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ABSTRACT

As the era of big data arises, people get access to numerous amounts of
multi-view data. Measuring, discovering and understanding the underlying
relationship among different aspects of data is the core problem in infor-
mation theory. However, traditional information theory research focuses on
solving this problem in an abstract population-level way. In order to apply
information-theoretic tools to real-world problems, it is necessary to revisit
information theory from sample-level.

One important bridge between traditional information theory and real-
world problems is the information-theoretic quantity estimators. These es-
timators enable computing of traditional information-theoretic quantities
from big data and understanding hidden relationships in data. Information-
theoretic tools can also be utilized to improve modern machine learning
techniques. In this dissertation, several problems of information-theoretic
quantity estimators and their applications are investigated.

This dissertation consists of the following topics: (1) theoretical study
of the fundamental limit of information-theoretic quantity estimators, espe-
cially k-nearest neighbor estimators of differential entropy and mutual in-
formation; (2) designing novel algorithms of differential entropy and mutual
information estimators for some special and challenging practical scenarios,
as well as new information-theoretic measures to discover complex relation-
ships among data which cannot be found by traditional measures; (3) ap-
plying information-theoretic tools to improve training algorithms and model

compression algorithms in deep learning.
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CHAPTER 1

INTRODUCTION

Information theory, originally proposed by Claude Shannon in 1948 [1], stud-
ies the fundamental limit on quantization, storage and communication of
data. During the past decades, information theory has gained great success
in the area of wireless communication, data compression, statistic inference,
natural language processing and numerous other fields.

Since the development of Internet in the beginning of the 21st century,
people get access to a huge amount data from different aspects. How to un-
derstand, analyze and utilize the big data is of great interest to both theorists
and practitioners. Information theory — the fundamental mathematical tool
of understanding big data — can be widely applied in the big data era.

However, the focus of traditional information theory is mostly on the pop-
ulation level. Several information-theoretic quantities such as information
entropy, mutual information and Kullback-Leibler divergence are defined and
studied based on the probability distribution of data. In the big data era,
we usually have sampled data but not the distribution, hence bridging this
gap between theoretical information theory and practical application is an
important problem.

In this dissertation, we aim to build this bridge between information theory

and big data, by taking the following steps from theory toward practice.

e Analyze and understand the theory of the fundamental limit for esti-

mating information-theoretic quantities from data samples.

e Design novel algorithms to compute traditional information-theoretic
quantities for some challenging but practically useful scenarios, and
new information-theoretic measures capturing complicated relation-

ships from different aspects of multi-view data.

e Use information-theoretic tools to understand and improve modern ma-

chine learning models, especially deep learning models.



1.1 Understanding fundamental limit

Before applying information-theoretic tools to machine learning and data
science, we need to estimate information-theoretic quantities, such as differ-
ential entropy and mutual information, from high-dimensional samples. That
brings a fundamental question — how well can we estimate these quantities
given finite data. The geometry of Euclidean space and the dimensionality
of the domain bring difficulty to the problem. In this dissertation, we stud-
ied the estimation of differential entropy and mutual information separately,
and provide a breakthrough on the understanding of fundamental limit of
information-theoretic quantity estimators.

We analyze the Kozachenko-Leonenko (KL) fixed k-nearest neighbor es-
timator for the differential entropy [2] in Chapter 2. We obtain the first
uniform upper bound on its performance for any fixed k over Holder balls
on a torus without assuming any conditions on how close the density could
be from zero. Accompanying a recent minimax lower bound over the Holder
ball, we show that the KL estimator for any fixed k is achieving the minimax
rates up to logarithmic factors without cognizance of the smoothness param-
eter s of the Holder ball for s € (0,2] and arbitrary dimension d, rendering
it the first estimator that provably satisfies this property [3].

For the problem of estimating mutual information, the most popular esti-
mator is one proposed by Kraskov and Stogbauer and Grassberger (KSG) [4],
and is nonparametric and based on fixed k-nearest neighbor distances as well.
Despite its widespread use, theoretical properties of this estimator have been
largely unexplored. In Chapter 3, we demonstrate that the estimator is con-
sistent and also identify an upper bound on the rate of convergence of the
{5 error as a function of number of samples. We argue that the performance
benefits of the KSG estimator stems from a curious “correlation boosting”
effect and build on this intuition to modify the KSG estimator in novel ways

to construct a superior estimator [5].

1.2 Designing novel algorithms and measures

Given our understanding of the theoretical fundamental limit for estimating

information theoretical quantities, we want to bring it into application. How-



ever in practice, data usually has certain special structure, which requires us
to design novel algorithms for these specific practical cases.

Following the theoretical understanding, we notice that the dimensionality
affects the performance of differential entropy and mutual information esti-
mators dramatically. In the big data era, data is usually high-dimensional
but have relatively low intrinsic dimension. The basic issue of k-NN en-
tropy/mutual information estimators is that they are unable to take advan-
tage of the small intrinsic dimension.

In Chapter 4, we propose an estimator that can take this advantage. State-
of-the-art approaches have been either geometric (nearest neighbor (NN)
based) or kernel based (with a globally chosen bandwidth). In this chapter,
we combine both these approaches to design new estimators of entropy and
mutual information that outperform state-of-the-art methods. Our estimator
borrows the idea from Local Likelihood Densisty Estimator (LLDE) [6, 7] and
uses local bandwidth choices of k-NN distances with a finite &, independent
of the sample size. Such a local and data dependent choice ameliorates
boundary bias and improves performance in practice, but the bandwidth is
vanishing at a fast rate, leading to a non-vanishing bias. We show that the
asymptotic bias of the proposed estimator is universal; it is independent of
the underlying distribution. Hence, it can be pre-computed and subtracted
from the estimate. As a byproduct, we obtain a unified way of obtaining
both kernel and NN estimators. The corresponding theoretical contribution
relating the asymptotic geometry of nearest neighbors to order statistics is
of independent mathematical interest [8].

Previous research on mutual information estimators focus on either of two
cases — the data is either purely discrete or purely continuous, whereas mu-
tual information is a well-defined quantity in general probability spaces. But
in practical downstream applications, we often have to deal with a mixture
of continuous and discrete data. The data can be mixed in several ways:
(i) one dimension of data is continuous and another dimension is discrete;
(i) a single-dimensional data can be a mixture of discrete and continuous
components; (iii) any dimension of the data can be a mixture. In the afore-
mentioned cases, mutual information is well-defined, but no algorithms have
been studied.

In Chapter 5, we designed an algorithm that estimates mutual information

from data for all the aforementioned cases. The algorithm is based on KSG



mutual information estimator, but automatically detects which case of mix-
ture the data is by examining the k-nearest neighbor distances. We prove
that the estimator is ¢, consistent and demonstrate its excellent practical
performance through several experiments [9].

Beyond understanding and designing algorithms for computing traditional
information-theoretic quantities, we also want to use these algorithms to
extract useful information from data. A common task in machine learning
is to discover the underlying complicated relationship among various aspects
of data. To solve this problem, we need to develop appropriate information-
theoretic measures for different scenarios and develop efficient algorithms for
the new measures.

While existing correlation measures such as mutual information and Shan-
non capacity studied before are suitable for discovering average correlation,
they fail to discover hidden or potential correlations.

In Chapter 6, we postulate a set of natural axioms that we expect a measure
of potential correlation to satisfy and show that the rate of information bot-
tleneck, i.e., the hypercontractivity coefficient [10], satisfies all the proposed
axioms. Then we design a novel estimator to estimate the hypercontractivity
coefficient from samples and provide numerical experiments demonstrating
that this proposed estimator discovers potential correlations among various
indicators of WHO datasets [11], is robust in discovering gene interactions
from gene expression time series data, and is statistically more powerful than
the estimators for other correlation measures in binary hypothesis testing of

canonical potential correlations [12].

1.3 Applications to deep learning

Since the success of AlexNet [13], deep learning, or artificial neural networks
has been widely used in practise and thoroughly studied in theory. Armed
with our understanding of information-theoretic tools, we could help deep
learners understand the training of deep neural networks well.

