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ABSTRACT

As the era of big data arises, people get access to numerous amounts of

multi-view data. Measuring, discovering and understanding the underlying

relationship among different aspects of data is the core problem in infor-

mation theory. However, traditional information theory research focuses on

solving this problem in an abstract population-level way. In order to apply

information-theoretic tools to real-world problems, it is necessary to revisit

information theory from sample-level.

One important bridge between traditional information theory and real-

world problems is the information-theoretic quantity estimators. These es-

timators enable computing of traditional information-theoretic quantities

from big data and understanding hidden relationships in data. Information-

theoretic tools can also be utilized to improve modern machine learning

techniques. In this dissertation, several problems of information-theoretic

quantity estimators and their applications are investigated.

This dissertation consists of the following topics: (1) theoretical study

of the fundamental limit of information-theoretic quantity estimators, espe-

cially k-nearest neighbor estimators of differential entropy and mutual in-

formation; (2) designing novel algorithms of differential entropy and mutual

information estimators for some special and challenging practical scenarios,

as well as new information-theoretic measures to discover complex relation-

ships among data which cannot be found by traditional measures; (3) ap-

plying information-theoretic tools to improve training algorithms and model

compression algorithms in deep learning.
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CHAPTER 1

INTRODUCTION

Information theory, originally proposed by Claude Shannon in 1948 [1], stud-

ies the fundamental limit on quantization, storage and communication of

data. During the past decades, information theory has gained great success

in the area of wireless communication, data compression, statistic inference,

natural language processing and numerous other fields.

Since the development of Internet in the beginning of the 21st century,

people get access to a huge amount data from different aspects. How to un-

derstand, analyze and utilize the big data is of great interest to both theorists

and practitioners. Information theory — the fundamental mathematical tool

of understanding big data — can be widely applied in the big data era.

However, the focus of traditional information theory is mostly on the pop-

ulation level. Several information-theoretic quantities such as information

entropy, mutual information and Kullback-Leibler divergence are defined and

studied based on the probability distribution of data. In the big data era,

we usually have sampled data but not the distribution, hence bridging this

gap between theoretical information theory and practical application is an

important problem.

In this dissertation, we aim to build this bridge between information theory

and big data, by taking the following steps from theory toward practice.

• Analyze and understand the theory of the fundamental limit for esti-

mating information-theoretic quantities from data samples.

• Design novel algorithms to compute traditional information-theoretic

quantities for some challenging but practically useful scenarios, and

new information-theoretic measures capturing complicated relation-

ships from different aspects of multi-view data.

• Use information-theoretic tools to understand and improve modern ma-

chine learning models, especially deep learning models.
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1.1 Understanding fundamental limit

Before applying information-theoretic tools to machine learning and data

science, we need to estimate information-theoretic quantities, such as differ-

ential entropy and mutual information, from high-dimensional samples. That

brings a fundamental question — how well can we estimate these quantities

given finite data. The geometry of Euclidean space and the dimensionality

of the domain bring difficulty to the problem. In this dissertation, we stud-

ied the estimation of differential entropy and mutual information separately,

and provide a breakthrough on the understanding of fundamental limit of

information-theoretic quantity estimators.

We analyze the Kozachenko–Leonenko (KL) fixed k-nearest neighbor es-

timator for the differential entropy [2] in Chapter 2. We obtain the first

uniform upper bound on its performance for any fixed k over Hölder balls

on a torus without assuming any conditions on how close the density could

be from zero. Accompanying a recent minimax lower bound over the Hölder

ball, we show that the KL estimator for any fixed k is achieving the minimax

rates up to logarithmic factors without cognizance of the smoothness param-

eter s of the Hölder ball for s ∈ (0, 2] and arbitrary dimension d, rendering

it the first estimator that provably satisfies this property [3].

For the problem of estimating mutual information, the most popular esti-

mator is one proposed by Kraskov and Stögbauer and Grassberger (KSG) [4],

and is nonparametric and based on fixed k-nearest neighbor distances as well.

Despite its widespread use, theoretical properties of this estimator have been

largely unexplored. In Chapter 3, we demonstrate that the estimator is con-

sistent and also identify an upper bound on the rate of convergence of the

`2 error as a function of number of samples. We argue that the performance

benefits of the KSG estimator stems from a curious “correlation boosting”

effect and build on this intuition to modify the KSG estimator in novel ways

to construct a superior estimator [5].

1.2 Designing novel algorithms and measures

Given our understanding of the theoretical fundamental limit for estimating

information theoretical quantities, we want to bring it into application. How-
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ever in practice, data usually has certain special structure, which requires us

to design novel algorithms for these specific practical cases.

Following the theoretical understanding, we notice that the dimensionality

affects the performance of differential entropy and mutual information esti-

mators dramatically. In the big data era, data is usually high-dimensional

but have relatively low intrinsic dimension. The basic issue of k-NN en-

tropy/mutual information estimators is that they are unable to take advan-

tage of the small intrinsic dimension.

In Chapter 4, we propose an estimator that can take this advantage. State-

of-the-art approaches have been either geometric (nearest neighbor (NN)

based) or kernel based (with a globally chosen bandwidth). In this chapter,

we combine both these approaches to design new estimators of entropy and

mutual information that outperform state-of-the-art methods. Our estimator

borrows the idea from Local Likelihood Densisty Estimator (LLDE) [6, 7] and

uses local bandwidth choices of k-NN distances with a finite k, independent

of the sample size. Such a local and data dependent choice ameliorates

boundary bias and improves performance in practice, but the bandwidth is

vanishing at a fast rate, leading to a non-vanishing bias. We show that the

asymptotic bias of the proposed estimator is universal; it is independent of

the underlying distribution. Hence, it can be pre-computed and subtracted

from the estimate. As a byproduct, we obtain a unified way of obtaining

both kernel and NN estimators. The corresponding theoretical contribution

relating the asymptotic geometry of nearest neighbors to order statistics is

of independent mathematical interest [8].

Previous research on mutual information estimators focus on either of two

cases — the data is either purely discrete or purely continuous, whereas mu-

tual information is a well-defined quantity in general probability spaces. But

in practical downstream applications, we often have to deal with a mixture

of continuous and discrete data. The data can be mixed in several ways:

(i) one dimension of data is continuous and another dimension is discrete;

(ii) a single-dimensional data can be a mixture of discrete and continuous

components; (iii) any dimension of the data can be a mixture. In the afore-

mentioned cases, mutual information is well-defined, but no algorithms have

been studied.

In Chapter 5, we designed an algorithm that estimates mutual information

from data for all the aforementioned cases. The algorithm is based on KSG
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mutual information estimator, but automatically detects which case of mix-

ture the data is by examining the k-nearest neighbor distances. We prove

that the estimator is `2 consistent and demonstrate its excellent practical

performance through several experiments [9].

Beyond understanding and designing algorithms for computing traditional

information-theoretic quantities, we also want to use these algorithms to

extract useful information from data. A common task in machine learning

is to discover the underlying complicated relationship among various aspects

of data. To solve this problem, we need to develop appropriate information-

theoretic measures for different scenarios and develop efficient algorithms for

the new measures.

While existing correlation measures such as mutual information and Shan-

non capacity studied before are suitable for discovering average correlation,

they fail to discover hidden or potential correlations.

In Chapter 6, we postulate a set of natural axioms that we expect a measure

of potential correlation to satisfy and show that the rate of information bot-

tleneck, i.e., the hypercontractivity coefficient [10], satisfies all the proposed

axioms. Then we design a novel estimator to estimate the hypercontractivity

coefficient from samples and provide numerical experiments demonstrating

that this proposed estimator discovers potential correlations among various

indicators of WHO datasets [11], is robust in discovering gene interactions

from gene expression time series data, and is statistically more powerful than

the estimators for other correlation measures in binary hypothesis testing of

canonical potential correlations [12].

1.3 Applications to deep learning

Since the success of AlexNet [13], deep learning, or artificial neural networks

has been widely used in practise and thoroughly studied in theory. Armed

with our understanding of information-theoretic tools, we could help deep

learners understand the training of deep neural networks well.

Training of neural networks is a challenging problem due to its well-known

non-convex landscape. Significant advances have been made recently on

training neural networks, where the main challenge is in solving an op-

timization problem with abundant critical points. However, existing ap-
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proaches [14] to address this issue crucially rely on a restrictive assumption:

the training data is drawn from a Gaussian distribution.

In Chapter 7, we provide a novel unified framework to design loss func-

tions with desirable landscape properties for a wide range of general input

distributions. On these loss functions, remarkably, stochastic gradient de-

scent theoretically recovers the true parameters with global initialization and

empirically outperforms the existing approaches. Our loss function design

bridges the notion of score functions [15] with the topic of neural network

optimization.

Central to our approach is the task of estimating the score function from

samples, which is of basic and independent interest to theoretical statistics.

Traditional estimation methods fail right at the outset. We bring statistical

methods of local likelihood to design a novel estimator of score functions,

that provably adapts to the local geometry of the unknown density [16].

Besides providing deeper understanding of the training process of neural

nets, information theory can also help improving the efficiency of neural net-

works. The enormous size of modern deep neural nets makes it challenging to

deploy those models in memory and communication limited scenarios. Thus,

compressing a trained model without a significant loss in performance has

become an increasingly important task. Tremendous advances [17, 18] have

been made recently, where the main technical building blocks are pruning,

quantization, and low-rank factorization.

In Chapter 8, we propose principled approaches to improve upon the com-

mon heuristics used in those building blocks, by studying the fundamental

limit for model compression via the rate distortion theory [19]. We prove

a lower bound for the rate distortion function for model compression and

prove its achievability for linear models. Although this achievable compres-

sion scheme is intractable in practice, this analysis motivates a novel objective

function for model compression, which can be used to improve classes of the

model compressor such as pruning or quantization. Theoretically, we prove

that the proposed scheme is optimal for compressing one-hidden-layer ReLU

neural networks. Empirically, we show that the proposed scheme improves

upon the baseline in the compression-accuracy tradeoff [20].
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CHAPTER 2

ANALYSIS OF NEAREST NEIGHBOR
DIFFERENTIAL ENTROPY ESTIMATOR

Information-theoretic measures such as entropy, Kullback-Leibler divergence

and mutual information quantify the amount of information among random

variables. They have many applications in modern machine learning tasks,

such as classification [21], clustering [22, 23, 24, 25] and feature selection [26,

27]. Information-theoretic measures and their variants can also be applied

in several data science domains such as causal inference [28], sociology [11]

and computational biology [29]. Estimating information-theoretic measures

from data is a crucial sub-routine in the aforementioned applications and has

attracted much interest in statistics community. In this chapter, we study

the problem of estimating Shannon differential entropy, which is the basis

of estimating other information-theoretic measures for continuous random

variables.

Suppose we observe n independent identically distributed random vectors

X = {X1, . . . , Xn} drawn from density function f where Xi ∈ Rd. We

consider the problem of estimating the differential entropy

h(f) = −
∫
f(x) ln f(x)dx, (2.1)

from the empirical observations X. The fundamental limit of estimating the

differential entropy is given by the minimax risk

inf
ĥ

sup
f∈F

(
E(ĥ(X)− h(f))2

)1/2

, (2.2)

where the infimum is taken over all estimators ĥ that is a function of the em-

pirical data X. Here F denotes a (nonparametric) class of density functions.

The problem of differential entropy estimation has been investigated exten-

sively in the literature. As discussed in [30], there exist two main approaches,

where one is based on kernel density estimators [31], and the other is based
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on the nearest neighbor methods [32, 33, 34, 35, 36], which is pioneered by

the work of [2].

The problem of differential entropy estimation lies in the general prob-

lem of estimating nonparametric functionals. Unlike the parametric coun-

terparts, the problem of estimating nonparametric functionals is challenging

even for smooth functionals. Initial efforts have focused on inference of lin-

ear, quadratic, and cubic functionals in Gaussian white noise and density

models and have laid the foundation for the ensuing research. We do not

attempt to survey the extensive literature in this area, but instead refer to

the interested reader to, e.g., [37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47] and

the references therein. For non-smooth functionals such as entropy, there is

some recent progress [48, 49, 50] on designing theoretically minimax opti-

mal estimators, while these estimators typically require the knowledge of the

smoothness parameters, and the practical performances of these estimators

are not yet known.

The k-nearest-neighbor differential entropy estimator, or the Kozachenko-

Leonenko (KL) estimator is computed in the following way. Let Ri,k be the

distance between Xi and its k-nearest neighbor among the remaining samples

{X1, . . . , Xi−1, Xi+1, . . . , Xn}. Precisely, Ri,k equals the k-th smallest number

in the list {‖Xi −Xj‖ : j 6= i, j ∈ [n]}, here [n] = {1, 2, . . . , n}. Let B(x, ρ)

denote the closed `2 ball centered at x of radius ρ and λ be the Lebesgue

measure on Rd. The KL differential entropy estimator is defined as

ĥn,k(X) = ln k − ψ(k) + 1
n

∑n
i=1 ln

(
n
k
λ(B(Xi, Ri,k))

)
, (2.3)

where ψ(x) is the digamma function with ψ(1) = −γ, γ = −
∫∞

0
e−t ln tdt =

0.5772156 . . . is the Euler–Mascheroni constant.

There exists an intuitive explanation behind the construction of the KL

differential entropy estimator. Writing informally, we have

h(f) = Ef [− ln f(X)] ≈ 1

n

n∑
i=1

− ln f(Xi) ≈
1

n

n∑
i=1

− ln f̂(Xi), (2.4)

where the first approximation is based on the law of large numbers, and in

the second approximation we have replaced f by a nearest neighbor density

estimator f̂ . The nearest neighbor density estimator f̂(Xi) follows from the

7



“intuition”1 that

f̂(Xi)λ(B(Xi, Ri,k)) ≈
k

n
. (2.5)

Here the final additive bias correction term ln k−ψ(k) follows from a detailed

analysis of the bias of the KL estimator, which will become apparent later.

We focus on the regime where k is a fixed constant: in other words, it does

not grow as the number of samples n increases. The fixed k version of the

KL estimator is widely applied in practice and enjoys smaller computational

complexity, see [34].

There exists extensive literature on the analysis of the KL differential en-

tropy estimator, which we refer to [51] for a recent survey. One of the major

difficulties in analyzing the KL estimator is that the nearest neighbor den-

sity estimator exhibits a huge bias when the density is small. Indeed, it

was shown in [52] that the bias of the nearest neighbor density estimator

in fact does not vanish even when n → ∞ and deteriorates as f(x) gets

close to zero. In the literature, a large collection of work assume that the

density is uniformly bounded away from zero [53, 54, 55, 31, 33], while oth-

ers put various assumptions quantifying on average how close the density is

to zero [56, 57, 32, 58, 8, 34, 35]. In this chapter, we focus on removing

assumptions on how close the density is to zero.

Main contributions of Chapter 2:

Let Hs
d(L; [0, 1]d) be the Hölder ball in the unit cube (torus) (formally de-

fined later in Section 2.1) and s ∈ (0, 2] is the Hölder smoothness parameter.

Then, the worst-case risk of the fixed k-nearest neighbor differential entropy

estimator over Hs
d(L; [0, 1]d) is controlled by the following theorem.

Theorem 1. Let X = {X1, . . . , Xn} be i.i.d. samples from density function

f . Then, for 0 < s ≤ 2, the fixed k-nearest neighbor KL differential entropy

estimator ĥn,k in (2.3) satisfies

(
sup

f∈Hsd(L;[0,1]d)

Ef
(
ĥn,k(X)− h(f)

)2
) 1

2

≤ C
(
n−

s
s+d ln(n+ 1) + n−

1
2

)
, (2.6)

1Precisely, we have
∫
B(Xi,Ri,k)

f(u)du ∼ Beta(k, n−k) [51, Chap. 1.2]. A Beta(k, n−k)

distributed random variable has mean k
n .
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where C is a constant depends only on s, L, k and d.

The KL estimator is in fact nearly minimax up to logarithmic factors, as

shown in the following result from [49].

Theorem 2. [49] Let X = {X1, . . . , Xn} be i.i.d. samples from density

function f . Then, there exists a constant L0 depending on s, d only such that

for all L ≥ L0, s > 0,

(
inf
ĥ

sup
f∈Hsd(L;[0,1]d)

Ef
(
ĥ(X)− h(f)

)2
) 1

2

≥ c
(
n−

s
s+d (ln(n+ 1))−

s+2d
s+d + n−

1
2

)
, (2.7)

where c is a constant depends only on s, L and d.

Remark 1. We emphasize that one cannot remove the condition L ≥ L0

in Theorem 2. Indeed, if the Hölder ball has a too small width, then the

density itself is bounded away from zero, which makes the differential entropy

a smooth functional, with minimax rates n−
4s

4s+d + n−1/2 [59, 60, 61].

Theorems 1 and 2 imply that for any fixed k, the KL estimator achieves

the minimax rates up to logarithmic factors without knowing s for all s ∈
(0, 2], which implies that it is near minimax rate-optimal (within logarithmic

factors) when the dimension d ≤ 2. We cannot expect the vanilla version of

the KL estimator to adapt to higher order of smoothness since the nearest

neighbor density estimator can be viewed as a variable width kernel density

estimator with the box kernel, and it is well known in the literature (see,

e.g., [62, Chapter 1]) that any positive kernel cannot exploit the smoothness

s > 2. We refer to [49] for a more detailed discussion on this difficulty and

potential solutions. The Jackknife idea, such as the one presented in [35, 36]

might be useful for adapting to s > 2.

The significance of our work is multi-folded:

• We obtain the first uniform upper bound on the performance of the

fixed k-nearest neighbor KL differential entropy estimator over Hölder

balls without assuming how close the density could be from zero. We

emphasize that assuming conditions of this type, such as the density is

bounded away from zero, could make the problem significantly easier.
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For example, if the density f is assumed to satisfy f(x) ≥ c for some

constant c > 0, then the differential entropy becomes a smooth func-

tional and consequently, the general technique for estimating smooth

nonparametric functionals [59, 60, 61] can be directly applied here to

achieve the minimax rates n−
4s

4s+d + n−1/2. The main technical tools

that enabled us to remove the conditions on how close the density

could be from zero are the Besicovitch covering lemma (Lemma. 4)

and the generalized Hardy–Littlewood maximal inequality.

• We show that, for any fixed k, the k-nearest neighbor KL entropy esti-

mator nearly achieves the minimax rates without knowing the smooth-

ness parameter s. In the functional estimation literature, designing

estimators that can be theoretically proved to adapt to unknown levels

of smoothness is usually achieved using the Lepski method [63, 64, 65,

66, 50], which is not known to be performing well in general in practice.

On the other hand, a simple plug-in approach can achieves the rate of

n−s/(s+d), but only when s is known [49]. The KL estimator is well

known to exhibit excellent empirical performance, but existing theory

has not yet demonstrated its near-“optimality” when the smoothness

parameter s is not known. Recent works [36, 34, 35] analyzed the per-

formance of the KL estimator under various assumptions on how close

the density could be to zero, with no matching lower bound up to loga-

rithmic factors in general. Our work makes a step towards closing this

gap and provides a theoretical explanation for the wide usage of the

KL estimator in practice.

The rest of the chapter is organized as follows. In Section 2.1 we formally

discuss the definition of Hölder balls. Section 2.2 and Section 2.3 are dedi-

cated to the proof of bias and variance in Theorem 1. Section 2.4 provides

proof to the lemmas.

Notations. For positive sequences aγ, bγ, we use the notation aγ .α bγ

to denote that there exists a universal constant C that only depends on α

such that supγ
aγ
bγ
≤ C, and aγ &α bγ is equivalent to bγ .α aγ. Notation

aγ �α bγ is equivalent to aγ .α bγ and bγ .α aγ. We write aγ . bγ if

the constant is universal and does not depend on any parameters. Notation

aγ � bγ means that lim infγ
aγ
bγ

= ∞, and aγ � bγ is equivalent to bγ � aγ.
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We write a ∧ b = min{a, b} and a ∨ b = max{a, b}.

2.1 Definition of Hölder ball

In order to define the Hölder ball in the unit cube [0, 1]d, we first review the

definition of Hölder ball in Rd.

Definition 1 (Hölder ball in Rd). The Hölder ball Hs
d(L;Rd) is specified

by the parameters s > 0 (order of smoothness), d ∈ Z+ (dimension of the

argument) and L > 0 (smoothness constant) and is as follows. A positive

real s can be uniquely represented as

s = m+ α, (2.8)

where m is a non-negative integer and 0 < α ≤ 1. By definition, Hs
d(L;Rd)

is comprised of all m times continuously differentiable functions

f : Rd 7→ R, (2.9)

with Hölder continuous, with exponent α and constant L, derivatives of order

m:

|Dmf(x)[δ1, . . . , δm]−Dmf(x′)[δ1, . . . , δm]|

≤ L‖x− x′‖α‖δ‖m, ∀x, x′ ∈ Rd, δ ∈ Rd. (2.10)

Here ‖ · ‖ is the Euclidean norm on Rd, and Dmf(x)[δ1, . . . , δm] is the m-th

differential of f taken as a point x along the directions δ1, . . . , δm:

Dmf(x)[δ1, . . . , δm]

=
∂m

∂t1 . . . ∂tm

∣∣∣∣∣
t1=...=tm=0

f(x+ t1δ1 + . . .+ tmδm). (2.11)

In this chapter, we consider functions that lie in Hölder balls in [0, 1]d. The

Hölder ball in the compact set [0, 1]d is defined as follows.

Definition 2 (Hölder ball in the unit cube). A function f : [0, 1]d 7→ R
is said to belong to the Hölder ball Hs

d(L; [0, 1]d) if and only if there exists

11



another function f1 ∈ Hs
d(L;Rd) such that

f(x) = f1(x), x ∈ [0, 1], (2.12)

and f1(x) is a 1-periodic function in each variable. Here Hs
d(L; [0, 1]d) is

introduced in Definition 1. In other words,

f1(x+ ej) = f1(x), ∀x ∈ Rd, 1 ≤ j ≤ d, (2.13)

where {ej : 1 ≤ j ≤ d} is the standard basis in Rd.

Definition 2 has appeared in the literature [67]. It is motivated by the

observations that sliding window kernel methods usually cannot deal with

the boundary effects without additional assumptions [68]. Indeed, near the

boundary the sliding window kernel density estimator may have a signifi-

cantly larger bias than that of the interior points. In the nonparametric

statistics literature, it is usually assumed that the density has its value and

all the derivatives vanishing at the boundary, which is stronger than our

assumptions.

2.2 Upper bound of bias

In this and the following section, we will prove that

(
E
(
ĥn,k(X)− h(f)

)2
) 1

2

.s,L,d,k n
− s
s+d ln(n+ 1) + n−

1
2 , (2.14)

for any f ∈ Hs
d(L; [0, 1]d) and s ∈ (0, 2]. The proof consists two parts: (i) the

upper bound of the bias in the form of Os,L,d,k(n
−s/(s+d) ln(n + 1)); (ii) the

upper bound of the variance is Os,L,d,k(n
−1). Below we show the bias proof

and the variance proof is in the next section.

First, we introduce the following notation

ft(x) =
µ(B(x, t))

λ(B(x, t))
=

1

Vdtd

∫
u:|u−x|≤t

f(u)du. (2.15)

Here µ is the probability measure specified by density function f on the torus,

λ is the Lebesgue measure on Rd, and Vd = πd/2/Γ(1 + d/2) is the Lebesgue

12



measure of the unit ball in d-dimensional Euclidean space. Hence ft(x) is the

average density of a neighborhood near x. We first state two main lemmas

about ft(x) which will be used later in the proof.

Lemma 1. If f ∈ Hs
d(L; [0, 1]d) for some 0 < s ≤ 2, then for any x ∈ [0, 1]d

and t > 0, we have

| ft(x)− f(x) | ≤ dLts

s+ d
. (2.16)

Lemma 2. If f ∈ Hs
d(L; [0, 1]d) for some 0 < s ≤ 2 and f(x) ≥ 0 for all

x ∈ [0, 1]d, then for any x and any t > 0, we have

f(x) .s,L,d max
{
ft(x),

(
ft(x)Vdt

d
)s/(s+d)

}
. (2.17)

Furthermore, f(x) .s,L,d 1.

Now we investigate the bias of ĥn,k(X). The following argument reduces

the bias analysis of ĥn,k(X) to a function analytic problem. For notation

simplicity, we introduce a new random variable X ∼ f independent of

{X1, . . . , Xn} and study ĥn+1,k({X1, . . . , Xn, X}). For every x ∈ Rd, de-

note Rk(x) by the k-nearest neighbor distance from x to {X1, X2, . . . , Xn}
under distance d(x, y) = minm∈Zd ‖m + x − y‖, i.e., the k-nearest neighbor

distance on the torus. Then,

E[ĥn+1,k({X1, . . . , Xn, X})]− h(f)

= −ψ(k) + E [ ln ( (n+ 1)λ(B(X,Rk(X))) )] + E [ln f(X)]

= E
[

ln

(
f(X)λ(B(X,Rk(X)))

µ(B(X,Rk(X)))

)]
+E [ ln ((n+ 1)µ(B(X,Rk(X))) ) ]− ψ(k)

= E
[
ln

f(X)

fRk(X)(X)

]
+ (E [ ln ((n+ 1)µ(B(X,Rk(X))) ) ]− ψ(k) ) .

(2.18)

We first show that the second term E [ln ((n+ 1)µ(B(X,Rk(X))))]−ψ(k)

can be universally controlled regardless of the smoothness of f . Indeed, the

random variable µ(B(X,Rk(X))) ∼ Beta(k, n+ 1− k) [51, Chap. 1.2] and it

was shown in [51, Theorem 7.2] that there exists a universal constant C > 0
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such that ∣∣∣E [ln ((n+ 1)µ(B(X,Rk(X))))]− ψ(k)
∣∣∣ ≤ C

n
. (2.19)

Hence, it suffices to show that for 0 < s ≤ 2,∣∣∣∣E [ln f(X)

fRk(X)(X)

]∣∣∣∣ .s,L,d,k n−
s
s+d ln(n+ 1). (2.20)

We split our analysis into two parts. In Section 2.2.1, we will show

that E
[
ln

fRk(X)(X)

f(X)

]
.s,L,d,k n−

s
s+d . In Section 2.2.2, we will show that

E
[
ln f(X)

fRk(X)(X)

]
.s,L,d,k n

− s
s+d ln(n+ 1), which completes the proof.

2.2.1 Upper bound on E
[
ln

fRk(X)(X)

f(X)

]
By the fact that ln y ≤ y − 1 for any y > 0, we have

E
[
ln
fRk(X)(X)

f(X)

]
≤ E

[
fRk(X)(X)− f(X)

f(X)

]
=

∫
[0,1]d∩{x:f(x)6=0}

(
E[fRk(x)(x)]− f(x)

)
dx. (2.21)

Here the expectation is taken with respect to the randomness in Rk(x) =

min1≤i≤n,m∈Zd ‖m+Xi − x‖, x ∈ Rd. Define function g(x; f, n) as

g(x; f, n) = sup

{
u ≥ 0 : Vdu

dfu(x) ≤ 1

n

}
, (2.22)

where g(x; f, n) intuitively means the distance R such that the probability

mass µ(B(x,R)) within R is 1/n. Then for any x ∈ [0, 1]d, we can split

E[fRk(x)(x)]− f(x) into three terms as

E[fRk(x)(x)]− f(x)

= E[(fRk(x)(x)− f(x))I(Rk(x) ≤ n−1/(s+d))]

+ E[(fRk(x)(x)− f(x))I(n−1/(s+d) < Rk(x) ≤ g(x; f, n))]

+ E[(fRk(x)(x)− f(x))I(Rk(x) > g(x; f, n) ∨ n−1/(s+d))]

= C1 + C2 + C3. (2.23)
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Now we handle three terms separately. Our goal is to show that for every

x ∈ [0, 1], Ci .s,L,d n
−s/(s+d) for i ∈ {1, 2, 3}. Then, taking the integral with

respect to x leads to the desired bound.

1. Term C1: whenever Rk(x) ≤ n−1/(s+d), by Lemma 1, we have

|fRk(x)(x)− f(x)| ≤ dLRk(x)s

s+ d
.s,L,d n

−s/(s+d), (2.24)

which implies that

C1 ≤ E
[∣∣fRk(x)(x)− f(x)

∣∣ I(Rk(x) ≤ n−1/(s+d))
]

.s,L,d n−s/(s+d). (2.25)

2. Term C2: whenever Rk(x) satisfies that n−1/(s+d) < Rk(x) ≤ g(x; f, n),

by definition of g(x; f, n), we have VdRk(x)dfRk(x)(x) ≤ 1
n
, which im-

plies that

fRk(x)(x) ≤ 1

nVdRk(x)d
≤ 1

nVdn−d/(s+d)
.s,L,d n

−s/(s+d). (2.26)

It follows from Lemma 2 that in this case

f(x) .s,L,d fRk(x)(x) ∨
(
fRk(x)(x)VdRk(x)d

)s/(s+d)

≤ n−s/(s+d) ∨ n−s/(s+d) = n−s/(s+d). (2.27)

Hence, we have

C2 = E
[
(fRk(x)(x)− f(x))I

(
n−1/(s+d) < Rk(x) ≤ g(x; f, n)

)]
≤ E

[
(fRk(x)(x) + f(x))I

(
n−1/(s+d) < Rk(x) ≤ g(x; f, n)

)]
.s,L,d n−s/(s+d). (2.28)

3. Term C3: we have

C3 ≤ E
[
(fRk(x)(x) + f(x))I

(
Rk(x) > g(x; f, n) ∨ n−1/(s+d)

)]
.

(2.29)
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For any x such that Rk(x) > n−1/(s+d), we have

fRk(x)(x) .s,L,d VdRk(x)dfRk(x)(x)nd/(s+d), (2.30)

and by Lemma 2,

f(x) .s,L,d fRk(x)(x) ∨ (VdRk(x)dfRk(x)(x))s/(s+d)

≤ fRk(x)(x) + (VdRk(x)dfRk(x)(x))s/(s+d). (2.31)

Hence,

f(x) + fRk(x)(x)

.s,L,d 2fRk(x)(x) + (VdRk(x)dfRk(x)(x))s/(s+d)

.s,L,d VdRk(x)dfRk(x)(x)nd/(s+d) + (VdRk(x)dfRk(x)(x))s/(s+d)

.s,L,d VdRk(x)dfRk(x)(x)nd/(s+d), (2.32)

where in the last step we have used the fact that VdRk(x)dfRk(x)(x) >

n−1 since Rk(x) > g(x; f, n). Finally, we have

C3 .s,L,d n
d/(s+d)E[(VdRk(x)dfRk(x)(x))I(Rk(x) > g(x; f, n))]

= nd/(s+d)E
[
(VdRk(x)dfRk(x)(x))I

(
VdRk(x)dfRk(x)(x) > 1/n

)]
.

(2.33)

Note that VdRk(x)dfRk(x)(x) ∼ Beta(k, n+1−k), and if Y ∼ Beta(k, n+

1− k), we have

E[Y 2] =

(
k

n+ 1

)2

+
k(n+ 1− k)

(n+ 1)2(n+ 2)
.k

1

n2
. (2.34)

Notice that E[Y I (Y > 1/n)] ≤ nE[Y 2]. Hence, we have

C3 .s,L,d nd/(s+d) nE
[
(VdRk(x)dfRk(x)(x))2

]
.s,L,d,k

nd/(s+d)n

n2
= n−s/(s+d). (2.35)
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2.2.2 Upper bound on E
[
ln f(X)

fRk(X)(X)

]
By splitting the term into two parts, we have

E
[
ln

f(X)

fRk(X)(X)

]
= E

[∫
[0,1]d∩{x:f(x)6=0}

f(x) ln
f(x)

fRk(x)(x)
dx

]
= E

[∫
A

f(x) ln
f(x)

fRk(x)(x)
I(fRk(x)(x) > n−s/(s+d))dx

]
+ E

[∫
A

f(x) ln
f(x)

fRk(x)(x)
I(fRk(x)(x) ≤ n−s/(s+d))dx

]
= C4 + C5. (2.36)

Here we denote A = [0, 1]d ∩ {x : f(x) 6= 0} for simplicity of notation. For

the term C4, we have

C4 ≤ E
[∫

A

f(x)

(
f(x)− fRk(x)(x)

fRk(x)(x)

)
I(fRk(x)(x) > n−s/(s+d))dx

]
= E

[∫
A

(f(x)− fRk(x)(x))2

fRk(x)(x)
I(fRk(x)(x) > n−s/(s+d))dx

]
+ E

[∫
A

(
f(x)− fRk(x)(x)

)
I(fRk(x)(x) > n−s/(s+d))dx

]
≤ ns/(s+d)E

[∫
A

(
f(x)− fRk(x)(x)

)2
dx

]
+ E

[∫
A

(
f(x)− fRk(x)(x)

)
dx

]
.

(2.37)

In the proof of upper bound of E
[
ln

fRk(X)(X)

f(X)

]
, we show that E[fRk(x)(x) −

f(x)] .s,L,d,k n
−s/(s+d) for any x ∈ A. Similarly as in the proof of upper

bound of E
[
ln

fRk(X)(X)

f(X)

]
, we have E

[
(fRk(x)(x)− f(x))2

]
.s,L,d,k n

−2s/(s+d)

for every x ∈ A. Therefore, we have

C4 .s,L,d,k ns/(s+d)n−2s/(s+d) + n−s/(s+d) .s,L,d,k n
−s/(s+d). (2.38)

Now we consider C5. We conjecture that C5 .s,L,d,k n−s/(s+d) in this

case, but we were not able to prove it. Below we prove that C5 .s,L,d,k

n−s/(s+d) ln(n+ 1). Define the function

M(x) = sup
t>0

1

ft(x)
. (2.39)
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Since fRk(x)(x) ≤ n−s/(s+d), we have M(x) = supt>0(1/ft(x)) ≥ 1/fRk(x)(x) ≥
ns/(s+d). Denote ln+(y) = max{ln(y), 0} for any y > 0, therefore, we have

that

C5 ≤ E
[∫

A

f(x) ln+

(
f(x)

fRk(x)(x)

)
I(fRk(x)(x) ≤ n−s/(s+d))dx

]
≤ E

[∫
A

f(x) ln+

(
f(x)

fRk(x)(x)

)
I(M(x) ≥ ns/(s+d))dx

]
≤

∫
A

f(x)E
[
ln+

(
1

(n+ 1)VdRk(x)dfRk(x)(x)

)]
I(M(x) ≥ ns/(s+d))dx

+

∫
A

f(x)E
[
ln+
(
(n+ 1)VdRk(x)df(x)

)]
I(M(x) ≥ ns/(s+d))dx

= C51 + C52, (2.40)

where the last inequality uses the fact ln+(xy) ≤ ln+ x + ln+ y for all x, y >

0. As for C51, since VdRk(x)dfRk(x)(x) ∼ Beta(k, n + 1 − k), and for Y ∼
Beta(k, n+ 1− k), we have

E
[
ln+

(
1

(n+ 1)Y

)]
=

∫ 1
n+1

0

ln

(
1

(n+ 1)x

)
pY (x)dx

= E
[
ln

(
1

(n+ 1)Y

)]
+

∫ 1

1
n+1

ln ((n+ 1)x) pY (x)dx

≤ E
[
ln

(
1

(n+ 1)Y

)]
+ ln(n+ 1)

∫ 1

1
n+1

pY (x)dx

≤ E
[
ln

(
1

(n+ 1)Y

)]
+ ln(n+ 1)

≤ ln(n+ 1), (2.41)

where in the last inequality we used the fact that E
[
ln
(

1
(n+1)Y

)]
= ψ(n +

1)− ψ(k)− ln(n+ 1) ≤ 0 for any k ≥ 1. Hence,

C51 .s,L,d ln(n+ 1)

∫
A

f(x)I(M(x) ≥ ns/(s+d))dx. (2.42)

Now we introduce the following lemma, which is proved in Section 2.4.

Lemma 3. Let µ1, µ2 be two Borel measures that are finite on the bounded
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Borel sets of Rd. Then, for all t > 0 and any Borel set A ⊂ Rd,

µ1

({
x ∈ A : sup

0<ρ≤D

(
µ2(B(x, ρ))

µ1(B(x, ρ))

)
> t

})
≤ Cd

t
µ2(AD). (2.43)

Here Cd > 0 is a constant that depends only on the dimension d and

AD = {x : ∃y ∈ A, |y − x| ≤ D}. (2.44)

Applying the second part of Lemma 3 with µ2 being the Lebesgue measure

and µ1 being the measure specified by f(x) on the torus, we can view the

function M(x) as

M(x) = sup
0<ρ≤1/2

µ2(B(x, ρ))

µ1(B(x, ρ))
. (2.45)

Taking A = [0, 1]d ∩ {x : f(x) 6= 0}, t = ns/(s+d), then µ2(A 1
2
) ≤ 2d, so we

know that

C51 .s,L,d ln(n+ 1) ·
∫
A

f(x)I(M(x) ≥ ns/(s+d))dx

= ln(n+ 1) · µ1

(
x ∈ [0, 1]d, f(x) 6= 0,M(x) ≥ ns/(s+d)

)
≤ ln(n+ 1) · Cdn−s/(s+d)µ2(A 1

2
) .s,L,d n

−s/(s+d) ln(n+ 1).

(2.46)

Now we deal with C52. Recall that in Lemma 2, we know that f(x) .s,L,d 1

for any x, and Rk(x) ≤ 1, so ln+((n + 1)VdRk(x)df(x)) .s,L,d ln(n + 1).

Therefore,

C52 .s,L,d ln(n+ 1) ·
∫
A

f(x)I(M(x) ≥ ns/(s+d))dx

.s,L,d n−s/(s+d) ln(n+ 1). (2.47)

Therefore, we have proved that C5 ≤ C51 + C52 .s,L,d n
−s/(s+d) ln(n + 1),

which completes the proof of the upper bound on E
[
ln f(X)

fRk(X)(X)

]
.
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2.3 Upper bound of variance

Our goal is to prove

Var
(
ĥn,k(X)

)
.d,k

1

n
. (2.48)

The proof is based on the analysis in [51, Section 7.2] which utilizes the

Efron–Stein inequality. Let X(i) = {X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn} be a set

of sample where only Xi is replaced by X ′i. Then Efron–Stein inequality [69]

states

Var
(
ĥn,k(X)

)
≤ 1

2

n∑
i=1

E
[(
ĥn,k(X)− ĥn,k(X(i))

)2
]
. (2.49)

Note that KL estimator is symmetric of sample indices, so ĥn,k(X) −
ĥn,k(X

(i)) has the same distribution for any i. Furthermore, we bridge

ĥn,k(X) and ĥn,k(X
(i)) by introducing an estimator from n − 1 samples.

Precisely, for any i = 2, . . . , n, define R′i,k be the k-nearest neighbor dis-

tance from Xi to {X2, . . . , Xn} (note that X1 is removed), under the distance

d(x, y) = minm∈Zd ‖x− y −m‖. Define

ĥn−1,k(X) = −ψ(k) +
1

n

n∑
i=2

ln(nλ(B(Xi, R
′
i,k))). (2.50)

Notice that ĥn,k(X) − ĥn−1,k(X) has the same distribution as ĥn,k(X
(1)) −

ĥn−1,k(X). Therefore, the variance is bounded by

Var
(
ĥn.k(X)

)
≤ n

2
E
[(
ĥn,k(X)− ĥn,k(X(1))

)2
]

= 2nE
[(
ĥn,k(X)− ĥn−1,k(X)

)2
]
. (2.51)

Now we deal with the term E
[(
ĥn,k(X)− ĥn−1,k(X)

)2
]
. Define the in-

dicator function E
(k)
i = I{X1 is in the k−nearest neighbor of Xi} for i 6= 1.

Note that R′i,k = Ri,k if E
(k)
i 6= 1 and i 6= 1. As shown in [9, Lemma B.1],

the set S = {i : E
(k)
i = 1} has cardinality at most kβd for a constant βd only
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depends on d. Therefore, we have

Var
(
ĥn,k(X)

)
≤ 2nE

[(
ĥn,k(X)− ĥn−1,k(X)

)2
]

= 2nE

 1

n2

 ∑
i∈S∪{1}

ln(nλ(B(Xi, Ri,k)))−
∑
i∈S

ln(nλ(B(Xi, R
′
i,k)))

2
≤ 2 + 4|S|

n
E

 ∑
i∈S∪{1}

ln2(nλ(B(Xi, Ri,k))) +
∑
i∈S

ln2(nλ(B(Xi, R
′
i,k)))


.d,k

1

n

(
E
[
ln2(nλ(B(X1, R1,k)))

]
+ E

[
ln2(nλ(B(X1, R

′
1,k)))

])
. (2.52)

Since E
[
ln2(nλ(B(X1, R1,k)))

]
.d,k 1 and E

[
ln2(nλ(B(X1, R

′
1,k)))

]
.d,k 1.

Using Cauchy-Schwarz inequality, we have

E
[
ln2(nλ(B(X1, R1,k)))

]
≤ 2

(
E
[
ln2(

λ(B(X1, R1,k))

µ(B(X1, R1,k))
)

]
+ E

[
ln2(nµ(B(X1, R1,k)))

])
, (2.53)

and

E
[
ln2(nλ(B(X1, R

′
1,k)))

]
≤ 3

(
E

[
ln2(

λ(B(X1, R
′
1,k))

µ(B(X1, R′1,k))
)

]
+ E

[
ln2((n− 1)µ(B(X1, R

′
1,k)))

]
+ ln2(

n

n− 1
)
)
. (2.54)

Since µ(B(X1, R1,k)) ∼ Beta(k, n+ 1− k) and µ(B(X1, R
′
1,k)) ∼ Beta(k, n−

k), therefore we know that both the quantities E
[
ln2(nµ(B(X1, R1,k)))

]
and

E
[
ln2((n− 1)µ(B(X1, R

′
1,k)))

]
equal to certain constants that only depends

on k. ln2(n/(n−1)) is smaller than ln2 2 for n ≥ 2. So we only need to prove

that E
[
ln2(

λ(B(X1,R1,k))

µ(B(X1,R1,k))
)
]
.d,k 1 and E

[
ln2(

λ(B(X1,R′1,k))

µ(B(X1,R′1,k))
)
]
.d,k 1. Recall that

we have defined the maximal function as follows,

M(x) = sup
0≤r≤1/2

λ(B(x, r))

µ(B(x, r))
. (2.55)
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Similarly, we define

m(x) = sup
0≤r≤1/2

µ(B(x, r))

λ(B(x, r))
. (2.56)

Therefore,

E
[
ln2(

λ(B(X1, R1,k))

µ(B(X1, R1,k))
)

]
≤ E

[
max{ln2(M(x)), ln2(m(x))}

]
≤ E

[
ln2(M(x) + 1) + ln2(m(x) + 1)

]
= E

[
ln2(M(x) + 1)

]
+ E

[
ln2(m(x) + 1)

]
. (2.57)

Similarly this inequality holds if we replace R1,k by R′1,k. By Lemma 3, we

have

E
[
ln2(M(x) + 1)

]
=

∫
[0,1]d

ln2(M(x) + 1)dµ(x)

=

∫ ∞
t=0

µ
({
x ∈ [0, 1]d : ln2(M(x) + 1) > t

})
dt

=

∫ ∞
t=0

µ
({
x ∈ [0, 1]d : M(x) > e

√
t − 1

})
dt

.d

∫ ∞
t=0

1

e
√
t − 1

dt .d 1. (2.58)

For E[ln2(m(x) + 1)], we rewrite the term as

E
[
ln2(m(x) + 1)

]
=

∫
[0,1]d

f(x) ln2(m(x) + 1)dλ(x)

=

∫ ∞
t=0

λ
({
x ∈ [0, 1]d : f(x) ln2(m(x) + 1) > t

})
dt. (2.59)

For a sufficiently large T0 and t > T0, f(x) ln2(m(x) + 1) > t implies ei-

ther m(x) > t2 or f(x) > t/ ln2(t2 + 1). For t ≤ T0, simply we use

λ
({
x ∈ [0, 1]d : f(x) ln2(m(x) + 1) > t

})
≤ 1. Moreover, if f(x) > t/ ln2(t2+

1) then

f(x) ln2 f(x) >
t(ln t− 2 ln ln(t2 + 1))2

ln2(t2 + 1)
>

t

T 2
0

, (2.60)
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since (ln t− 2 ln ln(t2 + 1))2/ ln2(t2 + 1) > 1/T 2
0 for any t > T0. So for t > T0,

λ
({
x ∈ [0, 1]d : f(x) ln2(m(x) + 1) > t

})
≤ λ

({
x ∈ [0, 1]d : m(x) > t2

})
+ λ

({
x ∈ [0, 1]d : f(x) ln2 f(x) > t/T 2

0

})
.

(2.61)

Therefore, ∫ ∞
t=0

λ
({
x ∈ [0, 1]d : f(x) ln2(m(x) + 1) > t

})
dt

≤
∫ T0

t=0

1 dt+

∫ ∞
t=T0

λ
({
x ∈ [0, 1]d : m(x) > t2

})
dt

+

∫ ∞
t=T0

λ
({
x ∈ [0, 1]d : f(x) ln2 f(x) > t/T 2

0

})
dt

.d T0 +

∫ ∞
t=T0

1

t2
dt+ T 2

0

∫
[0,1]d

f(x) ln2 f(x)dx

. 1. (2.62)

Hence, the proof is completed.

2.4 Proof of lemmas in Chapter 2

2.4.1 Proof of Lemma 1

We consider the cases s ∈ (0, 1] and s ∈ (1, 2] separately. For s ∈ (0, 1],

following the definition of Hölder smoothness, we have,

| ft(x)− f(x) | =
∣∣∣ 1

Vdtd

∫
u:||u−x||≤t

f(u)du− f(x)
∣∣∣

≤ 1

Vdtd

∫
u:‖u−x‖≤t

|f(u)− f(x)|du

≤ 1

Vdtd

∫
u:‖u−x‖≤t

L‖u− x‖sdu. (2.63)

By denoting ρ = ‖u−x‖ and considering θ ∈ Sd−1 on the unit d-dimensional

sphere, we rewrite the above integral using polar coordinate system and
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obtain,

| ft(x)− f(x) | ≤ 1

Vdtd

∫ t

ρ=0

∫
θ∈Sd−1

Lρsρd−1dρdθ

=
1

Vdtd

∫ t

ρ=0

dVdLρ
s+d−1dρ =

dVdLt
s+d

(s+ d)Vdtd
=

dLts

s+ d
. (2.64)

Now we consider the case s ∈ (1, 2]. Now we rewrite the difference as

| ft(x)− f(x) | =
∣∣∣ 1

Vdtd

∫
u:‖u−x‖≤t

f(u)du− f(x)
∣∣∣

=
∣∣∣ 1

2Vdtd

∫
v:‖v‖≤t

( f(x+ v) + f(x− v) ) dv − f(x)
∣∣∣

≤ 1

2Vdtd

∫
v:‖v‖≤t

∣∣∣ f(x+ v) + f(x− v)− 2f(x)
∣∣∣dv. (2.65)

For fixed v, we bound |f(x+v)+f(x−v)−2f(x)| using the gradient theorem

and the definition of Hölder smoothness as follows,

|f(x+ v) + f(x− v)− 2f(x)|

=
∣∣∣ ( f(x+ v)− f(x) ) + ( f(x− v)− f(x) )

∣∣∣
=

∣∣∣ ∫ 1

α=0

∇f(x+ αv) · d(x+ αv) +

∫ −1

α=0

∇f(x+ αv) · d(x+ αv)
∣∣∣

=
∣∣∣ ∫ 1

α=0

(∇f(x+ αv) · v ) dα−
∫ 1

α=0

(∇f(x− αv) · v ) dα
∣∣∣

=
∣∣∣ ∫ 1

α=0

(∇f(x+ αv)−∇f(x− αv) ) · vdα
∣∣∣

≤
∫ 1

α=0

‖∇f(x+ αv)−∇f(x− αv)‖‖v‖dα

≤
∫ 1

α=0

L‖2αv‖s−1‖v‖dα

= L‖v‖s
∫ 1

0

(2α)s−1dα =
L‖v‖s2s−1

s
. (2.66)
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Plug it into (2.65) and using the similar method in the s ∈ (0, 1] case, we

have

| ft(x)− f(x) | ≤ 1

2Vdtd

∫
v:‖v‖≤t

L‖v‖s2s−1

s
dv

=
1

2Vdtd

∫ t

ρ=0

∫
θ∈Sd−1

Lρs2s−1

s
ρd−1dρdθ =

1

2Vdtd

∫ t

ρ=0

dVdLρ
s+d−12s−1

s
dρ

=
1

2Vdtd
dVdL2s−1

s

ts+d

s+ d
≤ dLts

s+ d
, (2.67)

where the last inequality uses the fact that s ∈ (1, 2].

2.4.2 Proof of Lemma 2

We consider the following two cases. If f(x) ≥ 2dLts/(s + d), then by

Lemma 1, we have

f(x) ≤ ft(x) +
dLts

s+ d
≤ ft(x) +

f(x)

2
. (2.68)

Hence, f(x) ≤ 2ft(x) in this case. If f(x) < 2dLts/(s + d), then define

t0 = (f(x)(s+ d)/2dL)1/s < t. By the non-negativity of f , we have

ft(x)Vdt
d =

∫
B(x,t)

f(x)dx ≥
∫
B(x,t0)

f(x)dx

= ft0(x)Vdt
d
0 ≥

(
f(x)− dLts0

s+ d

)
Vdt

d
0

= f(x)Vd

(
f(x)(s+ d)

2dL

)d/s
− dL

s+ d
Vd

(
f(x)(s+ d)

2dL

)(s+d)/s

= f(x)(s+d)/sVd

(
s+ d

dL

)d/s (
2−d/s − 2−(s+d)/s

)
. (2.69)

Therefore, we have f(x) .s,L,d (ft(x)Vdt
d)s/(s+d) in this case. We obtain

the desired statement by combining the two cases. Furthermore, by taking

t = 1/2, we have Vdt
dft(x) < 1, so ft(x) .s,L,d 1. By applying this lemma

immediately we obtain f(x) .s,L,d 1.
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2.4.3 Proof of Lemma 3

We first introduce the Besicovitch covering lemma, which plays a crucial role

in the analysis of nearest neighbor methods.

Lemma 4. [70, Theorem 1.27][Besicovitch covering lemma] Let A ⊂ Rd, and

suppose that {Bx}x∈A is a collection of balls such that Bx = B(x, rx), rx > 0.

Assume that A is bounded or that supx∈A rx < ∞. Then there exist an at

most countable collection of balls {Bj} and a constant Cd depending only on

the dimension d such that

A ⊂
⋃
j

Bj , and
∑
j

χBj(x) ≤ Cd. (2.70)

Here χB(x) = I(x ∈ B).

Now we are ready to prove the lemma. Let

M(x) = sup
0<ρ≤D

(
µ2(B(x, ρ))

µ1(B(x, ρ))

)
. (2.71)

Let Ot = {x ∈ A : M(x) > t}. Hence, for all x ∈ Ot, there exists

Bx = B(x, rx) such that µ2(Bx) > tµ1(Bx), 0 < rx ≤ D. It follows from the

Besicovitch lemma applying to the set Ot that there exists a set E ⊂ Ot,

which has at most countable cardinality, such that

Ot ⊂
⋃
j∈E

Bj , and
∑
j∈E

χBj(x) ≤ Cd. (2.72)

Let AD = {x : ∃y ∈ A, |y−x| ≤ D}, therefore Bj ⊂ AD for every j. Then,

µ1 (Ot) ≤
∑
j∈E

µ1 (Bj) <
1

t

∑
j∈E

µ2 (Bj)

=
1

t

∑
j∈E

∫
AD

χBjdµ2 =
1

t

∫
AD

∑
j∈E

χBjdµ2 ≤
Cd
t
µ2(AD). (2.73)
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CHAPTER 3

ANALYSIS OF KSG MUTUAL
INFORMATION ESTIMATORS

Information-theoretic quantities such as mutual information measure rela-

tions between random variables. A key property of these measures is that

they are invariant to one-to-one transformations of the random variables and

obey the data processing inequality [71, 72]. These properties combine to

make information-theoretic quantities attractive in several data science ap-

plications involving clustering [22, 23, 24], classification [21] and more gen-

erally as a basic feature that can be used in several downstream applications

[27, 26, 73, 74]. A canonical question in all these applications is to estimate

the information-theoretic quantities from samples, typically supposed to be

drawn i.i.d. from an unknown distribution. This fundamental question has

been of longstanding interest in the theoretical statistics community where

it is a canonical question of estimating a functional of the (unknown) den-

sity [41] but also in the information theory [75, 76, 77, 78], machine learning

[79, 80] and theoretical computer science [81, 82, 83] communities, with sig-

nificant renewed interest of late, summarized in detail in Section 3.4. The

most fundamental information-theoretic quantity of interest is the mutual in-

formation between a pair of random variables, which is also the primary focus

of this chapter, in the context of real valued random variables (in potentially

high dimensions).

The basic estimation question takes a different hue depending on whether

the underlying distribution is discrete or continuous. In the discrete set-

ting, significant understanding of the minimax rate-optimal estimation of

functionals, including entropy and mutual information, of an unknown prob-

ability mass function is attained via recent works [76, 84, 81, 85, 77]. The

continuous setting is significantly different, bringing to fore the interplay of

geometry of the Euclidean space as well as the role of dimensionality of the

domain in terms of estimating the information-theoretic quantities; this set-

ting is the focus of this chapter. Among the various estimation methods, of
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great theoretical interest and high practical relevance, are the nearest neigh-

bor (NN) methods: the quantities of interest are estimated based on distances

(in an appropriate norm) of the samples to their k-nearest neighbors (k-NN).

Of particular practical interest is the situation when k is a small fixed integer

– typically in the range of 4∼8 – and the estimators based on fixed k-NN

statistics typically perform significantly better than alternative approaches,

discussed in detail in Section 3.4, both in simulations and when tested in the

wild; this is especially true when the random variables are in high dimensions.

The exemplar fixed k-NN estimator is that of differential entropy from i.i.d.

samples proposed in 1987 by Kozachenko and Leonenko [2] which involved a

novel bias correction term, and we refer to as the KL estimator (of differen-

tial entropy). Since the mutual information between two random variables is

the sum and difference of three differential entropy terms, any estimator of

differential entropy naturally lends itself into an estimator of mutual informa-

tion, which we christen as the 3KL estimator (of mutual information). In an

inspired work in 2004, Kraskov and Stögbauer and Grassberger [4], proposed

a different fixed k-NN estimator of the mutual information, which we name

the KSG estimator, that involved subtle (sample dependent) alterations to

the 3KL estimator. The authors of [4, 86] empirically demonstrated that

the KSG estimator consistently improves over the 3KL estimator in a vari-

ety of settings. Indeed, the simplicity of the KSG estimator, combined with

its superior performance, has made it a very popular estimator of mutual

information in practice.

Despite its widespread use, even basic theoretical properties of the KSG

estimator are unknown – it is not even clear if the estimator has vanishing

bias (i.e., consistent) as the number of samples grows, much less any under-

standing of the asymptotic behavior of the bias as a function of the number

of samples. As observed elsewhere [87], characterizing the theoretical prop-

erties of the KSG estimator is of first order importance – this study could

shed light on why the sample-dependent modifications lead to improved per-

formance and perhaps this understanding could lead to the design of even

better mutual information estimators. Such are the goals of this chapter.

Main contribution of Chapter 3:

• Our main result is to show that the KSG estimator is consistent. We

also show upper bounds to the rate of convergence of the bias as a
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function of the dimensions of the two random variables involved: in

the special case when the dimensions of the two random variables are

equal and no more than one, the rate of convergence of the `2 error is

1/
√
N , which is the parametric rate of convergence.

• We argue that the improvement of the KSG estimator over the 3KL

estimator comes from a “correlation boosting” effect, which can be fur-

ther amplified by a suitable modification to the KSG estimator. This

leads to a novel mutual information estimator, which we call the bias-

improved-KSG estimator (BI-KSG). The asymptotic theoretical guar-

antees we show of the BI-KSG estimator are the same as the KSG

estimator, but the improved performance can be seen empirically –

especially for moderate values of N .

• We extend the idea of “correlation boosting” to multivariate mutual

information and general functional of entropies, propose an estimator

of MMI, and demonstrate its empirical performance.

• We demonstrate sharp bounds on the `2 rate of convergence of the

KL estimator of (differential) entropy for arbitrary k and arbitrary

dimensions d, showing that the parametric rate of convergence of 1/
√
N

is achievable when d ≤ 2.

In the rest of the chapter, we mathematically summarize these main results,

following up with empirical evidence.

Outline of this chapter. In Section 3.1, we show the consistency and

the convergence rate of KSG estimator of mutual information, also providing

brief sketches of, and intuitions behind, the corresponding proofs. In Sec-

tion 3.2 we discuss the insights behind the KSG estimator: the correlation

boosting effect and how this understanding leads to the BI-KSG estimator

with improved empirical performance. In Section 3.3 we discuss generaliza-

tion of the KSG estimator to multivariate mutual information estimators.

Section 3.4 puts our results in context of the vast literature on entropy (and

mutual information) estimators. Finally, the proofs of the main results are

in Sections 3.5 through 3.7.
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3.1 KSG estimator: Consistency and convergence rate

A detailed understanding of the KL estimator sets the stage for the main

results of this chapter: deriving theoretical properties of the KSG estimator of

mutual information. Our main result is that the KSG estimator is consistent,

as is our proposed modification, the so-called bias-improved KSG estimator

(BI-KSG); these results are under some (fairly standard) assumptions on the

joint pdf of (X, Y ).

Consider two random variables X in X ⊆ Rdx and Y in Y ⊆ Rdy . Given

N i.i.d. samples {(Xi, Yi)}Ni=1 from the underlying joint probability density

function fX,Y (x, y), we want to estimate the mutual information I(X;Y ).

Mutual information between two random variables X and Y is the sum and

difference of differential entropy terms: I(X;Y ) = H(X)+H(Y )−H(X, Y ).

Thus given KL entropy estimator, there is a straightforward and consistent

estimation of the mutual information:

Î3KL(X;Y ) = ĤKL(X) + ĤKL(Y )− ĤKL(X, Y ). (3.1)

While this estimator performs fairly well in practice, the authors of [4] intro-

duced a simple, but inspired, modification of the 3KL estimator that does

even better. Let nx,i,p ≡
∑

j 6=i I{‖Xj − Xi‖p ≤ ρk,i,p}, which can be in-

terpreted as the number of samples that are within a X-dimensions-only

distance of ρk,i,p with respect to sample i. Since ρk,i,p is the k-NN distance

(in terms of both the dimensions of X and Y ) of the sample i it must be

that nx,i,p ≥ k. Finally, ny,i,p is defined analogously. The KSG estimator

measures distances using the `∞ norm, so p =∞ in the notation above.

The KSG mutual information estimator introduced in [4] is given by:

ÎKSG(X;Y ) ≡ ψ(k) + logN − 1

N

N∑
i=1

(ψ(nx,i,∞ + 1) + ψ(ny,i,∞ + 1)) ,

(3.2)

where ψ(x) = Γ−1(x)dΓ(x)/dx is the digamma function. Observe that the

estimate of the joint differential entropy H(X, Y ) is done exactly as in the

KL estimator using fixed k-NN distances, but the KL estimates of H(X)

and H(Y ) are done using nx,·,∞ and ny,·,∞ NN distances, respectively, which

are sample dependent. The point is that by this choice, the k-NN distance
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terms are canceled away exactly, although it is not clear why this would be a

good idea. In fact, it is not even clear if the estimator is consistent. On the

other hand, the authors of [4] showed empirically that the KSG estimator is

uniformly superior to the 3KL estimator in many synthetic experiments. A

theoretical understanding of the KSG estimator, including a mathematical

justification for the improved performance, has been missing in the literature.

Our main results fill this gap.

One of our main results is to show that the KSG estimator is indeed con-

sistent. We prove this result by deriving a vanishingly small upper bound

on the bias, subject to regularity conditions on the Radon-Nikodym deriva-

tives of X and Y and standard smoothness conditions on the joint pdf which

includes both bounded and unbounded supports.

3.1.1 Consistency

We make the following assumptions on the joint pdf of (X, Y ). The first

assumption is essentially needed to define the joint differential entropy of

(X, Y ), the second assumption makes some regularity conditions on the

Radon-Nikodym derivatives of X and Y , and the third assumption is re-

garding standard smoothness conditions on the joint pdf. We note that

these conditions are readily met by most popular pdfs, including multivariate

Gaussians, and no assumption is made on the boundedness of the support.

Assumption 1. (a)
∫
f(x, y) |log f(x, y)| dxdy <∞.

(b) There exists a finite constant C ′ such that the conditional pdf fY |X(y|x) <

C ′ and fX|Y (x|y) < C ′ almost everywhere.

