household 

scale, rain gardens are more cost effective for stormwater treatment than comparable technologies such as 

sand filters.   
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The chapter used historical continuous rainfall data in a calibrated hydrologic model, which does not 

account for longer-term climate change impacts on GI investment effectiveness. Further research with 

climate change scenarios is needed to determine the most effective long-term GI types and locations for 

each scenario.  

The chapter also used existing models and literature to estimate environmental benefits and economic costs 

of GI projects and identify uncertainties in modeling parameters. However, some of the uncertain 

parameters did not have clear and defined uncertainty boundaries in the literature and simple triangular 

distributions were used. Further research is needed to develop appropriate distributions for all parameters 

and assess the impacts of other types of distributions (e.g. uniform, log-normal) on overall costs and 

benefits.   

It is important to note that some benefits/costs may be consequential but are secondary to the primary effects 

of GI implementation. For instance, if nutrients are extracted from stormwater, stormwater treatment plants 

downstream that might extract such minerals and use them for energy recovery may lose some of their 

energy sources. Depending on the system boundaries, there could be numerous secondary uncertain effects, 

e.g. ecosystem stabilization due to nutrient removal, that need additional research.  

Moreover, further research is needed to quantify and monetize other benefits of GI, such as flood reduction, 

urban heat island mitigation, noise abatement, changes in real estate values, and micro-climate regulation. 

This would allow more accurate assessment of the trade-offs between different types of benefits and the 

preferable arrangement and location of GI for each category of benefits. 

Finally, the chapter showed that some subwatersheds have higher nutrient removal efficiencies and some 

watersheds have lower removal efficiencies, calling for a systematic way to determine the most suitable 

subwatershed candidates, which is partially addressed in the Chapter 5. 
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The fifth chapter provides a framework for identifying preferable locations to place GI. This chapter shows 

locations where subwatersheds are more suitable for GI placement from the standpoints of water quantity, 

and life cycle cost. The chapter uses noisy meta-heuristic optimization algorithms, noisy GA, to find the 

preferable arrangement and location of GI practices in a semi-urbanized watershed. To optimize the 

network in an efficient manner and to overcome the computational burden of the optimization process, the 

optimization algorithms were merged with surrogate machine learning models, in this case artificial neural 

networks. The surrogate models are trained to replace the computationally-intensive numerical models 

using datasets generated during and after the optimization process, referred to as online and offline noisy 

GA respectively.  

The optimization with noisy GA without surrogate model was extremely computationally demanding. As 

a result, the Pareto frontier generated from this approach was used as a baseline to compare the performance 

of the other two optimization methods. Noisy GA without offline surrogate model, resulted in a similar 

Pareto frontier in which the majority of points, after accounting for their uncertainties and their equivalent 

fitness values using the SWMM model, did not have statistically different fitness values. However, using 

noisy GA with online surrogate model the Pareto frontier of the solutions was statistically different from 

the baseline Pareto frontier. After classifying and ranking the preferable fitness values and their 

corresponding decision variables, the results showed that, the patterns of GI coverages remained the same 

across the three optimization scenarios. Thus, the results suggested that the optimization process has 

investigated the solution space thoroughly and has reached a global optimal.  

Classifying the preferable GI coverages across the subwatersheds via decision trees, showed that for the 

budgetary scenario with the highest and lowest budget, distance to the watershed outfall is an important 

factor. In fact, in the lowest budgetary scenario, the results suggest that the highest investments, and 

potentially all of the investments, should be allocated to the subwatersheds closest to the watershed outlet. 

In the highest budgetary scenario, the results also suggest that the highest investments should be made 
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closest to the watershed outlet, but GI is also sited in other subwatersheds, with the lowest investments in 

the subwatersheds with the highest distance to watershed outlet.  

Additional noisy GA runs can ensure that the optimal solution has been reached and the solution spaces has 

fully been investigated. There is also an immediate potential to apply the optimization techniques to the 

other case study, e.g. SR5 watershed. Doing so, the conclusions drawn from emerging preferability patterns 

can be justified.  