Training of neural networks is a challenging problem due to its well-known
non-convex landscape. Significant advances have been made recently on
training neural networks, where the main challenge is in solving an op-

timization problem with abundant critical points. However, existing ap-



proaches [14] to address this issue crucially rely on a restrictive assumption:
the training data is drawn from a Gaussian distribution.

In Chapter 7, we provide a novel unified framework to design loss func-
tions with desirable landscape properties for a wide range of general input
distributions. On these loss functions, remarkably, stochastic gradient de-
scent, theoretically recovers the true parameters with global initialization and
empirically outperforms the existing approaches. Our loss function design
bridges the notion of score functions [15] with the topic of neural network
optimization.

Central to our approach is the task of estimating the score function from
samples, which is of basic and independent interest to theoretical statistics.
Traditional estimation methods fail right at the outset. We bring statistical
methods of local likelihood to design a novel estimator of score functions,
that provably adapts to the local geometry of the unknown density [16].

Besides providing deeper understanding of the training process of neural
nets, information theory can also help improving the efficiency of neural net-
works. The enormous size of modern deep neural nets makes it challenging to
deploy those models in memory and communication limited scenarios. Thus,
compressing a trained model without a significant loss in performance has
become an increasingly important task. Tremendous advances [17, 18] have
been made recently, where the main technical building blocks are pruning,
quantization, and low-rank factorization.

In Chapter 8, we propose principled approaches to improve upon the com-
mon heuristics used in those building blocks, by studying the fundamental
limit for model compression via the rate distortion theory [19]. We prove
a lower bound for the rate distortion function for model compression and
prove its achievability for linear models. Although this achievable compres-
sion scheme is intractable in practice, this analysis motivates a novel objective
function for model compression, which can be used to improve classes of the
model compressor such as pruning or quantization. Theoretically, we prove
that the proposed scheme is optimal for compressing one-hidden-layer ReLLU
neural networks. Empirically, we show that the proposed scheme improves

upon the baseline in the compression-accuracy tradeoff [20].



CHAPTER 2

ANALYSIS OF NEAREST NEIGHBOR
DIFFERENTIAL ENTROPY ESTIMATOR

Information-theoretic measures such as entropy, Kullback-Leibler divergence
and mutual information quantify the amount of information among random
variables. They have many applications in modern machine learning tasks,
such as classification [21], clustering [22, 23, 24, 25] and feature selection [26,
27]. Information-theoretic measures and their variants can also be applied
in several data science domains such as causal inference [28], sociology [11]
and computational biology [29]. Estimating information-theoretic measures
from data is a crucial sub-routine in the aforementioned applications and has
attracted much interest in statistics community. In this chapter, we study
the problem of estimating Shannon differential entropy, which is the basis
of estimating other information-theoretic measures for continuous random
variables.

Suppose we observe n independent identically distributed random vectors
X = {Xi,...,X,} drawn from density function f where X; € R%. We

consider the problem of estimating the differential entropy

h(f) =—[f(@)nf(z)dz, (2.1)

from the empirical observations X. The fundamental limit of estimating the

differential entropy is given by the minimax risk

infsup (E((X) ~ (1)) (2.2)
h feF

where the infimum is taken over all estimators h that is a function of the em-
pirical data X. Here F denotes a (nonparametric) class of density functions.

The problem of differential entropy estimation has been investigated exten-
sively in the literature. As discussed in [30], there exist two main approaches,

where one is based on kernel density estimators [31], and the other is based



on the nearest neighbor methods [32, 33, 34, 35, 36], which is pioneered by
the work of [2].

The problem of differential entropy estimation lies in the general prob-
lem of estimating nonparametric functionals. Unlike the parametric coun-
terparts, the problem of estimating nonparametric functionals is challenging
even for smooth functionals. Initial efforts have focused on inference of lin-
ear, quadratic, and cubic functionals in Gaussian white noise and density
models and have laid the foundation for the ensuing research. We do not
attempt to survey the extensive literature in this area, but instead refer to
the interested reader to, e.g., [37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47| and
the references therein. For non-smooth functionals such as entropy, there is
some recent progress [48, 49, 50] on designing theoretically minimax opti-
mal estimators, while these estimators typically require the knowledge of the
smoothness parameters, and the practical performances of these estimators
are not, yet known.

The k-nearest-neighbor differential entropy estimator, or the Kozachenko-
Leonenko (KL) estimator is computed in the following way. Let R, be the
distance between X; and its k-nearest neighbor among the remaining samples
{X1,..., Xio1, Xig1, ..., Xy} Precisely, R, equals the k-th smallest number
in the list {||X; — Xj|| : j # 4,5 € [n]}, here [n] = {1,2,...,n}. Let B(x,p)
denote the closed ¢y ball centered at x of radius p and A be the Lebesgue

measure on R?. The KL differential entropy estimator is defined as

A

hor(X) =Ink—v(k) + L0 I (BAB(XL Ri)) . (23)

where ¢(x) is the digamma function with (1) = —y, v = — [T e ' Intdt =
0.5772156 . .. is the Euler-Mascheroni constant.
There exists an intuitive explanation behind the construction of the KL

differential entropy estimator. Writing informally, we have

n n

M) = Byl S0 % 3 =)~ - Y = f(X), (24)

where the first approximation is based on the law of large numbers, and in
the second approximation we have replaced f by a nearest neighbor density

estimator f . The nearest neighbor density estimator f (X;) follows from the



“intuition”! that

~

F(X)NB(X;, Rig)) ~ —. (2.5)

3|

Here the final additive bias correction term In k£ —1(k) follows from a detailed
analysis of the bias of the KL estimator, which will become apparent later.

We focus on the regime where k is a fixed constant: in other words, it does
not grow as the number of samples n increases. The fixed k version of the
KL estimator is widely applied in practice and enjoys smaller computational
complexity, see [34].

There exists extensive literature on the analysis of the KL differential en-
tropy estimator, which we refer to [51] for a recent survey. One of the major
difficulties in analyzing the KL estimator is that the nearest neighbor den-
sity estimator exhibits a huge bias when the density is small. Indeed, it
was shown in [52] that the bias of the nearest neighbor density estimator
in fact does not vanish even when n — oo and deteriorates as f(x) gets
close to zero. In the literature, a large collection of work assume that the
density is uniformly bounded away from zero [53, 54, 55, 31, 33|, while oth-
ers put various assumptions quantifying on average how close the density is
to zero [56, 57, 32, 58, 8, 34, 35]. In this chapter, we focus on removing

assumptions on how close the density is to zero.

Main contributions of Chapter 2:

Let H3(L; [0,1]%) be the Holder ball in the unit cube (torus) (formally de-
fined later in Section 2.1) and s € (0, 2] is the Hélder smoothness parameter.
Then, the worst-case risk of the fixed k-nearest neighbor differential entropy

estimator over H3(L; [0, 1]¢) is controlled by the following theorem.

Theorem 1. Let X = {X3,..., X,,} be i.i.d. samples from density function
f. Then, for 0 < s < 2, the fized k-nearest neighbor KL differential entropy

estimator h,, in (2.8) satisfies

N[

~ 2
( sup Ey (hn,koc)—h(f)))
feEHS(Ls[0,1]%)

< C (n-s%dm<n+ 1) —|—n’%>, (2.6)

!Precisely, we have J3x..r, 1) f(w)du ~ Beta(k,n—Fk) [51, Chap. 1.2]. A Beta(k,n—k)

distributed random variable has mean %



where C' 1s a constant depends only on s, L,k and d.

The KL estimator is in fact nearly minimax up to logarithmic factors, as

shown in the following result from [49].

Theorem 2. [49] Let X = {Xy,...,X,} be i.i.d. samples from density
function f. Then, there exists a constant Lo depending on s, d only such that
for all L > Lg,s >0,

~ 2
inf sup By (A(X) = h()))
h o feHs(L;00,1]¢)

> ¢ (n*s%d(ln(n + 1))*1%1 + n_%) , (2.7)

where ¢ 1s a constant depends only on s, L and d.