(c) f(x, y) is twice continuously differentiable and the Hessian matrix Hf

satisfy ‖Hf (x, y)‖2 < C almost everywhere.

The following theorem states that under these assumptions, the KSG es-

timator is consistent in probability.

Theorem 3. Under the Assumption 1 and for finite k > max{dx/dy, dy/dx},
dx, dy = O(1), and for all ε > 0,

lim
N→∞

Pr
( ∣∣∣ÎKSG(X;Y )− I(X;Y )

∣∣∣ > ε
)

= 0. (3.3)
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Also, consider the following BI(biased-improved)-KSG estimator

ÎBI−KSG(X;Y )

≡ ψ(k) + logN + log

(
cdx,2cdy ,2

cdx+dy ,2

)
− 1

N

N∑
i=1

( log(nx,i,2) + log(ny,i,2)) ,

(3.4)

which will be further discussed in Section 3.2. Under the same assumption 1

and for finite k > max{dx/dy, dy/dx}, dx, dy = O(1), and for all ε > 0,

lim
N→∞

Pr
( ∣∣∣ÎBI−KSG(X;Y )− I(X;Y )

∣∣∣ > ε
)

= 0. (3.5)

3.1.2 Convergence rate

To understand the rate of convergence of the bias of the KSG and BI-KSG

estimators, we first truncate the k-NN distance ρk,·,· by a certain threshold.

For any δ > 0, let the truncation threshold be:

aN =

(
( logN )1+δ

N

)1/(dx+dy)

, (3.6)

where dx and dy are the dimensions of the random variables X and Y re-

spectively. We define local information estimates ιk,i,∞ by:

ιk,i,∞ = ψ(k) + logN − ψ(nx,i,∞ + 1)− ψ(ny,i,∞ + 1), (3.7)

if ρk,i,∞ ≤ aN and ιk,i,∞ = 0 if ρk,i,∞ > aN . Similarly, we define ιk,i,2 as, and

ιk,i,2 = ψ(k) + logN + log(
cdx,2cdy ,2

cdx+dy ,2

)− log(nx,i,2)− log(ny,i,2), (3.8)
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if ρk,i,2 ≤ aN and ιk,i,2 = 0 if ρk,i,2 > aN . The modified (via truncation) KSG

and BI-KSG estimators (compare with (3.2) and (3.4)) are:

ÎtKSG(X;Y ) ≡ 1

N

N∑
i=1

ιk,i,∞, (3.9)

ÎtBI−KSG(X;Y ) ≡ 1

N

N∑
i=1

ιk,i,2. (3.10)

The following theorem provides an upper bound on the rate of convergence

of the bias and variance, under the conditions in Assumption 2 below, and

holds for any k and δ > 0 (parameter in the truncation threshold, cf. (3.6)).

Assumption 2. We make the following assumptions: there exist finite con-

stants Ca,Cb,Cc,Cd,Ce,Cf ,Cg,Ch and C0 such that

(a) f(x, y) ≤ Ca <∞ almost everywhere.

(b) There exists γ > 0 such that
∫
f(x, y) ( log f(x, y) )1+γ dxdy ≤ Cb <∞.

(c)
∫
f(x, y) exp{−bf(x, y)}dxdy ≤ Cce

−C0b for all b > 1.

(d) f(x, y) is twice continuously differentiable and the Hessian matrix Hf

satisfy ‖Hf (x, y)‖2 < Cd almost everywhere.

(e) The conditional pdf fY |X(y|x) < Ce and fX|Y (x|y) < Ce almost every-

where.

(f) The marginal pdf fX(x) < Cf and fY (y) < Cf almost everywhere.

(g) The set of points violating (d) has finite dx + dy− 1-dimensional Haus-

dorff measure, i.e.,

Hdx+dy−1 ( {(x, y) : ‖Hf (x, y)‖ ≥ Cd} ) ≤ Cg.

(h) The set of points such that HfX (x) or HfY (y) is larger than Cd also has

finite dx − 1 (or dy − 1)-dimensional Hausdorff measure, i.e.,

Hdx−1 ( {x : ‖HfX (x)‖ ≥ Cd} ) ≤ Ch, (3.11)

Hdy−1 ( {y : ‖HfY (y)‖ ≥ Cd} ) ≤ Ch. (3.12)
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The assumptions (a)-(d) come from the assumptions of the KL estimator

in [32] and are slightly stronger than those in [32], where assumption (a) is not

required (and with some technical finesse might be eliminated here as well),

assumption (b) was weaker requiring only
∫
f(x, y)| log f(x, y)|dxdy < ∞,

and assumption (c) was weaker requiring only
∫
f(x, y) exp{−bf(x, y)}dxdy ≤

O(1/b). The assumption (c) is satisfied for any distribution with bounded

support and pdf bounded away from zero. This assumption provides a suffi-

cient condition to bound the average effect of the truncation. Our analysis

can be generalized to relax this assumption on the smoothness, requiring only∫
f(x, y) exp{−bf(x, y)}dxdy ≤ Ccb

−β for all b > 1, in which case the result-

ing guarantees will also depend on β. This recovers the result of [32] with

β = 1 which holds for d = 1, and we assume stronger conditions here since

we seek sharp convergence rates in higher dimensions. The assumption (d)

assumes that the pdf is reasonably smooth, and it is essential for NN-based

methods. More general families of smoothness conditions have been assumed

for other approaches, such as the Hölder condition,and we have made formal

comparisons in Section 3.4.

Assumption 2.(e) makes sure that the marginal entropy estimator con-

verges at certain rate. Compared to Assumption 1, we need an upper bound

for the joint entropy (a). The condition (b) is slightly stronger than As-

sumption 1 by changing the power from 1 to 1 + γ. The condition (c) is the

tail bound which ensures the convergence rate of truncated KL joint entropy

estimator.

Note that there exist (families of) distributions, satisfying the assumptions

(a)–(d), where the convergence rates of k-NN estimators can be made arbi-

trarily slow. Consider a family of distributions in two-dimensional rectangle

with uniform measure parametrized by `, such that one side has a length `

and the other 1/`. This family of distributions has differential entropy zero.

However, for any sample size N , there exists ` large enough such that the

k-NN distances are arbitrarily large and the estimated entropy is also large.

To provide a sharp convergence rate for k-NN estimators, we need to restrict

the space of distributions by adding appropriate assumptions that captures

this phenomenon.

The challenge in the above example has been addressed under the no-

tion of boundary bias. The k-NN distances are larger near the boundaries,

which results in underestimating the density at boundaries. This effect is
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prominent for those distributions that (i) have non-smooth boundaries such

as a uniform distribution on a compact support, and (ii) have large sur-

face area at the boundary. There are two solutions; either we strengthen

Assumption 2.(d) and require twice continuously differentiability everywhere

including the boundaries or we can add another assumption on the surface

area of the boundaries. In this chapter, we take the second route. The reason

is that the first option conflicts with the current Assumption 2.(c) where the

only examples we know have lower bounded densities, which implies non-

smooth boundaries. It is an interesting future research direction to relax

Assumption 2.(c) as suggested above, and capture the trade-off between the

lightness of the tail in β and also the smoothness in the boundaries.

Instead, we assume in 2.(h) that the surface area of the boundaries is

finite. Recall that the Hausdorff measure of a set S is defined as [88]

Hd−1(S) = lim
δ→0

inf
{Ui}∞i=1

{ ∞∑
i=1

(diamUi)
d−1 :

∞⋃
i=1

Ui ⊇ S , diamUi < δ
}
.

(3.13)

Here the diameter of the set U is defined as

diamU = sup{‖x− y‖|x, y ∈ U}. (3.14)

The Hausdorff measure of a set is a measure of its surface area. Note that

this could be unbounded for the boundary of a family of distributions, as is

the case for the uniform rectangle example above. Assumption 1.(h) restricts

it to be finite, allowing us to limit the boundary bias to Õ(N−1/d). Since in

the (smooth) interior of the support, the bias is Õ(N−2/d), the boundary

bias dominates the error for the proposed k-NN estimator. We note that

truncated multivariate Gaussians and uniform random variables meet these

constraints.

Theorem 4. Under Assumption 2, and for finite k > max{dx/dy, dy/dx},
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dx, dy = O(1),

E
[
ÎtKSG(X;Y )

]
− I(X;Y )

= O

(
( logN )

(1+δ)(1+ 1
dx+dy

)

N
1

dx+dy

)
. (3.15)

E
[
ÎtBI−KSG(X;Y )

]
− I(X;Y )

= O

(
( logN )

(1+δ)(1+ 1
dx+dy

)

N
1

dx+dy

)
. (3.16)

The following theorem establishes an upper bound for the variance of trun-

cated KSG and BI-KSG estimators.

Theorem 5. Under Assumption 2, and for finite k ≥ 2,

Var
[̂
ItKSG(X; Y)

]
= O

(
( log N )2

N

)
. (3.17)

Var
[̂
ItBI−KSG(X; Y)

]
= O

(
( log N )2

N

)
. (3.18)

Combining Theorem 4 and Theorem 5, we obtain the following upper

bound on the MSE of truncated KSG or BI-KSG estimator.

Corollary 1. Under the Assumption 2 and for finite k = O(1) and d = O(1),

the MSE of the truncated KSG or BI-KSG mutual information estimator

using N i.i.d. samples is bounded by:

E
[(
ÎtKSG(X;Y )− I(X;Y )

)2
]

= O

(
(logN)

2(1+δ)(1+ 1
dx+dy

)

N
2

dx+dy

+
(logN)2

N

)
. (3.19)

E
[(
ÎtBI−KSG(X;Y )− I(X;Y )

)2
]

= O

(
(logN)

2(1+δ)(1+ 1
dx+dy

)

N
2

dx+dy

+
(logN)2

N

)
. (3.20)
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Corollary 2. If dx = dy = 1, we obtain:

E
[(

ÎtKSG(X;Y )− I(X;Y )
)2
]

= O

(
(logN)(2k+2)(1+δ)

N

)
. (3.21)

E
[(

ÎtBI−KSG(X;Y )− I(X;Y )
)2
]

= O

(
(logN)(2k+2)(1+δ)

N

)
. (3.22)

This establishes the 1/N convergence rate of the MSE of the KSG and BI-

KSG and 3KL estimators up to a poly-logarithmic factor; this (parametric)

convergence rate cannot be improved upon.

We compare the upper bound exponent from theory and experiment to

see whether the upper bound should be improved or not. For each N ∈
{100, 200, 400, 800, 1500, 3000} and d ∈ {1, 2, . . . , 8}, we choose N i.i.d. sam-

ples {Xi}Ni=1 from Unif[0, 1]d and let Yi = Xi + Unif[0, 1]d, and compute

ÎKSG(X;Y ) averaged over 500 trails. We use standard linear regression to

compute log(MSE)/ logN , which is the experimental exponent. We com-

pare the exponent with the theoretical upper bound 3.22 and lower bound

from [41] (also with the exponents for other estimators: resubstitution [54]

and von Mises expansion estimators [31]). From Figure 3.1 we conclude

that the exponent from simulation is quite closed to the upper bound. We

conjecture that the lower bound can be further improved to close the gap.

3.2 Correlation boosting

The goal of this section is to build some intuition toward a deeper theoretical

understanding of the KSG estimator, where we see a curious correlation

boosting effect which explains the superior performance of the KSG estimator

and allows us to derive an even better estimator of mutual information. A

related intuitive explanation is provided in [89].

Correlation boosting effect. We begin by rewriting the KSG estimator,
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dimension d

log(E[(Î(X)− I(X))2])/ logN

Figure 3.1: MSE for mutual information versus sample size in log-log scale.

38



cf. (3.2), as:

ÎKSG(X;Y ) =
1

N

N∑
i=1

ιk,i,∞

=
1

N

N∑
i=1

( ξk,i,∞(X) + ξk,i,∞(Y )− ξk,i,∞(X, Y ) ) , (3.23)

where

ξk,i,∞(X, Y ) ≡ −ψ(k) + logN + log cdx,∞cdy ,∞ + (dx + dy) log ρk,i,∞,

ξk,i,∞(X) ≡ −ψ(nx,i,∞ + 1) + logN + log cdx,∞ + dx log ρk,i,∞,

ξk,i,∞(Y ) ≡ −ψ(ny,i,∞ + 1) + logN + log cdy ,∞ + dy log ρk,i,∞. (3.24)

Here ξk,i,∞(X, Y ), ξk,i,∞(X) and ξk,i,∞(Y ) are local estimates of the differ-

ential entropies H(X, Y ), H(X) and H(Y ), respectively, at the ith sample.

We will show that the local bias of joint entropy estimate bk,i,∞(X, Y ) =

ξk,i,∞(X, Y ) −H(X, Y ) is positively correlated to the local bias of marginal

entropy estimates bk,i,∞(X) = ξk,i,∞(X)−H(X) and bk,i,∞(Y ) = ξk,i,∞(Y )−
H(Y ). Formally, we can see this effect in the context of an example.

Theorem 6. X and Y be independently and uniformly distributed in [0, 1].

Then:

E [bk,i,∞(X)|bk,i,∞(X, Y )]

=

√
1

N

(
a

(1)
k + bk,i,∞(X, Y )a

(2)
k +O(bk,i,∞(X, Y )2)

)
+O(

1

N
), (3.25)

where a
(1)
k and a

(2)
k > 0 are constants that only depend on k.

We observe that the local biases are positively correlated, although the

correlation decreases with the sample size. We simulate 300 i.i.d. samples

uniformly from [0, 1]2, draw the scatter plot of local biases bk,i,∞(X) ver-

sus bk,i,∞(X, Y ) in Figure. 3.2 and conclude that the scatter plot matches

prediction from Theorem 6 reasonably well.

Since the global bias of the KSG estimator is simply equal to

1

N

N∑
i=1

bk,i,∞(X, Y )− bk,i,∞(X)− bk,i,∞(Y ), (3.26)
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Figure 3.2: Scatter plot of the local biases bk,i,∞(X, Y ) and bk,i,∞(X). The
Pearson correlation is 0.4745.

the global bias is reduced if the joint bias b(X, Y ) = 1
N

∑N
i=1 bk,i,∞(X, Y ) is

positively correlated with marginal bias b(X) = 1
N

∑N
i=1 bk,i,∞(X) and b(Y ) =

1
N

∑N
i=1 bk,i,∞(Y ). The same effect is true for the 3KL estimator, which is

already based on estimating the three differential entropy terms separately.

We tabulate the Pearson correlation coefficients of the global biases in Table

3.1 for two exemplar pdfs (independent uniforms and Gaussians). The main

empirical observation is that the correlation is positive even for the 3KL

estimator but is significantly higher for the KSG estimator (and at times

even higher for the BI-KSG estimator which we introduce below).

Table 3.1: Pearson correlation coefficient ρ ( b(X, Y ), b(X)) for different
mutual information estimators.

(X, Y ) ∼ Unif([0, 1]2) (X, Y ) ∼ N (0, I2)
N 1024 2048 4096 1024 2048 4096

3KL 0.1276 0.1259 0.0930 0.4602 0.4471 0.3717
KSG 0.9312 0.9328 0.9085 0.6750 0.7151 0.6687

BI-KSG 0.9253 0.9251 0.8880 0.6823 0.7330 0.6939

We hypothesize that this correlation boosting effect is the main reason for
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the KSG estimator having smaller mean-square error than the 3KL one. To

get a feel for the effect for finite sample sizes, we simulate 100 i.i.d. samples

uniformly from [0, 1]2 and map the scatter-plot of the biases b(X, Y ) and

b(X) in Figure 3.3, where the boosted correlation for the KSG estimator is

visibly significant.

Figure 3.3: Scatter plot of the biases b(X, Y ) and b(X) to illustrate the
correlation boosting effect. Left: 3KL. Right: KSG. The solid red line is a
regression line.

New estimator of mutual information. Given the understanding of

the correlation boosting effect, it is natural to ask if this can lead to a new

estimator that furthers the improvement in MSE. This goal is achieved below,

where we discuss potential areas of improvement of the KSG estimator and

conclude with our proposal: Bias Improved KSG (BI-KSG) estimator of

mutual information. One of the key differences comes from using `2 norm to

measure k-NN distances, while KSG uses `∞ distance. Next, BI-KSG uses

log(nx,i,2) and log(ny,i,2) instead of ψ(nx,i,∞+1) and ψ(ny,i,∞+1), respectively.

We briefly discuss the intuitions behind these changes below. We begin by

noting that the KSG estimator can be written as:

ÎKSG(X;Y ) = ĤKSG(X) + ĤKSG(Y )− ĤKL(X, Y ), (3.27)

where ĤKL(X;Y ) is the KL entropy estimator (and already known to be
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consistent). The marginal entropy estimator is

ĤKSG(X) =
1

N

N∑
i=1

(
− ψ(nx,i,∞ + 1)

+ψ(N) + log cdx,∞ + dx log ρk,i,∞
)
, (3.28)

and we note that this has a form similar to that of the KL entropy estimator,

except that k is replaced by nx,i,∞ + 1, which is sample dependent. Suppose

(X
(k)
i , Y

(k)
i ) be the k-NN of (Xi, Yi) with distance ρk,i,∞, then the “KSG en-

tropy estimator” in (3.28) implicitly assumes that ρk,i,∞ is both the (nx,i,∞+

1)-NN distance of Xi on X-space and the (ny,i,∞ + 1)-NN of Yi on Y -space.

But since `∞-distance is used, (X
(k)
i , Y

(k)
i ) either lies on the X-boundary of

the hypercube S(X,Y,ρk,i,∞) = { (x, y) : max {‖x−Xi‖∞, ‖y − yi‖∞} ≤ ρk,i,∞ },
or on the Y -boundary of S(X,Y,ρk,i,∞) (the chance of lying on a corner, and

thus on both the boundaries, has zero probability). If the k-NN lies on the

X-boundary, i.e. ‖X(k)
i −Xi‖ = ρk,i,∞ and ‖Y (k)

i − Yi‖∞ < ρk,i,∞, then ρk,i,∞

is the (nx,i,∞+ 1)-NN distance of Xi, but not the (ny,i,∞+ 1)-NN distance of

Yi. Thus, while the estimate of entropy of X is correct, the entropy of Y is

over-estimated. Since ρk,i,∞ is between the ny,i,∞-th and (ny,i,∞ + 1)-th NN

distance, the “KSG entropy estimator” in (3.28) introduces a bias of order

1/ny,i,∞. Similarly, a 1/nx,i,∞-bias if (X
(k)
i , Y

(k)
i ) is introduced if the k-NN

sample lies on the Y -boundary.

Figure 3.4: Illustration of choice of ρk,i for k = 3. Left: use `∞-distance.
Right: use `2-distance.

This discussion suggests that we use an `2 ball, instead of an `∞ ball to find

the k-NN. This would ensure that ρk,i,2 is neither the (nx,i,2 +1)-NN distance
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of Xi on X-space nor the (ny,i,2 +1)-NN distance of Yi on Y -space. But then,

we are unable to directly use the KL estimator for H(X) and H(Y ) with this

distance. The following theorem sheds some light on this conundrum.

Theorem 7. Given (Xi, Yi) = (x, y) such that the density f is twice con-

tinuously differentiable at (x,y) and ρk,i,2 = r < rN for some deterministic

sequence of rN such that limN→∞ rN = 0, the number of neighbors nx,i,2 − k
is distributed as

∑N−1
l=k+1 Ul, where Ul are i.i.d. Bernoulli random variables

with mean p, and there exists a positive constant C1 such that for sufficiently

large N . r−dx
∣∣ p− fX(x)cdx,2r

dx
∣∣ ≤ C1

(
r2 + rdy

)
.

Intuitively, the theorem says that E[nx,i,2] ≈ NfX(x)cdx,2ρ
dx
k,i,2. This sug-

gests that we estimate the log of the density (log f̂X(x)) by log(nx,i,2) −
logN − log cdx,2 − dx log ρk,i,2. The resubstitution estimate of the marginal

entropy H(X) is now:

ĤBI−KSG(X) = logN + log cdx,2

+
1

N

N∑
i=1

(− log(nx,i,2) + dx log ρk,i,2 ) , (3.29)

which is different from the KL estimate only via replacing the digamma

function by the logarithm. This technique kills the O(1/nx,i,2 + 1/ny,i,2) bias

of the “KSG entropy estimator” and leads to the new estimator of mutual

information that we christen bias-improved KSG estimator:

ÎBI−KSG(X;Y ) ≡ ψ(k) + logN + log
(cdx,2cdy ,2
cdx+dy ,2

)
− 1

N

N∑
i=1

log(nx,i,2) + log(ny,i,2), (3.30)

where cd,2 = π
d
2 /Γ(d

2
+ 1) be the volume of d-dimensional unit `2 ball.

The theoretical performance of this new estimator, which mimics our result

on the KSG estimator have been analyzed in Section 3.1. The consistency of

BI-KSG estimator is proved in Theorem 3. The bias of the BI-KSG estimator

is Õ(N
− 1
dx+dy ) shown in Theorem 4 and the variance is Õ(1/N) shown in

Theorem 5. Thus the `2 error of the BI-KSG estimator is Õ( 1√
N

+N
− 1
dx+dy ).

Indeed, when N gets large, so do nx,i,2 and ny,i,2, and hence the KSG and

BI-KSG estimators asymptotically perform similarly. But when k is small
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and N is moderate and X and Y are not independent, then nx,i,2 and ny,i,2

are expected to be small. In such cases, BI-KSG should outperform KSG.

We demonstrate this empirically in Table 3.2 where we choose k = 1 and

X and Y are joint Gaussian with mean 0 and covariance Σ = [1, 0.9; 0.9, 1].

We can see that all the estimators converge to the ground truth as N goes

to infinity, but BI-KSG has the best sample complexity for moderate values

of N . Overall, the empirical gains of correlation boosting are most seen in

moderate sample sizes.

Our current theoretical understanding leads to the same upper bounds on

the asymptotic rates of convergence for the KSG and BI-KSG and 3KL esti-

mators (cf. Corollary 1), and fails to explain the correlation boosting effects.

We suspect that the gains of correlation boosting are not in the first order

terms in the rates of convergence (of bias and variance) but in the multi-

plicative constants. A theoretical understanding of these constant terms is

an interesting future direction of research; such an effort has been successfully

conducted for entropy estimators based on kernel density estimators [54].

Table 3.2: Comparison of bias for different mutual information estimators.

N 100 200 400 800 1600
3KL 0.0590 0.1025 0.0313 0.0053 0.0097
KSG 0.0240 0.0100 0.0217 0.0024 0.0087

BI-KSG 0.0096 -0.0035 0.0133 -0.0012 0.0071

3.3 Multivariate mutual information

Generalizations of the standard mutual information that measure the re-

lation among a sequence of random variables are routinely used in various

applications of machine learning. We discuss two such multivariate versions

of mutual information below and show how the correlation boosting ideas

from the previous section can be used to construct sample-efficient estima-

tors. The first version is a straightforward generalization and routinely used

in unsupervised clustering and correlation extraction, cf. [90, 23, 91, 92] for
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a few recent applications:

I(X1;X2;X3; · · · ;XL) =
L∑
`=1

H(X`)−H(X1, X2, . . . , XL). (3.31)

This definition of multivariate mutual information originated in [93] as an

upper bound for secrecy capacity in a multiterminal source model. This

divergence expression has also been termed “shared information” by its orig-

inators in [94].

One natural way to estimate this multivariate mutual information (MMI)

is to use the sum and differences of the basic entropy estimators. In par-

ticular, one can use the fixed k-NN based KL entropy estimator to estimate

MMI from i.i.d. samples (we can christen such a method as the L+1-KL esti-

mator, generalizing from the 3KL estimator). Alternatively, one can use the

correlation boosting ideas of KSG and BI-KSG to construct superior MMI

estimators. Generalizing from (3.2) and (3.4) we construct the estimators:

IKSG(X1;X2;X3; · · · ;XL)

= ψ(k) + logN − 1

N

N∑
i=1

L∑
`=1

ψ(nx`,i,∞), (3.32)

IBI−KSG(X1;X2;X3; · · · ;XL)

= ψ(k) + logN + log
(∏L

`=1 cd`,2
c∑L

`=1 d`,2

)
− 1

N

N∑
i=1

L∑
`=1

log(nx`,i,2). (3.33)

Here d` is the dimension of X`. The key property we used in construct-

ing these estimators is that the definition of MMI is balanced with respect

to each of the L random variables: for every entropy term with a posi-

tive coefficient featuring a random variable X` there is a corresponding en-

tropy term with a negative coefficient featuring the same random variable

X`. From a theoretical perspective, the balance property ensures that the

theoretical properties (including consistency) proved in the (pairwise) mu-

tual information setting in Section 3.1 carry over to this MMI setting as

well. From an empirical perspective, we see that the correlation boosting

estimators perform significantly better than the simpler (L+ 1)-KL estima-

tor defined as Î(L+1)−KL =
∑L

j=1 ĤKL(Xj) − ĤKL(X1, . . . , XL) in Figure 3.5

where N = 100 ∼ 3000 and L = 3 and the random variables are jointly
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Gaussian with covariance matrix [1 1/2 1/4; 1/2 1 1/2; 1/4 1/2 1].
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Figure 3.5: Plot of MSE with sample size. BI-KSG performs marginally
better than KSG.

As another application of our ideas, we consider a more general form of

multivariate mutual information:

MMI(X1;X2;X3; · · · ;XL) =
∑

S⊂{1,...,L}

aS · H(XS), (3.34)

for some balanced real valued set function aS, i.e., for every ` = 1 . . . L we

have
∑

S3`∈S aS = 0. Such a metric was posited recently in the context of

causal influence measurement on probabilistic graphical models (cf. Equation

(9) in [95]) and widely studied in the information theory community due

to its invariance to scaling (cf. [96] for a recent example). The definition

in (3.31) is a special case with the set function equal to 1 for singletons and

-1 for the whole set and 0, otherwise (and can be viewed as arising out of a

graphical model with a single latent variable). Such MMI can be estimated

from samples using the correlation boosting ideas presented in this chapter:

we briefly describe the procedure in the context of an example (which can

be viewed as a certain causal strength measurement [95] with respect to
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Figure 3.6: Causal influence on a specific graphical model.

the graphical model in Figure 3.6): MMI(X1, X2, X3, X4) = H(X1X3) +

H(X1X4) − H(X1) + H(X2) − H(X1X2X3X4). For each sample i, we first

find the k-NN distance ρ in the joint space (of four random variables) and

use it estimate the joint entropy using the KL estimator. Then we use this

distance to calculate the number of neighbors in each of the other subset of

random variables (in this case two pairwise ones ((X1X3) and (X1X4)), and

two marginal ones (X1 and X2), and use these to estimate the corresponding

entropies. The balanced nature of the metric ensures that the actual distance

ρ is precisely canceled out when all the entropy estimators are put together.

In this case, the full estimator (in the spirit of the KSG estimator) is the

following, and directly inherits the theoretical and empirical flavor of results

from those in Section 3.1:

MMIKSG = ψ(k) + logN − 1

N

N∑
i=1

(
ψ(nx1x3,i,∞) + ψ(nx1x4,i,∞)

−ψ(nx1,i,∞) + ψ(nx2,i,∞)
)
. (3.35)

3.4 Discussion and related work

In this section we address the question of estimating functionals, includ-

ing the entropy and the mutual information, of an unknown distribution.

Significant understanding of the minimax rate-optimal estimators has been

attained via [76, 84, 81, 85, 77]. In the case of continuous random vec-
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tors, this fundamental question of estimating a functional of the (unknown)

density has been of longstanding interest in the statistics community [41].

Further, this has been investigated in the machine learning [79, 80], infor-

mation theory [75, 76, 77, 78], and theoretical computer science [81, 82, 83]

communities. The popularity of mutual information and other information

theoretic quantities comes from their wide use as basic features in several

downstream applications [27, 26, 73, 74].

A conceptually straightforward way to estimate the differential entropy

and mutual information is to use a kernel density estimator (KDE) [97, 54,

98, 99, 100, 56]: the densities fX,Y , fX , fY are separately estimated from

samples and the estimated densities are then used to calculate the entropy

and mutual information via the resubstitution estimator. A typical approach

to avoid overfitting is to conduct data splitting (DS): split the samples and

use one part for KDE and the other for the resubstitution.

In some cases, the parametric rate of convergence of
√
N of `2 error is

achieved: of particular interest is the result of [54] where the parametric rate

is achieved for differential entropy estimation via KDE of density followed by

the resubstitution estimator when the dimension is no more than 6. Numeri-

cal evidence suggests the hypothesis that the lower bounds could perhaps be

improved when the dimension is more than 4 and estimators constrained

to only use fixed k-NN distances. Under certain very strong conditions

on the density class (that are relevant in certain applications on graphical

model selection [101]), exponential rate of convergence can be demonstrated

[102, 103]. Recent works [67, 31] have studied the performance of the leave-

one-out (LOO) approach where all but the sample of resubstitution are used

for KDE, involving techniques such as von Mises expansion methods.

Alternative methods involve estimation of the entropies using spacings

[104, 55], the Edgeworth expansion [105], and convex optimization [106].

Among the k-NN methods, there are two variants: either k is chosen to grow

with the sample size N or k is fixed. There is a large literature on the former,

where the classical result is the possibility of consistent estimation of the

density from k-NN distances [107, 108], including recent sharper consistency

characterizations [109, 110]. Several works have applied this basic insight

towards the estimation of the specific case of information theoretic quantities

[111, 112], general nonlinear functions of densities [33] and extensions to

generalized NN graphs [113]. For fixed k-NN methods, apart from the works
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referred to in the main text, detailed experimental comparisons are in [114]

and local Gaussian approaches studied in [79, 87, 115] bringing together

local likelihood density estimation methods [7, 6] with k-NN driven choices

of kernel bandwidth.

In this chapter we have considered the smoothness of the class of pdfs stud-

ied via bounded Hessians. In nonparametric estimation, a standard feature

is to consider whole families of smooth pdfs as defined by how the differences

of derivatives relate to the differences of the samples. Of specific interest

is the Hölder family: Σ(s, C), i.e., for any tuple r = (r1, . . . , rd), define

Dr = ∂r1+···+rd

∂x
r1
1 ...∂x

rd
d

. Then for any r such that
∑

j rj = bsc, where bsc is the

largest integer smaller than s, we have:

‖Drf(x)−Drf(y)‖ ≤ C‖x− y‖s−
∑
j rj , (3.36)

for any x, y. The rate of convergence of various nonparametric estimators

depends on the parameter s of the Hölder family under consideration, cf.

[67, 31] for recent work on convergence rate characterization of information

theoretic quantities via KDE and resubstitution estimators as a function

of the smoothness parameter s. Recent work [34] showed convergence rate

for fixed k-NN entropy estimator under such smoothness assumptions. It

is natural to ask if such smoothness considerations could lead to a refined

understanding of the rates of convergence of KSG estimators studied here.

For small enough r, defining P (x, r)(u) = Pr{‖X − x‖ < r}, we seek to

understand how this probability can be approximated by the density at x.

With bounded Hessian norms, we assert the following:

∣∣P (x, r)− f(x)cdr
d
∣∣ ≤ Crd+2, (3.37)

which is crucial in deriving the rate of convergence upper bounds on the

KL estimator. A fairly straightforward calculation shows that this condition

does not change even if we allow for smoother class of families of pdfs, as

defined via the Hölder class – we conclude that refined rates of convergence

for fixed k-NN estimators do not materialize by standard approaches such as

the Hölder class.

Although our analysis technique is inspired by that of [32], several subtle

differences emerge while generalizing it to higher dimensions, and [32] does
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not imply our result even for d = 1: hence, we complement the understand-

ing of k-NN estimators even for univariate random variables. For example,

random variables with strictly positive densities over a bounded support are

covered by our analysis, whereas random variables with unbounded support

that are smooth everywhere are covered by the results of [32]. The reason is

that non-smooth boundaries are not handled in [32] and densities approach-

ing zero are not handled by our analysis. We believe it is possible to extend

our analysis to have a theorem that includes both types of random variables,

which is an interesting future research direction.

In this chapter, k is assumed to be a finite constant, and we do not keep

track of how the convergence rate depends on k. Analyses on fixed ρ esti-

mators [116], where instead of fixing k and using the distance ρk, one fixes

the distance ρ and uses the number of neighbors kρ within that distance,

we expect the convergence rate of the variance to be independent of k, and

the convergence rate of bias to be of order O((k/N)1/d). Recently, the idea

of using an ensemble of k-NN entropy estimators to achieve a faster conver-

gence rate has been introduced in [116, 117], and applied in [118, 119, 120].

If the first-order terms in the convergence rate is known, then it is possi-

ble to achieve the parametric rate of O(1/N) by taking a (weighted) linear

combination of multiple estimators with varying k, whose weight depends

on the convergence rate. Applying this idea together with KSG (and KL)

estimators have the potential to improve the convergence rate we provide in

this chapter.

3.5 Proof of Theorem 3 on the consistency of KSG

estimator

Note that

ÎKSG(X;Y )

= ĤKSG(X) + ĤKSG(Y )− ĤKL,∞(X, Y ), (3.38)

ÎBI−KSG(X;Y )

= ĤBI−KSG(X) + ĤBI−KSG(Y )− ĤKL,2(X, Y ), (3.39)
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where

ĤKL,∞(X, Y )

≡ −ψ(k) + logN + log cdx,∞cdy ,∞ + (dx + dy) log ρk,i,∞, (3.40)

ĤKSG(X)

≡ − 1

N

N∑
i=1

ψ(nx,i,∞ + 1) + logN + log cdx,∞ + dx log ρk,i,∞, (3.41)

ĤKSG(Y )

≡ − 1

N

N∑
i=1

ψ(ny,i,∞ + 1) + logN + log cdy ,∞ + dy log ρk,i,∞, (3.42)

and

ĤKL,2(X, Y )

≡ −ψ(k) + logN + log cdx+dy ,2 + (dx + dy) log ρk,i,2, (3.43)

ĤBI−KSG(X)

≡ − 1

N

N∑
i=1

log nx,i,2 + logN + log cdx,2 + dx log ρk,i,2, (3.44)

ĤBI−KSG(Y )

≡ − 1

N

N∑
i=1

log ny,i,2 + logN + log cdy ,2 + dy log ρk,i,2. (3.45)

We prove the following technical lemma that shows the convergence of

the marginal entropy estimate (3.41) and (3.44) . The convergence of (3.42)

and (3.45) is immediate by interchanging X and Y . The convergence in

probability of the joint entropy estimate (3.40) and (3.43) are known from [4].

This proves the desired claim.

Lemma 5. Under the hypotheses of Theorem 3, the estimated marginal en-

tropy converges to the true entropy, i.e. for all ε > 0

lim
N→∞

Pr
( ∣∣∣ĤKSG(X)−H(X)

∣∣∣ > ε
)

= 0, (3.46)

lim
N→∞

Pr
( ∣∣∣ĤBI−KSG(X)−H(X)

∣∣∣ > ε
)

= 0. (3.47)
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3.5.1 Proof of Lemma 5

Define the following quantities

f̂KSGX (Xi) ≡
exp{ψ(nx,i,∞ + 1)}

Ncdx,∞ρ
dx
k,i,∞

, (3.48)

f̂BI−KSGX (Xi) ≡
nx,i,2

Ncdx,2ρ
dx
k,i,2

. (3.49)

Then we have the following equations ĤKSG(X) = − 1
N

∑N
i=1 log f̂KSGX (Xi)

and ĤBI−KSG(X) = − 1
N

∑N
i=1 log f̂KSGX (Xi). From now on we will skip the

subscript KSG or BI-KSG and the subscript 2 or ∞ if the formula holds for

both. We will specify it when necessary. Now we write |Ĥ(X)−H(X)| as:

∣∣∣Ĥ(X)−H(X)
∣∣∣ =

∣∣∣− 1

N

N∑
i=1

log f̂X(Xi)−
(
−
∫
fX(x) log fX(x)dx

) ∣∣∣
≤

∣∣∣∣∣ 1

N

N∑
i=1

log fX(Xi)−
∫
fX(x) log fX(x)dx

∣∣∣∣∣
+

1

N

N∑
i=1

∣∣∣log f̂X(Xi)− log fX(Xi)
∣∣∣ . (3.50)

The first term is the error from the empirical mean. Notice that log fX(Xi)

are i.i.d. random variables, satisfying

E | log fX(Xi) | =
∫
fX(x)| log fX(x)|dx < +∞, (3.51)

where the mean is given by:

E ( log fX(Xi) ) =

∫
fX(x) log fX(x)dx. (3.52)

Therefore, by weak law of large numbers, we have:

lim
N→∞

Pr
( ∣∣ 1

N

N∑
i=1

log fX(Xi)−
∫
fX(x) log fX(x)dx

∣∣ > ε
)

= 0, (3.53)

for any ε > 0.

The second term comes from density estimation. We denote Z = (X, Y )
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and f(z) = f(x, y) for short, then for any fixed ε > 0, we obtain:

Pr

(
1

N

N∑
i=1

∣∣∣log f̂X(Xi)− log fX(Xi)
∣∣∣ > ε

)

≤ Pr

(
N⋃
i=1

{ ∣∣∣log f̂X(Xi)− log fX(Xi)
∣∣∣ > ε

})
≤ N Pr

( ∣∣∣log f̂X(Xi)− log fX(Xi)
∣∣∣ > ε

)
= N

∫
Pr
( ∣∣∣log f̂X(Xi)− log fX(Xi)

∣∣∣ > ε
∣∣Zi = z

)
︸ ︷︷ ︸

=I1(z)+I2(z)+I3(z)

f(z)dz, (3.54)

where

I1(z) = Pr
(
ρk,i >

logN

(Nf(z)cdx+dy)
1

dx+dy

∣∣Zi = z
)
, (3.55)

I2(z) = Pr
(
ρk,i <

(logN)2

(NfX(x)cdx)
1
dx

∣∣Zi = z = (x, y)
)
, (3.56)

I3(z) =

∫ logN(Nf(z)cdx+dy )
− 1
dx+dy

r=(logN)2(NfX(x)cdx )
− 1
dx

Pr
( ∣∣∣log f̂X(Xi)− log fX(Xi)

∣∣∣ > ε∣∣ρk,i = r, Zi = z
)
fρk,i(r)dr, (3.57)

where fρk,i(r) is the pdf of ρk,i given Zi = z. We will consider the three terms

separately, and show that each is bounded by o(N−1).

I1: Let BZ(z, r) = {Z : ‖Z − z‖ < r} be the (dx + dy)-dimensional ball

centered at z with radius r. Since the Hessian matrix of H(f) exists and

‖H(f)‖2 < C almost everywhere, then for sufficiently small r, there exists z′

such that

∣∣Pr (u ∈ BZ(z, r) )− f(z)cdx+dyr
dx+dy

∣∣
=

∫
‖u−z‖≤r

( f(u)− f(z) ) du

=

∫
‖u−z‖≤r

(
(u− z)T∇f(z) + (u− z)THf (z

′)(u− z)du
)

≤ Cf(z)cdx+dyr
dx+dy+2. (3.58)

Then for sufficiently large N such that C(logN/(Nf(z)cdx+dy)
1

dx+dy )2 < 1/2,
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we have

p1 = Pr
(
u ∈ BZ(z, logN(Nf(z)cdx+dy)

− 1
dx+dy )

)
≥ 1

2
f(z)cdx+dy

(
logN

(Nf(z)cdx+dy)
1

dx+dy

)dx+dy

≥ (logN)dx+dy

2N
. (3.59)

Therefore, for any dx, dy ≥ 1, I1(z) is upper bounded by:

I1(z) = Pr

(
ρk,i >

logN

(Nf(z)cdx+dy)
1

dx+dy

∣∣Zi = z

)

=
k−1∑
m=0

(Nm)pm1 (1− p1)N−1−m ≤
k−1∑
m=0

Nm(1− p1)N−1−m

≤ kNk−1(1− (logN)dx+dy

2N
)N−k−1

≤ kNk−1 exp{−(logN)dx+dy(N − k − 1)

2N
}

≤ kNk−1 exp{−(logN)dx+dy

4
}. (3.60)

I2: For sufficiently large N such that C((logN)2)/(NfX(x)cdx)
1
dx )2 < 1,

we have

p2 = Pr

(
u ∈ BZ(z,

(logN)2

(NfX(x)cdx)
1
dx

)

)

≤ 2f(z)cdx+dy

(
(logN)2

(NfX(x)cdx)
1
dx

)dx+dy

≤
2f(z)cdx+dy

(f(x)cdx)
dx+dy
dx

(logN)2(dx+dy)N−
dx+dy
dx

≤ 2fY |X(y|x)
cdx+dy

cdx
(logN)2(dx+dy)N−

dx+dy
dx

≤ 2Ce
cdx+dy

cdx
(logN)2(dx+dy)N−

dx+dy
dx . (3.61)
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For any dx, dy ≥ 1 and k ≥ 1, I2 is upper bounded by:

I2(z) = Pr

(
ρk,i <

(logN)2

(NfX(x)cdx)
1
dx

∣∣Zi = z

)

=
N−1∑
m=k

(N−1
m )pm2 (1− p2)N−1−m ≤

N−1∑
m=k

Nmpm2

≤
N−1∑
m=k

(2Ce
cdx+dy

cdx
(logN)2(dx+dy)N−

dy
dx )m

≤ (4Ce
cdx+dy

cdx
)k(logN)2K(dx+dy)N−

kdy
dx . (3.62)

I3: Now we will consider KSG and BI-KSG separately. Also we need to

specify whether we are considering `2 or `∞ norm. For KSG, given that

Zi = z = (x, y) and ρk,i,∞ = r, we have:

Pr
r,z

( ∣∣∣log f̂KSGX (Xi)− log fX(Xi)
∣∣∣ > ε

)
= Pr

r,z

( ∣∣ψ(nx,i,∞ + 1) log
(
Ncdx,∞ρ

dx
k,i,∞fX(x)

) ∣∣ > ε
)
. (3.63)

Here Prr,z denotes the probability given ρk,i,· = r and Z = z for notation

simplicity. Notice that for any integer x ≥ 2, we have log(x − 1) < ψ(x) <

log(x). Therefore

Pr
r,z

(
ψ(nx,i,∞ + 1)− log

(
Ncdx,∞ρ

dx
k,i,∞fX(x)

)
< −ε

)
≤ Pr

r,z

(
log nx,i,∞ − log

(
Ncdx,∞ρ

dx
k,i,∞fX(x)

)
< −ε

)
= Pr

r,z

(
nx,i,∞ < Ncdx,∞r

dxfX(x)e−ε
)
. (3.64)

In the other direction,

Pr
r,z

(
ψ(nx,i,∞ + 1)− log

(
Ncdx,∞ρ

dx
k,i,∞fX(x)

)
> ε

)
≤ Pr

r,z

(
log(nx,i,∞ + 1)− log

(
Ncdx,∞ρ

dx
k,i,∞fX(x)

)
> ε

)
= Pr

r,z

(
nx,i,∞ > Ncdx,∞r

dxfX(x)eε − 1
)
. (3.65)
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For BI-KSG, we have:

Pr
r,z

( ∣∣∣log f̂BI−KSGX (Xi)− log fX(Xi)
∣∣∣ > ε

)
= Pr

r,z

( ∣∣ log nx,i,2 − log
(
Ncdx,2ρ

dx
k,i,2fX(x)

) ∣∣ > ε,
)

= Pr
r,z

(
nx,i,2 > Ncdx,2r

dxfX(x)eε
)

+ Pr
r,z

(
nx,i,2 < Ncdx,2r

dxfX(x)e−ε
)
.

(3.66)

Combine them together, we have:

Pr
r,z

( ∣∣∣log f̂X(Xi)− log fX(Xi)
∣∣∣ > ε

)
≤ Pr

r,z

(
nx,i < Ncdxr

dxfX(x)e−ε
)

+ Pr
r,z

(
nx,i > Ncdxr

dxfX(x)eε − 1
)
,

(3.67)

holds for both KSG and BI-KSG estimates. Recall that in Theorem 7, given

that ρk,i = r and Zi = z, nx,i − k is distributed as
∑N−1

l=k+1 Ul, where Ul are

i.i.d Bernoulli random variables with mean p satisfying

r−dx
∣∣ p− fX(x)cdxr

dx
∣∣ ≤ C1(r2 + rdy). (3.68)

For small enough r such that C1(r2 + rdy) ≤ ε/2, we obtain

Pr
r,z

(
nx,i > (N − 1)cdxr

dxfX(x)eε − 1
)

= Pr

(
N−1∑
l=k+1

Ul > (N − 1)cdxr
dxfX(x)eε − k − 1

)

= Pr
( N−1∑

l=k+1

(Ul − E[Ul]) > (N − 1)cdxr
dxfX(x)eε − k − 1

−(N − k − 1)E[Ul]
)
, (3.69)
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and the right-hand side in the probability is lower bounded by

Ncdxr
dxfX(x)eε − k − 1− (N − k − 1)E[Ul]

≥ Ncdxr
dxfX(x)eε − k − 1− (N − k − 1)fX(x)cdxr

dx(1 + ε/2)

≥ (N − k − 1)cdxr
dxfX(x)(eε − 1− ε/2)− k − 1

≥ (N − k − 1)cdxr
dxfX(x)ε/4, (3.70)

for sufficiently large N such that (N−k−1)cdxr
dxfX(x)(eε−1−ε/4) > k+1.

Since Ul is Bernoulli, we have E[U2
l ] = E[Ul]. Now applying Bernstein’s

inequality, (3.69) is upper bounded by:

Pr
( N−1∑

l=k+1

(Ul − E[Ul]) > (N − 1)cdxr
dxfX(x)eε − k − (N − k − 1)E[Ul]

)
≤ Pr

( N−1∑
l=k+1

(Ul − E[Ul]) > (N − k − 1)cdxr
dxfX(x)ε/4

)
≤ exp

{
− ((N − k − 1)cdxr

dxfX(x)ε/4)2

2(N − k − 1)E[U2
l ] + 2

3
((N − k − 1)cdxr

dxfX(x)ε/4)

}
= exp

{
− ε2

32(1 + 7ε
12

)
(N − k − 1)cdxr

dxfX(x)
}
.

(3.71)

Similarly, the tail bound on the other way is given by:

Pr
r,z

(
nx,i < Ncdxr

dxfX(x)e−ε
)

= Pr

(
N−1∑
l=k+1

Ul < Ncdxr
dxfX(x)e−ε − k

)

= Pr
( N−1∑

l=k+1

(Ul − E[Ul]) < Ncdxr
dxfX(x)e−ε − k − (N − k − 1)E[Ul]

)
,

(3.72)
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and the right-hand side in the probability is upper bounded by

Ncdxr
dxfX(x)e−ε − k − (N − k − 1)E[Ul]

≤ Ncdxr
dxfX(x)e−ε − k − (N − k − 1)fX(x)cdxr

dx(1− ε/2)

≤ (N − k − 1)cdxr
dxfX(x)e−ε − (N − k − 1)fX(x)cdxr

dx(1− ε/2)

= (N − k − 1)cdxr
dxfX(x)

(
e−ε − 1 + ε/2

)
≤ −(N − k − 1)cdxr

dxfX(x)ε/4, (3.73)

for sufficiently small r such that (k + 1)cdxr
dxfX(x)e−ε < k and sufficiently

small ε such that e−ε − 1 + ε/2 ≤ −ε/4. Similarly, by applying Bernstein’s

inequality, (3.72) is upper bounded by:

Pr
( N−1∑

l=k+1

(Ul − E[Ul]) < Ncdxr
dxfX(x)e−ε − k − (N − k − 1)E[Ul]

)
≤ Pr

( N−1∑
l=k+1

(Ul − E[Ul]) < −(N − k − 1)cdxr
dxfX(x)ε/4

)
≤ exp

{
− ((N − k − 1)cdxr

dxfX(x)ε/4)2

2(N − k − 1)E[U2
l ] + 2

3
((N − k − 1)cdxr

dxfX(x)ε/4)

}
= exp

{
− ε2

32(1 + 7ε
12

)
(N − k − 1)cdxr

dxfX(x)
}
.

(3.74)

Therefore, I3(z) is upper bounded by:

I3(z) =

∫ logN(Nf(z)cdx+dy )
− 1
dx+dy

r=(logN)2(NfX(x)cdx )
− 1
dx

Pr
( ∣∣∣log f̂X(Xi)− log fX(Xi)

∣∣∣ > ε∣∣ρk,i = r, Zi = z
)
fρk,i(r)dr

≤
∫ logN(Nf(z)cdx+dy )

− 1
dx+dy

r=(logN)2(NfX(x)cdx )
− 1
dx

2 exp
{
− ε2(N − k − 1)

32(1 + 7ε
12

)
cdxr

dxfX(x)
}
fρk,i(r)dr

≤ 2 exp
{
− ε2

64
NcdxfX(x)(

(logN)2

(NfX(x)cdx)
1/dx

)dx
}

≤ 2 exp
{
− ε2

64
(logN)2dx

}
. (3.75)

for sufficiently large N such that (N − k − 1)/(1 + 7
12
ε) > N/2 and any
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dx ≥ 1. The upper bounds of I1(z), I2(z) and I3(z) are all independent of z.

Therefore, combine the upper bounds of I1(z), I2(z) and I3(z), we obtain

Pr

(
1

N

N∑
i=1

∣∣∣log f̂X(Xi)− log fX(Xi)
∣∣∣ > ε

)
≤ N

∫
(I1(z) + I2(z) + I3(z))f(z)dz

= kNk exp
{
− (logN)dx+dy

4

}
+
(

4C ′
cdx+dy

cdx

)k
(logN)2k(dx+dy)N1− k dy

dx

+2N exp
{
− ε2

64
(logN)2dx

}
. (3.76)

If k > dy/dx as per our assumption, each of the three terms goes to 0 as

N →∞.

Therefore, by combining the convergence of error from sampling and er-

ror from density estimation, we obtain that Ĥ(X) converges to H(X) in

probability.

3.6 Proof of Theorem 4 on the bias of KSG estimator

We will introduce some notations first. Let Z = (X, Y ), f(x) = f(x, y) and

d = dx+dy for short. Let B(z, r) denote the d-dimensional ball centered at z

with radius r, BX(x, r) denote the dx-dimensional ball (on X space) centered

at x with radius r. P (z, r) denotes the probability mass inside B(z, r), i.e.,

P (z, r) =
∫
B(z,r)

f(t)dt. Similarly, PX(x, r) =
∫
BX(x,r)

fX(t)dt denotes the

probability mass inside BX(z, r). Now note that if ρk,i,· ≤ aN , we can write

ιk,i,2 and ιk,i,∞ as:

ιk,i,∞ = ξk,i,∞(X) + ξk,i,∞(Y )− ξk,i,∞(Z), (3.77)

ιk,i,2 = ξk,i,2(X) + ξk,i,2(Y )− ξk,i,2(Z), (3.78)

where

ξk,i,∞(Z) ≡ −ψ(k) + logN + log cdx,∞cdy ,∞ + d log ρk,i,∞, (3.79)

ξk,i,∞(X) ≡ −ψ(nx,i,∞ + 1) + logN + log cdx,∞ + dx log ρk,i,∞, (3.80)

ξk,i,∞(Y ) ≡ −ψ(ny,i,∞ + 1) + logN + log cdy ,∞ + dy log ρk,i,∞, (3.81)
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and

ξk,i,2(Z) ≡ −ψ(k) + logN + log cd,2 + d log ρk,i,2, (3.82)

ξk,i,2(X) ≡ − log(nx,i,2) + logN + log cdx,2 + dx log ρk,i,2, (3.83)

ξk,i,2(Y ) ≡ − log(ny,i,2) + logN + log cdy ,2 + dy log ρk,i,2. (3.84)

If ρk,i,· > aN , just define ξk,i,·(X) = ξk,i,·(Y ) = ξk,i,·(Z) = 0. Similar as the

proof of Theorem 3, we drop the superscript KSG or BI-KSG and subscript

2 and ∞ for statements that holds for both. Since ιk,i’s are identically dis-

tributed, we have E[Î(X;Y )] = E[ιk,1]. By triangular inequality, the bias of

Î(X;Y ) can be written as:

E
[
Î(X;Y )

]
− I(X;Y ) = E [ιk,1]− I(X;Y )

≤ |E [ξk,1(X)]−H(X) |+ |E [ξk,1(Y )]−H(Y ) |+ |E [ξk,1(Z)]−H(Z) |

≤ |E [ ( ξk,1(X)−H(X) ) · I{ρk,1 ≤ aN} ] |

+ |E [ ( ξk,1(X)−H(X) ) · I{ρk,1 > aN} ] |

+ |E [ ( ξk,1(Y )−H(Y ) ) · I{ρk,1 ≤ aN} ] |

+ |E [ ( ξk,1(Y )−H(Y ) ) · I{ρk,1 > aN} ] |

+ |E [ ξk,1(Z) · I{ρk,1 ≤ aN} −H(Z) ] |+ |E [ ξk,1(Z) · I{ρk,1 > aN} ] |

= |E [ ( ξk,1(X)−H(X) ) · I{ρk,1 ≤ aN} ] |

+ |E [ ( ξk,1(Y )−H(Y ) ) · I{ρk,1 ≤ aN} ] |

+ |E [ ξk,1(Z) · I{ρk,1 ≤ aN} −H(Z) ] |

+ ( |H(X)|+ |H(Y )| ) Pr ( ρk,i > aN ) . (3.85)

First we consider the bias of ξk,i(Z), which is local d-dimensional Kozachenko-

Leonenko entropy estimator [2] . The following lemma gives the convergence

rate of truncated KL estimator ξk,1(Z).

Lemma 6. Under the Assumption 2.(a)− (d) and (g),

E [ ξk,1(Z) · I{ρk,1 ≤ aN} −H(Z) ]

≤ O

(
( logN )(1+δ)(1+1/d)

N1/d

)
, (3.86)

Now we consider the bias of ξk,i(X) and ξk,i(Y ) when ρk,i ≤ aN . The fol-
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lowing lemma establishes the convergence rate for marginal entropy estimator

ξk,1(X).

Lemma 7. Under the Assumption 2.(c)− (e), the bias of marginal entropy

estimator ξk,1(X) is given by:

E [ ( ξk,1(X)−H(X) ) · I{ρk,1 ≤ aN} ]

= O

(
( logN )(1+δ)(1+1/d)

N1/d

)
, (3.87)

for k ≥ dx/dy.

The probability that ρk,i > aN is bounded by the following lemma:

Lemma 8. Under the Assumption 2.(c) and (d), we have:

Pr(ρk,i > aN)

≤ C

(
Nk−1 exp{−C(logN)1+δ}+

(
(logN)1+δ

N

)1/d
)
. (3.88)

Convergence rate of ξk,1(Y ) is immediate by exchanging X and Y and

k ≥ dx/dy. Combining Lemma 6, Lemma 7 and Lemma 8, we obtain the

desired statement.

3.6.1 Proof of Lemma 6

We follow closely the proof from [32] of the
√
N -consistency of the one-

dimensional entropy estimator introduced in [2]. It was proved in [32] that

the KL entropy estimator achieves
√
N -consistency in mean, i.e. E[Ĥ(Z)]−

H(Z) = O(1/
√
N),and in variance, i.e. E[(Ĥ(Z) − E[Ĥ(Z)])2] = O(1/N),

under the assumption that the Z is a one-dimensional random variable and

the estimator uses only the nearest neighbor distance with k = 1. In the

process of proving our main result, we prove a generalization of this rate of

convergence of the KL entropy estimator for general d-dimensional space and

for a general k. Also notice that our proof works for any choice of `p distance

for 1 ≤ p ≤ ∞, so we will drop the subscribe p in the proof.

Firstly, we notice that ξk,i(Z) are identically distributed and ξk,i = 0 if
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ρk,i > aN , so we have:

E
[
ĤtKL(X)

]
=

1

N

N∑
i=1

E [ ξk,i(Z) ] = E [ ξk,1(Z) ]

= E [ ξk,1(Z) · I{ρk,i ≤ aN} ] . (3.89)

We introduce the following notations. Let

bN = e−ψ(k)Ncda
d
N = e−ψ(k)cd(logN)1+δ, (3.90)

and for every u > 0 define

rN(u) =

(
ueψ(k)

cdN

)1/d

, (3.91)

such that rN(eξk,1(Z)) = ρk,1 for ρk,1 ≤ aN and rN(bN) = aN . It is easy to

check that drN (u)
du

= rN (u)
ud

. These definitions provides a new representation of

the expectation in (3.89) using a change of variables u = r−1
N (ρk,1):

E [ ξk,1(Z) · I{ρk,1 ≤ aN} ] = E [ log u · I{u ≤ bN} ]

=

∫ (∫ bN

0

log u dFN,z(u)

)
f(z)dx, (3.92)

where we define the following distribution:

FN,z(u) = Pr
(
eξk,1(Z) < u

∣∣Z1 = z
)

= Pr
(
ρk,1 < rN(u)

∣∣Z1 = z
)
. (3.93)

Similar change of variables holds for the actual entropy as follows.

Lemma 9. The entropy H(Z) can be rewritten as

H(Z) =

∫ (∫ ∞
0

log udFz(u)

)
f(z)dx, (3.94)

where FZ(u) is defined as

Fz(u) = 1− exp{−ueψ(k)f(z)}
k−1∑
j=0

(ueψ(k)f(z))j

j!
. (3.95)
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This allows us to decompose the bias into three terms, each of which can

be bounded separately.∣∣∣E [ ĤtKL(X)
]
−H(Z)

∣∣∣ =
∣∣∣E [ ξk,1(Z) · I{ρk,1 ≤ aN} −H(Z) ]

∣∣∣
≤

∫
(I1(z) + I2(z) + I3(z)) f(z)dx, (3.96)

where

I1(z) =

∣∣∣∣∫ ∞
bN

log u dFz(u)

∣∣∣∣ , (3.97)

I2(z) =

∣∣∣∣∫ 1

0

log u dFN,z(u)−
∫ 1

0

log u dFz(u)

∣∣∣∣ , (3.98)

I3(z) =

∣∣∣∣∫ bN

1

log u dFN,z(u)−
∫ bN

1

log u dFz(u)

∣∣∣∣ . (3.99)

We will bound the three terms separately. The main idea is that I1(z) is

small when bN is sufficiently large, and I2(z) and I3(z) are small when fz(u)

and fN,z(u) are close.

I1(z): We upper bound the tail probability that the k-NN distance is

truncated. By plugging in the CDF (3.95) of Fz(u), we get:

I1(z) =

∣∣∣∣∫ ∞
bN

log udFz(u)

∣∣∣∣ =

∣∣∣∣∫ ∞
bN

log u
dFz(u)

du
du

∣∣∣∣
=

1

(k − 1)!

∣∣∣∣∫ ∞
bN

(log u) eψ(k)f(z) exp{−ueψ(k)f(z)}(ueψ(k)f(z))k−1du

∣∣∣∣
=

1

(k − 1)!

∣∣∣∣∫ ∞
bNeψ(k)f(z)

(log t− ψ(k)− log f(z)) e−ttk−1dt

∣∣∣∣ , (3.100)

where the third equality is from (3.150) in later section and the last equality

comes from changing of variable t = ueψ(k)f(z). Now we consider two cases:
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1. bNe
ψ(k)f(z) < 1. Then (3.100) is upper bounded by:

1

(k − 1)!

∣∣∣∣∫ ∞
bNeψ(k)f(z)

(log t− ψ(k)− log f(z)) e−ttk−1dt

∣∣∣∣
≤ 1

(k − 1)!

( ∣∣∣∣∫ ∞
bNeψ(k)f(z)

log t e−ttk−1dt

∣∣∣∣
+|ψ(k) + log f(z)|

∣∣∣∣∫ ∞
bNeψ(k)f(z)

e−ttk−1dt

∣∣∣∣ )
≤ 1

(k − 1)!

(∫ ∞
0

| log t| e−ttk−1dt+ |ψ(k) + log f(z)|
∫ ∞

0

e−ttk−1dt

)
≤ C1(1 + |ψ(k) + log f(z)|), (3.101)

where C1 = max
{

1
(k−1)!

∫∞
0
| log t| e−ttk−1dt, 1

(k−1)!

∫∞
0
e−ttk−1dt

}
.

2. bNe
ψ(k)f(z) ≥ 1. Then (3.100) is upper bounded by:

1

(k − 1)!

∣∣∣∣∫ ∞
bNeψ(k)f(z)

( log t− ψ(k)− log f(z) ) e−ttk−1dt

∣∣∣∣
≤ 1

(k − 1)!

