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ABSTRACT

Graph-based systems and data analysis methods have become critical tools in many
fields as they can provide an intuitive way of representing and analyzing interactions be-
tween variables. Due to the advances in measurement techniques, a massive amount of
labeled data that can be represented as nodes on a graph (or network) have been archived
in databases. Additionally, novel data without label information have been gradually gen-
erated and archived. Labeling and identifying characteristics of novel data is an important
first step in utilizing the valuable data in an effective and meaningful way. Comparative
network analysis is an effective computational means to identify and predict the properties
of the unlabeled data by comparing the similarities and differences between well-studied
and less-studied networks. Comparative network analysis aims to identify the matching
nodes and conserved subnetworks across multiple networks to enable a prediction of the
properties of the nodes in the less-studied networks based on the properties of the matching
nodes in the well-studied networks (i.e., transferring knowledge between networks).

One of the fundamental and important questions in comparative network analysis is
how to accurately estimate node-to-node correspondence as it can be a critical clue in
analyzing the similarities and differences between networks. Node correspondence is a
comprehensive similarity that integrates various types of similarity measurements in a
balanced manner. However, there are several challenges in accurately estimating the node
correspondence for large-scale networks. First, the scale of the networks is a critical issue.
As networks generally include a large number of nodes, we have to examine an extremely
large space and it can pose a computational challenge due to the combinatorial nature of
the problem. Furthermore, although there are matching nodes and conserved subnetworks

in different networks, structural variations such as node insertions and deletions make it
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difficult to integrate a topological similarity.

In this dissertation, novel probabilistic random walk models are proposed to accurately
estimate node-to-node correspondence between networks. First, we propose a context-
sensitive random walk (CSRW) model. In the CSRW model, the random walker analyzes
the context of the current position of the random walker and it can switch the random
movement to either a simultaneous walk on both networks or an individual walk on one
of the networks. The context-sensitive nature of the random walker enables the method
to effectively integrate different types of similarities by dealing with structural variations.
Second, we propose the CUFID (Comparative network analysis Using the steady-state
network Flow to IDentify orthologous proteins) model. In the CUFID model, we construct
an integrated network by inserting pseudo edges between potential matching nodes in
different networks. Then, we design the random walk protocol to transit more frequently
between potential matching nodes as their node similarity increases and they have more
matching neighboring nodes. We apply the proposed random walk models to comparative
network analysis problems: global network alignment and network querying. Through
extensive performance evaluations, we demonstrate that the proposed random walk models
can accurately estimate node correspondence and these can lead to improved and reliable

network comparison results.
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1. INTRODUCTION

1.1 Background

Graph-based system and data analysis techniques have become a critical tool in many
fields as it can provide an intuitive way of representing interactions between variables and
analyzing them [1, 2, 3, 4]. In recent years, graph-based techniques have been widely
applied to the analysis of social networks [5, 6], images [7, 8], and biological networks [9,
10]. Additionally, we can infer the properties of the less-studied system by comparing
it with the well-studied systems and finding the corresponding elements. To this aim,
given multiple graphs, one question that is of practical importance is how the nodes in a
given graph can be mapped to nodes in the other graphs based on the similarity between
nodes and the topological similarity between graphs. Considering that each node may
have a number of similar nodes in the other graphs and that the graphs may have signifi-
cant differences in their topology, quantitatively estimating this overall similarity between
nodes — or the node correspondence — is theoretically challenging. Furthermore, estimat-
ing these similarities can pose computational challenges, especially for large graphs, due
to the combinatorial nature of the problem.

So far, several methods have been proposed for measuring the node correspondence
between graphs, where random walk based methods have been popular as they are intu-
itive and can be efficiently implemented [10, 11, 12, 13, 14, 15]. These methods perform
a simultaneous random walk on the two graphs to be compared, where the random walk
scheme is designed such that the walker more frequently visits (or stays longer at) node
pairs that have higher similarity and are surrounded by a larger number of similar node
pairs. The stationary probability of the resulting (semi-)Markov model gives us the long-

run proportion of time that the random walker simultaneously visits (and stays at) a given



node pair, which can be used as the correspondence score between the two nodes. This
score provides a simple and intuitive way of measuring the overall similarity between
two nodes in different graphs by integrating the node similarity and the topological sim-
ilarity [10]. Recently, these random walk models have been applied to the comparative
analysis of large-scale biological networks [12, 13].

In this study, we have studied effective methods for comparative network analysis
based on a graphical representation of systems so that we can transfer the knowledge of the
well-analyzed system into the less-studied system. We have proposed novel random walk
models that can significantly improve the accuracy of the estimation of the node-to-node
correspondence between different graphs. Additionally, we have verified the effectiveness
of the proposed method on biological networks. Although we mainly present the per-
formance evaluations using biological networks, the proposed random walk models and
algorithms can be applied to various types of networks. Note that two terms, network and

graph, are utilized interchangeably in this dissertation.
1.2 Outline of the dissertation

In this dissertation, we propose novel probabilistic random walk models and present
their applications to comparative network analysis using biological networks. In the chap-
ter 2, we propose the context-sensitive random walk model to estimate node-to-node cor-
respondence between graphs through a long-run behavior of a random walker. In the
chapter 3, we propose a novel random walk model, called the CUFID model, to estimate
node correspondences by measuring the steady-state network flow between networks. We
will show that the CUFID model further improves the estimation accuracy of the node
correspondences with the reduced computational complexity. In the chapter 2 and 3, we
present the potential applications of the proposed random walk models in global network

alignment and network querying problem. We will demonstrate the effectiveness of the



proposed random walk models through extensive performance evaluations using synthetic

networks and real biological networks.



2. ESTIMATION OF NODE-TO-NODE CORRESPONDENCE BETWEEN
DIFFERENT GRAPHS *

In this chapter, we propose a novel random walk model that can significantly improve
the accuracy of the estimation of the node correspondence between different graphs. The
proposed random walker performs a random walk on the two graphs to be compared,
where it can switch its mode between a simultaneous walk on both graphs and an indi-
vidual walk on one of the graphs. The mode switching is determined by the presence (or
absence) of similar node pairs among the current neighbors. Through extensive simula-
tions, we show that the proposed model leads to an enhanced node-correspondence scoring

method that clearly outperforms existing methods.
2.1 Context-sensitive random walk model

Consider two graphs Gy = (U, D) and G, = (V,E), where Gy, consists of a set U =
{u1,us,---} of nodes and a set D = {d,;} of edges between nodes u; and u; and Gy
consists of a set V = {vy,vq,- -} of nodes and a set £ = {e,, } of edges between nodes
v and v,,,. We assume that a nonnegative pairwise node similarity score s(u;, v;) is given
for every node pair (u;, v;). Our goal is to estimate the node correspondence score c(u;, v;)
for every node pair (u;,v;) that quantifies the overall similarity between these nodes by
integrating the pairwise node similarity scores and the topological similarity between the
two graphs in a reasonable manner. In other words, we want the node correspondence

score c(u;, v;) to be proportional to the posterior alignment probability P [u; ~ v;|Gy, Gy]

*Part of this chapter is reprinted with a permission from “Hyundoo Jeong and Byung-Jun Yoon. Effective
estimation of node-to-node correspondence between different graphs. IEEE Signal Processing Letters" [16]
© [2015] IEEE and “Hyundoo Jeong and Byung-Jun Yoon. Accurate multiple network alignment through
context-sensitive random walk. BMC Systems Biology, 9(Suppl. 1):S7, 2015" [17] © [2015] BioMed
Central and “Hyundoo Jeong and Byung-Jun Yoon. SEQUOIA: Significance enhanced network querying
through context-sensitive random walk and minimization of network conductance. BMC Systems Biology,"
11(Suppl. 3):20, [18] © [2017] BioMed Central.
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(a) Simultaneous walk on both graphs (b) Individual walk on either graph (G in the ex-
ample shown)

Figure 2.1: Illustration of the context-sensitive random walk model. The shaded nodes
show the current position of the random walker on the two graphs. The dashed arrows
indicate the movement of the random walker at the next time step [16] (©) [2015] IEEE.

of u; and v; given Gy, and Gy .
2.1.1 Motivation and overall approach

We propose a novel random walk model to measure the node correspondence score
c(u;,v;). Our random walk model is motivated by the pair hidden Markov model (pair-
HMM), which has been widely used for the comparative analysis of biological sequences
(e.g., sequence alignment) due to its simplicity and effectiveness [19, 20].

Unlike traditional HMMs, which generate a single symbol sequence, the pair-HMM
generates a pair of aligned symbol sequences. A typical pair-HMM has three different
states: M, I, and I5. At the M state (indicates a “matched” symbol pair), the HMM emits
an aligned symbol pair. On the other hand, at the [, state (indicates an “inserted” symbol
in either sequence), the HMM only emits a symbol to sequence-£ alone that is aligned to
a gap symbol in the other sequence. Given two (unaligned) symbol sequences, we can use
the forward-backward algorithm to predict the alignment probabilities between symbols

in the two sequences based on the pair-HMM [20].



Similarly, the proposed random walk model has three different internal states, M, I,
and [y, where each state corresponds to a different “mode” of random walk. At a M state,
which corresponds to “matched” node pair, the random walker makes a simultaneous walk
on both graphs, moving into a pair of matched nodes. This is illustrated in Figure 2.1a.
On the other hand, at state I;; (or state Iy/), the random walker makes an “individual” walk
on graph Gy, (or Gy,). Figure 2.1b illustrates the individual walk at state I;;. The random
walker can switch its mode between a simultaneous walk and an individual walk, in a
context dependent way by examining the neighborhood. In the presence of node pairs in
the immediate neighborhood with a positive node similarity score, the random walker will
make a simultaneous move on both graphs by randomly moving into one of the similar
node pairs (M state). Otherwise, the random walker will make a transition to either state
Iy or Iy, and make a random move only on the corresponding graph.