Remark 1. We emphasize that one cannot remove the condition L > Ly
in Theorem 2. Indeed, if the Hélder ball has a too small width, then the
density itself is bounded away from zero, which makes the differential entropy

a smooth functional, with minimaz rates no w2 [59, 60, 61].

Theorems 1 and 2 imply that for any fixed k, the KL estimator achieves
the minimax rates up to logarithmic factors without knowing s for all s €
(0, 2], which implies that it is near minimax rate-optimal (within logarithmic
factors) when the dimension d < 2. We cannot expect the vanilla version of
the KL estimator to adapt to higher order of smoothness since the nearest
neighbor density estimator can be viewed as a variable width kernel density
estimator with the box kernel, and it is well known in the literature (see,
e.g., [62, Chapter 1]) that any positive kernel cannot exploit the smoothness
s > 2. We refer to [49] for a more detailed discussion on this difficulty and
potential solutions. The Jackknife idea, such as the one presented in [35, 36]
might be useful for adapting to s > 2.

The significance of our work is multi-folded:

e We obtain the first uniform upper bound on the performance of the
fixed k-nearest neighbor KL differential entropy estimator over Holder
balls without assuming how close the density could be from zero. We
emphasize that assuming conditions of this type, such as the density is

bounded away from zero, could make the problem significantly easier.



For example, if the density f is assumed to satisfy f(z) > ¢ for some
constant ¢ > 0, then the differential entropy becomes a smooth func-
tional and consequently, the general technique for estimating smooth
nonparametric functionals [59, 60, 61] can be directly applied here to
achieve the minimax rates n~ %+ + n~/2. The main technical tools
that enabled us to remove the conditions on how close the density
could be from zero are the Besicovitch covering lemma (Lemma. 4)

and the generalized Hardy—Littlewood maximal inequality.

e We show that, for any fixed k, the k-nearest neighbor KL entropy esti-
mator nearly achieves the minimax rates without knowing the smooth-
ness parameter s. In the functional estimation literature, designing
estimators that can be theoretically proved to adapt to unknown levels
of smoothness is usually achieved using the Lepski method [63, 64, 65,
66, 50], which is not known to be performing well in general in practice.
On the other hand, a simple plug-in approach can achieves the rate of
n~/(+4d) hut only when s is known [49]. The KL estimator is well
known to exhibit excellent empirical performance, but existing theory
has not yet demonstrated its near-“optimality” when the smoothness
parameter s is not known. Recent works [36, 34, 35] analyzed the per-
formance of the KL estimator under various assumptions on how close
the density could be to zero, with no matching lower bound up to loga-
rithmic factors in general. Our work makes a step towards closing this
gap and provides a theoretical explanation for the wide usage of the

KL estimator in practice.

The rest of the chapter is organized as follows. In Section 2.1 we formally
discuss the definition of Holder balls. Section 2.2 and Section 2.3 are dedi-
cated to the proof of bias and variance in Theorem 1. Section 2.4 provides

proof to the lemmas.

Notations. For positive sequences a-,b,, we use the notation a, S, b,

v
to denote that there exists a universal constant C' that only depends on «

such that sup, 7 < C, and a, Zq by is equivalent to b, S, a,. Notation
Y

ay <, by is equivalent to a, S, by and b, S, a,. We write a, S by if

~Y

the constant is universal and does not depend on any parameters. Notation

ay > by means that liminf, 3> = oo, and a, < b, is equivalent to by > a,.

10



We write a A b = min{a, b} and a V b = max{a, b}.

2.1 Definition of Holder ball

In order to define the Holder ball in the unit cube [0, 1]¢, we first review the
definition of Holder ball in R¢.

Definition 1 (Holder ball in RY). The Holder ball Hs(L;R?) is specified
by the parameters s > 0 (order of smoothness), d € Z, (dimension of the
argument) and L > 0 (smoothness constant) and is as follows. A positive

real s can be uniquely represented as
s=m+a, (2.8)

where m is a non-negative integer and 0 < o < 1. By definition, Hs(L; R?)

1s comprised of all m times continuously differentiable functions
f:RY— R, (2.9)

with Holder continuous, with exponent o and constant L, derivatives of order

m:

|D™f(2)[01, .., O] — D™ F(2)[01, . .., O]
< Lljz —2'||*6||™, Va,2’ € R%§ € RY (2.10)

Here || - || is the Euclidean norm on R, and D™ f(x)[01,. .., 0] is the m-th

differential of f taken as a point x along the directions dq,...,0n,:

D" f(x)[01,- -, 0m)
am
= — t101+ ...+ tpom). 2.11
TS T f(x 4101+ + tnlim) (2.11)
t1=...=ty;,=0
In this chapter, we consider functions that lie in Holder balls in [0, 1]%. The

Holder ball in the compact set [0, 1]¢ is defined as follows.

Definition 2 (Holder ball in the unit cube). A function f : [0,1]¢ — R
is said to belong to the Hdlder ball H3(L;[0,1]¢) if and only if there exists

11



another function f1 € H:(L;R?) such that

flz) = filz), x€]0,1], (2.12)

and f1(z) is a 1-periodic function in each variable. Here H3(L;[0,1]%) is

introduced in Definition 1. In other words,
filz+e) = fi(z), VeeR 1< <d, (2.13)

where {e; : 1 < j < d} is the standard basis in R?.

Definition 2 has appeared in the literature [67]. It is motivated by the
observations that sliding window kernel methods usually cannot deal with
the boundary effects without additional assumptions [68]. Indeed, near the
boundary the sliding window kernel density estimator may have a signifi-
cantly larger bias than that of the interior points. In the nonparametric
statistics literature, it is usually assumed that the density has its value and
all the derivatives vanishing at the boundary, which is stronger than our

assumptions.

2.2 Upper bound of bias

In this and the following section, we will prove that

<IE (BW(X) ~ i f))z) CCiapn )+t (214)

for any f € H5(L;[0,1]%) and s € (0,2]. The proof consists two parts: (i) the
upper bound of the bias in the form of O 1 4x(n~*¢+DIn(n + 1)); (ii) the
upper bound of the variance is O, L,d,k(n_l). Below we show the bias proof
and the variance proof is in the next section.

First, we introduce the following notation

 u(Bler) 1 .
) = Spe = T /W_xqu( ), (2.15)

Here p is the probability measure specified by density function f on the torus,
A is the Lebesgue measure on R?, and V; = 7%2/T'(1 + d/2) is the Lebesgue
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measure of the unit ball in d-dimensional Euclidean space. Hence f;(x) is the
average density of a neighborhood near x. We first state two main lemmas

about f;(z) which will be used later in the proof.

Lemma 1. If f € H(L;[0,1]%) for some 0 < s < 2, then for any z € [0,1]?
and t > 0, we have

dLt?
s+d

| fi(z) = f(z)] < (2.16)

Lemma 2. If f € H5(L;[0,1]%) for some 0 < s < 2 and f(z) > 0 for all
x € [0,1]¢, then for any x and any t > 0, we have

(@) Sora max{ fil@), (filayvat)" ) (2.17)

Furthermore, f(x) Sspal.

~S,

Now we investigate the bias of iznk(X) The following argument reduces
the bias analysis of ﬁnk(X) to a function analytic problem. For notation
simplicity, we introduce a new random variable X ~ f independent of
{X1,...,X,} and study iAan,k({Xl,...,Xn,X}). For every z € RY, de-
note Ri(z) by the k-nearest neighbor distance from = to {Xi, Xo,..., X}
under distance d(z,y) = min,,cza |[m + x — y||, i.e., the k-nearest neighbor

distance on the torus. Then,

Elltp1 6 ({ X1, ., X, X})] h(f)

= (k) +E[In((n+ DABX, Ry(X))))] +E[In f(X)]
gl >A<BXRk )
- E_l( W(B(X, R(X)) ﬂ
+E[In ((n+1)u( <X RL(X)))] — (k)
~ E|n fR— E[In ((n + Du(B(X, R(X))))] — (k) ).

