
University of Massachusetts Amherst University of Massachusetts Amherst 

ScholarWorks@UMass Amherst ScholarWorks@UMass Amherst 

Publications MURI on Photomechanical Materials 

2019 

Liquid Crystal Elastomer Waveguide Actuators Liquid Crystal Elastomer Waveguide Actuators 

Alexa S. Kuenstler 
University of Massachusetts Amherst 

Hyunki Kim 
University of Massachusetts Amherst 

Ryan C. Hayward 
University of Massachusetts Amherst, hayward@umass.edu 

Follow this and additional works at: https://scholarworks.umass.edu/muri_pubs 

Kuenstler, Alexa S.; Kim, Hyunki; and Hayward, Ryan C., "Liquid Crystal Elastomer Waveguide Actuators" 
(2019). Advanced Materials. 5. 
https://doi.org/10.1002/adma.201901216 

This Article is brought to you for free and open access by the MURI on Photomechanical Materials at 
ScholarWorks@UMass Amherst. It has been accepted for inclusion in Publications by an authorized administrator 
of ScholarWorks@UMass Amherst. For more information, please contact scholarworks@library.umass.edu. 

https://scholarworks.umass.edu/
https://scholarworks.umass.edu/muri_pubs
https://scholarworks.umass.edu/muri
https://scholarworks.umass.edu/muri_pubs?utm_source=scholarworks.umass.edu%2Fmuri_pubs%2F5&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1002/adma.201901216
mailto:scholarworks@library.umass.edu


 1 

Liquid Crystal Elastomer Waveguide Actuators 
 
Alexa S. Kuenstler, Hyunki Kim, and Ryan C. Hayward* 
 
A.S. Kuenstler, H. Kim, Prof. R.C. Hayward 
Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 
01003, USA 
Email: hayward@umass.edu 
 
Keywords: liquid crystal elastomers, actuators, photoresponsive materials 
 
Abstract 

While most photomechanical materials developed to date have relied on free-space illumination 

to drive actuation, this strategy fails when direct line-of-site access is precluded. In this study, 

waveguided light is harnessed by liquid crystal elastomer (LCE) nanocomposites to drive 

actuation. Using photo-chemical reduction of gold salts to plasmonic nanoparticles, prescription 

of photoresponsive regions within fibers of mono-domain LCEs is demonstrated with control over 

both the location along the fiber axis, as well as in the azimuthal direction. Due to localized 

photothermal heating due to plasmonic absorption of waveguided light and resulting 

inhomogeneous thermally-induced deformation of the LCE, reversible bending along multiple 

axes is demonstrated.  

 

Photomechanical actuators convert light into work through photochemical or photothermal 

effects.[1]  Compared to other actinic stimuli including electric fields, magnetic fields, and chemical 

energy, light represents a particularly desirable mode of control because it can be spatiotemporally 

patterned and delivered over long distances with specified wavelength and polarization. Actuation 

in photochemical systems most commonly relies on changes in molecular ordering in a solid 

matrix due to unimolecular or bimolecular reactions, examples of which include isomerization of 

azobenzene in liquid crystal networks (LCNs)[2–6] and cycloadditions in molecular crystals.[7,8] 



 2 

However, photochemical actuators often display slow actuation times limited by the time needed 

to accumulate sufficient product populations[9,10] and often require the use of multiple wavelengths 

to trigger forward and backward responses. In contrast, photothermal actuators often display rapid 

actuation, at least on mm- to cm-scales, as determined by heat transfer kinetics, and show highly 

reversible responses with only a single wavelength of light. Examples include plasmonic 

nanoparticles, dyes, and carbon allotropes loaded in gels,[11,12] thermoplastics,[13,14] and LCNs.[15–

17] 

 

Typically, free-space illumination is used to trigger actuation in photomechanical devices, which 

limits the utility of these devices to scenarios where direct and constant line-of-sight access is 

available. To overcome these limitations, waveguiding can be used to efficiently transport light 

over long distances and within arbitrary geometries. Despite these advantages, there are relatively 

few examples in the literature that couple waveguided light to photomechanical actuators.[18] 

Kuzyk’s group has studied the deformation of azobenzene dye-doped poly(methyl methacrylate) 

(PMMA) optical fibers for use in interferometer applications.[19–22] In another example, Otani and 

co-workers constructed a micromanipulator using black dye on beveled polymer optical fibers to 

localize photothermal expansion.[23,24] However, deflection of these systems is modest (< 1º). 