Finally, this study demonstrates the need for future research that focuses on increasing the optimization 

resolution via distributed hydrologic modeling to capture cell-by-cell performance of GI for water quality 

treatment  and water quantity management For more generalizable recommendations, there is a need for 

optimization frameworks that identify preferable locations of GI practices at small scales using distributed 

hydrologic models. 
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Appendix B: Instruction manual to prepare IDEAS_GI Jupyter notebook  

Once you have setup a HydroShare account, you can use following steps to install all models into your 

environment, and to execute models. 

• Login into HydroShare 

• Click on Apps located on top of the page.   

• Click on “Jupyter Python Notebook at NCSA” icon, second item from left on the first row.  

• You should see a Jupyter notebook with a title "Welcome to the HydroShare Python Notebook 

Server". If you see this page, you are ready to upload the prototype workflow. 

 

Fig. B.1. Screenshot of the JupyterHub welcome page  

• Click on Jupyter sign on top left side of your page. You should see a page that is similar to 

following picture, but with only one folder “notebooks”. Do not close this page. We will come 

back to it.  
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Fig. B.2. Screenshot of the folder in JupyterHub environment 

• Open a new tab, and type in 

http://www.hydroshare.org/resource/75dfc27015f1467388d712b562657835 to access supporting 

files for SWMM 5.0 and cost-benefit workflows, or alternatively search for 

“IDEAS_GI_Deadrun” in Discover tab in your hydroshare profile.  

• Scroll down to Contents tab. 

• Select IDEAS_GI supporting files and download it, using the third button on top left side of the 

contents tab.   

http://www.hydroshare.org/resource/75dfc27015f1467388d712b562657835
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Fig. B.3. Screenshot of the description and contents of IDEAS_GI for GI_ Deadrun 

• After the download process has finished, folder size is 10MB, go back to Jupyter page. 

• Click on notebooks folder. 

• Now we want to populate notebooks folder with supporting files as well as our main notebook. 

Click on upload button on top right side of your page. 

• Find the zip file you just downloaded, IDEAS_GI.rar, on your PC and open it. 

• Click on blue upload icon to upload the notebook into your environment. 

• Now we want to unzip the folder. Click on “New” button on top right side of your page, and then 

select terminal. 
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Fig. B.4. Screenshot of the tap needed to upload the zipped files  

• A dark page showing terminal interface of your machine at NCSA will pop-up. Type in “cd 

notebooks” without quotation marks. All the commands you type in this page will be sent to a 

remote machine, meaning that nothing will be executed on your local machine.  

• Type in “unzip IDEAS_GI.rar” without quotation marks. 

• A list of documents will appear on your screen now. Type in “cd SWMM5-5.1.0.102” without 

quotation marks. 

• Type in “pip install SWMM5-5.1.0.102”. (If you got red warnings, try “Python setup.py install”.) 

o To check if you have installed Python type in “Python” 

o Please type in “import swmm5” 

o If there are no warnings, the package is installed.  

o Please type “exit()”. As you successfully, import the package, you can skip steps 11 to 

19.  

 

Fig. B.5. Screenshot of the terminal and required commands to verify successful installation of “swmm5” package 

• Close the page you have the terminal open in. Go back to the notebooks folder page. There 

should be a file named as “IDEAS_GI- DeadRun.ipynb”. You just need this file. The rest are 

supporting files.  

• You should see a new page, notebook, from which you can design Green Infrastructure, run 

models and get results. This page is all you need. This notebook is the “IDEAS_GI” the version 

prepared for the Deadr run watershed (case study I). Appendix C describes the steps required to 

execute this Jupyter notebook file. 
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Appendix C: Instruction manual to execute IDEAS_GI_Deadrun 

 

This is the IDEAS_GI platform, i.e. Jupyter notebook. This notebook contains two types of cells: (a): 

Analysis cells, (b): Mark up cells. The analysis cells are the cells that require execution from users, while 

markup cells exist just to provide documentation and guidance for the users. This section describes the steps 

required to execute the IDEAS_GI successfully, with more focus on analysis cells. 

• Before you start, in order to make sure there are no outputs left from previous runs, please click on 

“kernel” tab and click on “Restart and clear outputs.  

Once you restart the notebook, the empty notebook will appear and is ready to be executed by you. Fig. 

C.1. shows a screenshot of the notebook. 