(2.18)

We first show that the second term E[In ((n + 1)u(B(X, Ri(X))))] — (k)
can be universally controlled regardless of the smoothness of f. Indeed, the
random variable u(B(X, Rg(X))) ~ Beta(k,n+1—k) [51, Chap. 1.2] and it

was shown in [51, Theorem 7.2] that there exists a universal constant C' > 0
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such that

C
Eln((n+ Da(BOX, RO —v(k) | < = (219)
Hence, it suffices to show that for 0 < s < 2,
’E |:111 %} ‘ 55,L,d,k niigd ln(n + 1) (220)

We split our analysis into two parts. In Section 2.2.1, we will show

that E [ln fl?’}((;)gg)] Se.Ldk n~s+. In Section 2.2.2, we will show that

E [ln fzzf((;izX)} SeLdk n” s In(n + 1), which completes the proof.
k

2.2.1 Upper bound on E {ln %}){()X)}

By the fact that Iny <y — 1 for any y > 0, we have

Jre(x)(X) Jre(x)(X) — f(X)
E{m (%) ]SE{ 75 }
_ / (Elf oo (@)] — £(2)) de. (2.21)
[0,1]4N{z: f(z)#0}

Here the expectation is taken with respect to the randomness in Ry (z) =

Min) <jcpmeza |[m + Xi — 2|,z € R% Define function g(z; f,n) as

g(x; fym) = sup {u >0: Vyu'f,(z) < l} : (2.22)

n

where g(z; f,n) intuitively means the distance R such that the probability
mass u(B(z, R)) within R is 1/n. Then for any = € [0,1]¢, we can split

E[fr,(2)(x)] — f(x) into three terms as

E[fri@ (@)] = f(2)
= El(frw () = f@)I(Ri(z) < nH/EFD)]

+ E[(fry(@) = f@)I(n D < Ri(z) < g(a; f,n))]
+ E[(fry)(@) = f(@)I(Ri(x) > g(a; f,n) v~/
= C1+ 0+ Cs. (2.23)
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Now we handle three terms separately. Our goal is to show that for every
x€1[0,1], C; Sopan~ ¥ for i € {1,2,3}. Then, taking the integral with

respect to x leads to the desired bound.
1. Term C;: whenever Ry(z) < n~V/(+) by Lemma 1, we have

dLRy(x)*

< —s/(s+d) 2.24
$+d ~s,L,d T ; ( )

|fri@) () = fl2)] <
which implies that

Ci < E[|frw(@) — f@)|I(R(x) < n /D)
Sena n T, (2.25)

2. Term Cy: whenever Ry (z) satisfies that n= "/t < Ry (z) < g(x; f, n),
by definition of g(z; f,n), we have VyRy(2)" fr, @) (z) <
plies that

1" which im-
n

1 1
< —s/(s+d)
fry@) (@) < nVyRy(x)4 = nVyn—d/(s+d) ~sld " - (226)

It follows from Lemma 2 that in this case
s/(s+d)

F(@) Sora fr@) @)V (fry@ (@)VaRe(x)")
S n—s/(s—i—d) v n—s/(s-i—d) _ n—s/(s-‘rd). (227)

Hence, we have

Cy = E[(fayw(@) — f@)I (0 < Ry(x) < g(x; f,n))]
< E[(frw (@) + f@)L () < Ry(x) < g(a; f,n))]
Sepa n e, (2.28)

3. Term C5: we have

Cs < E[(fruw(@) + F@)I(Ri(z) > g(a; f,n) v VETN]
(2.29)
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For any x such that Ry(z) > n~"/t9  we have

Fro@) (@) Ssra VaRe(@)® fry (@)n® T, (2.30)

and by Lemma 2,

f(x) Ss.pa ka(m)(:c) V (Vde(x)dek(m) (x)>s/(s+d)
< fruw (@) + (VaRi(@) fry@ (@) CF9. (2.31)

Hence,

Sera 2fn @)+ (VaRi(@) fry o) @)+

Sard VaBi(@) fry (@)n® D + (VaRi (@) fr, o) ()7
S_;S,L,d ‘/de;(.fC)dek(x) (x)nd/(s'f'd)’ (232)

where in the last step we have used the fact that VyRy(x)? fr, ) (z) >
n~! since Ry(x) > g(z; f,n). Finally, we have

Cs Sopa T VE[(VaRk(2) fry @) () 1(Ri(x) > g(x; f,n))]
n IR [(VaRe(2)" fry @) (2)I (VaRek(2) fro@) () > 1/n)] .
(2.33)

Note that VyRy(2)? fr, () () ~ Beta(k,n+1—k), and if Y ~ Beta(k,n+

1 — k), we have

JE[Y?]:( i >2+(’“(”+1_k) < = (2.34)

n+1 n+1)2(n+2) ~ n2

Notice that E[YT(Y > 1/n)] < nE[Y?]. Hence, we have

Oy Sepa nYCTrInE (ViR (%) fry () (2))?]
nd/(s+d)

S Ldk - o/t (2.35)
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2.2.2 Upper bound on E {ln ﬁ}
k(X)( )

By splitting the term into two parts, we have

[ f(X) ] _ [ f(z) ]
Eln—F—| =E In ——~2—d
! Tre(x)(X) 4),1]dm{x:f(x)¢0} f@)In JRy() () !

_ f(z) 2) > n= D g
B / o)t L 0) > o]
)
(

+ E /f ka(j x)]l(fRM@(q;) < n_S/(s+d))dx:|
= Cy+Cs. .

Here we denote A = [0,1]9 N {z : f(x) # 0} for simplicity of notation. For

the term C}, we have

e

a0 x;< N ——

+ E {/A (F(2) = Fro) (@) I fry()(z) > n=*/ D )dfc]

UG [ /A (f(2) = fry)(2))’ do +E[ /A (f(2) = fryw (@) dx].
(2.37)

IN

In the proof of upper bound of E [l fR’“(&)§X)], we show that E[fg, () (7) —

f(@)] Sspaxr n~*/6+) for any 2 € A. Similarly as in the proof of upper

bound of E [1 ka<X’§X)], we have E [(fr,()(2) — £(2))?] Sonap n 26

for every x € A. Therefore, we have

Ch Sapa nlEHDp=2s/(td) L pos/(std) < o s/(atd) (9 3g)

Now we consider C5. We conjecture that Cs Sspak n=s/(s+d) in this
case, but we were not able to prove it. Below we prove that C5 < pax
n~/*d In(n + 1). Define the function

M(z) = sup !

A (2:39)
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Since fi, oy (z) < 0"/, we have M(z) = supo(1/fi(2)) > 1/ fru(e (@) >
n*/ s+ Denote In*(y) = max{In(y),0} for any y > 0, therefore, we have

that
05 <E |: Af(x) Int (%) ]I(ka(x)(ZE) < n—s/(s+d)>dx:|
) 1In ﬂ T ns/(s—l—d) T
< E[ Rk (ka(x)(x))]I(M( ) > \d }
1 S/S
< [ 108 v ()| 1 2 s
+ /Af(:r)E [In* ((n 4+ 1D)ViRk(x)* f(z))] L(M (z) > /D) gy
= (5 + Cso, (2.40)

where the last inequality uses the fact In™(zy) < InTz +InTy for all z,y >
0. As for Cs1, since VyRi(2) fry@)(z) ~ Beta(k,n + 1 — k), and for Y ~
Beta(k,n + 1 — k), we have

IN

IN

<

E

E

<(n L)yﬂ =/0"“1n ((njl)x)py(aﬁ)da:
(n +11)Y)_ +/1+ In ((n + 1)a) py (z)dz

; +11)Y): +1n(n+1)/n;py(x)dx
R JEwA

(2.41)

where in the last inequality we used the fact that E [ln (W)} =(n+
1) —¢(k) —In(n+1) <0 for any k > 1. Hence,

05 1

<

~US,

ra In(n+1) /A F(@)I(M(z) > n¥/ D) dy,

(2.42)

Now we introduce the following lemma, which is proved in Section 2.4.