Photoactive waveguides based on inorganic materials have also been demonstrated,[25] though 

these are also limited to small deflection angles. Actuation into a more complex shape was 

demonstrated by Small, et al. who used a shape memory polymer doped with a near-infrared (NIR) 

absorbing dye to drive irreversible actuation into a coil upon light absorption.[26] More recently, 

Zhou, et al. demonstrated reversible bending by up to 50º using poly(N-isopropylacrylamide) 

(PNIPAM) hydrogel nanocomposites loaded with gold nanoparticles.[27] While these examples 



 3 

show the promise of waveguided light as an actuating stimulus, reversible bending along multiple 

directions with large deflection angles has not previously been possible. 

 

In this work, we demonstrate a strategy for fabricating liquid crystal elastomer (LCE) fibers 

containing patterned regions doped with gold nanoparticles (AuNPs) to drive photothermal 

deformation in response to waveguided visible light. While thermal actuation[28–31] and 

unidirectional photoactuation[32–34] of LCE fibers has been previously demonstrated, to our 

knowledge this is the first demonstration of using these materials as actuating waveguides. 

Photoreduction of gold salt is used to localize deformation to specific “hinge” regions to achieve 

articulation in three-dimensions. With this platform, we demonstrate bending by up to 14º at a 

single actuator and incorporate as many as three hinges with independently patterned bending 

characteristics in a single cm-scale fiber for complex and reversible shape changes on a timescale 

of several seconds. 

 

To fabricate a thermally-responsive fiber we relied on a dual-cure LCE platform developed by 

Yakacki and coworkers.[35,36] As illustrated in Figure 1a, a loosely-crosslinked fiber preform was 

fabricated via gelation in a cylindrical mold. Following gelation, pre-forms were placed under 

200% tensile strain to align the director along the long axis of the fiber and cross-linked under UV 

light to form a nematic monodomain with a Young’s modulus of ≈ 1 MPa, as characterized in a 

previous report.[36]  To formulate a fiber that allowed for spatiotemporal control over photo-

induced bending we sought a method to incorporate photoresponsive moieties in discrete regions 

along the fiber. While photothermal dyes have been previously exploited as photoresponsive 
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hinges[37], we decided to use AuNPs, which have significantly higher absorbance and photothermal 

efficiency than comparable dyes due to the large absorption cross-section provided by their surface 

plasmon resonance (SPR). To ensure uniform incorporation and limit aggregation of particles, 

within a spatially-controlled region, we chose photoreduction of gold salt. 

 

 

 
Figure 1. A) Polydomain LCE preforms are made via thiol-Michael addition in a silicone mold 
and aligned by photopolymerizing excess acrylate groups under strain.  Gold solution is deposited 
on the surface of the fiber and allowed to locally swell the fiber before UV photoreduction for in 
situ nanoparticle formation. B) Fibers show > 30% contraction along their long axis upon heating 
(black circles) but only partially re-elongate after subsequently cooling (white circles). After the 
first heating cycle, ≈ 25% strain is reversible over several cycles (inset). C) The crosslinked fibers 
demonstrate good alignment as demonstrated by WAXS (left) and birefringence between crossed 
polarizers (right). D) Following UV exposure, strong absorbance at 530 nm is measured by UV-
vis spectroscopy, indicating formation of gold nanoparticles. As the exposure time is increased, 
stronger absorbance is observed due to growth of the nanoparticles. 
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Photochemical reduction of Au3+ ions to Au0 metals by radical species has been demonstrated both 

in solution[38] and solid matrices[39]. Typical processes employ photoinitiatiors that generate ketyl 

radicals because of their high redox potentials.[40] We adapted this approach by using oleylamine 

in addition to HAuCl4 and a ketyl-based UV photoinitiator. The oleylamine serves two purposes: 