( ∣∣∣∣∫ ∞
bNeψ(k)f(z)

log t e−ttk−1dt

∣∣∣∣
+|ψ(k) + log f(z)|

∣∣∣∣∫ ∞
bNeψ(k)f(z)

e−ttk−1dt

∣∣∣∣ )
≤ C2(1 + |ψ(k) + log f(z)|)

∫ ∞
bNeψ(k)f(z)

e−t/2dt

≤ 2C2(1 + |ψ(k) + log f(z)|) exp{−bNeψ(k)f(z)}, (3.102)

where C2 is a constant satisfying log t · tk−1/(k − 1)! < C2e
t/2 and

tk−1/(k − 1)! < C2e
t/2 for all t > 1.

Now combining the two cases, I1(z) is bounded by:

I1(z) ≤ (1 + |ψ(k) + log f(z)|)
(
C1 I{bNeψ(k)f(z) < 1}

+2C2 exp{−bNeψ(k)f(z)}
)

≤ C3(1 + | log f(z)|) exp{−bNeψ(k)f(z)}, (3.103)

where we use the fact that I{bNeψ(k)f(z) < 1} ≤ exp{1− bNeψ(k)f(z)}. Here

C3 = (C1e+ 2C2)(1 + |ψ(k)|).
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I2(z): I2(z) can be bounded by:

I2(z) =

∣∣∣∣∫ 1

0

log u dFN,z(u)−
∫ 1

0

log u dFz(u)

∣∣∣∣
≤

∫ 1

0

| log u| |fN,z(u)− fz(u)| du, (3.104)

where fN,z(u) and fz(u) are the corresponding pdfs of FN,z(u) and Fz(u),

respectively. Here we partition the support into two parts. Let

S1 = {z : ‖Hf (z
′)‖2 < Cd, ∀z′ ∈ B(z, aN)}, (3.105)

S2 = {z : ‖Hf (z
′)‖2 ≥ Cd for some z′ ∈ B(z, aN)} = SC1 . (3.106)

From Assumption 2.(g), the (d − 1)-dimensional Hausdorff measure of the

set that ‖Hf (z)‖ ≥ Cd is finite, so the Lebegue measure of S2 is bounded

by 2aNCe for sufficiently large N . For points in S1 and S2, In the following

lemma we give an upper bound for the difference of fN,z(u) and fz(u) for x

in S1 and S2 separately.

Lemma 10. Under the Assumption 2.(a) and (d), for any x ∈ S1,

|fN,z(u)− fz(u)| ≤ C4

(
N−2/d +N−1

)
, (3.107)

for u ≤ 1. For x ∈ S2, we have

|fN,z(u)− fz(u)| ≤ C4, (3.108)

for u ≤ 1.

Using Lemma 10 and the fact that
∫ 1

0
| log u|du = 1, I2(z) is bounded by:

I2(z) ≤ C4(N−2/d +N−1)

∫ 1

0

| log u|du

≤ C4(N−2/d +N−1), (3.109)

for x ∈ S1 and

I2(z) ≤ C4

∫ 1

0

| log u|du ≤ C4, (3.110)

for x ∈ S2.
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I3(z): I3(z) can be bounded by:

I3(z) =

∣∣∣∣∫ bN

1

log u dFN,z(u)−
∫ bN

1

log u dFz(u)

∣∣∣∣
=

∣∣∣∣∫ bN

1

1

u
(1− FN,z(u))du−

∫ bN

1

1

u
(1− Fx(u))du

∣∣∣∣
≤

∫ bN

1

1

u
|FN,z(u)− Fz(u)|du. (3.111)

In the following lemma we give an upper bound for the difference of FN,z(u)

and Fz(u) for x in S1 and S2 separately.

Lemma 11. Under the Assumption 2.(a) and (d),

|FN,z(u)− Fz(u)| ≤ C5

(
u1+2/dN−2/d + u2/N

)
, (3.112)

for x ∈ S1 and

|FN,z(u)− Fz(u)| ≤ C5

(
u+ u2/N

)
, (3.113)

for x ∈ S2.

Using Lemma 11, I3(z) is upper bounded by:

I3(z) ≤ C5

∫ bN

1

(
(u/N)2/d + u/N

)
du

≤ C5

(
b

1+2/d
N N−2/d + b2

NN
−1
)
, (3.114)

for x ∈ S1 and

I3(z) ≤ C5

∫ bN

1

(
1 + u/N

)
du ≤ C5

(
bN + b2

NN
−1
)
, (3.115)

for x ∈ S2

Combining the upper bounds of I1(z), I2(z) and I3(z) and defining C6 =
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max{C3, C4, C5}, the bias is bounded by:

E
[
ĤtKL(Z)

]
−H(Z)

≤
∫

(I1(z) + I2(z) + I3(z)) f(z)dx

≤
∫
I1(z)f(z)dx+

∫
S1

( I2(z) + I3(z) ) f(z)dx+

∫
S2

( I2(z) + I3(z) ) f(z)dx

≤ C6

∫ (
|1 + log f(z)| exp{−bNeψ(k)f(z)}

)
f(z)dx

+

∫
S1

(
N−2/d +N−1 + b

1+2/d
N N−2/d + b2

NN
−1
)
f(z)dx

+

∫
S2

(
1 + bN + b2

NN
−1
)
f(z)dx

≤ C6

( ∫
f(z) exp{−bNeψ(k)f(z)}+

∫
f(z)| log f(z)| exp{−bNeψ(k)f(z)}

+b
1+2/d
N N−2/d + b2

NN
−1 + bN(

∫
S2

f(z)dx )
)
. (3.116)

By Assumption 2.(c), the first term is bounded by:
∫
f(z) exp{−bNeψ(k)f(z)} ≤

Cde
−bNC0 . The second term is bounded by Hölder inequality as:∫

f(z)| log f(z)| exp{−bNeψ(k)f(z)}

≤
(∫

f(z)(log f(z))1+γdx

)1/(1+γ) (∫
f(z)e−

1+γ
γ
bNe

ψ(k)f(z)dx

)γ/(1+γ)

≤ C
1/(1+γ)
b

(
Cde

− 1+γ
γ
C0bN

)γ/(1+γ)

. (3.117)

By choosing bN = e−ψ(k)cd(logN)1+δ for some δ > 0, we know that e−C0bN

decays faster than N−α for any α.

The last term is bounded by bN(
∫
S2
f(z)dx ) ≤ bNCam(S2) ≤ 2bNaNCaCe,

where m(S2) is the Lebesgue measure of S2. Recall that we choose aN =

((logN)1+δ/N)1/d, so the proof is complete.
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3.6.2 Proof of Lemma 7

Define rN = (logN)2N−1/dx , we can split the bias of ξk,i(X) into two parts:

|E [ ( ξk,1(X)−H(X) ) · I{ρk,1 ≤ aN} ] |

≤ |E [ ( ξk,1(X)−H(X) ) · I{ρk,1 < rN} ] |

+ |E [ ( ξk,1(X)−H(X) ) · I{rN ≤ ρk,1 ≤ aN} ] | . (3.118)

If ρk,1 < rN , recall that ξk,1(X) = −h(nx,1) + log cdx + logN + dx log ρk,1,

where h(x) = log(x) or ψ(x+ 1). Notice that k < nx,1 < N , so 0 ≤ h(nx,1) ≤
2 logN . Therefore, we can bound the first term of (3.118) by:

E [ ( ξk,1(X)−H(X) ) · I{ρk,1 < rN} ]

≤ E [ ( logN + log cdx + dx log ρk,1 −H(X) ) · I{ρk,1 < rN} ]

≤ ( logN + log cdx −H(X) ) Pr ( ρk,1 < rN )

+dx

∫ rN

0

log rfρk,1(r)dr, (3.119)

where fρk,1(r) is the pdf of ρk,1. Similarly, it can be lower bounded by:

E [ ( ξk,1(X)−H(X) ) · I{ρk,1 < rN} ]

≥ E [ (− logN + log cdx + dx log ρk,1 −H(X) ) · I{ρk,1 < rN} ]

≥ (− logN + log cdx −H(X) ) Pr ( ρk,1 < rN )

+dx

∫ rN

0

log rfρk,1(r)dr. (3.120)

Therefore, we obtain:

|E [ ( ξk,1(X)−H(X) ) · I{ρk,1 < rN} ] |

≤ ( logN + | log cdx −H(X) | ) Pr ( ρk,1 < rN )

+dx

∫ rN

0

| log r|fρk,1(r)dr. (3.121)

Now we will given an upper bound on the probability Pr ( ρk,1 < r ) for

any r ≤ rN . Given that Z1 = z, Let pr be the probability inside the `p ball
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centered at Z1 = z = (x, y) with radius r. For sufficiently large N , we have

pr = Pr (u ∈ BZ(z, r) ) ≤

(
sup

t∈BZ(z,r)

f(t)

)
cdr

d ≤ Cacdr
d. (3.122)

Therefore, Pr ( ρk,1 < r |Z1 = z ) is upper bounded by:

Pr ( ρk,1 < r |Z1 = z ) =
N−1∑
m=k

(N−1
m )pmr (1− pr)N−1−m

≤
N−1∑
m=k

Nmpmr ≤
N−1∑
m=k

(NCacdr
d)m ≤ 2(NCacdr

d)k. (3.123)

Recall that r ≤ rN = (logN)2N−1/dx , so for sufficiently large N , we have

NCacdr
d ≤ 1/2, which gives us the last inequality. Notice that this proba-

bility is independent of z, therefore, we have Pr ( ρk,1 < r ) ≤ 2(NCacdr
d)k.

Plugging in rN = (logN)2N−1/dx , we obtain:

Pr ( ρk,1 < rN ) ≤ 2(NCacd(logN)2dN−d/(dx))k

= 2Ck
ac
k
d(logN)2kdN−kdy/dx . (3.124)

Let Fρk,1(r) be the CDF of ρk,1 and F0(r) = 2(NCacdr
d)k be the upper bound

for Fρk,1(r). Then using integration by parts, the integral
∫ rN

0
| log r|fρk,1(r)dr
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can be bounded by:∫ rN

0

| log r|fρk,1(r)dr =

∫ rN

0

(− log r)dFρk,i(r)

= − log(rN)Fρk,i(rN) + lim
r→0

(
log(r)Fρk,i(r)

)
−
∫ rN

0

(−
Fρk,i(r)

r
)dr

≤ − log(rN)F0(rN) +

∫ rN

0

F0(r)

r
dr

= −2 log(rN)(NCacdr
d
N)k +

∫ rN

0

2(NCacdr
d)k

r
dr

= −2 log(rN)(NCacdr
d
N)k +

2

kd
(NCacdr

d
N)k

=
2

kd
(NCacd)

krkdN (1− kd log(rN))

=
2

kd
(NCacd)

k(logN)2kdN−
kd
dx (1− kd(− 1

dx
logN + 2 log logN))

=
2(Cacd)

k

kd
(logN)2kd(1 +

kd

dx
logN)N−

kdy
dx . (3.125)

If k ≥ dx/dy, then there exists some constant C such that Pr ( ρk,1 < rN ) ≤
C(logN)2kd/N and

∫ rN
0
| log r|fρk,1(r)dr ≤ C(logN)2kd+1/N . Therefore, plug

it in (3.121), we have:

|E [ ( ξk,1(X)−H(X) ) · I{ρk,1 ≤ rN} ] |

≤ ( logN + | log cdx −H(X) | )C (logN)2kd

N
+ dxC

(logN)2kd+1

N

≤ C(1 + dx)
(logN)2kd+1

N
+ C | log cdx −H(X) | (logN)2kd

N
≤ N−dy/d, (3.126)

for sufficiently large N .

Now we consider the second term of (3.118). Recall that

ξk,1,2(X) ≡ log

(
cdx,2Nρ

dx
k,1,2

nx,1,2

)
, (3.127)

ξk,1,∞(X) ≡ log

(
cdx,∞Nρ

dx
k,1,∞

exp{ψ(nx,1,∞ + 1)}

)
. (3.128)
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Given that rN ≤ ρk,1,2 ≤ aN , the bias of ξk,1,2(X) is upper bounded by:

|E [ ( ξk,1,2(X)−H(X) ) · I{rN ≤ ρk,1,2 ≤ aN} ] |

=
∣∣∣EZ,ρk,1,2[Enx,1,2[ ( ξk,1,2(X) +

∫
fX(x) log fX(x)dx

)
·I{rN ≤ ρk,1,2 ≤ aN}

∣∣Z, ρk,1,2 ] ] ∣∣∣
≤

∫ ( ∫ aN

rN

∣∣∣ log
(
fX(x)cdx,2Nr

dx
)

−E [ log(nx,1,2)|ρk,1,2 = r, Z1 = z ]
∣∣∣fρk,1,2(r)dr

)
f(z)dz, (3.129)

where we applied the Jensen’s inequality. By noticing that log(x) < ψ(x +

1) < log(x+1) for any integer x ≥ 2, we have |ψ(x+1)−y| ≤ maxθ∈{0,1} | log(x+

θ)− y|. So the bias of ξk,1,∞ is upper bounded by:

E [ ( ξk,1,∞(X)−H(X) ) · I{rN ≤ ρk,1,∞ ≤ aN} ]

=
∣∣∣EZ,ρk,1,∞[Enx,1,∞[ ( ξk,1,∞(X) +

∫
fX(x) log fX(x)dx

)
·I{rN ≤ ρk,1,∞ ≤ aN}

∣∣Z, ρk,1,∞ ] ] ∣∣∣
≤

∫ ( ∫ aN

rN

∣∣∣E [ψ(nx,1,∞ + 1)|ρk,1,∞ = r, Z1 = z ]

− log
(
fX(x)cdx,∞Nr

dx
) ∣∣∣fρk,1,∞(r)dr

)
f(z)dz. (3.130)

Combine the arguments for KSG and BI-KSG, we obtain:

E [ ( ξk,1(X)−H(X) ) · I{rN ≤ ρk,1 ≤ aN} ]

≤
∫ ( ∫ aN

rN

∣∣∣ max
θ∈{0,1}

E [ log(nx,1 + θ)|ρk,1 = r, Z1 = z ]

− log
(
fX(x)cdxNr

dx
) ∣∣∣fρk,1(r)dr

)
f(z)dz. (3.131)

From now on we drop the subscript 2 or ∞. Now similar to the proof of

6, we divide the support of X into two parts:

S
(X)
1 = {x : ‖Hfx(x)‖ < Cd,∀x′ ∈ BX(x, aN)}, (3.132)

S
(X)
2 = {x : ‖Hf (x)‖ ≥ Cd, for some x′ ∈ BX(x, aN)}, (3.133)

where the Lebesgue measure of S
(X)
2 is upper bounded by 2ChaN for suffi-
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ciently small aN . Therefore, we rewrite (3.131) as:

E [ ( ξk,1(X)−H(X) ) · I{rN ≤ ρk,1 ≤ aN} ]

≤
∫
S1

( ∫ aN

rN

∣∣∣ max
θ∈{0,1}

E [ log(nx,1 + θ)|ρk,1 = r, Z1 = z ]

− log
(
fX(x)cdxNr

dx
) ∣∣∣fρk,1(r)dr

)
f(z)dz

+

∫
S2

( ∫ aN

rN

∣∣∣ max
θ∈{0,1}

E [ log(nx,1 + θ)|ρk,1 = r, Z1 = z ]

− log
(
fX(x)cdxNr

dx
) ∣∣∣fρk,1(r)dr

)
f(z)dz. (3.134)

Recall that in Theorem 7, given that ρk,i = r and Zi = z, nx,i − k is

distributed as
∑N−1

l=k+1 Ul, where Ul are i.i.d Bernoulli random variables with

mean p satisfying

r−dx
∣∣ p− fX(x)cdxr

dx
∣∣ ≤ C1(r2 + rdy), (3.135)

for x ∈ S(X)
1 . For x ∈ S(X)

2 , the Bernoulli property still holds, but the mean

p is simply bounded by

r−dx|p− fX(x)cdxr
dx| ≤ r−dxfX(x)cdxr

dx ≤ Cacdx . (3.136)

From now on, we will focus on x ∈ S(X)
1 . For x ∈ S(X)

2 , the analyses also

hold if we replace C1(r2 + rdy) by Cacdx everywhere. We will skip that for

simplicity. For r > rN = (logN)2N−1/dx , we know that p ≥ fX(x)cdxr
dx/2 =

fX(x)cdx(logN)2dx/(2N) for sufficiently large N . Therefore, for any θ ∈
{0, 1}, using the Taylor expansion of a logarithm, we obtain:

E [ log(nx,1 + θ) | ρk,1 = r, Z1 = z ]

= log ( p(N − k − 1) + k + θ )− 1− p
2p(N − k − 1)

+O

(
1

p2(N − k − 1)2

)
.

(3.137)

For sufficiently large N , this gives
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∣∣E( log(nx,1 + θ) | ρk,1 = r, Z1 = z )− log
(
fX(x)cdxNr

dx
) ∣∣

≤
∣∣ log ( p(N − k − 1) + k + θ )− log

(
fX(x)cdxNr

dx
) ∣∣

+
1− p

2p(N − k − 1)
+

C2

p2(N − k − 1)2

≤
∣∣log(pN)− log

(
fX(x)cdxNr

dx
) ∣∣+

∣∣∣∣ log
pN

pN + k(1− p) + θ − p

∣∣∣∣
+

1− p
2p(N − k − 1)

+
C2

p2(N − k − 1)2

≤
∣∣log(pN)− log

(
fX(x)cdxNr

dx
) ∣∣+

C3

pN
. (3.138)

For sufficiently large N we have sufficiently small r such that, from Theorem

7, we get p > fX(x)cdxr
dx/2. Therefore the first term in (3.138) is bounded

by:

∣∣log(pN)− log
(
fX(x)cdxNr

dx
) ∣∣

≤
∣∣ p− fX(x)cdxr

dx
∣∣ ( 1

2p
+

1

2fX(x)cdxr
dx

)
≤ C1

(
rdx+2 + rdx+dy

) 3

2fX(x)cdxr
dx
≤ 3C1(r2 + rdy)

2cdxfX(x)
, (3.139)

where we used the fact that log x− log y ≤ |x− y|(1/(2x) + 1/(2y)) for any

positive x and y and the upper bound on |p − fX(x)cdxr
dx| from (3.135).

The second term in (3.138) is bounded by 2C3/(fX(x)rdxN), which gives, for

C4 = max{3C1/2cdx , 2C3},∣∣E( log(nx,1 + θ)|ρk,1 = r, Z1 = z )− log
(
fX(x)cdxNr

dx
) ∣∣

≤ C4

fX(x)

(
1

rdxN
+ r2 + rdy

)
. (3.140)

To integrate with respect to ρk,1 = r, note that ρk,1 is simply the kth-order

statistic of N−1 i.i.d. random variables
{
‖Z2−z‖, ‖Z3−z‖, . . . , ‖ZN−z‖

}
.

The corresponding pdf satisfies [121]:

f
ρ

(N−1)
k,1

(r) =
N − 1

k − 1
f
ρ

(N−2)
k−1,1

(r)P (z, r). (3.141)
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For any θ ∈ {0, 1}, we have∫ aN

0

∣∣E( log(nx,i + θ)|r, z )− log
(
fX(x)cdxNr

dx
) ∣∣ f

ρ
(N−1)
k,i

(r)dr

≤ C4

∫ aN

0

1

fX(x)

(
1

rdxN
+ r2 + rdy

)
f
ρ

(N−1)
k,i

(r)dr

= C4

∫ aN

0

(N − 1)P (z, r)

(k − 1)fX(x)

(
1

rdxN
+ r2 + rdy

)
f
ρ

(N−2)
k−1,1

(r)dr

≤ C4 max
r≤aN

NP (z, r)

(k − 1)fX(x)

(
1

rdxN
+ r2 + rdy

)
. (3.142)

By Lemma 12, |P (z, r)− f(z)cdr
d| ≤ Crd+2. Therefore, for sufficiently small

aN , we have P (z, r) < 2f(z)cdr
d for all r ≤ aN . Then we have:

max
r≤aN

NP (z, r)

(k − 1)fX(x)

(
1

rdxN
+ r2 + rdy

)
≤ max

r≤aN

2f(z)cdr
dN

(k − 1)fX(x)

(
1

rdxN
+ r2 + rdy

)
= max

r≤aN

2cdfY |X(y|x)

k − 1

(
rdy +Nrd+2 +Nrd+dy

)
≤ C5

(
a
dy
N +Nad+2

N +Na
d+dy
N

)
. (3.143)

Since fY |X(y|x) is upper bounded by Ce, here C5 is given by C5 = 2cdCe/(k−
1). The above upper bound holds for x ∈ S(X)

1 , while for x ∈ S(X)
2 , we have

an upper bound of C6(a
dy
N + NadN) for some C6 > 0. Now averaging over z,

we get:

E [ ( ξk,1(X)−H(X) ) · I{rN ≤ ρk,1 ≤ aN} ]

≤ C4C5

∫
S1

f(z)
(
a
dy
N +Nad+2

N +Na
d+dy
N

)
dz

+C4C6

∫
S2

f(z)
(
a
dy
N +NadN

)
≤ C4C5

(
a
dy
N +Nad+2

N +Na
d+dy
N

)
+CaC4C6m(S2)

(
a
dy
N +NadN

)
. (3.144)

Here the Lebesgue measure of S2 is upper bounded by 2CgaN by Assump-

tion 2.(h). Together with (3.126) and by the choice of aN in (3.6), the proof

is completed.
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3.6.3 Proof of Lemma 8

For Z1 = z, the k-NN distance is larger than aN , i.e. ρk,1 > aN when at most

k − 1 samples are in B(z, aN), which gives

Pr
(
ρk,1 > aN

∣∣Z1 = z
)

=
k−1∑
m=0

(N−1
m )P (z, aN)m ( 1− P (z, aN) )N−1−m .

(3.145)

Similarly, we divide the support into two parts as follows,

S1 = {z : ‖Hf (z
′)‖ < Cd,∀z′ ∈ B(z, aN)},

S2 = {z : ‖Hf (z
′)‖ ≥ Cd, for some z′ ∈ B(z, aN)} = SC1 . (3.146)

We can see that
∫
S2
f(z)dz ≤ 2CaaNCg. For z ∈ S1, since f is twice continu-

ously differentiable inB(z, aN) and aN vanishes asN grows, f(z)V ol(B(z, aN))

approaches P (z, aN). Precisely, by Lemma 12, for sufficiently large N , we

have P (z, aN) ≥ f(z)cda
d
N−Cdad+2

N . This provide the following upper bound:

Pr
(
ρk,1 > aN

∣∣Z1 = z ∈ S1

)
=

k−1∑
m=0

(N−1
m )P (z, aN)m ( 1− P (z, aN) )N−1−m

≤
k−1∑
m=0

Nm ( 1− P (z, aN) )N−1−m ≤ kNk−1(1− P (z, aN))N−k−1

≤ kNk−1 exp{−(N − k − 1)P (z, aN)}

≤ kNk−1 exp{−(N − k − 1)f(z)cda
d
N + (N − k − 1)Cda

d+2
N }

≤ kNk−1 exp{−Cf(z)(log(N))1+δ} exp{log(N)(1+δ)(1+2/d)/N2/d}

≤ keNk−1 exp{−Cf(z)(log(N))1+δ}. (3.147)

The last inequality comes from the fact that log(N)(1+δ)(1+2/d)/N2/d < 1

for sufficiently large N . For z ∈ S2, we just use the trivial bound

Pr
(
ρk,1 > aN

∣∣Z1 = z ∈ S2

)
≤ 1. (3.148)
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Taking the expectation over Z1,

Pr ( ρk,1 > aN )

=

∫
S1

f(z) Pr
(
ρk,i > aN

∣∣Zi = z
)
dz +

∫
S2

f(z) Pr
(
ρk,i > aN

∣∣Zi = z
)
dz

≤ keNk−1

∫
S1

f(z) exp{−Cf(z)(log(N))1+δ}dz +

∫
S2

f(z)dz

≤ keCcN
k−1 exp{−CC0(log(N))1+δ}+ 2CaaNCg, (3.149)

where the last inequality comes from Assumption 2.(c). We complete the

proof by plugging in aN = ((logN)1+δ/N)1/d.

3.6.4 Proof of Lemma 9

Since Fz(u) is a continuous CDF, the corresponding pdf is given by:

fz(u) =
dFz(u)

du

= − exp{−ueψ(k)f(z)}
k−1∑
j=1

(ueψ(k)f(z))j−1

(j − 1)!
eψ(k)f(z)

+ eψ(k)f(z) exp{−ueψ(k)f(z)}
k−1∑
j=0

(ueψ(k)f(z))j

j!

=
1

(k − 1)!
eψ(k)f(z) exp{−ueψ(k)f(z)}(ueψ(k)f(z))k−1. (3.150)

Therefore,∫ ∞
0

log udFz(u)

=
1

(k − 1)!

∫ ∞
0

log u eψ(k)f(z) exp{−ueψ(k)f(z)}(ueψ(k)f(z))k−1du

=
1

(k − 1)!

∫ ∞
0

(log t− ψ(k)− log f(z)) e−ttk−1dt

= ψ(k)− ψ(k)− log f(z) = − log f(z), (3.151)

where the third-to-last equation comes from change of variable t = ueψ(k)f(z).

The last equation comes from ψ(k) = 1
(k−1)!

∫∞
0

(log t) tk−1e−tdt and 1 =
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1
(k−1)!

∫∞
0
tk−1e−tdt. Therefore,

∫ (∫ ∞
0

log udFz(u)

)
f(z)dx =

∫
(− log f(z)) f(z)dx = H(X). (3.152)

3.6.5 Proof of Lemma 10

Recall that

fz(u) =
1

(k − 1)!
eψ(k)f(z) exp{−ueψ(k)f(z)}(ueψ(k)f(z))k−1. (3.153)

Notice that rN(u) is the kth-order statistic of
{
‖X1−x‖, ‖X2−x‖, . . . , ‖XN−1−

x‖
}

. Therefore the density fN,z(u) is given by:

fN,z(u) = frN (u)
drN(u)

du

=
(N − 1)!

(k − 1)!(N − k − 1)!
(P (x, rN(u)))k−1

(1− P (x, rN(u)))N−k−1 dP (x, rN(u))

drN(u)

drN(u)

du

=
(N − 1)!

(k − 1)!(N − k − 1)!
(P (x, rN(u)))k−1

(1− P (x, rN(u)))N−k−1 dP (x, rN(u))

du
. (3.154)

Here P (x, r)(u) = Pr{‖X − x‖ < r} =
∫
t∈B(x,r)

f(t)dt. Since f is twice

differentiable and rN(u) goes to 0 as N goes to infinity, we can use the

quantity f(z)V ol(B(z, rN(u)) to estimate P (z, rN(u)). The following lemma

bounds the error of this estimation for x ∈ S1 and x ∈ S2 separately.

Lemma 12. Under Assumption 2.(a) amd (d), there exists a constant C

such that for sufficiently small r, we have

∣∣P (x, r)− f(z)cdr
d
∣∣ ≤ Crd+2, (3.155)

and ∣∣∣∣ dP (x, r)

dr
− f(z)dcdr

d−1

∣∣∣∣ ≤ Crd+1, (3.156)
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for x ∈ S1. For x ∈ S2, we have

∣∣P (x, r)− f(z)cdr
d
∣∣ ≤ Crd, (3.157)

and ∣∣∣∣ dP (x, r)

dr
− f(z)dcdr

d−1

∣∣∣∣ ≤ Crd−1. (3.158)

Using Lemma 12 and substituting r = rN(u) = (ueψ(k)/(cdN))1/d, we have:∣∣∣∣P (x, rN(u))− ueψ(k)f(z)

N

∣∣∣∣
=

∣∣P (x, rN(u))− f(z)cd(rN(u))d
∣∣ ≤ C1(rN(u))d+2, (3.159)

for x ∈ S1. Similarly,
∣∣∣ dduP (x, rN(u))− eψ(k)f(z)

N

∣∣∣ can be bounded by:

∣∣∣∣ dduP (x, rN(u))− eψ(k)f(z)

N

∣∣∣∣
=

drN(u)

du

∣∣∣∣ d

drN(u)
P (x, rN(u))− (

drN(u)

du
)−1 e

ψ(k)f(z)

N

∣∣∣∣
=

rN(u)

u d

∣∣∣∣ d

drN(u)
P (x, rN(u))− f(z)dcd(rN(u))d−1

∣∣∣∣
≤ C1(rN(u))d+2

u
, (3.160)

for x ∈ S1. Analogously we have
∣∣∣P (x, rN(u))− ueψ(k)f(z)

N

∣∣∣ ≤ C1(rN(u))d and∣∣∣ dduP (x, rN(u))− eψ(k)f(z)
N

∣∣∣ ≤ C1(rN(u))d/u for x ∈ S2. Now we can write the

difference of fN,z(u) and fz(u) via two terms:

|fN,z(u)− fz(u)| ≤ |fN,z(u)− f (1)
N,x(u)| + |f (1)

N,x(u)− fz(u)|, (3.161)

where f
(1)
N,x(u) defined as:

f
(1)
N,x(u) =

(N − 1)!

(k − 1)!(N − k − 1)!
(
ueψ(k)f(z)

N
)k−1

(1− ueψ(k)f(z)

N
)N−k−1 e

ψ(k)f(z)

N
. (3.162)

Consider the function g(p) = (N−1)!
(k−1)!(N−k−1)!

pk−1(1−p)N−k−1 for p ∈ (0, 1). By
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basic calculus, we can see that g(p) ≤ C2N and |g′(p)| ≤ C3N
2 for p ∈ (0, 1).

Therefore, the first term in (3.161) can be bounded as:

|fN,z(u)− f (1)
N,x(u)|

=

∣∣∣∣ g (P (x, rN(u)))
dP (x, rN(u))

du
− g

(
ueψ(k)f(z)

N

)
eψ(k)f(z)

N

∣∣∣∣
≤ g (P (x, rN(u)))

∣∣∣∣ dP (x, rN(u))

du
− eψ(k)f(z)

N

∣∣∣∣
+

∣∣∣∣ g (P (x, rN(u)))− g
(
ueψ(k)f(z)

N

) ∣∣∣∣ eψ(k)f(z)

N

≤ g (P (x, rN(u)))

∣∣∣∣ dP (x, rN(u))

du
− eψ(k)f(z)

N

∣∣∣∣
+ max

p∈(0,1)
|g′(p)|

∣∣∣∣P (x, rN(u))− ueψ(k)f(z)

N

∣∣∣∣ eψ(k)f(z)

N

≤ C1C2N(rN(u))d+2/u+ C1C3N
2(rN(u))d+2 e

ψ(k)f(z)

N

≤ C4
u1+2/d

N2/d
(1 +

1

u
) ≤ C4N

−2/d, (3.163)

for u ≤ 1 and x ∈ S1. Here C4 is the maximum of C1C2

(
eψ(k)Ca

)1+2/d
and

C1C3

(
eψ(k)Ca

)2+2/d
, where Ca = supx f(z) by Assumption 2.(a). Similarly,

we have |fN,z(u)− f (1)
N,z(u)| ≤ C4 for u ≤ 1 and x ∈ S2. For the second term,

we denote q = ueψ(k)f(z) for short. Then the second term in (3.161) can be

bounded as:

|f (1)
N,x(u)− fz(u)|

=
1

u

∣∣∣∣ (N − 1)!

(k − 1)!(N − k − 1)!

( q
N

)k(
1− q

N

)N−k−1

− 1

(k − 1)!
qke−q

∣∣∣∣
=

k

u

∣∣∣∣ (N−1
k )
( q
N

)k(
1− q

N

)N−k−1

− qke−q

k!

∣∣∣∣ . (3.164)

Notice that the difference inside the absolute value is just the difference of

P (X = k) under Bino(N−1, q/N) and Poisson(q). The difference is bounded

by the following lemma.

Lemma 13. For q < C
√
N , we have:∣∣∣∣ (N−1

k )
( q
N

)k(
1− q

N

)N−k−1

− qke−q

k!

∣∣∣∣ ≤ C5q
k+2e−qN−1, (3.165)
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for some C5 > 0.

Therefore, by Lemma 13, we have:

|f (1)
N,x(u)− fz(u)| ≤ C5

kqk+2e−q

uN

≤ C5
k(eψ(k)f(z))k+2uk+1

N
≤ C6N

−1, (3.166)

for u ≤ 1, here C6 = C5k(eψ(k)Ca)
k+1. Therefore, combining (3.163) and

(3.166), we have the desired statement.

3.6.6 Proof of Lemma 11

Recall that

Fz(u) = 1− exp{−ueψ(k)f(z)}
k−1∑
j=0

ueψ(k)f(z))j

j!
. (3.167)

The CDF FN,x(u) = Pr ( ρk,i < rN(u)|Xi = x ) is just the probability that at

least k samples are inside the ball B(x, rN(u)) and hence

FN,x(u)

= 1−
k−1∑
j=0

(N − 1)!

j!(N − j − 1)!
(P (x, rN(u)))j (1− P (x, rN(u)))N−j−1 .

(3.168)

So we have:

|FN,x(u)− Fz(u)|

=
∣∣∣ k−1∑
j=0

(N − 1)!

j!(N − j − 1)!
(P (x, rN(u)))j (1− P (x, rN(u)))N−j−1

− exp{−ueψ(k)f(z)}
k−1∑
j=0

ueψ(k)f(z))j

j!

∣∣∣
≤

k−1∑
j=0

1

j!

∣∣∣ (N − 1)!

(N − j − 1)!
(P (x, rN(u)))j (1− P (x, rN(u)))N−j−1

− exp{−ueψ(k)f(z)}(ueψ(k)f(z))j
∣∣∣. (3.169)
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Let

hN,x,j(u)

=
(N − 1)!

j!(N − j − 1)!
(P (x, rN(u)))j (1− P (x, rN(u)))N−j−1 , (3.170)

and

hx,j(u) =
1

j!
exp{−ueψ(k)f(z)}(ueψ(k)f(z))j. (3.171)

Consider

h
(1)
N,x,j(u)

=
(N − 1)!

j!(N − j − 1)!

(
ueψ(k)f(z)

N

)j (
1− ueψ(k)f(z)

N

)N−j−1

. (3.172)

We will bound |hN,x,j(u) − hx,j(u)| by |hN,x,j(u) − h
(1)
N,x,j(u)| + |h(1)

N,x,j(u) −
hx,j(u)|. For the first term, consider function gj(p) = (N−1)!

j!(N−j−1)!
pj(1−p)N−j−1.

It is easy to see that |g′j(p)| ≤ C1N for any p ∈ (0, 1). Therefore, by

Lemma 12, we obtain:

|hN,x,j(u)− h(1)
N,x,j(u)| =

∣∣∣∣ g(P (x, rN(u)))− g(
ueψ(k)f(z)

N
)

∣∣∣∣
≤ max

p∈(0,1)
|g′(p)|

∣∣∣∣P (x, rN(u)))− ueψ(k)f(z)

N

∣∣∣∣
≤ C1N(rN(u))d+2 ≤ C2u

1+2/dN−2/d, (3.173)

for x ∈ S1 and |hN,x,j(u) − h
(1)
N,x,j(u)| ≤ C2u for x ∈ S2, where C2 =

max{C1(eψ(k)Ca)
1+2/d, C1e

ψ(k)Ca}. For the second term, let q = ueψ(k)f(z),

and using a similar analysis as (3.166), we obtain:

|h(1)
N,x,j(u)− hx,j(u)|

=

∣∣∣∣ (N−1
j )(

q

N
)j(1− q

N
)N−j−1 − qje−q

j!

∣∣∣∣ ≤ C3
qj+2e−q

N
. (3.174)
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Combine (3.173) and (3.174), and we obtain:

|FN,x(u)− Fx(u)| ≤
k−1∑
j=0

|hN,x,j(u)− hx,j(u)|

≤
k−1∑
j=0

(
|hN,x,j(u)− h(1)

N,x,j(u)|+ |h(1)
N,x,j(u)− hx,j(u)|

)
≤ kC2u

1+2/dN−2/d + C3

k−1∑
j=0

qj+2e−q

N

≤ kC2u
1+2/d(N)−2/d + (k − 1)!C3q

2/N

≤ kC2u
1+2/d(N)−2/d + (k − 1)!C3(eψ(k)Ca)

2u2/N, (3.175)

for x ∈ S1. Here we used the fact that
∑k−1

j=1 q
je−q ≤ (k − 1)!

∑k−1
j=1

qje−q

(k−1)!
≤

(k − 1)!. Analogously, we have

|FN,x(u)− Fx(u)| ≤ kC2u+ (k − 1)!C3(eψ(k)Ca)
2u2/N, (3.176)

for x ∈ S2. Therefore, we have the desired statement by C5 = max{kC2, (k−
1)!C3(eψ(k)Ca)

2}.

3.6.7 Proof of Lemma 12

We will prove the lemma for x ∈ S1 and x ∈ S2 separately. For x ∈ S1, we

have ‖Hf (z)‖ ≤ Cd for every y ∈ B(x, r) as long as r ≤ aN . Hence, there

exists a y = at+ (1− a)x for some a ∈ [0, 1] such that

∣∣P (x, r)− f(z)cdr
d
∣∣ =

∣∣∣∣ ∫
t∈B(x,r)

( f(t)− f(z) ) dt

∣∣∣∣
=

∣∣∣∣ ∫
t∈B(x,r)

(
f(z) +∇f(z)T (t− x) + (t− x)THf (y)(t− x)− f(z)

)
dt

∣∣∣∣
=

∣∣∣∣ ∫
t∈B(x,r)

(
(t− x)THf (y)(t− x)

)
dt

∣∣∣∣
≤ Cd

∫
t∈B(x,r)

‖t− x‖2dt

≤ CdV ol(B(x, r)) · d · r2 ≤ C1r
d+2, (3.177)
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where V ol(B(x, r)) is the volume of B(x, r). ‖t−x‖2 ≤ d·r2 for all t ∈ B(x, r)

(here B(x, r) can be any p-norm ball with 1 ≤ p ≤ ∞). For the second part,

let S(B(x, r)) be the surface of B(x, r). Consider md−1 be the Lebesgue

measure on Rd−1, so md−1 (S(B(x, r)) ) = dcdr
d−1. Similarly we have:∣∣∣∣ dP (x, r)

dr
− f(z)dcdr

d−1

∣∣∣∣ =

∣∣∣∣ ∫
t∈S(B(x,r))

( f(t)− f(z) ) dmd−1(t)

∣∣∣∣
≤ Cd

∫
t∈S(B(x,r))

‖t− x‖2dmd−1(t) ≤ C2r
d+1. (3.178)

For x ∈ S2, we simply bound the difference by:

∣∣P (x, r)− f(z)cdr
d
∣∣ ≤ f(z)cdr

d ≤ Cacdr
d, (3.179)

and ∣∣∣∣ dP (x, r)

dr
− f(z)dcdr

d−1

∣∣∣∣ ≤ f(z)dcdr
d−1 ≤ Cadcdr

d−1, (3.180)

since f(z) ≤ Ca by Assumption 2.(a).

3.6.8 Proof of Lemma 13

We will prove that∣∣∣∣ log

(
(Nk)
( q
N

)k(
1− q

N

)N−k )
− log

(
qke−q

k!

) ∣∣∣∣ ≤ Cq2/N. (3.181)

Then for sufficiently small q such that exp{Cq2/N} ≤ 2Cq2/N , we obtain

our desired statement by the fact that |x − y| ≤ | log x − log y| · y
2

for small

enough | log x − log y|. Using Stirling’s formula: log(N !) = N logN − N +
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1
2

log(2πN) +O(1/N), the difference (3.181) is given by:∣∣∣∣ log

(
(Nk)
( q
N

)k(
1− q

N

)N−k )
− log

(
qke−q

k!

) ∣∣∣∣
=

∣∣∣ logN !− log(N − k)!− log k! + k log q + (N − k) log(N − q)

−N logN − k log q + q + log(k!)
∣∣∣

= | logN !− log(N − k)! + (N − k) log(N − q)−N logN + q |

≤
∣∣N logN −N +

1

2
log(2πN)− (N − k) log(N − k) + (N − k)

−1

2
log(2π(N − k)) + (N − k) log(N − q)−N logN + q

∣∣+ C/N

=

∣∣∣∣−k +
1

2
log

N

N − k
+ (N − k) log

N − q
N − k

+ q

∣∣∣∣+ C/N

=

∣∣∣∣−k + q + (N − k)

(
k − q
N − k

− (k − q)2

2(N − k)2
+O(

(k − q)3

(N − k)3
))

) ∣∣∣∣+ C/N

≤ (k − q)2

2(N − k)
+ Cq3/N2 + C/N ≤ Cq2/N, (3.182)

where we used the assumption that q < C
√
N for sufficiently small constant

C > 0.

3.7 Proof of Theorem 5 on the variance of KSG

estimator

We use the Efron-Stein inequality to bound the variance of the estimator.

Similar as the proof of Theorem 4, we drop the superscript KSG or BI-KSG

and subscript 2 or ∞ when the statement holds for both. Reminder that

we use Z = (X, Y ) for ease of notation through the proof. For simplicity,

let Î(N)(Z) be the estimate based on original samples {Z1, Z2, . . . , ZN}. For

the usage of Efron-Stein inequality, we consider another set of i.i.d. sam-

ples {Z ′1, Z ′2, . . . , Z ′N} drawn from the same distribution. Let Î(N)(Z(j)) be

the estimate based on {Z1, . . . , Zj−1, Z
′
j, Zj+1, . . . , ZN}. Then Efron-Stein

inequality states that

Var
[
Î(N)(Z)

]
≤ 1

2

N∑
j=1

E
[(

Î(N)(Z)− Î(N)(Z(j))
)2
]
. (3.183)
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Now we will give an upper bound for the difference |Î(N)(Z)− Î(N)(Z(j))|
for given index j. First of all, let Î(N)(Z\j) = (1/N)

∑N
i=1,i 6=j ιk,i(Z\j) be the

estimate based on {Z1, . . . , Zj−1, Zj+1, . . . , ZN}, then by triangle inequality,

we have:

sup
Z1,...,ZN ,Z

′
j

∣∣∣ Î(N)(Z)− Î(N)(Z(j))
∣∣∣

≤ sup
Z1,...,ZN ,Z

′
j

( ∣∣∣ Î(N)(Z)− Î(N)(Z\j)
∣∣∣+
∣∣∣ Î(N)(Z\j)− Î(N)(Z(j))

∣∣∣ )
≤ sup

Z1,...,ZN

∣∣∣ Î(N)(Z)− Î(N)(Z\j)
∣∣∣

+ sup
Z1,...,Zj−1,Z′j ,Zj+1,...,ZN

∣∣∣ Î(N)(Z\j)− Î(N)(Z(j))
∣∣∣

= 2 sup
Z1,...,ZN

∣∣∣ Î(N)(Z)− Î(N)(Z\j)
∣∣∣, (3.184)

where the last equality is because of {Z1, . . . , Zj−1, Z
′
j, Zj+1, . . . , ZN} has

the same joint distribution as {Z1, . . . , ZN}. Now recall that Î(N)(Z) =

(1/N)
∑N

i=1 ιk,i(Z). Therefore, we have

sup
Z1,...,ZN ,Z

′
j

∣∣∣ Î(N)(Z)− Î(N)(Z(j))
∣∣∣

≤ 2

N
sup

Z1,...,ZN

N∑
i=1

∣∣∣ ιk,i(Z)− ιk,i(Z\j)
∣∣∣, (3.185)

by defining ιk,j(Z\j) = 0. Now we need to upper-bound the difference

| ιk,i(Z) − ιk,i(Z\j) | created by eliminating sample Zj for different i ’s. We

consider the following cases of i’s as follows:

• Case I. i = j. In this case ιk,i(Z\j) = 0 and the upper bounds

|ιk,i(Z)| ≤ 2 logN always holds, so | ιk,i(Z)− ιk,i(Z\j) | ≤ 2 logN . The

number of i’s in this case is only 1. So
∑

Case I | ιk,i(Z) − ιk,i(Z\j) | ≤
2 logN .

• Case II. Zj is in the k-nearest neighbors of Zi. In this case, we do not

know how nx,i and ny,i will change by eliminating Zj, so we just use

the loosest bound | ιk,i(Z)− ιk,i(Z\j) | ≤ 4 logN . However, the number

of i’s in this case is upper bounded by the following lemma.

Lemma 14. Let Z,Z1, Z2, . . . , ZN be vectors of Rd and Zi be the set

85



{Z1, . . . , Zi−1, Z, Zi+1, . . . , ZN}. Then

N∑
i=1

I{Z is in the k-NN of Zi in Zi} ≤ kγd, (3.186)

(distance ties are broken by comparing indices). Here γd is the mini-

mum number of cones with angle smaller than π/6 needed to cover Rd.

Moreover, if we allow k to be different for difference i, we have

N∑
i=1

1

ki
I{Z is in the ki-NN of Zi in Zi} ≤ γd(logN + 1). (3.187)

By the first inequality in Lemma 14, the number of i’s in this case is

upper bounded by kγdx+dy . Therefore,
∑

Case II | ιk,i(Z) − ιk,i(Z\j) | ≤
4kγdx+dy logN .

• Case III. Zj is not in the k-nearest neighbors of Zi, but ‖Xj −Xi‖ ≤
ρk,i, i.e., Xj is in the nx,i-nearest neighbors of Xi. In this case, nx,i will

decrease by 1 and ny,i remains the same. So

| ιk,i,∞(Z)− ιk,i,∞(Z\j) |

≤ |ψ(nx,i,∞ + 1)− ψ(nx,i,∞)| = 1

nx,i,∞
, (3.188)

| ιk,i,2(Z)− ιk,i,2(Z\j) |

≤ | log(nx,i,2)− log(nx,i,2 − 1)| ≤ 1

nx,i,2 − 1
≤ 2

nx,i,2
, (3.189)

where the last inequality comes from nx,i,2 ≥ k ≥ 2. We do not have

an upper bound for the number of i’s in this case, but from the second

inequality in Lemma 14, we have the following upper bound, where

Xi,j = {X1, . . . , Xi−1, Xj, Xi+1, . . . , XN}:∑
Case III

| ιk,i(Z)− ιk,i(Z\j) |

≤
N∑
i=1

2

nx,i
I{Xj is in the nx,i-NN of Xi in Xi,j}

≤ 2γdx(logN + 1) ≤ 2γdx+dy(logN + 1). (3.190)
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• Case IV. Zj is not in the k-nearest neighbors of Zi, but ‖Yj−Yi‖ ≤ ρk,i,

i.e., Yj is in the ny,i-nearest neighbors of Yi. In this case, ny,i will

decrease by 1 and nx,i remains the same. Follow the same analysis in

Case III, we have
∑

Case IV | ιk,i(Z)− ιk,i(Z\j) | ≤ 2γdx+dy(logN + 1) as

well.

• Case V. Zj is not in the k-nearest neighbors of Zi, and ‖Xj−Xi‖ > ρk,i,

‖Yj − Yi‖ > ρk,i. In this case, neither nx,i nor ny,i will change. So∑
Case V | ιk,i(Z)− ιk,i(Z\j) | = 0.

Combining the five cases, we have:

N∑
i=1

∣∣∣ ιk,i(Z)− ιk,i(Z\j)
∣∣∣

≤ 2 logN + 4kγdx+dy logN + 4γdx+dy(logN + 1), (3.191)

for k ≥ 1, logN ≥ 1 and all {Z1, . . . , ZN}. Plug it into (3.185), we obtain,

sup
Z1,...,ZN ,Z

′
j

∣∣∣ Î(N)(Z)− Î(N)(Z(j))
∣∣∣

≤
2(2 logN + 4kγdx+dy logN + 4γdx+dy(logN + 1))

N

≤
28γdx+dyk logN

N
. (3.192)

Plug it into Efron-Stein inequality (3.183), we obtain:

Var
[
Î(N)(Z)

]
≤ 1

2

N∑
j=1

E
[(

Î(N)(Z)− Î(N)(Z(j))
)2
]

≤ 1

2

N∑
j=1

sup
Z1,...,Zn,Z′j

(
Î(N)(Z)− Î(N)(Z(j))

)2

≤ 1

2

N∑
j=1

(
28γdx+dyk logN

N
)2 =

392γ2
dx+dy

k2 log2N

N
. (3.193)

3.7.1 Proof of Lemma 14

For the first part of the lemma, we refer to Lemma 20.6 in [51]. The second

part of the lemma is a consequence of the first part. We reorder the indices
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i’s by ki and rewrite the summation as follows,

N∑
i=1

1

ki
I{Z is in the ki-NN of Zi in Zi}

=
N∑
k=1

1

k

N∑
i=1

I{ki = k}I{Z is in the k-NN of Zi in Zi}

=
N∑
k=1

1

k

N∑
i=1

I{ki = k and Z is in the k-NN of Zi in Zi}. (3.194)

Notice that we take the summation over k = 1 to N since each ki can not be

more than N . Denote Sk =
∑N

i=1 I{ki = k and Z is in the k-NN of Zi in the

set {Z1, . . . , Zi−1, Z, Zi+1, . . . , ZN}} for simplicity. Then we need to prove

that
∑N

k=1(Sk/k) ≤ γd logN . By the first part of this lemma, we obtain,

k∑
`=1

S` =
k∑
`=1

N∑
i=1

I{ki = ` and Z is in the `-NN of Zi in Zi}

=
N∑
i=1

k∑
`=1

I{ki = ` and Z is in the `-NN of Zi in Zi}

≤
N∑
i=1

I{ki ≤ k and Z is in the k-NN of Zi in Zi}

≤ kγd. (3.195)

Therefore, we obtain

N∑
k=1

Sk
k

=
N−1∑
k=1

1

k(k + 1)

(
k∑
`=1

S`

)
+

1

N

N∑
`=1

S`

≤
N−1∑
k=1

kγd
k(k + 1)

+
Nγd
N

=
N∑
k=1

γd
k
< γd(logN + 1), (3.196)

which completes the proof.
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CHAPTER 4

GEOMETRICAL ADAPTIVE ENTROPY
ESTIMATION

Unsupervised representation learning is one of the major themes of modern

data science; a common theme among the various approaches is to extract

maximally “informative” features via information-theoretic metrics (entropy,

mutual information and their variations) – the primary reason for the popu-

larity of information-theoretic measures is that they are invariant to one-to-

one transformations and that they obey natural axioms such as data process-

ing. Such an approach is evident in many applications, as varied as compu-

tational biology [29], sociology [11] and information retrieval [122], with the

citations representing a mere smattering of recent works. Within mainstream

machine learning, a systematic effort at unsupervised clustering and hierar-

chical information extraction is conducted in recent works of [90, 92]. The

basic workhorse in all these methods is the computation of mutual informa-

tion (pairwise and multivariate) from i.i.d. samples. Indeed, sample-efficient

estimation of mutual information emerges as the central scientific question

of interest in a variety of applications, and is also of fundamental interest to

statistics, machine learning and information theory communities.

While these estimation questions have been studied in the past three

decades (and summarized in [123]), the renewed importance of estimating

information-theoretic measures in a sample-efficient manner is persuasively

argued in a recent work [79], where the authors note that existing estimators

perform poorly in several key scenarios of central interest (especially when

the high-dimensional random variables are strongly related to each other).

The most common estimators (featured in scientific software packages) are

nonparametric and involve k nearest neighbor (NN) distances between the

samples. The widely used estimator of mutual information is the one by

Kraskov and Stögbauer and Grassberger [4] and christened the KSG esti-

mator (nomenclature based on the authors, cf. [79]) – while this estimator

works well in practice (and performs better than other approaches such as
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those based on kernel density estimation procedures on a variety of standard

distributions [124]), it still suffers in high dimensions. The basic issue is

that the KSG estimator (and the underlying differential entropy estimator

based on nearest neighbor distances by Kozachenko and Leonenko (KL, not

to be confused with Kullback-Leibler) [2]) does not take advantage of the fact

that the samples could lie in a smaller dimensional subspace (more generally,

manifold) despite the high dimensionality of the data itself. Such lower di-

mensional structures effectively act as boundaries, causing the estimator to

suffer from what is known as boundary biases.

Ameliorating this deficiency is the central theme of recent works [87, 79,

115], each of which aims to improve upon the classical KL (differential) en-

tropy estimator of [2]. A local SVD is used to heuristically improve the

density estimate at each sample point in [79], while a local Gaussian density

(with empirical mean and covariance weighted by NN distances) is heuristi-

cally used for the same purpose in [115]. Both these approaches, while in-

spired and intuitive, come with no theoretical guarantees (even consistency)

and from a practical perspective involve delicate choice of key hyper param-

eters. An effort toward a systematic study is initiated in [87] which connects

the aforementioned heuristic efforts of [79, 115] to the local log-likelihood

density estimation methods [6, 7] from theoretical statistics.

The local density estimation method is a strong generalization of the tradi-

tional kernel density estimation methods, but requires a delicate normaliza-

tion which necessitates the solution of certain integral equations (cf. Equation

(9) of [7]). Indeed, such an elaborate numerical effort is one of the key im-

pediments for the entropy estimator of [87] to be practically valuable. A

second key impediment is that theoretical guarantees (such as consistency)

can only be provided when the bandwidth is chosen globally (leading to poor

sample complexity in practice) and consistency requires the bandwidth h to

be chosen such that nhd →∞ and h→ 0, where n is the sample size and d

is the dimension of the random variable of interest.

More generally, it appears that a systematic application of local log-likelihood

methods to estimate functionals of the unknown density from i.i.d. samples

is missing in the theoretical statistics literature (despite local log-likelihood

methods for regression and density estimation being standard textbook fare

[125, 126]). We resolve each of these deficiencies in this chapter by undertak-

ing a comprehensive study of estimating the entropy and mutual information
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from i.i.d. samples using sample dependent bandwidth choices (typically fixed

k-NN distances). This effort allows us to connect disparate threads of ideas

from different arenas: NN methods, local log-likelihood methods, asymp-

totic order statistics and sample-dependent heuristic, but inspired, methods

for mutual information estimation suggested in the work of [4].

Main contributions of Chapter 4:

1. Density estimation: Parameterizing the log density by a polynomial

of degree p, we derive simple closed-form expressions for the local log-

likelihood maximization problem for the cases of p ≤ 2 for arbitrary

dimensions, with Gaussian kernel choices. This derivation, posed as an

exercise in [126, Exercise 5.2], significantly improves the computational

efficiency upon similar endeavors in the recent efforts of [87, 115, 112].

2. Entropy estimation: Using resubstitution of the local density esti-

mate, we derive a simple closed-form estimator of the entropy using

a sample dependent bandwidth choice (of k-NN distance, where k is

a fixed small integer independent of the sample size): this estimator

outperforms state of the art entropy estimators in a variety of settings.

Since the bandwidth is data dependent and vanishes too fast (because k

is fixed), the estimator has a bias, which we derive a closed form expres-

sion for and show that it is independent of the underlying distribution

and hence can be easily corrected: this is our main theoretical contri-

bution, and involves new theorems on asymptotic statistics of nearest

neighbors generalizing classical work in probability theory [127], which

might be of independent mathematical interest.

3. Generalized view: We show that seemingly very different approaches

to entropy estimation – recent works of [79, 87, 115] and the classical

work of fixed k-NN estimator of Kozachenko and Leonenko [2] – can all

be cast in the local log-likelihood framework as specific kernel and sam-

ple dependent bandwidth choices. This allows for a unified view, which

we theoretically justify by showing that resubstitution entropy estima-

tion for any kernel choice using fixed k-NN distances as bandwidth

involves a bias term that is independent of the underlying distribution

(but depends on the specific choice of kernel and parametric density

91



family). Thus our work is a strict mathematical generalization of the

classical work of [2].

4. Mutual information estimation: The inspired work of [4] con-

structs a mutual information estimator that subtly altered (in a sample

dependent way) the three KL entropy estimation terms, leading to su-

perior empirical performance. We show that the underlying idea behind

this change can be incorporated in our framework as well, leading to

a novel mutual information estimator that combines the two ideas and

outperforms state of the art estimators in a variety of settings.

In the rest of this chapter we describe these main results, the sections are

organized in roughly the same order as the enumerated list.

4.1 Local likelihood density estimation (LLDE)

Given n i.i.d. samples X1, . . . , Xn, estimating the unknown density fX(·)
in Rd is a very basic statistical task. Local likelihood density estimators

[7, 6] constitute state of the art and are specified by a suitable nonnegative

weight function K : Rd → R+ (also called a kernel), a degree p ∈ Z+ of the

polynomial approximation, and the bandwidth h ∈ R+, and maximizes the

local log-likelihood:

Lx(f) =
n∑
j=1

K

(
Xj − x
h

)
log f(Xj)− n

∫
K

(
u− x
h

)
f(u)du,

(4.1)

where maximization is over an exponential polynomial family, locally ap-

proximating f(u) near x:

loge fa,x(u)

= a0 + 〈a1, u− x〉+ 〈u− x, a2(u− x)〉+ · · ·+ ap[u− x, . . . , u− x],

(4.2)

parameterized by a = (a0, . . . , ap) ∈ R1×d×d2×···×dp , where 〈·, ·〉 denotes the

inner-product and ap[u, . . . , u] the p-th order tensor projection. The local

likelihood density estimate (LLDE) is defined as f̂n(x) = fâ(x),x(x) = eâ0(x),
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where â(x) ∈ arg maxa Lx(fa,x). The maximizer is represented by a series

of nonlinear equations, and does not have a closed-form solution in general.

We present below a few choices of the degrees and the weight functions that

admit closed-form solutions. Concretely, for p = 0, it is known that LDDE

reduces to the standard Kernel Density Estimator (KDE) [7]:

f̂n(x) =
1

n

n∑
i=1

K

(
x−Xi

h

)/∫
K

(
u− x
h

)
du. (4.3)

If we choose the step function K(u) = I(‖u‖ ≤ 1) (‖ · ‖ denotes Eu-

clidean norm) with a local and data-dependent choice of the bandwidth

h = ρk,x where ρk,x is the k-NN distance from x, then the above estima-

tor recovers the popular k-NN density estimate as a special case, namely, for

Cd = πd/2/Γ(d/2 + 1),

f̂n(x) =
1
n

∑n
i=1 I(‖Xi − x‖ ≤ ρk,x)

Vol{u ∈ Rd : ‖u− x‖ ≤ ρk,x}
=

k

nCd ρdk,x
. (4.4)

For higher degree local likelihood, we provide simple closed-form solutions.

Somewhat surprisingly, this result has eluded prior works [115, 112] and [87]

which specifically attempted the evaluation for p = 2. Part of the subtlety

in the result is to critically use the fact that the parametric family (e.g.,

the polynomial family in (4.2)) need not be normalized themselves; the local

log-likelihood maximization ensures that the resulting density estimate is

correctly normalized so that it integrates to 1.

Proposition 1. [126, Exercise 5.2] For a degree p ∈ {1, 2}, the maximizer of

local likelihood (4.1) admits a closed-form solution, when using the Gaussian

kernel K(u) = e−
‖u‖2

2 . In case of p = 1,

f̂n(x) =
S0

n(2π)d/2hd
exp

{
−1

2

1

S2
0

‖S1‖2

}
, (4.5)

where S0 ∈ R and S1 ∈ Rd are defined for given x ∈ Rd and h ∈ R as

S0 ≡
n∑
j=1

e−
‖Xj−x‖

2

2h2 , S1 ≡
n∑
j=1

1

h
(Xj − x) e−

‖Xj−x‖
2

2h2 . (4.6)
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In case of p = 2, for S0 and S1 defined as above,

f̂n(x) =
S0

n(2π)d/2hd|Σ|1/2
exp

{
− 1

2

1

S2
0

ST1 Σ−1S1

}
, (4.7)

where |Σ| is the determinant and S2 ∈ Rd×d and Σ ∈ Rd×d are defined as

S2 ≡
n∑
j=1

1

h2
(Xj − x)(Xj − x)T e−

‖Xj−x‖
2

2h2 , Σ ≡ S0S2 − S1S
T
1

S2
0

, (4.8)

where it follows from Cauchy-Schwarz that Σ is positive semidefinite.

One of the major drawbacks of the KDE and k-NN methods is the in-

creased bias near the boundaries. LLDE provides a principled approach to

automatically correct for the boundary bias, which takes effect only for p ≥ 2

[6, 128]. This explains the performance improvement for p = 2 in Figure 4.1

(top panel), and the gap increases with the correlation as boundary effect be-

comes more prominent. We use the proposed estimators with p ∈ {0, 1, 2} to

estimate the mutual information between two jointly Gaussian random vari-

ables with correlation r, from n = 500 samples, using resubstitution methods

explained in the next sections. Each point is averaged over 100 instances.

In the right panel, we generate i.i.d. samples from a two-dimensional Gaus-

sian with correlation 0.9, and find a local approximation f̂(u−x∗) around x∗

denoted by the blue ∗ in the center. Standard k-NN approach fits a uniform

distribution over a circle enclosing k = 20 nearest neighbors (red circle). The

green lines are the contours of the degree-2 polynomial approximation with

bandwidth h = ρ20,x. The figure illustrates that k-NN method suffers from

boundary effect, where it underestimates the probability by over estimating

the volume in (4.4). However, degree-2 LDDE is able to correctly capture

the local structure of the pdf, correcting for boundary biases.

