INTEGRATING MULTIPLE SKETCH RECOGNITION METHODS TO
IMPROVE ACCURACY AND SPEED

A Thesis
by
SIDDHARTHA KARTHIK COPESETTY

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Chair of Committee, Tracy Hammond
Committee Members, Yoonsuck Choe

Daniel Goldberg
Head of Department, Dilma Di Silva

August 2016

Major Subject: Computer Science

Copyright 2016 Siddhartha Karthik Copesetty

ABSTRACT

Sketch recognition is the computer understanding of hand drawn diagrams. Rec-
ognizing sketches instantaneously is necessary to build beautiful interfaces with real
time feedback. There are various techniques to quickly recognize sketches into ten or
twenty classes. However for much larger datasets of sketches from a large number of
classes, these existing techniques can take an extended period of time to accurately
classify an incoming sketch and require significant computational overhead. Thus,
to make classification of large datasets feasible, we propose using multiple stages of
recognition.

In the initial stage, gesture-based feature values are calculated and the trained
model is used to classify the incoming sketch. Sketches with an accuracy less than
a threshold value, go through a second stage of of geometric recognition techniques.
In the second geometric stage, the sketch is segmented, and sent to shape-specific
recognizers. The sketches are matched against predefined shape descriptions, and
confidence values are calculated. The system outputs a list of classes that the sketch
could be classified as, along with the accuracy, and precision for each sketch. This
process both significantly reduces the time taken to classify such huge datasets of

sketches, and increases both the accuracy and precision of the recognition.

i

Dedicated to my mother, father, brother, grandmother, grandfather and aunt.

iii

ACKNOWLEDGEMENTS

I would like to thank Dr. Tracy Hammond, my academic advisor for her infinite
levels of energy and positivity. Her enthusiasm, support and encouragement are the
sole reasons this work could be possible.

I would like to thank my committee members, Dr. Yoonsuck Choe and Dr. Daniel
Goldberg.

I would also like to thank my mentor Vijay Rajanna and fellow SRL members

Paul Taele, Ayden Kim, Purnendu Kaul and Josh Cherian.

v

TABLE OF CONTENTS

ABSTRACT . . . o

DEDICATION o

ACKNOWLEDGEMENTS o o .

TABLE OF CONTENTS

LIST OF FIGURES o .

LIST OF TABLES s

1.

2.

INTRODUCTION s e

RELATED WORK o

2.1 Sketch recognition L
2.2 Existing systemso

BIG SKETCH DATA o

3.1 What are sketches?

EXISTING SYSTEM e

4.1 Course of action diagrams
4.2 Architecture
4.3 Sketch representation
4.4 Recognition systemo
441 Grouping
4.4.2 Segmentation Lo
4.4.3 Primitive recognition Lo oL
4.4.4 Dashed primitives
4.4.5 Decision point recognition
4.4.6 Handwriting recognition
4.4.7 CALVIN

Page
ii
iii

v

vii

1X

4.4.8 Phase and boundary lines 27

4.4.9 Areas 27

4.4.10 Decision graphics oo 28

4.4.11 Obstacles 28

4412 ATtrows 28

5. FEATURE SELECTION 30
5.1 Gesture-based recognition L. 31
5.1.1 Freeman’s chaincode 31

5.1.2 Rubine and long oL 32

5.1.3 Dollar recognizerso 33

5.2 Geometry-based recognitiono 33
5.2.1 LADDER sketching language 35

5.3 Vision-based features 35
5.4 Statistical feature-based recognition 38
54.1 Paulson 38

5.5 Extended uses of sketch recognition methods 38

6. THE IMPROVED SYSTEM 45
6.1 Preprocessing oL 45
6.2 Sketch feature extraction oL 45
6.2.1 Direction change ratio for curves 47

6.2.2 Polyline test for corners 48

6.3 Evaluation 48
6.3.1 Highly correlated data 48

6.3.2 Principal component analysis 49

6.4 Rank features by importance 0oL 52
6.5 Feature eliminationo 52
6.6 Classification using wekao oL 53

7. FUTURE WORK 59
8. CONCLUSION s 60
REFERENCES 61

vi

LIST OF FIGURES

FIGURE
3.1 Course of action diagram L.
3.2 Tool used for data collection
3.3 Example of naturally drawn sketch
3.4 XML sketch format oo
3.5 MySQL database with feature values
3.6 Collection of user drawn sketches
3.7 Collection of sketch classes 1
3.8 Collection of sketch classes 2
3.9 Collection of sketch classes 3
3.10 Collection of sketch classes 4
3.11 Collection of sketch classes 5
4.1 Shape descriptiono
4.2 Example results of the grouping algorithm
4.3 The 14 primitive shapes recognized by PaleoSketch
4.4 Example of an anticipated symbol
4.5 List of echelon modifiers
4.6 Reconnaissance cavalry armored unit on the left
4.7 Examples of phase and boundary lines
4.8 Example of obstacles drawn with dynamic patterns
4.9 List of different types of arrowso

vil

Page

5.1
5.2

5.3
5.4
5.9
5.6
5.7
6.1
6.2
6.3
6.4
6.5
6.6
6.7

6.8

6.9

Directions in Freeman’s chain code [31] 31

An example of directions in Freeman’s chain code [11] 32
Single stroke shapes recognized by $1 recognizer 34
The eight different ways an X can be drawn [2] 34

Based on the two-strokes in Figure 5.4, there are eight permutations [2] 35

A shape description for an East Asian character 36
The pixelated versions of a pivot, an alphabet, and a digit [60] 36
Using DCR to differentiate between polylines and arcs [83] 47
Highly correlate matrix for 125 features 50
Principal component analysis plot 51
Rank of features by importance 53
Feature selection plot L. 54
Feature selection results oo 5}
Division into test and train datasets 56

Confusion matrix prior to the improvement, achieving an accuracy of

BTT0 o o o e 57

Confusion matrix after using the improvement, achieving an accuracy

of 86% 58

viii

LIST OF TABLES

TABLE Page
5.1 Longet al. [70] features. L 33
5.2 Paulson [84] featureset 39
5.3 Complete feature list 1, 40
54 Complete feature list 2 41
5.5 Complete feature list 3 42
5.6 Complete feature list 4 Lo 43
5.7 Complete feature list 5 44
6.1 DBest classifiers and their accuracies L. 56

1X

1. INTRODUCTION

A sketch is a rapidly executed rough, freehand drawing that is usually intended to
be a basis for the final work. Sketch recognition is essential [124] in transforming hand
drawn sketches and hand written text into meaningful figures and machine readable
text respectively. It helps in creating interfaces through which users can communicate
in a more natural way, better express themselves [54, 123, 10], learn how to draw, and
even get better at drawing. Furthermore, these interfaces stimulate both halves of
the brain [104]; improving users’ general academic achievement and problem-solving
skills [100], honing their analytical skills [26], and improving peripheral skills such
as writing, critical thinking, and brainstorming when integrating sketching in their
thought processes. Sketching also assists in boosting self-confidence from successful
artistic pursuits [107], and improves three-dimensional spatial recognition skills [108].

To achieve these benefits, users must receive real time feedback from the system
or interface that they are interacting with. Present systems can reliably classify
sketches into ten or twenty classes in real time. However, these ten or twenty classes
do not consist of everything that the user could possibly draw, and classification of
incoming sketches into one of a much larger set of classes can take a significantly
longer period of time. This thesis describes a system that comprises of multiple
recognizers, and can classify the incoming sketch into one of 491 classes at a fraction
of the time current systems take with high accuracy and precision. This increase in
the speed of recognition can aid in the creation of interfaces and systems with real
time feedback.

Real time feedback is vital for creating engaging interfaces. Chen et al. [13]

identified immediate feedback as one of the most important factors to having a

seamless experience for web activities. Keeping users engaged in the experience
through immediate feedback enables them to perform tasks and attain mastery of
skills faster.

Artificial intelligence has given machines and systems the ability to not only learn
from given data but also the capability of discovering new facts about the data [75].
This thesis descibes how artificial intelligence applied on the sketch data can clas-
sify the sketches automatically without human intervention. Gestural features are
extracted and used to perform classification to improve classification of geometric
algorithms. This thesis identifies a subset of gestural features that are critical to the
accurate recognition of a shape, and can increase speed and accuracy of the overall
domain.

The major contributions of this thesis are the accurate and real-time classification
of an incoming sketch, and the identification of how gestural features of the sketch can
be combined with geometric algorithms to identify a sketch. The combined system of

both gestural and geometric methods can perform better than any existing systems.

2. RELATED WORK

With the development and emergence of newer computing technologies, many
researchers, and software developers have focused on applying these technologies in
fields related to sketching. This is true with advancements in hardware devices that
can support digital sketching such as pen-based devices, mobile, tablet, and touch-
screen computers. Before looking into the details of the thesis, this section describes
the related and relevant prior work to understand how this system is different from

existing systems.
2.1 Sketch recognition

Recognition of hand drawn sketches is called sketch recognition. The literature
contains a great extent of research in the field of sketch recognition [37]. Sketch
recognition algorithms can be classified primarily into three categories: gesture-based
recognition, geometry-based recognition, and vision-based recognition.

Gesture-based sketch recognition [103, 132, 69, 22, 14, 15] uses the inherent prop-
erties of the sketch to identify shapes. In these recognition algorithms either the
system learns the user’s style of drawing or the user has to learn the system’s style.
One dollar [132] is a simple recognition algorithm that uses template matching to
identify sketches. Rubine used features including initial angle, sharpness, speed, and
total angle traversed to recognize shapes. These are some of the most popular fea-
tures cited popularly in sketch recognition research and can even be used to predict
the shape before it is completed [72]. Sezgin [105] and Staovich [109] took advantage
of gesture-based features like speed and curvature to distinguish different shapes.

Geometric algorithms [89, 35] recognize shapes by using geometric constraints

that hold for a shape. They allow users to draw shapes naturally [89, 46]. Geometric

recognizers usually do a bottom-up approach where basic shapes such as lines, arcs,
and circles are recognized first [51] and strokes are segmented into their components
at corners [135, 139, 136, 138]. A higher level recognizer is built on top of this
low-level recognizer, which uses geometric constraints [58] to check if the primitive
shapes when put together form a more complex shape [42, 38, 44, 41, 36, 40, 39, 35].
Ladder [46] is a language to describe how sketched diagrams in a domain are drawn,
displayed, and how recognition algorithms can be written for that domain.