1) to initially reduce the gold partially, so that shorter UV exposure times can be employed and 2) 

to coordinate the gold particles and stabilize them in the polymer matrix.[41–43] A 1 µL droplet of 

the gold precursor solution was deposited on the surface of a pre-aligned fiber in the desired region 

and allowed to locally swell the LCE. After swelling, the fiber was exposed to UV light focused 

on its surface to drive formation of nanoparticles. Finally, the solvent was removed under vacuum 

to yield a patterned device. Following solvent removal, the fiber retained a bend where swelling 

occurred due to a slight decrease in the order parameter from 0.34 to 0.27. We hypothesize that 

this decrease is due to molecular memory of the initial, lightly crosslinked polydomain state. It is 

well-established that in double networks there is a competition between the elastic restoring force 

of the first network and the imposed strain of the second network.[44,45] While the second stage 

crosslinking locks in a monodomain, a fiber cycled above and below TNI never returns to its full 

initial length. Instead, the fiber selects an equilibrium length at room temperature that is slightly 

shorter than the length following photocrosslinking which the fiber returns to on each subsequent 

cycle (Figure 1b). This indicates that the network reaches a state that balances the restoring force 

of the first network towards a polydomain and the nematic ordering of the second network that 

forces the polymer chains to be extended along the long axis of the fiber.  

 

The final devices had a diameter of d = 700—800 µm and were cut to the desired length using a 

razor blade. Following crosslinking, the fibers had a measured order parameter of 0.34 and were 
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observed to undergo ≈ 25% reversible strain upon heating and cooling (see Figure 1b-c). 

Formation of AuNPs was confirmed by ultraviolet-visible (UV-vis) spectroscopy, where a strong 

absorbance at 530 nm was observed that corresponds to the surface plasmon resonance (SPR) of 

spherical particles (Figure 1d). Additionally, the absorbance increased with exposure time, 

providing a simple means to specify the optical density of each nanocomposite region 

independently.  

 

To evaluate the photoactuation of the patterned nanocomposite fibers, a 532 nm diode pumped 

solid state (DPSS) laser was used. First, the response under free-space illumination was evaluated 

by shining the laser onto the nanoparticle-loaded region. The fiber was observed to bend at the 

hinge region, towards the side patterned with AuNPs, within a few seconds (see Supplementary 

Information). Because the AuNPs are localized to near one side of the fiber, the temperature rise 

is greatest close to the fiber surface and decays through the thickness. Contraction along the 

director decreases with decreasing temperature, and the fiber bends towards the surface of greatest 

strain. When the laser is turned off, the fiber cools as heat is transferred away and it relaxes back 

to its initial conformation. The observed, reversible bending in response to light and relaxation in 

the dark confirms that photothermal heat generation from the AuNPs is sufficient to drive actuation 

at room temperature. 

 

Following confirmation of the photoresponse due to flood actuation, we explored the actuation in 

response to waveguided light. A PMMA polymer optical fiber (POF) patch cord of 500 µm in 

diameter with the jacket at the end of the cord removed was used to couple the laser to the end of 

the nanocomposite fiber. The underside of the LCE fiber was attached to a glass slide by double 
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sided tape and a microscope was used to align the end of the fiber with the POF, after which the 

POF was taped to the glass substrate to hold it in place. To evaluate its light-induced bending  

behavior the fiber was exposed to 0.017 Hz illumination cycles (30s on / 30s off) at varying light 

intensities (Figure 2). When the light is turned on, the bend angle smoothly increases to a 

constant angle which is held until the light is turned off and the fiber relaxes continuously to its 

initial conformation. As the light intensity increased, the change in bending angle also increased 

 

 
Figure 2. A) Schematic of an LCE waveguide couple to a DPSS laser via a PMMA waveguide (left) and 
a photograph of the initial waveguide configuration before illumination (right). The initial bend angle is due 
to a slight gradient in order parameter through the thickness of the fiber after swelling with gold salt. B) 
Photographs of steady state bend angle under different laser intensities. C) Actuator response during 30 
s of waveguided illumination at different laser intensities. The laser is turned on at 8 s and turned off at 38 
s. The bending angle increases with increasing light intensity due to greater photothermal heat generation 
and relaxes back to nearly its original position over a few seconds when the laser is turned off. D) 
Repeated actuation during illumination cycles of 30 s on/30 s off.  
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due to more extensive heat generation, with up to a 13º bend angle observed for a maximum 

intensity of 230 mW (Figure 2a); this behavior was repeatable over several cycles (Figure 2b). 