Despite the advantages of the LLDE, it requires the bandwidth to be data

independent and vanishingly small (sublinearly in sample size) for consis-

tency almost everywhere – this is an impediment to practical use since data-

independent bandwidth lacks the capability to capture local geometry of

data. On the other hand, if we restrict our focus to functionals of the den-

sity, then both these issues are resolved: this is the focus of Section 4.2

where we show that the bandwidth can be chosen to be based on fixed k-NN

distances and the resulting universal bias readily corrected.
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Figure 4.1: The boundary bias becomes less significant and the gap closes
as correlation decreases for estimating the mutual information (left). Local
approximation around the blue ∗ in the center. The degree-2 local
likelihood approximation (contours in green) automatically captures the
local structure whereas the standard k-NN approach (uniform distribution
in red circle) fails (left).

4.2 Second-order k-LNN entropy estimator

We consider the resubstitution entropy estimators which has the form Ĥ(x) =

−(1/n)
∑n

i=1 log f̂n(Xi) and propose to use the local likelihood density esti-

mator in (4.7) and a choice of bandwidth that is local (varying for each point

x) and adaptive (based on the data). Concretely, we choose, for each sam-

ple point Xi, the bandwidth hXi to be the the distance to its k-th nearest

neighbor ρk,Xi (we use ρk,i instead of ρk,Xi for simplicity of notation for the re-

mainder of the chapter). Precisely, we propose the following k-Local Nearest

Neighbor (k-LNN) entropy estimator of degree-2:

Ĥ
(n)
kLNN(X) = − 1

n

n∑
i=1

{
log

S0,i

n(2π)d/2ρdk,i|Σi|1/2
− 1

2

1

S2
0,i

ST1,iΣ
−1
i S1,i

}
−Bk,d,

(4.9)

where subtracting Bk,d defined in Theorem 8 removes the asymptotic bias,

and k ∈ Z+ is the only hyper parameter determining the bandwidth. In

practice k is a small integer fixed to be in the range 4 ∼ 8. We only use the

dlog ne nearest subset of samples Si = {j ∈ [n] : j 6= i and ‖Xi − Xj‖ ≤
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ρdlogne,i} in computing the following quantities:

S0,i ≡
∑
j∈Si

e
−
‖Xj−Xi‖

2

2ρ2
k,i , S1,i ≡

∑
j∈Si

1

ρk,i
(Xj −Xi)e

−
‖Xj−Xi‖

2

2ρ2
k,i ,

S2,i ≡
∑
j∈Si

1

ρ2
k,i

(Xj −Xi)(Xj −Xi)
T e
−
‖Xj−Xi‖

2

2ρ2
k,i , Σi ≡

S0,iS2,i − S1,iS
T
1,i

S2
0,i

.

(4.10)

The truncation is important for computational efficiency, but the analysis

works as long as m = O(n1/(2d)−ε) for any positive ε that can be arbitrarily

small. For a larger m, for example of Ω(n), those neighbors that are further

away have a different asymptotic behavior. We show in Theorem 8 that the

asymptotic bias is independent of the underlying distribution and hence can

be precomputed and removed, under mild conditions on a twice continuously

differentiable pdf f(x) (cf. Lemma 15).

Theorem 8. For k ≥ 3 and X1, X2, . . . , Xn ∈ Rd are i.i.d. samples from a

twice continuously differentiable pdf f(x) such that E[| log f(X)|] <∞, then

lim
n→∞

E[Ĥ
(n)
kLNN(X)] = H(X), (4.11)

where Bk,d in (4.9) is a constant that only depends on k and d. Further, if

E[(log f(X))2] < ∞ then the variance of the proposed estimator is bounded

by Var[Ĥ
(n)
kLNN(X)] = O((log n)2/n).

This proves the L1 and L2 consistency of the k-LNN estimator. As noted

in [113], such an assumption is common in the literature on consistency of

k-NN estimators, where it has been implicitly assumed in existing analyses

of entropy estimators including [2, 129, 130, 123], without explicitly stating

that such assumptions are being made.

Our choice of a local adaptive bandwidth hXi = ρk,i is crucial in ensuring

that the asymptotic bias Bk,d does not depend on the underlying distribution

f(x). This relies on a fundamental connection to the theory of asymptotic

order statistics made precise in Lemma 15, which also gives the explicit

formula for the bias below.

The main idea is that the empirical quantities used in the estimate (4.10)

converge in large n limit to similar quantities defined over order statistics.
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We make this intuition precise in Section 4.3. We define order statistics

over i.i.d. standard exponential random variables E1, E2, . . . , Em and i.i.d.

random variables ξ1, ξ2, . . . , ξm drawn uniformly (the Haar measure) over the

unit sphere in Rd, for a variable m ∈ Z+. We define for α ∈ {0, 1, 2},

S̃(m)
α ≡

m∑
j=1

ξ
(α)
j

(
∑j

`=1E`)
α

(
∑k

`=1 E` )α
exp

{
− (

∑j
`=1 E` )2

2(
∑k

`=1E` )2

}
, (4.12)

where ξ
(0)
j = 1, ξ

(1)
j = ξj ∈ Rd, and ξ

(2)
j = ξjξ

T
j ∈ Rd×d, and let S̃α =

limm→∞ S̃
(m)
α and Σ̃ = (1/S̃0)2(S̃0S̃2− S̃1S̃

T
1 ). We show that the limiting S̃α’s

are well-defined (in the proof of Theorem 8) and are directly related to the

bias terms in the resubstitution estimator of entropy:

Bk,d

= E[ log(
k∑
`=1

E`) +
d

2
log 2π − log(CdS̃0) +

1

2
log
∣∣Σ̃∣∣+ (

1

2S̃2
0

S̃T1 Σ̃−1S̃1) ].

(4.13)

In practice, we propose using a fixed small k such as five. For k ≤ 3

the estimator has a very large variance, and numerical evaluation of the

corresponding bias also converges slowly. For some typical choices of k, we

provide approximate evaluations below, where 0.0183(±6) indicates empirical

mean µ = 183 × 10−4 with confidence interval 6 × 10−4. In these numerical

evaluations, we truncated the summation at m = 50, 000. Although we prove

that Bk,d converges in m, in practice, one can choose m based on the number

of samples and Bk,d can be evaluated for that m.

Theoretical contribution: Our key technical innovation is a funda-

mental connection between nearest neighbor statistics and asymptotic or-

der statistics, stated below as Lemma 15: we show that the (normalized)

distances ρ`,i’s jointly converge to the standardized uniform order statistics

and the directions (Xj` −Xi)/‖Xj` −Xi‖’s converge to independent uniform

distribution (Haar measure) over the unit sphere.

Conditioned on Xi = x, the proposed estimator uses nearest neighbor

statistics on Z`,i ≡ Xj` − x where Xj` is the `-th nearest neighbor from x

such that Z`,i = ((Xj` − Xi)/‖Xj` − Xi‖)ρ`,i. Naturally, all the techniques

we develop generalize to any estimators that depend on the nearest neighbor
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Table 4.1: Numerical evaluation of Bk,d, via sampling 1, 000, 000 instances
for each pair (k, d).

k
4 5 6 7

d
1 -0.0183(±6) -0.0233(±6) -0.0220(±4) -0.0200(±4)
2 -0.1023(±5) -0.0765(±4) -0.0628(±4) -0.0528(±3)

statistics {Z`,i}i,`∈[n] – and the value of such a general result is demonstrated

later (in Section 4.3) when we evaluate the bias in similarly inspired entropy

estimators [79, 87, 115, 2].

Lemma 15. Let E1, E2, . . . , Em be i.i.d. standard exponential random vari-

ables and ξ1, ξ2, . . . , ξm be i.i.d. random variables drawn uniformly over the

unit (d − 1)-dimensional sphere in d dimensions, independent of the Ei’s.

Suppose f is twice continuously differentiable and x ∈ Rd satisfies that there

exists ε > 0 such that f(a) > 0, ‖∇f(a)‖ = O(1) and ‖Hf (a)‖ = O(1)

for any ‖a − x‖ ≤ ε. Then for any m = O(log n), we have the following

convergence conditioned on Xi = x:

lim
n→∞

dTV((cdnf(x))1/d(Z1,i, . . . , Zm,i ), ( ξ1E
1/d
1 , . . . , ξm(

m∑
`=1

E`)
1/d )) = 0,

(4.14)

where dTV(·, ·) is the total variation and cd is the volume of unit Euclidean

ball in Rd.

The proof of Theorem 8 consists two parts — upper bound of the bias

and the upper bound of the variance. The bias of the estimator can be

written as a function of the order statistics (Z1,i, . . . , Zm,i), which converges

to standard random variables by Lemma 15. Therefore, the bias converges to

a fixed quantity only depends on k and d. The upper bound of the variances

comes from Efron-Stein inequality.

Empirical contribution: Numerical experiments suggest that the proposed

estimator outperforms state-of-the-art entropy estimators, and the gap in-

creases with correlation. The idea of using k-NN distance as bandwidth for

entropy estimation was originally proposed by Kozachenko and Leonenko in

[2], and is a special case of the k-LNN method we propose with degree 0 and
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a step kernel. We refer to Section 4.3 for a formal comparison. Another pop-

ular resubstitution entropy estimator is to use KDE in (4.3) [54], which is a

special case of the k-LNN method with degree 0, and the Gaussian kernel is

used in simulations. As comparison, we also study a new estimator [31] based

on von Mises expansion (as opposed to simple re-substitution) which has an

improved convergence rate in the large sample regime. In Figure 4.2 (left),

we draw 100 samples i.i.d. from two standard Gaussian random variables

with correlation r, and plot resulting mean squared error averaged over 100

instances. The ground truth, in this case is H(X) = log(2πe)+0.5 log(1−r2).

On the right, we repeat the same simulation for fixed r = 0.99999 and varying

number of samples and m = 7 loge n.
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Figure 4.2: Degree-2 k-LNN outperforms other state-of-the-art estimators
for entropy estimation.

In Figure 4.3, we repeat the same simulation for 6 standard Gaussian

random variables with Cov(X1, X2) = Cov(X3, X4) = Cov(X5, X6) = r and

Cov(Xi, Xj) = 0 for other pairs (i, j). On the left, we draw 100 i.i.d. samples

with various r. We plot resulting mean squared error averaged over 100

instances. The ground truth is H(X) = 3 log(2πe) + 1.5 log(1 − r2). On

the right, we repeat the same simulation for fixed r = 0.99999 and varying

number of samples and m = 7 loge n.

In Figure 4.4 (left), we draw 100 samples i.i.d. from a mixture of two

joint Gaussian distributions with zero mean and covariance

(
1 r

r 1

)
and(

1 −r
−r 1

)
, respectively, and plot resulting average estimate over 100 in-

stances. Here we plot an upper bound of the ground truth H(X) ≤ log(2) +
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Figure 4.3: Degree-2 k-LNN outperforms other state-of-the-art estimators
for high-dimensional entropy estimation.

log(2πe)+0.5 log(1− r2) for r ≥ 0.9. On the right, we repeat the same simu-

lation for fixed r = 0.99999 and varying number of samples and m = 7 loge n.
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Figure 4.4: Degree-2 k-LNN outperforms other state-of-the-art estimators
for non-Gaussian entropy estimation.

4.3 Universality of the k-LNN approach

In this section, we show that Theorem 8 holds universally for a general family

of entropy estimators, specified by the choice of k ∈ Z+, degree p ∈ Z+, and

a kernel K : Rd → R, thus allowing a unified view of several seemingly

disparate entropy estimators [2, 79, 87, 115]. The template of the entropy

estimator is the following: given n i.i.d. samples, we first compute the local

density estimate by maximizing the local likelihood defined in (4.1) with
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bandwidth ρk,i, and then resubstitute it to estimate entropy: Ĥ
(n)
k,p,K(X) =

−(1/n)
∑n

i=1 log f̂n(Xi).

Theorem 9. For the family of estimators described above, under the hypothe-

ses of Theorem 8, if the solution to the maximization â(x) = arg maxa Lx(fa,x)
exists for all x ∈ {X1, . . . , Xn}, then for any choice of k ≥ p + 1, p ∈ Z+,

and K : Rd → R, the asymptotic bias is independent of the underlying dis-

tribution:

lim
n→∞

E[Ĥ
(n)
k,p,K(X)] = H(X) + B̃k,p,K,d, (4.15)

for some constant B̃k,d,p,K that only depends on k, p,K and d.

Although in general there is no simple analytical characterization of the

asymptotic bias B̃k,p,K,d it can be readily numerically computed: since B̃k,p,K,d

is independent of the underlying distribution, one can run the estimator

over i.i.d. samples from any distribution and numerically approximate the

bias for any choice of the parameters. However, when the maximization

â(x) = arg maxa Lx(fa,x) admits a closed-form solution, as is the case with

proposed k-LNN, then B̃k,p,K,d can be characterized explicitly in terms of

uniform order statistics.

This family of estimators is general: for instance, the popular KL estimator

is a special case with p = 0 and a step kernel K(u) = I(‖u‖ ≤ 1). Kozachenko

and Leonenko [2] showed that the asymptotic bias is independent of the

dimension d and can be computed exactly to be log n− ψ(n) + ψ(k)− log k

and ψ(k) is the digamma function defined as ψ(x) = Γ−1(x)dΓ(x)/dx. The

dimension independent nature of this asymptotic bias term (of O(n−1/2) for

d = 1 in [32, Theorem 1] and O(n−1/d) for general d ≥ 2 in [8]) is special to

the choice of p = 0 and the step kernel; Analogously, the estimator in [79]

can be viewed as a special case with p = 0 and an ellipsoidal step kernel.

For p = 0 and general kernel choice K, this family of estimators become

the resubstitution entropy estimator Ĥ(x) = −(1/n)
∑n

i=1 log f̂n(Xi) where

f̂n(Xi) is simply KDE (or equivalently, zeroth order LLDE) (4.3) combined

with an adaptive bandwidth choice. When using KDE, the bandwidth h is

typically chosen to satisfy h → 0 and nhd → ∞ in order to ensure that the

mean squared error vanishes as the number of samples n increases. How-

ever, the adaptive bandwidth ρk,i does not satisfy nρdk,i →∞ for fixed small
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k, giving the resubstitution entropy estimator an non-zero asymptotic bias.

Theorem 9 shows that the asymptotic bias B̃k,p,K,d is independent of the

underlying distribution, hence can be precomputed, and removed for any

particular choice of kernel K and parameter k. Table 4.2 provides an ap-

proximate estimation of B̃k,p=0,K,d for typical choices of k and two widely

used kernels (Gaussian kernel K(u) ∝ exp{−‖u‖2/2} and Epanechnikov ker-

nel K(u) ∝ (1−‖u‖2)I{|u| ≤ 1}). The main point we would like to highlight

is that the asymptotic bias values are all very small and get even smaller as

the number of nearest neighbors k increases.

Table 4.2: Numerical evaluation of B̃k,p=0,K,d, via sampling 1, 000, 000
instances for each tuple (K, k, d).

k
4 5 6 7

Gau, d = 1 -0.0543(±4) -0.0430(±4) -0.0355(±3) -0.0302(±3)
Gau, d = 2 -0.0503(±3) -0.0393(±2) -0.0323(±2) -0.0273(±2)
Epa, d = 1 0.1976(±6) 0.1480(±5) 0.1183(±5) 0.0987(±4)
Epa, d = 2 0.2247(±6) 0.1674(±6) 0.1335(±5) 0.1111(±5)

4.4 k-LNN mutual information estimator

Given an entropy estimator ĤKL, mutual information can be estimated:

Î3KL = ĤKL(X) + ĤKL(Y ) − ĤKL(X, Y ). In [4], Kraskov and Stögbauer

and Grassberger introduced ÎKSG(X;Y ) by coupling the choices of the band-

widths. The joint entropy is estimated in the usual way, but for the marginal

entropy, instead of using kNN distances from {Xj}, the bandwidth hXi =

ρk,i(X, Y ) is chosen, which is the k nearest neighbor distance from (Xi, Yi) for

the joint data {(Xj, Yj)}. Consider Î3LNN(X;Y ) = ĤkLNN(X) + ĤkLNN(Y )−
ĤkLNN(X, Y ). Inspired by [4], we introduce the following novel mutual infor-

mation estimator we denote by ÎLNN−KSG(X;Y ), where for the joint (X, Y )

we use the LNN entropy estimator we proposed in (4.9), and for the marginal

entropy we use the bandwidth hXi = ρk,i(X, Y ) coupled to the joint estima-

tor. Empirically, we observe ÎKSG outperforms Î3KL everywhere, validating

the use of correlated bandwidths. However, the performance of ÎLNN−KSG is

similar to Î3LNN–sometimes better and sometimes worse.
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In Figure 4.5 (left), we estimate mutual information under the same set-

ting as in Figure 4.2 (left). For most regimes of correlation r, both 3LNN

and LNN-KSG outperforms other state-of-the-art estimators. The gap in-

creases with correlation r. On the right, we draw i.i.d. samples from two

random variables X and Y , where X is uniform over [0, 1] and Y = X + U ,

where U is uniform over [0, 0.01] independent of X. In the large sample

limit, all estimators find the correct mutual information. The plot show how

sensitive the estimates are, in the small sample regime. Both LNN and LNN-

KSG are significantly more robust compared to other approaches. Mutual

information estimators have been recently proposed in [79, 87, 115] based

on local likelihood maximization. However, they involve heuristic choices of

hyper-parameters or solving elaborate optimization and numerical integra-

tions, which are far from being easy to implement.
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Figure 4.5: Proposed ÎLNN−KSG and Î3LNN outperform other state-of-the-art
estimators.

In Figure 4.6, we test the mutual information estimators for Y = f(X)+U ,

where X is uniformly distributed over [0, 1] and U is uniformly distributed

over [0, θ], independent of X, for some noise level θ. Similar simulation were

studied in [87]. We draw 2500 i.i.d. sample points for each relationship. The

plot show that for small noise level θ, i.e., near-functional related random

variables, our proposed estimators Î3LNN and ÎLNN−KSG perform much better

than 3KL and KSG estimators. Also our proposed estimators can handle

both linear and nonlinear functional relationships.

In Figure 4.7, we test our estimators on linear and nonlinear relationships

for both low-dimensional (D = 2) and high-dimensional (D = 5). Here

Xi’s are uniformly distributed over [0, 1] and U is uniformly distributed over
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Figure 4.6: Functional relationship test for mutual information estimators.
Proposed ÎLNN−KSG and Î3LNN outperform other state-of-the-art estimators.
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[−38/2, 38/2], independently of Xi’s. Similar simulation were studied in [79].

We can see that our estimators Î3LNN and ÎLNN−KSG converges much faster

than Î3KL and ÎKSG.
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Figure 4.7: Estimated mutual information of low-dimensional and
high-dimensional relationships.

4.5 Breaking the bandwidth barrier

While k-NN distance based bandwidth are routine in practical usage [128],

the main finding of this work is that they also turn out to be the “correct”

mathematical choice for the purpose of asymptotically unbiased estimation

of an integral functional such as the entropy: −
∫
f(x) log f(x); we briefly

discuss the ramifications below. Traditionally, when the goal is to estimate

f(x), it is well known that the bandwidth should satisfy h→ 0 and nhd →∞,

for KDEs to be consistent. As a rule of thumb, h = 1.06σ̂n−1/5 is suggested

when d = 1 where σ̂ is the sample standard deviation [125, Chapter 6.3]. On
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the other hand, when estimating entropy, as well as other integral functionals,

it is known that resubstitution estimators of the form −(1/n)
∑n

i=1 log f̂(Xi)

achieve variances scaling as O(1/n) independent of the bandwidth [101]. This

allows for a bandwidth as small as O(n−1/d).

The bottleneck in choosing such a small bandwidth is the bias, scaling as

O(h2 + (nhd)−1 +En) [101], where the lower-order dependence on n, dubbed

En, is generally not known. The barrier in choosing a global bandwidth

of h = O(n−1/d) is the strictly positive bias whose value depends on the

unknown distribution and cannot be subtracted off. Previous work [100]

tried to solve the bias problem for global bandwidth h = O(n−1/d) in one-

dimensional scenario. However, the proposed local and adaptive choice of

the k-NN distance admits an asymptotic bias that is independent of the un-

known underlying distribution. Manually subtracting off the non-vanishing

bias gives an asymptotically unbiased estimator, with a potentially faster

convergence as numerically compared below. Figure 4.8 illustrates how k-

NN based bandwidth significantly improves upon, say a rule-of-thumb choice

of O(n−1/(d+4)) explained above and another choice of O(n−1/(d+2)). In the

left figure, we use the setting from Figure 4.2 (right) but with correlation

r = 0.999. On the right, we generate X ∼ N (0, 1) and U from uniform

[0, 0.01] and let Y = X+U and estimate I(X;Y ). Following recent advances

in [130, 131], the proposed local estimator has a potential to be extended

to, for example, Rényi entropy, but with a multiplicative bias as opposed to

additive.
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4.6 Discussion and review of previous work

The topic of estimation of an integral functional of an unknown density from

i.i.d. samples is a classical one in statistics and we tie together a few pertinent

topics from the literature in the context of the results of this chapter.

4.6.1 Uniform order statistics and NN distances

The expression for the asymptotic bias in (4.13) which is independent of the

underlying distribution forms the main result of this chapter and crucially

depends on Lemma 15. Precisely, the lemma implies that the quantities

Si’s in (4.10) converge in distribution to S̃i’s in (4.12). There are two parts

to this convergence result: the nearest neighbor distances converge to uni-

form order statistics and the directions to those nearest neighbors converge

independently to Haar measures on the unit sphere. The former has been

extensively studied, for example see [127] for a survey of results. The latter

is a new result that we state in Lemma 15. Intuitively, assuming smoothness,

the probability density fX in the neighborhood of a sample Xi (as defined by

the distance to the k-th nearest neighbor) converges to a uniform distribution

over a ball (of radius decreasing at the rate ρk,i = Θ(n−1/d)), as more sam-

ples are collected. The nearest neighbor distances and directions converge to

those from the uniform distribution over the ball, and Lemma 15 makes this

intuition precise for the nearest m neighbors up to m = O(n1/(2d)−ε) with

any arbitrarily small but positive ε.

Only the convergence analysis of the distances, and not the directions, is

required for traditional k-NN based estimators, such as the entropy estimator

of [2]. In the seminal paper, [2] introduced resubstitution entropy estimators

of the form Ĥ(X) = −(1/n)
∑n

i=1 log f̂n(Xi) with f̂n(x) = k/(nCd ρ
d
k,x) (as

defined in (4.4)). This k-NN estimator has a non-vanishing asymptotic bias,

which was computed as Bk,d = (ψ(k) − log(k)) with the digamma function

ψ(·) and was suggested to be manually removed. For k = 1 this was proved

in the original paper of [2], which later was extended in [124, 129] to general

k. This mysterious bias term Bk,d = (ψ(k)− log(k)) whose original proofs in

[2, 124, 129] provided little explanation for, can be alternatively proved with

both rigor and intuition by making connections to uniform order statistics.

For a special case of k = 1, with extra assumptions on the support being
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compact, such an elegant proof is provided in [51, Theorem 7.1] which ex-

plicitly applies the convergence of the nearest neighbor distance to uniform

order statistics. Namely,

E[Ĥ(X)] = E
[
− 1

n

n∑
i=1

log
( k

nCd ρdk,Xi

) ]
→ E

[
− log

k f(Xi)∑k
j=1Ej

]
= H(X) + ψ(k)− log(k), (4.16)

where the asymptotic expression follows from Cd n f(x)ρdk,x →
∑k

j=1Ej as

shown, for example, in Lemma 15 and we used E[log
∑k

j=1Ej] = ψ(k), where

ψ(k) = is the digamma function defined as ψ(x) = Γ−1(x)dΓ(x)/dx and for

large x it is approximately log(x) up to O(1/x), i.e. ψ(x) = log x− 1/(2x) +

o(1/x). Note that this only requires the convergence of the distance and not

the direction. Inspired by this modern approach, we extend such a connection

in Lemma 15 to prove consistency of our estimator.

4.6.2 Convergence rate of the bias of nearest neighbor based
methods

Establishing the convergence rate of the KL estimator is a challenging prob-

lem, and is not quite resolved despite work over the past three decades. The

O(1/n) convergence rate of the variance is established in [132, 130, 51, 35]

under various assumptions. Establishing the convergence rate of the bias is

more challenging. It has been first studied in [53, 133], where root-n consis-

tency is shown in one-dimension with bounded support and assuming f(x)

is bounded below. Tsybakov and van der Meulen [32] are the first to prove

a root mean squared error convergence rate of O(1/
√
n) for general densities

with unbounded support in one-dimension and exponentially decaying tail,

such as the Gaussian density. These assumptions are relaxed in [58], where

zeroes and fat tails are allowed in f(x). In general d-dimensions, [8, 131]

prove bounds on the convergence rate of the bias for finite k = O(1), and

[134, 36] for k = Ω(log n). Recent papers show that the convergence rate of

the bias can reach the minimax lower bound up to a poly-logarithm factor,

by either kernel method [49], as well as nearest neighbor method [3]. Estab-

lishing the convergence rate for the bias of the proposed local estimator is
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an interesting open problem – it is interesting to see if the superior empirical

performance of the local estimator is captured in the asymptotics of rate of

convergence of the bias.

It is intuitive that kernel density estimators can capture the structure in

the distribution if the distribution lies on a lower-dimensional manifold. This

is made precise in [135], which also shows improved convergence rates for

distributions whose support is on low dimensional manifolds. However, the

estimator in [135] critically uses the geodesic distances between the sample

points on the manifold. Given that the proposed estimators fit distributions

locally, a concrete question of interest is whether such an improvement can

be achieved without such an explicit knowledge of the geodesic distances,

i.e., whether the local estimators automatically adapt to underlying lower-

dimensional structures.

4.6.3 Ensemble estimators

Recent works [116, 117, 119, 36] have proposed ensemble estimators, which

use known estimators based on kernel density estimators and k-NN methods

and construct a new estimate by taking the weighted linear combination

of those methods with varying bandwidth or k, respectively. With a proper

choice of the weights, which can be computed analytically by solving a simple

linear program, a boosting of the convergence rate can be achieved. The key

property that allows the design of such ensemble estimators is that the leading

terms (in terms of the sample size n) of the bias have a multiplicative constant

that only depends on the unknown distribution. An intuitive explanation

for this phenomenon is provided in [36] in the context of k-NN methods;

it is interesting to explore if such a phenomenon continues in the k-LNN

scenario studied in this chapter. Such a study would potentially lead to

ensemble-based estimators in the local setting and also naturally allow a

careful understanding of the rate of convergence of the bias term.
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4.7 Proofs of results in Chapter 4

4.7.1 Proof of Proposition 1

We first prove the derivation of the LLDE with degree p = 2 in (4.7). The

gradient of the local likelihood evaluated at the maximizer is zero [7], which

gives a computational tool for finding the maximizer:

1

n

n∑
j=1

K(
Xj − x
h

)

=

∫
K(

u− x
h

)ea0+aT1 (u−x)+(u−x)T a2(u−x)du, (4.17)

1

n

n∑
j=1

Xj − x
h

K(
Xj − x
h

)

=

∫
u− x
h

K(
u− x
h

)ea0+aT1 (u−x)+(u−x)T a2(u−x)du,

(4.18)

1

n

n∑
j=1

(Xj − x)(Xj − x)T

h2
K(

Xj − x
h

)

=

∫
(u− x)(u− x)T

h2
K(

u− x
h

)ea0+aT1 (u−x)+(u−x)T a2(u−x)du, (4.19)

where K(x) = exp{−‖x‖2/2} is the Gaussian kernel. Notice that the left-

hand side of the equations are S0/n, S1/n and S2/n, respectively. The RHS

can be written in closed forms as:

1

n
S0 = (2π)d/2|M |−1/2ea0+ 1

2
aT1 M

−1a1 , (4.20)

1

n
S1 =

1

nh
S0M

−1a1, (4.21)

1

n
S2 =

1

nh2
S0(M−1 +M−1a1a

T
1M

−1), (4.22)

where M = h−2Id×d − 2a2 assuming h sufficiently small such that M is

positive definite. We want to derive f̂(x) = exp{a0} from the equations.

From (4.21) we get M−1a1 = S1(h/S0). Together with (4.22), we get M−1 +

M−1a1a
T
1M

−1 = S2(h2/S0). Hence, M−1 = (S2/S0 − (S1/S0)(S1/S0)T )h2 =

h2Σ. Plug them in (4.20), we obtain the desired expression.

Analogously, for the derivation of the LLDE with degree p = 1 in (4.5),
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we get

1

n
S0 = (2π)d/2hdea0+h2

2
aT1 a1 ,

1

n
S1 =

h

n
S0a1. (4.23)

This gives

a1 =
S1

hS0

, ea0 =
S0

n(2π)d/2hd
exp{−‖S1‖2

2S2
0

}. (4.24)

4.7.2 Proof of Lemma 15

Let us introduce some notations and terminologies first. Define Sd−1 ≡ {x ∈
Rd : ‖x‖ = 1} as the unit (d−1)-dimensional sphere and σd−1 as a normalized

spherical measure on Sd−1. For any x ∈ Rd in the Cartesian coordinate

system, let (xr, xθ) ∈ R+×Sd−1 be its representation in the polar coordinate

system. Conversely, for any angle θ ∈ Sd−1 and radius r ∈ R+, let r · θ ∈ Rd

denote the representation in the Cartesian coordinate system. For any vector

of angles θ = (θ1, . . . , θm) ∈ (Sd−1)m and vector of radiuses r = (r1, . . . , rm) ∈
Rm

+ , define θ ·r ≡ (θ1 ·r1, . . . , θm ·rm) ∈ Rd×m. For any set B ⊆ Rd×m and any

angles θ ∈ (Sd−1)m, define Bθ = {r ∈ Rm
+ : θ · r ∈ B} be the projection of B

onto θ. Let {ξi}mi=1 be i.i.d. random variables uniformly over Sd−1. Then for

any joint random variables (W1, . . . ,Wm) ∈ Rm
+ which are independent with

{ξi}mi=1, we have

Pr{(ξ1W1, . . . , ξmWm) ∈ B}

=

∫
θ∈(Sd−1)m

Pr{(W1, . . . ,Wm) ∈ Bθ |θ} d(σd−1)m(θ)

≡ Eθ [ Pr{(W1, . . . ,Wm) ∈ Bθ |θ} ] , (4.25)

here we write
∫
θ∈(Sd−1)m

f(θ) d(σd−1)m(θ) = Eθ [ f(θ) ] for simplicity of no-

tation. Now let Z = (Z1,i, . . . , Zm,i), ‖Z‖ = (‖Z1,i‖, . . . , ‖Zm,i‖) and let
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E = (E
1/d
1 , . . . , (

∑m
`=1E`)

1/d), then for any B ∈ Rd×m,∣∣∣ Pr
{

(cdnf(x))1/d(Z1,i, . . . , Zm,i) ∈ B
}

−Pr

{(
ξ1E

1/d
1 , . . . , ξm(

m∑
`=1

E`)
1/d

)
∈ B

} ∣∣∣
=

∣∣∣ Pr
{

(cdnf(x))1/dZ ∈ B
}
− Eθ [ Pr{E ∈ Bθ |θ} ]

∣∣∣
≤

∣∣∣ Pr
{

(cdnf(x))1/dZ ∈ B
}
− Eθ

[
Pr{(cdnf(x))1/d‖Z‖ ∈ Bθ |θ}

] ∣∣∣
(4.26)

+ Eθ

[ ∣∣∣ Pr{(cdnf(x))1/d‖Z‖ ∈ Bθ |θ} − Pr{E ∈ Bθ |θ}
∣∣∣ ]. (4.27)

We will bound the terms (4.26) and (4.27) separately. For the term (4.26),

consider the following event E = {‖Zm,i‖ < (
√
ncdf(x))−1/d}. We will first

show that E happens with high probability and then prove that the difference

is small when E happens.

Firstly, we consider the probability that E does not happen, which means

‖Zm,i‖ ≥ (
√
ncdf(x))−1/d. Denote B(x, r) = {z : ‖z − x‖ ≤ r} and let

p =
∫
B(x,‖Zm,i‖) f(t)dt be the probability mass of the ball centered at x with

radius ‖Zm,i‖. E does not happen if and only if there are at most m − 1

(out of n) samples lying in B(x, ‖Zm,i‖). So we need a lower bound for p to

get an upper bound for the probability of EC . Since there exist constants

ε > 0 such that ‖∇f(a)‖ = O(1) for any ‖a − x‖ ≤ ε, for sufficiently

large n such that (
√
ncdf(x))−1/d ≤ ε, we have f(t) ≥ f(x) − C1‖t − x‖ ≥

f(x) − C1(
√
ncdf(x))−1/d for any t ∈ B(x, (

√
ncdf(x))−1/d), where C1 =

sup‖a−x‖≤(
√
ncdf(x))−1/d ‖∇f(a)‖. Therefore,

p =

∫
B(x,‖Zm,i‖)

f(t)dt ≥
∫
B(x,(

√
ncdf(x))−1/d)

f(t)dt

≥
∫
B(x,(

√
ncdf(x))−1/d))

(f(x)− C1(
√
ncdf(x))−1/d))dt

= (f(x)− C(
√
ncdf(x))−1/d))cd(

√
ncdf(x))−1/d)d

=
1√
n
− C1c

−1/d
d f(x)−(d+1)/dn−(d+1)/2d. (4.28)

For sufficiently large n such that C1c
−1/d
d f(x)−(d+1)/dn−(d+1)/2d ≤ 1/(2

√
n),
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we have p ≥ 1/(2
√
n). Therefore,

Pr{‖Zm,i‖ ≥ (
√
ncdf(x))−1/d}

=
m−1∑
`=0

(n`)p
`(1− p)n−` ≤

m−1∑
`=0

n`
(

1− 1

2
√
n

)(n−`)

≤
m−1∑
`=0

nle−(
√
n−`
√
n)/2 ≤ mnme−(

√
n−m/

√
n)/2. (4.29)

Now we consider when E happens, which means ‖Zm,i‖ < (
√
ncdf(x))−1/d.

Denote B = {t : (cdnf(x))1/dt ∈ B and ‖tm‖ < (
√
ncdf(x))−1/d} be the trun-

cated scaling of B. Similarly, denote Bθ = {t : (cdnf(x))1/dt ∈ Bθ and tm <

(
√
ncdf(x))−1/d} be the truncated scaling of Bθ. Note that for any B, the

probability that Z ∈ B is the integration of the density of Z1,i, . . . , Zm,i in

B, multiplied by the probability that Zm+1,i, . . . , Zn,i lying outside the ball

B(x, (
√
ncdf(x))−1/d), therefore,

Pr{Z ∈ B, E}

=
n!

(n−m)!

∫
t∈B

(
m∏
j=1

f(x+ tj)

)
( Pr{‖X − x‖ > ‖tm‖})n−m dt

=
n!

(n−m)!

∫
t∈B

(
m∏
j=1

f(x+ tj)

)
dµ(t), (4.30)

where the measure µ(t) satisfies dµ(t)/dt = ( Pr{‖X − x‖ > ‖tm‖})n−m. Sim-

ilarly for any Bθ,

Pr{‖Z‖ ∈ Bθ} =
n!

(n−m)!

∫
t∈Bθ

(
m∏
j=1

f(x+ tj · θj)

)
dµ(t). (4.31)

When E happens, the first term (4.26) can be rewritten by∣∣∣ Pr
{

(cdnf(x))1/dZ ∈ B, E
}
− Eθ

[
Pr{(cdnf(x))1/d‖Z‖ ∈ Bθ, E |θ}

] ∣∣∣
=

∣∣∣∣∣∣∣∣ 1−
Eθ

[
Pr{(cdnf(x))1/d‖Z‖ ∈ Bθ, E |θ}

]
Pr { (cdnf(x))1/dZ ∈ B, E }︸ ︷︷ ︸

R

∣∣∣∣∣∣∣∣
×Pr

{
(cdnf(x))1/dZ ∈ B, E

}
. (4.32)
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Clearly Pr
{

(cdnf(x))1/dZ ∈ B, E
}
≤ 1. And the ratio R can be bounded

by,

R =
Eθ

[
Pr{‖Z‖ ∈ Bθ, E |θ}

]
Pr{Z ∈ B, E}

=

n!
(n−m)!

Eθ

[ ∫
t∈Bθ

(∏m
j=1 f(x+ tj · θj)

)
dµ(t)

]
n!

(n−m)!

∫
t∈B

(∏m
j=1 f(x+ tj)

)
dµ(t)

≤
supθ∈(Sd−1)m supt∈Bθ

∏m
j=1 f(x+ tj · θj)

inft∈B
∏m

j=1 f(x+ tj)

≤
(

sup‖t‖≤(
√
ncdf(x))−1/d f(x+ t)

inf‖t‖≤(
√
ncdf(x))−1/d f(x+ t)

)m
. (4.33)

Since f is continuously differentiable, by mean value theorem, there exists

a, b ∈ B(x, (
√
ncdf(x))−1/d) such that

sup‖t‖≤(
√
ncdf(x))−1/d f(x+ t)

inf‖t‖≤(
√
ncdf(x))−1/d f(x+ t)

=
f(b) + (a− b)T∇f(a)

f(b)

≤ 1 +
2(
√
ncdf(x))−1/d‖∇f(a)‖

f(b)
. (4.34)

By the assumption, there exists a ball B(x, ε) such that ‖∇f(a)‖ = O(1)

and f(a) > 0 for all a ∈ B(x, ε), so for sufficiently large n such that

(
√
ncdf(x))−1/d < ε, there exists some constant C and c > 0 such that

supa∈B(x,(
√
ncdf(x))−1/d) ‖∇f(a)‖ ≤ C and infb∈B(x,(

√
ncdf(x))−1/d) f(b) ≥ c. So

R ≤ (1 +
2(
√
ncdf(x))−1/d‖∇f(a)‖

f(b)
)m

≤ (1 +
2n−1/(2d)c

−1/d
d C

c1+1/d
) = (1 + C2n

−1/(2d))m, (4.35)

for some constant C2. Similarly, (4.33) is lower bounded by (1−C2n
−1/(2d))m.

So |1−R| ≤ max{(1 + C2n
−1/(2d))m − 1, 1− (1− C2n

−1/(2d))m}.
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Combining with (4.29), the first term (4.26) is bounded by:∣∣∣ Pr
{

(cdnf(x))1/dZ ∈ B
}
− Eθ

[
Pr{(cdnf(x))1/d‖Z‖ ∈ Bθ |θ}

] ∣∣∣
≤ Pr

{
(cdnf(x))1/dZ ∈ B, EC

}
+ Eθ

[
Pr{(cdnf(x))1/d‖Z‖ ∈ Bθ, EC |θ}

]
+

∣∣∣ Pr
{

(cdnf(x))1/dZ ∈ B, E
}
− Eθ

[
Pr{(cdnf(x))1/d‖Z‖ ∈ Bθ, E |θ}

] ∣∣∣
≤ Pr{EC}+ Eθ

[
Pr{EC}

]
+ Pr

{
(cdnf(x))1/dZ ∈ B, E

}
|1−R|

≤ max{(1 + C2n
−1/(2d))m − 1, 1− (1− C2n

−1/(2d))m}

+2mnme−(
√
n−m/

√
n)/2. (4.36)

Now consider the second term (4.27). We will use Corollary 5.5.5 of [127]

to show that this term vanishes for m = O(log n) and as n grows.

Lemma 16 (Corollary 5.5.5, [127]). Let Y1, Y2, . . . , Yn be i.i.d. samples from

unknown distribution with pdf f̃ . Let Y1:n ≤ Y2:n ≤ · · · ≤ Yn:n be the order

statistics. Assume the density f̃ satisfies | log f̃(y)| ≤ Lyδ for 0 < y < y0

and f̃(y) = 0 for y < 0, where L and δ are constants. Then

dTV

(
n (Y1:n, . . . , Ym:n) ,

(
E1, . . . ,

m∑
j=1

Ej
) )

≤ C0

(
(m/n)δm1/2 +m/n

)
, (4.37)

where C0 > 0 is a constant. E1, . . . , Em are i.i.d standard exponential random

variables.

Now for fixed x, consider the distribution of cdf(x)‖X − x‖d denoted by

P̃ . Define Y1, Y2, . . . , Yn drawn i.i.d. from P̃ . We can see that cdf(x)‖Z‖d L=
(Y1:n, . . . , Ym:n), where

L
= denotes equivalence in distribution. We first prove

that the pdf f̃ of P̃ satisfies the assumption in Lemma 16. Firstly, it is

obvious that f̃(t) = 0 for t < 0. For t > 0, the pdf f̃ of P̃ is given by:

f̃(t) =
d

dt
Pr{cdf(x)‖X − x‖d ≤ t} =

d

dt

∫
y∈B(x,rt)

f(y)dy, (4.38)

where rt = (t/(cdf(x)))1/d. Here we have

drt
dt

=
t1/d−1(cdf(x))−1/d

d
=

1

f(x)dcdr
d−1
t

, (4.39)
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and

d

drt

∫
y∈B(x,rt)

f(y)dy

=
d

drt

∫
θ∈Sd−1

(∫ rt

r=0

f(x+ r · θ)rd−1dr

)
dcd dσ

d−1(θ)

= dcd

∫
θ∈Sd−1

(
d

drt

∫ rt

r=0

f(x+ r · θ)rd−1dr

)
dσd−1(θ)

= dcdr
d−1
t

∫
θ∈Sd−1

f(x+ rt · θ)dσd−1(θ). (4.40)

Therefore, f̃(t) =
∫
θ∈Sd−1 f(x + rt · θ)dσd−1(θ)/f(x). Since f is twice con-

tinuously differentiable, by mean value theorem, for any y ∈ B(x, rt), there

exists a(y) ∈ B(x, rt) such that f(y) − f(x) = (y − x)T∇f(x) + (a(y) −
x)THf (a(y))(a(y)− x), where a(y) depends on y. Therefore,

|f̃(t)− 1|

≤ 1

f(x)

∣∣∣∣ ∫
θ∈Sd−1

f(x+ rt · θ)dσd−1(θ)− f(x)

∣∣∣∣
=

1

f(x)

∣∣∣∣ ∫
θ∈Sd−1

( f(x+ rt · θ)− f(x) ) dσd−1(θ)

∣∣∣∣
≤ 1

f(x)

∣∣∣∣ ∫
θ∈Sd−1

(rt · θ)T∇f(x)dσd−1(θ)

∣∣∣∣+
1

f(x)

∣∣∣ ∫
θ∈Sd−1

(a(x+ rt · θ)− x)T

Hf (a(x+ rt · θ))(a(x+ rt · θ)− x)dσd−1(θ)
∣∣∣

≤
∫
θ∈Sd−1

(
supa∈B(x,rt) ‖Hf (a)‖ ‖a− x‖2

)
dσd−1(θ)

f(x)

≤ r2
t

f(x)

(
sup

a∈B(x,rt)

‖Hf (a)‖

)
. (4.41)

Since there exists a ball B(x, ε) such that ‖Hf (a)‖ = O(1) for all a ∈ B(x, ε).

Therefore, for sufficiently small t such that rt < ε, there exists C3 > 0

such that |f̃ − 1| ≤ C3r
2
t /f(x). Recall that rt = (t/(cdf(x)))1/d, so there

exists L > 0 such that |f̃(t) − 1| ≤ Lt2/d for sufficiently small t. Hence,

| log f̃(t)| ≤ L′t2/d for some L′ > 0 and sufficiently small t. So f̃ satisfies the
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condition in Lemma 16 with δ = 2/d. Therefore, for any Bθ ⊆ Rm
+ , we have:

∣∣Pr{(cdnf(x))1/d‖Z‖ ∈ Bθ} − Pr{E ∈ Bθ}
∣∣

≤ dTV

(
cdnf(x)

(
‖Z1,i‖d, . . . , ‖Zm,i‖d

)
,
(
E1, E1 + E2, . . . ,

m∑
j=1

Ej
) )

≤ C0

(
(
m

n
)2/dm1/2 +

m

n

)
. (4.42)

Therefore, by combing (4.36) and (4.42), we have:∣∣∣ Pr
{

(cdnf(x))1/d (Z1,i, . . . , Zm,i ) ∈ B
}

−Pr

{(
ξ1E

1/d
1 , . . . , ξm(

m∑
l=1

E`)
1/d

)
∈ B

} ∣∣∣
≤ max{(1 + C2n

− 1
2d )m − 1, 1− (1− C2n

− 1
2d )m}

+2mnme−
√
n−m/

√
n

2 + C0

(
(
m

n
)

2
dm

1
2 +

m

n

)
, (4.43)

for any set B ∈ Rd×m. Therefore, the total variation distance between

(cdnf(x))1/d(Z1,i, Z2,i, . . . , Zm,i) and (ξ1E
1/d
1 , . . . , ξm(

∑m
`=1 E`)

1/d ) is bounded

by the RHS quantity. By taking m = O(log n), the RHS converges to 0 as n

goes to infinity. Therefore, we have the desired statement.

4.7.3 Proof of Theorem 8

The proof of Theorem 8 is organized as follows:

• First we prove that the estimator is asymptotically unbiased, by rewrit-

ing the estimator as Ĥ
(n)
k = (1/n)

∑n
i=1 (hi − log f(Xi) ), where hi

is a function of the nearest neighbor statistics {Z1,i, Z2,i, . . . }. By

Lemma 15, the nearest neighbor statistics converge to some standard

random variables jointly, so the h function converges to a certain quan-

tity Bk,d, whereas (1/n)
∑n

i=1 (− log f(Xi) ) converges to H(X).

• Then we prove that the variance of the estimator is vanishing. We give

an upper bound of how much the estimate will change if we change one

sample Xi to X ′i, and utilize Efron-Stein inequality to give an upper

bound of the variance.
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Proof of bias

We first compute the asymptotic bias. We define new notations to repre-

sent the estimate as Ĥ
(n)
k = (1/n)

∑n
i=1 Hi, where

Hi = h
(

(cdnf(Xi))
1/dZk,i, S0,i, S1,i, S2,i)

)
− log f(Xi), (4.44)

and h : Rd × R× Rd × Rd×d → R is defined as

h(t1, t2, t3, t4) = d log ‖t1‖+ d log(2π)− log cd − log t2

+
1

2
log

(
det

(
t4
t2
− t3t

T
3

t22

))
+

1

2
tT3 (t4 − t3tT3 )−1t3. (4.45)

Let Hi ≡ h((cdnf(Xi))
1/dZk,i, S0,i, S1,i, S2,i)) − log f(Xi). Since the terms

H1, H2, . . . , Hn are identically distributed, so E[Ĥ
(n)
k ] converges to

lim
n→∞

E[Ĥ
(n)
k ] = lim

n→∞
E[H1] = lim

n→∞
EX1

[
E[H1|X1]

]
. (4.46)

The typical approaches of dominated convergence theorem cannot be ap-

plied to the above limit, since analyzing E[H1|X1] for finite sample n is

challenging. In order to exchange the limit with the (conditional) expecta-

tion, we assume the following Ansatz 1 to be true. As noted in [113] this is

common in the literature on consistency of k-NN estimators, where the same

assumptions have been implicitly made without explicitly stating as such,

in existing analyses of entropy estimators including [2, 129, 130, 75]. This

assumption can be avoided for Renyi entropy as in the proof of consistency

in [113] or for sharper results such as the convergence rate of the bias with

respect to the sample size but with more assumptions as in [8, 131, 36].

Ansatz 1. The following exchange of limit holds if E [| log f(X)|] <∞

lim
n→∞

E[H1] = EX1

[
lim
n→∞

E[H1|X1]
]
. (4.47)

Under this ansatz, perhaps surprisingly, we will show that the expectation

inside converges to − log f(X1) plus some bias that is independent of the

underlying distribution. Precisely, for almost every x and given X1 = x,

E[H1|X1 = x] + log f(x)

= E
[
h((cdnf(x))1/dZk,i, S0,1, S1,i, S2,i)

]
−→ Bk,d, (4.48)
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as n→∞ where Bk,d is a constant that only depends on k and d, defined in

(4.50). This implies that

EX1

[
lim
n→∞

E[H1|X1]
]

= EX1 [− log f(X1) +Bk,d]

= H(X) +Bk,d. (4.49)

Together with (4.46), this finishes the proof of the desired claim.

We are now left to prove the convergence of (4.48). We first give a formal

definition of the bias Bk,d by replacing the sample defined quantities by a

similar quantities defined from order-statistics, and use Lemma 15 to prove

the convergence. Recall that our order-statistics is defined by two sequences

of m i.i.d. random variables: i.i.d. standard exponential random variables

E1, . . . , Em and i.i.d. random variables ξ1, . . . , ξm uniformly distributed over

Sd−1. We define

Bk,d ≡ E

h
 ξk

(
k∑
`=1

E`

) 1
d

, S̃
(∞)
0 , S̃

(∞)
1 , S̃

(∞)
2

 , (4.50)

where, as we will show, S̃
(∞)
α is the limit of empirical quantity Sα,i defined

from samples for each α ∈ {0, 1, 2}, and we know that (cdnf(x))1/dZk,i con-

verges to ξk(
∑k

`=1E`)
1/d for almost every x from Lemma 15. S(∞) is defined

by a convergent random sequence

S̃(m)
α ≡

m∑
j=1

ξ
(α)
j (
∑j

`=1 E`)
α
d

(
∑k

`=1 E`)
α
d

exp
{
− (

∑j
`=1E` )

2
d

2(
∑k

`=1 E` )
2
d

}
, (4.51)

where ξ
(0)
j = 1, ξ

(1)
j = ξj, ξ

(2)
j = ξjξ

T
j and S̃

(∞)
α = limm→∞ S̃

(m)
α . This

limit exists, since S̃
(m)
0 is non-decreasing in m, and the convergence of S̃

(m)
1

and S̃
(m)
2 follows from Lemma 17. We introduce simpler notations for the

joint random variables: S̃(m) = (ξk(
∑k

`=1 E`)
1/d, S̃

(m)
0 , S̃

(m)
1 , S̃

(m)
2 ) and S̃(∞) =

(ξk(
∑k

`=1E`)
1/d, S̃

(∞)
0 , S̃

(∞)
1 , S̃

(∞)
2 ). Considering the following quantities S(n) =

((cdnf(x))1/dZk,i, S0,i, S1,i, S2,i) defined from samples, we show that this con-

verges to S̃(∞) in distribution. For any set A ∈ Rd×R×Rd×Rd×d, we need

to prove that |Pr{S(n) ∈ A} − Pr{S̃(∞) ∈ A}| converges to 0 as n→∞. By
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applying triangular inequality,

|Pr{S(n) ∈ A} − Pr{S̃(∞) ∈ A}|

≤ |Pr{S(n) ∈ A} − Pr{S̃(m) ∈ A}|+ |Pr{S̃(m) ∈ A} − Pr{S̃(∞) ∈ A}|,

(4.52)

and we show that both terms converge to zero for any m = Θ(log n). Given

that g is continuous and bounded, this implies that

lim
n→∞

E[H1|X1 = x] = E[ lim
n→∞

g(S(n))− log f(x)|X1 = x]

= − log f(x) + E[h(S̃(∞))], (4.53)

for almost every x, proving (4.49).

The convergence of the first term follows from Lemma 15. Precisely, con-

sider the function gm : Rd×m → Rd × R× Rd × Rd×d defined as:

gm(t1, t2, . . . , tm) =
(
tk,

m∑
j=1

exp{− ‖tj‖
2

2‖tk‖2
},

m∑
j=1

tj
‖tk‖

exp{− ‖tj‖
2

2‖tk‖2
},

m∑
j=1

tjt
T
j

‖tk‖2
exp{− ‖tj‖

2

2‖tk‖2
}
)
, (4.54)

such that S(n) = gm
(

(cdnf(x))1/d (Z1,i, Z2,i, . . . , Zm,i )
)

, which follows from

the definition of S(n) = ((cdnf(x))1/dZk,i, S0,i, S1,i, S2,i) in (4.10). Similarly,

S̃(m) = gm

(
ξ1E

1/d
1 , ξ2(E1 + E2)1/d, . . . ξm(

∑m
`=1 E`)

1/d
)

. Since gm is contin-

uous, so for any set A ∈ Rd × R × Rd × Rd×d, there exists a set Ã ∈ Rd×m

such that gm(Ã) = A. So for any x such that there exists ε > 0 such that

f(a) > 0, ‖∇f(a)‖ = O(1) and ‖Hf (a)‖ = O(1) for any ‖a − x‖ < ε, we
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have:

|Pr{S(n) ∈ A} − Pr{S̃(m) ∈ A}|

=
∣∣∣ Pr

{
gm

(
(cdnf(x))

1
d (Z1,i, . . . , Zm,i )

)
∈ A

}
−Pr{gm( ξ1E

1
d
1 , . . . ξm(

m∑
l=1

E`)
1
d ) ∈ A}

∣∣∣
=

∣∣∣ Pr
{(

(cdnf(x))
1
d (Z1,i, . . . , Zm,i )

)
∈ Ã

}
−Pr{( ξ1E

1/d
1 , . . . ξm(

m∑
`=1

E`)
1/d ) ∈ Ã}

∣∣∣
≤ dTV

((
(cdnf(x))

1
d (Z1,i, . . . , Zm,i )

) (
ξ1E

1/d
1 , . . . ξm(

m∑
`=1

E`)
1/d

) )
n→∞−→ 0, (4.55)

where the last inequality follows from Lemma 15. By the assumption that f

has open support and ‖∇f‖ and ‖Hf‖ is bounded almost everywhere, this

convergence holds for almost every x.

For the second term in (4.52), let T̃
(m)
α = S̃

(∞)
α − S̃(m)

α and we claim that

T̃
(m)
α converges to 0 in distribution by the following lemma.

Lemma 17. Assume m→∞ as n→∞ and k ≥ 3 , then

lim
n→∞

E‖ T̃ (m)
α ‖ = 0, (4.56)

for any α ∈ {0, 1, 2}. Hence (T̃
(m)
0 , T̃

(m)
1 , T̃

(m)
2 ) converges to (0, 0, 0) in dis-

tribution.

This implies that (S̃
(m)
0 , S̃

(m)
1 , S̃

(m)
2 ) converges to (S̃

(∞)
0 , S̃

(∞)
1 , S̃

(∞)
2 ) in dis-

tribution, i.e.,

|Pr{S̃(m) ∈ A} − Pr{S̃(∞) ∈ A}| n→∞−→ 0. (4.57)

Combine (4.55) and (4.57) in (4.52), and this implies the desired claim.

Proof of variance

We next prove the upper bound on the variance, following the technique

from [51, Section 7.3]. For the usage of Efron-Stein inequality, we need a

second set of i.i.d. samples {X ′1, X ′2, . . . , X ′n}. For simplicity, denote Ĥ =
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Ĥ
(n)
kLNN(X) be the kLNN estimate base on original sample {X1, . . . , Xn} and

Ĥ(i) be the kLNN estimate based on {X1, . . . , Xi−1, X
′
i, Xi+1, . . . Xn}. Then

the Efron-Stein theorem states that

Var
[
Ĥ
]
≤ 2

n∑
j=1

E
[(

Ĥ − Ĥ(j)
)2
]
. (4.58)

Recall that Ĥ
(n)
k = (1/n)

∑n
i=1Hi, where

Hi = h
(

(cdnf(Xi))
1/dZk,i, S0,i, S1,i, S2,i)

)
− log f(Xi), (4.59)

and h : Rd × R× Rd × Rd×d → R is defined as

h(t1, t2, t3, t4) = d log ‖t1‖+ d log(2π)− log cd − log t2

+
1

2
log

(
det

(
t4
t2
− t3t

T
3

t22

))
+

1

2
tT3 (t4 − t3tT3 )−1t3. (4.60)

Similarly, we can write Ĥ(j) = 1
n

∑n
i=1H

(j)
i for any j ∈ {1, . . . , n}. Therefore,

the difference of Ĥ and Ĥ(j) can be bounded by:

Ĥ − Ĥ(j) =
1

n

n∑
i=1

(
Hi −H(j)

i

)
. (4.61)

Notice that Hi only depends on Xi and its m nearest neighbors, so Hi −
H

(j)
i = 0 if none of Xj and X ′j are in m nearest neighbor of Xi. If we denote

Zi,j = I{Xj is in m nearest neighbor of Xi}, thenHi = H
(j)
i if Zi,j+Zi,j′ = 0.

According to [51, Lemma 20.6], since X has a density, with probability one,∑n
i=1 Zi,j ≤ mγd, where γd is the minimal number of cones of angle π/6 that

can cover Rd, which only depends on d. Similarly,
∑n

i=1 Zi,j′ ≤ mγd. If we

denote S = {i : Zi,j + Zi,j′ > 0}, the cardinality of S satisfy |S| ≤ 2mγd.

Therefore, we have Ĥ − Ĥ(j) = 1
n

∑
i∈S

(
Hi −H(j)

i

)
. By Cauchy-Schwarz
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inequality, we have

E
[(

Ĥ − Ĥ(j)
)2
]

= E

 1

n2

(∑
i∈S

(
Hi −H(j)

i

))2


≤ E

[
|S|
n2

∑
i∈S

(
Hi −H(j)

i

)2
]

=
|S|
n2

∑
i∈S

E
[(

Hi −H(j)
i

)2
]

≤ 2|S|
n2

∑
i∈S

(
E
[
H2
i

]
+ E

[
(H

(j)
i )2

] )
. (4.62)

Notice that Hi’s and H
(j)
i ’s are identically distributed, so we are left to

compute E [H2
1 ]. Conditioning on X1 = x, similarly to (4.48), we have

E
[

(H1 + log f(x))2|X1 = x
]

= E
[
h2((cdnf(x))1/dZk,i, S0,1, S1,i, S2,i)

]
−→ B

(2)
k,d, (4.63)

as n→∞, where

B
(2)
k,d ≡ E

h2

 ξk

(
k∑
`=1

E`

)1/d

, S̃
(∞)
0 , S̃

(∞)
1 , S̃

(∞)
2

 . (4.64)

Therefore,

E
[
H2

1 |X1 = x
]

= B
(2)
k,d − 2 log f(x)E [H1|X1 = x ]− (log f(x))2

= B
(2)
k,d − 2 log f(x)Bk,d + (log f(x))2. (4.65)

Take expectation over X1, we obtain:

E[H2
1 ] = EX1

[
lim
n→∞

E
[
H2

1 |X1

] ]
= EX1

[
B

(2)
k,d − 2 log f(X1)Bk,d + (log f(X1))2

]
= B

(2)
k,d + 2H(X)Bk,d +

∫
f(x)(log f(x))2dx < +∞, (4.66)

where the last inequality comes from the assumption that
∫
f(x)(log f(x))2dx <
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+∞. Combining with (4.58) and (4.62), we have

Var
[
Ĥ
]
≤ 2

n∑
j=1

E
[(

Ĥ − Ĥ(j)
)2
]

≤ 4|S|
n

∑
i∈S

(
E
[
H2
i

]
+ E

[
(H

(j)
i )2

] )
≤ 8|S|2C2

n
≤ 32m2γ2

dC2

n
, (4.67)

where C2 is the upper bound for E[H2
1 ]. Take m = O(log n) then the proof

is complete.

Proof of Lemma 17

Firstly, since |ξi| = 1, we can upper bound the expectation of E‖ T̃ (m)
α,i ‖ by

E‖ T̃ (m)
α,i ‖

= E
∥∥∥ ∞∑
j=m+1

ξ
(α)
j (
∑j

`=1E`)
α
d

(
∑k

`=1E`)
α
d

exp{− (
∑j

`=1 E` )
2
d

2(
∑k

`=1E` )
2
d

}
∥∥∥

≤
∞∑

j=m+1

E
∥∥∥ ξ(α)

j (
∑j

`=1E`)
α
d

(
∑k

`=1E`)
α
d

exp{− (
∑j

`=1E` )
2
d

2(
∑k

`=1 E` )
2
d

}
∥∥∥

=
∞∑

j=m+1

E
∣∣∣ (
∑j

`=1 E`)
α
d

(
∑k

`=1 E` )
α
d

exp{− (
∑j

`=1 E` )
2
d

2(
∑k

`=1E` )
2
d

}
∣∣∣. (4.68)

Notice that the expression is a function of (
∑j

`=1E`/
∑k

`=1 E`)
1/d ≡ Rj for

j > m, we will identify the distribution of Rj first. For any fixed j ≥ k, let

Tk =
∑k

`=1E` and Tj−k =
∑j

`=k+1E`, such that Rj = ((Tk + Tj−k)/Tk)
1/d.