Vision-based algorithms [32, 76, 96] use concepts from computer vision similar
to those used on images after preprocessing of the sketches. The screen coordinates
are used by Kara and Stahovich [62] to apply template matching algorithms used in
their recognizer.

All existing algorithms, or their combination [17] enable us to identify different
shapes. Topological information about sketches have also been used for recognition.
This approach works well with sketches having multiple spatial components such as
chemical bonds or complex electrical circuits [81]. This system uses gesture-based
and geometry-based recognition in the initial stage. In the second stage, the system

uses all three recognition techniques.
2.2 Existing systems

There are many systems [131, 86, 95] in the field of sketching. Mechanix [128,
91, 5, 4, 126, 129, 74, 29, 80, 127, 64], which is a sketch-based tutoring system for
engineering students learning statics, allows students to enter free body diagrams,
specifically trusses, into the system, which then automatically checks the student’s
answer against the solution entered by instructor. Maestoso [117] is another sys-
tem, which uses a sketch-based interface in the field of music for novice learners to

learn music. Other representative disciplines where sketch-based systems have been

incorporated include East Asian Languages [116, 118, 120, 121], Math [59, 99], elec-
trical engineering [23], coding [45, 48], and the military [53, 50, 19, 47, 21]. Several
applications can recognize hand-drawn facial features; iCanDraw [24, 52, 73], and
EyeSeeYou [20] detect, recognized, and give feedback on handdrawn faces and eyes.
The Drawing Assistant [56], PortraitSketch [140], and Painting with Bob [8] are the
extensions of iCanDraw and EyeSeeYou, which implement a wider set of figures.
All these systems do well for a limited number of classes. Hammond [49] created
an application that allows military commanders to hand-draw hundreds of course of
action (COA) symbols directly on a digitized map. By utilizing several artificial intel-
ligence techniques, they achieved 89.9% accuracy for 485 symbols when considering

the top three interpretations.

3. BIG SKETCH DATA

This chapter gives an insight into the data we have at hand. We also look into
the actual process of sketching, how a class is defined, what are the different types
of classes, data collection, the amount of data per class, how the data is stored, and
fast retrieval of the data. This is helpful in understanding the nature of the problem
at hand, what the existing systems have to handle, and how my system handles it

with ease, and performs better than the existing systems.
3.1 What are sketches?

Sketching is an integral part in the life of designers and engineers [124]. Sketches
are not only used to document the ideas conceived in one’s mind but also help in
acting as a stimuli for generating more ideas. Sketching allows users to brainstorm
and quickly outline ideas before settling on a final design. Buxton [10] provides
in-depth knowledge of the characteristics of a good sketch. He defines sketches as

having the following qualities:

o “Quick - A sketch is quick to make, or at least gives that impression.
e Timely - A sketch can be provided when needed.

e [nexpensive - A sketch is cheap. Cost must not inhibit the ability to explore a

concept, especially early in the design process.

e Disposable - If you can’t afford to throw it away when done, it is probably not

a sketch.

o Plentiful - Sketches tend not to exist in isolation.

o Clear Vocabulary - The style in which a sketch is rendered follows certain con-

ventions that distinguish it from other types of renderings.

e Distinct Gesture - There is a fluidity to sketches that give them a sense of

openness and freedom.

e Minimal Detail - Include only what is required to render the intended purpose

or concept.

e Appropriate Degree of Refinement - By its resolution or style, a sketch should

not suggest a level of refinement beyond that of a project being depicted.
o Suggest and Fxplore Rather than Confirm - Sketches do not ‘tell’, they ‘suggest’.

o Ambiguity - Sketches are intentionally ambiguous, and much of their value

derives from their being able to be interpreted in different ways”

3.2 What is a class?

A class is defined as anything a user could possibly draw. For example: a
point, a line, a circle, a rectangle, a polyline, a crown, a tree, a combination of
an ellipse, a diamond, and a hyperbola, and so on. Figure 3.1 is an example of a
course of action diagram that comprises of many different classes. It belongs to the
friendly_company _present field artillery_howitzer_rocket_multi_rocket_truck class.

We will see more on course of action diagrams in the next section. We have a
total of 491 different classes and the system can classify an incoming sketch into any
of these 491 classes. To put that into perspective, existing techniques [89, 103, 90, 80]
classify instances into ten or twenty classes. This system analyzed data of a total of

10,000 sketches.

A
‘e

Figure 3.1: Course of action diagram

3.3 Data collection

Using a C# application, data was collected from both students and experts, and
stored as XML files, using the SketchML format from MIT. The interface used to
capture what the user is drawing on screen can be seen in Figure 3.2. The user can
view any of the previous sketches by clicking on the “Load” button on the bottom of
the screen. This is a valuable tool for users to see what an XML actually contains.
Also, to help users while drawing there are a couple of buttons provided on screen
- Clear and Undo. The “Undo” button can be used to erase the latest unintended
stroke on the screen. This helps greatly when the user is drawing a sketch and makes
a mistake after thirty strokes. The “Clear” button erases everything on the screen.
The “Save” button, as expected, saves the sketch in XML format.

The sketches collected are handdrawn and thus not perfect. Figure 3.3 shows a

sketch that is drawn naturally, starting with a jerk, and having lines that extend

Figure 3.2: Tool used for data collection

beyond the corners. To maintain consistency, all of the data was collected using

Wacom Cintiq tablets. Figure 3.4 shows the format in which the sketches are stored.

L

Figure 3.3: Example of naturally drawn sketch

<?xml version="1.0" encoding="UTF-8"7>
<sketch id="128d8d46-6c81-79ca-1bcl-36b1e9f33db5" type="SRL">
<point id="719a288e-3d85-c237-7184-f1d585b68792" pressure="0.0"
tilt_x="0.0" tilt_y="0.0" time="1463008500001" x="547.0" y="273.0"/>
<point id="83213d35-f018-d1lcb-2591-4842c4a7aa58" pressure="0.0"
tilt_x="@.0" tilt_y="0.0" time="1463008500018" x="546.0" y="276.0"/>
<point id="951045a5-bd96-7815-3ed5-5394bac3120e" pressure="0.0"
tilt_x="0.0" tilt_y="0.0" time="1463008500051" x="545.0" y="288.0"/>
<point id="b78e298a-d77e-0193-9f36-4c195f1lcd2a2" pressure="0.0"
tilt_x="0.0" tilt_y="0.0" time="1463008597524" x="540.0" y="610.0"/>
<point id="c024462a-fe63-88al-3bbb-49ee4e9a6682" pressure="0.0"
tilt_x="@.0" tilt_y="0.0" time="1463008597530" x="539.0" y="610.0"/>
<point id="91384c16-4a0b-5679-6434-3968162c803f" pressure="0.0"
tilt_x="0.0" tilt_y="0.0" time="1463008597549" x="538.0" y="609.0"/>

<stroke id="78217b35-f52a-bc9b-b6e8-5a8cbdd7alaa" visible="true">
<arg type="point">719a288e-3d85-c237-7184-f1d585b68792</arg>
<arg type="point">83213d35-f018-d1cb-2591-4842c4a7aa58</arg>
<arg type="point">951045a5-bd96-7815-3ed5-5394bac3120e</arg>
</stroke>

<stroke id="5262bdee-9f79-8602-81b1-30ba2c9d542b" visible="true">
<arg type="point">b78e298a-d77e-0193-9f36-4c195f1lcd2a2</arg>
<arg type="point">c024462a-fe63-88al-3bbb-49eed4e9a6682</arg>
<arg type="point">91384c16-4a@b-5619-6434-3968162c803f</arg>
</stroke>
</sketch>

Figure 3.4: XML sketch format

The x-coordinates, y-coordinates, the time-stamp, and the point ID is saved for
each point. Each individual stroke has a stroke ID and includes the list of point IDs
that they comprise of. 125 feature values are calculated for each of the sketches.
Each line describes a single sketch and consists of the sketch ID, 125 feature values,
and a label associated with it. This led to 7,620,000 cells of data.

To accommodate this much data we used a MySQL database with each tuple
consisting of the sketch 1D, the feature values, and the label. This allowed for the
retrieval of feature values of any sketch with its primary ID. Using a MySQL database
aids in the visualization of the data, as seen in Figure 3.5, and facilitates fast retrieval
of feature values.

Figure 3.6 refers to a collection of different sketches collected through user studies.

10

Figure 3.5: MySQL database with feature values

Figures 3.7,3.8,3.9,3.10,3.11 refer to the collection of sketches the system can

recognize.

11

of user drawn sketches

Figure 3.6: Collection

12

[=1jAV=] 2

Figure 3.7: Collection of sketch classes 1

13

Figure 3.8: Collection of sketch classes 2

14

Figure 3.9: Collection of sketch classes 3

15

[AR
| BLUE |/

Fe

%

Figure 3.10: Collection of sketch classes 4

16

~
1
I

TS 7 A > N
- 1 /
| GREEN M -
1 >
~

4
\
\
-
’
L4
\
\
-
’
<

{ OBJ BOSTON

1 1 (GREEN j

l I 11

! | |
| |

- {? ___/ >l
GREEN [~ 76ATK >\/>
0y / \

e >/J\<‘"_/_/—__/’ % J> — '“?'l""{:} ,>

ATK hg) BOSTO

— > | [omisoston

e %
/-

FINALCL __ FINALCL

[1:]Voll R

Figure 3.11: Collection of sketch classes 5

17

4. EXISTING SYSTEM

To achieve recognition, the system relies on state-of-the-art techniques of sketch
recognition. The research in this field can be categorized into three sub-fields: ge-
ometric recognition, gesture-based recognition, and vision-based recognition. the
system uses all three recognition techniques to identify the shapes of the incoming

sketches.
4.1 Course of action diagrams

One real-world domain that has thousands of symbols is military course of action
(COA) diagrams. Military COA diagrams are used to depict battle scenarios and in-
clude thousands of unique symbols, complete with additional textual, and designator
modifiers. Military commanders use COA diagrams to plan field operations, where
the symbols represent troops, supplies, obstacles, and movement patterns. Currently,
commanders draw COA diagrams by hand on a map for planning purposes, and then
these diagrams are entered into a computer through typical WIMP interfaces for the
purposes of simulation and communicating plans. Previous attempts [7] to apply
sketch recognition to COA diagrams have resulted in systems that can only recog-
nize a handful of the over 20,000 total COA shapes, require users to draw each shape

with a specific gesture, and do not allow users to draw freely (Pittman, et al. [16]).
4.2 Architecture

The interface to help users draw or view sketches is developed in C#. The
sketches are stored in XML format. All the recognition and evaluation algorithms

are written in Java.