Lemma 3. Let puy, uy be two Borel measures that are finite on the bounded

18



Borel sets of R%. Then, for allt > 0 and any Borel set A C RY,

Here Cyq > 0 is a constant that depends only on the dimension d and
Ap={x:Jy e A ly—z| < D}. (2.44)

Applying the second part of Lemma 3 with uy being the Lebesgue measure
and 1 being the measure specified by f(x) on the torus, we can view the

function M (x) as

(B
M(z) = 0<p§1:1)/2 pa(B(z, P)) (2:45)

Taking A = [0,1]9 N {z : f(x) # 0}, = n*/+D) then py(A
know that

%) < 2% 50 we

Cr Sura (D) [ F@IM() 2 D)o
A
= In(n+1) - (z €[0,1]% f(z) # 0, M(z) > n¥/+D)
< In(n+1)-Con /Dy (A)) Sopan*/T D In(n +1).

(2.46)

Now we deal with Csy. Recall that in Lemma 2, we know that f(z) Sspa 1
for any z, and Ry(x) < 1, so In™((n + 1)VyR(2)?f(x)) Sera In(n + 1).

Therefore,

Cs2 Serda In(n+1)- / F(@)I(M(z) > n*/ D) dz
A

Sera n YD In(n41), (2.47)

~Y

Therefore, we have proved that C5 < Cs1 + Csa Ssn.d n=s/+ ) In(n + 1),

£(X) }
TR x)(X) |

which completes the proof of the upper bound on E [ln
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2.3 Upper bound of variance

Our goal is to prove

) 1
Var (hn,k(X)> S~ (2.48)

The proof is based on the analysis in [51, Section 7.2] which utilizes the
Efron-Stein inequality. Let X = {X1,..., X;_1, X/, X;11,..., X,.} be a set
of sample where only X; is replaced by X/. Then Efron-Stein inequality [69]

states
Var (i}n,k(X)) < %ZE {(ﬁn,k(X) —ﬁn,k(X@))Q}. (2.49)

Note that KL estimator is symmetric of sample indices, so iLmk(X) —
}Azn,k(X(i)) has the same distribution for any i. Furthermore, we bridge
fznk(X) and ﬁnyk(X(")) by introducing an estimator from n — 1 samples.
Precisely, for any ¢+ = 2,...,n, define R;k be the k-nearest neighbor dis-
tance from X; to {Xs,..., X,,} (note that X; is removed), under the distance

d(z,y) = min,,cza ||x — y — m||. Define
. 1 < )
1 5(X) = = (k) + ~ > In(nA(B(X;, R}))). (2.50)
1=2

Notice that iznk(X) — ﬁn_l,k(X) has the same distribution as ﬁnﬁk(X(l)) —

~

hpn—1%(X). Therefore, the variance is bounded by
~ n ~ ~ 2
< = _ 1)
Var (hn,k(X)) < ZE {(hmk(X) o 1 (X )) 1
. . 2
— oK [(hn,k(X) - hn_l,k(X)) } . (2.51)

. . 2
Now we deal with the term E {(hnk(X) — hn_lﬁk(X)> } Define the in-

dicator function Ei(k) = [{ X is in the k—nearest neighbor of X} for i # 1.
Note that R, = Ry if " # 1 and i # 1. As shown in [9, Lemma B.1],
the set S = {i: EZ»(k) = 1} has cardinality at most kS, for a constant [3; only
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depends on d. Therefore, we have

Var @n,k(X)) < E [(ﬁn,k(X) _ Bn_l,k(X))z}

- an[ ( > In(nA(B Xi,Ri,k)))—Zln(nA(B(Xi,R;k)))) ]

i€SU{1} ics
< 2+4’S| [ S 2 (nAB(X:, Rix) + 3 In2(nA(B(Xi, R,,))
ieSU{1} ics
Sue (B W AB(Xy, Bu)))] +E I (mABOGLRLD]) . (252)

Since E [In*(nA(B(X1, Rix)))] Sax 1 and E [1n2(n>\(B(X1,R’17k)))] Sax L.

Using Cauchy-Schwarz inequality, we have

E [In*(nA(B(X1, Rix)))]

o MB(X1, Rix))
=7 (E {1“ B Bry)

>] L E [0 (npu(B(X, Rl,km}) (2.53)
and

E [In®(n\(B(X1, Ry ;)]

)\ 1 2 /
< 3 I“Q%Egglﬂa §§> FE (0 — Du(B(X0, By))]
(- - 1)). (2.54)

Since fu(B(X1, Rix)) ~ Beta(k,n + 1 — k) and u(B(Xy, R, ) ~ Beta(k,n —
k), therefore we know that both the quantities E [In*(nu(B(X1, Ry x)))] and
E [In*((n — 1)p(B(X1, R} ,)))] equal to certain constants that only depends

on k. In*(n/(n—1)) is smaller than In*2 for n > 2. So we only need to prove

that E [m (%)] <.p1land E [1 (%)} <ur 1. Recall that

we have defined the maximal function as follows,

M(z) = sup AN B(z,r

o<r<1y2 U(B(z,7))’ (2.55)
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Similarly, we define

(B
m(z) = ogrglz/z BT (2.56)
Therefore,
2 A(B(X1, Rik))
B Ru)
< E[max{ln (M(x)),In (m(a:))}}
< E[In*(M(z)+ 1) + In*(m(z) + 1)]
= E[In*(M(z) +1)] + E [In*(m(z) + 1)] . (2.57)

Similarly this inequality holds if we replace Ry by R ;. By Lemma 3, we

have
E [n?(M(z) + 1)] = / (M (z) + 1dp(z)
~ 0.1
= /t:()'u ({x c [0,1]%: In*(M(x) +1) > t}) dt
- /t:)u <{x e [0,1]4: M(z) > eV — 1}) dt

e 1
< dt <, 1. 2.58
< /tzoeﬁ_1 < (2.58)

For E[ln*(m(z) + 1)], we rewrite the term as

E [In*(m(z) + 1)] = f(x) In*(m(z) + 1)d\(v)

[0,1)¢

= /toj) A({z €[0,1]": f(z)In*(m(z) + 1) > t}) dt. (2.59)

For a sufficiently large Ty and ¢t > Ty, f(x)In*(m(z) + 1) > ¢ implies ei-
ther m(z) > t> or f(z) > t/In*(t* + 1). For t < Ty, simply we use
A({z €[0,1]%: f(z)In*(m(z) + 1) > t}) < 1. Moreover, if f(z) > t/In*(>+
1) then

t(Int — 2Inln(* + 1))? U
In*(t2 4 1) T2’

f(x)In® f(z) > (2.60)
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since (Int —2InIn(t2 +1))?/In*(t> +1) > 1/T¢ for any t > Ty,. So for t > Ty,

A({z €0,1]": f(z) In*(m(z) + 1) > t})
< A({ze[0,1)?:m(z) > *}) + A ({z €[0,1): f(x)In® f(z) > /T3 }).
(2.61)

Therefore,
/mA{xEOI](ﬂ@m%m@%+D>tﬂdt
< /%1ﬁ+/‘ A({z € 0,17 m(z) > £2}) dt
[T A e 01 S i) > 3

To

]
5d%+/ ﬁﬁ+ﬁ f(z)In? f(z)dx
t

=To [0,1]¢
< 1 (2.62)

~

Hence, the proof is completed.