  

Fig. C.1. Screenshot of the empty notebook ready to be executed by the users 

• The first few cells are markup cells explaining the notebook and its functionality.  
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• Sixth cell is the first analysis cell that you need to press “shift+ enter” to execute. The cell imports 

the necessary python libraries required for the successful execution of IDEAS. The cell might ask 

for your HydroShare password as well. Once is the cell is executed, its content, Python scripts, will 

disappear to the background. At any stage in the execution of the IDEAS, you can lcik on “show 

code” button to see the python scripts contents. Fig. C.2 shows a screenshot of the cell once its 

executed successfully.  

 

Fig. C.2. Screen shot of the messages that should appear after successful execution of the first analysis cell 

• The next step is to execute the ninth cell, i.e. second analysis cell. This cell activates the connection 

to GI designer server an enables the GI designer interface. Section 2.2 have explained how GI 

practices can be designed and how the features of designs can be inserted into the Jupyter notebook 

environment. Fig. C.3 shows a screenshot of the GI designer interface.  

 

Fig. C.3. Screen shot of the GI designer page 
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• Once the GI designs are completed “using Save GI values to Hydroshare” button under “Save or 

Load GI” tab, you need to execute the third analysis cell, 12th cell total, to import the GI features 

into the Jupyter notebook environment. Upon successful execution of the cell, a message similar 

to the one in Fig. C.4 will appear.  

 

Fig. C.4. Screenshot of the message showing successful import of the GI features into IDEAS_GI environment 

• The next analysis cells need to be executed to (1) initialize the models, (2) run the SWMM 5.0 

models, (3) run the cost benefit models, and (4) prepare the outputs.  Fig. C.5 show the messages 

appearing after successful execution of the mentioned analysis cells.  

 

Fig. C.5. Screenshot of the messages showing successful execution of the next analysis cell in IDEAS 

• The last analysis cell generates the report detailed in Section 2.2.  
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Appendix D: Input parameters for the required supporting files to successfully 

execute IDEAS_GI for any given watershed 

 

This version of IDEAS_GI is capable of being adjusted to any given watershed. The steps are similar to 

those mentioned in Appendix C. However, there are additional parameters that require to be executed and 

specified for the successful execution of the tool. Here is a list of the parameters and their description: 

D.1. Total_Number_sub: Total number of subwatersheds in the case study area.  

D.2. Life_span: The life span of GI practices used of estimation of life cycle cost for rain gardens and 

trees.  

D.3. Max_iteration: Maximum number of iterations that users that you want to run the Monte Carlos 

simulation for all the models used on this study.  

D.4. Vertix_coordinates_file_name: A csv file containing coordinates (in latitude and longitude in 

WGS 1984 world Mercator projection system) for the vertex coordinates of the subwatersheds. You 

should follow the format used for the equivalent file in the supporting files for Dead run watershed.  

D.5. First_design_Storm_SWMM_file: The name of inp file containing the SWMM 5.0 model for the 

first design storm.  

D.6. Second_design_Storm_SWMM_file: The name of inp file containing the SWMM 5.0 model for 

the Second design storm.  

D.7. Pollutant: The name of the pollutant of interest that will be analyzed at the watershed and 

subwatershed outlets.  

All the parameters will be asked from the cell prior to the execution of GI designer and after execution of 

the first analysis cell.  

By uploading and specifying the name of SWMM 5.0 files, the baseline models, the ones without any GI 

practices inserted will be executed to generate hydrographs at watershed and subwatersheds outlets. Also, 

the probabilistic distribution of the pollutant of interest will be created at the subwatershed and watershed 

outlets by the number of Monte Carlo simulations specified at D.3. 
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Appendix E: Uncertain continuous parameters  

 

Table E.1. Uncertain continuous parameters 

Parameter Parameter range Assumed 

distribution 

References  

Thickness for rain garden soil Low depth: 7- 13 cm, average 

depth: 15- 18 cm, High: 20 cm 

Uniform within each 

category of soil 

(Water Environment Reuse 

Foundation (WERF) 2012) 

Hydraulic conductivity for rain 

garden soil  

Clay: 1×10-9- 4.7×10-7 (cm/s) 

Sand: 2×10-5- 6×10-1 (cm/s) loam: 

4.23×10-4-1.41×10-3 (cm/s) 

Triangular within each 

category of soil 

(Domenico and Schwartz 

1990; United States 

Department of Agriculture 

2018) 