18

4.3 Sketch representation

Modern pen-based interfaces record input as a collection of points within a two-
dimensional plane and the current time of input. Points are generated as the pen or
stylus moves over the input device. Each of these points is recorded as an x-y coordi-
nate pair along with a time-stamp. This time-stamp is the current epoch time, which
is the total number of milliseconds that have elapsed since 00:00:00 Coordinated Uni-
versal Time (UTC) on Thursday, 1 January 1970. Collections of time-ordered points
between a pen-down event (a pen touching the sketching interface) and a pen-up
event (the pen lifting off of the interface) are called strokes. A sketch is comprised of
one or more strokes and is defined as a shape when it satisfies geometric constraints.
Figure 3.4 shows the format in which the sketches are stored.

The x-coordinates, y-coordinates, the time-stamp, and the point ID is saved for
each point. Each individual stroke has a stroke ID and includes the list of point IDs

that comprise the stroke.
4.4 Recognition system

This section talks about the different stages of recognition. As a new sketch is
drawn on the interface, it is saved as an XML object in the format seen in Chapter
3. Figure 4.1 shows the shape description, written in XML format. It is needed for
the system to classify a sketch. The various steps in the recognition process are as

follows[49]:

e Phase and boundary line recognition
e Early handwriting and sub-unit recognition (HRS)

e Corner recognition

19

e Primitive recognition

e HRS with primitive context

e Mid-level shape recognition

e HRS with mid-level shape context
e High-level shape recognition

e Arrow recognition

e Multiple shape disambiguation

e SIDCs

The following sections explain the recognition steps in more detail.
4.4.1 Grouping

The previously existing system [49] consists of a number of different recognizers,
including both recognizers that perform well on shapes, and recognizers designed to
interpret decision graphics and text. Basic geometric shapes like rectangles, lines,
and ellipses are recognized using PaleoSketch [89]. Echelon modifiers, text, and
decision graphics are recognized with the help of a handwriting recognizer (HWR).
A grouping algorithm ensures that the best recognizer receives the corresponding
strokes. During the grouping process, the first step is to find the largest stroke.
This is usually the boundary of the unit symbol. Depending on whether they are
present inside or outside of the bounding box of the largest stroke, the remaining
strokes are grouped into two sets as seen in Figure 4.2. Interior strokes are typically
type modifiers, decision graphics or text, and should be processed by the primitive

recognizer. To this end, these strokes are parsed by the HWR initially and marked

20

<?xml version="1.8" encoding="UTF-8"7>
<isAList>
=isA=Shape=/isA>
=/isAList>
ibutelList=
L Source: 25258 document, p. 146, row 4 ——=
<attribqte key="ATTR_SIDC" value="SFGAUCA--—siick" J>
</attributelist>
<component
<!-— the frame [rectangle] --—=
=component name="rectangle" type="Dash_Rectangle” /=
<!== the armor -—=
=compeonent name="ellipse” type="Ellipse” /=
=/componentList>
<constraintlList>
<!== CONTAINING RELATIONSHIPS ===
=!-- rectangle contains ellipse -—=
<constraint name="Contains" thresholdMultiplier="1.8">
<param component="rectangle" /=
<param component="ellipse" /=
=/constraint=

=!-- ellipse contains rectangle's center —-—=
<constraint name="Contains" thresholdMultiplier="1.8">
<param component="ellipse" /=
<param component="rectangle" referencePoint="Center" /=
=/constraint=
</constraintList>
<aliaslist>

<alias name="PT.1" component="rectangle" referencePoint="Center"

</aliasList>
</shapeDefinition>

Figure 4.1: Shape description

the bounding box of the largest stroke.

4.4.2 Segmentation

21

as decision graphics or text if the HWR’s confidence is high enough. Otherwise,
the interior strokes are processed by PaleoSketch for recognition as primitive shapes.

The HWR more often than not recognizes the echelon modifiers that occur outside

The process of breaking down strokes into primitive building blocks like lines and
arcs is called stroke segmentation. The system splits every stroke into a series of
lines. These series of lines (polyline representations of the strokes) are then sent to
PaleoSketch [89]. In order to perform polyline segmentation with high accuracy, the

system uses a combination of multiple recognizers [134, 135, 1, 65, 25].

Figure 4.2: Example results of the grouping algorithm

4.4.3 Primitive recognition

Primitive recognizers are used to accurately recognize strokes as basic building
block shapes. Using high-level shape grammars like LADDER [43], these primi-
tive shapes are combined to form more complex shapes. An extended version of
PaleoSketch algorithm [89] is used for primitive recognition. Figure 4.3 shows the

fourteen different primitive shapes that PaleoSketch can recognize.
4.4.4 Dashed primitives

The Course of Action domain contains a number of anticipated shapes that are
drawn with dashed boundaries and have an arbitrary number of lines. Figure 4.4
represents an anticipated symbol. The first step to recognizing dashed boundaries is
to find occurrences of dashed lines. The system iterates through all the shapes on
the screen as they were drawn while maintaining a stack of dots and lines that could
make a possible dashed line candidate. If it finds significant slope changes or large
gaps between strokes, it might mean that a dashed shape is not present. In that
case, the entire stack of dots and lines is sent to a function that returns a dashed line

if it has more than one shape. Once all the dashed lines have been found, they are

22

(Mr\/\/\/\

[
/\Or‘\?\\O

Figure 4.3: The 14 primitive shapes recognized by PaleoSketch

separated into one of four different bins based on their orientation, namely lines with
positive slope, lines with negative slope, lines within fifteen degrees of vertical slope,
an lines within fifteen degrees of horizontal slope. After sorting them into bins, lines
in the positive and negative slope bins are processed in search of diamonds, while
lines in the horizontal and vertical bins are processed in search of rectangles. By
considering polylines as arcs with dashes, the system is able to recognize dashed
ellipses as well. The system generates an intermediate stroke using the endpoints
and midpoints of the strokes that are stacked up as candidate dashes for an ellipse. If
the intermediate stroke passes the ellipse test, the system groups the strokes together

as a dashed shape.

23

Figure 4.4: Example of an anticipated symbol

4.4.5 Decision point recognition

The decision points in Course of Action diagrams are generally drawn as ten-line
stars. The previously existing system uses a similar approach to that of dashed shapes
to search for stars. Along with checking the spatial distances between consecutive
strokes, it also checks that the angles between lines alternate between acute and

obtuse angles. If the shape in question follows this trend, it is recognized as star.
4.4.6 Handwriting recognition

The handwriting recognizer recognizes inner text and echelon text using two pre-
built multi-layer perceptron [101] models from Weka [34] respectively. Figure 4.5
refers to the echelon text comprising of the symbols I, II, X, *** 4 and -. The
inner text can be digits 0-9, uppercase alphabets or some special decision graphics
symbols. The system groups the strokes into logical characters and words using

stroke spatial separation and overlap data. It also implicitly assumes that text is

24

written in a left to right fashion. After forming these stroke groupings, the character,
and word possibilities are computed in a brute-force manner. Due to the assumed
constraints that no word has more than seven characters and each character is made
of at most five strokes, this approach is still relatively quick. A multi-layer perceptron
model is used to compute a confidence value for each possible character or word and
the handwriting with highest confidence value is used for symbol recognition in the

future.

Figure 4.5: List of echelon modifiers

4.4.7 CALVIN

Complex high-level shapes are built by combining primitive shapes (recognized
using PaleoSketch [87]) or other high-level shapes in various combinations using a
heuristic-driven geometric recognizer based on LADDER [42] called CALVIN. Shapes
are combined using geometric conditions as seen in Figure 4.1. CALVIN specifies that
the endpoints of two lines are coincident or that one shape contains another shape. If
we look at Figure 4.6, we see on the left, a sketch of a reconnaissance cavalry armored

unit. The shape description for this shape says that there is a line with positive slope

25

with the endpoints coincident with the corners of the rectangle. CALVIN has been
hand-tuned using heuristics to increase the accuracy and precision in recognizing
course of action diagrams in addition to the basic recognition capabilities found in
LADDER. For grouping purposes, it re-analyses the set of shapes. The context of
recognition is very helpful in re-grouping strokes more accurately even though the
strokes have been grouped for recognition in the earlier stages. For example, we can
say that certain strokes in certain positions relative to a rectangle should be grouped
together if the primitive recognizer has detected a rectangle with a high degree of
confidence. After this, CALVIN is able to put together all the individual components
of the course of action shape. On the right, we have a reconnaissance cavalry armored
unit with a platoon symbol modifier and reinforced strength modifier. Once CALVIN
recognizes the dashed rectangle, contextual rules are used to determine the line,
ellipse, platoon, and the plus. In this example, the military symbol is identified
using an alphanumeric string on the bottom left. Without contextual rules, correctly

identifying all these components simultaneously becomes an NP-complete problem.

Figure 4.6: Reconnaissance cavalry armored unit on the left

26

4.4.8 Phase and boundary lines

Figure 4.7 shows that the phase lines and boundary lines define the location
steps of boundaries and military operations that confine military units. They can
be arbitrary outlines and are recognized first by determining if there is a sufficiently
long stroke present. In case such a long stroke is found, all the remaining strokes are
sent to the handwriting recognizer under the assumption that they could be text.
The handwriting recognizer looks for type identifiers PL or BL and unique identifiers

BLUE or ALPHA for distinguishing between phase lines and boundary lines.