Based on this random walk model, we estimate the steady state probabilities of this
random walk, or in other words, the long-run proportion of time that the random walker
will simultaneously visit a given node pair. Finally, from these steady state probabilities,
we estimate the actual proportion of time that the random walker spends at a given node
pair by “entering” the nodes simultaneously (i.e., at state M), which we used as the corre-
spondence score for the node pair. It should be noted that this last step is crucial, since we
are not interested in the case when the random walker happens to stay at a node pair as a
result of an individual move on one of the graphs. In such cases, the simultaneous visit of
the two nodes is coincidental and is not a direct result of the relevance between the given

nodes.
2.1.2 Proposed random walk model

Let Gy = (X, Ex) be the product graph of G, and Gy, where the nodes in the graph

Gx correspond to node pairs (u;,v;), w; € U and v; € V. Two nodes in the prod-



uct graph Gy are connected if and only if the corresponding nodes are connected in
both G;; and Gy. Joint random walk on the two graphs G;; and Gy, both simultane-
ous walk and individual walk, can be viewed as a random walk on this product graph
Gx. We define M = {(u;,v;) |s (w;,vj) > 0,u; € U,v; € V} as the set of similar node
pairs, where s (u;,v;) is the pairwise node similarity score for the node pair (u;,v;).
Suppose that the random walker is currently located at (u.,v.) for some u. € U and
ve € V. Let us define the set of similar node pairs in the neighborhood of (u.,v.) as
N (e, ve) = {(ui, vj) |u; € N(ue),v; € N(ve), (ui,v;) € M}, where N (u,) is the set of
neighbors of node wu,. in graph G, and N (v.) is the set of neighbors of node v, in graph
Gy.

If there are similar node pairs in the current neighborhood, hence N (u.,v.) # @,
the random walker makes a simultaneous move on both graphs, from (u., v.) to (u;, v;),
according to the following transition probabilities:

s (wi, vj)

P 79 / cy Ye = . 2.1
[(U Uj) ‘ (u v )] Z(ui/,’uj/)EN(uc,vc) S (ui,’vj/) (2.1)

On the other hand, if there is no similar node pair in the neighborhood, hence N (u,, v.) =
&, the random walker randomly selects either G;; or Gy, and performs an individual walk
only on the selected graph. The probability that each graph will be selected is propor-
tional to its size (i.e., number of nodes in the graph), and in the selected graph, the random
walker will move into one of the neighboring nodes with equal probability. The resulting

transition probabilities are given by

_ 1
P[(ulv UC) | (UC, UC):| - ’Z/{’ T |V| X ’N (UC)| (22&)
V 1
P[(“Ca Uj) | (um Uc)} = ’L{||+|‘V| X ’N (Uc>| (2.2b)



for u; € N(u.) and v; € N (v.). Note that |/| and |V| denote the number of nodes in
the graph G, and Gy, respectively. From (2.1), (2.2a), and (2.2b), we can construct the
transition probability matrix P for the random walk on the product graph Gy. In practice,
the matrix P will be often sparse, as the original graphs G;; and Gy, that arise in practical
applications will be typically sparse. This property makes it easy to compute the steady
state probability 7(u;, v;) of the random walk using the power method [12, 13, 21]. Given
7(u;, v;), we finally compute the actual proportion of time 7 (u;, v;) that the random walker
spends at (u;,v;) by entering the node pair through a simultaneous random walk (i.e., at

state M) as follows:

)= E vy ) Pl ] @

for all (u;,v;) € M. Finally, we define the correspondence score between two nodes u;
and v; as c(u;, v;) = 7(u;, v;), where u; € Gy and v; € Gy. As we will demonstrate in the
following section, the proposed scoring scheme effectively quantifies the overall similarity
between nodes in different graphs by seamlessly integrating the pairwise node similarity

and the topological similarity between graphs.
2.1.3 Performance assessments

In order to demonstrate the effectiveness of the proposed scoring method, we per-
formed extensive simulations based on synthetic graphs [22]. To evaluate the performance,
we computed the node correspondence scores using the proposed scheme, and used the
scores to predict the graph alignment through greedy one-to-one mapping. More specifi-
cally, we started from an empty alignment and built up the graph alignment by iteratively
adding one node pair at a time according to its correspondence score in a descending or-
der. Given the final alignment, we define the equivalence class as the set of nodes that are

aligned to each other. A given equivalence class is said to be correct if the aligned nodes

8



\ Pair. Sim. Score \ IsoRank \ SMETANA \ CSRW

CN 519 549 5334 704.4
MNE 0.28 0.31 0.27 0.15
CE 510.2 581.5 554.3 1,000.4

Table 2.1: Performance comparison of different scoring methods [16] (©) [2015] IEEE.

have the same label, indicating that they belong to the same functional class. We com-
puted three different metrics to assess the goodness of the predicted alignment: correct
nodes (CN), mean normalized entropy (MNE), and conserved edges (CE). CN is the total
number of aligned nodes that belong to the correct equivalence class. The coherence of
the node mapping can be accessed by MNE. MNE for a given equivalence class C can be
computed by H (C) = —@ Zle p; log p;, where p; is the relative proportion of nodes in
C with label 7 and d is the total number of different labels. A mapping with higher coher-
ence will lead to a lower entropy. CE counts the total number of conserved edges between
aligned nodes in the predicted graph alignment. CE can be used to assess the performance
of detecting conserved topological structures across graphs. For comparison, we repeated
similar experiments by using two state-of-the-art scoring schemes used in IsoRank [12]
(parameter o was set to 0.6 as in the original paper) and SMETANA [13].

Using the NAPAbench package [22], we generated 10 pairs of synthetic graphs based
on the crystal growth model [23], where each pair consists of a graph with 750 nodes and
another graph with 1,000 nodes. On average, the smaller graphs had around 3,000 edges
and the larger graphs had around 4,000 edges. For every pair of graphs, the true corre-
spondence between the nodes in the two graphs are known, hence we can evaluate the
effectiveness of the proposed scheme. Table 2.1 shows the performance of different scor-
ing methods. The proposed method clearly outperforms all other methods. For example,

the proposed scoring method finds around 30 percent more correct nodes compared to the
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Figure 2.2: Performance dependence on pairwise node similarity: correct nodes (left),
mean normalized entropy (center), and conserved edges (right) [16] (¢) [2015] IEEE.

scoring methods in IsoRank [12] and SMETANA [13]. Furthermore, the proposed method
yields a more coherent mapping as indicated by the lower MNE. It is also important to
note that our proposed method results in significantly higher CE, which implies that the
resulting node correspondence scores capture the topological similarity between graphs
more effectively.

Next, we evaluated the influence of the pairwise node similarity scores on the perfor-
mance of each method. For this purpose, we introduced an additional bias term to further
separate the distribution of the pairwise node similarity score between nodes with the same
label and the score distribution for nodes with different labels. A higher bias makes it eas-
ier to predict the correspondence between nodes in different graphs based on the pairwise
node similarity score alone (i.e., without taking topological similarity into account). Fig-
ure 2.2 shows that the proposed method significantly outperforms other scoring methods
for a wide range of bias. As we would expect, the performance difference between the
proposed method and the other methods decreases with an increasing bias, as it becomes

easier to distinguish relevant nodes from irrelevant ones.
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2.1.4 Conclusions

In this subchapter, we proposed a context-sensitive random walk model for scoring
the correspondence between nodes that belong to two different graphs. The proposed
method utilizes a novel random walk model that switches between two different modes of
random walk — simultaneous walk on both graphs and individual walk on either graph —
in a context dependent manner. The node correspondence scores are estimated based on
the steady stationary probabilities of the random walk. Simulation results show that the
proposed scoring method significantly outperforms previous methods that rely on different
random walk models in terms of accuracy and robustness. Our scoring scheme can provide
an effective and computationally efficient foundation for comparative analysis of graphs,

including biological networks and social networks.
2.2 Network alignment through the context-sensitive random walk model
2.2.1 Background and motivation

With the availability of large-scale protein-protein interactions (PPI) networks, com-
parative network analysis tools have been gaining increasing interests as they provide use-
ful means of investigating the similarities and differences between different networks. As
demonstrated in [9, 24], PPI networks of different species embed various conserved func-
tional modules — such as signaling pathways and protein complexes — which can be de-
tected through network querying [11, 25, 26] and network alignment algorithms [12, 13,
27, 28, 29, 30, 31, 32, 33]. Comparative network analysis methods allow us to transfer
existing knowledge on well-studied organism to less-studied ones and they have the po-
tential to detect potential functional modules conserved across different organisms and
species [9, 10, 24].

There exist several different types of comparative network analysis methods, among

which global network alignment methods specifically aim to predict the best overall map-
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ping among two or more biological networks. In order to obtain biologically meaningful
results, where functionally similar biomolecules across networks are accurately mapped
to each other, we should consider both the molecule-level similarity between the individ-
ual molecules as well as the similarity between their interaction patterns. The former is
often called the “node similarity” while the latter is typically referred to as the “topolog-

2

ical similarity.” Examination of conserved functional modules shows that many of the
molecular interactions in such modules are also well conserved, clearly showing the im-
portance of taking the topological similarity into account when comparatively analyzing
biological networks. Biological networks, such as PPI networks, are typically represented
as graphs, where the nodes represent individual biomolecules (e.g., proteins) and interac-
tions (e.g., protein binding) between biomolecules are represented by edges connecting
the corresponding nodes. Given these graph representations of biological networks, the
network alignment problem can be formulated as an optimization problem whose goal is
to find the optimal mapping — either one-to-one or many-to-many — among a set of graphs
that maximizes a scoring function that assesses the goodness of a given mapping. This is
essentially a combinatorial optimization problem with a exponentially large search space,
which makes finding the optimal mapping practically infeasible for large networks. As a
result, existing network alignment methods employ various heuristic techniques to make
the network alignment problem computationally tractable.