Porosity ratios for rain garden 

soil 

Clay: 0.38, std: 0.12, sand: 0.42-

std0.08, loam: 0.43- std:0.1 

Normal within each 

category of soil 

(Rawls et al. 1982) 

Field capacity for rain garden soil Clay: 0.3, std: 0.08, sand: 0.106, 

std: 0.025, loam: 0.325, std: 0.064 

Normal within each 

category of soil 

(Ottoni Filho et al. 2014)  

Wilting point for rain garden soil Clay: 0.05- 0.20, sand: 0.05-0.10, 

loam: 0.10- 0.15 

Triangular within each 

category of soil 

(Northeast Region Certified 

Crop Adviser 2010; Ottoni 

Filho et al. 2014) 

Suction head for rain garden soil  Clay: 6.39-156.5 (cm), sand: 

0.97- 25.36 (cm), loam: 1.33-

59.38 (cm) 

Normal within each 

category of soil 

(Mays 2011) 

Rain garden removal efficiencies 

for phosphorous (P) removal 

70-85 (%) 

 

Triangular (Roy-Poirieret al. 2010) 

Rain garden removal efficiencies 

for nitrogen (N) removal 

5-85 (%) Triangular (Roy-Poirier et al. 2010) 

Manning values of pervious 

pavement  

0.015-0.03 Triangular (Chow 1959) 

Surface slope for pervious 

pavement  

0-0.01 Triangular (Virginia Water Research 

Center 2011) 

Pavement layer thickness 7-20 (cm) Triangular (Virginia Water Research 

Center 2011) 

Void ratio of pavement layer 

within pervious pavement 

0.015-0.5 Triangular (Virginia Water Research 

Center 2011) 

Permeability of pavement layer 

within pervious pavement 

63-2260 (cm hr-1) Triangular (Li et al. 2013) 

Storage layer thickness within 

pervious pavement 

15-30 (cm) Triangular (California Department of 

Transportation 2014; 

Riverside County Flood 

Control and Water 

Conservation District 2011) 

Void ratio of storage layer within 

pervious pavement 

0.3-0.75 Triangular (California Department of 

Transportation 2014; 

Minnesota Pollution Control 

Agency 2017) 

Seepage rate of storage layer 

within pervious pavement 

0.06-0.12 (cm hr-1) Triangular (California Department of 

Transportation 2014) 

Pervious pavement removal 

efficiencies for phosphorous (P) 

removal 

28-82(%) Triangular (Drake et al. 2014; Tota-

Maharaj and Scholz 2010; 

Yong et al. 2008) 
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Table E.1. (cont.) Uncertain continuous parameters 

Parameter Parameter range Assumed 

distribution 

References  

Pervious pavement removal 

efficiencies for nitrogen (N) 

removal 

16-43(%) Triangular (Drake et al. 2014; Tota-

Maharaj and Scholz 2010; 

Yong et al. 2008) 

Nitrogen (N) concentrations in 

rainfall  

0.5-1.0 (mg L-1) Triangular (“National Atmospheric 

Deposition Program” n.d.) 

Phosphorous (P) concentrations 

in rainfall  
2.4- 419.0 (g L-1) Triangular (Migon and Sandroni 1999) 

Event mean concentration for 

nitrogen  

0.82- 14.7 (mg L-1)  Triangular (Brezonik and Stadelmann 

2002) 

Event mean concentration for 

phosphorous  
0.11- 9.40 (g L-1)  Triangular (Brezonik and Stadelmann 

2002) 

Initial leaf area ratio 

 

0- 0.2  Triangular (Center for Neighborhood 

Technology 2006) 

Dry deposition velocity in the 

ambient environment for ozone  

0.001-0.01(m s-1)  Triangular (Hirabayashi et al. 2012; 

Mcpherson et al.  1994; 

Sehmel 1980) 

Dry deposition velocity in the 

ambient environment for 

nitrogen dioxide  

0.01- 0.004 (m s-1)  Triangular (Hirabayashi et al. 2012; 

Mcpherson et al.  1994; 

Sehmel 1980) 

Dry deposition velocity in the 

ambient environment for sulfur 

dioxide 

 

0.008- 0.01 (m s-1)  Triangular (Hirabayashi et al. 2012; 

Mcpherson et al.  1994; 

Sehmel 1980)  

Dry deposition velocity in the 

ambient environment for carbon 

monoxide 

 

0.01- 0.000002 (m s-1)  Triangular (Hirabayashi et al. 2012; 

Mcpherson et al.  1994; 

Sehmel 1980)  

Dry deposition velocity in the 

ambient environment for ozone 

particulate matter  

0.00003- 0.1 (m s-1)  Triangular (Hirabayashi et al. 2012; 

Mcpherson et al.  1994; 

Sehmel 1980)  

Discount factor for GI practices 

constructed 

0-0.39 (%) 

 

 Triangular Conversions with 

practitioners 

Interest rate 0.02-0.06 (%) Triangular (Mortgage Calculator n.d.) 