BL 3
pLPHA
L/_\

Figure 4.7: Examples of phase and boundary lines

4.4.9 Areas

Large, closed strokes that indicate zones of interest such as landing zones (LZ)

are called Areas. If the largest stroke in the sketch is closed, the system thinks that

27

it could possibly be an area. If it is closed, the previously existing system searches
for the type identifier, echelons either on the top or bottom, and identifier text inside

of the enclosure.
4.4.10 Decision graphics

Type modifiers with a combination of filled rectangles, un-filled rectangles, and
triangles are known as decision graphics. The hand writing recognizer is used to
recognize these symbols as the primitive recognizer cannot handle filled-in shapes.
These shapes are present in the collection of modifiers definitions, which occur inside
the largest shapes$ bounding box, as the grouper determines. If it detects instances of
decision graphic modifiers, the hand writing recognizer analyzes all shape definitions

of the type DecisionGraphic to find the correct symbol.
4.4.11 Obstacles

Figure 4.8 represents Course of Action diagrams that comprise of patterns. That
is, the same individual shape repeated a specific number of times. Such shapes are
recognized looking at the micro-level. Symbols with similar patterns are recognized
using a set of features computed for each symbol and compared against a set of

template patterns.
4.4.12 Arrows

Arrows are allowed to have arbitrary paths as they indicate movement of friendly
or hostile forces. The system recognizes arrows by looking at the type of arrow head
used, the number of strokes drawn, and the number of line segments the strokes can

be broken into. Figure 4.9 shows the list of different types of arrows recognized.

28

A TN

Figure 4.8: Example of obstacles drawn with dynamic patterns

\\\—‘7 ________
: > —_— > >

N >
>T a0 Fe ji
=<2l 2 i

= - ’,;\\>

Figure 4.9: List of different types of arrows

29

5. FEATURE SELECTION

Sketch recognition is the application and development of artificial intelligence
and machine learning techniques in order to recognize hand-drawn sketches [47, 93,
94]. Fundamentally, there are three types of sketch recognition approaches [37]: (a)
gesture-based, which takes into consideration of how a sketch is drawn [14, 15, 27, 71,
106, 17, 50]. (b) geometry-based, which initially recognizes sketches at a lower level
and then from a higher level using geometric definitions and constraints [35, 118, 52],
and (c) vision-based, which looks at pixel data on the screen [96, 97].

Primitive shapes like lines, arcs, and circles are recognized by segmenting the
incoming stroke in geometric-based recognizers. Then, these primitive shapes are
combined together and recognized by matching against geometric definitions [42].
A closest match is picked by comparing the input sketch with different datasets
in template-matching techniques. Initially, the sketches are resampled, rotated, and
scaled. The best optimal angle is found to calculate the score. A Naive Bayesian clas-
sifier is used to calculate the Euclidean distance. Examples of representative research
in this area include the $-family algorithms (e.g., $1, $N) [2, 133], elastic structure
matching [11], and vision-based recognition by Kara [60]. For the the template-
matching and vision-based features, this system utilizes the Valentine version of the
Hausdorff shape recognizer [126]. This approach requires numerous examples for
each shape for use in shape comparisons.

A statistical measure like mean or standard deviation of each shape is used in a
statistical feature-based classifier. Many sketch features are taken from Rubine [102],
Long [70], and Paulson [83, 84].

The following sections look into different types of recognition to describe the

30

Figure 5.1: Directions in Freeman’s chain code [31]

features used in this system.
5.1 Gesture-based recognition

Gesture-based features rely on how a stroke is drawn rather than what is visually

shown on a display screen.
5.1.1 Freeman’s chain code

The direction of each line is used as a feature in Freeman’s chain code. It is
widely used for representing shapes [31]. Chan used direction of each line in an
elastic structural matching algorithm [11, 12]. The direction from a point to the
next point is indicated using values from zero to seven.

Figure 5.1 shows how Freeman’s chain code works. Using the directions, Chan,

et al. [11] described five types of primitives:

e line
e up (curve going counter clockwise)

e down (curve going clockwise)

31

1
(0, 85) 0
(6,92) 7
(19, 99) 6
(53, 90) 5

—~ . = 3 — {{{down,7}, {down,5}}}

6, 6) /
(46, 0) 5
(26, 0) 4

Figure 5.2: An example of directions in Freeman’s chain code [11]

e loop (curve joining itself at some point)

e dot (a very short segment)

Figure 5.2 represents the example of the digit “3”, and the letter has two down
primitives. Different variances of same shape are not taken into consideration in this

approach.
5.1.2 Rubine and long

Classifiers like Bayesian networks are used to retrieve sketch features in statisti-
cal feature-based approaches. One of the early works in gesture-based recognition
systems is by Rubine [102]. He introduced GRANDMA, a gesture recognizer au-
tomated in a novel direct manipulation architecture. Rubine introduced thirteen
features, which could accurately classify simple gestures by using features like sine
or cosine of angles between different points. Long [70] extended this work by remov-

ing two features and adding eleven features. (Table 5.1).

32

1. Cosine of initial angle 2. Sine of initial angle
3. Size of bounding box 4. Angle of bounding box
5. Distance between first and last points 0. Cosine of angle between
first and last points
7. Sine of angle between first and last points | 8. Total length
9. Total angle 10. Total absolute angle
11. Sharpness 12. Aspect [abs(45° - #4)]
13. Curviness 14. Total angle traversed / total length
15. Density metric 1 [#8 / #5] 16. Density metric 2 [#8 / #3]
17. Non-subjective “openness” [#5 / #3] 18. Area of bounding box
19. Log(area) 20. Total angle / total absolute angle
21. Log(total length) 22. Log(aspect)

Table 5.1: Long et al. [70] features

5.1.3 Dollar recognizers

Multiple gesture-based template matching algorithms were developed by Wab-

brock, et al. [3, 78, 130, 133]. $1 recognizer [133] works for single stroke sketches

and $N recognizer [2] works for multi-stroke sketches. The preprocessing on incom-

ing sketches include: (1) resampling, (2) rotation, (3) scaling and translating, and

(4) calculating best score [133]. Figure 5.3 shows the sixteen different shapes $1

algorithm can recognize.

Figure 5.4 shows an example of how $N works. It considers all combinations of

strokes, translating multi-strokes into single stroke shapes (Figure 5.5).

5.2 Geometry-based recognition

Strokes are segmented using corner-finding algorithms [138] and basic primitives

are recognized using geometry-based recognition techniques. These individual prim-

itives are recognized as a whole from a higher level.

33

1. -’-: 2. : j 3. ‘—'—'—| 4, Q
triangle “x" rectangle circle
5. \/ & /\ 7. 2
check caret zig-zag arrow
9, ‘ 10 1. \/ 12. ; ;
left square bracket right square bracket ' delete
13. { 14, 15. E 2 m_}
left curly brace right curly brace star pigtail

Figure 5.3: Single stroke shapes recognized by $1 recognizer

& » * L 2
* * * .
e, ,* e, ¢ ©" o 4t
AN .'\’ v o, @
. * & o Y
* . - *
* * * . * * *
. o . . S . . .
* * Y * . *

. . - . * . *
s o* ‘e * ‘e * Yo ot
P . e LR o
by) o .
Ul - . . *
- . * *
D + . .
0 * * . o + ° *
- (Y * . . .
* . * . *
o * * . * . * .
* . * . * . .0 .
: "~ 0 ® o e 2

Figure 5.4: The eight different ways an X can be drawn [2]

34

.]
Te D ‘e o* ‘e o* ‘.
e ot ‘e o? N * *e +*
*_ 4+ -
Y . ~, - N
L ., *e, o,
+ L] e * T * *
* . + * * - . *
. " . * *
G » = e 0 . ° .
* - * . » [» .
o - o - o - + .
* - . YL LLL TLLL .0 .
. . I LTI .)
b ¢‘. .'b LA "0 G ‘e 0'.
. +" u * + .
- . . + » . . +
L . . = - *
0t *ay . ' »,
Y + .
+ e o * - . ‘.
. *, - + = . * * N
+ e . . u o * .
» . + .. + . * *
TR . 0 . + . * +
* - . L) * .
* . * '] » - * "]
‘. . . ftamm -

Figure 5.5: Based on the two-strokes in Figure 5.4, there are eight permutations [2]

5.2.1 LADDER sketching language

A sketching Language to Describe, Display, and Editing in Sketch Recognition
(LADDER) [36, 45, 38, 39, 40, 41, 42, 44, 51|, implemented by Hammond describes
how sketches from different domains are drawn, displayed, and edited. In LADDER,
sketches are broken down into substrokes using corner-finding algorithms. These
substrokes and their combinations are recognized using geometric mathematical def-
initions and perceptual rules [82, 83, 84]. Simple sketch-based applications [18, 21]
use these primitives on their own.

Different applications that use LADDER are Mechanix [4, 5, 28, 33, 63, 68, 79,
126, 129], which recognizes shapes like trusses, and works by Taele [110, 111, 122,
119, 120, 112, 113, 114, 121, 115], for recognizing East Asian character sets.

Figure 5.6 shows how a Chinese character is recognized. The definitions and

constraints describing it consists of a horizontal line and a vertical line are shown.
5.3 Vision-based features

Vision-based sketch recognition is introduced by Kara [60] and Valentine [28, 126].
These techniques use sketch ink data by converting the sketch into a 40 x 40 grid of

pixels as seen in Figure 5.7.

35

Name:
+—p1
. TenKanji
horzLine eriant
Components:
Line horzLine
pl vertLine Line vertLine
p2
Constraints:
Horizontal horzLine
Vertical vertLine
LeftOf horzLine pl horzLine p2
Above vertLine pl vertLine p2
EqualLength horzLine vertLine
SameX horzLine center vertLine center
SameY horzLine.center vertLine.center
Aliases:
Point horzLine pl leftPoint
Point horzLine p2 rightPoint
Point vertLine.p2 bottomPoint

Figure 5.6: A shape description for an East Asian character

Figure 5.7: The pixelated versions of a pivot, an alphabet, and a digit [60]

36

An incoming sketch is compared to a previously classified shape using template-
based techniques in both Valentine and Kara recognizers. Both techniques translate
an incoming sketch into fixed-size pixel boxes: 40 x 40 in Valentine’s recognizer [125]
and 48 x 48 in Kara’s recognizer [60]. In my system, both the template and a shape
are resampled into forty equidistant points and distance between closest points in
calculated. From these shortest distances, I calculated similarity metrics. The three
metrics are ratio of points with shortest distances less than four pixels over the total
number of points (i.e., the Tanimoto coefficient) [28, 60, 61, 126, 137], the maximum
of distances (Hausdorff distance), and the average of distances (modified Hausdorff
distance). These three are normalized and averaged to get the final similarity confi-
dence value. If the confidence value is above a threshold of 0.65, they are classified
as similar [28, 60, 125]. This system employs only the Tanimoto coefficient as it gave
the best accuracy. The similarity between two images is calculated using Tanimoto
coefficient by:

Tab

T(A, B) = (5.1)

where n, is the total number of black pixels in A, n; is the total number of black
pixel in B, and ng, is the number of overlapping black pixels in A and B. T(A,B)
describes the number of matching points in A and B, and the result is between 0.0
(minimum similarity) to 1.0 (highest similarity). The problem of this equation is
that if images contain mostly black pixels, the T(A,B) value can be vanished.