Several global network alignment algorithms have been proposed so far [12, 13, 27, 28,
29, 30, 31, 34, 32, 33], many of which focus on the pairwise network alignment [35]. For
example, GRAAL [29] analyzes the graphlet degree signature for two PPI networks, where
it can generalize the degree of node by counting the number of graphlets for each node,
and then align the two networks using a seed-and-extend approach. MI-GRAAL [30] ex-
tends GRAAL by integrating further sources of information (e.g., clustering coefficient or

functional similarity) to measure the similarity between two networks. PINALOG [31]
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is another example of pairwise network alignment algorithm, which constructs the initial
mapping for protein nodes that form dense subgraphs in the respective networks. This
initial mapping is further extended by subsequently finding similar nodes in the neighbor-
hood. HubAlign [34] first assigns weights to the nodes and edges in the PPI networks
based on their topological importance (i.e., likelihood to be a hub), and then calculates the
alignment score for every pair of proteins based on the global topological property and
sequence information. Then, the algorithm constructs a global network alignment using a
greedy seed-and-extension approach. Recently, a number of multiple network alignment
algorithms have been proposed [13, 32, 33]. For example, SMETANA [13] tries to esti-
mate probabilistic node correspondence scores using a semi-Markov random walk model,
and then uses the estimated scores to predict the maximum expected accuracy (MEA)
alignment of the given networks. Given a set of networks, NetCoffee [32] generates all
possible combinations of bipartite graphs for these networks, and updates the edges in
each bipartite graph based on the sequence similarity of the proteins and the topological
structure of the networks. Then, the algorithm finds candidate edges (i.e., mappings) in the
bipartite graphs and combines qualified edges through simulated annealing. BEAMS [33]
is another recent multiple network alignment algorithm, which first extracts the so-called
“backbones”, or the minimal set of disjoint cliques in the filtered similarity graph, and then
iteratively merges these backbones to maximize the overall alignment score.

In this subchapter, we propose a novel multiple network alignment algorithm based on
a context-sensitive random walk (CSRW) model. The employed CSRW model adaptively
switches between different modes of random walk in a context-sensitive manner by sens-
ing and analyzing the present neighborhood of the random walker. This context-sensitive
behavior improves the quantitative estimation of the potential correspondence between
nodes belonging to different networks, ultimately, improving the overall accuracy of the

multiple network alignment as we will demonstrate through extensive performance evalu-
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ation based on real and synthetic biological networks.
2.2.2 Methods

Let us assume that we have a set of N PPI networks G = {G1,Gs,...,Gn}. Each
network G, = (V,,, €,) has aset of nodes V,, = {vy, vs, ...} and edges &, = {e; ;}, where
e; ; represents the interaction between nodes v; and v, in the network G,,. For each pair
of PPI networks Gy = (U, D) and Gy, = (V, ), we denote the pairwise node similarity
score for a node pair (u;,v;), where u; € U and v; € V, as s(u;,v;). In this study,
we use the BLAST bit score between proteins as their node similarity score, but other
types of similarity scores based on structural or functional similarity can be also utilized if
available.

Suppose A* is the true alignment of the networks in the set G, which is unknown
and needs to be predicted. As in [13, 36], we can define the accuracy of a given network

alignment A as follows:

accuracy (A, A*) = @ Z 1 (u; ~v; € A%, (2.4)

ui~v; EA

where 1 () is an indicator function, whose value is 1 if the mapping u; ~ v; is included
in the true alignment A* and O otherwise. The given measure assesses the goodness of
the alignment A based on the relative proportion of correctly aligned nodes. Of course,
since the true alignment is not known, the accuracy of a network alignment A cannot
be measured using (2.4), hence we cannot directly use this measure to compare different
potential alignments to choose the best one. A reasonable alternative would be to estimate

the expected accuracy as follows:

1

E 4 [accuracy (A, A")] = A

> P(ui~vlG), (2.5)

u;~v; €A
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where P (u; ~ v;|G) is the posterior alignment probability between the nodes u; and v;
given the set of networks G. Based on this measure, our objective is then to predict
the maximum expected accuracy (MEA) network alignment A* of the networks in G as
follows:

A" = max E 4+ [accuracy (A", A)] . (2.6)

A similar MEA approach [37] has been formerly adopted by a number of multiple se-
quence alignment algorithms, including ProbCons [36], ProbAlign [38], and PicXAA [39,
40, 41]. The MEA framework has been shown to be very effective in constructing accurate
alignment of multiple biological sequences, making it one of the most popular approaches
for a sequence alignment. Recently, the MEA approach has been also applied to compar-
ative network analysis, where RESQUE [11] performs MEA-based network querying and
SMETANA [13] performs MEA-based multiple network alignment.

In order to find the alignment that maximizes the expected accuracy defined in (2.5),
we first need an accurate method for estimating the posterior node alignment probability
P (u; ~ v;|G). For this purpose, we adopt a proposed context-sensitive random walk
model [16].

Suppose we want to measure the correspondence between nodes that belong to two
different networks G,y = (U,D) and Gy, = (V, &), both of which are included in G,
the set of PPI networks to be aligned. For every node pair (u;,v;), where u; € U and
v; € V, our goal is to quantify the level of confidence — which we refer to as the node
correspondence score — using the CSRW model discussed earlier. For this purpose, based
on the transition probabilities given by (2.1), (2.2a), and (2.2b), we can construct the tran-
sition probability matrix P that corresponds to the context-sensitive random walk for a
simultaneous walk and individual walk on the two networks G;, and Gy,. Given P, we can

estimate the long-run proportion of time that the random walker spends in each pair of
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nodes (u;, v;) by computing the steady state probability 7. In practice, since real PPI net-
works typically have a relatively small number of interactions (therefore only few edges
for most nodes), the resulting transition probability matrix for the CSRW is sparse, which
makes it relatively straightforward to compute the steady state distribution using the power
method [12, 13, 21].

In order to increase the computational efficiency of the proposed network alignment
method, instead of using the original transition probability matrix P, we use a reduced
matrix P. The reduced matrix P is obtained by removing the rows and columns in P that
correspond to node pairs in Z while keeping only the rows and columns that correspond to
node pairs in M. After the reduction, P is re-normalized to make it a legitimate stochastic
matrix. In practice, since the CSRW is designed to spend more time at node pairs with
higher similarity, the random walker spends a relatively small amount of time at node-
pairs that belong to the set Z, and using the reduced matrix P instead of P only minimally
affects the estimated long-run proportion of time spent at (u;, v;) € M.

We make one further modification to the CSRW in [16] by allowing the random walker
to restart at a new position at each time step with a fixed restart probability A. Note
that a similar “random walk with restart” approach was used by IsoRank [12] and Iso-
RankN [27], although these algorithms do not utilize the CSRW adopted in our method.
We allow the random walker to select its restart position according to the pairwise node
similarity, such that node pairs with higher node similarity have higher chance to be the
restart position of the random walker. To this aim, we normalize the pairwise node sim-
ilarity scores so that they sum up to 1. Our final node correspondence score vector c is
obtained from a linear combination of the steady-state distribution of the context-sensitive

random walker 7 (estimated using the reduced transition probability matrix f’) and the

16



normalized node similarity score vector s as follows:

c=Xs+(1-\)7. 2.7)

The above formulation, obtained by allowing the CSRW to restart the random walk at a
new position, is especially useful when comparing real PPI networks, which are often in-
complete and contain many isolated nodes. Simulation results show that the incorporation
of the restart scheme can make our CSRW-based alignment method more robust, espe-
cially when the available topological data are either unreliable or insufficient for detecting
the similarities between networks.

In order to determine the restart probability A, we first analyze the structure of the re-
duced product graph of G;; and Gy, that contains only similar node pairs included in M.
Intuitively, it is desirable to increase the restart probability A if the networks are discon-
nected and decrease the probability if the networks are well connected. For example, if
all the nodes in the reduced product graph are completely disconnected, it is desirable to
restart the random walker at every step. Additionally, when we consider the following two
cases — (i) most nodes in the product graph are connected and there are only a few discon-
nected nodes; (ii) the product graph is equally divided into /N connected subnetworks of
identical size — it would be desirable to assign a higher A to the latter case. Based on these
intuitions, we set the restart probability A as the ratio of the total number of nodes in the
top K % smallest subnetworks to the total number of nodes in the reduced product graph.
In this work, we used K = 99% to determine the restart probability .

Once we have computed the node correspondence scores in (2.7) for every pair of
networks in G, we take a greedy approach as in [13] to construct the multiple network
alignment. The overall alignment process is as follows. First, in order to improve the

reliability of the node correspondence scores, we selectively apply the probabilistic con-
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sistent transformation (PCT) defined in [13]. If X is larger than a predefined threshold
A¢, we do not apply PCT to the node correspondence scores. A large A implies that the
product graph is ill connected (e.g., containing a large number of isolated nodes), in which
case applying the PCT would not be helpful and may in fact make the scores less reliable.
This is because the PCT in [13] was developed based on the assumption that the product
graphs for all network pairs are relatively well connected. After the potential score refine-
ment step through PCT, we begin with an empty alignment and greedily add aligned node
pairs (u;, v;) to the network alignment, starting from the pairs with the highest node corre-
spondence scores, until there is no other node pair left that can be added without creating
inconsistencies in the network alignment. Assuming that the node correspondence scores
in (2.7) obtained by the context-sensitive random walk model with restart accurately re-
flect the true correspondence between nodes — such that the score is proportional to the
posterior node alignment probability — the proposed network alignment scheme can be

viewed as a heuristic way to find the MEA alignment of the networks in G.
2.2.3 Results

To assess the performance of the proposed method, we tested the proposed network
alignment method based on PPI networks in NAPAbench [22] and IsoBase [42]. NA-
PAbench is a network alignment benchmark that consists of 3 different datasets, referred to
as the pairwise alignment dataset, 5S-way alignment dataset, and 8-way alignment dataset.
Each dataset contains three different subsets of 10 network families, each subset cre-
ated using a different network growth model — CG (crystal growth), DMC (duplication-
mutation-complementation), and DMR (duplication with random mutation). Each net-
work family consists of 2, 5, or 8 PPI networks depending on the alignment dataset. For
network families in the pairwise alignment dataset, each family contains one network with

3,000 nodes and the other with 4,000 nodes. In the 5-way network alignment dataset, a
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network family consists of 5 networks with 1,000, 1,500, 2,000, 2,500, and 2,500 nodes.
Finally, in the 8-way alignment dataset, every network family consists of 8 networks,
where each network contains 1,000 nodes. To evaluate the performance of the proposed
method on real PPI networks, we utilized IsoBase datasets [42], which was constructed
by integrating the following databases: BioGRID [43], DIP [44], HPRD [45], MINT [46],
and IntAct [47]. IsoBase contains the PPI networks of five species: H. sapiens, M. mus-
culus, D. melanogaster, C. elegans, and S. cerevisiae. Currently, the PPI network of H.
sapiens in [42] has 22,369 proteins and 43,757 interactions, the PPI network of M. mus-
culus has 24,855 proteins and 452 interactions, the PPI network of D. melanogaster has
14,098 proteins and 26,726 interactions, the PPI network of C. elegans has 19,756 proteins
and 5,853 interactions, and the PPI network of S. cerevisiae has 6,659 proteins and 38,109
interactions. In our analysis, we excluded the M. musculus network as it currently contains
only a small number of interactions.