2.4 Proof of lemmas in Chapter 2

2.4.1 Proof of Lemma 1

We consider the cases s € (0,1] and s € (1,2] separately. For s € (0,1],

following the definition of Holder smoothness, we have,

@) =@ = | [ s g

: /
< f(u) = f(z)|du
= s
1
[ Lllu — z||°du. 2.63
— / M (2.63)

By denoting p = ||u— z|| and considering § € S¢~! on the unit d-dimensional

sphere, we rewrite the above integral using polar coordinate system and
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obtain,

1 t
filz) = f(z)] < —/ / Lp®p?~tdpd6
@ s g [ ]
I dVaLts*®  dLt*

= — [ dVuLp*™tdp = = :
/_ Valp P (s+d)Vgtt  s+d

2.64

Now we consider the case s € (1,2]. Now we rewrite the difference as

1
@) = @) = | [ s )]
= |gpa [ S0+ 5@ u)do = sio)]

1 / -
2Vat?® Jo o)<t

For fixed v, we bound | f(z+v)+ f(z—v)—2f(x)| using the gradient theorem

f(x+v)+f($—v)—2f(x)‘dv. (2.65)

and the definition of Holder smoothness as follows,

F(@+v) + fl@ = v) = 2f(2)
= | U@+v) = f@) + (fl=v) = (@) |

— /al_OVf(:c—l—ow)-d(a:+cw)+/a;:Vf(x—l—av)-d(x+av)‘

_ /Q;(Vf(a;mm-u)da—/al (Vi(z—av)-v)da|

=0

= /O(Vf(x—i—ow)—Vf(x—ow))-vda‘
</ VS an) = f(x - av)v]da

1
< / L|\2av|\8*1||vuda

L 98— 1
= L|v|* y1dg = L2 (2.66)
S
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Plug it into (2.65) and using the similar method in the s € (0, 1] case, we

have

1 L|v||s251
_ < o Ll |
) = ) € g [

_ 1 /t / Lp523—1 pd—ldpd9 _ 1 /t d‘/;leS+d_12S_1 dp
2thd p=0 Joegd-1 S 2‘/dtd p=0 S

1 dVyL2s—! tstd dLt®
= d < : (2.67)
2Vt s s+d~ s+d

where the last inequality uses the fact that s € (1,2].

2.4.2 Proof of Lemma 2

We consider the following two cases. If f(z) > 2dLt*/(s + d), then by

Lemma 1, we have

ALE b (2) + @ (2.68)

£la) < fillw) + 5 <

Hence, f(x) < 2fi(x) in this case. If f(z) < 2dLt*/(s + d), then define
to = (f(z)(s +d)/2dL)"/* < t. By the non-negativity of f, we have

s+d
- f@)(s+d)\*  dL fla)(s+d) \ e
_f(a:)vd( i ) S+dva( o )

d/s
= S (S ) (e, 269

Therefore, we have f(x) Sspa (fi(z)Vath)*/ 5+ in this case. We obtain
the desired statement by combining the two cases. Furthermore, by taking
t = 1/2, we have Vgt@fi(x) < 1, so fi(r) Sera 1. By applying this lemma

immediately we obtain f(z) Ss 4 1.
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2.4.3 Proof of Lemma 3

We first introduce the Besicovitch covering lemma, which plays a crucial role

in the analysis of nearest neighbor methods.

Lemma 4. [70, Theorem 1.27][Besicovitch covering lemma] Let A C R%, and
suppose that { B, }zca s a collection of balls such that B, = B(x,1,),r, > 0.
Assume that A is bounded or that sup,c 1, < 0o. Then there exist an at
most countable collection of balls {B;} and a constant Cy depending only on

the dimension d such that

AcC UBj , and Z)(Bj(x) < Cy. (2.70)
J J

Here xp(z) =1(x € B).

Now we are ready to prove the lemma. Let

— su MQ(B<$’p>>
M@)= sp <u1<B<x,p>>> | (2.71)

Let Oy = {&# € A : M(z) > t}. Hence, for all x € Oy, there exists
B, = B(xz,r,) such that us(B,) > tu(B,),0 < r, < D. It follows from the
Besicovitch lemma applying to the set O; that there exists a set £ C Oy,

which has at most countable cardinality, such that

O, C U B;, and ZXBj(x) < Cy. (2.72)

jEE JEE

Let Ap ={z:3y € A, |y—x| < D}, therefore B; C Ap for every j. Then,

(00 < Y (B) < 3 pa ()

jeEE JjEE
1 1 Cy
- ; Z XB]-d/vQ = ; ZXBjd,UQ < TMQ(AD)- (2.73)
jeE Y Ap Ap jep
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CHAPTER 3

ANALYSIS OF KSG MUTUAL
INFORMATION ESTIMATORS

Information-theoretic quantities such as mutual information measure rela-
tions between random variables. A key property of these measures is that
they are invariant to one-to-one transformations of the random variables and
obey the data processing inequality [71, 72]. These properties combine to
make information-theoretic quantities attractive in several data science ap-
plications involving clustering [22, 23, 24|, classification [21] and more gen-
erally as a basic feature that can be used in several downstream applications
(27, 26, 73, T4]. A canonical question in all these applications is to estimate
the information-theoretic quantities from samples, typically supposed to be
drawn i.i.d. from an unknown distribution. This fundamental question has
been of longstanding interest in the theoretical statistics community where
it is a canonical question of estimating a functional of the (unknown) den-
sity [41] but also in the information theory [75, 76, 77, 78], machine learning
[79, 80] and theoretical computer science [81, 82, 83] communities, with sig-
nificant renewed interest of late, summarized in detail in Section 3.4. The
most fundamental information-theoretic quantity of interest is the mutual in-
formation between a pair of random variables, which is also the primary focus
of this chapter, in the context of real valued random variables (in potentially
high dimensions).

The basic estimation question takes a different hue depending on whether
the underlying distribution is discrete or continuous. In the discrete set-
ting, significant understanding of the minimax rate-optimal estimation of
functionals, including entropy and mutual information, of an unknown prob-
ability mass function is attained via recent works [76, 84, 81, 85, 77]. The
continuous setting is significantly different, bringing to fore the interplay of
geometry of the Euclidean space as well as the role of dimensionality of the
domain in terms of estimating the information-theoretic quantities; this set-

ting is the focus of this chapter. Among the various estimation methods, of
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great theoretical interest and high practical relevance, are the nearest neigh-
bor (NN) methods: the quantities of interest are estimated based on distances
(in an appropriate norm) of the samples to their k-nearest neighbors (k-NN).
Of particular practical interest is the situation when k£ is a small fized integer
— typically in the range of 4~8 — and the estimators based on fixed k-NN
statistics typically perform significantly better than alternative approaches,
discussed in detail in Section 3.4, both in simulations and when tested in the
wild; this is especially true when the random variables are in high dimensions.

The exemplar fixed k-NN estimator is that of differential entropy from i.i.d.
samples proposed in 1987 by Kozachenko and Leonenko [2] which involved a
novel bias correction term, and we refer to as the KL estimator (of differen-
tial entropy). Since the mutual information between two random variables is
the sum and difference of three differential entropy terms, any estimator of
differential entropy naturally lends itself into an estimator of mutual informa-
tion, which we christen as the 3KL estimator (of mutual information). In an
inspired work in 2004, Kraskov and Stogbauer and Grassberger [4], proposed
a different fixed k-NN estimator of the mutual information, which we name
the KSG estimator, that involved subtle (sample dependent) alterations to
the 3KL estimator. The authors of [4, 86] empirically demonstrated that
the KSG estimator consistently improves over the 3KL estimator in a vari-
ety of settings. Indeed, the simplicity of the KSG estimator, combined with
its superior performance, has made it a very popular estimator of mutual
information in practice.

Despite its widespread use, even basic theoretical properties of the KSG
estimator are unknown — it is not even clear if the estimator has vanishing
bias (i.e., consistent) as the number of samples grows, much less any under-
standing of the asymptotic behavior of the bias as a function of the number
of samples. As observed elsewhere [87], characterizing the theoretical prop-
erties of the KSG estimator is of first order importance — this study could
shed light on why the sample-dependent modifications lead to improved per-
formance and perhaps this understanding could lead to the design of even

better mutual information estimators. Such are the goals of this chapter.