Constants for water quality 

treatment 

B0:1540± 480, B1: 0.625± 0.046  Triangular (Weiss, Gulliver, and 

Erickson 2007) 

Maintenance frequency for rain 

garden  

1-36 months   Triangular (Water Environment Reuse 

Foundation (WERF) 2012) 

Hours per maintenance for rain 

garden 

0-3   Triangular (Water Environment Reuse 

Foundation (WERF) 2012) 

Labor cost for rain garden 

construction   

0-45 ($ hr-1)  Triangular (Water Environment Reuse 

Foundation (WERF) 2012) 

Machinery cost for construction 

of rain garden 

0-60 ($)  Triangular (Water Environment Reuse 

Foundation (WERF) 2012) 

Material cost per maintenance of 

rain garden 

0-20 ($)  Triangular (Water Environment Reuse 

Foundation (WERF) 2012) 

Construction for square feet unit 

of rain garden practices 

55-172 ($ m-2)  Triangular (Center for Neighborhood 

Technology 2006; Water 

Environment Reuse 

Foundation (WERF) 2015) 
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Table E.1.(cont.) Uncertain continuous parameters 

Parameter Parameter range Assumed 

distribution 

References  

Construction for square feet unit 

of pervious pavement  

102-123($ ft-2)  Triangular (Remodelingexpenses 2017) 

Ratio of overhead cost for unit 

area of rain garden 

Design: 0-3%,  

Overhead: 0-5% 

 Triangular (Water Environment Reuse 

Foundation (WERF) 2012) 
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Appendix F: Uncertain categorical parameters 

 

Table F.1. Uncertain categorical parameters 

Parameter Parameter values References  

Soil type for rain 

garden soil 

Clay- sand- Loam (Maryland Department of Environment 

2009) 

Rain garden 

installation options  

Self- installation, professional- installation (Water Environment Reuse Foundation 

(WERF) 2012) 

Rain garden 

maintenance 

options  

Self- installation, professional- installation (Water Environment Reuse Foundation 

(WERF) 2012) 

Rain garden 

maintenance 

frequency  

High (1 month), Medium (12 months), low (36 months)  (Water Environment Reuse Foundation 

(WERF) 2012) 

Hours spent during 

each frequency 

event for rain 

gardens 

High (2 hours), Medium (2 hours), low (1 hour) (Water Environment Reuse Foundation 

(WERF) 2012) 

Average labor size 

for rain garden 

installation 

High (2 persons), Medium (1 persons), low (0 person) (Water Environment Reuse Foundation 

(WERF) 2012) 

Average labor rates 

for rain garden 

installation 

High (45$), Medium (30$), low (0 $) [Dollar values as 

of 2008] 

(Water Environment Reuse Foundation 

(WERF) 2012) 

Machinery cost for 

rain garden 

installation 

High (60 $), Medium (0 $), low (0 $) [Dollar values as 

of 2008] 

(Water Environment Reuse Foundation 

(WERF) 2012) 

Materials costs per 

event of rain garden 

installation 

High (20 $), Medium (10 $), low (0$) [Dollar values as 

of 2008] 

(Water Environment Reuse Foundation 

(WERF) 2012) 
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Appendix G: Supplementary results on co-benefits/ costs associated with design scenarios at the two case 

study watersheds  

Table G.1.  Estimation of life cycle cost and air pollutant deposition for different GI scenarios in the two case study watersheds  

DR5  

Percentage GI coverage from potential pervious candidate 

area (percentage from the entire watershed area) 

Total present value 

of GI life cycle 

Cumulative SO2 

deposition (kg) 

Cumulative NO2 

deposition (kg) 