Based on our simulations, we report the following performance metrics: correct nodes
(CN), specificity (SPE), mean normalized entropy (MNE), conserved interaction (CI), cov-
erage and computation time. CN is the total number of nodes in the correct equivalence
classes. Given a network alignment, an equivalence class is defined as the set of aligned
nodes, and if all nodes in the equivalence class have the same functionality the given equiv-
alence class is said to be correct. SPE is the relative number of correct equivalence classes
to the total number of equivalence classes in a network alignment. For each equivalence
class C, the normalized entropy can be computed by H (C) = — @ Zle p; log p;, where
p; is the relative proportion of nodes in C with functionality ¢ and d is the total number of
different functionalities in the given equivalence class. As a result, a network alignment
that accurately maps functionally similar nodes, hence being functionally consistent, will
have lower mean normalized entropy. CI is defined as the total number of edges between

equivalence classes. We also count the total number of edges between correct equivalence
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classes, which we refer to as the conserved orthologous interactions (COI), to assess the
biological relevance of the conserved interactions that have been identified by the net-
work alignment method. Finally, for 5-way and 8-way alignment datasets, we measure
the equivalence class coverage and the node coverage, where the former is the number
of equivalence classes that include nodes from k different networks, and the latter is the
number of nodes in an equivalence class whose equivalence class coverage is k. For the
performance evaluation based on real PPI networks in IsoBase, we determined the func-
tionality of each protein using the KEGG protein annotation [48, 49]. Note that nodes
without any functional annotation in each equivalence class and equivalence classes that
consist of a single node or nodes from a single network were removed before computing
the performance metrics.

We compared the performance of the proposed multiple network alignment method
against a number of state-of-the-art algorithms: SMETANA [13], IsoRankN [27], PINA-
LOG [31], NetCoffee [32], and BEAMS[33]. NetCoffee was not included in pairwise net-
work alignment experiments, since it requires at least 3 networks. For multiple network
alignment experiments, PINALOG was excluded as the algorithm can only handle pair-
wise alignments. For IsoRankN, we set the parameter « to 0.6 as in the original paper [27].
For BEAMS, we set the filtering threshold to 0.4 for IsoBase and 0.2 for NAPAbench as
in the original paper [33], and set the parameter « to 0.5. The parameter o for NetCoffee
was set to 0.5. We used default parameters for SMETANA (i.e., nmax = 10, o = 0.9, and
B = 0.8), and the same parameters were used in the proposed network alignment method
as well. Finally, in the proposed method, we used \; = 0.7 to determine whether or not to
apply PCT to the estimated node correspondence scores.

All experiments were performed on a personal computer with a 2.4GHz Intel 17 pro-
cessor and 8GB memory.

We first evaluated the performance of the proposed algorithm using the NAPAbench
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DMC DMR CG
CN SPE MNE CN SPE MNE CN SPE MNE
Proposed  5,593.9 0.958 0.039 5,305.3 0.939 0.055 4,893.2 0942 0.054
SMETANA 5,164.5 0.926 0.068 4,900.6 0916 0.078 4,846.2 0949 0.048
BEAMS  5,076.5 0.826 0.150 5,176.7 0.840 0.138 54412 0.870 0.112
PINALOG 3,779 0.726 0.274 3,533.4 0.683 0.317 4,325 0.788 0.212
IsoRankN  3,816.5 0.827 0.163 3,905.2 0.836 0.155 3,863.2 0.832 0.159

Table 2.2: Performance comparison for pairwise network alignment [17] (©) [2015] BMC.

DMC DMR CG
CN SPE  MNE CN SPE MNE CN SPE MNE
Proposed 7,536.7 0.940 0.047 74103 0.934 0.053 7,177.6  0.919 0.060
SMETANA 7,273.2 0.912 0.069 7,181.8 0.915 0.068 7,331.6  0.935 0.048
BEAMS 6,842.2 0.863 0.104 6,882  0.873 0.096 7,376.5 0.921 0.062
NetCoffee 6,431.2 0.894 0.090 6,395.7 0.890 0.093 6,150.2 0.854 0.120
IsoRankN 5,559  0.920 0.147 5,462.3 0.793 0.162 5,688.4 0.828 0.132

Proposed (all 5 species)  4,476.9 0.931 0.048 4,017.9 0.916 0.060 3,644.8 0.900 0.068
SMETANA (all 5 species) 4,062.3 0.891 0.077 3,704.9 0.889 0.080 3,778.9 0.922 0.052
BEAMS (all 5 species)  2,858.4 0.814 0.121 3,095.2 0.838 0.104 3,510.3 0.918 0.052
NetCoffee (all 5 species) 2,960.4 0.867 0.106 2,973.3 0.855 0.113 2,841.2 0.796 0.156
IsoRankN (all 5 species) 1,668.1 0.728 0.179 1,5954 0.677 0.215 2,233.5 0.742 0.168

Table 2.3: Performance comparison for 5-way network alignment [17] (©) [2015] BMC.

DMC DMR CG

CN  SPE MNE CN  SPE MNE CN  SPE MNE
Proposed 6,621.3 0901 0080 64672 0891 0090 63454 0.884 0.090
SMETANA 6,336.7 0.869 0.106  6,1952 0860 0.114 64812 0.897 0.079
BEAMS 6,083.1 0.825 0.163  6,063.5 0826 0.162 6,537.6 0877 0.111
NetCoffee 51272 0.757 0206  5,084.1 0750 0213 49441 0.724 0.239
IsoRankN 4069.1 0644 0268 39167 0.623 0284 35860 0612 0291

Proposed (all 8 species) 4,116 0961 0.034 3,473.7 0.930 0.059 3,689.5 0.945 0.043
SMETANA (all 8 species) 3,686.7 0.920 0.066 3,348.9 0.907 0.075 3,785.6  0.960 0.031
BEAMS (all 8 species)  2,897.9 0.905 0.095 3,054.7 0.901 0.099 3,475.1 0.989 0.011
NetCoffee (all 8 species) 3,300.8 0.837 0.136 3,331.8 0.822 0.148 3,317.8 0.800 0.172
IsoRankN (all 8 species) 2,002.8 0.569 0.284 1,775.8 0.542 0.303 2,161.6 0.536 0.303

Table 2.4: Performance comparison for 8-way network alignment [17] (©) [2015] BMC.
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Figure 2.3: The total number of conserved orthologous interactions (COI) and conserved
interactions (CI) [17] © [2015] BMC.

network alignment benchmark and compared it to other leading algorithms. The evaluation
results are summarized in Table 2.2, 2.3, and 2.4, which show the average CN, SPE, and
MNE of various network alignment algorithms.

As we can see in Table 2.2, in most cases, the proposed algorithm yields a significantly
higher CN and SPE compared to other algorithms, which shows that the algorithm is ca-
pable of finding conserved nodes with both high sensitivity and specificity. Furthermore,
the mean normalized entropy (MNE) is also much lower, indicating that the proposed al-
gorithm yields network alignment results that are more functionally coherent. This table
shows that BEAMS yields higher CN for the CG dataset, although its SPE is lower and
its MNE is higher than the proposed method. Both SMETANA and the proposed algo-
rithm shows similar performance on the CG dataset, but we can also see that the proposed
algorithm consistently outperforms SMETANA on the DMC/DMR datasets.

Multiple network alignment results obtained using the 5-way alignment dataset and
the 8-way alignment dataset show similar trends. Tables 2.3 and 2.4 show that, in most
cases, our proposed algorithm outperforms other algorithms with higher CN, higher SPE,
and lower MNE. For multiple networks alignment, we further compared different net-

work alignment algorithms based on their capability of predicting equivalence classes that
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Figure 2.4: Equivalence class coverage for 5-way network alignment: (a) DMC; (b) DMR;
(c) CG, and node coverage for 5-way network alignment: (d) DMC; (e) DMR; (f) CG [17]
© [2015] BMC.

span all networks, since one of the main goals of multiple network alignment is to find
functionally homologous proteins that are conserved in the networks of all target species.
Simulation results show that, in most cases, our proposed method also yields much higher
CN and SPE as well as lower MNE for equivalence classes that span all networks.