We note that the attainment of a constant bend angle while the light is on indicates that thermal 

steady state is achieved, and that it is characterized by a sufficient thermal gradient across the 

fiber diameter to drive bending. We note that this requires heat transfer out of the fiber to be 

appreciable—if the fiber were perfectly insulated, the temperature would continue to increase 

over time, ultimately leading to a nearly uniform contraction of the fiber, rather than localized 

bending. A coarse (order-of-magnitude) estimate of the steady-state temperature increase can be 

made as follows. Assuming that 10% of the laser power is absorbed by particles in a given 

actuator yields a total heat generation of q = 0.02 W. Simplifying the problem to conduction in 

an infinite medium, with a typical thermal conductivity (k) value for the polymer fiber of 0.2 W 

m-1 K-1 , the temperature increase at the edge of an actuator with characteristic size l = 1 mm can 

be estimated as DT » q/(4pkl) » 10 K. From the data in Fig. 1B, we note that this would 

correspond to differences in strain across the fiber of several percent, consistent with the modest 

changes in radius of curvature, relative to the fiber radius, observed during photo-actuation.   

 

As shown in Figure 3b, the incident laser light can be observed along the length of the fiber due 

to scattering losses, with a substantial decrease in intensity following the AuNP region due to 

absorption. Additionally, scattering can be observed at the tip of the LCE fiber, indicating that at 

least some portion of the light is guided through the entire length of the cm-scale device. Using 

UV-vis spectroscopy to measure the transmittance of a planar sample of known thickness with 

uniform in-plain director orientation (and correcting for reflection; see Supporting Information 

for details), we estimate an optical loss in the LCE materials as ~ 10 dB cm-1, which is most 
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likely dominated by scattering from defects in the ordering of the mesogens. While the samples 

are globally oriented, the presence of interfaces between micrometer-scale domains with slightly 

different orientation can give rise to substantial scattering of light.[46] However, given that 

appreciable light intensities are still present even towards the end of cm-scale devices, we 

suspect this value to be an over-estimate of the real losses in the fiber, perhaps due to the 

difference in mesogen orientation relative to the direction of light propagation in the two cases. 

In future work, it will be important to evaluate the optical losses of these materials in greater 

detail. In particular, we anticipate that it may be possible to reduce the relatively high losses of 

current devices through improvements in ordering of the LCE fiber. For reference, optical fibers 

with small molecule LC cores have shown losses of ~1 dB cm-1 for highly oriented mesophases 

[47]. Although we expect that monodomain LCEs will generally have higher optical losses than 

their small molecule counterparts, due to the presence of non-LC monomers and crosslinkers  

that can lower the order parameter, optimization of the fiber processing approach is likely to 

improve transmission substantially. However, for cm-scale devices such as those demonstrated 

here, even such large losses do not preclude a robust photomechanical response. 

 

To characterize the actuation kinetics, single exponential curves were fit to the data on bend angle 

vs. time after turning the laser on and off. Upon illumination, the fiber bent with a time constant 

of 3.3 s and when the light was turned off, the fiber relaxed with a time constant of 7.7s. While the 

bending kinetics of the LCE fiber are similar to those previously reported for waveguiding 

actuators based on hydrogels,[27] the backwards kinetics are several-fold faster. These timescales 

are consistent with the expected timescale for heat transfer, roughly estimated as t ~ 5 s from t ~ 

d2/Dt where Dt ~ 10-7 m2/s is a typical value of thermal diffusivity for a polymer matrix.[48] While 
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heat transfer effects alone could conceivably account for the observed differences in the forward 

and backward kinetics, it is also possible that viscoelastic properties could play a role in setting 

the actuation timescale. Further study is required to fully understand these effects.  