Cumulative O3 

deposition (kg) 

Cumulative PM10 

deposition (kg) 

100 (9.6) 9060 0.1146 0.1001 1.0075 176.1 

75 (7.2) 9960 0.1149 0.0957 1.0849 175.5 

64 (6.2) 9380 0.1145 0.0961 1.0911 174.4 

50 (4.8) 11470 0.1138 0.0976 0.9262 149.2 

32 (3.1) 9250 0.1137 0.0968 1.0395 165.3 

25 (2.4) 10430 0.1125 0.0981 1.0111 166.8 

16 (1.6) 10330 0.1116 0.1053 0.9519 183.6 

SR5  

100 (4.8) 3720 0.0159 0.0125 0.1429 24.2 

75 (3.6) 3150 0.0154 0.0138 0.1241 24.5 

64 (3.1) 2160 0.0155 0.0133 0.1533 22.7 
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Table G.1. (cont.) Estimation of life cycle cost and air pollutant deposition for different GI scenarios in the two case study watersheds  

Percentage GI coverage from potential pervious candidate 

area (percentage from the entire watershed area) 

Total present value 

of GI life cycle 

Cumulative SO2 

deposition (kg) 

Cumulative NO2 

deposition (kg) 

Cumulative O3 

deposition (kg) 

Cumulative PM10 

deposition (kg) 

50 (2.4) 5690 0.0159 0.0125 0.118 23.4 

32 (1.5) 5020 0.0156 0.0149 0.1606 27.1 

25 (1.2) 4710 0.0155 0.0128 0.1457 27.5 

16 (0.8) 3680 0.0155 0.0142 0.154 24.2 
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Table G.2. Effect of soil type and soil depth on estimation of life cycle cost  

 Feature Mean of total present value of GI life cycle 

Soil type 

Clay 4000 

Silt-Clay 4000 

Silty-Clay-Loam 4000 

Sand 4000 

Loamy-Sand 4000 

Sandy-Loam 4000 

Sandy-Clay 4000 

Sandy-Clay-Loam 4000 

Clay-Loam 4000 

Loam 4000 

Silt 4000 

Silt-Loam 4000 

Soil depth 

1 7000 

0.5 4000 

0.25 3000 
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Appendix H: Geographic specification of case study I in Section 3.5.2.  

 

Fig. H.1. Tree locations in the design scenario with rain garden implementation scenario 
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Fig. H.2. Tree locations in the design scenario with tree implementation scenario 
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Appendix I: Computation of stormwater reduction as a function of GI 

coverage area  
 

To model the stormwater reduction there needs to be two types of simulation: runoff generation, 

and conveyance. 

The runoff generation simulation portion simulates runoff from the land by assuming the surface 

of each subwatershed to be a nonlinear reservoir. Inflow consists of precipitation and flow from 

upstream subwatersheds, while the outflows consists of infiltration, evaporation, and surface runoff 

to down- stream areas. The depth of water is computed using the following overland flow kinematic 

wave equation for the subwatershed: 

𝑑𝑑

𝑑𝑡
= 𝑖 − 𝑒 − 𝑓 − 𝑞 

where 𝑑 = depth of storage, 𝑖 = rate of rainfall, 𝑒 = surface evaporation rate, 𝑓= infiltration rate 

(following Green-Ampt equation), and 𝑞 = runoff rate.  

To compute run off, flow is assumed to happen uniformly in a rectangular channel using following 

equation: 

𝑞 =  
1.49𝑊

𝐴𝑥 . 𝑛
𝑆0.5(𝑑 − 𝑑𝑝)1.67 

where 𝑛 = Manning’s roughness coefficient, 𝑑𝑝 = depth of depression storage, 𝑊 =

 subwatershed width, 𝐴𝑥=surface area of subwatershed, and 𝑆 = subwatershed slope.  

(Rossman and Huber 2015) have provided more details on the hydrological methodology used in 

SWMM 5.0.  
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The GI/ LID module provides a process-based simulation of flow. Inflow volume is estimated using 

upstream watershed simulation results for the BMP. Outflow consists of overflow/outflow, 

evapotranspiration, and infiltration. The module also simulates infiltrating using the Green-Ampt 

equation. The contributing area and the area of the GI play a rule here to determine the level of 

storage needed that happens at each GI installment. 

 

 