Next, we compared the number of conserved (orthologous) interactions identified by
different network alignment algorithms. As Figure 2.3 shows, the proposed method was
able to identify the largest number of conserved interactions as well as conserved orthol-
ogous interactions in most cases, resulting in higher CI and COI. The performance of
SMETANA was comparable to the proposed method, while other algorithms typically
resulted in lower CI and COI. It is worth noting that more than 95% of the conserved
interactions that were detected by our proposed network alignment algorithm were be-

tween correct equivalence classes (i.e., conserved orthologous interactions). This certainly

23



2000 2000
18 species 18 species [E—18 species

17 species 17 species [C_—17 species
1500 ||=—] 6 species [C—16 species [C—16 species
15 species [C—J 5 species [C—15 species
1 4 species 1500 H] 4 species 1500 H14 species
1 3 species [ 3 species 13 species
[ 2 species [ 2 species [ 2 species
1000 |11 species [C—1 1 species [C—11 species
1000 H 1000 H
500 500 - 500 -
0 L L L L L 0 L L L L L 0 L L L L
Proposed ~ SMETANA ~ BEAMS  NetCoffee  IsoRankN Proposed ~ SMETANA ~ BEAMS  NetCoffee  IsoRankN Proposed  SMETANA ~ BEAMS  NetCoffee  IsoRankN
8000 [ 8000 - 8000 |-
6000 6000 6000 1
4000 H 4000 H 4000 H
2000 2000 || 2000 | i
L L L T L 0 L L L T L 0 L L L T L
Proposed SMETANA BEAMS NetCoffee IsoRankN Proposed SMETANA BEAMS NetCoffee IsoRankN Proposed SMETANA BEAMS NetCoffee IsoRankN

Figure 2.5: Equivalence class coverage for 8-way network alignment: (a) DMC; (b) DMR;
(c) CG, and node coverage for 8-way network alignment: (d) DMC; (e) DMR; (f) CG [17]
© [2015] BMC.

shows that our method can effectively detect biologically meaningful conserved interac-
tions through network alignment.

We also analyzed the overall coverage of the predicted alignment results for the 5-
way and 8-way network alignments. The results are shown in Figure 2.4 for the 5-way
network alignment and in Figure 2.5 for the 8-way network alignment. For the 5-way
network alignment, we can see that around 40% of the equivalence classes predicted by
the proposed method contained nodes from all 5 networks. SMETANA shows a similar
level of coverage, while for the remaining algorithms, only about 30% of the predicted
equivalence classes included nodes from all 5 networks. The overall node coverage also
shows similar trends. The 8-way alignment results summarized in Figure 2.5 show that
the proposed algorithm can effectively find equivalence classes with good coverage, which

include nodes from a large number of networks. For example, we can see that around 40%
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Algorithms Pairwise 5-way 8-way Average
Proposed 117.8 273.1  178.7 189.8
SMETANA 6.9 58.0 70.7 45.2
BEAMS 42.4 134.8 3338 170.3
PINALOG 77.1 . . 77.1
NetCoffee . 1327 225.7 179.2
IsoRankN  1083.7 3326.1 2694.8 2368.2

Table 2.5: Mean computation time for aligning PPI networks in the NAPAbench datasets
(in seconds) [17] (© [2015] BMC.

of the equivalence classes predicted by the proposed method contained nodes from all 8
networks.

Table 2.5 shows the mean computation time of the respective algorithms for aligning
the network families in the NAPAbench datasets. As we can see in Table 2.5, SMETANA
requires the least amount of time for aligning the networks in NAPAbench, while Iso-
RankN needs the most computation time. In our simulations, we observed that NetCoffee
runs relatively fast, although its computation time varies significantly depending on the
network structure. For example, it took much longer to align networks in the DMR dataset
using NetCoffe, compared to networks in the DMC or CG datasets.

For further evaluation, we performed additional experiments using real PPI networks
in IsoBase. Table 2.6 shows the pairwise network alignment performance of the tested
algorithms for several PPI network pairs. As we can see in this table, the proposed algo-
rithm consistently performs fairly well in all cases, outperforming the other algorithms.
We can make similar observations in Table 2.7, which summarizes the performance eval-
uation results for aligning 3 PPI networks. The proposed algorithm attains high CN, high
SPE, and low MNE across all cases, showing that it can effectively compare and accu-
rately align real PPI networks. BEAMS shows good performance on multiple alignment

of real networks that is comparable to the proposed method, with a slightly lower SPE
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H.sa-S.ce D.me-S.ce C.el-S.ce
CN SPE MNE CN SPE MNE CN SPE MNE
Proposed 1307 0.689 0.310 1725 0.727 0.277 1543 0.796 0.196
SMETANA 1190 0.671 0.331 1579 0.709 0.295 1443 0.771 0.222
BEAMS 1306 0.649 0.347 1636 0.675 0.320 1499 0.742 0.247
PINALOG 1100 0.682 0.324 1368 0.722 0.289 640 0.737 0.266
IsoRankN 1367 0.765 0.238 1641 0.777 0.230 1458 0.843 0.155
Node Similarity 1486 0.740 0.259 1832 0.779 0.224 1670 0.831 0.163
D.me-H.sa D.me-C.el C.el-H.sa
CN SPE MNE CN SPE MNE CN SPE MNE
Proposed 2681 0.724 0.279 2714 0.855 0.146 1995 0.771 0.224
SMETANA 2274 0.671 0.331 2458 0.827 0.175 1684 0.737 0.255
BEAMS 2612 0.658 0.338 2738 0.808 0.192 1941 0.691 0.300
PINALOG 1172 0.604 0.412 672 0.689 0.317 482 0.677 0.325
IsoRankN 2635 0.759 0.246 2488 0.851 0.150 1881 0.783 0.216
Node Similarity 2932 0.750 0.251 2897 0.875 0.125 2185 0.770 0.227

Table 2.6: Pairwise network alignment results for real PPI networks [17] (©) [2015] BMC.

D.me-C.el-H.sa S.ce-C.el-H.sa S.ce-D.me-C.el S.ce-D.me-H.sa
CN SPE MNE CN SPE  MNE CN SPE  MNE CN SPE MNE
Proposed 4,331 0.705 0.289 3,077 0.709 0.281 3,581 0.746 0.247 3,637 0.672 0.326
SMETANA 3,871 0.663 0.331 2,625 0.657 0.333 3,227 0.714 0.279 3,108 0.616 0.380
BEAMS 4,354 0.676 0.316 3,084 0.671 0.320 3,606 0.727 0.267 3,629 0.627 0.366
NetCoffee 1,471 0.552 0.451 1,234  0.575 0.426 1,477 0.593 0.414 1,877 0.540 0.465
IsoRankN 4,423 0.717 0.279 3,131 0.711 0.282 3,464 0.749 0.245 3,752 0.684 0.313
NodeSimilarity 4,775 0.746 0.248 3,457 0.737 0.256 3,920 0.798 0.197 4,132 0.719 0.278
Proposed
(all 3-species)
SMETANA
(all 3-species)
BEAMS
(all 3-species)
NetCoffee
(all 3-species)
IsoRankN
(all 3-species)

3,926 0.702 0.290 2,387 0.724 0.265 2,624 0.715 0.271 2,540 0.681 0.315

3,442 0.671 0.323 2,106 0.677 0.312 2,378 0.685 0.301 2,225 0.630 0.363

3,867 0.687 0.304 2,277 0.711 0.278 2,573 0.718 0.272 2,441 0.672 0.318

747 0518 0.478 578 0.528 0.465 713 0.538 0.462 1,167 0.516 0.489

3,757 0.753 0.241 2,323 0.775 0.215 2,470 0.732 0.258 2,510 0.726 0.267

Table 2.7: Multiple network alignment results for real PPI networks (for 3 species) [17]
© [2015] BMC.

and a slightly higher MNE. Additionally, although BEAMS and IsoRankN achieve higher

CN in some cases, the proposed method consistently yields higher CN than these methods
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with comparable SPE and MNE when we consider multiple network alignment results for
regions that are conserved across all networks. Another observation we can make in Ta-
ble 2.6 is that IsoRankN performs very well on real PPI networks compared to the other
more recent algorithms. This is especially interesting, if we consider the fact that the per-
formance of IsoRankN lagged behind the other algorithms according to the large-scale
evaluations using NAPAbench. One possible explanation is that, for constructing the net-
work alignment, IsoRankN relies on node similarity (i.e., sequence similarity in this case)
more strongly compared to the other algorithms. In order to find out whether this is indeed
a plausible explanation, we performed network alignment experiments solely using node
similarity scores (i.e., without considering network topology), where we constructed the
network alignment in a greedy manner by iteratively adding protein pairs with the highest
node similarity scores. The alignment results are shown in Tables 2.6 and 2.7 right be-
low the results for IsoRankN (labeled as “Node Similarity”). Surprisingly, these results
show that this simple greedy network alignment approach that uses node similarity alone
outperforms IsoRankN in most cases and surpasses all the other algorithms in all cases.
In fact, currently available PPI networks are known to be very incomplete and these net-
work typically contain a large number of isolated nodes. They are suspected to include
a large number of spurious interactions while still missing many potential protein-protein
interactions [50, 51]. Furthermore, only a small proportion of proteins in these PPI net-
works have reliable functional annotations (e.g., according to KEGG orthology), making
it difficult to reliably assess the quality of a predicted network alignment. As a result, for
current PPI networks, utilization of topological similarity between networks may not be
necessarily helpful for improving the overall quality of the network alignment across the
entire network. Moreover, since only a few large real PPI networks are available at the
moment, we risk overtraining network alignment algorithms if they are mainly evaluated

solely based on real PPI networks.
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Figure 2.6: Computation time for aligning real PPI networks (in seconds) [17] (©) [2015]
BMC.