Notice that Tk is the summation of k i.i.d. standard exponential random

variables, so Tk ∼ Erlang (k, 1). Similarly, Tj−k ∼ Erlang (j − k, 1). Also

Tk and Tj−k are independent. Recall that the pdf of Erlang (k, λ) is given

by fk,λ(x) = λkxk−1e−λx/(k − 1)! for x ≥ 0. Therefore, the CDF of Rj is

124



given by:

FRj(t) = Pr{Rj ≤ t}

= Pr{(Tk + Tj−k
Tk

)1/d ≤ t} = Pr{Tj−k
Tk
≤ td − 1}

=

∫
x≥0

xk−1e−x

(k − 1)!

(∫ (td−1)x

y=0

yj−k−1e−y

(j − k − 1)!
dy

)
dx

=

∫
x≥0

xk−1e−x

(k − 1)!

(
1−

j−k−1∑
`=0

1

`!
x`(td − 1)`e−x(td−1)

)
dx

= 1−
j−k−1∑
`=0

( ∫
x≥0

xk−1e−x

(k − 1)!

1

`!
x`(td − 1)`e−x(td−1)dx

)
= 1−

j−k−1∑
`=0

(
(td − 1)`

(k − 1)!`!

∫
x≥0

xk−1+`e−xt
d

dx

)

= 1−
j−k−1∑
`=0

(td − 1)`

(k − 1)!`!
(k − 1 + `)! t−d(k−1+`)

= 1−
j−k−1∑
`=0

(k−1+`
` ) t−d(k−1)(1− t−d)`, (4.69)

for t ∈ [1,+∞). Given the CDF of Rj, each term in (4.68) is upper bounded

by:

E
∣∣∣ (
∑j

`=1E`)
α
d

(
∑k

`=1E` )
α
d

exp{− (
∑j

`=1E` )
2
d

2(
∑k

`=1 E` )
2
d

}
∣∣∣ = ERj

∣∣∣ tαe−t2 ∣∣∣
≤ ERj

[
t2e−t

2
]

=

∫ ∞
t=1

t2e−t
2

dFRj(t)

= t2e−t
2

FRj(t)
∣∣∣∞
1
−
∫ ∞
t=1

FRj(t)d(t2e−t
2

)

= −
∫ ∞
t=1

(2te−t
2 − 2t3e−t

2

)FRj(t)dt

=

∫ ∞
t=1

2t(t2 − 1)e−t
2

FRj(t)dt. (4.70)

Therefore, in order to establish an upper bound for (4.68), we need an upper

bound for FRj(t). Here we will consider two cases depending on t. If t >

(j/2k)1/d, we just use the trivial upper bound FRj(t) < 1. If 1 ≤ t ≤
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(j/2k)1/d, since td ≥ 1, we have:

FRj(t) = 1−
j−k−1∑
`=0

(k−1+`
` ) t−d(k−1)(1− t−d)`

≤ 1−
j−k−1∑
`=0

(k−1+`
` ) t−dk(1− t−d)`. (4.71)

Notice that (k−1+`
` ) t−dk(1− t−d)` is the pmf of negative binomial distribution

NB(k, 1 − t−d). Therefore, FRj(t) ≤ Pr{X ≥ j − k}, where X ∼ NB(k, 1 −
t−d). The mean and variance of X are given by E[X] = (1− t−d)k/(1− (1−
t−d)) = (td − 1)k and Var(X) = (1 − t−d)k/(1 − (1 − t−d))2 = (t2d − td)k.

Therefore, by Chebyshev inequality, the tail probability is bounded by:

Pr{X ≥ j − k} ≤ Var(X)

(j − k − E[X])2

=
(t2d − td)k

(j − k − (td − 1)k)2
=

(t2d − td)k
(j − tdk)2

≤ 4t2dk

j2
, (4.72)

here we use the fact that t ≤ (j/2k)1/d so j− tdk > j/2. Therefore, FRj(t) ≤
4t2dk/j2 for t > (j/2k)1/d. Combine the two cases and plug into (4.70), we

obtain:

E
∣∣∣ (
∑j

`=1 E`)
α
d

(
∑k

`=1 E` )
α
d

exp{− (
∑j

`=1E` )
2
d

2(
∑k

`=1E` )
2
d

}
∣∣∣

=

∫ ∞
t=1

2t(t2 − 1)e−t
2

FRj(t)dt

≤
∫ (j/2k)1/d

t=1

2t(t2 − 1)e−t
2 4t2dk

j2
dt+

∫ ∞
(j/2k)1/d

2t(t2 − 1)e−t
2

dt

≤ 8k

j2

∫ ∞
t=1

t2d+3e−t
2

dt+ 2

∫ ∞
(j/2k)1/d

t3e−t
2

dt

≤ 8kCd
j2

+ 2

(
−1

2
e−t

2

(t2 + 1)
∣∣∣∞
(j/2k)1/d

)
=

8kCd
j2

+ e−(j/2k)2/d

((
j

2k
)2/d + 1), (4.73)

where Cd =
∫∞
t=1

t2d+3e−t
2
dt is a constant only dependent on d. Therefore,
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we can see that

E
∣∣∣ (
∑j

`=1E`)
α
d

(
∑k

`=1E` )
α
d

exp{− (
∑j

`=1E` )
2
d

2(
∑k

`=1 E` )
2
d

}
∣∣∣ = O(1/j2). (4.74)

So

E
∣∣∣ (
∑j

`=1E`)
α
d

(
∑k

`=1E` )
α
d

exp{− (
∑j

`=1E` )
2
d

2(
∑k

`=1 E` )
2
d

}
∣∣∣→ 0, (4.75)

given m→∞ as n→∞.

4.7.4 Proof of Theorem 9

The proposed estimator is a solution to a maximization problem of the local

likelihood â = arg maxa LXi(fa,Xi). From [7] we know that the maximizer is

a fixed point of a series of non-linear equations of the form

∑
j 6=i

(Xj −Xi)
⊗α

ραk,i
K
(Xj −Xi

ρk,i

)
= n ρdk,i e

a0

∫
(u−Xi)

⊗α

ραk,i
K
(u−Xi

ρk,i

)
e〈u−x,a1〉+···+ap[(u−x),··· ,(u−x)] 1

ρdk,i
du,

(4.76)

for all α ∈ [p] where the superscript ⊗α indicates the α-th order tensor

product. From the proof of Theorem 8, specifically (4.55) and (4.57), we

know that the left-hand side converges to a value that only depends on k, d

and K. We denote it by Sα(k) ∈ Rdα . We make a change of variables

ã0 = a0 + d log ρk,i + log n and ãα = aα/ρ
α
k,i for α 6= 0. Then, in the limit of

growing n, the above equations can be rewritten as

Sα(k, d,K) = eã0Fα(d,K, ã1, . . . , ãp), (4.77)

for some function Fα. Notice that the dependence on the underlying distri-

bution vanishes in the limit, and the fixed point ã only depends on k, p, d,
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and K. The desired claim follows from the fact that the estimate is

lim
n→∞

f̂n(Xi) = lim
n→∞

eâ0 = lim
n→∞

Ak,d,p,K
nρdk,i

= f(Xi)Ak,d,p,KCd lim
n→∞

1

Cdnρdk,if(Xi)
=
f(Xi)Ak,d,p,KCd∑k

`=1E`
, (4.78)

and plugging in the entropy estimator

Ĥ(X)→ EXi [− log f(Xi)] +Bk,d,p,K . (4.79)

In the case of the KL estimator, it happens that S0 = k and F0(d) = Cd

such that eã0 = k/Cd, e
â0 = f(Xi)k/(Cdρ

d
k,if(Xi)n) and Bk,d,p,K = − log k +

E[log(
∑k

`=1 E`)] = − log k + ψ(k).
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CHAPTER 5

ESTIMATING MUTUAL INFORMATION
FOR DISCRETE-CONTINUOUS
MIXTURES

A fundamental quantity of interest in machine learning is mutual information

(MI), which characterizes the shared information between a pair of random

variables (X, Y ). MI obeys several appealing properties including the data-

processing inequality, invariance under one-to-one transformations and the

chain rule [71], which led to a wide use in canonical tasks such as clas-

sification [21], clustering [22, 23, 24] and feature selection [26, 27]. Mutual

information also emerges as the “correct” quantity in several graphical model

inference problems (e.g., the Chow-Liu tree [136] and conditional indepen-

dence testing [137]). MI is also pervasively used in many data science ap-

plication domains, such as sociology [11], computational biology [29], and

computational neuroscience [138].

An important problem in any of these applications is to estimate mutual

information effectively from samples. While mutual information has been

the de facto measure of information in several applications for decades, the

estimation of mutual information from samples remains an active research

problem. Recently, there has been a resurgence of interest in entropy and

mutual information estimators, on both the theoretical as well as practical

fronts [116, 120, 34, 139, 85, 140, 79, 87, 5, 8].

The previous estimators focus on either of two cases – the data is either

purely discrete or purely continuous. In these special cases, the mutual in-

formation can be calculated based on the three (differential) entropies of X,

Y and (X, Y ). We term estimators based on this principle as 3H-estimators

(since they estimate three entropy terms), and a majority of previous esti-

mators fall under this category [140, 8, 116].

In practical downstream applications, we often have to deal with a mixture

of continuous and discrete random variables. Random variables can be mixed

in several ways. First, one random variable can be discrete whereas the other

is continuous. For example, we want to measure the strength of relationship
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between children’s age and height, here age X is discrete and height Y is

continuous. Secondly, a single scalar random variable itself can be a mixture

of discrete and continuous components. For example, consider X taking a

zero-inflated-Gaussian distribution, which takes value 0 with probability p

and is a Gaussian distribution with mean µ with probability 1 − p. This

distribution has both a discrete component as well as a component with

density. Finally, X and / or Y can be high-dimensional vector, each of

whose components may be discrete, continuous or mixed.

In all of the aforementioned mixed cases, mutual information is well-defined

through the Radon-Nikodym derivative (see Section 5.1) but cannot be ex-

pressed as a function of the entropies or differential entropies of the ran-

dom variables. Crucially, entropy is not well defined when a single scalar

random variable comprises of both discrete and continuous components, in

which case, 3H estimators (the vast majority of prior art) cannot be directly

employed. In this chapter, we address this challenge by proposing an estima-

tor that can handle all these cases of mixture distributions. The estimator

directly estimates the Radon-Nikodym derivative using the k-nearest neigh-

bor distances from the samples; we prove `2 consistency of the estimator

and demonstrate its excellent practical performance through a variety of ex-

periments on both synthetic and real dataset. Most relevantly, it strongly

outperforms natural baselines of discretizing the mixed random variables (by

quantization) or making it continuous by adding a small Gaussian noise.

Main contributions of Chapter 5:

• In Section 5.1, we review the general definition of mutual information

for the Radon-Nikodym derivative.

• In Section 5.2, we propose our estimator of mutual information for

mixed random variables.

• In Section 5.3, we prove that our estimator is `2 consistent under certain

technical assumptions and verify that the assumptions are satisfied for

most practical cases.

• Section 5.4 contains the results of our detailed synthetic and real-world

experiments testing the efficacy of the proposed estimator.
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5.1 Problem formation

In this section, we define mutual information for general distributions as

follows (e.g., [141]).

Definition 3. Let PXY be a probability measure on the space X×Y, where X
and Y are both Euclidean spaces. For any measurable set A ⊆ X and B ⊆ Y,

define PX(A) = PXY (A × Y) and PY (B) = PXY (X × B). Let PXPY be the

product measure PX×PY . If PXY is absolutely continuous w.r.t. PXPY , then

the mutual information I(X;Y ) of PXY is defined as

I(X;Y ) ≡
∫
X×Y

log
dPXY
dPXPY

dPXY , (5.1)

where dPXY
dPXPY

is the Radon-Nikodym derivative.

Notice that this general definition includes the following cases of mixtures:

(1) X is discrete and Y is continuous (or vice versa); (2) X or Y has many

components each, where some components are discrete and some are contin-

uous; (3) X or Y or their joint distribution is a mixture of continuous and

discrete distributions.

5.2 Estimators of mutual information

5.2.1 Review of previous works

The estimation problem is quite different depending on whether the under-

lying distribution is discrete, continuous or mixed. As pointed out earlier,

most existing estimators for mutual information are based on the 3H prin-

ciple: they estimate the three entropy terms first. This 3H principle can be

applied only in the purely discrete or purely continuous case.

Discrete data: For entropy estimation of a discrete variable X, the

straightforward approach to plug-in the estimated probabilities p̂X(x) into

the formula for entropy has been shown to be suboptimal [84, 142]. Novel

entropy estimators with sub-linear sample complexity have been proposed

[81, 77, 140, 85, 143, 144]. MI estimation can then be performed using the

3H principle, and such an approach is shown to be worst-case optimal for

mutual-information estimation [140].
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Continuous data: There are several estimators for differential entropy of

continuous random variables, which have been exploited in a 3H principle to

calculate the mutual information [30]. One family of entropy estimators are

based on kernel density estimators [100] followed by re-substitution estima-

tion. An alternate family of entropy estimators is based on k-Nearest Neigh-

bor (k-NN) estimates, beginning with the pioneering work of Kozachenko

and Leonenko [2] (the so-called KL estimator). Recent progress involves an

inspired mixture of an ensemble of kernel and k-NN estimators [116, 36].

Exponential concentration bounds under certain conditions are in [102].

Mixed random variables: Since the entropies themselves may not be

well defined for mixed random variables, there is no direct way to apply

the 3H principle. However, once the data is quantized, this principle can

be applied in the discrete domain. That mutual information in arbitrary

measure spaces can indeed be computed as a maximum over quantization is

a classical result [145]. However, the choice of quantization is complicated

and while some quantization schemes are known to be consistent when there

is a joint density [146], the mixed case is complex. Estimator of the average of

Radon-Nikodym derivative dP/dQ has been studied in [78, 75]. Very recent

work generalizing the ensemble entropy estimator when some components

are discrete and others continuous is in [120].

Beyond 3H estimation: An inspired work [4] proposed a direct method

for estimating mutual information (KSG estimator) when the variables have

a joint density. The estimator starts with the 3H estimator based on differen-

tial entropy estimates based on the k-NN estimates, and employs a heuristic

to couple the estimates in order to improve the estimator. While the original

paper did not contain any theoretical proof, even of consistency, its excellent

practical performance has encouraged widespread adoption. Recent work [5]

has established the consistency of this estimator along with its convergence

rate. Further, recent works [87, 8] involving a combination of kernel density

estimators and k-NN methods have been proposed to further improve the

KSG estimator. Ross [147] extends the KSG estimator to the case when one

variable is discrete and another is scalar continuous.

None of these works consider a case even if one of the components has a

mixture of continuous and discrete distribution, let alone for general prob-

ability distributions. There are two generic options: (1) one can add small

independent noise on each sample to break the multiple samples and apply
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a continuous valued MI estimator (like KSG), or (2) quantize and apply dis-

crete MI estimators but the performance for high-dimensional case is poor.

These form baselines to compare against in our detailed simulations.

5.2.2 Mixed regime

We first examine the behavior of other estimators in the mixed regime, before

proceeding to develop our estimator. Let us consider the case when X is

discrete (but real valued) and Y possesses a density. In this case, we will

examine the consequence of using the 3H principle, with differential entropy

estimated by the k-nearest neighbors. To do this, fix a parameter k, that

determines the number of neighbors and let ρi,x, ρi,y and ρi,xy denote the

distance of the k-nearest neighbor of Xi, Yi and (Xi, Yi), respectively. Then

Î
(N)
3H (X;Y ) =

(
1

N

N∑
i=1

log
Ncxρ

d
i,x

k
+ a(k)

)

+

(
1

N

N∑
i=1

log
Ncyρ

d
i,y

k
+ a(k)

)
−

(
1

N

N∑
i=1

log
Ncxyρ

d
i,xy

k
+ a(k)

)
,

(5.2)

where ψ(·) is the digamma function and a(·) = log(·)−ψ(·). In the case that

X is discrete and Y has a density, I3H(X;Y ) = −∞+ a− b = −∞, which is

clearly wrong.

The basic idea of the KSG estimator is to ensure that the ρ is the same for

both x, y and (x, y) and the difference is instead in the number of nearest

neighbors. Let nx,i be the number of samples of Xi’s within distance ρi,xy

and ny,i be the number of samples of Yi’s within distance ρi,xy. Then the

KSG estimator is given by

Î
(N)
KSG ≡

1

N

N∑
i=1

(ψ(k) + log(N)− log(nx,i + 1)− log(ny,i + 1) ) , (5.3)

where ψ(·) is the digamma function.

In the case of X being discrete and Y being continuous, it turns out that

the KSG estimator does not blow up (unlike the 3H estimator), since the
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distances do not go to zero. However, in the mixed case, the estimator has a

non-trivial bias due to discrete points and is no longer consistent.

5.2.3 Proposed estimator

We propose the following estimator for general probability distributions, in-

spired by the KSG estimator. The intuition is as follows. First notice that

MI is the average of the logarithm of Radon-Nikodym derivative, so we com-

pute the Radon-Nikodym derivative for each sample i and take the empir-

ical average. The re-substitution estimator for MI is then given as follows:

Î(X;Y ) ≡ 1
n

∑n
i=1 log

(
dPXY
dPXPY

)
(xi,yi)

. The basic idea behind our estimate of

the Radon-Nikodym derivative at each sample point is as follows:

• When the point is discrete (which can be detected by checking if the

k-nearest neighbor distance of data i is zero), then we can assert that

data i is in a discrete component, and we can use plug-in estimator for

Radon-Nikodym derivative.

• If the point is such that there is a joint density (locally), the KSG esti-

mator suggests a natural idea: fix the radius and estimate the Radon-

Nikodym derivative by (ψ(k) + log(N)− log(nx,i + 1)− log(ny,i + 1)).

• If k-nearest neighbor distance is not zero, then it may be either purely

continuous or mixed. But we show below that the method for purely

continuous is also applicable for mixed.

Precisely, let nx,i be the number of samples of Xi’s within distance ρi,xy

and ny,i be the number of samples of Yi’s with in ρi,xy. Denote k̃i by the

number of tuples (Xi, Yi) within distance ρi,xy. If the k-NN distance is zero,

which means that the sample (Xi, Yi) is a discrete point of the probability

measure, we set k to k̃i, which is the number of samples that have the same

value as (Xi, Yi). Otherwise we just keep k̃i as k. Our proposed estimator is

described in detail in Algorithm 1.

We note that our estimator recovers previous ideas in several canonical set-

tings. If the underlying distribution is purely discrete, the k-nearest neighbor

distance ρi,xy equals to 0 with high probability, then our estimator recovers

the plug-in estimator. If the underlying distribution is purely continuous,
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Algorithm 1 Mixed random variable mutual information estimator

Input: {Xi, Yi}Ni=1, where Xi ∈ X and Yi ∈ Y ;
Parameter: k ∈ Z+;
for i = 1 to N do
Di := {di,j := max{‖Xj −Xi‖, ‖Yj − Yi‖}, j 6= i};
ρi,xy := the k-th smallest element in Di;
if ρi,xy = 0 then
k̃i := number of samples such that di,j = 0;

else
k̃i := k;

end if
nx,i := number of samples such that ‖Xj −Xi‖ ≤ ρi,xy;
ny,i := number of samples such that ‖Yj − Yi‖ ≤ ρi,xy;
ξi := ψ(k̃i) + logN − log(nx,i + 1)− log(ny,i + 1);

end for
Output: Î(N)(X;Y ) := 1

N

∑N
i=1 ξi.

then there are no multiple overlapping samples, so k̃i equals to k, our estima-

tor recovers the KSG estimator. If X is discrete and Y is single-dimensional

continuous and PX(x) > 0 for all x, for sufficiently large dataset, the k-

nearest neighbors of sample (xi, yi) will be located on the same xi with high

probability. Therefore, our estimator recovers the discrete vs continuous es-

timator in [147].

5.3 Proof of consistency

We show that under certain technical conditions on the joint probability

measure, the proposed estimator is consistent. We begin with the following

definitions.

PXY (x, y, r) ≡ PXY ( {(a, b) ∈ X × Y : max{‖a− x‖, ‖b− y‖} ≤ r} ) ,

(5.4)

PX(x, r) ≡ PX ( {a ∈ X : ‖a− x‖ ≤ r} ) , (5.5)

PY (y, r) ≡ PY ( {b ∈ Y : ‖b− y‖ ≤ r} ) . (5.6)

Theorem 10. Suppose that the following assumptions hold.

Assumption 3. (a) k is chosen to be a function of N such that kN →∞
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and kN logN/N → 0 as N →∞.

(b) The set of discrete points {(x, y) : PXY (x, y, 0) > 0} is finite.

(c) PXY (x,y,r)
PX(x,r)PY (y,r)

converges to f(x, y) as r → 0 and f(x, y) ≤ C with prob-

ability 1.

(d) X ×Y can be decomposed into countable disjoint sets {Ei}∞i=1 such that

f(x, y) is uniformly continuous on each Ei.

(e)
∫
X×Y

∣∣ log f(x, y)
∣∣ dPXY < +∞.

Then we have limN→∞ E
[
Î(N)(X;Y )

]
= I(X;Y ).

Notice that conditions Assumptions 3.(b), (c) and (d) are satisfied when-

ever (1) the distribution is (finitely) discrete; (2) the distribution is continu-

ous; (3) some dimensions are (countably) discrete and some dimensions are

continuous; (4) a (finite) mixture of the previous cases. Most real-world data

can be covered by these cases. A sketch of the proof is below with the full

proof in Section 5.5.

We sketch the proof starting with an explicit form of the Radon-Nikodym

derivative dPXY /(dPXPY ).

Lemma 18. Under Assumption 3.(c) and (d) in Theorem 10,

dPXY
dPXPY

(x, y) = f(x, y) = lim
r→0

PXY (x, y, r)

(PX(x, r)PY (y, r)
. (5.7)

Notice that ÎN(X;Y ) = (1/N)
∑N

i=1 ξi, where all ξi are identically dis-

tributed. Therefore, E[Î(N)(X;Y )] = E[ξ1]. Therefore, the bias can be writ-

ten as:∣∣∣E[Î(N)(X;Y )]− I(X;Y )
∣∣∣ =

∣∣∣EXY [E [ξ1|X, Y ]]−
∫

log f(X, Y )PXY

∣∣∣
≤

∫ ∣∣∣E [ξ1|X, Y ]− log f(X, Y )
∣∣∣ dPXY . (5.8)

Now we upper bound
∣∣∣E [ ξ1|X, Y ]− log f(X, Y )

∣∣∣ for every (x, y) ∈ X ×Y
by dividing the domain into three parts as X × Y = Ω1

⋃
Ω2

⋃
Ω3 where

• Ω1 = {(x, y) : f(x, y) = 0},
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• Ω2 = {(x, y) : f(x, y) > 0, PXY (x, y, 0) > 0},

• Ω3 = {(x, y) : f(x, y) > 0, PXY (x, y, 0) = 0}.

We show that limN→∞
∫

Ωi

∣∣∣E [ξ1|X, Y ] − log f(X, Y )
∣∣∣ dPXY = 0 for each

i ∈ {1, 2, 3} separately.

• For (x, y) ∈ Ω1, we will show that Ω1 has zero probability with respect

to PXY . Hence,
∫

Ω1

∣∣∣E [ξ1|X, Y ]− log f(X, Y )
∣∣∣ dPXY = 0.

• For (x, y) ∈ Ω2, f(x, y) equals to PXY (x, y, 0)/PX(x, 0)PY (y, 0), so it

can be viewed as a discrete part. We will first show that the k-nearest

neighbor distance ρk,1 = 0 with high probability. Then we will use the

the number of samples on (x, y) as k̃i, and we will show that the mean

of estimate ξ1 is closed to log f(x, y).

• For (x, y) ∈ Ω3, it can be viewed as a continuous part. We use the

similar proof technique as [4] to prove that the mean of estimate ξ1 is

closed to log f(x, y).

The following theorem bounds the variance of the proposed estimator.

Theorem 11. Assume in addition that

(f). (kN logN)2/N → 0 as N →∞.

Then we have

lim
N→∞

Var
[
Î(N)(X;Y )

]
= 0. (5.9)

Sketch of proof: We use the Efron-Stein inequality to bound the variance

of the estimator. For simplicity, let Î(N)(Z) be the estimate based on original

samples {Z1, Z2, . . . , ZN}, where Zi = (Xi, Yi), and Î(N)(Z\j) is the estimate

from {Z1, . . . , Zj−1, Zj+1, . . . , ZN}. Then a certain version of Efron-Stein

inequality states that:

Var
[
Î(N)(Z)

]
≤ 2

N∑
j=1

(
sup

Z1,...,ZN

∣∣∣ Î(N)(Z)− Î(N)(Z\j)
∣∣∣ )2

. (5.10)
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Now recall that

Î(N)(Z) =
1

N

N∑
i=1

ξi(Z)

=
1

N

N∑
i=1

(
ψ(k̃i) + logN − log(nx,i + 1)− log(ny,i + 1)

)
. (5.11)

Therefore, we have

sup
Z1,...,ZN

∣∣∣ Î(N)(Z)− Î(N)(Z\j)
∣∣∣ ≤ 1

N
sup

Z1,...,ZN

N∑
i=1

∣∣∣ ξi(Z)− ξi(Z\j)
∣∣∣. (5.12)

To upper bound the difference | ξi(Z)−ξi(Z\j) | created by eliminating sample

Zj for different i ’s we consider three different cases: (1) i = j; (2) ρk,i = 0;

(3) ρk,i > 0, and conclude that
∑N

i=1 | ξi(Z) − ξi(Z\j) | ≤ O(k logN) for all

Zi’s. Plug it into Efron-Stein inequality, we obtain:

Var
[
Î(N)(Z)

]
≤ 2

N∑
j=1

(
sup

Z1,...,ZN

∣∣∣ Î(N)(Z)− Î(N)(Z\j)
∣∣∣ )2

≤ 2
N∑
j=1

(
1

N
sup

Z1,...,ZN

N∑
i=1

∣∣∣ ξi(Z)− ξi(Z\j)
∣∣∣)2

= O((k logN)2/N). (5.13)

By Assumption 3.(f), we have limN→∞Var
[
Î(N)(Z)

]
= 0.

Combining Theorem 10 and Theorem 11, we have the `2 consistency of

Î(N)(X;Y ).

5.4 Experiments of Chapter 5

We evaluate the performance of our estimator in a variety of (synthetic and

real-world) experiments.

Experiment I. (X, Y ) is a mixture of one continuous distribution and one

discrete distribution. The continuous distribution is jointly Gaussian with

zero mean and covariance Σ =

(
1 0.9

0.9 1

)
, and the discrete distribution is

P (X = 1, Y = 1) = P (X = −1, Y = −1) = 0.45 and P (X = 1, Y = −1) =
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Figure 5.1: Left: An example of samples from a mixture of continuous
(blue) and discrete (red) distributions, where red points denote multiple
samples. Right: An example of samples from a discrete X and a continuous
Y .

P (X = −1, 1) = 0.05. These two distributions are mixed with equal proba-

bility. The scatter plot of a set of samples from this distribution is shown in

the left panel of Figure 5.1, where the red squares denote multiple samples

from the discrete distribution. For all synthetic experiments, we compare our

proposed estimator with a (fixed) partitioning estimator, an adaptive par-

titioning estimator [146] implemented by [148], the KSG estimator [4] and

noisy KSG estimator (by adding Gaussian noise N(0, σ2I) on each sample

to transform all mixed distributions into continuous one). We plot the mean

squared error versus number of samples in Figure 5.2. The mean squared

error is averaged over 250 independent trials.

The KSG estimator is entirely misled by the discrete samples as expected.

The noisy KSG estimator performs better but the added noise causes the

estimate to degrade. In this experiment, the estimate is less sensitive to the

noise added and the line is indistinguishable with the line for KSG. The par-

titioning and adaptive partitioning method quantizes all samples, resulting

in an extra quantization error. Note that only the proposed estimator has

error decreasing with the sample size.

Experiment II. X is a discrete random variable and Y is a continuous

random variable. X is uniformly distributed over integers {0, 1, . . . ,m − 1}
and Y is uniformly distributed over the range [X,X + 2] for a given X. The

ground truth I(X;Y ) = log(m) − (m − 1) log(2)/m. We choose m = 5 and

a scatter plot of a set of samples is in the right panel of Figure 5.1. Notice

that in this case (and the following experiments) our proposed estimator
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degenerates to KSG if the hyper parameter k is chosen the same, hence KSG

is not plotted. In this experiment our proposed estimator outperforms other

methods.

Experiment III. Higher-dimensional mixture. Let (X1, Y1) and (Y2, X2)

have the same joint distribution as in experiment II and independent of

each other. We evaluate the mutual information between X = (X1, X2) and

Y = (Y1, Y2). Then ground truth I(X;Y ) = 2(log(m) − (m − 1) log(2)/m).

We also consider X = (X1, X2, X3) and Y = (Y1, Y2, Y3) where (X3, Y3)

have the same joint distribution as in experiment II and independent of

(X1, Y1), (X2, Y2). The ground truth I(X;Y ) = 3(log(m)−(m−1) log(2)/m).

The adaptive partitioning algorithm works only for one-dimensional X and

Y and is not compared here.

We can see that the performance of partitioning estimator is very bad

because the number of partitions grows exponentially with dimension. Pro-

posed algorithm suffers less from the curse of dimensionality. For the right

figure, noisy KSG method has smaller error, but we point out that it is

unstable with respect to the noise level added: as the noise level is varied

from σ = 0.5 to σ = 0.7 and the performance varies significantly (far from

convergence).

Experiment IV. Zero-inflated Poissonization. Here X ∼ Exp(1) is a

standard exponential random variable, and Y is zero-inflated Poissonization

of X, i.e., Y = 0 with probability p and Y ∼ Poisson(x) given X = x with

probability 1− p. Here the ground truth is I(X;Y ) = (1− p)(2 log 2− γ −∑∞
k=1 log k · 2−k) ≈ (1− p)0.3012, where γ is Euler-Mascheroni constant. We

repeat the experiment for no zero-inflation (p = 0) and for p = 15%. We

find that the proposed estimator is comparable to adaptive partitioning for

no zero-inflation and outperforms others for 15% zero-inflation.

We conclude that our proposed estimator is consistent for all these four

experiments, and the mean squared error is always the best or comparable

to the best. Other estimators are either not consistent or have large mean

squared error for at least one experiment.

Feature Selection Task. Suppose there are a set of features modeled by

independent random variables (X1, . . . , Xp) and the data Y depends on a

subset of features {Xi}i∈S, where card(S) = q < p. We observe the features

(X1, . . . , Xp) and data Y and try to select which features are related to Y .

In many biological applications, some of the data is lost due to experimental
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Figure 5.2: Mean squared error vs. sample size for synthetic experiments.
Top row (left to right): Experiment I; Experiment II. Middle row (left to
right): Experiment III for 4 dimensions and 6 dimensions. Bottom row (left
to right): Experiment IV for p = 0 and p = 15%.
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reasons and set to 0; even the available data is noisy. This setting natu-

rally leads to a mixture of continuous and discrete parts which we model

by supposing that the observation is X̃i and Ỹ , instead of Xi and Y . Here

X̃i and Ỹ equals to 0 with probability σ and follows Poisson distribution

parameterized by Xi or Y (which corresponds to the noisy observation) with

probability 1− σ.

In this experiment, (X1, . . . , X20) are i.i.d. standard exponential random

variables and Y is simply (X1, . . . , X5). X̃i equals to 0 with probability 0.15,

and X̃i ∼ Poisson(Xi) with probability 0.85. Ỹi equals to 0 with probability

0.15 and Ỹi ∼ Exp(Yi) with probability 0.85. Upon observing X̃i’s and

Ỹ , we evaluate MIi = I(X̃i; Ỹ ) using different estimators, and select the

features with top-r highest mutual information. Since the underlying number

of features is unknown, we iterate over all r ∈ {0, . . . , p} and observe a

receiver operating characteristic (ROC) curve, shown in left of Figure 5.3.

Compared to partitioning, noisy KSG and KSG estimators, we conclude that

our proposed estimator outperforms other estimators.
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Figure 5.3: Left: ROC curve for the feature selection task. Right: AUROC
versus levels of dropout for gene regulatory network inference.

Gene regulatory network inference. Gene expressions form a rich source

of data from which to infer gene regulatory networks; it is now possible to

sequence gene expression data from single cells using a technology called

single-cell RNA-sequencing [149]. However, this technology has a problem

called dropout, which implies that sometimes, even when the gene is present it

is not sequenced [150, 151]. While we tested our algorithm on real single-cell

RNA-seq dataset, it is hard to establish the ground truth on these datasets.

Instead we resorted to a challenge dataset for reconstructing regulatory net-

142



works, called the DREAM5 challenge [152]. The simulated (insilico) version

of this dataset contains gene expression for 20 genes with 660 data points

containing various perturbations. The goal is to reconstruct the true network

between the various genes. We used mutual information as the test statistic

in order to obtain AUROC for various methods. While the dataset did not

have any dropouts, in order to simulate the effect of dropouts in real data, we

simulated various levels of dropout and compared the AUROC (area under

ROC) of different algorithms in the right of Figure 5.3 where we find the

proposed algorithm to outperform the competing ones.

5.5 Proof of Theorem 10 on the bias

To prove the asymptotic unbiasedness of the estimator, we need to write the

Radon-Nikodym derivative in an explicit form. The following lemma gives

the explicit form of dPXY
dPXPY

.

Lemma 19. For almost every (x, y) ∈ X × Y,

dPXY
dPXPY

= f(x, y) = lim
r→0

PXY (x, y, r)

PX(x, r)PY (y, r)
. (5.14)

Now notice that ÎN(X;Y ) = 1
N

∑N
i=1 ξi, where all ξi are identically dis-

tributed. Therefore, E[ÎN(X;Y )] = E[ξ1]. Therefore, the bias can be written

as: ∣∣∣E[ÎN(X;Y )]− I(X;Y )
∣∣∣ =

∣∣∣EXY [E [ξ1|X, Y ]]−
∫

log f(X, Y )PXY

∣∣∣
≤

∫ ∣∣∣E [ξ1|X, Y ]− log f(X, Y )
∣∣∣ dPXY . (5.15)

Now we will give upper bounds for
∣∣∣E [ ξ1|X, Y ] − log f(X, Y )

∣∣∣ for every

(x, y) ∈ X × Y . We will divide the space into three parts as X × Y =

Ω1

⋃
Ω2

⋃
Ω3 where

• Ω1 = {(x, y) : f(x, y) = 0},

• Ω2 = {(x, y) : f(x, y) > 0, PXY (x, y, 0) > 0},

• Ω3 = {(x, y) : f(x, y) > 0, PXY (x, y, 0) = 0}.
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We will show that limN→∞
∫

Ωi

∣∣∣E [ξ1|(X, Y ) = (x, y)]− log f(x, y)
∣∣∣ dPXY = 0

for each i ∈ {1, 2, 3} separately.

Case I: (x, y) ∈ Ω1. In this case, we will show that Ω1 has zero probability

with respect to PXY .

PXY (Ω1) =

∫
Ω1

dPXY =

∫
Ω1

f(X, Y )dPXPY =

∫
Ω1

0 dPXPY = 0. (5.16)

Therefore,
∫

Ω1

∣∣∣E [ξ1|X, Y ]− log f(X, Y )
∣∣∣ dPXY = 0.

Case II: (x, y) ∈ Ω2. In this case, f(x, y) is just PXY (x, y, 0)/PX(x, 0)PY (y, 0).

We will first show that the probability that the k-nearest neighbor distance

ρk,1 > 0 is small. Then with high probability, we will use the the number

of samples on (x, y) as k̃i, and we will show that the mean of estimate ξ1 is

closed to log f(x, y).

First, the probability of ρk,1 > 0 is upper bounded by:

Pr ( ρk,1 > 0 | (X, Y ) = (x, y) )

=
k−1∑
m=0

(N−1
m )PXY (x, y, 0)m(1− PXY (x, y, 0))N−1−m

≤
k−1∑
m=0

Nm(1− PXY (x, y, 0))N−k

≤ kNk(1− PXY (x, y, 0))N−k ≤ kNke−(N−k)PXY (x,y,0). (5.17)

Conditioning on the event that ρk,1 = 0, we have ξ1 = ψ(k̃1) + logN −
log(nx,1 + 1)− log(ny,1 + 1). Then we write

∣∣∣E [ξ1|(X, Y ) = (x, y), ρk,1 = 0]−
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log f(x, y)
∣∣∣ as

∣∣∣E [ξ1|(X, Y ) = (x, y), ρk,1 = 0]− log f(x, y)
∣∣∣

=
∣∣∣E [ψ(k̃1) + log

N

(nx,1 + 1)(ny,1 + 1)
|(X, Y ) = (x, y), ρk,1 = 0

]
− log

PXY (x, y, 0)

PX(x, 0)PY (y, 0)

∣∣∣
≤

∣∣∣E [log(nx,1 + 1)|(X, Y ) = (x, y), ρk,1 = 0]− logNPX(x, 0)
∣∣∣

+
∣∣∣E [log(ny,1 + 1)|(X, Y ) = (x, y), ρk,1 = 0]− logNPY (y, 0)

∣∣∣
+
∣∣∣E [ψ(k̃1)|(X, Y ) = (x, y), ρk,1 = 0

]
− logNPXY (x, y, 0)

∣∣∣. (5.18)

Notice that k̃1 is the number of samples among {(Xi, Yi)}Ni=2 such that

(Xi, Yi) = (x, y), where each (Xi, Yi) = (x, y) with probability PXY (x, y, 0).

Therefore, the distribution of k̃1 is Bino(N − 1, PXY (x, y, 0)). Similarly, nx,1

is the number of samples among {(Xi, Yi)}Ni=2 such that Xi = x, ny,1 is

the number of samples among {(Xi, Yi)}Ni=2 such that Yi = y. Therefore,

nx,1 ∼ Bino(N − 1, PX(x, 0)) and ny,1 ∼ Bino(N − 1, PY (y, 0)). Notice that

conditioning on ρk,i = 0 is equivalent to conditioning on k̃i ≥ k, or nx,i ≥ k,

ny,i ≥ k, so we propose the following lemma to deal with (5.18).

Lemma 20. If X is distributed as Bino(N, p) and m ≥ 0 , then:

|E [log(X +m)|X ≥ k]− log(Np)|

≤ max


∣∣∣∣∣∣log

 1 + m
Np

1− exp
(
−2 (Np−k)2

N

)
∣∣∣∣∣∣ , 1

1− exp
(
−2 (Np−k)2

N

) 3

2Np

 .

(5.19)

By Assumption 3.(b), k/N → 0 as N → ∞, then (Np − k)2/N = N(p −
k/N)2 → ∞, So for sufficiently large N , the RHS of Lemma 20 is upper

bounded by max{C1m
Np

, C2

Np
} ≤ C(m+1)

Np
, where C = max{C1, C2} is some con-

stant not depends on N . Therefore, by applying Lemma 20 with m = 1, the
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first term of (5.18) is bounded by:∣∣∣E [log(nx,1 + 1)|(X, Y ) = (x, y), ρk,1 = 0]− logNPX(x, 0)
∣∣∣

≤
∣∣∣E [log(nx,1 + 1)|(X, Y ) = (x, y), nx,i ≥ k]− log(N − 1)PX(x, 0)

∣∣∣
+ log

N

N − 1
≤ 2C

(N − 1)PX(x, 0)
+

1

N − 1

≤ 2C + 1

(N − 1)PX(x, 0)
≤ 4C + 2

NPX(x, 0)
. (5.20)

Similarly, the second term of (5.18) is bounded by: (4C + 2)/(NPY (y, 0)).

For the third term, notice that |ψ(x)− log(x)| ≤ 1/x for every integer x ≥ 1,

therefore, |ψ(k̃1)− log(k̃1)| ≤ 1/k̃1 ≤ 1/k. By applying Lemma 20 with m =

0, the third term of (5.18) is bounded by: (2C+2)/(NPXY (x, y, 0))+1/k. By

Combining three terms together and noticing that PX(x, 0) ≥ PXY (x, y, 0)

and PY (y, 0) ≥ PXY (x, y, 0), we obtain∣∣∣E [ξ1|(X, Y ) = (x, y), ρk,1 = 0]− log f(x, y)
∣∣∣

≤ 4C + 2

NPX(x, 0)
+

4C + 2

NPY (y, 0)
+

2C + 2

NPXY (x, y, 0)
+

1

k

≤ 10C + 6

NPXY (x, y, 0)
+

1

k
. (5.21)

Combine with the case that ρi,xy > 0, we obtain that:∣∣∣E [ξ1|(X, Y ) = (x, y)]− log f(x, y)
∣∣∣

≤
∣∣∣E [ξ1|(X, Y ) = (x, y), ρk,1 > 0]− log f(x, y)

∣∣∣Pr ( ρk,1 > 0 )

+
∣∣∣E [ξ1|(X, Y ) = (x, y), ρk,1 = 0]− log f(x, y)

∣∣∣Pr ( ρk,1 = 0 )

≤ (2 logN + | log f(x, y)|)kNke−(N−k)PXY (x,y,0) +
10C + 6

NPXY (x, y, 0)
+

1

k
,

(5.22)

where the first term comes from triangle inequality and the fact that |ξ1| ≤
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2 logN . Integrating over Ω2, we have:∫
Ω2

∣∣∣E [ξ1|(X, Y ) = (x, y)]− log f(x, y)
∣∣∣ dPXY

≤
∫

Ω2

(2 logN + | log f(x, y)|)kNke−(N−k)PXY (x,y,0) dPXY

+
10C + 6

N

∫
Ω2

1

PXY (x, y, 0)
dPXY +

1

k

≤ (2 logN +

∫
Ω2

| log f(x, y)|dPXY )kNke−(N−k) inf(x,y)∈Ω2
PXY (x,y,0)

+
10C + 6

N
µ(Ω2) +

1

k
, (5.23)

where µ denotes counting measure. By Assumption 3.(a), k goes to infinity

as N goes to infinity, so 1/k vanishes as N increases. Assumptions 3.(a) and

(b), k/N goes to 0 and Ω2 has finite counting measure, so the second term also

vanishes. Since Ω2 has finite counting measure, so inf(x,y)∈Ω2 PXY (x, y, 0) =

ε > 0. By Assumption 3.(c),
∫

Ω2
| log f(x, y) |dPXY < +∞. Therefore, for

sufficiently large N , the first term also vanishes. So,

lim
N→∞

∫
Ω2

∣∣∣E [ξ1|(X, Y ) = (x, y)]− log f(x, y)
∣∣∣ dPXY = 0. (5.24)

Hence the proof of the second case is completed.

Case III: (x, y) ∈ Ω3. In this case, PXY (x, y, r) is a monotonic function

of r such that PXY (x, y, 0) = 0 and limr→∞ PXY (x, y, r) = 1. Hence, we can

view log (PXY (x, y, r)/PX(x, r)PY (y, r) ) as a function of PXY (x, y, r), and it

converges to log f(x, y) as PXY (x, y, r) → 0, for almost every (x, y). Since

PXY (Ω3) ≤ 1 < +∞ and
∫

Ω3
| log f(x, y)|dPXY < +∞. Then by Egoroff’s

theorem, for any εN > 0, there exists a subset E ⊆ Ω3 with PXY (E) < εN

and
∫
E
| log f(x, y)|dPXY < εN , such that log (PXY (x, y, r)/PX(x, r)PY (y, r) )

converges as PXY (x, y, r) → 0, uniformly on Ω3 \ E. For (x, y) ∈ E, notice

that |ξ1| ≤ 2 logN , so we have:∫
E

∣∣∣E [ξ1|(X, Y ) = (x, y)]− log f(x, y)
∣∣∣ dPXY

≤
∫
E

( 2 logN + | log f(x, y) | ) dPXY < (2 logN + 1)εN . (5.25)
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By choosing εN = 1/N , we will have limN→∞
∫
E

∣∣∣E [ξ1|(X, Y ) = (x, y)] −

log f(x, y)
∣∣∣ dPXY = 0.

Now for any (x, y) ∈ Ω3 \ E, since PXY (x, y, 0) = 0, we know that

Pr ( ρk,1 = 0 | (X, Y ) = (x, y) ) = 0, so k̃1 = k with probability 1. Condi-

tioning on ρk,1 = r > 0, the difference
∣∣∣E [ξ1|(X, Y ) = (x, y)] − log f(x, y)

∣∣∣
can be decomposed into four parts as follows:∣∣∣E [ξ1|(X, Y ) = (x, y)]− log f(x, y)

∣∣∣
=

∣∣∣ ∫ ∞
r=0

(E [ξ1|(X, Y ) = (x, y), ρk,1 = r]− log f(x, y) ) dFρk,1(r)
∣∣∣

≤
∣∣∣ ∫ ∞

r=0

(
log

PXY (x, y, r)

PX(x, r)PY (y, r)
− log f(x, y)

)
dFρk,1(r)

∣∣∣ (5.26)

+
∣∣∣ ∫ ∞

r=0

(ψ(k)− logN − logPXY (x, y, r) ) dFρk,1(r)
∣∣∣ (5.27)

+
∣∣∣ ∫ ∞

r=0

(
E [log(nx,1 + 1)|(X, Y ) = (x, y), ρk,1 = r]

− log(NPX(x, r))
)
dFρk,1(r)

∣∣∣ (5.28)

+
∣∣∣ ∫ ∞

r=0

(
E [log(ny,1 + 1)|(X, Y ) = (x, y), ρk,1 = r]

− log(NPY (y, r))
)
dFρk,1(r)

∣∣∣. (5.29)

Here Fρk,1(r) is the CDF of the k-nearest neighbor distance ρk,1, given

(X, Y ) = (x, y). By results of order statistics, its derivative with respect to

PXY (x, y, r) is given by:

dFρk,1(r)

dPXY (x, y, r)
=

(N − 1)!

(k − 1)!(N − k − 1)!
PXY (x, y, r)k−1

× ( 1− PXY (x, y, r) )N−k−1 . (5.30)

Now we consider the four terms separately. For (5.26), since the quan-

tity log (PXY (x, y, r)/PX(x, r)PY (y, r) ) converges as PXY (x, y, r) → 0, uni-

formly on Ω3 \ E. So for every (x, y) ∈ Ω3 \ E, there exists an rN such

that PXY (x, y, rN) = 4k logN/N and | log (PXY (x, y, r)/PX(x, r)PY (y, r) )−
log f(x, y)| < δN for every r ≤ rN . Here rN may depend on (x, y), but δN

does not depend on (x, y) and limN→∞ δN = 0. Therefore, (5.26) is upper
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bounded by:∣∣∣ ∫ ∞
r=0

(
log

PXY (x, y, r)

PX(x, r)PY (y, r)
− log f(x, y)

)
dFρk,1(r)

∣∣∣
≤

∫ rN

r=0

∣∣∣ log
PXY (x, y, r)

PX(x, r)PY (y, r)
− log f(x, y)

∣∣∣dFρk,1(r)

+

∫ ∞
r=rN

∣∣∣ log
PXY (x, y, r)

PX(x, r)PY (y, r)
− log f(x, y)

∣∣∣dFρk,1(r)

≤ δNp+

(
sup
r≥rN

∣∣∣ log
PXY (x, y, r)

PX(x, r)PY (y, r)
− log f(x, y)

∣∣∣ ) (1− p).

(5.31)

where p is the probability Pr ( ρk,1 ≤ rN | (X, Y ) = (x, y) ) which is smaller

than 1. Secondly, since PX(x, y, r) ≥ 4k logN/N > 1/N for r ≥ rN , so we

have | logPXY (x, y, r)| ≤ logN . The same bounds apply for | logPX(x, r)|
and | logPY (y, r)| as well. By triangle inequality, the supremum is upper

bounded by 3 logN + | log f(x, y)|. Finally, the probability 1 − p is upper

bounded by

1− p = Pr ( ρk,1 > rN | (X, Y ) = (x, y) )

=
k−1∑
m=0

(N−1
m )PXY (x, y, rN)m(1− PXY (x, y, rN))N−1−m

≤
k−1∑
m=0

Nm(1− PXY (x, y, rN))N−k = kNk(1− 4k logN

N
)N/2

≤ kNke−2k logN =
k

Nk
, (5.32)

for sufficiently large N such that N − k > N/2. Therefore, (5.26) is upper

bounded by ∣∣∣ ∫ ∞
r=0

(
log

PXY (x, y, r)

PX(x, r)PY (y, r)
− log f(x, y)

)
dFρk,1(r)

∣∣∣
≤ δN +

k(3 logN + | log f(x, y)|)
Nk

. (5.33)

For (5.27), we simply plug in Fρk,1(r) and integrate over PXY (x, y, r) and
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obtain ∫ ∞
r=0

(ψ(k)− logN − logPXY (x, y, r) ) dFρk,1(r)

= ψ(k)− logN − (N − 1)!

(k − 1)!(N − k − 1)!

∫ ∞
r=0

(logPXY (x, y, r))

PXY (x, y, r)k−1 ( 1− PXY (x, y, r) )N−k−1 dPXY (x, y, r)

= ψ(k)− logN − (N − 1)!

(k − 1)!(N − k − 1)!

∫ 1

t=0

(log t)tk−1(1− t)N−k−1dt

= ψ(k)− logN − (ψ(k)− ψ(N)) = ψ(N)− logN, (5.34)

where we use the fact that ψ(k) − ψ(N) = (N−1)!
(k−1)!(N−k−1)!

∫ 1

t=0
(log t)tk−1(1 −

t)N−k−1dt. Notice that ψ(N) < logN and limN→0(ψ(N)− logN) = 0.

Now we deal with (5.28) and (5.29). The following lemmas establish the

distribution of nx,1 and ny,1 given (X, Y ) = (x, y) and ρk,1 = r > 0.

Lemma 21. Given (X, Y ) = (x, y) and ρk,1 = r > 0, then nx,1 − k is

distributed as Bino(N − k − 1, PX(x,r)−PXY (x,y,r)
1−PXY (x,y,r)

); ny,1 − k is distributed as

Bino(N − k − 1, PY (y,r)−PXY (x,y,r)
1−PXY (x,y,r)

).

The following lemma is useful to establish the upper bound for (5.28)

and (5.29).

Lemma 22. For integer m ≥ 1, if X is distributed as Bino(N, p), then

|E[log(X +m)]− log(Np+m)| ≤ C/(Np+m) for some constant C.

Now we are ready to upper bound (5.28). First, we rewrite the term (5.28)
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as: ∣∣∣ ∫ ∞
r=0

(
E [log(nx,1 + 1)|(X, Y ) = (x, y), ρk,1 = r]

− logN − logPX(x, r)
)
dFρk,1(r)

∣∣∣
≤

∣∣∣ ∫ ∞
r=0

(
E [log(nx,1 + 1)|(X, Y ) = (x, y), ρk,1 = r]

− log

(
(N − k − 1)

PX(x, r)− PXY (x, y, r)

1− PXY (x, y, r)
+ k + 1

) )
dFρk,1(r)

∣∣∣
+
∣∣∣ ∫ ∞

r=0

(
log

(N − k − 1)PX(x,r)−PXY (x,y,r)
1−PXY (x,y,r)

+ k + 1

NPX(x, r)

)
dFρk,1(r)

∣∣∣
≤

∫ ∞
r=0

∣∣∣E [log(nx,1 + 1)|(X, Y ) = (x, y), ρk,1 = r]

− log

(
(N − k − 1)

PX(x, r)− PXY (x, y, r)

1− PXY (x, y, r)
+ k + 1

) ∣∣∣dFρk,1(r) (5.35)

+
∣∣∣Er [ log

(
N(PX(x, r)− PXY (x, y, r)) + (k + 1)(1− PX(x, r))

NPX(x, r)(1− PXY (x, y, r))

)] ∣∣∣,
(5.36)

where Er denotes expectation over Fρi,xy . By Lemma 22, the term (5.35) is

upper bounded by∫ ∞
r=0

∣∣∣E [log(nx,1 + 1)|(X, Y ) = (x, y), ρk,1 = r]

− log

(
(N − k − 1)

PX(x, r)− PXY (x, y, r)

1− PXY (x, y, r)
+ k + 1

) ∣∣∣dFρk,1(r)

≤
∫ ∞
r=0

C

(N − k − 1)PX(x,r)−PXY (x,y,r)
1−PXY (x,y,r)

+ k + 1
dFρk,1(r)

≤
∫ ∞
r=0

C

k + 1
dFρk,1(r) =

C

k + 1
. (5.37)

For (5.36), by the fact that log(x/y) ≤ (x−y)/y for all x, y > 0 and Cauchy-
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Schwarz inequality, we have the following:

Er
[

log

(
N(PX(x, r)− PXY (x, y, r)) + (k + 1)(1− PX(x, r))

NPX(x, r)(1− PXY (x, y, r))

)]
≤ Er

[
N(PX(x, r)− PXY (x, y, r)) + (k + 1)(1− PX(x, r))

NPX(x, r)(1− PXY (x, y, r))
− 1

]
= Er

[
(k + 1−NPXY (x, y, r))(1− PX(x, r))

NPX(x, r)(1− PXY (x, y, r))

]

≤

√√√√Er

[(
k + 1−NPXY (x, y, r)

NPXY (x, y, r)

)2
]

×

√√√√Er

[(
PXY (x, y, r)(1− PX(x, r))

PX(x, r)(1− PXY (x, y, r))

)2
]
. (5.38)

Notice that PX(x, r) ≥ PXY (x, y, r) for all r, so the second expectation is

always no larger than 1. For the first expectation, we plug in Fρk,1(r) and

integrate over PXY (x, y, r), let t = PXY (x, y, r) and observe,

Er

[(
k + 1−NPXY (x, y, r)

NPXY (x, y, r)

)2
]

=

∫ ∞
r=0

(
k + 1−NPXY (x, y, r)

NPXY (x, y, r)

)2

dFρi,xy(r)

=
(N − 1)!

(k − 1)!(N − k − 1)!

∫ 1

t=0

(k + 1−Nt)2

N2t2
tk−1(1− t)N−k−1dt

=
(N − 1)!

(k − 1)!(N − k − 1)!

(k + 1)2

N2

∫ 1

t=0

tk−3(1− t)N−k−1dt

− (N − 1)!

(k − 1)!(N − k − 1)!

2(k + 1)

N2

∫ 1

t=0

tk−2(1− t)N−k−1dt

+
(N − 1)!

(k − 1)!(N − k − 1)!

∫ 1

t=0

tk−3(1− t)N−k−1dt

=
(N − 1)!

(k − 1)!(N − k − 1)!

(k + 1)2

N2

(k − 3)!(N − k − 1)!

(N − 3)!

− (N − 1)!

(k − 1)!(N − k − 1)!

2(k + 1)

N2

(k − 2)!(N − k − 1)!

(N − 2)!
+ 1

=
(N − 1)(N − 2)(k + 1)2

N2(k − 1)(k − 2)
− 2(N − 1)(k + 1)

N(k − 1)
+ 1. (5.39)

For sufficiently large N and k, it is upper bounded by C1(1/N + 1/k) for
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some constant C1 > 0. Therefore,

Er
[

log

(
N(PX(x, r)− PXY (x, y, r)) + (k + 1)(1− PX(x, r))

NPX(x, r)(1− PXY (x, y, r))

)]
≤

√
C1(

1

N
+

1

k
). (5.40)

Similarly, by using the fact that log(x/y) > (x − y)/x and Cauchy-Schwarz

inequality again, we conclude that there are some constant C2 > 0 such that

Er
[

log

(
N(PX(x, r)− PXY (x, y, r)) + (k + 1)(1− PX(x, r))

NPX(x, r)(1− PXY (x, y, r))

)]
≥ −

√
C2(

1

N
+

1

k
). (5.41)

Therefore, by combining (5.37), (5.40) and (5.41), we obtain∣∣∣ ∫ ∞
r=0

(
E [log(nx,1 + 1)|(X, Y ) = (x, y), ρk,1 = r]− logN

− logPX(x, r)
)
dFρk,1(r)

∣∣∣ ≤ C

k + 1
+

√
C ′(

1

N
+

1

k
), (5.42)

where C ′ = max{C1, C2}. Since (5.29) and (5.28) are symmetric, the same

upper bound (5.42) also applies to (5.29). Combine (5.33), (5.34) and (5.42),

we have∣∣∣E [ξ1|(X, Y ) = (x, y)]− log f(x, y)
∣∣∣ ≤ δN +

k(3 logN + | log f(x, y)|)
Nk

+ logN − ψ(N) +
2C

k + 1
+ 2

√
C ′(

1

N
+

1

k
), (5.43)
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for every (x, y) ∈ Ω3 \ E. By integration over Ω3 \ E, we have∫
Ω3\E

∣∣∣E [ξ1|(X, Y ) = (x, y)]− log f(x, y)
∣∣∣ dPXY

≤
∫

Ω3\E

(
δN +

k(3 logN + | log f(x, y)|)
Nk

+ logN − ψ(N)

+
2C

k + 1
+ 2

√
C ′(

1

N
+

1

k
)
)
dPXY

≤ δN +
k(3 logN +

∫
X×Y | log f(x, y)|dPXY )

Nk
+ logN − ψ(N)

+
2C

k + 1
+ 2

√
C ′(

1

N
+

1

k
). (5.44)

By Assumption 3.(c),
∫
X×Y | log f(x, y)|dPXY < +∞. By Assumption 3.(a),

k increases as N → ∞. Therefore, this quantity vanishes as N → ∞.

Combining with the case that (x, y) ∈ E, we have

lim
N→∞

∫
Ω3

∣∣∣E [ξ1|(X, Y ) = (x, y)]− log f(x, y)
∣∣∣ dPXY = 0. (5.45)

5.5.1 Proof of Lemma 19

The proof of this lemma utilizes the Lebesgue-Besicovitch differentiation the-

orem [70, Theorem 1.32], stated below.

Lemma 23 (Lebesgue-Besicovitch Differentiation Theorem). Let µ be a

Radon measure on Rn. For f ∈ L1
loc(µ),

lim
r→0

1

µ(B̄r(x))

∫
B̄r(x)

fdµ = f(x), (5.46)

for µ-a.e. x.