Main contribution of Chapter 3:

e Our main result is to show that the KSG estimator is consistent. We

also show upper bounds to the rate of convergence of the bias as a
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function of the dimensions of the two random variables involved: in
the special case when the dimensions of the two random variables are
equal and no more than one, the rate of convergence of the /5 error is

1/v/ N, which is the parametric rate of convergence.

e We argue that the improvement of the KSG estimator over the 3KL
estimator comes from a “correlation boosting” effect, which can be fur-
ther amplified by a suitable modification to the KSG estimator. This
leads to a novel mutual information estimator, which we call the bias-
improved-KSG estimator (BI-KSG). The asymptotic theoretical guar-
antees we show of the BI-KSG estimator are the same as the KSG
estimator, but the improved performance can be seen empirically —

especially for moderate values of V.

e We extend the idea of “correlation boosting” to multivariate mutual
information and general functional of entropies, propose an estimator

of MMI, and demonstrate its empirical performance.

e We demonstrate sharp bounds on the ¢y rate of convergence of the
KL estimator of (differential) entropy for arbitrary k and arbitrary
dimensions d, showing that the parametric rate of convergence of 1/v N

is achievable when d < 2.

In the rest of the chapter, we mathematically summarize these main results,
following up with empirical evidence.

Outline of this chapter. In Section 3.1, we show the consistency and
the convergence rate of KSG estimator of mutual information, also providing
brief sketches of, and intuitions behind, the corresponding proofs. In Sec-
tion 3.2 we discuss the insights behind the KSG estimator: the correlation
boosting effect and how this understanding leads to the BI-KSG estimator
with improved empirical performance. In Section 3.3 we discuss generaliza-
tion of the KSG estimator to multivariate mutual information estimators.
Section 3.4 puts our results in context of the vast literature on entropy (and
mutual information) estimators. Finally, the proofs of the main results are
in Sections 3.5 through 3.7.
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3.1 KSG estimator: Consistency and convergence rate

A detailed understanding of the KL estimator sets the stage for the main
results of this chapter: deriving theoretical properties of the KSG estimator of
mutual information. Our main result is that the KSG estimator is consistent,
as is our proposed modification, the so-called bias-improved KSG estimator
(BI-KSG); these results are under some (fairly standard) assumptions on the
joint pdf of (X,Y).

Consider two random variables X in X C R% and Y in Y C R%. Given
N iid. samples {(X;,Y;)}Y, from the underlying joint probability density
function fxy(z,y), we want to estimate the mutual information I(X;Y).
Mutual information between two random variables X and Y is the sum and
difference of differential entropy terms: [(X;Y)=H(X)+H(Y)—-H(X,Y).
Thus given KL entropy estimator, there is a straightforward and consistent

estimation of the mutual information:

While this estimator performs fairly well in practice, the authors of [4] intro-
duced a simple, but inspired, modification of the 3KL estimator that does
even better. Let n,;, = >, I{[|X; — Xill, < prip}, which can be in-
terpreted as the number of samples that are within a X-dimensions-only
distance of py;, with respect to sample 7. Since py;, is the k-NN distance
(in terms of both the dimensions of X and Y') of the sample i it must be
that n,;, > k. Finally, n,;, is defined analogously. The KSG estimator

measures distances using the /., norm, so p = oo in the notation above.

The KSG mutual information estimator introduced in [4] is given by:

N 1 X

(3.2)

where 1 (z) = T7}(z)dl(z)/dz is the digamma function. Observe that the
estimate of the joint differential entropy H(X,Y") is done exactly as in the
KL estimator using fixed k-NN distances, but the KL estimates of H(X)
and H(Y') are done using n,,. ., and n,.. NN distances, respectively, which

are sample dependent. The point is that by this choice, the k-NN distance
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terms are canceled away exactly, although it is not clear why this would be a
good idea. In fact, it is not even clear if the estimator is consistent. On the
other hand, the authors of [4] showed empirically that the KSG estimator is
uniformly superior to the 3KL estimator in many synthetic experiments. A
theoretical understanding of the KSG estimator, including a mathematical
justification for the improved performance, has been missing in the literature.
Our main results fill this gap.

One of our main results is to show that the KSG estimator is indeed con-
sistent. We prove this result by deriving a vanishingly small upper bound
on the bias, subject to regularity conditions on the Radon-Nikodym deriva-
tives of X and Y and standard smoothness conditions on the joint pdf which

includes both bounded and unbounded supports.

3.1.1 Consistency

We make the following assumptions on the joint pdf of (X,Y’). The first
assumption is essentially needed to define the joint differential entropy of
(X,Y), the second assumption makes some regularity conditions on the
Radon-Nikodym derivatives of X and Y, and the third assumption is re-
garding standard smoothness conditions on the joint pdf. We note that
these conditions are readily met by most popular pdfs, including multivariate

Gaussians, and no assumption is made on the boundedness of the support.
Assumption 1. (a) [ f(z,y)|log f(z,y)| dzdy < cc.

(b) There exists a finite constant C' such that the conditional pdf fy x (y|z) <
C" and fxy(xz|y) < C" almost everywhere.

(¢) f(z,y) is twice continuously differentiable and the Hessian matriz Hy

satisfy [|[Hy(x,y)|l2 < C almost everywhere.

The following theorem states that under these assumptions, the KSG es-

timator is consistent in probability.

Theorem 3. Under the Assumption 1 and for finite k > max{d,/d,,d,/d,},
dy,dy = O(1), and for all ¢ > 0,

N—oo

lim Pr ( )TKSG(X;Y) ~I(X; Y)‘ >c) =0, (3.3)
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Also, consider the following Bl(biased-improved)-KSG estimator

fBIfKSG(XS Y)

N
c 1
= w(k)—i—logN—Hog( de 270y, >_NZ log(ng2) + log(ny2))

Cdy+dy,2

(3.4)

which will be further discussed in Section 3.2. Under the same assumption 1
and for finite k > max{d,/d,,d,/d,}, d,,d, = O(1), and for all e > 0,

lim Pr ( ’fBI_KSG(X; Y) — I(X; Y)’ > g) —0. (3.5)

N—o0

3.1.2 Convergence rate

To understand the rate of convergence of the bias of the KSG and BI-KSG
estimators, we first truncate the k-NN distance pj.. by a certain threshold.
For any 0 > 0, let the truncation threshold be:

log N )1+6 1/(dz+dy)
anN = (%) 5 (36)

where d, and d, are the dimensions of the random variables X and Y re-

spectively. We define local information estimates ¢y ; oo by:
bioo = Y(k)+1ogN — Y(ngico+1) — ¥(nyic0 + 1), (3.7)

if prioco < an and iy 00 = 0 if pi 0 > an. Similarly, we define ¢ ;2 as, and

Cdz,20dy,2)

iz = Y(k)+log N + log( — log(ny,i2) —log(ny.2), (3.8)

Cdy+dy,2
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if pri2 < an and tg;9 = 01if pg;2 > ay. The modified (via truncation) KSG
and BI-KSG estimators (compare with (3.2) and (3.4)) are:

N
~ 1
Liksa(X;Y) = szk,i,ooa (3.9)
i=1
- 1 &
Iipr-ksa(X;Y) = NZLM»?- (3.10)
=1

The following theorem provides an upper bound on the rate of convergence
of the bias and variance, under the conditions in Assumption 2 below, and

holds for any k and § > 0 (parameter in the truncation threshold, cf. (3.6)).

Assumption 2. We make the following assumptions: there exist finite con-

stants Cq,Cy,Ce,Cyq,Ce,Cy,Cy,Ch and Cy such that
(a) f(z,y) < C, < oo almost everywhere.
(b) There exists v > 0 such that [ f(z,y) (log f(x,y))' " dedy < Cy < o0.
(¢) [ f(z,y)exp{=bf(z,y)}drdy < C.e= for all b > 1.

(d) f(x,y) is twice continuously differentiable and the Hessian matriz Hy

satisfy ||[Hy(x,y)||2 < Cq almost everywhere.

(e) The conditional pdf fyx(y|x) < Ce and fxy(z|ly) < Ce almost every-

where.
(f) The marginal pdf fx(x) < Cy and fy(y) < Cy almost everywhere.