Figure 2.6 shows the computation time for aligning the PPI networks in IsoBase.
SMETANA required the least computation time for pairwise network alignment and Net-
Coffee was the fastest among all for aligning the PPI networks of 3 species. Although
IsoRankN yielded accurate alignment results for real PPI networks in IsoBase, it also re-
quired the largest amount of computation time in most cases. Figure 2.6 shows that our
proposed network alignment algorithm requires relatively longer running time compared

to other algorithms, in exchange for the improved alignment accuracy.
2.2.4 Conclusions

In this subchapter, we proposed a novel network alignment algorithm based on a
context-sensitive random walk model. The CSRW model provides an effective mathe-
matical framework for comparing different biological networks and quantifying the node-
to-node correspondence between nodes that belong to different networks. In our proposed
method, we combined the CSRW model with a restart scheme, where the restart proba-
bility is automatically adjusted based on the characteristics of the networks under com-
parison. Furthermore, the proposed network alignment algorithm employs adaptive prob-

abilistic consistency transformation, where the PCT is adaptively activated or deactivated

28



based on the overall structure of the given networks. As we have shown through extensive
performance evaluations based on biologically realistic PPI networks in NAPAbench as
well as real PPI networks in IsoBase, the novel network alignment algorithm proposed
in this subchapter can significantly improve the overall accuracy of pairwise as well as

multiple network alignment.
2.3 Network querying through the context-sensitive random walk model
2.3.1 Background and motivtion

Protein-protein interaction (PPI) plays pivotal roles in understanding biological sys-
tems. Diverse functional modules in cells, such as signaling pathways and protein com-
plexes, involve numerous proteins and their functions are governed by the intertwined
interactions among these proteins. For this reason, to better understand the functions and
roles of proteins in cells, it is critically important to investigate how groups of proteins
collaborate with each other to perform certain biological functions and achieve common
goals, in addition to studying the functions of individual proteins. Recent advances in tech-
nologies for high throughput measurement of protein-protein interactions have enabled
genome-scale studies of protein interactions, and systematic analyses of the available PPI
networks may reveal new functional network modules and unveil novel functionalities of
the proteins that are involved in such modules. Recent investigations of PPI networks
show that functionally important network modules (e.g., molecular complexes and path-
ways) are often well conserved across networks of different species [9, 24]. These ob-
servations clearly point to comparative network analysis [10] as a promising solution for
effectively analyzing large-scale PPI networks, detecting common functional modules that
are embedded in the networks, and predicting the functions of proteins that comprise these
modules.

Network querying is one possible way of comparatively analyzing biological networks,
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which can be especially useful when prior knowledge of functional modules is available
for a given species. As implied in its name, network querying aims to find out whether
a target network (typically, belonging to another species) contains network modules that
resemble the module that is being used as the query [10]. This provides an efficient way
of transferring knowledge between species, since we could use computational means to
predict potential network modules in a new (or less-studied) species that may have sim-
ilar functions, structures, and underlying mechanisms to well-studied modules in other
species.

Several network querying algorithms have been proposed [11, 25, 52, 53, 54, 55, 56,
57, 58]. PathBLAST [52] is one of pioneering network querying algorithms, but it can
search only linear pathways and the computational complexity limits the size of the query
network. QPath [53] can search much longer pathways than PathBLAST and QNet [25]
can search both linear pathways and tree structure, but both algorithms still requires high
computational complexity and searching capability is limited to either a pathway or a tree.
PathMatch [54] solves a network querying problem by finding the longest weighted path in
a directed acyclic graph (target network) and GraphMatch [54] finds highest scoring sub-
graphs in a target network using an exact algorithm. SAGA [55] solves an approximated
graph matching based on the fragment index, where it is the index on a small substructure
of graphs in a database, and SAGA employs a flexible model for node gaps/mismatches
and network structural variations. NatalieQ [56] identifies the querying results by solving
the integer linear programming through Lagrangian relaxation combined with a branch-
and-bound approach. TORQUE [57] proposed a topology-free network querying algo-
rithm. That is, it only requires a set of proteins in the query network and it does not
necessary to provide the topological structure of the query network. TORQUE finds a
connected set of matching proteins through a dynamic and integer linear programming

based on a sequence similarity of proteins. RESQUE [11] estimates the node-to-node cor-
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respondence through a semi-Markov random walk (SMRW) model[14]. Then, RESQUE
iteratively removes less relevant nodes in the target network and identifies the best match-
ing subnetwork through either a Hungarian method or identifying the largely connected
subnetwork. Corbi [58] estimates a matching probability of nodes in the query and target
network through a conditional random field (CRF), and identifies the matching subnetwork
through iterative bi-directional mapping.

Most of the aforementioned network querying methods consider both node similarity
and ropological similarity between the query and the target networks to detect matching
subnetworks in the target network. Node similarity between nodes that belong to differ-
ent networks is typically measured based on sequence similarity. Topological similarity
between (sub)networks are measured in various ways to capture the molecular interaction
patterns that are conserved across networks. Incorporating both types of similarities has
been shown to be crucial in making biologically relevant predictions about conserved func-
tional modules [9, 10, 24, 59]. However, one important aspect of network module detection
that is often neglected in network querying is that such modules are often well separated
from the rest of the network. In fact, this separability has played critical roles in “non-
comparative” network analysis methods that aim to detect modules or sub-communities in
a given network [60, 61, 62], since molecules in a functional module tend to be densely
connected to other molecules in the same module but loosely connected to nodes that are
not part of the module. Although identifying densely connected subnetwork modules is
not the main objective of network querying, explicitly incorporating separability criterion
into comparative network analysis methods has strong potentials to enhance the quality of
the predictions [63].

In this subchapter, we propose a novel network querying algorithm called SEQUOIA
(Significance Enhanced QUerying Of InterAction networks). The proposed algorithm is

built on the following important concepts: (i) effective estimation of node correspondence
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— or overall functional similarity between nodes in different networks — by sensibly com-
bining sequence similarity and interaction pattern similarity through a random walk model;
and (ii) minimization of network conductance of potential network modules, thereby iden-
tifying matching modules in the target network that are well separated from the rest of the
network. In our proposed algorithm, we first estimate the node correspondence based on
a context-sensitive random walk model [16, 17], and select a seed network based on the
estimated node correspondence scores. Then, the seed network is iteratively extended by
adding the nodes that maximally reduce the conductance of the subnetwork. Finally, the
significance enhanced querying result is achieved by keeping the nodes with acceptable ex-
tension reward scores, which are updated for every node at each extension step. Through
extensive evaluations based on real biological complexes, we show that SEQUOIA can re-
markably enhance the biological significance of the network querying results by estimating
the node correspondence based on the CSRW model and minimizing the conductance of

matching network modules.
2.3.2 Methods

Suppose that we have a query protein-protein interaction (PPI) network represented
by a graph Gg = (Vg, Eg), which has a set of nodes Vg = {vy, v, ...} and set of edges
Eo = {ei;}. A protein in the query network is represented as a node v; € Vg in the graph
Go and the interaction between two proteins v; and v; is represented by an edge e; ;, whose
weight w; ; reflects the strength (or confidence) of the interaction. Similarly, suppose we
are also given a target PPI network represented by a graph G- = (Vr, £7). We define the
size of a network as the number of nodes in the given network, hence the size of the query
network is [Vg| and that of the target network is |Vr|. Typically, in a network querying
problem, the size of the target network is significantly larger than the query network (i.e.,

Vo| < |Vr|). We assume that a pairwise node similarity score s (v,,v;) is available
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Deleted node

Query network Target PPI network

Figure 2.7: Illustration for the query network and conserved subnetwork in the target
network. Gray colored nodes in the target network are irrelevant to the query network.
Pink colored node is deleted in the target network, and blue colored node is inserted in the
target network. Note that the inserted node in the target network is deleted in the query
network, and vice versa [18] (©) [2017] BMC.

Vv, € Vg and Vv, € V7, reflecting the molecular level similarity between the proteins in
the query network and the target PPI network. In this study, we use the BLAST bit score as
the pairwise node similarity score as in most network querying and alignment algorithms.

The main objective of network querying is to find the conserved subnetwork QT =
(1}% (‘:’T> within the target PPI network G = (V7,&7) that bears the largest overall
functional similarity to the given query network Go. Therefore, we can formulate the

network querying problem as the following optimization problem:
Gy = argmax f (7,00 . (2.8)
Gr€GT

where Gt is the set of all possible subnetworks of the target PPI network, and f (G, G,)

is a function that measures the overall functional similarity between two networks G, and
Gy.

The network querying problem can be reformulated as a subgraph isomorphism prob-
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lem, whose goal is to find a bijection between two graphs. In order to find a one-to-one
mapping, deleted nodes can be modeled as dummy nodes so that an inserted node in the
query network can be mapped to a dummy node in the target network, and vice versa.
The subgraph isomorphism problem is known to be NP-complete [64], hence the exis-
tence of a polynomial time algorithm for solving the problem is unknown. Furthermore,
it is also not straightforward to quantitatively estimate the overall functional similarity
f(G., G,) between two networks G, and G, in such a way that is biologically meaningful.
As a result, it is practically challenging to effectively formulate the optimization prob-
lem in (2.8) and solve the problem for large-scale networks in a computationally efficient
manner [11, 25, 57]. A reasonable way to estimate this functional similarity is to de-
fine f (G,,G,) by sensibly combining the node similarity and the topological similarity
between the networks under comparison [10]. Given a reasonable f (G,, gy), heuristic
optimization schemes may have to be employed to make the optimization problem (2.8)
computationally tractable.

Before computing the node correspondence scores based on the CSRW model, we
perform two pre-processing steps. First, we reduce the target network by removing poten-
tial non-homologous nodes. Specifically, we remove every node v, in the target network
whose node similarity s (v, v;) never exceeds a given threshold 7}, for any of the query
nodes v, € Vo. In this study, we set the threshold 7}, as 0, such that a node is kept in the
target network if it has at least one query node with nonzero similarity score. Removing
target nodes that do not have any homologous node in the query network can significantly
reduce the computation time as well as the memory requirement. Second, since removing
non-homologous nodes may make the target network disconnected, we insert a pseudo-
edge between nodes that are likely to share similar functionalities, motivated by the fact
that proteins with direct interactions are more likely to share similar functionalities [65].

For this purpose, we assumed that any two nodes in the target network are likely to share
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Figure 2.8: Example for the pre-processing: removing non-homologous nodes [18]
© [2017] BMC.