For our lemma, let f = dPXY
dPXPY

and µ = PXPY . Since µ is a probability

measure, it is a Radon measure of Euclidean space. Also, since
∫
X×Y |f |dµ =

1, so f is globally integrable, hence locally integrable with respect to µ. So

the conditions of Lebesgue-Besicovitch differentiation theorem are satisfied
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and

f(x, y) =
dPXY
dPXPY

(x, y) = lim
r→0

1

PXPY (B̄r(x, y))

∫
B̄r(x,y)

dPXY
dPXPY

dPXPY

= lim
r→0

PXY (B̄r(x, y))

PXPY (B̄r(x, y))
= lim

r→0

PXY (x, y, r)

PX(x, r)PY (y, r)
. (5.47)

5.5.2 Proof of Lemma 20

First, we upperbound E [log(X)|X ≥ k]− log(Np). We can see that:

E [X +m|X ≥ k] =
1

Pr (X ≥ k)

N∑
i=k

(i+m)

(
N

i

)
pi(1− p)N−i

≤ 1

1− exp
(
−2 (Np−k)2

N

) N∑
i=k

(i+m)

(
N

i

)
pi(1− p)N−i

≤ 1

1− exp
(
−2 (Np−k)2

N

) N∑
i=1

(i+m)

(
N

i

)
pi(1− p)N−i

=
1

1− exp
(
−2 (Np−k)2

N

) (E [X] +m)

=
Np+m

1− exp
(
−2 (Np−k)2

N

) , (5.48)

in which we used the Hoeffding’s inequality. Since E [log(X +m)|X ≥ k] ≤
log (E [X +m|X ≥ k]), thus:

E [log(X)|X ≥ k]− log(Np) ≤ log

 1 + m
Np

1− exp
(
−2 (Np−k)2

N

)
 . (5.49)

Second, to give an upper bound over log(Np)−E [log(X +m)|X ≥ k], we

first notice that:

log(Np)− E [log(X +m)|X ≥ k] ≤ log(Np)− E [log(X)|X ≥ k] . (5.50)

Then we upperbound log(Np) − E [log(X)|X ≥ k] by applying Taylor’s
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theorem around x0 = Np, where there exists ζ between x and x0 such that:

log(x) = log(Np) +
x−Np
Np

− (x−Np)2

2ζ2
. (5.51)

Since ζ ≥ min {x, x0} = min {x,Np}, we have:

− log(x) + log(Np) +
x−Np
Np

=
(x−Np)2

2ζ2

≤ max

{
(x−Np)2

2x2
,
(x−NP )2

2(Np)2

}
≤ (x−Np)2

2x2
+

(x−Np)2

2(Np)2
. (5.52)

Now taking the conditional expectations from both sides, we have:

−E [log(X)|X ≥ k] + log(Np) +
E [X|X ≥ k]−Np

Np

≤ E
[

(X −Np)2

2X2

∣∣∣∣X ≥ k

]
+

E [(X −Np)2|X ≥ k]

2(Np)2
. (5.53)

First, we notice that E [X|X ≥ k] ≥ E [X] = Np. Second,

E
[
(X −Np)2

∣∣X ≥ k
]
≤ 1

1− exp
(
−2 (Np−k)2

N

)Var [X]

=
Np(1− p)

1− exp
(
−2 (Np−k)2

N

) . (5.54)

Thus we can write:

−E [log(X)|X ≥ k] + log(Np)

≤ Np(1− p)

1− exp
(
−2 (Np−k)2

N

) 1

2(Np)2
+ E

[
(X −Np)2

2X2

∣∣∣∣X ≥ k

]
. (5.55)

To deal with the term E
[

(X−Np)2

2X2

∣∣∣X ≥ k
]
, we have:
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E
[

(X −Np)2

2X2

∣∣∣∣X ≥ k

]
≤ 1

1− exp
(
−2 (Np−k)2

N

) N∑
i=k

(i−Np)2

2i2

(
N

i

)
pi(1− p)N−i

≤ 1

1− exp
(
−2 (Np−k)2

N

) N∑
i=k

(i−Np)2

(i+ 1)(i+ 2)

(
N

i

)
pi(1− p)N−i

=
1

1− exp
(
−2 (Np−k)2

N

) N∑
i=k

(i−Np)2

(N + 1)(N + 2)p2

(
N + 2

i+ 2

)
p2+i(1− p)N−i

≤ 1

1− exp
(
−2 (Np−k)2

N

) 1

(N + 1)(N + 2)p2
EY∼Bino(N+2,p)

[
(Y −Np)2

]
=

1

1− exp
(
−2 (Np−k)2

N

) (N + 2)p(1− p) + 4p2

(N + 1)(N + 2)p2

≤ 1

1− exp
(
−2 (Np−k)2

N

) (N + 2)p

(N + 1)(N + 2)p2

≤ 1

1− exp
(
−2 (Np−k)2

N

) 1

Np
, (5.56)

in which we used the fact that 2i2 ≥ (i+1)(i+2) for i ≥ 4, and (N+2)p ≥ 4p

for N ≥ 2. Plugging it into (5.55), we have the desired result:

−E [log(X)|X ≥ k] + log(Np) ≤ 1

1− exp
(
−2 (Np−k)2

N

) 3

2Np
. (5.57)

5.5.3 Proof of Lemma 21

Now we deal with the case that ρk,1 = r > 0. Given that (X1, Y1) = (x, y)

and ρk,1 = r > 0, we sort the samples {(Xi, Yi)}Ni=2 by their distance to (x, y)

defined as di = max{‖Xi−x‖, ‖Yi−y‖}. To avoid the case that two samples

have identical distance, we introduce a set of random variables {Zi}Ni=2 i.i.d.

samples from Unif[0, 1] and define a comparison operator ≺ as:

i ≺ j ⇐⇒ di < dj or {di = dj and Zi < Zj} . (5.58)
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Since for any i 6= j, the probability that Zi = Zj is zero, so we can have

either i ≺ j or i � j with probability 1. Now let {2, 3, . . . , N} = S ∪ {j} ∪ T
be a partition of the indices with |S| = k − 1 and |T | = N − k − 1. Define

an event AS,j,T associated to the partition as:

AS,j,T =
{
s ≺ j,∀s ∈ S, and t � j,∀t ∈ T

}
. (5.59)

Since (Xj, Yj) − (x, y) are i.i.d. random variables each of the events AS,j,T
has identical probability. The number of all partitions is (N−1)!

(N−k−1)!(k−1)!
and

thus Pr (AS,j,T ) = (N−k−1)!(k−1)!
(N−1)!

. So the cdf of nx,1 is given by:

Pr
(
nx,1 ≤ k +m

∣∣ρk,1 = r, (X1, Y1) = (x, y)
)

=
∑
S,j,T

Pr (AS,j,T | ρk,1 = r, (X1, Y1) = (x, y))

Pr
(
nx,1 ≤ k +m

∣∣AS,j,T , ρk,1 = r, (X1, Y1) = (x, y)
)

=
(N − k − 1)!(k − 1)!

(N − 1)!

∑
S,j,T

Pr
(
nx,1 ≤ k +m

∣∣AS,j,T , ρk,1 = r,

(X1, Y1) = (x, y)
)
. (5.60)

Now condition on eventAS,j,T and ρk,1 = r, namely (Xj, Yj) is the k-nearest

neighbor with distance r, S is the set of samples with distance smaller than

(or equal to) r and T is the set of samples with distance greater than (or

equal to) r. Recall that nx,1 is the number of samples with ‖Xj−x‖ ≤ r. For

any index s ∈ S ∪ {j}, ‖Xj − x‖ ≤ r are satisfied. Therefore, nx,1 ≤ k + m

means that there are no more than m samples in T with X -distance smaller

than r. Let Ul = I{‖Xl − x‖ ≤ r
∣∣ dl ≥ r}. Therefore,

Pr
(
nx,1 ≤ k +m

∣∣AS,j,T , ρk,1 = r, (X1, Y1) = (x, y)
)

= Pr
( ∑

l∈T

I{‖Xl − x‖ ≤ r} ≤ m
∣∣ ds ≤ r,∀s ∈ S, dj = r, dt ≥ r,∀t ∈ T

)
= Pr

(∑
l∈T

I{‖Xl − x‖ ≤ r} ≤ m
∣∣ dl ≥ r,∀l ∈ T

)

= Pr

(∑
l∈T

Ul ≤ m

)
, (5.61)

where Ul follows Bernoulli distribution with Pr{Ul = 1} = Pr{‖Xl − x‖ ≤
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r|dl ≥ r}. We can drop the conditioning of (Xs, Ys)’s for s 6∈ T since (Xs, Ys)

and (Xt, Yt) are independent. Therefore, given that dl ≥ r for all l ∈ T , the

variables I{‖Xl − x‖ ≤ r} are i.i.d. and have the same distribution as Ul.

We conclude:

Pr
(
nx,1 ≤ k +m

∣∣ρk,1 = r, (X1, Y1) = (x, y)
)

=
(N − k − 1)!(k − 1)!

(N − 1)!

∑
S,j,T

Pr
(
nx,1 ≤ k +m

∣∣AS,j,T , ρi,xy = r,

(X1, Y1) = (x, y)
)

=
(N − k − 1)!(k − 1)!

(N − 1)!

∑
S,j,T

Pr

(∑
l∈T

Ul ≤ m

)

= Pr

(∑
l∈T

Ul ≤ m

)
. (5.62)

Thus we have shown that nx,1 − k has the same distribution as
∑

l∈T Ul,

which is a binomial random variable with parameter |T | = N − k − 1 and

Pr{‖Xl − x‖ ≤ r | dl ≥ r} = PX(x,r)−PXY (x,y,r)
1−PXY (x,y,r)

. For ny,1, we can follow the

same proof and conclude that ny,1 − k ∼ Bino(N − k − 1, PY (x,r)−PXY (x,y,r)
1−PXY (x,y,r)

).

5.5.4 Proof of Lemma 22

By Jensen’s inequality, we know that E[logX] ≤ logE[X] = log(Np+m). So

it suffices to give an upper bound for log(Np + m)− E[logX]. We consider

two different cases.

Case I: Np ≥ m. In this case, for any x, by applying Taylor’s theorem

around x0 = Np+m, there exists ζ between x and x0 such that

log(x) = log(Np+m) +
x−Np−m
Np+m

− (x−Np−m)2

2ζ2
. (5.63)
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By noticing that ζ ≥ min{x, x0} = min{x,Np+m}, we have

− log(x) + log(Np+m) +
x−Np−m
Np+m

=
(x−Np−m)2

2ζ2

≤ max{(x−Np−m)2

2x2
,
(x−Np−m)2

2(Np+m)2
}

≤ (x−Np−m)2

2x2
+

(x−Np−m)2

2(Np+m)2
. (5.64)

Now let X −m be a Bino(N, p) random variable. By taking expectation on

both sides, we have:

−E[logX] + log(Np+m) +
E[X]−Np−m

Np+m

≤ E
[

(X −Np−m)2

2X2

]
+

E [ (X −Np−m)2 ]

2(Np+m)2
. (5.65)

Since E[X] = Np+m, E [ (X −Np−m)2 ] = Var[X] = Np(1− p), and

E
[

(X −Np−m)2

2X2

]
=

N∑
j=0

(j −Np)2

2(j +m)2 (Nj )p
j(1− p)N−j

≤
N∑
j=0

(j −Np)2

(j + 2)(j + 1)
(Nj )p

j(1− p)N−j

=
N∑
j=0

(j −Np)2

(N + 2)(N + 1)p2 (N+2
j+2 )pj+2(1− p)N−j

≤ 1

(N + 2)(N + 1)p2
EY∼Bino(N+2,p)

[
(Y −Np)2

]
=

(N + 2)p(1− p) + 4p2

(N + 2)(N + 1)p
≤ (N + 2)p

(N + 2)(N + 1)p
≤ 1

Np
, (5.66)

for m ≥ 1 and N ≥ 4. Plug these in (5.65), we have

−E[logX] + log(Np+m) ≤ 1

Np
+

Np(1− p)
2(Np+m)2

≤ 2

Np+m
+

1

2(Np+m)
=

5

2(Np+m)
, (5.67)

where 1/(2Np) ≤ 1/(Np+m) comes from the fact that Np ≥ m.
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Case II: Np < m. In this case, for any x, by applying Taylor’s theorem

around x0 = Np+m, there exists ζ between x and x0 such that

log(x) = log(Np+m) +
x−Np−m
Np+m

− (x−Np−m)2

2ζ2
. (5.68)

By noticing that ζ ≥ min{x, x0} ≥ m ≥ (Np+m)/2, we have:

− log(x) + log(Np+m) +
x−Np−m
Np+m

≤ 2(x−Np−m)2

(Np+m)2
. (5.69)

Similarly, by taking expectation on both sides, we have

−E[logX] + log(Np+m) +
E[X]−Np−m

Np+m

≤ E [ 2(X −Np−m)2 ]

(Np+m)2
. (5.70)

By plugging in E[X] = Np+m and E [ (X −Np− k)2 ] = Var[X] = Np(1−
p), we obtain

−E[logX] + log(Np+m) ≤ 2Np(1− p)
(Np+m)2

≤ 2(Np+m)

(Np+m)2
=

2

Np+m
. (5.71)

Combining the two cases, we obtain the desired statement.

5.6 Proof of Theorem 11 on the variance

We use the Efron-Stein inequality to bound the variance of the estima-

tor. For simplicity, let Î(N)(Z) be the estimate based on original samples

{Z1, Z2, . . . , ZN}, where Zi = (Xi, Yi). For the usage of Efron-Stein inequal-

ity, we consider another set of i.i.d. samples {Z ′1, Z ′2, . . . , Z ′n} drawn from

PXY . Let Î(N)(Z(j)) be the estimate based on {Z1, . . . , Zj−1, Z
′
j, Zj+1, . . . , ZN}.

Then the Efron-Stein inequality states that

Var
[
Î(N)(Z)

]
≤ 1

2

N∑
j=1

E
[(

Î(N)(Z)− Î(N)(Z(j))
)2
]
. (5.72)
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Now we will give an upper bound for the difference |Î(N)(Z)− Î(N)(Z(j))|
for given index j. First of all, let Î(N)(Z\j) be the estimate based on the

rest of samples {Z1, . . . , Zj−1, Zj+1, . . . , ZN}, then by triangle inequality, we

have:

sup
Z1,...,ZN ,Z

′
j

∣∣∣ Î(N)(Z)− Î(N)(Z(j))
∣∣∣

≤ sup
Z1,...,ZN ,Z

′
j

( ∣∣∣ Î(N)(Z)− Î(N)(Z\j)
∣∣∣+
∣∣∣ Î(N)(Z\j)− Î(N)(Z(j))

∣∣∣ )
≤ sup

Z1,...,ZN

∣∣∣ Î(N)(Z)− Î(N)(Z\j)
∣∣∣

+ sup
Z1,...,Zj−1,Z′j ,Zj+1,...,ZN

∣∣∣ Î(N)(Z\j)− Î(N)(Z(j))
∣∣∣

= 2 sup
Z1,...,ZN

∣∣∣ Î(N)(Z)− Î(N)(Z\j)
∣∣∣, (5.73)

where the last equality comes from the fact that {Z1, . . . , Zj−1, Z
′
j, Zj+1, . . . , ZN}

has the same joint distribution as {Z1, . . . , ZN}. Now recall that

Î(N)(Z) =
1

N

N∑
i=1

ξi(Z)

=
1

N

N∑
i=1

(
ψ(k̃i) + logN − log(nx,i + 1)− log(ny,i + 1)

)
. (5.74)

Therefore, we have

sup
Z1,...,ZN ,Z

′
j

∣∣∣ Î(N)(Z)− Î(N)(Z(j))
∣∣∣ ≤ 2

N
sup

Z1,...,ZN

N∑
i=1

∣∣∣ ξi(Z)− ξi(Z\j)
∣∣∣. (5.75)

Now we need to upper-bound the difference | ξi(Z) − ξi(Z\j) | created by

eliminating sample Zj for different i ’s. There are three cases of i’s as follows,

• Case I: i = j. Since the upper bounds |ξi(Z)| ≤ 2 logN and |ξi(Z\j)| ≤
2 log(N − 1) always holds, so | ξi(Z)− ξi(Z\j) | ≤ 4 logN . The number

of i’s in this case is only 1. So
∑

Case I | ξi(Z)− ξi(Z\j) | ≤ 4 logN .

• Case II: ρi,xy = 0. In this case, recall that k̃i =
∣∣∣ {i′ 6= i : Zi = Zi′}

∣∣∣,
nx,i =

∣∣∣ {i′ 6= i : Xi = Xi′}
∣∣∣ and ny,i =

∣∣∣ {i′ 6= i : Yi = Yi′}
∣∣∣. There are

four sub-cases in this case.
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– Case II.1: Zi = Zj. By eliminating Zj, k̃i, nx,i, ny,i will all

decrease by 1. Therefore,

| ξi(Z)− ξi(Z\j) |

= |
(
ψ(k̃i) + logN − log(nx,i + 1)− log(ny,i + 1)

)
−
(
ψ(k̃i − 1) + log(N − 1)− log(nx,i)− log(ny,i)

)
|

≤ |ψ(k̃i)− ψ(k̃i − 1)|+ | logN − log(N − 1)|

+ | log(nx,i + 1)− log(nx,i)|+ | log(ny,i + 1)− log(ny,i)|

≤ 1

k̃i − 1
+

1

N − 1
+

1

nx,i
+

1

ny,i
≤ 4

k̃i − 1
=

4

k̃j − 1
. (5.76)

The number of i’s in this case is the number if i’s such that

Zi = Zj, which is just k̃j. Therefore,
∑

Case II.1 | ξi(Z)− ξi(Z\j) | ≤
4k̃j/(k̃j − 1) ≤ 8, for k̃j ≥ k ≥ 2.

– Case II.2: Xi = Xj but Yi 6= Yj. By eliminating Zj, k̃i and ny,i

would not change but nx,i will decrease by 1. Therefore,

| ξi(Z)− ξi(Z\j) |

≤ | logN − log(N − 1)|+ | log(nx,i + 1)− log(nx,i)|

≤ 1

N − 1
+

1

nx,i
≤ 2

nx,i
=

2

nx,j
. (5.77)

The number of i’s in this case is the number if i’s such that Xi =

Xj but Yi 6= Yj, which is less than nx,j. Therefore,
∑

Case II.2 | ξi(Z)−
ξi(Z\j) | ≤ 2nx,j/nx,j ≤ 2.

– Case II.3: Yi = Yj but Xi 6= Xj. By eliminating Zj, k̃i and nx,i

would not change but ny,i will decrease by 1. Similarly as Case

II.2, we have
∑

Case II.3 | ξi(Z)− ξi(Z\j) | ≤ 2.

– Case II.4: Xi 6= Xj and Yi 6= Yj. In this case, none of k̃i, nx,i,

or ny,i will change. So | ξi(Z) − ξi(Z\j) | = logN − log(N − 1) ≤
1/(N−1). The number of i’s in this case is simply less than N−1.

Therefore,
∑

Case II.4 | ξi(Z)− ξi(Z\j) | ≤ 1.

Combining the cases, we conclude that
∑

Case II | ξi(Z)− ξi(Z\j) | ≤ 13.

• Case III: ρi,xy > 0. In this case, recall that k̃i always equals to k,

nx,i =
∣∣∣ {i′ 6= i : ‖Xi −Xi′‖ ≤ ρi,xy}

∣∣∣ and ny,i =
∣∣∣ {i′ 6= i : ‖Yi − Yi′‖ ≤
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ρi,xy}
∣∣∣. So the analysis will be the same as the analysis of variance of

classical KSG estimator in Section 3.7. In this case, we have∑
Case III

| ξi(Z)− ξi(Z\j) |

≤ 2 logN + 4kγdx+dy logN + 4γdx+dy(logN + 1). (5.78)

Combining the three cases, we have:

N∑
i=1

∣∣∣ ξi(Z)− ξi(Z\j)
∣∣∣

≤ 6 logN + 13 + 4kγdx+dy logN + 4γdx+dy(logN + 1)

≤ 31γdx+dyk logN, (5.79)

for k ≥ 1, logN ≥ 1 and all {Z1, . . . , ZN}. Plug it into (5.75), and we obtain:

sup
Z1,...,ZN ,Z

′
j

∣∣∣ Î(N)(Z)− Î(N)(Z(j))
∣∣∣ ≤ 62γdx+dyk logN

N
. (5.80)

Plug it into Efron-Stein inequality (5.72), and we obtain:

Var
[
Î(N)(Z)

]
≤ 1

2

N∑
j=1

E
[(

Î(N)(Z)− Î(N)(Z(j))
)2
]

≤ 1

2

N∑
j=1

sup
Z1,...,Zn,Z′j

(
Î(N)(Z)− Î(N)(Z(j))

)2

≤ 1

2

N∑
j=1

(
62γdx+dyk logN

N
)2 =

1922γ2
dx+dy

(k logN)2

N
. (5.81)

Since 1922γ2
dx+dy

is a constant independent of N , and (kN logN)2/N → 0 as

N →∞ by Assumption 3.(f), we have limN→∞Var
[
Î(N)(Z)

]
= 0.
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CHAPTER 6

DISCOVERING POTENTIAL
CORRELATIONS VIA INFORMATION
BOTTLENECK

Measuring the strength of an association between two random variables is

a fundamental topic of broad scientific interest. Pearson’s correlation coef-

ficient [153] dates from over a century ago and has been generalized seven

decades ago as maximal correlation (mCor) to handle nonlinear dependen-

cies [154, 155, 156]. Novel correlation measures to identify different kinds

of associations continue to be proposed in the literature; these include maxi-

mal information coefficient (MIC) [11] and distance correlation (dCor) [157].

Despite the differences, a common theme of measurement of the empirical

average dependence unites the different dependence measures. Alternatively,

these are factual measures of dependence and their relevance is restricted

when we seek a potential dependence of one random variable on another. For

instance, consider a hypothetical city with very few smokers. A standard

measure of correlation on the historical data in this town on smoking and

lung cancer will fail to discover the fact that smoking causes cancer, since

the average correlation is very small. On the other hand, clearly, there is a

potential correlation between smoking and lung cancer; indeed applications

of this nature abound in several scenarios in modern data science, including

a recent one on genetic pathway discovery [29].

Discovery of a potential correlation naturally leads one to ask for a mea-

sure of potential correlation that is statistically well-founded and addresses

practical needs. Such is the focus of this work, where our proposed measure

of potential correlation is based on a novel interpretation of the Information

Bottleneck (IB) principle [158]. The IB principle has been used to address one

of the fundamental tasks in supervised learning: given samples {Xi, Yi}ni=1,

how do we find a compact summary of a variable X that is most informa-

tive in explaining another variable Y . The output of the IB principle is a

compact summary of X that is most relevant to Y and has a wide range of

applications [159, 160].
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We use this IB principle to create a measure of correlation based on the

following intuition: if X is (potentially) correlated with Y , then a relatively

compact summary of X can still be very informative about Y . In other

words, the maximal ratio of how informative a summary can be in explain-

ing Y to how compact a summary is with respect to X is, conceptually

speaking, an indicator of potential correlation from X to Y . Quantifying the

compactness by I(U ;X) and the information by I(U ;Y ) we consider the rate

of information bottleneck as a measure of potential correlation:

s(X;Y ) ≡ sup
U–X–Y

I(U ;Y )

I(U ;X)
, (6.1)

where U − X − Y forms a Markov chain and the supremum is over all

summaries U of X. This intuition is made precise in Section 6.1, where

we formally define a natural notion of potential correlation (Axiom 6), and

show that the rate of information bottleneck s(X;Y ) captures this potential

correlation (Theorem 12) while other standard measures of correlation fail

(Theorem 13).

This ratio has only recently been identified as the hypercontractivity coeffi-

cient [10], correcting the former mistaken belief that s(X;Y ) = mCor2(X, Y ),

the squared maximal correlation [161]. Hypercontractivity has a distin-

guished and central role in a large number of technical arenas including

quantum physics [162, 163], theoretical computer science [164, 165], math-

ematics [166, 167] and probability theory [168, 169]. In this chapter, we

provide a novel interpretation to the hypercontractivity coefficient as a mea-

sure of potential correlation by demonstrating that it satisfies a natural set

of axioms such a measure is expected to obey.

For practical use in discovering correlations, the standard correlation co-

efficients are equipped with corresponding natural sample-based estimators.

However, for hypercontractivity coefficient, estimating it from samples is

widely acknowledged to be challenging, especially for continuous random

variables [170, 171]. There is no existing algorithm to estimate the hyper-

contractivity coefficient in general, and there is no existing algorithm for

solving IB from samples either [170, 171]. We provide a novel estimator of

the hypercontractivity coefficient – the first of its kind – by bringing together

the recent theoretical discoveries in [10, 172] of an alternate definition of hy-

percontractivity coefficient as ratio of Kullback-Leibler divergences defined
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in (6.16), and recent advances in joint optimization (the maximization step

in (6.1)) and estimating information measures from samples using importance

sampling [28].

Main contributions of Chapter 6:

• We postulate a set of natural axioms that a measure of potential cor-

relation from X to Y should satisfy (Section 6.1).

• We show that
√
s(X;Y ), our proposed measure of potential correla-

tion, satisfies all the axioms we postulate. In comparison, we prove

that existing standard measures of correlation not only fail to satisfy

the proposed axioms, but also fail to capture canonical potential corre-

lations captured by
√
s(X;Y ) (Section 6.1). Another natural candidate

is mutual information, but it is not clear how to interpret the value of

mutual information as it is unnormalized, unlike all other measures of

correlation which are between zero and one.

• Computation of the hypercontractivity coefficient from samples is known

to be a challenging open problem. We introduce a novel estimator to

compute hypercontractivity coefficient from i.i.d. samples in a statis-

tically consistent manner for continuous random variables, using ideas

from importance sampling and kernel density estimation (Section 6.2).

• In a series of synthetic experiments, we show empirically that our es-

timator for the hypercontractivity coefficient is statistically more pow-

erful in discovering a potential correlation than existing correlation

estimators; a larger power means a larger successful detection rate for

a fixed false alarm rate (Section 6.3.1).

• We show applications of our estimator of hypercontractivity coefficient

in two important datasets: In Section 6.3.2, we demonstrate that it dis-

covers hidden potential correlations among various national indicators

in WHO datasets, including how aid is potentially correlated with the

income growth. In Section 6.3.3, we consider the following gene path-

way recovery problem: we are given samples of four gene expressions

time series. Assuming we know that gene A causes B, that B causes C,

and that C causes D, the problem is to discover that these causations
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occur in the sequential order: A to B, and then B to C, and then C to

D. We show empirically that the estimator of the hypercontractivity co-

efficient recovers this order accurately from a vastly smaller number of

samples compared to other state-of-the art causal influence estimators.

6.1 Axiomatic approach to measure potential

correlations

We propose a set of axioms that we expect a measure of potential correlation

to satisfy. We then show that hypercontractivity coefficient, first introduced

in [168], satisfies all the proposed axioms, hence propose hypercontractivity

coefficient as a measure of potential correlation. We also show that other

standard correlation coefficients and mutual information, on the other hand,

violates the proposed axioms.

6.1.1 Axioms for potential correlation

We postulate that a measure of potential correlation ρ∗ : X × Y → [0, 1]

between two random variables X ∈ X and Y ∈ Y should satisfy:

1. ρ∗(X, Y ) is defined for any pair of non-constant random variables X

and Y .

2. 0 ≤ ρ∗(X, Y ) ≤ 1.

3. ρ∗(X, Y ) = 0 iff X and Y are statistically independent.

4. For bijective Borel-measurable functions f, g : R → R, ρ∗(X, Y ) =

ρ∗(f(X), g(Y )).

5. If (X, Y ) ∼ N (µ,Σ), then ρ∗(X, Y ) = |ρ|, where ρ is the Pearson

correlation coefficient.

6. ρ∗(X, Y ) = 1 if there exists a subset Xr ⊆ X such that for a pair

of continuous random variables (X, Y ) ∈ Xr × Y , Y = f(X) for a

Borel-measurable and non-constant continuous function f .
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Figure 6.1: A measure of potential correlation should capture the rare
correlation in X ∈ [0, 1] in these examples which satisfy Axiom 6 for a
linear and a quadratic function, respectively.

Axioms 1-5 are identical to a subset of the celebrated axioms of Rényi

in [156], which ensure that the measure is properly normalized and invari-

ant under bijective transformations, and recovers the Pearson correlation for

jointly Gaussian random variables. Rényi’s original axioms for a measure

of correlation in [156] included Axioms 1-5 and also that the measure ρ∗ of

correlation should satisfy

7. ρ∗(X, Y ) = 1 if for Borel-measurable functions f or g, Y = f(X) or

X = g(Y ).

8. ρ∗(X;Y ) = ρ∗(Y ;X).

The Pearson correlation violates a subset (3, 4, and 7) of Rényi’s axioms. To-

gether with recent empirical successes in multimodal deep learning (e.g. [173,

174, 175]), Rényi’s axiomatic approach has been a major justification of

Hirschfeld-Gebelein-Rényi (HGR) maximal correlation coefficient defined as

mCor(X, Y ) := supf,g E[f(X)g(Y )], which satisfies all Rényi’s axioms [154].

Here, the supremum is over all measurable functions with E[f(X)] = E[g(Y )] =

0 and E[f 2(X)] = E[g2(Y )] = 1. However, maximal correlation is not the

only measure satisfying all of Rényi’s axioms, as we show in the following.

Proposition 2. For any function F : [0, 1]×[0, 1]→ [0, 1] satisfying F (x, y) =

F (y, x), F (x, x) = x, and F (x, y) = 0 only if xy = 0, the symmetrized

F (
√
s(X;Y ),

√
s(Y ;X)) satisfies all Rényi’s axioms.
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This follows from the fact that the hypercontractivity coefficient
√
s(X;Y )

satisfies all but the symmetry in Axiom 7 (Theorem 12), and it follows that

a symmetrized version satisfies all axioms, e.g. (1/2)(
√
s(X;Y )+

√
s(Y ;X))

and (s(X;Y )s(Y ;X))1/4. A formal proof is provided in Section 6.4.1.

From the original Rényi’s axioms, for a potential correlation measure, we

remove Axiom 8 that ensures symmetry, as directionality is fundamental in

measuring the potential correlation from X to Y . We further replace Axiom

7 by Axiom 6, as a variable X has a full potential to be correlated with Y if

there exists a domain Xr such that X and Y are deterministically dependent

and non-degenerate (i.e. not a constant function), as illustrated in Figure 6.1

for a linear function and a quadratic function.

6.1.2 The hypercontractivity coefficient satisfies all axioms

We show that the hypercontractivity coefficient defined in (6.1) satisfies all

Axioms 1-6. Intuitively, s(X;Y ) measures how much potential correlation X

has with Y . For example, if X and Y are independent, then s(X;Y ) = 0 as X

has no correlation with Y (Axiom 3). By data processing inequality, it follows

that it is a measure between zero and one (Axiom 2) and also invariant under

bijective transformations (Axiom 4). For jointly Gaussian variables X and

Y with the Pearson correlation ρ, we can show that s(X;Y ) = s(Y ;X) = ρ2.

Hence, the squared-root of s(X;Y ) satisfies Axiom 5. In fact,
√
s(X;Y )

satisfies all desired axioms for potential correlation, and we make this precise

in the following theorem whose proof is provided in Section 6.4.2.

Theorem 12. Hypercontractivity coefficient
√
s(X;Y ) satisfies Axioms 1-6.

In particular, the hypercontractivity coefficient satisfies Axiom 6 for po-

tential correlation, unlike other measures of correlation (see Theorem 13 for

examples). If there is a potential for X in a possibly rare regime in X to

be fully correlated with Y such that Y = f(X), then the hypercontractivity

coefficient is maximum: s(X;Y ) = 1. In the following subsection, we show

that existing correlation measures violate the proposed axioms.
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6.1.3 Standard correlation coefficients violate the axioms

We analyze existing measures of correlations under the scenario with poten-

tial correlation (Axiom 6), where we find that none of the existing correlation

measures satisfy Axiom 6. Suppose X and Y are independent (i.e. no corre-

lation) in a subset Xd of the domain X , and allow X and Y to be arbitrarily

correlated in the rest Xr of the domain, such that X = Xd ∪ Xr. We fur-

ther assume that the independent part is dominant and the correlated part

is rare; let α := Pr(X ∈ Xr) and we consider the scenario when α is small.

A good measure of potential correlation is expected to capture the corre-

lation in Xr even if it is rare (i.e., α is small). To make this task more

challenging, we assume that the conditional distribution of Y |{X ∈ Xr} is

the same as Y |{X /∈ Xr}. Figure 6.1 illustrates sampled points for two exam-

ples from such a scenario. Our main result is the analysis of HGR maximal

correlation (mCor) [154], distance correlation (dCor) [157], maximal informa-

tion coefficients (MIC) [11], which shows that these measures are vanishing

with α even if the dependence in the rare regime is very high. Suppose

Y |(X ∈ Xr) = f(X), then all three correlation coefficients are vanishing

as α gets small. This in particular violates Axiom 6. The reason is that

standard correlation coefficients measure the average correlation whereas the

hypercontractivity coefficient measures the potential correlation. The exper-

imental comparisons on the power of these measures confirm our analytical

predictions in Figure 6.4 in Section 6.3. The formal statement is below and

the proof is provided in Section 6.4.3.

Theorem 13. Consider a pair of continuous random variables (X, Y ) ∈
X × Y. Suppose X is partitioned as Xr ∪ Xd = X such that PY |X(S|X ∈
Xr) = PY |X(S|X ∈ Xd) for all S ⊆ Y, X ⊥⊥ Y in Xd , and α = Pr{X ∈ Xr}.
The HGR maximal correlation coefficient is

mCor(X, Y ) =
√
α mCor(Xr, Y ). (6.2)

The distance correlation coefficient is

dCor(X, Y ) = α dCor(Xr, Y ). (6.3)
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The maximal information coefficient is upper bounded by

MIC(X, Y ) ≤ α MIC(Xr, Y ), (6.4)

where Xr is the random variable X conditioned on the rare domain X ∈ Xr.

Under the rare/dominant scenario considered in Theorem 13, s(X;Y ) ≥
mCor2(X;Y ). It is well known that this inequality holds for any X and

Y [168]. In particular, [176, Theorem 3] shows that hypercontractivity coef-

ficient is a natural extension of the popular HGR maximal correlation coef-

ficient as follows.

Remark 2. The squared HGR maximal correlation is a special case of the

hypercontractivity optimization in (6.16) restricted to searching over a dis-

tribution r(x) in a close neighborhood of p(x).

As s(X;Y ) searches over a larger space, it is always larger than or equal

to mCor2(X;Y ). This gives an intuitive justification for using s(X;Y ) as a

measure of potential influence; we allow search over larger space, but properly

normalized by the KL divergence, in a hope to find a potential distribution

r(x) that can influence Y significantly. While hypercontractivity coefficient

is a natural extension of HGR maximal correlation coefficient, there is an im-

portant difference between hypercontractivity coefficient and HGR maximal

correlation coefficient (and other correlation measures); hypercontractivity is

directional.

Remark 3. Hypercontractivity coefficient is asymmetric in X and Y while

HGR maximal correlation, distance correlation, and MIC are symmetric.

Under the rare/dominant scenario considered in Theorem 13, the hyper-

contracitivy coefficient s(X;Y ) is large because it measures the potential

correlation from X to Y . On the other hand, inverse hypercontractivity co-

efficient s(Y ;X), which measures the potential correlation from Y to X, is

small as there is no apparent potential correlation from Y to X. This is made

precise in the following proposition.

Proposition 3. Under the hypotheses of Theorem 13, the hypercontractivity

coefficient from Y to X is

s(Y ;X) = α s(Y ;Xr). (6.5)
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Proof is provided in Section 6.4.4.

6.1.4 Mutual information violates the axioms

Beside standard correlation measures, another measure widely used to quan-

tify the strength of dependence is mutual information. We can show that

mutual information satisfies Axiom 6 if we replace 1 by ∞. However there

are two key problems:

• Mutual information is unnormalized, i.e., I(X;Y ) ∈ [0,∞). Hence, it

provides no absolute indication of the strength of the dependence.

• Mathematically, we are looking for a quantity that tensorizes, i.e.,

doesn’t change when there are many i.i.d. copies of the same pair

of random variables.

Remark 4. Hypercontractivity coefficient tensorizes, i.e,

s(X1, ..., Xn;Y1, .., Yn) = s(X1, Y1),

for i.i.d. (Xi, Yi), i = 1, · · · , n. (6.6)

On the other hand, mutual information is additive, i.e.,

I(X1, · · · , Xn;Y1, · · · , Yn) = nI(X1;Y1),

for i.i.d. (Xi, Yi), i = 1, · · · , n. (6.7)

Tensorizing quantities capture the strongest relationship among inde-

pendent copies while additive quantities capture the sum. For instance,

mutual information could be large because a small amount of infor-

mation accumulates over many of the independent components of X

and Y (when X and Y are high dimensional) while tensorizing quanti-

ties would rule out this scenario, where there is no strong dependence.

When the components are not independent, hypercontractivity indeed

pools information from different components to find the strongest di-

rection of dependence, which is a desirable property.

One natural way to normalize mutual information is by the log of the car-

dinality of the input/output alphabets [177]. One can interpret a popular
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correlation measure MIC as a similar effort for normalizing mutual informa-

tion and is one of our baselines.

Given that other correlation measures and mutual information do not sat-

isfy our axioms, a natural question to ask is whether hypercontractivity is

a unique solution that satisfies all the proposed axioms. In the following,

we show that the hypercontractivity coefficient is not the only one satisfying

all the proposed axioms – just as HGR correlation is not the only measure

satisfying Rényi’s original axioms.

6.1.5 Hypercontractivity ribbon

We show that a family of measures known as hypercontractivity ribbon, which

includes hypercontractivity coefficient as a special case, satisfy all the axioms.

The hypercontractivity ribbon [168, 178] is parametrized by α > 0 as

rα(X;Y ) = sup
r(x,y)6=p(x,y)

D(r(y)‖p(y))

D(r(x)‖p(x)) + αD(r(y|x)‖p(y|x))
. (6.8)

An alternative characterization of hypercontractivity ribbon in terms of

mutual information is provided in [178, 172];

rα(X;Y ) = sup
p(u|x,y)

I(U ;Y )

I(U ;X) + αI(U ;Y |X)
, (6.9)

from which we can see that hypercontractivity coefficient is a special case of

hypercontractivity ribbon [10]:

s(X;Y ) = limα→∞ rα(X;Y ) = limα→∞ sα(X;Y ). (6.10)

Proposition 4. The (re-parameterized) hypercontractivity ribbon sα(X;Y ) :=

(α rα(X;Y )− 1)/(α − 1), for α > 1, satisfies Axioms 1-6.

Proof. By definition, sα(X;Y ) is defined for any pair of non-constant random

variables (Axiom 1) and is between 0 and 1 by data processing inequality

(Axiom2). We can show that sα(X;Y ) satisfies Axioms 3 and 4, in a similar

way to show s(X;Y ) satisfies Axioms 3 and 4. Also, sα(X;Y ) = ρ2 for a
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jointly Gaussian X,Y with Pearson correlation ρ [172] (Axiom 5). Finally,

sα(X;Y ) satisfies Axiom 6 because rα(X;Y ) is non-increasing in α , which

implies that sα(X;Y ) = rα(X;Y ) = 1 if s(X;Y ) = 1.

Although hypercontracitivy ribbon satisfies all axioms, a few properties

of the hypercontractivity coefficient makes it more attractive than hyper-

contractivity ribbon for practical use; hypercontractivity coefficient can be

efficiently estimated from samples (see Section 6.2). Hypercontractivity co-

efficient is a natural extension of the popular HGR maximal correlation co-

efficient (Remark 2).

6.1.6 Multidimensional X and Y

In this subsection, we discuss potential correlation of multidimensional X

and Y . While most of the correlation coefficients, including the hypercon-

tractivity coefficient, are well-defined for multidimensional X and Y , the

axioms are specific to univariate X and Y . To bridge this gap, we propose

replacing Axiom 5, as this is the only axiom specific to univariate random

variables.

Axiom 9. If (X, Y ) ∼ N

(
µ,Σ =

[
ΣX ΣXY

ΣY X ΣY

])
, then ρ∗(X, Y ) =

‖Σ−1/2
X ΣXY Σ

−1/2
Y ‖, where ‖ · ‖ is the spectral norm of a matrix.

This recovers the original Axiom 5 when restricted to univariate X and Y .

This naturally generalizes both Rényi’s axioms and the proposed potential

correlation axioms to multidimensional X and Y .

Proposition 5. Axiom 9, together with original Rényi’s Axioms 1-4, 7, and

8, recovers maximal correlation (mCor) as a measure satisfying all Axioms

even in this multi-dimensional case. Axiom 9, together with our proposed

Axioms 1-4, and 6, recovers the hypercontractivity coefficient
√
s(X;Y ) as a

measure satisfying all axioms.

The second statement in the proposition follows from the analyses of the

hypercontractivity coefficient of Gaussian distributions in [179]. A formal

proof is provided in Section 6.4.7.
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6.1.7 Noisy, discrete, noisy and discrete potential correlations

In this section, we consider more general scenarios of potential correlation

than the one in Axiom 6. We consider (i) noisy potential correlation where

Y = f(X) + Z for a Gaussian noise Z for (X, Y ) ∈ Xr × Y , (ii) discrete

potential correlation, where Xr = {1, · · · , k}, and (iii) noisy discrete potential

correlation – a random corruption model. For these three examples, we

obtain a lower bound on s(X;Y ).

Example 1. Suppose that for a pair of random variables (X, Y ) ∈ X × Y,

there exists a subset Xr ⊆ X for which Pr{X ∈ Xr} = α (α > 0), and for

(X, Y ) ∈ Xr × Y, (X, Y ) ∼ N (0,Σ), where Σ =

[
1 ρ

ρ 1

]
. Then

s(X;Y ) ≥
log 1

1−ρ2 + log 1
1+ρ2

log 1
1−ρ2 + H(α)

α

. (6.11)

Proof is in Section 6.4.5.

We now consider for discrete (X, Y ). We start with the case for which X

and Y are perfectly correlated for (X, Y ) ∈ Xr × Y .

Example 2. Suppose that for a pair of discrete random variables (X, Y ) ∈
X ×Y, there exists a subset Xr = {1, 2, · · · , k} ⊆ X for which Pr{X ∈ Xr} =

α (α > 0), and X|{X ∈ Xr} ∼ Unif [1 : k] and Y = X for X ∈ Xr. Then,

s(X;Y ) ≥ log k

log k + log(1/α)
. (6.12)

The inequality holds by considering r(x) = I{X = 1} in (6.16).

We conjecture this lower bound is indeed tight for α ≤ 0.5 based on nu-

merical simulations. From this lower-bound, we can see the trade-off between

k and α. As k →∞, the lower bounds approaches to 1. As α→ 1, the lower

bound approaches to 1. As α→ 0, the lower bound approaches to 0. In the

following, we consider the case where X and Y are not perfectly correlated in

(Xr×Y) for discrete (X, Y ). In particular, we consider a random corruption

model for (Xr × Y) and obtain a lower bound on s(X;Y ).

Example 3. Suppose that for a pair of random variables (X, Y ) ∈ X × Y,

there exists a subset Xr ⊆ X for which Pr{X ∈ Xr} = α (α > 0), and for
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(X, Y ) ∈ Xr × Y,

Y =

X w.p. 1− k
k−1

ε,

Unif[1 : k] w.p. 1
k−1

ε.
(6.13)

Then

s(X;Y ) ≥ (1− ε) log k(1− ε) + ε log kε/(k − 1)

log(k/α)

=
log k −H2(ε)− ε log(k − 1)

log(k/α)
. (6.14)

On the other hand,

mCor2(X;Y ) = α

(
1− k

k − 1
ε

)2

, 0 ≤ ε ≤ k − 1

k
. (6.15)

Proof is in Section 6.4.6.

In Figure 6.2, we show plots of lower bounds on s(X;Y ) and mCor(X;Y )

in Examples 1-3; from these figures, we can see that s(X;Y ) increases as

ρ→ 1 and k →∞. In comparison, mCor(X;Y ) remains small.

6.2 Estimator of the hypercontractivity coefficient

from samples

In this section, we present an algorithm to compute the hypercontractivity

coefficient s(X;Y ) from i.i.d. samples {Xi, Yi}ni=1. The computation of the

hypercontractivity coefficient from samples is known to be challenging for

continuous random variables [170, 171], and to the best of our knowledge,

there is no known efficient algorithm to compute the hypercontractivity coef-

ficient from samples. Our estimator is the first efficient algorithm to compute

the hypercontractivity coefficient, based on the following equivalent defini-

tion of the hypercontractivity coefficient, shown recently in [10]:

s(X;Y ) ≡ sup
rx 6=px

D(ry||py)
D(rx||px)

. (6.16)

There are two main challenges for computing s(X;Y ). The first challenge
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Figure 6.2: Lower bound on s(X;Y ) and mCor(X;Y ) for α = 0.1 in
Example 1 (top), Example 2 (middle) and Example 3 (bottom) for ε = 0.1.
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is – given a marginal distribution rx and samples from pxy, how do we es-

timate the KL divergences D(ry||py) and D(rx||px). The second challenge

is the optimization over the infinite dimensional simplex. We need to com-

bine estimation and optimization together in order to compute s(X;Y ). Our

approach is to combine ideas from traditional kernel density estimates and

from importance sampling. Let wi = rx(Xi)/px(Xi) be the likelihood ratio

evaluated at sample i. We propose the estimation and optimization be solved

jointly as follows.

Estimation: To estimate KL divergence D(rx||px), notice that

D(rx||px) = EX∼px
[
rx(X)

px(X)
log

rx(X)

px(X)

]
. (6.17)

Using empirical average to replace the expectation over px, we propose

D̂(rx||px) =
1

n

n∑
i=1

rx(Xi)

px(Xi)
log

rx(Xi)

px(Xi)
=

1

n

n∑
i=1

wi logwi. (6.18)

For D(ry||py), we follow the similar idea, but the challenge is in computing

vj = ry(Yj)/py(Yj). To do this, notice that rxy = rxpy|x, so

ry(Yj) = EX∼rx
[
py|x(Yj|X)

]
= EX∼px

[
py|x(Yj|X)

rx(X)

px(X)

]
. (6.19)

Replacing the expectation by empirical average again, we get the following

estimator of vj:

v̂j =
1

n

n∑
i=1

py|x(Yj|Xi)

py(Yj)

rx(Xi)

px(Xi)
=

1

n

n∑
i=1

pxy(Xi, Yj)

px(Xi)py(Yj)︸ ︷︷ ︸
Aji

wi. (6.20)

We can write this expression in matrix form as v̂ = ATw. We use a kernel

density estimator from [180] to estimate the matrix A, but our approach is

compatible with any density estimator of choice.

Optimization: Given the estimators of the KL divergences, we are able

to convert the problem of computing s(X;Y ) into an optimization problem

over the vector w. Here a constraint of (1/n)
∑n

i=1wi = 1 is needed to
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satisfy Epx [rx/px] = 1. To improve numerical stability, we use log s(X;Y ) as

the objective function.

Then the optimization problem has the following form:

maxw log
(

(wTA log(ATw)
)
− log

(
wT log w

)
subject to

1

n

n∑
i=1

wi = 1

wi ≥ 0,∀ i, (6.21)

where wT log w =
∑n

i=1wi logwi for short. Although this problem is not

convex, we apply gradient descent to maximize the objective. In practice, we

initialize wi = 1 +N (0, σ2) for σ2 = 0.01. Hence, the initial rx is perturbed

mildly from px. Although we are not guaranteed to achieve the global max-

imum, we consistently observe in extensive numerical experiments that we

have 50%-60% probability of achieving the same maximum value, which we

believed to be the global maximum. A theoretical analysis of the landscape

of local and global optima and their regions of attraction with respect to

gradient descent is an interesting and challenging open question, outside the

scope of this chapter.

Consistency of estimation: While a theoretical understanding of the

performance of gradient descent on the optimization step (where the number

of samples is fixed) above is technically very challenging, we can study the

performance of the solution as the number of samples increases. In particular

we show below (under suitable simplifying assumptions to get to the essence

of the proof) that the optimal solution to the finite sample optimization prob-

lem is consistent. Suppose that X is discrete. Further we restrict the opti-

mization over a quantized and bounded set T∆, where w ∈ T∆ is quantized by

a gap ∆ and satisfies: (1) C1 ≤ wi ≤ C2 for all i; (2) (1/n)
∑n

i=1wi logwi >

C0. We further assume that we have access of A = Pxy(Xi, Yj)/Px(Xi)Py(Yj).

Define ŝ∆(X;Y ) = maxw∈T∆
wTA log(ATw)/wT log w, then with two fur-

ther simplifying conditions on the joint distribution, we can prove consistency

of our estimation procedure:

Theorem 14. As n goes to infinity, ŝ∆(X;Y ) converges to s(X;Y ) up to

a resolution of quantization in probability, i.e., for any ε > 0, ∆ > 0 and

180



s(∆) = O(∆), we have

lim
n→∞

Pr ( | ŝ∆(X;Y )− s(X;Y ) | > ε+ s(∆) ) = 0. (6.22)

6.3 Experiments of Chapter 6

We present experimental results on synthetic and real datasets showing that

the hypercontractivity coefficient (a) is more powerful in detecting potential

correlation compared to existing measures; (b) discovers hidden potential

correlations among various national indicators in WHO datasets; and (c) is

more robust in discovering pathways of gene interactions from gene expression

time series data.

6.3.1 Synthetic data: Power test on potential correlation

As our estimator (and the measure itself) involves a maximization, it is possi-

ble that we are sensitive to outliers and may capture spurious noise. Via a se-

ries of experiments we show that the hypercontractivity coefficient and our es-

timator are capturing the true potential correlation. As shown in Figure 6.3,

we generate pairs of datasets – one where X and Y are independent and one

where there is a potential correlation as per our scenario. We run several ex-

periments with eight types of functional associations, following the examples

from [11, 181, 182]. For the correlated datasets, out of n samples {(xi, yi)}ni=1,

αn rare but correlated samples are in X = [0, 1] and (1− α)n dominant but

independent samples are in X ∈ [1, 1.1]. The rare but correlated samples are

generated as xi ∼ Unif[0, 1], yi ∼ f(xi) +N (0, σ2) for i ∈ [1 : αn]. The dom-

inant samples are generated as xi ∼ Unif[1, 1.1], yi ∼ f(Unif[0, 1]) +N (0, σ2)

for i ∈ [αn+ 1, n].

Table 6.1 shows the hypercontractivity coefficient and the other correla-

tion coefficients for correlated and independent datasets shown in Figure 6.3,

along with the chosen value of α and σ2. Correlation estimates with the

largest separation for each row is shown in bold. The hypercontractivity

coefficient gives the largest separation between the correlated and the inde-

pendent dataset for most functional types.

A formal statistical approach to test the robustness as well as accuracy is
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Figure 6.3: Sample data points for eight functions with/without a potential
correlation for n = 320.
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Table 6.1: Comparison of correlation coefficients for independent and
correlated samples from Figure 6.3.

Cor dCor mCor

# Function α σ2 dep indep dep indep dep indep

1 Linear 0.05 0.03 0.03 0.00 0.19 0.11 0.06 0.04

2 Quadratic 0.10 0.10 0.00 0.01 0.09 0.10 0.07 0.02

3 Cubic 0.10 0.00 0.02 0.00 0.16 0.08 0.09 0.03

4 sin(4πX) 0.05 0.03 0.00 0.00 0.10 0.06 0.03 0.01

5 sin(16πX) 0.10 0.00 0.00 0.00 0.07 0.08 0.03 0.03

6 X1/4 0.05 0.01 0.01 0.00 0.12 0.07 0.02 0.01

7 Circle 0.10 0.00 0.00 0.00 0.09 0.05 0.01 0.03

8 Step func. 0.10 0.03 0.00 0.00 0.13 0.07 0.04 0.02

MIC HC

# Function α σ2 dep indep dep indep

1 Linear 0.05 0.03 0.21 0.17 0.18 0.08

2 Quadratic 0.10 0.10 0.21 0.18 0.08 0.04

3 Cubic 0.10 0.00 0.26 0.17 0.11 0.04

4 sin(4πX) 0.05 0.03 0.20 0.18 0.10 0.04

5 sin(16πX) 0.10 0.00 0.18 0.22 0.03 0.03

6 X1/4 0.05 0.01 0.20 0.20 0.12 0.04

7 Circle 0.10 0.00 0.16 0.17 0.06 0.01

8 Step func. 0.10 0.03 0.20 0.17 0.11 0.04
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to run power tests: testing for the power of the estimator in binary hypothesis

tests. To compute the power of each estimator, we compare the false negative

rate at a fixed false positive rate of, say, 5%. We generate 500 independent

datasets and 500 correlated datasets. We compute the correlation estimates

on 500 independent samples, and take the top 5% as a threshold. We compute

the correlation estimates on 500 correlated samples. Power is defined as the

fraction of correlated datasets for which the correlation estimate is larger

than the threshold.

We show empirically that for linear, quadratic, sine with period 1/2, and

the step function, the hypercontractivity coefficient is more powerful as com-

pared to other measures. For a given setting, a larger power means a larger

successful detection rate for a fixed false alarm rate. Figure 6.4 shows the

power of correlation estimators as a function of the additive noise level, σ2,

for α = 0.05 and n = 320. The hypercontractivity coefficient is more pow-

erful than other correlation estimators for most functions. The power of

all the estimators are very small for sine (period 1/8) and circle functions.

This is not surprising given that it is very hard to discern the correlated and

independent cases even visually, as shown in Figure 6.3.
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Figure 6.4: Power vs. noise level for α = 0.05, n = 320.

Figure 6.5 plots the power of correlation estimators as a function of noise

level for α = 0.1 and n = 320. As we can see from these figures, hyper-
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contractivity estimator is more powerful than other correlation estimators

for most functions. For circle function, the gap between the power of hy-

percontractivity estimator and the powers of other estimators is significantly

large.
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Figure 6.5: Power vs. noise level for α = 0.1, n = 320.

On the other hand, hypercontractivity estimator is power deficient for the

cubic function. This is because in estimating hypercontractivity coefficient,

we estimate p(yj|xi)/p(yj) using the kernel density estimator (KDE), which

gives a smooth estimate of p(yj|xi)/p(yj), i.e., for xi and xj close to each

other, estimated p(y|xi) and p(y|xj) are close to each other. Hence, for a

correlated dataset for a cubic function, shown in Figure 6.6 (bottom right),

the estimated p(y|x) does not vary much for x. (Estimated p(y|x) for x ∈
[0.8 : 1] and p(y|x) for x ∈ [1 : 1.1] are close to each other). This results

in a small hypercontracitivy, which in turn results in a low power in the

hypothesis testing. To further analyze this effect, we considered the same

dataset but with dominant independent samples appear on the left, as shown

in Figure 6.7 (bottom left) and (bottom right), and computed the power of

hypercontractivity estimator, shown in Figure 6.7 (top). Hypercontractivity

estimator is much more powerful than the one for the original dataset. This

is because the estimated p(y|x) for x ∈ [0.8, 1] is very different from the

estimated p(y|x) for x ∈ [−0.1, 0], which results in a large hypercontractivity
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coefficient for the correlated dataset.
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Figure 6.6: Power vs. noise level for α = 0.1 and n = 320 (top),
corresponding examples of an independent dataset (bottom left) and a
correlated dataset (bottom right).

To investigate the dependency of power on α more closely, in Figure 6.8, we

plot the power vs. α or n = 320 and σ2 = 0.1. Hypercontractivity estimator

is more powerful than other estimators for most α, for all functions except

for cubic function. For a sine with period 1/8, due to its high frequency,

the powers of all the correlation estimators do not increase as α increases.

Figure 6.9 plots the power vs. sample size n for α = 0.05 and σ2 = 0.1. For

sine with period 1/2, hypercontractivity estimator is much more powerful

than the other estimators for all sample sizes. We can also see that for

sine with period 1/8, powers of all correlation estimators do not increase as

sample size increases.
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Figure 6.7: Flipped example of power vs. noise level for α = 0.1 and
n = 320 (top), corresponding examples of an independent dataset (bottom
left) and a correlated dataset (bottom right).
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Figure 6.8: Power vs. α for n = 320, σ2= 0.1.
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Figure 6.9: Power vs. n (number of samples) for α = 0.05, σ2= 0.1.
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6.3.2 Real data: Correlation between indicators of WHO
datasets

We computed the hypercontractivity coefficient, MIC, and Pearson correla-

tion of 1600 pairs of indicators for 202 countries in the World Health Orga-

nization (WHO) dataset [11]. Figure 6.10 illustrates that the hypercontrac-

tivity coefficient discovers hidden potential correlation (e.g. in (E) - (H)),

whereas other measures fail.Scatter plots of Pearson correlation vs. the hy-

percontractivity coefficient and MIC vs. the hypercontractivity coefficient

for all pairs are presented in (A) and (D). The samples for pairs of indicators

corresponding to B, C, E – J are shown in (B), (C), (E) – (J), respectively.

In Figure 6.10 (B), it is reasonable to assume that the number of bad teeth

per child is uncorrelated with the democracy score. The hypercontractivity

coefficient, MIC, and Pearson correlation are all small, as expected. In Fig-

ure 6.10 (C), the correlation between CO2 emissions and energy use is clearly

visible, and all three correlation estimates are close to one.

However, only the hypercontractivity coefficient discovers the hidden po-

tential correlation in Figure 6.10 (E) – (H). In Figure 6.10 (E), the data is

a mixture of two types of countries – one with small amount of aid received

(less than $5× 108), and the other with large amount of aid received (larger

than $5 × 108). Dominantly many countries (104 out of 146) belong to the

first type (small aid), and for those countries, the amount of aid received and

the income growth are independent. For the remaining countries with larger

aid received, although those are rare, there is a clear correlation between the

amount of aid received and the income growth.

Similarly in Figure 6.10 (F), there are two types of countries – one with

small arms exports (less than $2×108) and the other with large arms exports

(larger than $2× 108). Dominantly many countries (71 out of 82) belong to

the first type, for which the amount of arms exports and the health expendi-

ture are independent. For the remaining countries that belong to the second

type, on the other hand, there is a visible correlation between the arms ex-

ports and the health expenditure. This is expected as for those countries

that export arms the GDP is positively correlated with both arms exports

and health expenditure, whereas for those do not have arms industry, these

two will be independent.

In Figure 6.10 (G), for dominant number of countries, the number of male
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Figure 6.10: (A) and (D): Scatter plot of correlation measures. (B):
Correlations are small. (C): Correlations are large. (E),(F),(G),(H): Only
the hypercontractivity coefficient discovers potential correlation. (I):
Hypercontractivity discovers potential correlation. (J): Hypercontractivity
and Pearson correlation are large because of an outlier.
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deaths from the colon and rectum cancer is small (145 out of 169 countries

have it less than 2000), and it is independent of the amount of health expen-

diture. On the other hand, for the remaining countries with larger number

of male deaths from colon and rectum cancer, the two indicators are posi-

tively associated. This is expected as both indicators are positively correlated

with the population. Only hypercontractivity discovers this hidden potential

correlation. MIC and Pearson correlation are small.

In Figure 6.10 (H), for dominant number of countries, the number of broad-

band subscribers is very small and is independent of the private health ex-

penditure; 155 out of 180 countries have broadband subscribers less than 106.

On the other hand, for the remaining countries, the number of broadband

subscribers is positively correlated with the private health expenditure. This

is as expected because both indicators are positively correlated with the pop-

ulation. Hypercontractivity is large for this dataset, discovering the hidden

correlation, whereas all other correlations all small.

In Figure 6.10 (I), most countries do not have large hydroelectricity facil-

ities, and for those countries, energy use and hydroelectricity consumption

are independent (41 out of 53 countries have hydroelectricity ≤ 0.25). On

the other hand, for the countries which have hydroelectrocity facilities, the

amount of total energy use and the amount of hydroelectricity consumption

are positively correlated. Hypercontractivity discovers this hidden potential

correlation. Unlike in (G) and (H) for which the fraction of correlated sam-

ples was only about 14%, in (I), the fraction of correlated samples is about

23%. Hence, Pearson correlation is larger compared to Pearson correlation

values for (G) and (H).

In Figure 6.10 (J), there is one country (Luxembourg) with very large

amounts of foreign direct investment net inflow and outflow. Due to this

outlier, Pearson correlation is close to 1. Hypercontractivity is also close to

1, whereas MIC is small. To analyze the effect of the outlier in correlation

measures, in the following, we compute the correlation measures for samples

without an outlier.

How hypercontractivity changes as we remove outliers

Figures 6.11–6.16, on the left, are shown samples from Figure 6.10 (E)–(J)

respectively. On the middle and on the right are shown all samples but one

outlier and all samples but two outliers, respectively. By comparing the hy-
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percontractivity coefficients for the three datasets for each pair of indicators,

we can analyze the effect of outliers on hypercontractivity. For a compar-

ison, on the top of each figure, we show the estimated hypercontractivity

(HC), MIC, Pearson correlation (Cor), distance correlation (dCor), maximal

correlation (mCor), and the hypercontractivity for reversed direction (HCR).
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Figure 6.11: Samples for the pair of indicators shown in Figure 6.10-(E)
from the entire WHO dataset (left), without one outlier (middle), and
without two outliers (right).
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Figure 6.12: Samples for the pair of indicators shown in Figure 6.10-(F)
from the entire WHO dataset (left), without one outlier (middle), and
without two outliers (right).

In Figure 6.13 (left), the two countries with the largest number of male

deaths from the colon and rectum cancer are China and the United States. As

China is removed from the dataset, in (middle), hypercontractivity remains

unchanged. As we also remove the United States, in (right), hypercontractiv-

ity becomes small, 0.17. This value is still larger than the typical coefficient

for two independent indicators (≈ 0.05), we can see that hypercontractivity

is more sensitive to the outlier than other correlation measures.

In Figure 6.14, the two countries with the largest number of broadband

subscribers are the United States and China. When we remove the United
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Figure 6.13: Samples for the pair of indicators shown in Figure 6.10-(G)
from the entire WHO dataset (left), without one outlier (middle), and
without two outliers (right).

States from the samples, hypercontractivity becomes close to zero, which also

shows hypercontractivity is sensitive to the outliers.
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Figure 6.14: Samples for the pair of indicators shown in Figure 6.10-(H)
from the entire WHO dataset (left), without one outlier (middle), and
without two outliers (right).

In Figure 6.15, hypercontractivity remains large even after we remove out-

liers. The two countries with the largest amount of hydroelectricity con-

sumption are Norway and Iceland. Even after we remove Norway from the

samples, as shown in (middle), hypercontractivity remains large. As we fur-

ther remove one outlier (Iceland) from the samples, as shown in (right),

hypercontractivity becomes 0.49.

In Figure 6.16, (middle), all samples but Luxembourg are shown. We

can see that most countries have a very small absolute amount of foreign

direct investment net outflows (for 126 out of 157 countries, it is between

[−2, 2]), and for those countries, the foreign direct investment net outflow

is independent of foreign direct investment net inflows. For the remaining

countries, there is a positive association between the outflow and the inflow.
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Figure 6.15: Samples for the pair of indicators shown in Figure 6.10-(I)
from the entire WHO dataset (left), without one outlier (middle), and
without two outliers (right).