To solve the problem, the following equation is used:

nOO

T(A, B) =

5.2
na+nb_2 nab+noo ()

where n,, is the number of matching white pixels.

37

The two equations can be combined to form the Tanimoto similarity coefficient:

T,.(A, B) = aT(A, B) + (1 — a)T(A, B) (5.3)

« is a weighting factor between 0.0 and 1.0.
5.4 Statistical feature-based recognition

In this section, we look into the different statistical feature-based recognition

techniques.
5.4.1 Paulson

Paulson et al. [84] used the thirteen Rubine features and thirty-three new geo-
metrical features, and introduced a hybrid approach. He examined 1800 sketches and
derived an optimal set of fifteen features (fourteen geometric and one gesture-based).

Table 5.2 shows the list of all features with x indicating the set of optimal features
selected through optimal feature selection techniques.

These studies [70, 83, 84, 102] focused on how sketches were drawn to retrieve
the feature sets. We use a feature set of 133 features [30, 55, 70, 84] to improve

recognition.
5.5 Extended uses of sketch recognition methods

Sketch recognition methods have been used to recognize what objects people
were interacting with, based on the shape of their hands [85, 88], three-dimensional
body movements [6, 92, 98], and musical instruments [77]. Taking inspiration from
corner-finding techniques, Li recognized sketches based on sound [67].

Tables 5.3, 5.4, 5.5, 5.6, and 5.7 comprise of all the 133 features used in this

research.

38

1.x Endpoint by stroke length (100%)

2« NDDE (90%)

3. DCR (90%)

4. Slope of the direction graph (20%)

5. Maximum curvature (40%)

6. Average curvature (30%)

7. # of corners (30%)

8. Line least squares error (0%)

9. Line feature area error (40%)

10. Arc fit: radius estimate (0%)

11. Arc feature area error (20%)

12.% Curve least squares error (90%)

13.%x Polyline fit: # of sub-strokes (70%)

14.% Polyline fit: percent of sub-strokes
pass line test (50%)

15.x Polyline feature area error (80%)

16. Polyline least squares error (30%)

17. Ellipse fit: major axis length
estimate (20%)

18. Ellipse fit: minor axis length
estimate (30%)

19. Ellipse feature area error (10%)

20. Circle fit: radius estimate (30%)

21.% Circle fit: major axis to
minor axis ratio (80%)

22. Circle feature area error (0%)

23.x Spiral fit: avg. radius/bounding
box radius ratio (60%)

24 % Spiral fit: center
closeness error (70%)

25. Spiral fit: max distance between

consecutive centers (20%)

26. Spiral fit: average
radius estimate (10%)

277. Spiral fit: radius test passed
(1.0 or 0.0) (40%)

28.x Complex fit: # of sub-fits (60%)

29.x Complex fit: # of non-polyline
primitives (50%)

30.x Complex fit: percent of sub-fits
that are lines (90%)

31.x Complex score / rank (50%)

32. Cosine of the starting angle (30%)

33. Sine of the starting angle (10%)

34. Length of bounding
box diagonal (20%)

35. Angle of the bounding
box diagonal (40%)

36. Distance between endpoints (10%)

37. Cosine of angle between endpoints (0%)

38. Sine of angle between
endpoints (10%)

39. Total stroke length (20%)

40.x Total rotation (100%)

41. Absolute rotation (10%)

42. Rotation squared (10%)

43. Maximum speed (20%)

44. Total time (30%)

Table 5.2: Paulson [84] feature set

39

Number

Feature

Average distance between closest point

al to each corner of the bounding box [84]
al Average curvature of the stroke [84]
9 The error of the best fit line of the
& direction graph [84]
a3 Direction change ratio [84]
ol Get the distance (normalized by bounding box size)
between the furthest corner and the stroke [84]
5 The endpoint to stroke Iength ratio of the
& stroke [84]
The angle of the major axis relative to
ab
center [84]
The error of the best fit line of the direction
a7
graph [84]
Max distance between closest point and
a8
each corner [84]
The error of the best fit line of the direction
a9
graph [84]
The maximum curvature to average
all
curvature value [84]
Minimum distance between closest point
all
and each corner [84]
The normalized distance between direction
al2
extremes [84]
Computes the sum of the squared values of the angles
al3 .
at each mouse point [30]
ald The number of revolutions (based on direction graph)
that the stroke makes [84]
alb Percentage of Direction Window Passed [84]
al6 Slope of the direction graph [84]
Standard deviation between closest point and
al7
each corner [84]
al8 Length of the stroke [84]
al9 The error of the line fit [84]
a20 The least squares error of the fit / stroke length [84]
a2l Get the error of the arc fit [84]
a22 The estimated radius of the arc [84]
a23 Get the arc to area ratio [84]
a24 The angle between the endpoint [84]
a2b Curve Error [84]
a26 Get the error of the poliline fit [84]
a27 Number of strokes [84]
298 Get the percentage of substrokes that passed

a line test [84]

Table 5.3: Complete feature list 1

40

Number

Feature

a29 Get the error of the elipse fit [84]
a30 Get the error of the circle fit [84]
a3l Get the major axis to minor axis length ratio [84]
a32 Get the error of the spiral fit [84]
33 Get the percentage of the radius test
& that passed [84]
a4 Get the average radius to bounding box
& radius ratio [84]
a5 Get the max distance from a point to the
& center divided by the average radius [84]
26 Distance between two points that meet
& at the head [84]
a7 Size difference between last two strokes
& (the head) [84]
a8 Number of intersections between the ends of
& the head and the shaft [84]
a39 The error of the rectangle fit [84]
40 Get the major axis to bounding box diagonal
& length ratio [84]
Perimeter (of bounding box) to stroke
a4l .
length ratio [84]
ad2 Number of segmented strokes [84]
Stroke length to perimeter (of bounding box)
ad3 .
ratio [84]
Get the width to height ratio of the square
ad4 184]
adb Get the error of the diamond fit [84]
6 Get the perimeter (of bounding box) to
stroke length ratio [84]
A7 Get the major axis to bounding box diagonal
& length ratio [84]
A8 Get the width to height ratio of the square fit
used for the diamond fit [84]
a49 Stroke density [84]
ab0 Height to width ratio of bounding box [84]
abl Wave segment size [84]
59 Get the percentage of the slope test
& that passed [84]
Get the ratio between the smallest and
ab3 largest segment of the wave segmentation
84
54 Get the ratio between the smallest segment
& and the sum [84]
a55 Get the angle between the middle segments

[84]

Table 5.4: Complete feature list 2

41

Number

Feature

ab6

Get the percentage of the horizontal
alignment test that passed [84]

Get average slope of first and last segment

ad7 184]
ab8 Get percentage of slope test that passed [84]
Ratio between largest and smallest
ab9
segment [84]
a60 Density of sub dot [84]
abl Number of revolutions of sub dot [84]
a62 Convex hull area / bounding box area [30]
a63 Convex hull area / enclosing rectangle area [30]
a64 Largest quadrilateral area / convex hull area [30]
Largest quadrilateral area / enclosing rectangle
a6d
area [30]
ab6 Largest triangle area / bounding box area [30]
ab7 Largest triangle area / convex hull area [30]
a68 Largest triangle area / enclosing rectangle area [30]
a69 Largest triangle area / largest quadrilateral area [30]
70 Absolute value of bounding box’s Y difference /
bounding box’s X difference [30]
a7l Enclosing rectangle’s distance ratio [30]
AT Absolute value of bounding box’s X difference /
x value movement in sketch [30]
ar3 Number of points inside the triangle [30]
a74 Convex hull area? / convex hull area [30]
ard Convex hull perimeter / stroke length [30]
Convex hull perimeter / bounding box
a76 .
perimeter [30]
Convex hull perimeter / enclosing rectangle
ar’ .
perimeter [30]
78 Largest quadrilateral perimeter /
convex hull perimeter [30]
Largest quadrilateral perimeter /
a79 . .
enclosing rectangle perimeter [30]
Largest triangle perimeter / bounding box
a80 .
perimeter [30]
Largest triangle perimeter / convex hull
a81 .
perimeter [30]
289 Largest triangle perimeter /
enclosing rectangle perimeter [30]
Largest triangle perimeter / quadrilateral
a83 .
perimeter [30]
a84 Stroke Length / convex hull perimeter [30]

Table 5.5: Complete feature list 3

42

Number | Feature

Difference of bounding boxes’ largest Y value

a8b and smallest Y value / y value movement
in sketch [30]
a86 Zernikel [55]
a87 Zernike2 [55]
a88 Zernike3 [55]
a89 Zerniked [55]
a90 Zernikeb [55]
a9l Zernike6 [55]
a92 Zernike7 [55]
a93 Zernike8 [55]
a94 Zernike9 [55]
a95 ZernikelO [55
a96 Zernikell |55
a97 Zernikel2 |55
a98 Zernikel3 |55
a99 Zernikel4d |55

al00 Zernikelb [55

al02 Zernikel7 [55

al03 Zernikel8 [55

al04 Zernikel9 [55

al05 Zernike20 [55

al06 Zernike21 [55

al07 Zernike22 [55

[55]
[55]
[55]
[55]
[55]
[55]

al01 Zernikel6 [55]
[55]
[55]
[55]
[55]
[55]
[55]
[

al08 Zernike23 [55]