 

Multiple bends in a single fiber can be achieved by depositing several droplets of gold precursor 

solution at different positions along the same fiber. For example, the responses of fibers containing 

two discrete actuators are shown in Figure 3. In Figure 3a, the actuators contain nanoparticles on  

the same side of the fiber with no offset in azimuthal position. To mitigate the effects of decreasing 

light intensity along the length of the fiber due to absorbance by the first actuator and scattering 

losses, the second actuator was fabricated with double the exposure time to increase its absorbance 

relative to the first actuator. When the light was guided through the fiber as shown in Figure 3b, 

the first actuator bent by 18° and the second actuator by 10° along the +z axis. However, when the 

actuators were azimuthally offset by 180º, bending along both the +z and –z direction was achieved 

 
 
Figure 3. Deformation of a fiber containing two actuators. (A) Side view of a fiber containing two 
actuators fabricated on top of the fiber before illumination.  (B)  When the light is turned on, the fiber 
bends by 18° and 10° at actuators 1 and 2, respectively.  (C) Side view of a fiber containing two 
actuators fabricated on opposite sides of the fiber (180° offset) before illumination. (D) When the light is 
turned on, the fiber bends up by 15° at actuator 3 and down by 5° at actuator 4. Stick diagrams on the 
far right show the overlay of each hinge with and without light stimulation for ease of viewing.  
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(Figure 3c-d). In this configuration, the fiber bent upwards by 15° at the first actuator and 

downwards by 5° at the second (Figure 3d). 

 

Finally, bending along multiple different axes within the same fiber was realized, as shown in 

Figure 4.  Three discrete actuators were fabricated with increasing absorbance and separated by ~ 

5 mm each, as can be seen by the side-view in Figure 4a. Actuator 1 was located on the top of the 

fiber, while actuators 2 and 3 were offset by +90° and -90°, respectively.  As evidenced by Figure 

5b, when the light was turned on, the fiber bent upwards along the +z direction at the first actuator 

but not along actuators 2 and 3.  When viewed from the top, as shown in Figure 4c and Figure 

4d, the fiber is shown to have bent in the +y and –y directions at actuators 2 and 3, respectively.  

The fiber bent by a decreasing degree as the light traveled down the length of the fiber with bend 
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angles of 14°, 10°, and 3° for actuators 1, 2, and 3, respectively, due to decaying intensity as can 

be observed in the photograph in Figure 4.   

 

In conclusion, we have demonstrated the fabrication of photothermal actuators amenable to control 

via waveguided light using an LCE nanocomposite system. Photoresponsive regions can be 

precisely defined via photoreduction of gold salt to drive bend angles of > 14º on the timescale of 

seconds. Furthermore, bending in multiple directions can be achieve through judicious choice of 

nanoparticle placement and can be used to program bending into three-dimensional conformations 

with arbitrary placement and direction of bends upon deployment. Finally, this method provides a 

means to control the device in situation where line-of-sight access is not feasible and waveguiding 

removes the need to synchronize the location of the light source in free space with that of the 

actuators. 

 
 
Figure 4. Deformation of an optical fiber containing three actuators. (A) Side view with the light off. 
Actuator 1 corresponds to nanoparticles placed on the top of the fiber and actuators 2 and 3 correspond 
to nanoparticles placed on opposite sides of the fiber, each offset 90° from actuator 1, and 180° from 
each other. (B) Side view with the light on shows that actuator 1 bends 14° under light stimulation.  (C) 
Top view with the light off.  (D) Top view with the light on showing that actuator 2 and 3 bend the fiber in 
opposite directions by 10° and 3°, respectively. Stick diagrams on the far right show the overlay of each 
hinge with and without light stimulation for ease of viewing. 
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Experimental Section 

Materials: Pentaerythritol tetrakis(3-mercaptopropionate) (PETMP), 2,2-(ethylenedioxy) 

diethanethiol (EDDET), 2,2-dimethoxy-2-phenyl-acetophenone (Irgacure 651), dipropylamine 

(DPA), gold(III) chloride trihydrate (HAuCl4), and oleylamine where purchased from Sigma 

Aldrich and used without further purification. The diacrylate mesogen 1,4-Bis-[4-(3-

acryloyloxypropyloxy)benzoyloxy]-2-methylbenzene (RM257) was purchased from Wilshire 

Technologies and used as received. 