Hypercontractivity captures this hidden correlation better than other cor-

relations; hypercontractivity is 0.47, whereas MIC and Pearson correlation

are small. If we further remove the rightmost sample, as shown in (right),

hypercontractivity becomes small.
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Figure 6.16: Samples for the pair of indicators shown in Figure 6.10-(J)
from the entire WHO dataset (left), without one outlier (middle), and
without two outliers (right).

Whether we should consider a sample in a rare type as a meaningful sample

or as an outlier depends on the application. If we use hypercontractivity

to discover a pair of measures for which one variable can be potentially

correlated with the other, then we would expect to discover that an aid for a

country has potential correlation in the income growth. Other measures will

fail. It is possible that hypercontractivity might have a larger false positive

rate, and depending on the application, one might prefer to error on the side

of having more positive cases to be screened by further experiments, surveys,

or human judgments.

194



Hypercontractivity detecting an outlier

In Figure 6.17 (A) and (B), we show examples of pairs of indicators for

which there is one outlier and the remaining samples are independent, but

hypercontractivity is large. As shown in Figure 6.17 (A) and (B) (left), hy-

percontractivity is close to 1, when there is an outlier. As shown in (right),

hypercontractivity is close to 0, when the outlier is removed. This implies

that one single outlier can make the hypercontractivity large. We can see

similar patterns for other correlation measures, such as for Pearson corre-

lation, distance correlation, and maximal correlation for both (A) and (B),

and MIC for (B), but are less sensitive than hypercontractivity.
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Figure 6.17: Hypercontractivity and other correlation measures become
smaller as we remove an outlier.
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6.3.3 Gene pathway recovery from single cell data

We replicate the genetic pathway detection experiment from [29], and show

that hypercontractivity correctly discovers the genetic pathways from a smaller

number of samples. A genetic pathway is a series of genes interacting with

each other as a chain. Consider the following setup where four genes whose

expression values in a single cell are modeled by random processes Xt, Yt, Zt

and Wt respectively. These four genes interact with each other following a

pathway Xt → Yt → Zt → Wt; it is biologically known that Xt causes Yt with

a negligible delay, and later at time t′, Yt′ causes Zt′ , and so on. Our goal is to

recover this known gene pathway from sampled datapoints. For a sequence

of time points {ti}mi=0, we observe ni i.i.d. samples {X(j)
ti , Y

(j)
ti , Z

(j)
ti ,W

(j)
ti }

ni
j=1

generated from the random process P (Xti , Yti , Zti ,Wti). We use the real data

obtained by the single-cell mass flow cytometry technique [29].

Given these samples from time series, the goal of [29] is to recover the direc-

tion of the interaction along the known pathway using correlation measures

as follows, where they proposed a new measure called DREMI. The DREMI

correlation measure is evaluated on each pairs on the pathway,τ(Xti , Yti),

τ(Yti , Zti) and τ(Zti ,Wti), at each time points ti. It is declared that a genetic

pathway is correctly recovered if the peak of correlation follows the expected

trend:

arg max
ti

τ(Xti , Yti) ≤ arg max
ti

τ(Yti , Zti) ≤ arg max
ti

τ(Zti ,Wti). (6.23)

In [28], the same experiment has been done with τ evaluated by UMI and

CMI estimators. In this chapter, we evaluate τ using our proposed estimator

of hypercontractivity.

The Figure 6.18 shows the scatter plots pCD3ζ-pSLP76-pERK-pS6 chain

at different time points after TCR activation. The data comes from CD4+

näıve T lymphocytes from B6 mice with CD3, CD28, and CD4 cross-linking.

Each row represents a pair of data in the chain, and each column stands for

a time point after TCR activation. Estimate of hypercontractivity is shown

below the scatter plot for each pair of data and each time point and we

highlight the time point where each pair of data is maximally correlated. We

can see that the peak of the correlation of pCD3ζ-pSLP76, pSLP76-pERK

and pERK-pS6 appears at 0.5 min, 1 min and 2 min respectively, hence the
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pathway is correctly identified. In Figure 6.19, the similar plots was shown

for T-cells exposed with an antigen. Similarly, hypercontractivity is able to

capture the trend.

We subsample the raw data from [29] to evaluate the ability to find the

trend from smaller samples. Precisely, given a resampling rate γ ∈ (0, 1],

we randomly select a subset of indices Si ⊆ [ni] with card(Si) = dγnie, com-

pute pairwise correlations τ(Xti , Yti), τ(Yti , Zti) and τ(Zti ,Wti) from subsam-

ples {X(j)
ti , Y

(j)
ti , Z

(j)
ti ,W

(j)
ti }j∈Si , and determine whether we can recover the

trend successfully, i.e., whether arg maxti τ(Xti , Yti) ≤ arg maxti τ(Yti , Zti) ≤
arg maxti τ(Zti ,Wti). We repeat the experiment several times with indepen-

dent subsamples and compute the probability of successfully recovering the

trend. Figure 6.20 illustrates that when the entire dataset is available, all

methods are able to recover the trend correctly. When only fewer samples

are available, hypercontractivity improves upon other competing measures

in recovering the hidden chronological order of interactions of the pathway.

For completeness, we run datasets for both regular T-cells (shown in left

figure) and T-cells exposed with an antigen (shown right figure), for which

we expect distinct biological trends. Hypercontractivity method can capture

the trend for both datasets correctly with fewer samples.

6.4 Proofs of results in Chapter 6

6.4.1 Proof of Proposition 2

Let SF (X, Y ) = F (
√
s(X;Y ),

√
s(Y ;X)) for F satisfying conditions in Propo-

sition 2. We show that SF (X, Y ) satisfies all Rényi’s axioms, i.e., Axioms

1-5 and 7-8.

1. SF (X, Y ) is defined for any pair of non-constant random variables X, Y

because s(X;Y ) ∈ [0, 1] and s(Y ;X) ∈ [0, 1] are defined for any random

variables X, Y by Theorem 12.

2. SF (X, Y ) ∈ [0, 1] because the output of a function F is in [0, 1] by the

condition on F .

3. If X and Y are statistically independent, s(X;Y ) = s(Y ;X) = 0. By

the condition on F , it follows that SF (X, Y ) = 0. If SF (X, Y ) = 0, by
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Figure 6.18: Scatter plots of gene pathway data for various pair of data and
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the condition on F , s(X;Y )s(Y ;X) = 0, which implies that X and Y

are statistically independent.

4. SF (f(X), g(Y )) = SF (X, Y ) for any bijective Borel-measurable func-

tions f, g because
√
s(f(X); g(Y )) =

√
s(X;Y ) and

√
s(g(Y ); f(X)) =√

s(Y ;X) by Theorem 12.

5. For (X, Y ) ∼ N (µ,Σ) with Pearson correlation ρ, s(X;Y ) = s(Y ;X) =

ρ2. Hence, SF (X, Y ) = F (|ρ|, |ρ|) = |ρ|.

7. If Y = f(X) for a non-constant function f , it follows that I(f(X); f(X)) =

I(f(X);X) because if f(X) is discrete, I(f(X); f(X)) = I(f(X);X) =

H(f(X)) and otherwise, I(f(X); f(X)) = I(f(X);X) =∞. Hence

s(X; f(X)) = sup
U−X−f(X)

I(U ; f(X))/I(U ;X)

= I(f(X); f(X))/I(f(X);X) = 1. (6.24)

Similarly, s(f(X);X) = supU−f(X)−X I(U ;X)/I(U ; f(X)) = 1. Hence,

SF (X; f(X)) = F (1, 1) = 1. Likewise, we can show that SF (X;Y ) = 1

if X = g(Y ).

8. SF (X, Y ) = SF (Y,X) because F (x, y) = F (y, x).

6.4.2 Proof of Theorem 12

We show that s(X;Y ) satisfies Axioms 1-6 in Section 6.1.

1. For any non-constant random variable X, ∃ U s.t. I(U ;X) > 0. Hence,

s(X;Y ) is defined for any pair of non-constant random variables X and

Y .

2. Since mutual information is non-negative, s(X;Y ) ≥ 0. By data pro-

cessing inequality, for any U − X − Y , I(U ;X) ≤ I(U ;Y ). Hence,

s(X;Y ) ≤ 1.

3. If X and Y are independent, for any U , I(U ;Y ) ≤ I(X;Y ) = 0. Hence,

s(X;Y ) = 0. If X and Y are dependent, I(X;Y ) > 0, which implies

that s(X;Y ) ≥ I(X;Y )/H(X) > 0.
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4. For any bijective functions f, g,

I(U ; g(Y )) = I(U ; g(Y ), Y )

= I(U ;Y ) + I(U ; g(Y )|Y ) = I(U ;Y ). (6.25)

Similarly, I(U ; f(X)) = I(U ;X). Hence,

s(f(X); g(Y )) = sup
U :U−f(X)−g(Y ),I(U ;f(X))>0

I(U ; g(Y ))

I(U ; f(X))

= sup
U :U−X−f(X)−g(Y )−Y,I(U ;X)>0

I(U ;Y )

I(U ;X)
= s(X;Y ). (6.26)

5. By Theorem 3.1 in [179], for (X, Y ) jointly Gaussian with correlation

coefficient ρ,

min
U : U−X−Y

(I(U ;X)− βI(U ;Y )) = 0, (6.27)

for β ≤ 1/ρ2. Equivalently,

max
U : U−X−Y

(
I(U ;Y )− ρ2I(U ;X)

)
= 0, (6.28)

which implies that s(X;Y ) ≤ ρ2. To show that s(X;Y ) ≥ ρ2, let

UZ = X + Z for Z ∼ (0, σ2
1). Consider

s(X;Y ) ≥ lim
σ2

1→∞

I(UZ ;Y )

I(UZ ;X)

= lim
σ2

1→∞

log
(

(σ2
X+σ2

1)σ2
Y

(σ2
X+σ2

1)σ2
Y −ρ2σ2

Xσ
2
Y

)
log
(

1 +
σ2
X

σ2
1

)
= lim

σ2
1→∞

ρ2σ2
Xσ

2
Y / ((σ2

X + σ2
1)σ2

Y − ρ2σ2
Xσ

2
Y )

σ2
X/σ

2
1

= ρ2. (6.29)

Hence, s(X;Y ) = ρ2. An alternative proof is provided in [172].

6. To prove that s(X;Y ) satisfies Axiom 6, we first show the following

lemma.

Lemma 24. Consider a pair of random variables (X, Y ) ∈ X ×Y . The
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hypercontractivity s(X;Y ) is lower bounded by

s(X;Y ) ≥ I(U ;Y |X ∈ Xr)
H(α)/α + I(U ;X|X ∈ Xr)

, (6.30)

for any Xr such that Xr ⊆ X for Pr{X ∈ Xr} =: α > 0.

Proof. Let

Us =

U ∼ p(u|x) if X ∈ Xr,

∅ otherwise.
(6.31)

Let S = I{Us = ∅} = I{X ∈ Xr}. Note that S − Us − X − Y holds,

and that S is a deterministic function of X. Hence,

I(Us;X) = I(Us, S;X) = I(S;X) + I(Us;X|S)

= H(α) + αI(U ;X|X ∈ Xr). (6.32)

Consider

I(Us;Y ) = I(Us, S;Y ) = I(S;Y ) + I(Us;Y |S)

≥ αI(U ;Y |X ∈ Xr). (6.33)

The proof is completed by combining (6.32) and (6.33).

Assume that Y = f(X) for X ∈ Xr. Considering U = f(X) in (6.31)

in Lemma 24, we obtain the following lower bound:

s(X;Y ) ≥ I(f(X); f(X)|X ∈ Xr)
H(α)/α + I(f(X);X|X ∈ Xr)

. (6.34)

For any continuous random variable X and a non-constant continuous

function f , I(f(X); f(X)|X ∈ Xr) = I(f(X);X|X ∈ Xr) = ∞, which

implies that s(X;Y ) = 1.

6.4.3 Proof of Theorem 13

We first prove that mCor(X, Y ) =
√
α mCor(Xr, Y ) in (6.2). Let S = I{X ∈

Xr} be the indicator for whether X ∈ Xr or not. Let F be the set of functions
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such that f ∈ F if E[f(X)] = 0 and E[f 2(X)] ≤ 1. Consider

mCor(X;Y ) = max
f,g∈F

E[f(X)g(Y )]

= max
f,g∈F

ES[E[f(X)g(Y )|S]]

= max
f,g∈F

(αE[f(X)g(Y )|X ∈ Xr] + ᾱE[f(X)g(Y )|X ∈ Xd])

= max
f,g∈F

(αE[f(X)g(Y )|X ∈ Xr] + ᾱE[f(X)|X ∈ Xd]E[g(Y )|X ∈ Xd])

(a)
= α max

f,g∈F
E[f(X)g(Y )|X ∈ Xr]

(b)
=
√
α mCor(Xr, Y ). (6.35)

Step (a) holds since E[g(Y )|X ∈ Xr] = E[g(Y )|X ∈ Xd] from the assumption

that marginal distributions are equal, and that E[g(Y )] = αE[g(Y )|X ∈
Xr] + ᾱE[g(Y )|X ∈ Xd]. To show step (b), let c = E[f(X)|X ∈ Xd] and note

that

αE[f(X)|X ∈ Xr] = −ᾱc,

αE[f 2(X)|X ∈ Xr] = E[f 2(X)]− ᾱE[f 2(X)|X ∈ Xd] ≤ 1− ᾱc2,

E[g(Y )|X ∈ Xr] = 0. (6.36)

Denote F(µ1, µ2) be the set of functions such that E[f(X)] = −µ1 and

E[f 2(X)] ≤ µ2. F = F(0, 1) for short. Hence,

max
f,g∈F

E[f(X)g(Y )|X ∈ Xr]

= max
fr∈F(−ᾱc/α,(1−ᾱc2)/α),g∈F

E[fr(X)g(Y )]

= max
frc∈F(0,(α−ᾱc2)/α2),g∈F

E[(frc(X)g(Y )]

= max
frc∈F(0,1/α),g∈F

E[frc(X)g(Y )]

= max
frca,g∈F

1√
α
E[frca(X)g(Y )] =

mCor(Xr, Y )√
α

, (6.37)

where fr(X), frc(X) = fr(X)+ᾱc/α, and frca(X) =
√
αfrc(X) are functions

defined only for X ∈ Xr.
We next show dCor(X, Y ) = α dCor(Xr, Y ) in (6.3). Let

hX(s) = E[eisX ], hY (t) = E[eitY ], hXY (s, t) = E[ei(sX+tY )]. (6.38)
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Note that

hXY (s, t) = E[ei(sX+tY )]

= αE[ei(sX+tY )|X ∈ Xr] + ᾱrαE[eisX |X ∈ Xd]E[eitY |X ∈ Xd]

= αE[ei(sX+tY )|X ∈ Xr] + ᾱrαE[eisX |X ∈ Xd]E[eitY ], (6.39)

and

hX(s) = E[eisX ] = αE[eisX |X ∈ Xr] + ᾱrαE[eisX |X ∈ Xd]. (6.40)

By combining (6.39) and (6.40),

hXY (s, t)− hX(s)hY (t)

= αE[ei(sX+tY )|X ∈ Xr]− αE[eisX |X ∈ Xr]E[eitY ]

= αE[ei(sX+tY )|X ∈ Xr]− αE[eisX |X ∈ Xr]E[eitY |X ∈ Xr]

= α dCor(Xr, Y ). (6.41)

Finally, we show that MIC(X, Y ) ≤ α MIC(Xr, Y ) in (6.4).

Let XQ(X) ∈ XQ(X) and YQ(Y ) ∈ YQ(Y ) denote a quantization of X and

Y , respectively. Consider

MIC(X, Y ) = max
XQ(X),YQ(Y )

I(XQ;YQ)

log min{|XQ|, |YQ|}

≤ max
XQ(X),YQ(Y )

I(I{X ∈ Xr}, XQ;YQ)

log min{|XQ|, |YQ|}
(a)
= α max

XQ(X),YQ(Y )

I(XQ;YQ|X ∈ Xr)
log min{|XQ|, |YQ|}

≤ α max
XQ(Xr),YQ(Y )

I(XQ;YQ|X ∈ Xr)
log min{|XQ(Xr)|, |YQ|}

= α MIC(Xr, Y ), (6.42)

where step (a) holds because I{X ∈ Xr} is independent of Y implies I{X ∈
Xr} is independent of YQ and X is independent of Y in X ∈ Xd implies XQ

is independent of YQ in X ∈ Xd.
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6.4.4 Proof of Proposition 3

The inverse hypercontractivity s(Y ;X) is defined as

s(Y ;X) = sup
U−Y−X

I(U ;X)

I(U ;Y )
. (6.43)

Let Ir = I{X ∈ Xr}. Since the marginal distribution of Y given {X ∈ Xr}
and the one given {X /∈ Xr} are equivalent, Y and Ir are independent, i.e.,

I(Y ; Ir) = 0. For any U such that Markov chain U − Y − X holds, the

Markov chain U − Y − X − Ir holds. Hence, I(U ; Ir) = 0. Hence, for any

U − Y −X, consider

I(U ;X) = I(U ;X, Ir) = I(U ;X|Ir)

= (1− α)I(U ;X|Ir = 0) + αI(U ;X|Ir = 1)
(a)
= αI(U ;X|Ir = 1). (6.44)

Step (a) holds because Y is independent of X given Ir = 0. Consider

I(U ;Y )
(a)
= I(U ;Y, Ir) = I(U ;Y |Ir) + I(U ; Ir)

(b)
= I(U ;Y |Ir) = αI(U ;Y |Ir = 1) + (1− α)I(U ;Y |Ir = 0)
(c)
= I(U ;Y |Ir = 1), (6.45)

where step (a) folllows since U − Y − Ir. Step (b) follows from I(U ; Ir) = 0.

Step (c) holds since H(U |Ir = 1) = H(U |Ir = 0) and U − Y − Ir. Therefore,

for any U − Y −X, it follows that

s(Y ;X) = sup
U−Y−X

αI(U ;X|Ir = 1)

I(U ;Y |Ir = 1)
= α s(Y ;Xr). (6.46)

6.4.5 Noisy potential correlation in Example 1

Let U = X + Z, Z ∼ N (0, σ2
1). Consider

sup
U :U−X−Y,I(U ;X)>0

I(U ;Y )

I(U ;X)
≥ sup

σ2
1≥0

log
(1+σ2

1)

(1+σ2
1)−ρ2

H(α)/α + log(1 + 1/σ2
1)
. (6.47)

The inequality (6.11) follows by choosing σ2
1 = (1− ρ2)/ρ2.
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6.4.6 Noisy discrete potential correlation in Example 3

The inequality (6.14) follows by choosing r(x) = I{X = 1} in (6.16). To

show (6.15), we show that

mCor(Xr, Y ) = 1− k

k − 1
ε. (6.48)

The rest follows because mCor(X;Y ) =
√
α mCor(Xr, Y ) by Proposition 13.

To show (6.48), we use the fact that maximal correlation is the second eigen-

value of Q = P
−1/2
X PXY P

−1/2
Y (see [183] for detailed proof). Hence

Q =

(
1− k

k − 1
ε

)
I +

ε

k − 1
11T . (6.49)

First singular vector of Q is P
1/2
X = 1/

√
k. Second singular vector u2 is or-

thogonal to 1/
√
k. Therefore (6.48) follows because mCor(Xr;Y ) = uT2Qu2 =

uT2 (1− kε/(k − 1))u2.

6.4.7 Proof of Proposition 5

We first prove the second part of proposition: the hypercontractivity coeffi-

cient
√
s(X;Y ) satisfies Axioms 1-4, 9, and 6. It follows immediately from

Theorem 12 that
√
s(X;Y ) satisfies Axioms 1-4 and 6 because in the proof

of Theorem 12 – 1-4 and 6, the same argument holds for random vectors

X and Y . We can show that that
√
s(X;Y ) satisfies Axiom 9 using results

from [179]. In [179], it is shown that that as we increase β starting from zero,

min{I(U ;X) − βI(U ;Y )} departs form zero at β = 1/‖Σ−1/2
X ΣXY Σ

−1/2
Y ‖2

for jointly Gaussian random vectors X and Y . This result implies that√
s(X;Y ) = ‖Σ−1/2

X ΣXY Σ
−1/2
Y ‖.

To show that maximal correlation of two random vectors satisfies Axioms

1-4, 7, and 8, we follow the same arguments for showing that maximal cor-

relation for two random variables satisfies Axioms 1-4, 7, and 8 by [156]. To

show that maximal correlation satisfies Axiom 9, note that maximal correla-

tion is upper bounded by hypercontractivity (see Remark 2 in Section 6.1.3).

Hence mCor(X;Y ) ≤ ‖Σ−1/2
X ΣXY Σ

−1/2
Y ‖ for a jointly Gaussian X, Y . Equal-

ity holds because mCor(X, Y ) is lower bounded by its canonical correlation,

which is ‖Σ−1/2
X ΣXY Σ

−1/2
Y ‖ for jointly Gaussian random vectors (X, Y ) [179].
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6.4.8 Proof of Theorem 14

We begin with the following assumptions:

(a) There exist finite constants C1 < C ′1 < C ′2 < C2 such that the ratio of

r∗x and px satisfies r∗x(x)/px(x) ∈ [C ′1, C
′
2] for every x ∈ X .

(b) There exist finite constants C ′0 > C0 > 0 such that the KL divergence

D(r∗x||px) > C ′0.

With a little abuse of notations, we define s(rx) = D(ry||py)/D(rx||px) and

ŝ(w) = wTA log(ATw)/wT log w. Therefore, s(X;Y ) = maxrx∈R s(rx) and

ŝ∆(X;Y ) = maxw∈T∆
ŝ(w). Here R is the probability simplex over all rx.

We want to bound the error |ŝ∆(X;Y )− s(X;Y )|. First, consider

s∆(X;Y ) ≡ max
rx∈T∆(R)

s(rx), (6.50)

where the constraint set T∆(R) is defined as:

T∆(R) = {rx ∈ R|X | : [(rx(x)/px(x))] ∈ T∆

and
∑
x∈X

rx(x) ∈ [1− |X |∆, 1 + |X |∆]}. (6.51)

Now we rewrite the error term as∣∣∣ ŝ∆(X;Y )− s(X;Y )
∣∣∣

≤ |s∆(X;Y )− s(X;Y )|+ |ŝ∆(X;Y )− s∆(X;Y )|. (6.52)

The first error comes from quantization. Let r∗ be the maximizer of

s(X;Y ). By assumption, r∗(x)/px(x) ∈ [C1, C2], for all x. Since T∆(R)

is a quantization of the simplex R, so there exists an r0 ∈ T∆(R) such that

|r0(x)− r∗(x)| < ∆ for all x ∈ X . Now we will bound the difference between

s(r0) and s(r∗) by the following lemma:

Lemma 25. If r(x)/p(x) ∈ [C1, C2] and r′(x)/p(x) ∈ [C1, C2] for all x ∈ X ,

and D(rx||px) > C0 and D(r′x||px) > C0, then∣∣∣ s(r)− s(r′) ∣∣∣ ≤ Lmax
x∈X
|r(x)− r′(x)|, (6.53)

for some positive constant L.
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Next we have:

s(X;Y ) = s(r∗) ≤ s(r0) + Lmax
x∈X
|r0(x)− r∗(x)|

≤ max
r∈T∆(R)

s(r) + L∆ = s∆(X;Y ) + L∆. (6.54)

Similarly, let r∗∗ be the maximizer of s∆(X;Y ), we can also find a r1 ∈ R
such that |r1(x) − r∗∗(x)| < ∆ for all x ∈ X . Using Lemma 25 again, we

will obtain s∆(X;Y ) ≤ s(X;Y ) + L∆. Therefore, the quantization error is

bounded by O(∆) with probability 1.

Now consider the second term. Upper bound on the second term relies on

the convergence of estimation of s. We claim that for given rx, the estimator

is convergent in probability in Lemma 26.

Lemma 26.

lim
N→∞

Pr
( ∣∣∣ ŝ(wr)− s(rx)

∣∣∣ > ε
)

= 0. (6.55)

Here wr(x) = rx(x)/px(x). Since the set T∆(R) is finite, by union bound,

we have:

lim
N→∞

Pr
(
∀r ∈ T∆(R),

∣∣∣ ŝ(wr)− s(rx)
∣∣∣ ≤ ε

)
≥ 1− |T∆(R)| lim

N→∞
Pr
( ∣∣∣ ŝ(wr)− s(rx)

∣∣∣ ≤ ε
)

= 1. (6.56)

Also, by the strong law of large numbers, we have that

lim
N→∞

Pr

(
∀x ∈ X , |px(x)− nx

n
| < ∆

C2|X |

)
= 1, (6.57)

where nx = card{i ∈ [n] : xi = x}. We claim that if the events inside the

probability in (6.56) and (6.57) happen simultaneously, then |ŝ∆(X;Y ) −
s∆(X;Y )| < ε+O(∆), which implies the desired claim.

Let w∗ = arg maxw∈T∆
ŝ(w). Define r2(x) = w∗(x)px(x). Since we have

[r2(x)/px(x)] ∈ T∆ for all x and∣∣∣ ∑
x∈X

r2(x)− 1
∣∣∣ =

∣∣∣ ∑
x∈X

w∗x(px(x)− nx
n

)
∣∣∣+

∆|X |
2

≤ |X |
(

∆

2
+ C2 max

x∈X

∣∣∣ px(x)− nx
n

∣∣∣ ) ≤ (|X |/2 + 1)∆. (6.58)
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Therefore, r2 ∈ T∆(R), so

ŝ∆(X;Y ) = ŝ(w∗) ≤ s(r2) + ε ≤ s∆(X;Y ) + ε. (6.59)

On the other hand, consider r∗∗ = arg maxrx∈T∆(R) s(rx) again, and de-

fine w0(x) = r∗∗(x)/px(x). We know that w0 ∈ T
|X |
∆ but not necessarily∑n

i=1 w0(xi) = n. But we claim that the sum is closed to n as follows:

∣∣∣ n∑
i=1

w0(xi)− n
∣∣∣ =

∣∣∣ ∑
x∈X

nxr
∗∗(x)

px(x)
− n|

≤ nmax
x∈X

{ r∗∗(x)

px(x)

∣∣∣ nx
n
− px(x)

∣∣∣ } ≤ nC2
∆

C2|X |
< n∆, (6.60)

so we can find a w1 ∈ T∆(R) such that |w1(x) −w0(x)| ≤ ∆ for all x. Let

r4(x) = w1(x)px(x), similar as (6.58), we know that r4 ∈ T∆(R). Moreover,∣∣∣ r4(x)− r∗∗(x)
∣∣∣ ≤ px(x)

∣∣∣w1(x)−w0(x)
∣∣∣ ≤ ∆ for all x. Then we have

s∆(X;Y ) = s(r∗∗) ≤ s(r4) + Lmax
x∈X
|r∗∗(x)− r4(x)|

≤ ŝ(w1) + ε+ L∆ = ŝ∆(X;Y ) + ε+ L∆. (6.61)

We conclude that |ŝ∆(X;Y )− s∆(X;Y )| < ε+O(∆).

Proof of Lemma 25

We will show that for any x ∈ X , we have |∂s(rx)/∂rx(x)| ≤ L/|X | for

some L. Therefore,

|s(r)− s(r′)| ≤
∑
x∈X

| ∂s(r)
∂rx(x)

| |rx(x)− r′x(x)|

≤ Lmax
x∈X
|rx(x)− r′x(x)|. (6.62)

The gradient can be written as

∂s(r)

∂rx(x)
=

∂

∂rx(x)

D(ry||py)
D(rx||px)

=

∂D(ry ||py)

∂rx(x)
D(rx||px)− ∂D(rx||px)

∂rx(x)
D(ry||py)

D2(rx||px)
. (6.63)
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Since

∂D(rx||px)
∂rx(x)

= log
rx(x)

px(x)
+ 1 ≤ max{| logC1|, | logC2|}+ 1,

∂D(ry||py)
∂rx(x)

=

∫
∂ry(y)

∂rx(x)

∂D(ry||py)
∂ry(y)

dy

=

∫
py|x(y|x)(log

ry(y)

py(y)
+ 1)dy

≤ max{| logC1|, | logC2|}+ 1. (6.64)

Therefore, we have

| ∂s(r)
∂rx(x)

| ≤ (max{| logC1|, | logC2|}+ 1)
D(px||rx) +D(ry||py)

D2(rx||px)

≤ 2(max{| logC1|, | logC2|}+ 1)

D(rx||px)

≤ 2(max{| logC1|, | logC2|}+ 1)

C0

. (6.65)

Since C0, C1, C2 are constants and |X | is finite, our proof is complete by

letting L = 2|X |(max{| logC1|, | logC2|}+ 1)/C0.

Proof of Lemma 26

Note that ŝ(wr) = wTA log(ATw)
wT logw

. Define D̂(ry||py) = wTA log(ATw)

and D̂(rx||px) = wT log w. We will prove that both D̂(ry||py) converges to

D(ry||py) and D̂(rx||px) converges toD(rx||px) in probability. SinceD(rx||px) >
0 and D̂(rx||px) > 0 with probability 1, we obtain that ŝ(wr) converges to

D(ry||py)/D(rx||px) = s(rx) in probability.

The convergence D̂(rx||px) comes from law of large number. Since D̂(rx||px) =
1
n

∑n
i=1

rx(Xi)
px(Xi)

log rx(Xi)
px(Xi)

and D(rx||px) = EX∼px
[
rx(X)
px(X)

log rx(X)
px(X)

]
, the weak law

of large number shows the convergence in probability.

For the convergence of D̂(ry||py). Consider the vector v = ATw, we have

vj =
1

n

n∑
i=1

pxy(Xi, Yj)

px(Xi)py(Yj)
wi =

1

n

n∑
i=1

py|x(Yj|Xi)

py(Yj)

rx(Xi)

px(Xi)
. (6.66)

On the other hand, for fixed Yj = y, we have

ry(y)

py(y)
=

EX∼px
[
py|x(y|X) rx(X)

px(X)

]
py(y)

= EX∼px
[
py|x(y|X)

py(y)

rx(X)

px(X)

]
. (6.67)
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Therefore, by the law of large numbers, we conclude that vj converges to
ry(Yj)

py(Yj)

in probability. Hence, D̂(ry||py) = 1
n

∑n
j=1 vj log vj converges to the limit

1
n

∑n
j=1

ry(Yj)

py(Yj)
log

ry(Yj)

py(Yj)
in probability. Furthermore, 1

n

∑n
j=1

ry(Yj)

py(Yj)
log

ry(Yj)

py(Yj)

converges to D(ry||py) = EY∼py
[
ry(Y )

py(Y )
log ry(Y )

py(Y )

]
in probability, by law of large

number again. Therefore, we conclude that D̂(ry||py) converges to D(ry||py)
in probability.

211



CHAPTER 7

LEARNING ONE-HIDDEN-LAYER
NEURAL NETWORKS UNDER GENERAL
INPUT DISTRIBUTION

Neural networks have made significant impacts over the past decade, thanks

to their successful applications across multiple domains including computer

vision, natural language processing, and robotics. This success partly owes

to the mysterious phenomenon that (stochastic) gradient method applied

to highly non-convex loss functions converges to a model parameter that

achieves high test accuracy. We are in a dire need of theoretical understand-

ing of such a phenomenon, in order to guide the design of next-generation

neural networks and training methods. Significant recent progresses have

been made, by asking the question: Can we efficiently learn a neural network

model, when there is a ground truth neural network that generated the data?

Suppose the data (x, y) is generated by sampling x from an unknown dis-

tribution fX(x) and y is generated by passing x through an unknown neural

network and adding some simple noise. Even if we train neural networks on

this “teacher network”, it is known to be a hard problem without further

assumptions [184]. Significant effort has been on designing new approaches

to learn simple neural networks (such as one-hidden-layer neural network) on

data from simple distributions (such as Gaussian) [185, 14]. This is followed

by analyses on increasingly more complex architectures [184, 186]. However,

the analysis techniques critically depend on the Gaussian input assumption,

and further the proposed algorithms are tailored specifically to Gaussian in-

puts. In this chapter, we provide a unified approach to design loss functions

that provably learn the true model for a wide range of input distributions

with smooth densities.

We consider a scenario where the data is generated from a one-hidden-layer

neural network

y =
k∑
i=1

w∗i g(〈a∗i , x〉) + η, (7.1)

212



where the true parameters are w∗i ∈ R and a∗i ∈ Rd, and η is a zero-mean noise

independent of x, with some non-linear activation function g : R→ R. It has

been widely known that first-order methods on the `2-loss get stuck in bad

local minima, even for this simple one-hidden-layer neural networks [187]. If

the input x is coming from a Gaussian distribution, [14] proposes a new loss

function G(·) with a carefully designed landscape such that Stochastic Gra-

dient Descent (SGD) provably converges to the true parameters. However,

the proposed novel loss function is specifically designed for Gaussian inputs,

and gets stuck at bad local minima when applied to general non-Gaussian

distributions. We showcase this in Section 7.3. Designing the optimization

landscape for general input distributions is a practically important and tech-

nically challenging problem, as acknowledged in [14] and many existing works

in the literature [184, 185, 186].

Our goal is to strictly generalize the approach of [14] and construct a

loss function L(·) with a good landscape such that SGD recovers the true

parameters with global initializations. The main challenge is in estimating

the score function defined as a functional of the probability density function

f(x) of the input data x:

Sm(x) ,
∇(m)fX(x)

fX(x)
, (7.2)

where∇(m)fX(x) denotes them-th order derivative for an m ∈ Z, which plays

a crucial role in the landscape design. We need to evaluate this score func-

tion at sample points, which is extremely challenging as it involves the higher

order derivatives of a pdf that we do not know. Standard non-parametric

density estimation methods such as the Kernel Density Estimators (KDE)

[188] and k-Nearest Neighbor methods (k-NN) all fail to provide an estima-

tor, as they are tailored for density estimation. Existing heuristics do not

have even consistency guarantees, which include score matching based meth-

ods [189, 190], and de-noising auto-encoder (DAE) based algorithms [191].

In this chapter, we first address this fundamental question of how to esti-

mate the score functions from samples in a principled manner. We introduce

a novel approach to adaptively capture the local geometry of the pdf to de-

sign a consistent estimator for score functions. To achieve this, we bring

ideas from local likelihood methods [7, 6] from statistics to the context of
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score function estimation and also prove the convergence rate of our esti-

mator (LLSFE), which is of independent mathematical interest. We further

introduce a new loss function for training one-hidden-layer neural networks,

that builds upon the estimated score functions. We show that this provably

has the desired landscape for general input distributions.

Main contributions of Chapter 7:

• Score function estimation. In this chapter, we provide the first con-

sistent estimator for score functions (and hence the gradients of L(·)),
which play crucial roles in several recent model parameter learning

problems [189, 190, 191]. Our provably consistent estimation of score

functions, LLSFE, from samples, with local geometry adaptations, is

of independent mathematical interest.

• Optimization landscape for general distributions. For a large

class of input distributions, with an appropriate score transformation

for the input and appropriate tensor projection, we design a loss func-

tion L(·) for one-hidden-layer neural network with good landscape

properties. In particular, our result is a strict generalization of [14]

which was restricted to Gaussian inputs, in both mathematical and

abstract viewpoints.

Related work. Several recent works have provided provable algorithms for

training neural networks [192, 193, 194, 195, 196, 197]. An early work on

provable learning guarantees on deep generative models for sparse weights

was studied in [198]. Brutzkus and Globerson [184] analyzed one-hidden-

layer neural network similar to our setting, but restricted to Gaussian input

distributions and also assuming hidden variables have disjoint supports. The

Gaussian assumption was relaxed in [199], but the analysis technique highly

depends on the fact that the non-linear activation function is a ReLU, and the

convolutional neural network only uses a single channel. Li and Yuan [186]

analyzed the convergence of one-hidden layer neural network with Gaussian

input when the true weights are close to identity. The optimization landscape

of neural networks for some specific activation functions were studied in [200,

201, 202, 203].
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Tensor methods have been used to build provable algorithms for training

neural networks [204, 205]. Our work is built upon [14], which uses a fourth-

order tensor based objective function and show good landscape properties.

Most of the aforementioned works requires specific assumptions on the input

distribution (example: Gaussian), while we only require generic smoothness

of the underlying (unknown) density.

Notations. We use T (x1, . . . , xm) to denote the inner product for an

m-th order tensor T and vectors x1, . . . , xm. We use x1 ⊗ x2 ⊗ · · · ⊗ xm

to denote outer product of vectors/matrices/tensors. x⊗j = x ⊗ · · · ⊗ x

denotes the j-th order tensor power of x and x⊗0 = 1. The spectral norm

and Frobenius norm of matrix and high-order tensor are denoted by ‖T ‖sp =

max‖ui‖2≤1 T (u1, u2, . . . , um) and ‖T ‖F =
√∑

i1,...,im
(T(i1,...,im))2. sym(T )

denotes the symmtrify operator of a tensor T defined as sym(T )(i1,...,im) =
1
m!

∑
(j1,...,jm)∈π(i1,...,im) T(j1,...,jm).

7.1 Score function estimation

In this section, we introduce a new approach for estimating score functions

defined in (7.2) from i.i.d. samples from a distribution. As the score functions

involve higher order derivatives of the pdf, it is critical to capture the rate of

changes in the pdf. Further, we aim to apply it to data coming from a broad

range of distributions. Such sharp estimates for broad class of distributions

can only be achieved by combining the strengths of two popular approaches

in density estimation: simple parametric density estimators and complex

non-parametric density estimators. We bridge this gap by borrowing the

techniques from Local Likelihood Density Estimators (LLDE) and bring them

to a new light in order to provide the first consistent score function estimators.

7.1.1 Local Likelihood Density Estimator (LLDE)

How do we estimate the normalized derivatives of the density? We address

this question in a principled manner utilizing the notion local likelihood den-

sity estimation (LLDE) from non-parametric methods [7, 6]. LLDE is origi-

nally designed for estimating density for distributions with complicated local
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geometry, and can be further applied to estimate functionals of density such

as information entropy [8]. Inspired by the fact that LLDEs capture the

local geometry of the pdf, we build upon the LLDE estimators to design a

new estimator of the higher-order derivatives, which is the main bottleneck

in score function estimation.

The local likelihood density estimator is specified by a non-negative func-

tion K : Rd → R (also called a Kernel function), a degree p ∈ Z+ of the

polynomial approximation, and a bandwidth h ∈ R+. It is the solution of a

maximization of the local log-likelihood function:

Lx(f) =
n∑
i=1

K
(Xi − x

h

)
log f(Xi)− n

∫
K
(u− x

h

)
f(u)du. (7.3)

For each x, we maximize this function over a parametric family of functions

f(·), using the following local polynomial approximation of log f(x):

log f(x) = a0 + aT1 (u− x) +
1

2
(u− x)TA2(u− x)

+ · · ·+ 1

p!
Ap(u− x, . . . , u− x), (7.4)

parameterized by a = (a0, a1, A2, . . . ,Ap) ∈ R × Rd × Rd2 × · · · × Rdp . The

local likelihood density estimate (LLDE) at point x is defined as f(x) =

eâ0 , where â = (â0, â1, Â2, . . . , Âp) is the maximizer around a point x: â ∈
arg maxf Lx(f). The optimization problem can be solved by setting the

derivatives ∂Lx(p)/∂Aj = 0 for j ∈ {0, . . . , p}. The optimal solution â can

be obtained from solving the following equations,∫
Rd

exp{a0 + aT1 (u− x) + · · ·+ 1

p!
Ap(u− x)⊗p}(u− x

h
)⊗jK(

u− x
h

)du

=
1

n

n∑
i=1

(
Xi − x
h

)⊗jK(
Xi − x
h

). (7.5)

We build upon this idea to first introduce the score function estimator, and

focus on the statistical aspect of this estimator. We discuss the computational

aspect of finding the solution to this optimization in Section 7.1.4.
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7.1.2 From LLDE to local likelihood score function estimator
(LLSFE)

We build upon the techniques from LLDE to design our local likelihood score

function estimator (LLSFE). Notice that the score function Sm(x) satisfies

the following recursive formula from [15],

Sm(x) = −Sm−1(x)⊗∇x log f(x)−∇xSm−1(x), (7.6)

and S1(x) = −∇ log f(x). This recursion reveals us that the score function

can be represented as a polynomial function of the gradients of log-density

g1(x) = ∇ log f(x), G2(x) = ∇(2) log f(x) and Gm(x) = ∇(m) log f(x) for

m > 2. For example, the polynomial for S2(x) and S4(x) are given below:

S2(x) = g1(x)⊗ g1(x) +G2(x), (7.7)

S4(x) = g1(x)⊗ g1(x)⊗ g1(x)⊗ g1(x) + 6 sym(G2(x)⊗ g1(x)⊗ g1(x))

+ 3 (G2(x)⊗G2(x)) + 4 sym(G3(x)⊗ g1(x)) + G4(x). (7.8)

More generally, the m-th order score function can be represented as:

Sm(x) =
∑
λ∈Λm

(−1)mcm(λ) sym(
⊗
j∈λ

Gj), (7.9)

where Λm denotes the set of partitions of integer m, and cm(λ) is a pos-

itive constant depends on m and the partition. As an example, Λ4 =

{{1, 1, 1, 1}, {2, 1, 1}, {2, 2}, {3, 1}, {4}}. Given the polynomial representa-

tion of a score function, the LLSFE is given by

Ŝ(p)
m (x) ,

∑
λ∈Λm

(−1)mcm(λ) sym(
⊗
j∈λ

Â(p)
j ), (7.10)

where A(p)
j is the LLDE of Gj by p-degree polynomial approximation.

7.1.3 Convergence rate of LLSFE

As LLDE captures the local geometry of the pdf, LLSFE inherits this prop-

erty and is able to consistently estimate the derivatives. This is made precise

in the following theorem, where we provide an upper bound of the spectral
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norm error of the estimated m-th order score function. First, we formally

state our assumptions.

Assumption 4. (a) The degree of polynomial p ≥ m.

(b) The gradients of log-density ∇(j) log f(x) at x exist and are bounded by

‖∇(j) log f(x)‖sp ≤ Cj for all j ∈ [p+ 1].

(c) The non-negative kernel function K satisfies
∫
Rd |xi|

pK(x)dx < +∞
for any i ∈ [d].

(d) Bandwidth h depends on n s.t. h→ 0 and nhd+2m →∞ as n→∞.

The following theorem provides an upper bound on the convergence rate

of the proposed score function estimator.

Theorem 15. Under Assumption 4, the spectral norm error of the LLSFE

Ŝ(p)
m (x) defined in (7.10) is upper bounded by

‖Ŝ(p)
m (x)− Sm(x)‖sp

≤ O(dm/2hp+1−m) +Op(d
m/2(nhd+2m)−1/2). (7.11)

Proof. (Sketch) Note that the estimator is derived by replacing the truth

gradients of log-density (g1(x), G2(x), . . . ,Gm(x)) by the estimates of gredi-

ents of log-density (â0, â1, Â2, . . . , Âp). Since we assumes that ‖Gj‖sp ≤ Cj,

so it suffices to upper bound the spectral norm of the error ‖Â(p)
j − Gj‖sp.

The following lemma provides upper bounds for each entry of Â(p)
j − Gj.

Lemma 27. [7, Theorem 1] Under Assumption 4 we have(
Â(p)
j

)
(i1,...,ij)

− (Gj)(i1,...,ij)
= O(hp+1−j) +Op((nh

d+2j)−1/2), (7.12)

for any j ∈ {1, . . . , p} and i1, . . . , ij ∈ [d]j.

The spectral norm of of the error ‖Â(p)
j − Gj‖sp is upper bounded by the

Frobenius norm. Then applying Lemma 27, we have,

‖Â(p)
j − Gj‖sp ≤ O(dj/2hp+1−j) +Op(d

j/2(nhd+2j)−1/2). (7.13)

Substituting this result into the polynomial representations (7.9) and (7.10),

we obtain the desired rate.
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Remark 5. By setting h = n−1/(2p+2+d), we obtain

‖Ŝ(p)
m (x)− Sm(x)‖sp ≤ Op(d

m/2n−(p+1−m)/(2p+2+d)). (7.14)

Remark 6. It was shown in [206] that the optimal rate for estimating an

entry of Gj is Op(n
−(p+1−m)/(2p+2+d)). We conjecture that LLSFE is also

minimax rate-optimal.

7.1.4 Second degree LLSFE

In Section 7.1.3, we proved the convergence rate of the LLSFE. However,

the computational cost of LLSFE can be large since numerical integration

is needed to compute the integral in (7.5). To trade off the accuracy and

computational cost, we choose Gaussian kernel K(u) ∝ exp{‖u‖2/2} and

degree p = 2. This makes the integration in the LHS of (7.5) tractable and

we obtain closed-form expressions for a0, a1 and A2. Using ideas from [8,

Proposition 1], our estimators for a1 and A2 are:

â1 = (
M2

M0

− (
M1

M0

)(
M1

M0

)T )−1M1

M0

, (7.15)

Â2 = h−2Id×d − (
M2

M0

− (
M1

M0

)(
M1

M0

)T )−1, (7.16)

where Mj =
∑n

i=1(Xi − x)⊗j exp{−‖Xi−x‖
2

2h2 } for j ∈ {0, 1, 2}.
The second degree LLSFE is derived by plugging â1 and Â2 into (7.10).

The computational complexity of second degree LLDFE is O(n · d2). In the

experiments below, we use this second degree estimator.

7.1.5 Synthetic simulations of LLSFE

In this experiment we validate the performance of LLSFE, for both Gaussian

and non-Gaussian distributions. For Gaussian distribution, we choose x ∼
N (0, Id) and d = 2. The ground truth score functions are S2 = xxT − Id

and S4 = x⊗4 − 6sym(x ⊗ x ⊗ Id) + 3Id ⊗ Id. We show the spectral error

‖Ŝ2−S2‖sp versus number of sample n for estimation of S2, and the Frobenius

error ‖Ŝ4 − S4‖F for estimation of S4 (since computing spectral norm of

high-order tensor is NP-hard [207]). We plot the {95%, 75%, 50%, 25%, 5%}
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percentiles of our estimation error over 10, 000 independent trials for the

estimation of S2 and 50, 000 independent trails for the estimation of S4.

We can see from Figure 7.1 that all the percentiles of the estimation error

decrease as n increases. The log-log scale plot is closed to linear, and the

average slope is −0.5143 for ‖Ŝ2 − S2‖sp and −0.4984 for ‖Ŝ4 − S4‖F . This

suggests that LLSFE is consistent and the error decreases at a faster rate

than the theoretical upper bound in Remark 5.

0.01

0.03

0.1

0.3

1.0

100 1000 10000

95%
75%
50%
25%
5%

sample size n

‖Ŝ
2
−
S 2
‖ s

p

0.1

0.3

1.0

3.0

100 1000 10000

95%
75%
50%
25%
5%

sample size n

‖Ŝ
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Figure 7.1: Error of score function estimator versus sample size for
x ∼ N (0, Id). Left: ‖Ŝ2 − S2‖sp. Right: ‖Ŝ4 − S4‖F .

For the non-Gaussian case, we choose x ∼ 0.5N (1d, Id) + 0.5N (−1d, Id)

where 1d is the all-1 vector and d = 2. We also plot the percentiles of the

estimation errors in log-log scale in Figure 7.2. We can see that LLSFE gives

a consistent estimate for the non-Gaussian case too, and the rate is −0.2587

for ‖Ŝ2 − S2‖sp and −0.1343 for ‖Ŝ4 − S4‖F , which are also faster than the

upper bound in Remark 5.
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x ∼ 0.5N (µ, Id) + 0.5N (−µ, Id). Left: ‖Ŝ2 − S2‖sp. Right: ‖Ŝ4 − S4‖F .
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7.2 Design of landscape

In this section, we show how the proposed density functional estimators can

be applied to design a loss function with desired properties, for regression

problems under a neural network model. This gives a novel loss function that

does not require the data to be distributed as Gaussian, as typically done in

existing literature. Concretely, we consider the problem of training a one-

hidden-layer neural network where, for each input x ∈ Rd, the corresponding

output is given by

ŷ(x) =
k∑
i=1

wi g(〈ai, x〉), (7.17)

with weights are wi ∈ R and ai ∈ Rd, non-linear activation is g : R → R,

and the number of hidden neurons is k ≤ d. Given labeled training data

(x, y) coming from some distribution, a standard approach to training such

a network is to use the `2 loss:

`2(A) = E
[
‖ŷ(x)− y‖2

]
, (7.18)

as the training objective, where A denotes the weights of the neural network

model. However, traditional optimization techniques on `2 can easily get

stuck in local optima as empirically shown in [187]. This phenomenon can

be explained precisely under a canonical scenario where the data is generated

from a “teacher neural network”:

y =
k∑
i=1

w∗i g(〈a∗i , x〉) + η, (7.19)

where the true parameters are w∗i ∈ R and a∗i ∈ Rd, and η is a zero-mean

noise independent of x. This assumption that the data also comes from

a one-hidden-layer neural network is critical in recent mathematical under-

standing of neural networks, in showing the gain of a shallow ResNet by

[186], various properties of the critical points by [185], and showing that the

standard `2 minimization is prone to get stuck at non-optimal critical points

by [14]. A major limitation of this line of research is that they rely criti-

cally on the Gaussian assumption on the data x. The analysis techniques
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use specific properties of spherical Gaussian random variables such that the

theoretical findings do not generalize to any other distributions. Further, the

estimators designed as per those analyses fail to give consistent estimates for

non-Gaussian data.
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Figure 7.3: SGD to learn a one-layer-ReLU network in (7.19) on the
proposed objective function L(A) defined in (7.20) converges to a global
minimum with random initialization, whereas on `2-loss `2(A) and G(A), it
gets stuck at bad local minima. Left: First 500 iterations. Right:
500-10,000 iterations.

We showcase this limitation in Figure 7.3, where the data is generated from

a Laplacian distribution. The details of this experiment is provided in Section

7.3.1. Minimizing `2 loss converges slowly and gets stuck at sub-optimal

critical points, consistent with previous observations [186]. To overcome

this weakness [14] proposed applying Stochastic Gradient Descent (SGD) on

a novel loss function G(A) designed from the analysis under the Gaussian

assumption. This fails to converge to an optimal critical point for non-

Gaussian distributions. To overcome this limitation, we propose a novel loss

function L(A) that generalizes to a broad class of distributions.

We focus on the task of recovering the weights a∗i ’s, and denote the set by

a matrix A> = [a1| . . . |ak] ∈ Rd×k. The scalar weights w∗i ’s can be separately

estimated using standard least squares, once A has been recovered. We

propose applying SGD on a new loss function L(A), defined as

L(A) =
∑

i,j∈[k],i 6=j

E[y · t1(x, ai, aj)]− µ
∑
i∈[k]

E[y · t2(x, ai)]

+λ
∑
i∈[k]

(‖ai‖ − 1)2, (7.20)
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where µ, λ > 0 are regularization coefficients, and

t1(x, u, v) = S4(x)(u, u, v, v),

t2(x, u) = S4(x)(u, u, u, u), u, v ∈ Rd, (7.21)

are the applications of the score functions Sm(x) = ∇(m)f(x)/f(x) on the

weight vectors ai’s that we are optimizing over,

S4(x)(u, v, w, z) =
1

f(x)

∑
i1,i2,i3,i4

∇xi1xi2xi3xi4
f(x)ui1vi2wi3zi4 . (7.22)

We provide formulas for some simple distributions below.

Example 4 (Gaussian). If x ∼ N (0, Id), then t
(G)
1 (x, u, v) = (u>x)2(v>x)2−

‖u‖2(v>x)2 − 4(u>x)(v>x)(u>v) − ‖v‖2(u>x)2 + ‖u‖2‖v‖2 + 2(u>v)2 and

t
(G)
2 (x, u) = (u>x)4 − 6‖u‖2(u>x)2 + 3‖u‖4.

Example 5 (Mixture of Gaussians). If x ∼ pN (µ1, Id) + (1 − p)N (µ2, Id),

we have that t1(x, u, v) = p1t
(G)
1 (x−µ1, u, v) + (1− p1)t

(G)
1 (x−µ2, u, v) where

the posterior p1 ,
pN (µ,Id)

pN (µ1,Id)+(1−p)N (µ2,Id)
. Similarly for t2.

The proposed L(·) is carefully designed to ensure that the loss surface has

a desired landscape with no local minima. Here, we give the intuition behind

the design principle, and make it precise in the main results of Theorems

16 and 17. This landscape explains the experimental superiority of L(·) in

Figures 7.3 and 7.4. Suppose k = d and a∗i ’s are orthogonal vectors. After

some calculus, an alternative characterization for L is given by

L(A) =
∑
i∈[d]

w∗iE[g(4)(〈a∗i , x〉)]
∑

j,k∈[d],j 6=k

〈a∗i , aj〉2〈a∗i , ak〉2

−µ
∑
i,j∈[d]

w∗iE[g(4)(〈a∗i , x〉)]〈a∗i , aj〉4 + λ
∑
i∈[d]

(‖ai‖ − 1)2

=
∑
i∈[d]

κ∗i
∑

j,k∈[d],j 6=k

〈a∗i , aj〉2〈a∗i , ak〉2 − µ
∑
i,j∈[d]

κ∗i 〈a∗i , aj〉4

+λ
∑
i∈[d]

(‖ai‖2 − 1)2, (7.23)

for scalar κ∗i = w∗iE[g(4)(〈a∗i , x〉)] that does not depend on the variables we

optimize over.
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Notice that when the weights are recovered up to a permutation, that is

ai = ±a∗π(i) for some permutation π, the first term in (7.23) equals zero. We

can show that these are the only possible local minima in the minimization

of the first term under unit-norm constraints, whenever all κ∗i = 1. Thus in

order to account for this weighted tensor based loss and to avoid spurious

local minima, the regularization term µ
∑

i,j∈[d] κ
∗
i 〈a∗i , aj〉4 forces these spuri-

ous minima to lie close to a permutation of a∗i up to a sign flip. This is made

precise in the characterization of the landscape of L(·) in the proof of The-

orem 16. The proof strategy is inspired by the landscape analysis technique

of [14], where a similar analysis was done for Gaussian data x.

7.2.1 Theoretical results

We now formally state the assumptions for our theoretical results.

Assumption 5. (a) The ground-truth parameters w∗i and a∗i are such that

w∗iE[g(4)(〈a∗i , x〉)] has the same sign for all i ∈ [k].

(b) Defining κ∗i = w∗iE[g(4)(〈a∗i , x〉)] and κ∗ = maxi κ
∗
i /(mini κ

∗
i ), we choose

µ < c/κ∗ and λ ≥ κ∗max/c for c ≤ 0.01.

(c) k = d and A ∈ Rd×d is an orthogonal matrix.

The following theorem characterizes the landscape of L(·).

Theorem 16. Under Assumption 5, the objective function L(·) satisfies that

1. All local minima of L are also global. Furthermore, all approximate

local minima are also close to the global minimum. More concretely,

for ε > 0, let A satisfy that

‖∇L(A)‖ ≤ ε and λmin

{
∇2L(A)

}
≥ −τ, (7.24)

where τ = cmin {µκ∗min/(κ
∗d), λ}. Then A = PDA∗ + EA∗, where

P is a permutation matrix, D is a diagonal matrix with Dii ∈ {±1 ±
O(µκ∗max/λ)}, and |E|∞ ≤ O {ε/(κ∗min)}.

2. Any saddle point A has a strictly negative curvature, i.e., λmin (∇2L(A)) ≤
−τ .
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Remark 7. For the case when a1, . . . , ak are linearly independent with k < d,

similar conclusion hold (see Section 7.4.4).

7.2.2 Finite sample regime

In the finite sample regime, we replace the population expectation in (7.20)

with empirical expectation Ê and optimize on the corresponding loss L̂. The

following theorem establishes that L̂ also exhibits similar landscape prop-

erties as that of L (under some mild technical assumptions outlined in As-

sumption 6 in Section 7.4.3).

Theorem 17. Assume that Assumption 5 and Assumption 6 (defined in

Section 7.4.3) hold. Then there exists a polynomial poly(d, 1/ε) such that

whenever n ≥ poly(d, 1/ε), with high probability, L̂ exhibits the same land-

scape properties as that of L, established in Theorem 16.

A major bottleneck in applying the proposed loss (7.20) directly to real

data is that the knowledge of the probability density function of the data x

is required. As we saw in the Examples 4 and 5, the loss function t1 and t2

depends on the pdf of x. In Section 7.3, we show how we can combine the

LLSFE to compute (the gradients of) those functions to introduce a novel

consistent estimator with a desirable landscape.

7.3 Experiments of Chapter 7

7.3.1 Landscape of L(·)

In this simulation, we show that the landscape of the loss function L(A) is

well-behaved, if we know the score function S4(x). We choose x = (x1, . . . , xd),

where xi are i.i.d. symmetric exponential distributed random variables,

i.e., f(xi) = (1/2) exp{−|xi|}. The fourth-order score function is given by

S4(x) = sgn(x)⊗4. We compare our loss function L(A) with an `2-loss, `(·),
as well as the loss function G(·) proposed in [14], and evaluate the perfor-

mance through the parameter error (which verifies if A∗−1A is close to a

225



permutation matrix)

e(A) = min{1−min
i

max
j
|(A∗−1A)ij|, 1−min

j
max
i
|(A∗−1A)ij|}. (7.25)

For the experiment, we choose A∗ = Id, w
∗ = 1, σ = ReLU, k = d = 50

and use full-batch gradient descent with sample size 8192 and learning rate

η = 5× 10−3 for `2 loss and η = 5× 10−5 for L(A) and G(A). Regularization

parameter is µ = 30 for both L(A) and G(A). The results are illustrated in

Figure 7.3, which shows that (i) `2(·) converges slowly and to a suboptimal

critical point indicating the existence of local minima; (ii) G(·) converges to

a suboptimal critical point due to the mismatched Gaussian assumption; and

(iii) L(·) converges to a global minima.
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Figure 7.4: Learning curve of objective function G(A) (blue line) and
LLSFE based objective function L(A) (7.20) (red line). Left: x is Gaussian.
Right: x is Gaussian-mixture.

7.3.2 Combine with LLSFE

Now we use our estimator LLSFE to construct the empirical loss L̂(A) to train

a one-hidden-layer neural network (7.19). The setting of this experiment is

same as that of Section 7.3.1 with k = d = 2 for simplicity.

In the left panel of Figure. 7.4, we choose Gaussian input x ∼ N (0, Id)

so that the loss G(A) coincides with L(A) if the ground truth S4(x) is

known. We can see that using estimation error using L(·) operates close

to that of the ground-truth G(·) In the right panel of Figure 7.4, we choose

x ∼ 0.5N (1d, Id) + 0.5N (−1d, Id). In this case, G(A) converges to a local

minimum, thus incurring higher parameter error, whereas LLSFE-based ob-

jective function converges to the global minima very quickly. This confirms
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that when the data is not coming from a Gaussian distribution, it is crit-

ical to use properly matched estimator, which is provided by the proposed

LLSFE approach.

7.4 Proofs of results in Chapter 7

7.4.1 Proof of Theorem 15

Proof. We rewrite the spectral norm error in terms of the polynomial repre-

sentations (7.9) and (7.10) as

‖Ŝm(x)− Sm(x)‖sp ≤
∑
λ∈Λm

cm(λ) ‖sym(
⊗
j∈λ

Â(p)
j )− sym(

⊗
j∈λ

Gj)‖sp

≤
∑
λ∈Λm

cm(λ) ‖
⊗
j∈λ

Â(p)
j −

⊗
j∈λ

Gj‖sp, (7.26)

where the last inequality comes from the fact that ‖sym(T )‖sp ≤ ‖T ‖sp.

Then we study each term in (7.26). For simplicity of notation, denote the

estimation error E (p)
j , Â(p)

j − Gj, then we have

‖
⊗
j∈λ

Â(p)
j −

⊗
j∈λ

Gj‖sp = ‖
⊗
j∈λ

(E (p)
j + Gj)−

⊗
j∈λ

Gj‖sp

= ‖
∑
ν⊂λ

(⊗
j∈ν

(E (p)
j )

)
⊗

⊗
j∈λ\ν

Gj

−⊗
j∈λ

Gj‖sp

= ‖
∑

ν⊂λ,ν 6=∅

(⊗
j∈ν

(E (p)
j )

)
⊗

⊗
j∈λ\ν

Gj

 ‖sp

≤
∑

ν⊂λ,ν 6=∅

‖

(⊗
j∈ν

(E (p)
j )

)
⊗

⊗
j∈λ\ν

Gj

 ‖sp

≤
∑

ν⊂λ,ν 6=∅

 (
∏
j∈ν

‖E (p)
j ‖sp)× (

∏
j∈λ\ν

‖Gj‖sp)

 . (7.27)

Now we study the spectral norm of E (p)
j , which can be upper bounded by
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the Frobenius norm. Then by Lemma 27, we have,

‖E (p)
j ‖sp ≤ ‖E (p)

j ‖F =

√∑
i1,...,ij

(
E (p)
j

)2

(i1,...,ij)

= O(dj/2hp+1−j) +Op(d
j/2(nhd+2j)−1/2). (7.28)

Since for any j ≤ m, we have hp+1−j → 0 and nhd+2j → ∞ as n → ∞.