Query network Target network Query network Target network

(a) Before inserting pseudo edges: pink col- (b) Target network with pseudo edges. Red
ored proteins in the target network share the colored edges are inserted pseudo edges be-
common potential homologous protein (yel- tween two proteins having a common poten-
low colored) in the query network. tial homologous node in the query network.

Figure 2.9: Example for the pre-processing: inserting pseudo edges [18] (©) [2017] BMC.

similar functionalities and may potentially have a direct interaction if they have a common
node in the query network with high node similarity. However, to refrain from inserting
too many false-positive pseudo edges, we only insert a pseudo edge if the two nodes under
consideration belong to different subnetworks that are disconnected from each other.
After pre-processing the target network, the CSRW model is used to estimate the cor-

respondence between nodes in the query and the target networks. The resulting node
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correspondence score matrix C is normalized to obtain the normalized score matrix C
using the normalization method proposed in [13]:

C:%[JL-C+C-JR]. (2.9)
The matrix C is a [Vg| x |V| dimensional matrix containing the normalized node corre-
spondence scores, Jy, is a |Vg| X |Vg| dimensional diagonal matrix with the diagonal term
Ji(g,q) = 1/2?2' c(vg,vt), and Jg is a |Vr| x |Vr| dimensional diagonal matrix with
the diagonal term Jg (¢,t) = 1 / leigl' ¢ (vg, v¢). This normalization step aims to estimate
the relative significance between corresponding nodes, which has been shown to be useful
for comparing networks of different size [13]. Based on the normalized correspondence
score C, we iteratively select N seed nodes in the target network based on the following

rule:

argmin | [] (1—2(vg,v)) ]| (2.10)

vt vg€Vo
The above selection rule aims to identify the nodes in the target network that have a
large number of highly corresponding nodes in the query network. The score ¢ (v,, v¢)
will be close to 1 for a highly corresponding node pair (v,,v;). Therefore, the product
qu Vo (1 — ¢ (vy,vy)) will approach O for a target node v; (i.e., a potential seed node)
that has a large number of query nodes v, € Vg with a high node correspondence score
¢ (vg, v¢). This is based on an assumption that a target node with a larger number of rele-
vant nodes in the query network may be more likely to be involved in similar functions as
the query network compared to a node that has fewer corresponding nodes. After select-
ing the N seeds, we find the largest connected subnetwork based on the Ng seed nodes,
which is referred to as the seed network. In this work, we set Ny = |Vo| so that the size

of the seed network does not exceed the size of the query network.
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Once the seed network is obtained, we iteratively extend the network by adding nodes
that can make the extended network well-separated from the rest of the network. To this
aim, we estimate the conductance of the subnetwork and define the extension reward score
for each node as follows. First, given a network G = (Vg, &), suppose that we have a
Gaussian surface enclosing the subnetwork H = (V;, Ex) such that # C G. Then the
conductance ¢ of the subnetwork H is defined as the number of edges that pass through
the surface divided by the volume of the subnetwork (i.e., the number of edges that are

enclosed by the surface) [66, 67]. The conductance of the subnetwork H is given by

_ Heigli € Vg € Vi)
¢o(H) = min (Jvol Vi), vol (Vi)'

2.11)

where H = (Vg\Vy, E\Ex), and vol Vy) = 3. d(u), where d (u) is the degree of

uEVy
the node u. In a network querying problem, since the conserved subnetwork is typically
significantly smaller than the rest of the target PPI network, the volume of the query-

ing result is also much smaller than the volume of the rest of the target network, i.e.,

vol (V) < vol (Vg). Hence, the conductance of the subnetwork H becomes

[{eisli € Vi, j € Vadl  [Heigli € Vi, j € Vil

o) = v [{eisling € Vull

(2.12)

Second, we define the extension reward score for a given node as the number of newly
added neighboring nodes during the extension step. That is, in each extension step, when
we add a new node, all neighboring nodes in the extended subnetwork will get an extra
extension reward score of 1. Based on the extension reward score, we can measure the
contribution of each node towards making the subnetwork dense. A node with a higher
extension reward score interacts with a larger number of newly added nodes, playing a

more significant role in making the subnetwork dense after adding the new nodes.
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Algorithm 1: SEQUOIA network querying algorithm
Data: Query and target network, pairwise node similarity score
Result: Best matching subnetwork in the target network for the given query
begin

1 Data pre-processing: 1) Removing non-homologous nodes and ii) Inserting
pseudo-edges
2 Compute the normalized node correspondence C using Eq. (2.9)
3 Select the seed network Gs = {Vs, Es} using Eq. (2.10)
while |Gs| <2 Ng or Yeurrent < B+ Pprevious 40
4 Find the set of neighboring nodes N of the network Gs
5 Compute the conductance ¢; for the extended network {Vs U v, }, for each
v, Yo €N
6 Find the node v;» = arg min ¢y
t
7 Extend the network Gg, i.e., Vs = {Vs U v} and
gg == {5,3 U 61"]‘} ,VZ € VS,\V/j € Vg
8 Update the current conductance peyyrent = Qi
9 Update the extension reward score 7 (v;) = r (v;) + 1, Vo, € N (v4+)
end
10 Remove nodes in Gs whose extension reward score is 0 while keeping the initial
seed nodes.
end

In each extension step, we add the node which is densely connected to the nodes within
the extending network and loosely connected to the nodes out of the extending network, in
order to minimize the conductance defined in (2.12). We repeat the extension steps until
there is no more neighboring node that can reduce the current conductance by more than 5
percent or until the size of extending network exceeds twice the size of the query network,
whichever occurs first. Once the extension process comes to an end, we remove all nodes
whose extension reward score does not exceed a certain threshold. This is to enhance the
functional coherence of the final querying result, since nodes with fewer interactions are
relatively less likely to share similar functionalities with other neighbors. However, the
original seed nodes are kept in the final result, even if their extension reward score is not

large, since those nodes have high node correspondence to nodes in the query network. In
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this study, we set the threshold for node removal as 0, so that nodes that do not interact
with any of the newly added nodes are removed in the final querying result. The over-
all procedure of the proposed SEQUOIA network querying algorithm is summarized in

Algorithm 1.
2.3.3 Results

To assess the performance of SEQUOIA, we carried out network querying experiments
based on the real PPI networks of three different species — H. sapiens (human), S. cere-
visiae (yeast), and D. melanogaster (fly) — obtained from [68]. PPI networks in [68] were
originally obtained from the STRING database [69], but interactions between proteins
without experimental validation were removed. The human PPI network contains 12,575
proteins and 86,890 interactions, the fly PPI network contains 8,624 proteins and 39,466
interactions, and the yeast PPI network contains 6,136 proteins and 166,229 interactions.

As the query networks, we used protein complexes obtained from [57], comprised of
complexes in three species: H. sapiens, S. cerevisiae, and D. melanogaster. Furthermore,
we expanded the query set by adding the latest version of human complexes obtained
from CORUM [70], and yeast complexes from SGD [71] (as of Jan. 5, 2015). Finally, as
in [57, 11], we selected connected complexes of size 5~25 and used them as our query
networks (863 complexes in total). We assessed the performance of SEQUOIA based on
the 863 real protein complexes, where 293 human complexes were searched against the
fly PPI network, 289 human complexes were searched against the yeast PPI network, 141
yeast complexes were searched against the human PPI network, and 140 yeast complexes
were searched against the fly PPI network. Since there are only a small number of test
cases for querying fly complexes against human and yeast PPI networks, we excluded
those experiments in this study.

The performance of SEQUOIA was compared against several state-of-the-art algo-
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rithms, which include: RESQUE [11], Corbi [58], NatalieQ [56], HubAlign [34], and
LocalAli [72]. Although HubAlign and LocalAli are global and local network alignment
algorithms, respectively, we used those algorithms to identify conserved subnetworks as
network querying can be viewed as a special case of pairwise network alignment. For
Corbi, we used the default parameters for the gap penalty and set the option for the query
type as 1, which is for general network querying. For HubAlign, we used the default pa-
rameters (i.e., A = 0.1 and o = 0.7). We also used the default parameter for NatalieQ.
For LocalAli, we set the minimum number of extension (-minext) to 0 and the maximum
number of extension (-maxext) to 25, since the size of the query networks ranged between
5 to 25. Default values were used for other parameters. Since LocalAli identifies multiple
local complexes as its output, we selected the complex with the best score as the querying
result of LocalAli.

To assess various aspects of the network querying algorithms, we defined several per-
formance metrics. First, we used the matching score to count the number of matches for
each query and target species pair [73]. Given two biological complexes () and C, the
matching score is computed based on the Jaccard index between the nodes in the two

biological complexes as follows:

Vo N Vel
match_score (Q,C) = ————, 2.13

where Vy is the set of nodes in the complex X. If the matching score is greater than
the threshold, the two complexes were regarded to be a match. As in [73], we set the
threshold for the matching score as 0.5. To count the number of matches, we used the
known biological complexes as our gold standard reference C = {C}, Cs, ..., Cnx }. Given
the querying result ();, if there is at least one matching complex C in the gold standard

reference, we counted (); as a match. Then, we report the total number of matches for each
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query and target species pair. That is, given the querying results Q = {Q1,Qa,...,Qu }

for the M query complexes, we count the total number of querying results

{Qi|match_score (Q;,C;) > 0.5,YC; € C,VQ; € Q}|. (2.14)

Next, we defined two different types of hits that respectively measure: 1) the accuracy
of the obtained querying results and 2) the capability of detecting novel functional network
modules with strong biological significance. The former counts the number of querying
results whose annotation is identical to the functional annotation of the query network so
that it can assess the capability of a given algorithm to identify the conserved functional
modules. The latter counts the number of querying results with strong biological signifi-
cance, regardless of whether or not they have the same functional annotation as the query,
so that it can be used to assess the ability of the network querying algorithm to predict
novel potential functional modules in the target PPI network.