Calculates the cosine of the

al09 initial angle [70]
110 Calculates the sine of the
& initial angle [70]
111 Get the Iength of the diagonal of the
& bounding box [70]
112 Get the angle of the diagonal of the

bounding box [70]

Table 5.6: Complete feature list 4

43

Number

Feature

Calculates the distance between the

all3 first and last point [70]
114 Calculates the cosine between the
i first and last point [70]
115 Calculates the sine between the
i first and last point [70]
all6 Computes the total gesture length [70]
all? Sum of angle changes between points [70]
Computes the sum of the absolute value of the angles
all8§ .
at each mouse point [70]
Computes the sum of the squared values of the angles
all9 .
at each mouse point [70]
190 Calculates the gesture aspect, which is abs
i (45 degrees - angle of bounding box) [70]
191 The sum of gesture intersegment angles whose
& absolute value is less than 19 degrees [70]
199 Returns the total angle traversed /
& total length of gesture stroke [70]
A density metric for the gesture stroke that uses
al23 the stroke’s length and distance between the
first and last point [70]
124 A density metric for the gesture stroke that
& uses the stroke’s length and bounding box size [70]
al2b How “open” or spaced out is a gesture [70]
al26 Get the area of the bounding box [70]
al27 The log of the bounding box area [70]
198 Returns the total angle divided by the
A total absolute angle [70]
al29 Log of the total length [70]
al30 Log of the aspect [70]
al3l Count of corners
al32 Stroke length / bounding box area

Table 5.7: Complete feature list 5

44

6. THE IMPROVED SYSTEM

This section will explain the process of designing and building the improved

system. The process includes:
1. Preprocessing
2. Sketch feature extraction
3. Evaluation
4. Rank features
5. Feature selection

6. Classification using Weka

6.1 Preprocessing

During the user study, we collected electronic ink data. The data collected com-
prises of x- and y-coordinates, and timing information. Using the information, we
first generated basic feature sets such as direction value changes, stroke length over
time, and total stroke length. Algorithm 1 explains this procedure.

We calculated the 133 features [30, 55, 70, 84, 136] by combining the strokes in

the sketch into one stroke using a combined-stroke algorithm 2.
6.2 Sketch feature extraction

The goal is to determine if sketch features and classifiers can distinguish between
the large number of classes. There is a lack of research work into classifying sketches
at this scale. As a result, this approach differentiates between many classes using

the 133 sketch features introduced by Cali [30], Hse [55], Long [70], Paulson [84],

45

Algorithm 1 Calculate the stroke direction value over time, stroke length over time,
and total stroke length

Input: (1) sketch: the whole strokes on the screen and (2) numberO f Points:
the number of points in sketch,
Output: (1) directionArray: a stroke direction value over time, (2) lengthArray:
a stroke length over time, and (3) total Length: a total stroke length
for + = 0 ;i < numberO f Points-1 ; i++ do
directionArray [i] = atan (angle whose tangent) values of X and Y values be-
tween i+1th point and ¢th point
lengthArray [i] = sqrt (square root) values of X and Y values between i+1th
point and ith point
total Length += lengthArray [i]
end for

Algorithm 2 Combine strokes into one stroke

Input: strokes in sketch
Output: newStroke: a combined stroke

if size of strokes == 1 then
return strokes.get(0)
end if

currentStroke = strokes.get(0)
distl = distance(currentStroke.getFirstPoint, strokes.get(1).getFirstPoint)
dist2 = distance(currentStroke.getFirstPoint, strokes.get(1).getLastPoint)
dist3 = distance(currentStroke.getLastPoint, strokes.get(1).getFirstPoint)
dist4 = distance(currentStroke.getLastPoint, strokes.get(1).getLastPoint)
man = minimum values between distl, dist2, dist3, and dist4
if min == distl or dist2 then
newStroke = add currentStroke to the newStroke in reverse order
else
newStroke = add currentStroke to the newStroke
end if
for i =1 ;i < strokes.size() ; i++ do
currentStroke = strokes.get(i)
distl = distance(currentStroke.getFirstPoint, newStroke.getLastPoint)
dist2 = distance(currentStroke.getLastPoint, newStroke.getLastPoint)
if distl > dist2 then
newStroke = add currentStroke to the newStroke in reverse order
else
newStroke = add currentStroke to the newStroke
end if
end for

46

N

[¢ Diction T - [¢ Diction T -
o Q
/ Ty !
\
I- \
J‘ \
NDDE = 0.551 [‘ NDDE = 0.955
DCR=10.53 DCR =249 \ “-e

Figure 6.1: Using DCR to differentiate between polylines and arcs [83]

Rubine [102], and Wolin [136]. To show how these features work, We would like to
highlight a couple of features, namely, Direction Change Ratio (DCR), and Polyline

Test.
6.2.1 Direction change ratio for curves

Direction change ratio (DCR) is used to differentiate between polylines and
arcs. It looks for sudden changes in direction [84], and is calculated by dividing
the maximum change in direction by average change in direction as seen in this
DCR-calculating algorithm 3. Figure 6.1 shows that the polyline on the left has a
sudden change in direction and hence resulted in high DCR value, whereas, the arc

on the right changes direction smoothly and thus resulted in low DCR value.

maximum change in direction

DCR =

6.1
average change in direction (6.1)

47

Algorithm 3 Calculate the Direction Change Ratio (DCR) (max direction change
divided by average direction change)

Input: directionArray from Algorithm 1
Output: DCR
max DirectionChange = 0
for i =0 ;i < directionArray.size()-1 ; i++ do
tempDirectionChange = math.abs(directionArray [i+1] - directionArray [i])
if tempDirectionChange > maxDirectionChange then
max DirectionChange = tempDirectionChange
end if
sumDirectionChange += tempDirectionC'hange
end for
average DirectionChange = sumDirectionChange | directionArray.size()
DCR = maxDirectionChange | averageDirectionChange

6.2.2 Polyline test for corners

Sketches are broken down into substrokes using corner-finding algorithms [136].
The average least-square error of each substroke is measured, and the number of
lines that pass the test [82, 83] are calculated, and is known as the polyline test. The

process is explained in polyline-calculating algorithm 4.

number of substrokes that passed line test

PolylineTest = (6.2)

number of substrokes

6.3 Evaluation
6.3.1 Highly correlated data

To reduce the dimensionality of the dataset, we used a wrapper approach [66].
This technique is used to remove features that are correlated with one another or are
redundant. We used the R programming language [57] and Weka [34] for data analy-

sis. Using R, we removed features with more than 0.75 correlation. Figure 6.2 shows

48

Algorithm 4 Calculate the Polyline Test (the percentage of substrokes that passed
a line test)

Input: segmented strokes from sketch using corner-detection algorithm in [136]
Output: Polyline Test
numLinePassed = 0
for i =0 ;i < strokes.size() ; i++ do
currentStroke = strokes.get(1)
linePassed = decide if the currentStroke passed line test using algorithm
from [82, 83|
if linePassed = True then
numLinePassed = numLinePassed + 1
end if
end for
PolylineTest = numLinePassed | strokes.size

the resulting correlated matrix. The closer the correlation between two variables is
to 1, the more related their behavior, and the more redundant one is with respect to

the other. We filtered out the redundant features examining the correlation matrix.
6.3.2 Principal component analysis

Correlation matrix analysis is done using Principal Component Analysis (PCA).
Feature extraction approaches transform data in high-dimensional space to a space of
fewer dimensions. PCA, an important linear technique for reducing dimensionality,
performs a linear mapping of the data to a lower dimensional space in such a way
that the variance of the data in the low-dimensional representation is maximized.
In other words, PCA analysis builds a set of features by selecting those axes, which
maximize data variance.

PCA is a multivariate technique that summarizes systematic patterns of variation
in the data. From a data analysis standpoint, PCA is used for studying one table of
observations and variables with the idea of transforming the observed variables into

a set of new variables, the principal components, which are uncorrelated and explain

49

Figure 6.2: Highly correlate matrix for 125 features

50

the variation of the data. Therefore, PCA can be used to bring down a “complex”
dataset to a lower dimensionality, in order to reveal the structures or the dominant
types of variations in both the observations and the variables.

To verify if these features can be used to classify 491 classes, we performed PCA.
Figure 6.3 shows the PCA plot. Each color represents a class and the grouping
of similar colors together with not much overlapping shows that these seventy-two

features can be used to differentiate between the 491 classes.

EEESEESEEAT:

Figure 6.3: Principal component analysis plot

o1

6.4 Rank features by importance

The importance of features can be estimated from data by building a model.
Some methods like decision trees have a built-in mechanism to report on variable
importance. For other algorithms, the importance can be estimated using a Receiver
Operating Characteristic (ROC) curve analysis conducted for each attribute. We
constructed a Learning Vector Quantization (LVQ) model on the data and estimated
the variable importance, which is printed and plotted. Figure 6.4 shows the features
and their importance for the arc class. The features are ranked based on their overall

importance, across all 491 classes.
6.5 Feature elimination

Selecting the right features from the data can mean the difference between below-
average performance with long training times and high performance with short train-
ing times. We used the caret R package to report the relevance and importance of
attributes in the data, and select the most important features. Automatic feature
selection methods can be used to build many models with different subsets of a
dataset and identify those attributes that are required to build an accurate model.
We used the Recursive Feature Elimination (RFE) method provided by the caret R
package for feature selection. A Random Forest algorithm is used on each iteration to
evaluate the model with 10-fold cross validation. This way, we explored all possible
subsets of the attributes. The results show that sixty-nine attributes are selected,
although in Figure 6.5, showing the accuracy of the different attribute subset sizes,
we can see that only eighteen attributes give nearly comparable results.