So for sufficiently large n, we have
∑

j∈λ ‖E
(p)
j ‖sp ≤ 1 with high probability.

Then, plug it into (7.27), we get

‖
⊗
j∈λ

Â(p)
j −

⊗
j∈λ

Gj‖sp ≤
∑

ν⊂λ,ν 6=∅

 (
∏
j∈ν

‖E (p)
j ‖sp)×

∏
j∈λ\ν

Cj


≤ C

∑
ν⊂λ,ν 6=∅

∏
j∈ν

‖E (p)
j ‖sp = C

(∏
j∈λ

(1 + ‖E (p)
j ‖sp)− 1

)

≤ C

(
exp{

∑
j∈λ

‖E (p)
j ‖sp} − 1

)
≤ 2C

∑
j∈λ

‖E (p)
j ‖sp

= O(djmax/2hp+1−jmax) +Op(d
jmax/2(nhd+2jmax)−1/2), (7.29)

here constant C = maxν
∏

j∈λ\ν Cj and jmax = max{j : j ∈ λ}. The last

inequality comes from the fact that ey − 1 ≤ 2y for any y ≤ 1. Since

λ is a partition of integer m, we have jmax ≤ m, and the equation holds

if and only if λ = {m}. Therefore the only term in (7.26) that achieves

O(dm/2hp+1−m) + Op(d
m/2(nhd+2m)−1/2) is ‖Â(p)

m − Gm‖sp, with cm(λ) = 1.

Therefore, we complete the proof.

7.4.2 Proof of Theorem 16

The key technical lemma behind our results is the Stein’s lemma and its

generalizations which we present below.

Lemma 28 ([208]). Let x ∼ N (0, Id) and g : Rd → R be such that both

E[∇g(x)] and E[g(x)x] exist and are finite. Then

E[g(x)x] = E[∇xg(x)]. (7.30)

The following lemma generalizes Stein’s lemma to more general distribu-
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tions and higher-order derivatives.

Lemma 29 ([209]). Let m ≥ 1 and Sm(x) be defined as in (7.2). Then for

any g : Rd → R satisfying some regularity conditions, we have

E[g(x) · Sm(x)] = E[∇(m)
x g(x)]. (7.31)

The following theorem gives an alternate characterization of the loss func-

tion L and is the key step in the proof of Theorem 16.

Theorem 18. The loss function L(·) defined in (7.20) satisfies that

L(A) =
∑
i∈[d]

w∗iE[g(4)(〈a∗i , x〉)]
∑

j,k∈[d],j 6=k

〈a∗i , aj〉2〈a∗i , ak〉2

−µ
∑
i,j∈[d]

w∗iE[g(4)(〈a∗i , x〉)]〈a∗i , aj〉4 + λ
∑
i∈[d]

(‖ai‖ − 1)2 . (7.32)

Proof. Since η is zero-mean and independent of x, we have that

E[y · Sm(x)] =
∑
i∈[k]

w∗iE[g(〈a∗i , x〉 · Sm(x))] , (7.33)

Putting m = 4 in Lemma 29, in view of (7.33), we obtain that

E[y · S4(x)] =
∑
i∈[k]

w∗iE[g(4)(〈a∗i , x〉)](a∗i )⊗4. (7.34)

Thus for any fixed aj, ak, we have

E[y · S4(x)(aj, aj, ak, ak)] = E[y · t1(x)]

=
∑
i∈[k]

w∗iE[g(4)(〈a∗i , x〉)]〈a∗i , aj〉2〈a∗i , ak〉2, (7.35)

E[y · S4(x)(aj, aj, aj, aj)] = E[y · t2(x)]

=
∑
i∈[k]

w∗iE[g(4)(〈a∗i , x〉)]〈a∗i , aj〉4. (7.36)

Now summing over j, k finishes the proof.

The proof of Theorem 16 follows from Theorem 2.3 of [14] and Theorem

18.
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7.4.3 Proof of Theorem 17

We state the assumptions for finite sample landscape analysis below.

Assumption 6. (a) ‖x‖ has exponentially decaying tails,

Pr
[
‖x‖2 ≥ t

]
≤ K1e

−K2t2 , ∀t ≥ 0, (7.37)

for some constants K1, K2 > 0.

(b) Let l(x, y, A) be such that L(A) = E[l(x, y, A)] + λ
∑

i∈[k](‖ai‖2 − 1)2.

Then there exists a constant K > 0 which is at most a polynomial in d

and a constant p ∈ N such that

‖∇Al(x, y, A)‖ ≤ K‖x‖p,

‖∇2
Al(x, y, A)‖ ≤ K‖x‖p, (7.38)

for all A such that ‖ai‖ ≤ 2.

In order to establish that the gradient and the Hessian of L are close to

their finite sample counterparts, we first consider its truncated version LT

defined as

LT , E[l(x, y, A)IE], E , {‖x‖ ≤ R}, (7.39)

where R = Cd log(1/ε) for some ε < 0. It follows that LT is well behaved

and exhibits uniform convergence of empirical gradients/Hessians to its pop-

ulation version [14] for A with bounded norm. Then Theorem 17 follows

from showing that the gradient and the Hessian of LT are close to that of

L as well in this setting, which we prove in Lemma 30. Next we combine

this result with Lemma E.5 of [14] which shows that A with large row norms

must also have large gradients and hence cannot be local minima. First we

define LT .

Lemma 30. Let LT be defined as in (7.39) and 6 hold. Then for a sufficiently

large constant C and a sufficiently small ε > 0, we have that

‖∇L(A)−∇LT (A)‖2 ≤ ε, (7.40)

‖∇2L(A)−∇2LT (A)‖2 ≤ ε, (7.41)
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for all A with row norm ‖Ai‖ ≤ 2.

Proof. We have that

‖∇L(A)−∇LT (A)‖2 = ‖E [∇l(x, y, A)(1− IE)] ‖
(a)

≤ E [‖∇l(x, y, A)‖ I{‖x‖ ≥ R}]

=
∑
i≥0

E
[
‖∇l(x, y, A)‖ I{‖x‖ ∈

[
2iR, 2i+1R

]
}
]

(b)

≤
∑
i≥0

K(2i+1R)p Pr
[
‖x‖ ≥ 2iR

]
≤
∑
i≥0

K(2i+1R)pe−2iR

(c)

≤
∑
i≥0

e−2i−1R =
∑
i≥0

εCd2i−1

(d)

≤
∑
i≥0

ε/2i+1 = ε, (7.42)

where (a) follows from the Jensen’s inequality, (b) follows from 6, (c) follows

from the fact that K(2x)pe−x ≤ e−x/2 for x sufficiently large, and (d) follows

from choosing C sufficiently large. Similarly for ‖∇2L(A)−∇2LT (A)‖2.

We are now ready to prove Theorem 17.

Proof. Let A be such that norms of all the rows are less than 2. Then we

have from Lemma 30 that

‖∇L(A)−∇LT (A)‖2 ≤ ε/4, (7.43)

‖∇2L(A)−∇2LT (A)‖2 ≤ τ0/4. (7.44)

Notice that the gradient and Hessian of l(x, y, A)IE are upper bounded

τ = poly(d, 1/ε) for some fixed polynomial poly. Hence using the uniform

convergence of the sample gradients/Hessians to their population counter-

parts [14, Theorem E.3], we have that

‖∇LT (A)−∇L̂T (A)‖2 ≤ ε/6, (7.45)

‖∇2LT (A)−∇2L̂T (A)‖2 ≤ τ0/6, (7.46)

whenever N ≥ poly(d, 1/ε), with high probability. Moreover, from standard
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concentration inequalities (such as multivariate Chebyshev) it follows that

‖∇L̂(A)−∇L̂T (A)− (∇L(A)−∇LT (A))‖2 ≤ ε/6, (7.47)

‖∇2L̂(A)−∇2L̂T (A)− (∇2L(A)−∇2LT (A))‖2 ≤ τ0/6, (7.48)

with high probability, whenever N ≥ poly(d, 1/ε). Hence, we obtain that

‖∇L(A)−∇L̂(A)‖2 ≤ ε/2, (7.49)

‖∇2L(A)−∇2L̂(A)‖2 ≤ τ0/2. (7.50)

If A is such that there exists a row Ai with ‖ai‖ ≥ 2, we have from [14,

Lemma E.5] that 〈∇L̂(A), Ai〉 ≥ cλ‖ai‖4 for a small constant c and thus A

cannot be a local minimum for L̂. Hence all local minima of L̂ must have

‖ai‖ ≤ 2 and thus in view of (7.50) it follows that it also a ε-approximate

local minima of L, or more concretely,

‖∇L(A)‖ ≤ ε, ∇2L(A) < −τ0Id. (7.51)

7.4.4 Landscape design for k < d

In the setting where k = d and the regressors a∗1, . . . , a
∗
d are linearly inde-

pendent, our loss functions L4(·) can modified in a straightforward manner

to arrive at the loss function F (·) defined in Appendix C.2 of [14]. Hence

we have the same landscape properties as that of Theorem B.1 of [14]. The

proof is exactly similar to that of our Theorem 16.

In a more geneal scenario where k < d and the regressors a∗1, . . . , a
∗
d are

linearly independent, it turns out that our loss function L4(·) can also be

transformed to obtain the loss F(·) in Appendix C.3 of [14] to arrive at

Theorem C.1 of [14] in our setting. The proof is again similar.
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CHAPTER 8

RATE DISTORTION FOR MODEL
COMPRESSION: FROM THEORY TO
PRACTICE

Deep neural networks have been successful, for example, in the application of

computer vision [13], machine translation [210] and game playing [211]. With

increasing data and computational power, the number of weights in practical

neural network model also grows rapidly. For example, in the application

of image recognition, the LeNet-5 model [212] only has 400K weights. After

two decades, AlexNet [13] has more than 60M weights, VGG-16 net [213] has

more than 130M weights and BERT [214] has more than 340M weights. The

huge size of neural networks brings many challenges, including large storage,

difficulty in training, and large energy consumption. In particular, deploying

such extreme models to embedded mobile systems is not feasible.

Several approaches have been proposed to reduce the size of large neural

networks while preserving the performance as much as possible. Most of

those approaches fall into one of the two broad categories. The first cat-

egory designs novel network structures with small number of parameters,

such as SqueezeNet [215] and MobileNet [216]. The other category directly

compresses a given large neural network using pruning, quantization, and

matrix factorization, including [217, 218, 18, 17, 219]. There are also ad-

vanced methods to train the neural network using Bayesian methods to help

pruning or quantization at a later stage, such as [220, 221, 222].

As more and more model compression algorithms are proposed and com-

pression ratio becomes larger and larger, it motivates us to think about the

fundamental question — How well can we do for model compression? The

goal of model compression is to trade off the number of bits used to describe

the model parameters, and the distortion between the compressed model

and original model. We wonder: At least how many bits is needed to achieve

certain distortion? Despite many successful model compression algorithms,

these theoretical questions still remain unclear.

In this chapter, we fill in this gap by bringing tools from rate distor-
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tion theory to identify the fundamental limit on how much a model can be

compressed. Specifically, we focus on compression of a pretrained model,

rather than designing new structures or retraining models. Our approach

builds upon rate distortion theory introduced by [19] and further developed

by [223]. The approach also connects to modeling neural networks as random

variables in [224], which has many practical usages [225].

Our contribution for model compression is twofold: theoretical and prac-

tical. We first apply theoretical tools from rate distortion theory to provide

a lower bound on the fundamental trade off between rate (number of bits to

describe the model) and distortion between compressed and original mod-

els, and prove the tightness of the lower bound for a linear model. This

analysis seamlessly incorporate the structure of the neural network architec-

ture into model compression via backpropagation. Motivated by the theory,

we design an improved objective for compression algorithms and show that

the improved objective gives optimal pruning and quantization algorithm for

one-hidden-layer ReLU neural network, and has better performance in real

neural networks as well.

Main contributions of Chapter 8:

• In Section 8.1, we briefly review previous work on model compression.

• In Section 8.2, we introduce the background of the rate distortion the-

ory for data compression, and formally state the rate distortion theory

for model compression.

• In Section 8.3, we give a lower bound of the rate distortion function,

which quantifies the fundamental limit for model compression. We then

prove that the lower bound is achievable for linear model.

• In Section 8.4, motivated by the achievable compressor for linear model,

we proposed an improved objective for model compression, which takes

consideration of the sturcture of the neural network. We then prove

that the improved objective gives optimal compressor for one-hidden-

layer ReLU neural network.

• In Section 8.5, we demonstrate the empirical performance of the pro-

posed objective on fully connected neural networks on MNIST dataset

and convolutional networks on CIFAR dataset.
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8.1 Related work on model compression

The study of model compression of neural networks appeared as long as neu-

ral network was invented. Here we mainly discuss the literature on directly

compressing large models, which are more relevant to our work. They usu-

ally contain three types of methods — pruning, quantization and matrix

factorization.

Pruning methods set unimportant weights to zero to reduce the number of

parameters. Early works of model pruning includes biased weight decay [226],

optimal brain damage [217] and optimal brain surgeon [218]. Early methods

utilize the Hessian matrix of the loss function to prune the weights, however,

Hessian matrix is inefficient to compute for modern large neural networks

with millions of parameters. More recently, [18] proposed an iterative prun-

ing and retraining algorithm that works for large neural networks.

Quantization, or weight sharing methods group the weights into clusters

and use one value to represent the weights in the same group. This cate-

gory includes fixed-point quantization by [227], vector quantization by [228],

HashedNets by [229], Hessian-weighted quantizaiton by [230] and Diameter-

regularized Hessian-weighted quantization by [231].

Matrix factorization assumes the weight matrix in each layer could be

factored as a low rank matrix plus a sparse matrix. Hence, storing low rank

and sparse matrices is cheaper than storing the whole matrix. This category

includes [232] and [219].

There are some recent advanced method beyond pruning, quantization

and matrix factorization. [17] assembles pruning, quantization and Huffman

coding to achieve better compression rate. Bayesian methods [220, 221, 222]

are also used to retrain the model such that the model has more space to

be compressed. [233] uses reinforcement learning to design a compression

algorithm.

Despite these aforementioned works for model compression, no one has

studied the fundamental limit of model compression, as far as we know.

More specifically, in this paper, we focus on the study of theory of model

compression for pretrained neural network models and then derive practical

compression algorithms given the proposed theory.
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8.2 Rate distortion theory for model compression

8.2.1 Review of rate distortion theory for data compression

Rate distortion theory, firstly introduced by [19] and further developed by

[223], is an important concept in information theory which gives theoretical

description of lossy data compression. It addressed the minimum average

number of R bits, to transmit a random variable such that the receiver can

reconstruct the random variable with distortion D.

Precisely, let Xn = {X1, X2 . . . Xn} ∈ X n be i.i.d. random variables from

distribution PX . An encoder fn : X n → {1, 2, . . . , 2nR} maps the message

Xn into codeword, and a decoder gn : {1, 2, . . . , 2nR} → X n reconstruct

the message by an estimate X̂n from the codeword. See Figure 8.1 for an

illustration.

Figure 8.1: An illustration of encoder and decoder.

A distortion function d : X × X → R+ quantifies the difference of the

original and reconstructed message. Distortion between sequence Xn and

X̂n is defined as the average distortion of Xi’s and X̂i’s. Commonly used

distortion function includes Hamming distortion function d(x, x̂) = I[x 6= x̂]

for X = {0, 1} and square distortion function d(x, x̂) = (x− x̂)2 for X = R.

Now we are ready to define the rate distortion function for data compres-

sion.

Definition 4. A rate distortion pair (R,D) is achievable if there exists a se-

ries of (probabilistic) encoder-decoder (fn, gn) such that the alphabet of code-

word has size 2nR and expected distortion limn→∞ E[d(Xn, gn(fn(Xn)))] ≤ D.

Definition 5. Rate distortion function R(D) equals to the infimum of rate

R such that rate distortion pair (R,D) is achievable.

The main theorem of rate distortion theory ([71, Theorem 10.2.1]) states

as follows.
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Theorem 19. Rate distortion theorem for data compression.

R(D) = min
PX̂|X :E[d(X,X̂)]≤D

I(X; X̂). (8.1)

The rate distortion quantifies the fundamental limit of data compression,

i.e., at least how many bits are needed to compress the data, given the quality

of the reconstructed data. Here is an example for rate distortion function.

Example 6. If X ∼ N (0, σ2), the rate distortion function is given by

R(D) =

1
2

log2(σ2/D) if D ≤ σ2,

0 if D > σ2.
(8.2)

If the required distortion D is larger than the variance of the Gaussian vari-

able σ2, we simply transmit X̂ = 0; otherwise, we will transmit X̂ such that

X̂ ∼ N (0, σ2−D), X − X̂ ∼ N (0, D) where X̂ and X − X̂ are independent.

8.2.2 Rate distortion theory for model compression

Now we extend the rate distortion theory for data compression to model

compression. To apply the rate distortion theory to model compression, we

view the weights in the model as a multidimensional random variable W ∈
Rm following distribution PW . The randomness comes from multiple sources

including different distributions of training data, randomness of training data

and randomness of training algorithm. The compressor can also be random

hence we describe the compressor by a conditional probability PŴ |W . Now

we define the distortion and rate in model compression, analogously to the

data compression scenario.

Distortion. Assume we have a neural network fw that maps input x ∈ Rdx

to fw(x). For regression, fw(x) is defined as the output of the neural network

on Rdy . Analogous to the square distortion in data compression, We define

the distortion to be the expected `2 distance between fw and fŵ, i.e.

d(w, ŵ) ≡ EX
[
‖fw(X)− fŵ(X)‖2

2

]
. (8.3)
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For classification, fw(x) is defined as the output probability distribution over

C classes on the simplex ∆C−1. We define the distortion to be the expected

distance between fw and fŵ, i.e.

d(w, ŵ) ≡ EX [D(fŵ(X)||fw(X)) ] . (8.4)

HereD could be any statistical distance, including KL divergence, Hellinger

distance, total variation distance, etc. Such a definition of distortion cap-

tures the difference between the original model and the compressed model,

averaged over data X, and measures the quality of a compression algorithm.

Rate. In data compression, the rate is defined as the description length

of the bits needed to communicate the compressed data X̂. The compressor

outputs X̂ from a finite code book X . The description consists the code word

which are the indices of x̂, and the description of the code book.

In rate distortion theory, we ignore the code book length. Since we are

transmitting a sequence of data Xn, the code word has to be transmitted for

each Xi but the code book is only transmitted once. In asymptotic setting,

the description length of code book can be ignored, and the rate is defined

as the description length of the code word.

In model compression, we also define the rate as the code word length,

by assuming that an underlying distribution PW of the parameters exists

and infinitely many models whose parameters are i.i.d. from PW will be

compressed. In practice, we only compress the parameters once so there is

no distribution of the parameters. Nevertheless, the rate distortion theory

can also provide important intuitions for one-time compression, explained in

Section 8.4.

Now we can define the rate distortion function for model compression.

Analogously to Theorem 19, the rate distortion function for model compres-

sion is defined as follows.

Definition 6. Rate distortion function for model compression.

R(D) = min
PŴ |W :EW,Ŵ [d(W,Ŵ )]≤D

I(W ; Ŵ ). (8.5)

In Section 8.3 we establish a lower bound of the rate distortion function.
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8.3 Lower bound and achievability for rate distortion

function

8.3.1 Lower bound for linear model

Assume that we are going to compress a linear regression model fw(x) = wTx.

We assume that the mean of data x ∈ Rm is zero and the covariance matrix is

diagonal, i.e., EX [X2
i ] = λx,i > 0 and EX [XiXj] = 0 for i 6= j. Furthermore,

assume that the parameters W ∈ Rm are drawn from a Gaussian distribution

N (0,ΣW ). The following theorem gives the lower bound of the rate distortion

function for the linear regression model.

Theorem 20. The rate distortion function of the linear regression model

fw(x) = wTx is lower bounded by

R(D) ≥ R(D) =
1

2
log det(ΣW )−

m∑
i=1

1

2
log(Di), (8.6)

where

Di =

µ/λx,i ifµ < λx,iEW [W 2
i ],

EW [W 2
i ] ifµ ≥ λx,iEW [W 2

i ],
(8.7)

where µ is chosen that
∑m

i=1 λx,iDi = D.

This lower bound gives rise to a “weighted water-filling” approach, which

differs from the classical “water-filling” for rate distortion of colored Gaussian

source in [71, Figure 13.7]. The details and graphical explanation of the

“weighted water-filling” can be found in Section 8.6.

8.3.2 Achievability

We show that, the lower bound give in Theorem 20 is achievable. Precisely,

we have the following theorem.

Theorem 21. There exists a class of probabilistic compressors P
(D)

Ŵ ∗|W such

that E
PW ◦P

(D)

Ŵ∗|W

[
d(W, Ŵ ∗)

]
= D and I(W ; Ŵ ∗) = R(D).
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The optimal compressor is Algorithm 3 in Section 8.6. Intuitively, the

optimal compressor does the following:

• Finding the optimal water levels Di for “weighted water filling”, such

that the expected distortion D = EW,Ŵ [d(W, Ŵ )] = EW,Ŵ [Ŵ TΣX(W −
Ŵ )] is minimized given certain rate.

• Adding a noise Zi which is independent of Ŵi = Wi + Zi and has a

variance proportional to the water level. That is possible since W is

Gaussian.

We can check that the compressor makes all the inequalities become equal-

ity, hence achieve the lower bound. The full proof of the lower bound and

achievability can be found in Section 8.6.

8.4 Improved objective for model compression

In traditional rate distortion theory, we assume that there exists a prior

distribution PW on the weights W , and prove the tightness of the lower

bound in the asymptotic scenario. However, in practice, we only compress

one particular pre-trained model, so there are no prior distribution of W .

Nonetheless, we can still learn something important from the achivability of

the lower bound, by extracting two “golden rules” from the optimal algorithm

for linear regression.

8.4.1 Two golden rules

Recall that for linear regression model, to achieve the smallest rate given

certain distortion (or, equivalently, achieve the smallest distortion given cer-

tain rate), the optimal compressor need to do the following: (1) find ap-

propriate “water levels” such that the expected distortion EW,Ŵ [d(W, Ŵ )] =

EW,Ŵ ,X [(W TX− Ŵ TX)2] = EW,Ŵ [(W − Ŵ )TΣX(W − Ŵ )] is minimized. (2)

make sure that Ŵi is orthogonal to Wi−Ŵi, i.e., EW,Ŵ [Ŵ TΣX(W −Ŵ )] = 0.

Hence, we extract the following two “golden rules”:

1. Orthogonality rule — EW,Ŵ [Ŵ TΣX(W − Ŵ )] = 0.
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2. Minimization rule — EW,Ŵ [(W − Ŵ )TΣX(W − Ŵ )] should be mini-

mized, given certain rate.

For practical model compression, we adopt these two “golden rules”, by

making the following amendments. First, we discard the expectation over W

and Ŵ since there is only one model to be compressed. Second, the distortion

can be written as d(w, ŵ) = (w − ŵ)TΣX(w − ŵ) only for linear models.

For non-linear models, the distortion function is complicated, but can be

approximated by a simpler formula. For non-linear regression models, we take

first order Taylor expansion of the function fŵ(x) ≈ fw(x)+(ŵ−w)T∇wfw(x),

and have

d(w, ŵ) = EX
[
‖fw(X)− fŵ(X)‖2

2

]
≈ EX

[
(w − ŵ)T∇wfw(X)(∇wfw(X))T (w − ŵ)

]
= (w − ŵ)T Iw(w − ŵ), (8.8)

where the “weight importance matrix” defined as

Iw = EX
[
∇wfw(X)(∇wfw(X))T

]
, (8.9)

quantifies the relative importance of each weight to the output. For linear

regression models, weight importance matrix Iw equals to ΣX .

For classification models, we will first approximate the KL divergence.

Using the Taylor expansion x log(x/a) ≈ (x−a) + (x−a)2/(2a) for x/a ≈ 1,

the KL divergence DKL(P ||Q) for can be approximated by DKL(P ||Q) ≈∑
i(Pi − Qi) + (Pi − Qi)

2/(2Pi) =
∑

i(Pi − Qi)
2/(2Pi), or in vector form

DKL(P ||Q) ≈ 1
2
(P −Q)Tdiag[P−1](P −Q). Therefore,

d(w, ŵ) = EX [DKL(fŵ(X)||fw(X))]

≈ 1

2
EX
[
(fw(X)− fŵ(X))Tdiag[f−1

w (X)](fw(X)− fŵ(X))
]

≈ 1

2
EX
[
(w − ŵ)T (∇wfw(X))diag[f−1

w (X)](∇wfw(X))T (w − ŵ)
]
.

(8.10)

So the weight importance matrix is given by

Iw = EX
[
(∇wfw(X))diag[f−1

w (X)](∇wfw(X))T
]
. (8.11)
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This weight importance matrix is also valid for other statistical distances,

such as reverse KL divergence, Hellinger distance and Jenson-Shannon dis-

tance.

Now we define the two “golden rules” for practical model compression

algorithms,

1. Orthogonality rule — ŵT Iw(w − ŵ) = 0.

2. Minimization rule — (w − ŵ)T Iw(w − ŵ) is minimized given certain

constraints.

In the following subsections we will show the optimality of the “golden rules”

for a one-hidden-layer neural network, and apply the “golden rules” to derive

new objective function for pruning and quantization.

8.4.2 Optimality for one-hidden-layer ReLU network

We show that if a compressor of a one-hidden-layer ReLU network satis-

fies the two “golden rules”, it will be the optimal compressor, with respect

to mean-square-error. Precisely, consider the one-hidden layer ReLU neu-

ral network fw(x) = ReLU(wTx), where the distribution of input x ∈ Rm

is N (0,ΣX). Furthermore, we assume that the covariance matrix ΣX =

diag[λx,1, . . . , λx,m] is diagonal and λx,i > 0 for all i. We have the following

theorem.

Theorem 22. If compressed weight ŵ∗ satisfies ŵ∗Iw(ŵ∗ − w) = 0 and

ŵ∗ = arg min
ŵ∈Ŵ

(w − ŵ)T Iw(w − ŵ), (8.12)

where Ŵ is some class of compressors, then

ŵ∗ = arg min
ŵ∈Ŵ

EX
[
(fw(X)− fŵ(X))2

]
. (8.13)

The proof uses the techniques of Hermite polynomials and Fourier anal-

ysis on Gaussian spaces, inspired by [14]. The full proof can be found in

Section 8.7. Generalizing this result to other activation functions and deeper

neural networks are possible future directions.
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Here Ŵ denotes a class of compressors, with some constraints. For exam-

ple, Ŵ could be the class of pruning algorithms where no more than 50%

weights are pruned, or Ŵ could be the class of quantization algorithm where

each weight is quantized to 4 bits. Theoretically, it is not guaranteed that the

two “golden rules” can be satisfied simultaneously for every Ŵ , but in the

following subsection we show that they can be satisfied simultaneously for

two of the most commonly used class of compressors — pruning and quanti-

zation. Hence, minimizing the objective (w − ŵ)T Iw(w − ŵ) will be optimal

for pruning and quantization.

8.4.3 Improved objective for pruning and quantization

Pruning and quantization are two most basic and useful building blocks of

modern model compression algorithms, For example, DeepCompress [17] it-

eratively prune, retrain and quantize the neural network and achieve state-

of-the-art performances on large neural networks.

In pruning algorithms, we choose a subset S ∈ [m] and set ŵi = 0 for

all i ∈ S and ŵi = wi for i 6∈ S. The compression ratio is evaluated by the

proportion of unpruned weights r = (m−|S|)/m. Since either ŵi or wi−ŵi is

zero, so the orthogonality is automatically satisfied, so we have the following

corollary.

Corollary 3. For any fixed r, let

ŵ∗r = arg min
S:
d−|S|
d

=r

(w − ŵ)T Iw(w − ŵ). (8.14)

Then

ŵ∗r = arg min
S:
d−|S|
d

=r

EX
[
(fw(X)− fŵ(X))2

]
. (8.15)

In quantization algorithms, we cluster the weights to k centroids {c1, . . . , ck}.
The algorithm optimize the centroids as long as the assignments of each

weight Ai ∈ [k]. The final compressed weight is given by ŵi = cAi . Usually

k-means algorithm are utilized to minimize the centroids and assignments
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alternatively. The compression ratio of quantization algorithm is given by

r =
mb

m
∑k

j=1
mj
m
dlog2

m
mj
e+ kb

, (8.16)

where m is the number of weights and b is the number of bits to represent one

weight before quantization (usually 32). By using Huffman coding, the av-

erage number of bits for each weight is given by
∑k

j=1(mj/m)dlog2(m/mj)e,
where mj is the number of weights assigned to the j-th cluster. The definition

of compression ratio of pruning and quantization is consistent since both of

them equals to the number of bits representing compressed model parameters

divided by the number of bits representing original model parameters.

If we can find the optimal quantization algorithm satisfying the minimiza-

tion rule, then each centroids cj should be optimal, i.e.

0 =
∂

∂cj
(w − ŵ)T Iw(w − ŵ) = −2

(∑
i:Ai=j

eTi

)
Iw(w − ŵ), (8.17)

where ei is the i-th standard basis. Therefore, we have

ŵIw(ŵ − w) =

(
k∑
j=1

cj(
∑
i:Ai=j

ei)

)T

Iw(w − ŵ)

=
k∑
j=1

cj

(
(
∑
i:Ai=j

eTi )Iw(w − ŵ)

)
= 0. (8.18)

Hence the orthogonality rule is satisfied if the minimization rule is satisfied.

Corollary 4. For any fixed number of centroids k, let

ŵ∗k = arg min
{c1,...,ck},A∈[k]m

(w − ŵ)T Iw(w − ŵ), (8.19)

then

ŵ∗k = arg min
{c1,...,ck},A∈[k]m

EX
[
(fw(X)− fŵ(X))2

]
. (8.20)

As corollaries of Theorem 22, we proposed to use (w − ŵ)T Iw(w − ŵ) as

the objective for pruning and quantization algorithms, which can achieve the

minimum MSE for one-hidden-layer ReLU neural network.
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8.5 Experiments of Chapter 8

In this section, we show that this objective can also improve pruning and

quantization algorithm for larger neural networks on real data. We test the

objectives on the following neural network and datasets.1

1. Three-layer fully connected neural network on MNIST.

2. Convolutional neural network with five convolutional layers and three

fully connected layers on CIFAR 10 and CIFAR 100.

In Section 8.5.1, we use the weight importance matrix for classification in

Eq. (8.11), which is derived by approximating the distortion of KL-divergence.

This weight importance matrix does not depend on the training labels, so the

induced pruning/quantization algorithms is called “unsupervised compres-

sion”. Furthermore, if the training labels are available, we treat the loss func-

tion Lw(X, Y ) : X × Y → R+ as the function to be compressed, and derive

several pruning/quantization objectives. The induced pruning/quantization

methods are called “supervised compression” and are studied in Section 8.5.2.

8.5.1 Unsupervised compression experiments

For classification problems, the weight importance matrix is defined as

Iw = EX
[
∇wfw(X)diag[f−1

w (X)](∇wfw(X))T
]
. (8.21)

For computational simplicity, we drop the off-diagonal terms of Iw, and sim-

plify the objective to
∑m

i=1 EX [
(∇wifw(X))2

fw(X)
](wi − ŵi)2. To minimize the pro-

posed objective, a pruning algorithm just prune the weights with smaller

EX [
(∇wifw(X))2

fw(X)
]w2

i greedily. A quantization algorithm uses the weighted k-

means algorithm [230] to find the optimal centroids and assignments. We

compare the proposed objective with the baseline objective
∑m

i=1(wi − ŵi)2,

which were used as building blocks in DeepCompress [17]. We compare the

objectives in Table 8.1.

For pruning experiment, we choose the same compression rate for every

convolutional layer and fully connected layer, and plot the test accuracy and

1We load the pretrained models from https://github.com/aaron-xichen/

pytorch-playground.
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Table 8.1: Comparison of unsupervised compression objectives.

Name Minimizing objective
Baseline

∑m
i=1(wi − ŵi)2

Proposed
∑m

i=1 EX [
(∇wifw(X))2

fw(X)
](wi − ŵi)2

test cross-entropy loss against compression rate. For quantization experi-

ment, we choose the same number of clusters for every convolutional and fully

connected layer. Also we plot the test accuracy and test cross-entropy loss

against compression rate. To reduce the variance of estimating the weight

importance matrix Iw, we use the temperature scaling method introduced

by [234] to improve model calibration.

We show that results of pruning experiment in Figure 8.2, and the results

of quantization experiment in Figure 8.3. We can see that the proposed ob-

jective gives better validation cross-entropy loss than the baseline, for every

different compression ratios. The proposed objective also gives better vali-

dation accuracy in most scenarios. Occasionally the proposed objective can

not improve the accuracy (top left of Figure 8.2). We conjecture that the

reason is the ill-calibration of the original model.

8.5.2 Supervised compression experiments

In the previous experiment, we only use the training data to compute the

weight importance matrix. But if we can use the training label as well, we

can further improve the performance of pruning and quantization algorithms.

If the training label is available, we can view the cross-entropy loss function

L(fw(x), y) = Lw(x, y) as a function from X × Y → R+, and define the

distortion function as

d(w, ŵ) = EX,Y
[
(Lw(X, Y )− Lŵ(X, Y ))2

]
. (8.22)

Taking first-order approximation of the loss function gives the supervised

weight importance matrix,

Iw = E
[
∇wLw(X, Y )(∇wLw(X, Y ))T

]
. (8.23)

We write E instead of EX,Y for simplicity. Similarly, we drop the off-
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Figure 8.2: Result for unsupervised pruning experiment. Top: fully
connected NN on MNIST. Middle: ConvNN on CIFAR 10. Bottom:
ConvNN on CIFAR 100. Top: test accuracy, Bottom: test cross entropy.
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Figure 8.3: Result for unsupervised quantization experiment. Top: fully
connected NN on MNIST. Middle: ConvNN on CIFAR 10. Bottom:
ConvNN on CIFAR 100. Top: test accuracy, Bottom: test cross entropy.
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diagonal terms for ease of computation, and simplify the minimizing ob-

jective to
∑m

i=1 E[(∇wiLw(X, Y ))2](wi − ŵi)2, which is called gradient-based

objective. Note that for well-trained model, the expected value of gradi-

ent E[∇wLw(X, Y )] is closed to zero, but the second moment of the gra-

dient E[∇wLw(X, Y )(∇wLw(X, Y ))T ] could be large. We compare this ob-

jective with the baseline objective
∑m

i=1(wi − ŵi)
2. We also compare with

the Hessian-based objective
∑m

i=1 E[∇2
wi
Lw(X, Y )](wi − ŵi)2, which is used

in [217] and [218] for network pruning and [230] for network quantization.

To estimate the diagonal entries of the Hessian matrix of the loss function

with respect to the model parameters, we implemented curvature propaga-

tion [235] treating each layer and activation as a node. The running time is

proportional to the running time of the usual gradient backpropagation by a

factor independent of the size of the model. Manually optimizing the local

Hessian calculation at each node reduces memory usage and allows us to use

larger batch size and larger number of samples for more accurate estimates.

Furthermore, if we take second-order approximation of the loss function,

and drop the off-diagonal terms of the squared gradient matrix and squared

Hessian tensor, we have the following approximation

d(w, ŵ)

= E
[
(Lw(X, Y )− Lŵ(X, Y ))2

]
+

1

2
(w − ŵ)T∇2

wLw(X, Y )(w − ŵ))2
]

≈
m∑
i=1

E[(∇wiLw(X, Y ))2](wi − ŵi)2 +
1

4

m∑
i=1

E[(∇2
wi
Lw(X, Y ))2](wi − ŵi)4,

(8.24)

which is called gradient+Hessian-based objective. We conclude the different

supervised objectives in Table 8.2.

Table 8.2: Comparison of supervised compression objectives.

Name Minimizing objective
Baseline

∑m
i=1(wi − ŵi)2

Gradient
∑m

i=1 E[(∇wiLw(X, Y ))2](wi − ŵi)2

Hessian
∑m

i=1 E[∇2
wi
Lw(X, Y )](wi − ŵi)2

Gradient
∑m

i=1 E[(∇wiLw(X, Y ))2](wi − ŵi)2

+ Hessian +1
4

∑m
i=1 E[(∇2

wi
Lw(X, Y ))2](wi − ŵi)4
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Algorithm for Gradient+Hessian objective

For pruning algorithm, we can prune the weights by E[(∇wiLw(X, Y ))2]w2
i+

1
4
E[(∇2

wi
Lw(X, Y ))2]w4

i greedily. For quantization algorithm, we present a

variation of k-means algorithm which are used to find the optimal quantiza-

tion for the following objective,

min
c1,...,ck,A∈[k]m

m∑
i=1

(
Ii(wi − cAi)2 +Hi(wi − cAi)4

)
, (8.25)

where Ii is positive weight importance for quadratic term and Hi is positive

weight importance for quartic term. Basic idea of the algorithm is — the

assignment step finds the optimal assignment given fixed centroids, and the

update step finds the optimal centroids given fixed assignments.

Algorithm 2 Quartic weighted k-means

Input: Weights {w1, . . . , wm}, weight importances {I1, . . . , Im}, quartic
weight importances {H1, . . . , Hm}, number of clusters k, iterations T ;

Initialize the centroid of k clusters {c(0)
1 , . . . , c

(0)
k };

for t = 1 to T do
Assignment step:
for i = 1 to m do

Assign wi to the nearest cluster centroid, i.e. A
(t)
i = arg minj∈[k](wi −

c
(t−1)
j )2;

end for
Update step:
for j = 1 to k do

Find the only real root x∗ of the cubic equation

(
∑

i:A
(t)
i =j

4Hi)x
3 − (

∑
i:A

(t)
i =j

12Hiwi)x
2 + (

∑
i:A

(t)
i =j

(12Hiw
2
i + 2Ii))x

−(
∑

i:A
(t)
i =j

(4Hiw
3
i + 2Iiwi)) = 0;

Update the cluster centroids c
(t)
j be the real root x∗;

end for
end for
Output: Centroids {c(T )

1 , . . . , c
(T )
k } and assignments A(T ) ∈ [k]m.

Here we show that the cubic equation in Algorithm 2 has only one real

root. It was know that if the determinant ∆0 = b2 − 3ac of a cubic equation
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ax3 + bx2 + cx + d = 0 is negative, then the cubic equation is strictly in-

creasing or decreasing, hence only have one real root. Now we show that the

determinant is negative in this case (we drop the subsripts of the summation

for simplicity).

∆0 = (
∑
i

12Hiwi)
2 − 3(

∑
i

4Hi)(
∑
i

12Hiw
2
i + 2Ii)

= 144

(
(
∑
i

Hiwi)
2 − (

∑
i

Hi)(
∑
i

Hiw
2
i )

)
− 24(

∑
i

Hi)(
∑
i

Ii).

(8.26)

The first term is non-positive because of Cauchy-Schwarz inequality. The

second term is negative since Hi’s and Ii’s are all positive. Hence the deter-

minant is negative.

We show that results of pruning experiment in Figure 8.4, and quantization

experiment in Figure 8.5. Generally, the gradient objective and Hessian ob-

jective both give better performance than baseline objective, while gradient

objective is slightly than Hessian objective at some points. Gradient+Hessian

objective gives the best overall performance.

8.5.3 Remarks on the experiments

Analogously to the distortion of regression, we define the distortion func-

tion as d(w, ŵ) = EX,Y [(Lw(X, Y )− Lŵ(X, Y ))2]. However, since the goal

of classification is to minimize the loss function, the following definition of

distortion function d̃(w, ŵ) = EX,Y [Lŵ(X, Y )− Lw(X, Y )] is also valid and

has been adopted in [217] and [230]. The main difference is — d(w, ŵ) focus

on the quality of compression algorithm, i.e., how similar is the compressed

model compared to uncompressed model, whereas d̃(w, ŵ) focus on the qual-

ity of compressed model, i.e. how good is the compressed model. So d(w, ŵ)

is a better criteria for the compression algorithm. Additionally, by taking

second order approximation of d(w, ŵ), we have gradient+Hessian objective,

which shows better empirical performance than Hessian objective, derived

by taking second order approximation of d̃(w, ŵ).

Here we briefly talk about the hyperparameters used in estimating the

gradients E[∇wiLw(X, Y )] and Hessians E[∇2
wi
Lw(X, Y )].
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Figure 8.4: Result for supervised pruning experiment. Top: fully connected
NN on MNIST. Middle: ConvNN on CIFAR 10. Bottom: ConvNN on
CIFAR 100. Top: test accuracy, Bottom: test cross entropy.
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Figure 8.5: Result for supervised quantization experiment. Top: fully
connected NN on MNIST. Middle: ConvNN on CIFAR 10. Bottom:
ConvNN on CIFAR 100. Top: test accuracy, Bottom: test cross entropy.
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Temperature scaling method

The temperature scaling method proposed by [234], aims to improve the

confidence calibration of a classification model. Denote zw(x) ∈ RC is

the output of the neural network, and classical softmax gives f
(c)
w (x) =

exp{z(c)
w (x)}∑

c∈C exp{z(c)
w (x)}

. The temperature sclaed softmax gives

f (c)
w (x) =

exp{z(c)
w (x)/T}∑

c∈C exp{z(c)
w (x)/T}

, (8.27)

by choosing different T , the prediction of the model does not change, but

the cross entropy loss may change. Hence, we can finetune T to get a better

model calibration. In our experiment, we found that in MNIST experiment,

the model is poorly calibrated. Hence, the variance of estimating gradient

and Hessian is very large. To solve this, we adopt a temperature T > 1 such

that the loss from correctly predicted data can also be backpropagated.

In Figure 8.6, we show the effect of T for supervised pruning for MNIST.

We can see that as T increases from 1, the performance become better at

first, then become worse. In our experiment, we choose T ∈ {1.0, 2.0, . . . , 9.0}
which gives best accuracy.
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Figure 8.6: Effect of the temperature T . Left: accuracy of supervised
pruning for MNIST. Right: cross entropy of supervised pruning for MNIST.
Different lines denote different compression ratio ∈ {0.05, 0.075, 0.1}.

Regularizer of Hessian

In the experiments, we estimate the Hessians E[∇2
wi
Lw(X, Y )] using the

curvature propagation algorithm [235]. However, due to the sparsity intro-

duced by ReLU, there are many zero entries of the estimated Hessians, which

hurts the performance of the algorithm. Hence, we add a constant µ > 0
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to the estimated Hessians. In Figure 8.7, we show that effect of µ for su-

pervised pruning for CIFAR10. We can see that as µ increases from 0, the

performance increase first then decrease. We use simple binary search to find

the best µ.
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Figure 8.7: Effect of the regularizer µ. Left: accuracy of supervised pruning
for CIFAR10. Right: cross entropy of supervised pruning for CIFAR10.
Different lines denote different compression ratio ∈ {0.4, 0.5, 0.6}.

8.6 Lower bound for rate distortion function

8.6.1 General lower bound

First, we establish establishes a lower bound of the rate distortion function,

which works for general models.

Lemma 31. The rate-distortion function R(D) ≥ R(D) = h(W )−C, where

C is the optimal value of the following optimization problem.

max
PŴ |W

m∑
i=1

min
{
h(Wi),

1

2
log(2πeEW,Ŵ [(Wi − Ŵi)

2])
}

s.t. EW,Ŵ

[
d(W, Ŵ )

]
≤ D. (8.28)

where h(W ) = −
∫
w∈W PW (w) logPW (w)dw is the differential entropy of W

and h(Wi) is the differential entropy of the i-th entry of W .

Proof of Lemma 31 Recall that the rate distortion function for model

compression is defined as R(D) = minPŴ |W :EW,Ŵ [d(W,Ŵ )]≤D I(W ; Ŵ ). Now we
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lower bound the mutual information I(W, Ŵ ) by

I(W ; Ŵ ) = h(W )− h(W | Ŵ ),

= h(W )−
m∑
i=1

h(Wi |W1, . . . ,Wi−1, Ŵi, . . . , Ŵm)

≥ h(W )−
m∑
i=1

h(Wi | Ŵi). (8.29)

Here the last inequality comes from the fact that conditioning does not in-

crease entropy. Notice that the first term h(W ) does not depend on the

compressor. For the last term, we upper bound each term h(Wi | Ŵi) in

two ways. On one hand, h(Wi | Ŵi) is upper bounded by h(Wi) because

conditioning does not increase entropy. On the other hand, h(Wi | Ŵi) =

h(Wi − Ŵi | Ŵi) ≤ h(Wi − Ŵi), and by [71, Theorem 8.6.5], differential en-

tropy is maximized by Gaussian distribution, for given second moment. We

then have:

h(Wi | Ŵi) ≤ min
{
h(Wi), h(Wi − Ŵi)

}
≤ min

{
h(Wi),

1

2
log
(

2πeEW,Ŵ [(Wi − Ŵi)
2]
)}

= min

{
h(Wi),

1

2
log(2πeEW,Ŵ [(Wi − Ŵi)

2])

}
. (8.30)

Therefore, the lower bound of the mutual information is given by,

I(W ; Ŵ ) ≥ h(W )−
m∑
i=1

min
{
h(Wi),

1

2
log(2πeEW,Ŵ [(Wi − Ŵi)

2])
}
.

(8.31)

8.6.2 Lower bound for linear model

For complex models, the general lower bound in Lemma 31 is difficult to

evaluate, due to the large dimension of parameters. It was shown by [3]

that the sample complexity to estimate differential entropy is exponential

to the dimension. It is even harder to design an algorithm to achieve the

lower bound. But for linear model, the lower bound can be simplified. For

256



fw(x) = wTx, the distortion function d(w, ŵ) can be written as

d(w, ŵ) = EX
[
(fw(X)− fŵ(X))2

]
= EX

[
(wTX − ŵTX)2

]
= EX

[
(w − ŵ)TXXT (w − ŵ)

]
= (w − ŵ)TEX [XXT ](w − ŵ). (8.32)

Since we assumed that E[X] = 0, E[X2
i ] = λx,i > 0 and E[XiXj] = 0, so

the constraint in Lemma 31 is given by

D ≥ EW,Ŵ
[
(W − Ŵ )TEX [XXT ](W − Ŵ )

]
=

m∑
i=1

λx,i EW,Ŵ
[
(Wi − Ŵi)

2
]

︸ ︷︷ ︸
Di

. (8.33)

Then the optimization problem in Lemma 31 can be written as follows,

max
p(ŵ|w)

m∑
i=1

min{h(Wi),
1

2
log(2πeDi)}

s.t.
m∑
i=1

λx,iDi ≤ D. (8.34)

Here Wi is a Gaussian random variable, so h(Wi) = 1
2

log(2πeE[W 2
i ]). The

Lagrangian function of the problem is given by

L(D1, . . . , Dm, µ)

=
m∑
i=1

(
min{1

2
logE[W 2

i ],
1

2
logDi}+

1

2
log(2πe)− µλx,iDi

)
. (8.35)

By setting the derivative w.r.t. Di to 0, we have

0 =
∂L
∂Di

=
1

2Di

− µλx,i, (8.36)

for all Di such that Di < E[W 2
i ]. So the optimal Di should satisfy that Diλx,i

is constant, for all Di such that Di < E[W 2
i ]. Also the optimal Di is at most

E[W 2
i ]. Also, since h(W ) = m

2
log(2πe) + 1

2
log det(ΣW ) the lower bound is
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given by

R(D) ≥ 1

2
log det(ΣW )−

m∑
i=1

1

2
log(Di), (8.37)

where

Di =

µ/λx,i ifµ < λx,iEW [W 2
i ],

EW [W 2
i ] ifµ ≥ λx,iEW [W 2

i ],
(8.38)

where µ is chosen that
∑m

i=1 λx,iDi = D.

This lower bound gives rise to a “weighted water-filling”, which differs from

the classical “water-filling” for rate-distortion of colored Gaussian source

in [71, Figure 13.7], since the water level’s Di are proportional to 1/λx,i,

which is related to the input of the model rather than the parameters to be

compressed. To illustrate the “weighted water-filling” process, we choose a

simple example where ΣW = ΣX = diag[3, 2, 1]. In Figure 8.8, the widths

of each rectangle are proportional to λx,i, and the heights are proportional

to ΣW = [3, 2, 1]. The water level in each rectangle is Di and the volume

of water is µ. As D starts to increase from 0, each rectangle is filled with

same volume of water (µ is the same), but the water level Di’s increase with

speed 1/λx,i respectively (Figure 8.8.(a)). This gives segment (a) of the rate

distortion curve in Figure 8.8.(d). If D is large enough such that the third

rectangle is full, then D3 is fixed to be E[W 2
3 ] = 1, whereas D1 and D2 con-

tinuously increase (Figure 8.8.(b)). This gives segment (b) in Figure 8.8.(d).

Keep increasing D until the second rectangle is also full, then D2 is fixed

to be E[W 2
2 ] = 2 and D1 continuous increasing (Figure 8.8 (c)). This gives

segment (c) in Figure 8.8.(d). The entire rate-distortion function is shown

in Figure 8.8(d), where the first red dot corresponds to the moment that the

third rectangle is exactly full, and the second red dot corresponds to moment

that the second rectangle is exactly full.

8.6.3 Achievability

We prove that this lower bound is achievable. To achieve the lower bound,

we construct the compression algorithm in Algorithm 3,
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Figure 8.8: Illustration of “weighted water-filling” process.

Algorithm 3 Optimal compression algorithm for linear regression

Input: Distortion D, covariance matrix of parameters ΣW , covariance
matrix of data ΣX = diag[λx,1, . . . , λx,m];
Choose Di’s such that

Di =

{
µ/λx,i ifµ < λx,iEW [W 2

i ],

EW [W 2
i ] ifµ ≥ λx,iEW [W 2

i ],

where
∑m

i=1 λx,iDi = D;
for i = 1 to m do

if Di = µ/λx,i then

Choose Ŵi = 0;
else

Choose a conditional distribution PŴi|Wi
such that Wi = Ŵ+Zi where

Zi ∼ N (0, Di), Ŵi ∼ N (0,EW [W 2
i ] − Di) and Ŵi is independent of

Zi;
end if

end for
Combine the conditional probability distributions by PŴ |W =

∏m
i=1 PŴi|Wi

.
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Intuitively, the optimal compressor does the following: (1) Find the opti-

mal water levels Di for “weighted water filling”. (2) For the entries where

the corresponding rectangles are full, simply discard the entries. (3) For the

entries where the corresponding rectangles are not full, add a noise which is

independent of Ŵi and has a variance proportional to the water level. That

is possible since W is Gaussian. (4) Combine the conditional probabilities.

To see that this compressor is optimal, we will check that the compressor

makes all the inequalities become equality. Here is all the inequalities used

in the proof.

• h(Wi |W1, . . . ,Wi−1, Ŵi, . . . , Ŵm) ≤ h(Wi|Ŵi) for all i = 1...m. It

becomes equality by PŴ |W =
∏m

i=1 PŴi|W .

• Either

– h(Wi|Ŵi) ≤ h(Wi). It becomes equality for those Ŵi = 0.

– h(Wi − Ŵi|Ŵi) ≤ h(Wi − Ŵi) ≤ 1
2

log(2πeEW,Ŵ [(Wi − Ŵ )2]). It

becomes equality for those Ŵi’s such that Wi− Ŵi is independent

of Ŵi and Wi − Ŵi is Gaussian.

• The “water levels” Di. It becomes equality by choosing the Di’s ac-

cording to Lagrangian conditions.

Therefore, Algorithm 3 gives a compressor P
(D)

Ŵ |W such that E
PW ◦P

(D)

Ŵ |W
[d(W, Ŵ )] =

D and I(W ; Ŵ ) = R(D), hence the lower bound is tight.

8.7 Proof of results in Chapter 8

In this section, we provide the proof of Theorem 22. For simplicity let σ(t) =

tI{t ≥ 0} denotes the ReLU activation function. First we deal with the

objective of the compression algorithm,

(w − ŵ)T Iw(w − ŵ)

= (w − ŵ)TEX
[
∇wfw(x)∇wfw(x)T

]
(w − ŵ)

= (w − ŵ)TEX
[
∇wσ(wTx)∇wσ(wTx)T

]
(w − ŵ)

= (w − ŵ)TEX
[
xT (σ′(wTx))2x

]
(w − ŵ)

= EX
[
I{wTx ≥ 0}((w − ŵ)Tx)2

]
. (8.39)
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Notice that x is jointly Gaussian random variable with zero mean and non-

degenerate variance, so the distribution of x is equivalent to the distribution

of −x. Therefore,

EX [I{wTx ≥ 0}((w − ŵ)Tx)2] =

∫
x:wT x≥0

((w − ŵT )x)2dx

=
1

2

(∫
x:wT x≥0

((w − ŵT )x)2dx+

∫
x:wT x≤0

((w − ŵT )x)2dx

)
=

1

2

∫ d

x∈R
((w − ŵT )x)2dx =

1

2
(w − ŵ)TΣX(w − ŵ). (8.40)

So minimizing the gradient-squared based loss is equivalent to minimiz-

ing (w − ŵ)TΣX(w − ŵ). Similarly, the condition ŵIw(w − ŵ) = 0 is

equivalent to ŵΣX(w − ŵ) = 0. Now we deal with the MSE loss func-

tion E[(fw(x) − fŵ(x))2]. We utilize the Hermite polynomials and Fourier

analysis on Gaussian space. We use the following key lemma.

Lemma 32. ([14, Claim 4.3]) Let f , g be two functions from R to R such

that f 2, g2 ∈ L2(R, e−x2/2). The for any unit vectors u, v, we have that

Ex∈N (0,Id×d)[f(uTx)g(vTx)] =
∞∑
p=0

f̂pĝp(u
Tv)p, (8.41)

where f̂p = Ex∈N (0,1)[f(x)hp(x)] is the p-th order coefficient of f , where hp is

the p-th order probabilists’ Hermite polynomial.

Since X ∼ N (0,ΣX), we can write x = Σ
1/2
X z, where z ∼ N (0, Id). So for

any compressed weight ŵ, we have

EX
[
(fw(x)− fŵ(x))2

]
= EX

[
(σ(wTx)− σ(ŵTx))2

]
= Ez∈N (0,Id)[(σ(wTΣ

1/2
X z)− σ(ŵTΣ

1/2
X z))2]

= Ez∈N (0,Id)[σ(wTΣ
1/2
X z)2]− 2Ez∈N (0,Id)[σ(wTΣ

1/2
X z)σ(ŵTΣ

1/2
X z)]

+Ez∈N (0,Id)[σ(ŵTΣ
1/2
X z)2]

=
∞∑
p=0

σ̂2
p(w

TΣXw)p − 2
∞∑
p=0

σ̂2
p(w

TΣXŵ)p +
∞∑
p=0

σ̂p
2(ŵTΣXŵ)p

=
∞∑
p=0

σ̂2
p

(wTΣXw)p − 2(wTΣXŵ)p + (ŵTΣXŵ)p︸ ︷︷ ︸
Dp(w,ŵ)

 . (8.42)
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Now we can see that D0(w, ŵ) = 0. D1(w, ŵ) = wTΣXw − 2wTΣXŵ +

ŵTΣXw = (w − ŵ)TΣX(w − ŵ), is just the objective. The following lemma

gives the minimizer of Dp(w, ŵ) for higher order p.

Lemma 33. If ŵ∗ satisfies ŵ∗ΣX(ŵ−w) = 0 and ŵ∗ = arg minŝ∈W D1(w, ŵ)

for some constrained set W. Then for any p ≥ 2 and even, we have ŵ∗ =

arg minŵ∈W Dp(w, ŵ).

For ReLU function, the coefficients are σ̂0 = 1√
2π

, σ̂1 = 1
2
. For p ≥ 2 and

even, σ̂p = ((p−3)!!)2
√

2πp!
. For p ≥ 3 and odd, σ̂p = 0. Since the coefficients σ̂p is

zero for p ≥ 3 and odd, so if a compressed weight ŵ satisfied ŵΣX(ŵ−w) = 0

and minimizes D1(ŵ, w) = (ŵ−w)TΣX(ŵ−w), then it is the minimizer for

all Dp(w, ŵ) for even p, therefore a minimizer of the MSE loss.

8.7.1 Proof of Lemma 33

For simplicity of notation, define A = wTΣXw, B = ŵTΣX(ŵ − w) and

C = D1(w, ŵ) = (ŵ − w)TΣX(ŵ − w). For all compressors, we have C ≤ A.

Therefore, wTΣXŵ = A+B − C and ŵTΣXŵ = A+ 2B − C. So

Dp(w, ŵ) = Ap − 2(A+B − C)p + (A+ 2B − C)p. (8.43)

First notice that

∂Dp(w, ŵ)

∂B
= 2p((A+ 2B − C)p−1 − (A+B − C)p−1). (8.44)

For even p ≥ 2, xp−1 is monotonically increasing, so (A + 2B − C)p−1 >

(A+B−C)p−1 ifB > 0 and vice versa. Therefore, for fixed A and C, Dp(w, ŵ)

is monotonically increasing for positive B and decreasing for negative B.

Therefore, Dp(w, ŵ) is minimized when B = 0, and the minimal value is

Dp(w, ŵ) = Ap−2(A−C)p+(A−C)p = Ap−(A−C)p, which is monotonically

increasing with respect to C. So if ŵ∗ satisfies B = 0 and is a minimzer of

C = D1(w, ŵ), it is also a minimizer for Dp(w, ŵ) for all p ≥ 2 and even.
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CHAPTER 9

CONCLUSION

In this dissertation, we investigated various aspects of application of informa-

tion theory at the sample level, by studying the theoretical properties of k-

nearest neighbor based information-theoretic quantity estimators, proposing

new algorithms and measures for discovering complex relationships among

data, and improving deep learning algorithms via information theory.

We have shown that k-nearest neighbor estimator of differential entropy

has near optimal convergence rate, and KSG estimator of mutual informa-

tion has theoretical guarantee. We proposed new estimators of differential

entropy when the data has smaller intrinsic dimension, and new estimators

of mutual information when the data is a mixture of discrete and continu-

ous regimes. We proposed using hypercontractivity to discover underlying

relationships among data and provided corresponding estimator of hypercon-

tractivity. Finally, we improved SGD training algorithm and model compres-

sion algorithms of deep learning based on our understanding of information

theory.

Our work suggested that information theory does not only provide a math-

ematical understanding of information, but also has a wide usage in the era

of big data. Information theory can be helpful in the area of sociology, com-

putational biology and neural networks by studying information theory at

a sample level. By building the bridge between information theory and big

data, we can further apply the spirit of information theory in many emerging

research areas in the future.
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equality for Rényi divergence estimation,” in International Conference
on Machine Learning, 2014, pp. 333–341.

[104] O. Vasicek, “A test for normality based on sample entropy,” Journal
of the Royal Statistical Society. Series B (Methodological), pp. 54–59,
1976.

[105] M. M. Van Hulle, “Edgeworth approximation of multivariate differen-
tial entropy,” Neural Computation, vol. 17, no. 9, pp. 1903–1910, 2005.

[106] X. Nguyen, M. J. Wainwright, and M. I. Jordan, “Estimating diver-
gence functionals and the likelihood ratio by convex risk minimization,”
IEEE Transactions on Information Theory, vol. 56, no. 11, pp. 5847–
5861, 2010.

272



[107] D. O. Loftsgaarden and C. P. Quesenberry, “A nonparametric esti-
mate of a multivariate density function,” The Annals of Mathematical
Statistics, vol. 36, no. 3, pp. 1049–1051, 1965.

[108] E. Fix and J. L. Hodges Jr, “Discriminatory analysis-nonparametric
discrimination: Consistency properties,” California Univ Berkeley,
Tech. Rep., 1951.

[109] G. Biau, F. Chazal, D. Cohen-Steiner, L. Devroye, and C. Rodriguez,
“A weighted k-nearest neighbor density estimate for geometric infer-
ence,” Electronic Journal of Statistics, vol. 5, pp. 204–237, 2011.

[110] S. Kpotufe and U. von Luxburg, “Pruning nearest neighbor cluster
trees,” in 28th International Conference on Machine Learning (ICML
2011). International Machine Learning Society, 2011, pp. 225–232.

[111] S. Dasgupta and S. Kpotufe, “Optimal rates for k-NN density and mode
estimation,” in Advances in Neural Information Processing Systems,
2014, pp. 2555–2563.

[112] Y. Bengio, P. Vincent et al., “Locally weighted full covariance gaussian
density estimation,” CIRANO, Tech. Rep., 2004.
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