(9) The set of points violating (d) has finite d,, + d,, — 1-dimensional Haus-

dorff measure, i.e.,

HY = ({(2,y) « [ Hy(2,y)ll = Ca}) < Gy

(h) The set of points such that Hy, (x) or Hy, (y) is larger than Cq also has

finite d, — 1 (or d, — 1)-dimensional Hausdorff measure, i.e.,

H* ™ ({o s [Hpy (2)] > Ca}) < G, (3.11)
HY ' ({y : [|Hy ()l = Ca}) < Ch. (3.12)
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The assumptions (a)-(d) come from the assumptions of the KL estimator
in [32] and are slightly stronger than those in [32], where assumption (a) is not
required (and with some technical finesse might be eliminated here as well),
assumption (b) was weaker requiring only [ f(z,y)|log f(z,y)|dzdy < oo,
and assumption (c) was weaker requiring only [ f(z,y) exp{—bf(z,y) }dzdy <
O(1/b). The assumption (c) is satisfied for any distribution with bounded
support and pdf bounded away from zero. This assumption provides a suffi-
cient condition to bound the average effect of the truncation. Our analysis
can be generalized to relax this assumption on the smoothness, requiring only
[ f(z,y) exp{=bf(z,y) }dxdy < C.b=" for all b > 1, in which case the result-
ing guarantees will also depend on 8. This recovers the result of [32] with
£ = 1 which holds for d = 1, and we assume stronger conditions here since
we seek sharp convergence rates in higher dimensions. The assumption (d)
assumes that the pdf is reasonably smooth, and it is essential for NN-based
methods. More general families of smoothness conditions have been assumed
for other approaches, such as the Holder condition,and we have made formal
comparisons in Section 3.4.

Assumption 2.(e) makes sure that the marginal entropy estimator con-
verges at certain rate. Compared to Assumption 1, we need an upper bound
for the joint entropy (a). The condition (b) is slightly stronger than As-
sumption 1 by changing the power from 1 to 14 . The condition (c) is the
tail bound which ensures the convergence rate of truncated KL joint entropy
estimator.

Note that there exist (families of) distributions, satisfying the assumptions
(a)—(d), where the convergence rates of k-NN estimators can be made arbi-
trarily slow. Consider a family of distributions in two-dimensional rectangle
with uniform measure parametrized by ¢, such that one side has a length ¢
and the other 1/¢. This family of distributions has differential entropy zero.
However, for any sample size N, there exists ¢ large enough such that the
kE-NN distances are arbitrarily large and the estimated entropy is also large.
To provide a sharp convergence rate for k-NN estimators, we need to restrict
the space of distributions by adding appropriate assumptions that captures
this phenomenon.

The challenge in the above example has been addressed under the no-
tion of boundary bias. The k-NN distances are larger near the boundaries,

which results in underestimating the density at boundaries. This effect is
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prominent for those distributions that (i) have non-smooth boundaries such
as a uniform distribution on a compact support, and (i7) have large sur-
face area at the boundary. There are two solutions; either we strengthen
Assumption 2.(d) and require twice continuously differentiability everywhere
including the boundaries or we can add another assumption on the surface
area of the boundaries. In this chapter, we take the second route. The reason
is that the first option conflicts with the current Assumption 2.(c) where the
only examples we know have lower bounded densities, which implies non-
smooth boundaries. It is an interesting future research direction to relax
Assumption 2.(c) as suggested above, and capture the trade-off between the
lightness of the tail in # and also the smoothness in the boundaries.

Instead, we assume in 2.(h) that the surface area of the boundaries is
finite. Recall that the Hausdorff measure of a set S is defined as [8§]

d—1 T . . -1 . .
H(S) = (151_1)1(1) {l}ir}lgil{;(dlam[]i) : i:LJlUiQS,dlamUi<(5}.
(3.13)
Here the diameter of the set U is defined as
diam U = sup{||z — y|||z,y € U}. (3.14)

The Hausdorff measure of a set is a measure of its surface area. Note that
this could be unbounded for the boundary of a family of distributions, as is
the case for the uniform rectangle example above. Assumption 1.(h) restricts
it to be finite, allowing us to limit the boundary bias to O(N~1/%). Since in
the (smooth) interior of the support, the bias is O(N~2/ 4) the boundary
bias dominates the error for the proposed k-NN estimator. We note that
truncated multivariate Gaussians and uniform random variables meet these

constraints.

Theorem 4. Under Assumption 2, and for finite k > max{d,/d,,d,/d,},
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E [EKSG(XSY)} —I(X;Y)

(148 (14 —2-)
log N da+dy
- 0 <( ])Vd - ) . (3.15)
E [ftBlfKSG(XS Y)} —I(X;Y)
(148 (14 7—2)
log N dztdy
- 0 (( 08 ])Vd . ) . (3.16)

The following theorem establishes an upper bound for the variance of trun-
cated KSG and BI-KSG estimators.

Theorem 5. Under Assumption 2, and for finite k > 2,

Var [TtKSG(X; Y)] -0 <(1%N>2> . (3.17)
Var FtBI,KSG(X; Y)] -0 <“%N>2> . (3.18)

Combining Theorem 4 and Theorem 5, we obtain the following upper
bound on the MSE of truncated KSG or BI-KSG estimator.

Corollary 1. Under the Assumption 2 and for finite k = O(1) and d = O(1),
the MSE of the truncated KSG or BI-KSG mutual information estimator
using N i.i.d. samples is bounded by:

[tKSG(X Y) - I(X; Y))j

1+6)(1+d +dy) log N 2
0( g LN )

3.19
- s (3.19)
~ 2
E {(131 ks (X:Y) — I(X;Y)) ]
1 N 1+6)(1+d +dy) 1 N 2
0< o8 | (oeN)") (3.20)
N2 N
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Corollary 2. Ifd, = d, = 1, we obtain:

e[ (usotxiv) - 1061) )]

(2k+2)(145)
- 0 ( (log N)N > . (3.21)

E [(EBI_KSG(X;Y) - I(X?Y)Y}

(2k+2)(1+6)
~ 0 ( (log N)N > . (3.22)

This establishes the 1/N convergence rate of the MSE of the KSG and BI-
KSG and 3KL estimators up to a poly-logarithmic factor; this (parametric)
convergence rate cannot be improved upon.

We compare the upper bound exponent from theory and experiment to
see whether the upper bound should be improved or not. For each N €
{100, 200, 400, 800, 1500, 3000} and d € {1,2,...,8}, we choose N i.i.d. sam-
ples {X;}Y¥, from Unif[0,1]¢ and let ¥; = X; + Unif[0,1]¢, and compute
stg(X ;Y') averaged over 500 trails. We use standard linear regression to
compute log(MSE)/log N, which is the experimental exponent. We com-
pare the exponent with the theoretical upper bound 3.22 and lower bound
from [41] (also with the exponents for other estimators: resubstitution [54]
and von Mises expansion estimators [31]). From Figure 3.1 we conclude
that the exponent from simulation is quite closed to the upper bound. We

conjecture that the lower bound can be further improved to close the gap.

3.2 Correlation boosting

The goal of this section is to build some intuition toward a deeper theoretical
understanding of the KSG estimator, where we see a curious correlation
boosting effect which explains the superior performance of the KSG estimator
and allows us to derive an even better estimator of mutual information. A

related intuitive explanation is provided in [89].

Correlation boosting effect. We begin by rewriting the KSG estimator,
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Figure 3.1: MSE for mutual information versus sample size in log-log scale.
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cf. (3.2), as:

N
~ 1

Igsa(X;Y) = N E Lk o0
=1

N
1
= N Z (&m’,oo(X) + fk,i,oo(Y) - ék,i,oo <X7 Y) ) ) (323>
=1
where
gk,ipo(Xv Y) = —l/f(/f) + log N + log Cdz,oocdy,oo + (d:c + dy) log Pk,i 005
5k,i,oo(X) = _¢(nx,i,w + 1) + lOg N + log Cdz,OO + dm IOg pk,i,ooa
Ehiovo(Y) = —9(nyic0+ 1) +1log N + log Cdy,00 Ay 10g Pr i co- (3.24)

Here & 0o(X,Y), kioo(X) and & oo(Y) are local estimates of the differ-
ential entropies H(X,Y), H(X) and H(Y), respectively, at the i*" sample.
We w