To evaluate the accuracy of the querying results, we picked the most significantly en-
riched GO term of the query network (referred to as the significant GO term). Note that the
most significantly enriched GO term denotes the GO term with the lowest false discovery
rate (FDR) corrected p-value. To this aim, we performed GO enrichment tests for the query
network and the querying result. If the significant GO term in the query is also enriched
in the network querying result and if its FDR corrected p-value is less than a threshold, we
regarded the querying result as a significant hit. However, a higher number of significant
hits do not necessarily imply that the network querying algorithm yields accurate results,
since the querying results may potentially include a large number of functionally irrelevant
proteins (i.e., proteins whose annotation does not include the significant GO term). For
this reason, in order to assess the accuracy of the querying results, we additionally defined

two important performance metrics: the significant specificity (SPE) and the significant
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functionally coherent (FC) hit. Significant SPE is defined as the relative proportion of
the proteins annotated with the significant GO term among the proteins included in the
querying result. Based on this definition, an accurate querying result with fewer irrelevant
proteins will have a higher significant SPE. Significant FC hits were defined as hits that
satisfy the following two conditions: 1) FDR corrected p-value should be less than a cer-
tain threshold, and 2) at least 50% of the proteins included in the querying result should
be annotated with the significant GO term. A network querying algorithm that can yield
a larger number of significant FC hits can be viewed as being more accurate and being
capable of making better predictions that are biologically more significant.

Next, in order to assess the capability of detecting novel potential functional network
modules, we investigated the biological significance of the querying results. To this aim,
we performed the GO enrichment test only for the querying result (i.e., not for the query
network) and selected the GO term with the smallest FDR corrected p-value as the most
significantly enriched GO term. If the FDR corrected p-value of the most significantly
enriched GO term of the querying result is less than a threshold, we regarded the querying
result as a hit. A querying result with a small FDR corrected p-value can be viewed
as being biologically significant, even if the most significantly enriched GO term of the
querying result and that of the query network do not match. As aresult, for a given network
querying algorithm, we can assess its capability of detecting potential functional network
modules by measuring the number of hits. Furthermore, we defined the specificity as the
relative proportion of proteins (in the querying result) that are annotated with the most
significantly enriched GO term among all proteins included in the querying result. As
before, we defined a hit as being functionally coherent (FC) — hence called a FC hit — if
the FDR corrected p-value is less than a certain threshold and if more than 50% of the
proteins in the retrieved result are annotated with the most significantly enriched GO term.

We used the latest version of GO::TermFinder [74] for the GO enrichment test, and
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analyzed the querying results based on three different ontology aspects: 1) cellular com-
ponent (CC, GO:0005575), 2) biological process (BP, GO:0008150), and 3) molecular
function (MF, GO:0003674). In the following, we mainly present the assessment results
based on the ontology aspect of “cellular component”. The ontology and annotation files
for the three species considered in our study have been downloaded from Gene Ontology
Consortium [75, 76] (as of Feb. 9 2015). Then, we removed all GO terms without exper-
imental evidence. That is, we only used GO terms having one of the following evidence
codes: ‘EXP’, ‘IDA’, ‘IPT’, ‘IMP’, ‘IGI’, and ‘IEP’. Additionally, due to the hierarchical
structure of GO terms, certain GO terms are annotated to a large number of proteins, where
such commonly appearing GO terms would not be very informative. In order to use the
GO terms that are informative, we computed the information content (IC) for each GO

term as recommended in [75]. IC is defined as

9]

e (9) = —log, W,

(2.15)

where |g| is the total number of proteins with the GO term g, and |root (g)| is the number
of proteins under the root GO term of the GO term g. Note that there are three root GO
terms: cellular component (CC, GO:0005575), biological process (BP, GO:0008150), and
molecular function (MF, GO:0003674). In this study, we only used the GO terms whose
information content is at least 2.

Figure 2.10 shows the number of matches for each query-target species pair. The figure
shows that SEQUOIA yields the largest number of matches among all tested algorithms for
all query-target pairs. When querying human complexes against the fly and the yeast PPI
networks, SEQUOIA clearly outperforms other methods. When querying yeast complexes
against the human and the fly PPI networks, NatalieQ shows comparable performance to

SEQUOIA, although SEQUOIA still yields a larger number of matches compared to all
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Figure 2.10: Number of matches for each query and target species pair (i.e., query species
— target species) [18] (© [2017] BMC.

other methods. Overall, SEQUOIA resulted in 188 matches, which is almost 32 percent
more compared to the number of matches achieved by the next best algorithm, NatalieQ.
Figure 2.11 shows the number of significant hits and significant FC hits for all 863
querying results. As we can see in Figure 2.11a, SEQUOIA yields a larger number of
significant hits compared to other algorithms. This means that SEQUOIA can more accu-
rately identify conserved functional network modules with the significant GO term, (i.e.,
the most significantly enriched GO term in the query network). RESQUE family yielded
similar number of significant hits at the p-value threshold of 0.05, but SEQUOIA outper-
formed both RESQUE-C and RESQUE-M when a smaller p-value threshold was used.
Except for SEQUOIA and RESQUE-C, the number of nodes in the querying result is gen-
erally smaller than that in the query network for other tested algorithms. As a consequence,

many algorithms may fail to identify inserted nodes and yield fewer significant hits.
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Figure 2.11: Number of significant hits and significant functionally coherent (FC) hits for
the 863 query complexes [18] © [2017] BMC.

Figure 2.11b shows that SEQUOIA yields a larger number of significant FC hits com-
pared to other algorithms. This implies that SEQUOIA produces more accurate querying
results that are functionally more coherent. Compared to SEQUOIA, the number of signif-
icant FC hits for Corbi decreases quickly as the p-value threshold decreases. Interestingly,
although RESQUE family shows similar performance in terms of the number of significant
hits, the number of significant FC hits for RESQUE-C is much smaller than RESQUE-M.
This result shows that using a more sophisticated method to predict the best matching
subnetwork would be needed to obtain better querying results that are functionally more
coherent. In fact, RESQUE-C uses a relatively simple approach to find the best match-
ing subnetwork, which is to find the largest connected subnetwork in the reduced target
network, and this may increase the chances of including a larger number of functionally
irrelevant nodes in the final querying result. SEQUOIA results in higher significant hits as
well as higher significant FC hits by minimizing the network conductance of the matching

subnetwork and filtering out potentially irrelevant nodes based on the extension reward
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Identified nodes Annotated nodes’  Significant SPE

SEQUOIA 9,537 2,568 0.269
RESQUE-C 10,213 2,115 0.207
RESQUE-M 7,000 1,941 0.277

Corbi 4,761 1,149 0.241

HubAlign 7,342 1,526 0.208

NatalieQ 5,452 1,745 0.320
LocalAli 6,220 892 0.143

 Annotation corresponding to the most significantly enriched GO term in the query network.

Table 2.8: Significant SPE for the ontology aspect of “cellular component” [18] (©) [2017]
BMC.

score.

The number of identified nodes included in the querying results and the number of
nodes annotated with the most significant GO term are summarized in Table 2.8. The
table shows that NatalieQ and RESQUE-M achieve higher significant SPE compared to
SEQUOIA, but it should be noted that SEQUOIA can identify a much larger number of
“annotated nodes” while keeping relatively higher significant SPE compared to other algo-
rithms. The total number of identified nodes is comparable for SEQUOIA and RESQUE-
C, although SEQUOIA results in a much higher significant SPE compared to RESQUE-C.
From the perspective of potential knowledge transfer from a well-studied species to a less-
studied species, the ability to achieve higher significant SPE is critical, as it implies that
the network querying algorithm may be able to annotate the proteins in the querying result
more accurately.

Figure 2.12 shows the number of hits and the number of FC hits for various FDR
corrected p-value thresholds. Feasible hits in each figure correspond to the total number
of query complexes, which is the maximum number of hits that can be achieved. As we
can see in Figure 2.12a, SEQUOIA clearly outperforms other algorithms for various p-

value thresholds. For example, at a p-value threshold of 1E-10, SEQUOIA yields 29%
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Figure 2.12: Number of hits and FC hits for querying 863 biological complexes [18]
© [2017] BMC.

more hits than RESQUE-C, which is the next best algorithm. These results indicate that
SEQUOIA has stronger potentials to identify novel protein complexes compared to other
state-of-the-art algorithms.

Next, we compared the number of FC hits for different network querying algorithms.
Figure 2.12b shows that SEQUOIA clearly outperforms other algorithms. For example,
SEQUOIA can identify 11% more FC hits than NatalieQ at a p-value threshold of 0.05 and
almost twice as many FC hits compared to RESQUE and NatalieQ at a p-value threshold
of 1E-15. LocalAli and NatalieQ fail to yield querying results in some test cases (i.e., these
algorithms cannot identify any protein node in the target network). LocalAli and NatalieQ
may not perform robustly under certain conditions (e.g., for certain query topology), which
may result in a smaller number of hits. The results in Figure 2.12b show that SEQUOIA’s
performance is more robust compared to many other algorithms, and that SEQUOIA can
more effectively detect conserved network modules with high functional coherence.

Finally, we also evaluated the functional coherence of the querying results for each
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Identified nodes Annotated nodes* SPE

SEQUOIA 9,537 5,531 0.580
RESQUE-C 10,213 5,002 0.492
RESQUE-M 7,000 3,856 0.551

Corbi 4,761 2,486 0.522

HubAlign 7,342 3,822 0.521

NatalieQ 5,452 3,324 0.610
LocalAli 6,220 2,170 0.349

 Annotation corresponding to the most significantly enriched GO term in the querying result.

Table 2.9: SPE for the ontology aspect of “cellular component” [18] (©) [2017] BMC.

algorithm. To this aim, we selected the most significantly enriched GO term in the query-
ing result obtained by each algorithm for each query, and compute the relative proportion
of proteins annotated with the most significantly enriched GO term. The results are sum-
marized in Table 2.9. With the exception of NatalieQ, SEQUOIA achieves the highest
SPE compared to all other algorithms. Although NatalieQ results in the highest SPE, SE-
QUOIA can identify about 66% more annotated nodes (i.e., proteins annotated w