Figure 6.6 shows the list of features: accuracy, kappa, accuracy standard devi-
ation, and the kappa standard deviation. At the bottom, you can see the ranking

of features. This figure shows that with these sixty-nine features, we can achieve an

52

0s 06 07 Importance 08 08 1.0

Figure 6.4: Rank of features by importance

accuracy of 85.15% on the entire dataset.
6.6 Classification using weka

We divided the data into training and test datasets with ten instances for each

class as seen in Figure 6.7. We created models using the training dataset and per-

53

06P50660005000000009900085000006,,00 80
0.8 wﬂﬂﬁw L
In’
= ¢
:2 0.6 - .'I -
S
= i
> |
i |
w
o |
S |'
a-. 0.4 = | -
& [
3 b
Q |
< |
|
|
0.2 = | =
|
|
|
[u]
I T | |
0 20 40 60

Variables

Figure 6.5: Feature selection plot

fomed 10-fold cross-validation using seven classifiers: Random Forest, Bagging, Naive
Bayesian, Multi Class, Bayesian networks, J48, and Random Tree in Weka [34]. Ta-
ble 6.1 shows the list of classifiers used and the accuracies achieved. The Random

Forest classifier performed better than other classifiers with ten-fold cross-validation.

We created the model and integrated it into the system. Therefore, the first step is
to use this model, in order to classify the incoming test data. We tested the system
using the test dataset. The tests resulted in an accuracy of 98% for user specific

methods. The sketches with confidence value less than 0.65 are sent to the next

o4

Recursive feature selection
Outer resampling method: Cross-Validated (1@ fold)
Resampling performance over subset size:

Variables Accuracy Kappa AccuracySD KappaSD Selected
8.9798 @8.87041 @.082153 @.082175
2 9.3313 @.32449 0.03713 0.83751
3 8.5455 @.54@882 0.04096 0.04138
4 8.6253 08.62143 @.084578 @.04625
5 0.6798 @.67653 0.04763 0.04811
6 8.6869 8.68367 0.04441 0.04487
7 8.6929 0.68980 @.085874 @.085934
8 0.6970 0.69388 0.04994 @,05045
9 8.7141 @8.71122 0.085018 0.85269
1@ 8.7313 @.72857 2.084522 0.084568
11 8.7455 0.74286 0.03620 @.83657
12 8.7545 @8.75204 0.04739 0.04787
13 8.7586 @8.75612 @.084081 @.04123
14 8.7727 @.770841 0.04345 0,04389
15 @.7848 @8.78265 0.083266 0.83299
16 8.7768 8.77449 @.083348 @.03383
17 8.7818 @.77959 0.03130 @.83162
18 8.7929 @8.790882 0.083475 0.8351@
19 8.7929 @8.79882 0.083442 0.03477
20 9.7970 0.79490 0.03763 @.03801
21 6.8020 @.80000 0.83755 0.83794
22 8.7970 8.79490 2.83028 @.083859
23 0.8040 0.B0204 0.0357¢ @.03606
24 8.8851 @.80306 0.04715 0.04763
25 8.8091 @8.80714 0.084478 @.084524
26 0.8162 0.81429 0.03589 0.83625
27 6.8262 @8.81837 0.03360 0.83395
28 8.8081 @8.80612 2.02896 @.082926
29 0.8222 0.B2041 0.03664 8.083701
3@ 8.8232 8.82143 0.083817 0.83856
31 8.8323 @8.83061 2.084622 0.04669
32 0.8283 0.82653 0.04232 0.04275
33 #.8333 @8.83163 0.041@83 0.04145
34 8.8253 @8.82347 @.083402 2.03437
35 0.8414 0.B3980 0.04365 0.04410
36 #.8394 @8.83776 0.03440 0.03484
37 8.8323 @8.83061 2.084421 2.04466
38 0.8343 0.83265 0.03785 0.083824
39 8.8303 @8.82857 0.04333 0.04377
48 8.8374 @8.83571 2.084271 0.04315
41 0.8374 @.83571 0.04136 0.04179
42 @.8384 @8.B3673 0.083749 0.83788
43 8.8323 @.83061 @.83570 0.083606
44 0.8313 @.82959 0.02937 0.02967
45 6.8343 8.83265 0.83725 0.83763
46 8.8384 @8.83673 @.83749 @.83788
47 0.8364 0.83469 0.03222 0.083255
48 6.8414 8.83988 0.83751 0.83789
49 8.8414 @.83980 @.83533 2.83569
5@ 0.8394 @.B3776 0.04081 @.04123
51 6.8424 0.840882 0.831308 0.83162
52 8.8444 0.84286 @.83725 @.083763
53 0.8444 0.B4286 0.02825 0,02854
54 6.8465 8.84498 0.830084 0.083835
55 8.8444 0.84286 2.83473 @.83509
56 0.8475 0.84592 0.03102 0.083134
57 6.8444 8.84286 0.83166 0.83198
58 8.8374 @8.83571 2.83028 @.83859
59 0.8434 0.B4184 0.03571 0.03609
6@ 6.8485 08.84694 0.62129 0.82151
61 8.8455 @9.84388 @.082566 @.02593
62 0.8455 0.B4388 0.02383 0.02408
63 6.8485 08.84694 0.83467 0.83502
64 8.8455 @8.84388 2.082383 @.02408
65 0.8384 0.B3673 0.02777 0.02805
66 6.8354 8.83367 0.82132 0.82154
67 8.8475 0.84592 2.83314 0.83348
68 0.8465 0.B4490 0.02889 0.029139

69 6.8515 @8.85000 0.82132 0.82154 *
7@ 8.8434 0.84184 @.02662 @.026B9
71 0.8444 0.84286 0.02981 0.03012
72 #.8495 @8.84796 0.082835 0.02864

The top 5 variables (out of 69):
aleg, aé6, all7, a79, a35

> predictors{results)

[1] "al89" "aB6" "all7" "a79" "a35" "all9" "ad41" "a71" "a8@" "al6" "al@B8" "a68" "a23" "alf9" "a34" "al@6" "ald7" "ad6" "al8" "age"
[21] "ad4" "a3e" "al2@" "a22" "aB4" "all5" "a98" "al24" "ak7" "a3" ‘a2” "al" "a24" "a26"™ "a53" "a37" "a3l"™ "ab4" "aB9" "a27"
[41] "a77" "al1@@" “"a55" "ag2" "a1@" "a93" "agl" "a@3" "a8l" "all" "a33" "a09" "allf" "af" “ad5" "al5" “aB2" "a1@83" "aB7" "a8E"
[61] "ad5" "a94" "az28" "al@®l" "a9%6" M"al2" "a28" "ag9"

Figure 6.6: Feature selection results

stage of recognition, the previously existing system discussed in Chapter 4. Overall,

the system achieved an accuracy of 86% on user independent data. Figure 6.8 shows

55

Train dataset Test dataset

10-fold cross validation

Figure 6.7: Division into test and train datasets

the confusion matrix prior to the addition and Figure 6.9 shows the confusion matrix

after running the improvement.

Classifier (Accuracy)

Random Forest (82.5253%)
Bagging (72.9293%)

Naive Bayesian (72.4242%)
Multi Class (71.4141%)
Bayesian networks (70.7071%)
748 (62.2222%)

Random Tree (49.1919%)

Table 6.1: Best classifiers and their accuracies

56

Normalized confusion matrix

True label
-
>
G

0.4

™, ' 03

0.2

0.1

0.0

Predicted label

Figure 6.8: Confusion matrix prior to the improvement, achieving an accuracy of
57%

o7

Normalized confusion matrix

True label
o
o

Predicted label

Figure 6.9: Confusion matrix after using the improvement, achieving an accuracy of
86%

58

7. FUTURE WORK

We are interested in implementing a similar technique to increase the number
of classes. The entire list of approximately 20,000 Course of Action classes can
be recognized if we collect data from different users from conducting further user
studies. It is important to approach a wider variety of users, ranging from users with
no experience in sketching to domain experts in the field. As we collect new data
and re-train our model, we hope the proposed system will perform better in terms
of recognition accuracy.

This work analyzed three different aspects of a sketch: the x-coordinates, the y-
coordinates, and the time. Other attributes of a sketch can help contribute to better
recognition of a sketch, such as a pressure-sensitive device to collect pressure and
line weight-related features. These values can be used to derive some more features
which can better the accuracy of our system. User studies that collect pressure and
other features such as entropy [9] could be tested to determine areas of potential

benefits for recognition.

59

8. CONCLUSION

This thesis describes the improvement of a system to now classify sketches into
491 different classes with an accuracy of 86%. There is a lack of research work into
classifying sketches at this scale. Of the over 10,000 instances of data collected,
we performed extensive data analysis to determine the features necessary for clas-
sification of sketches, and then ranked the features based on their importance to
differentiate between these 491 classes.

The improved system expends negligible amount of time to classify incoming
sketches on existing computing technology. This is comparatively much faster when
compared to an older system [53] which takes two or three hours to classify sketches
with a top three accuracy of 89%.

Lastly, with the number of possible sketch classes is very large such as course of
action diagrams numbering around 20,000 different classes, the improved system can
be extended to any number of classes that extends beyond the maximum recognizable
classes from existing systems. As new data comes in, the model performs better over
time in terms of accuracy without significant amount of performance in terms of

time.

60

[1]

REFERENCES

Christine Alvarado, Tevfik Metin Sezgin, Dana Scott, Tracy Hammond, Zar-
dosht Kasheff, Michael Oltmans, and Randall Davis. A framework for multi-
domain sketch recognition. In MIT Lab Abstract. Artificial Intelligence Labo-

ratory, Cambridge, MA, 9 2001. MIT. 3 pages.

L Anthony and JO Wobbrock. A lightweight multistroke recognizer for user

interface prototypes. In Graphics Interface 2010, pages 245252, 2010.

L Anthony and JO Wobbrock. $ n-protractor: A fast and accurate multistroke
recognizer. In Proceedings of Graphics Interface 2012, pages 117-120. Canadian

Information Processing Society, 2012.

Olufunmilola Atilola, Martin Field, Erin McTigue, Tracy Hammond, and Julie
Linsey. Mechanix: A sketch recognition truss tutoring system. In ASMFE
2011 International Design Engineering Technical Conferences and Computers
and Information in Engineering Conference, pages 645-654, Washington, DC,

USA, 2011. American Society of Mechanical Engineers.

Olufunmilola Atilola, Stephanie Valentine, Hong-Hoe Kim, David Turner, Erin
McTigue, Tracy Hammond, and Julie Linsey. Mechanix: A natural sketch
interface tool for teaching truss analysis and free-body diagrams. Artificial
Intelligence for Engineering Design, Analysis and Manufacturing, 28:169-192,
5 2014.