 

LCE Fiber Synthesis and Fabrication: The procedure of Yakacki et al. [35] was used with slight 

modifications. RM257 (0.5 g), EDDET (0.12 g), PETMP (0.024 g), and Irgacure 651 (3 mg) were 

dissolved in toluene (420 µL) under gentle heating with a heat gun. After the solids were fully 

dissolved, the solution was cooled to room temperature and DPA (1.5 µL) was added.  Finally, the 

solution was degassed under vacuum, filled into cylindrical silicone molds, and left to cure in the 

dark at RT for 12 h. Following gelation, the clear gel preforms were dried under vacuum at 50 ºC 

for several hours to yield opaque white fibers. The dried fibers were placed under 200% strain 

using a homemade stretching device and polymerized under UV light for 10 min (90 mW cm-2). 

 

Gold Nanoparticle Patterning: The gold precursor solution was prepared by sequentially 

combining HAuCl4 (200 µL of 0.1 M in acetone), Irgacure 651 (400 µL of a 0.5 M solution in 

toluene), and oleylamine (200 µL of a 0.3 M solution in toluene) in a pre-cleaned vial. Upon 

addition of the oleylamine, the bright yellow solution became clear and was aged for 1 h to yield 

a pale brown solution. Following aging, 1 µL droplets were deposited on the surface of the fiber 
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and covered to prevent evaporation of the toluene/acetone mixture. After several minutes, the 

droplet locally swelled the preform, as evidenced by a slight bend in the fiber and the appearance 

of an opaque bump where the droplet was deposited. To initiate particle formation, UV light was 

focused on the surface of the fiber where the gold salt was deposited using a DMD (DLP Discovery 

4100, .7 XGA, Texas Instruments) attached to an inverted optical microscope (Nikon ECLIPSE 

Ti) in increments of 60s depending on the desired absorbance. An advantage of this approach 

compared to the use of a more conventional UV source is that it avoids significant heating of the 

sample, providing better defined patterns of Au NPs. After UV exposure, the fibers were dried 

under vacuum to remove residual solvent. 

 

Instruments and Measurements: Absorbance of the AuNPs was measured using a UV-vis 

spectrophotometer (Hitachi, U-3010) with planar LCE sample geometries prepared by a similar 

method as above. Order parameters were calculated from wide-angle X-ray scattering collected 

using a GANESHA 300 XL (SAXSLAB) by numerically integrating in MATLAB  

 

𝑆 = 1 − 𝑁!" 3
2( 𝐼(𝜃) -sin# 𝜃 + (sin 𝜃 + cos# 𝜃)𝑙𝑜𝑔

1 + sin 𝜃
cos 𝜃 7 𝑑𝜃

$ #⁄

&
 

 

 where 𝑁 =	∫ 𝐼(𝜃)𝑑𝜃$ #⁄
& .[49] Deformation of the fibers was measured by heating a small sample 

of an aligned fiber in silicone oil on a silicon substrate on a heat stage (Instec), images were taken 

using an upright microscope (Zeiss, Axiotech Vario) outfitted with a camera (Pixelink), and length 

change was measured using ImageJ software. Photoactuation experiments were conducted using 

a 532 nm DPSS laser (Laserglow) the intensity of which was controlled using absorptive neutral 

density filters (Thorlabs). Laser light was delivered to the LCE fiber through a 500 µm diameter 
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FC terminated POF with a PMMA core. A camera (Nikon 5500) was used to monitor the 

photoresponse and bending angle was measured using Tracker software (Open Source Physics). 

For flood actuation experiments, a fiber was placed in water to provide heat dissipation and 

illuminated by bringing the tip of the POF attached to the laser close to the nanoparticle region of 

an LCE actuator. For waveguiding experiments, the cladding was removed from the end of the 

POF and the tip was butt coupled to the LCE actuator by fixing the POF and LCE in place using a 

piece of double-sided tape and mechanically aligning the fibers to maximize light transmission. 

 

Supporting Information 

Supporting Information is available from the Wiley Online Library or from the author. 
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