Joey Bartley, Jonathon Forsyth, Prachi Pendse, Da Xin, Garrett Brown, Paul
Hagseth, Ashish Agrawal, Daniel W. Goldberg, and Tracy Hammond. World

of workout: A contextual mobile rpg to encourage long term fitness. In Pro-

61

[10]

[12]

ceedings of the Second ACM SIGSPATIAL International Workshop on the Use
of GIS in Public Health, HealthGIS 13, pages 60-67, New York, NY, USA,
2013. ACM.

Rémi Bastide, David Navarre, Philippe Palanque, Amélie Schyn, and Pierre
Dragicevic. A model-based approach for real-time embedded multimodal sys-
tems in military aircrafts. In Proceedings of the 6th international conference

on Multimodal interfaces, pages 243-250. ACM, 2004.

Luca Benedetti, Holger Winnemoller, Massimiliano Corsini, and Roberto
Scopigno. Painting with bob: Assisted creativity for novices. In Proceedings of
the 27th Annual ACM Symposium on User Interface Software and Technology,

UIST ’14, pages 419-428, New York, NY, USA, 2014. ACM.

Akshay Bhat and Tracy Hammond. Using entropy to distinguish shape versus
text in hand-drawn diagrams. In Proceedings of the 21st International Joint
Conference on Artifical Intelligence, IJCAT’09, pages 1395-1400, San Francisco,
CA, USA, 2009. Morgan Kaufmann Publishers Inc.

Bill Buxton. Sketching User Experiences: Getting the Design Right and the
Right Design. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
2007.

KF Chan. Elastic structural matching for recognizing on-line handwritten
alphanumeric characters. In Technical Report HKUST-CS98-07, pages 1-29,
1998.

KF Chan and DY Yeung. Elastic structural matching for online handwritten
alphanumeric character recognition. In Pattern Recognition, 1998. Proceedings.
Fourteenth International Conference on, volume 2, pages 1508-1511. TEEE,
1998.

62

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Hsiang Chen, R.T. Wigand, and M.S. Nilan. Optimal experience of web activ-
ities. Computers in Human Behavior, 15(5):585 — 608, 1999.

Heeyoul Choi and Tracy Hammond. Sketch recognition based on manifold
learning. In Proceedings of the 23rd National Conference on Artificial Intel-
ligence - Volume 3, AAAT'08, pages 1786-1787, Chicago, Illinois, USA, 2008.
AAAT Press.

Heeyoul Choi, Brandon Paulson, and Tracy Hammond. Gesture recognition
based on manifold learning. In Proceedings of the 2008 Joint IAPR Interna-
tional Workshop on Structural, Syntactic, and Statistical Pattern Recognition,

SSPR & SPR 08, pages 247256, Berlin, Heidelberg, 2008. Springer-Verlag.

PR Cohen, Liang Chen, Josh Clow, Michael Johnston, David McGee, Jay
Pittman, and Ira Smith. Quickset: A multimodal interface for distributed

interactive simulation. In Proceedings of the UIST, volume 96, pages 217-24.
Citeseer, 1996.

Paul Corey and Tracy Hammond. Gladder: Combining gesture and geometric
sketch recognition. In Proceedings of the 23rd National Conference on Artificial
Intelligence - Volume 3, AAAT'08, pages 1788-1789, Chicago, Illinois, 2008.
AAAT Press.

D Cummings, S Fymat, and T Hammond. Sketch-based interface for inter-
action with unmanned air vehicles. In CHI’12 Extended Abstracts on Human

Factors in Computing Systems, pages 1511-1516. ACM, 2012.

Danielle Cummings, Stephane Fymat, and Tracy Hammond. Sketch-based
interface for interaction with unmanned air vehicles. In CHI 12 Extended
Abstracts on Human Factors in Computing Systems, CHI EA 12, pages 1511—
1516, New York, NY, USA, 2012. ACM.

63

[20]

[21]

[22]

[23]

[25]

Danielle Cummings, Francisco Vides, and Tracy Hammond. I don’t believe my
eyes!: Geometric sketch recognition for a computer art tutorial. In Proceed-
ings of the International Symposium on Sketch-Based Interfaces and Modeling,
SBIM 12, pages 97-106, Aire-la-Ville, Switzerland, Switzerland, 2012. Euro-

graphics Association.

D. Cummmings, S. Fymat, and T. Hammond. Reddog: A smart sketch in-
terface for autonomous aerial systems. In Proceedings of the International
Symposium on Sketch-Based Interfaces and Modeling, SBIM 12, pages 21-28,

Aire-la-Ville, Switzerland, Switzerland, 2012. Eurographics Association.

Katie Dahmen and Tracy Hammond. Distinguishing between sketched scribble
look alikes. In Proceedings of the 23rd National Conference on Artificial Intel-
ligence - Volume 3, AAAT'08, pages 1790-1791, Chicago, Illinois, USA, 2008.
AAAT Press.

Ruwanee de Silva, David Tyler Bischel, WeeSan Lee, Eric J. Peterson,
Robert C. Calfee, and Thomas F. Stahovich. Kirchhoff’s pen: A pen-based
circuit analysis tutor. In Proceedings of the jth Eurographics Workshop on
Sketch-based Interfaces and Modeling, SBIM ’07, pages 75-82, New York, NY,
USA, 2007. ACM.

Daniel Dixon, Manoj Prasad, and Tracy Hammond. icandraw: Using sketch
recognition and corrective feedback to assist a user in drawing human faces.
In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI 10, pages 897-906, New York, New York, USA, 2010. ACM.

David H Douglas and Thomas K Peucker. Algorithms for the reduction of the

number of points required to represent a digitized line or its caricature. Car-

64

[26]

[27]

[28]

[31]

[32]

tographica: The International Journal for Geographic Information and Geovi-

sualization, 10(2):112-122, 1973.

Koos Eissen and Roselien Steur. Sketching: Drawing Techniques for Product

Designers. BIS Publishers, Amsterdam, The Netherlands, 12 edition, 2009.

BD Eoff and T Hammond. Who dotted that’i’?: Context free user differenti-
ation through pressure and tilt pen data. In Proceedings of Graphics Interface

2009, pages 149-156. Canadian Information Processing Society, 2009.

M Field, S Valentine, J Linsey, and T Hammond. Sketch recognition algo-
rithms for comparing complex and unpredictable shapes. In Proceedings of the
Twenty-Second international Joint Conference on Artificial Intelligence (1J-

CAI), volume 3, pages 2436-2441. AAAI Press, 2011.

Martin Field, Stephanie Valentine, Julie Linsey, and Tracy Hammond. Sketch
recognition algorithms for comparing complex and unpredictable shapes. In
Proceedings of the Twenty-Second International Joint Conference on Artificial
Intelligence - Volume Volume Three, IJCAT’'11, pages 2436-2441. AAAT Press,
2011.

M. J. Fonseca, C Pimentel, and J. A. Jorge. Cali: An online scribble recognizer
for calligraphic interfaces. In Sketch Understanding, Papers from the 2002

AAAI Spring Symposium, pages 51-58, 2002.

H Freeman. Computer processing of line-drawing images. ACM Comput. Surv.,

6(1):57-97, March 1974.

Leslie Gennari, Levent Burak Kara, Thomas F Stahovich, and Kenji Shimada.
Combining geometry and domain knowledge to interpret hand-drawn diagrams.

Computers & Graphics, 29(4):547-562, 2005.

65

[33]

[34]

[36]

[39]

M Green, B Caldwell, M Helms, J Linsey, and T Hammond. Using natural
sketch recognition software to provide instant feedback on statics homework

(truss free body diagrams): Assessment of a classroom pilot. In 2015 ASEE
Annual Conference and Exposition, pages 26.1671.1-26.1671.12. ASEE, 2015.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-
mann, and lan H Witten. The weka data mining software: An update. ACM
SIGKDD FEzplorations Newsletter, 11(1):10-18, 20009.

T Hammond and R Davis. Creating the perception-based ladder sketch recog-
nition language. In Proceedings of the 8th ACM Conference on Designing In-
teractive Systems, DIS 10, pages 141-150, New York, NY, USA, 2010. ACM.

Tracy Hammond. Automatically generating sketch interfaces from shape de-
scriptions. In Proceedings of the 4th Annual MIT Student Ozygen Workshop,
page 4. MIT, 2004.

Tracy Hammond. Sketch Recognition: Algorithms and Applications. Cambridge

University Press, 2017. draft from March 1, 2016, publication forthcoming.

Tracy Hammond and Randall Davis. Ladder: A language to describe drawing,
display, and editing in sketch recognition. In Proceedings of the International

Joint Conference on Aritificial Intelligence (IJCAI), pages 461-467, 2003.

Tracy Hammond and Randall Davis. Automatically transforming symbolic
shape descriptions for use in sketch recognition. In Proceedings of the 19th
National Conference on Artifical Intelligence, AAAT'04, pages 450-456. AAAI
Press, 2004.

Tracy Hammond and Randall Davis. Shady: A shape description debugger

for use in sketch recognition. In AAAI Fall Symposium on Making Pen-Based

66

[42]

[45]

[47]

Interaction Intelligent and Natural, Arlington, VA, October 2004. AAAIL. 7
pages.
Tracy Hammond and Randall Davis. Testing shape descriptions by automat-

ically translating them for use in sketch recognition. In MIT Lab Abstract,
page 2. MIT, 2004.

Tracy Hammond and Randall Davis. Ladder, a sketching language for user
interface developers. In Computers & Graphics, volume 29:4, pages 518-532.
Elsevier, 2005.

Tracy Hammond and Randall Davis. Ladder, a sketching language for user

interface developers. Computers € Graphics, 29(4):518-532, 2005.

Tracy Hammond and Randall Davis. Interactive learning of structural shape
descriptions from automatically generated near-miss examples. In Proceedings
of the 11th International Conference on Intelligent User Interfaces, IUI 06,

pages 210-217, New York, NY, USA, 2006. ACM.

Tracy Hammond and Randall Davis. Tahuti: A geometrical sketch recog-
nition system for uml class diagrams. In ACM SIGGRAPH 2006 Courses,
SIGGRAPH ’06, New York, NY, USA, 2006. ACM.

Tracy Hammond and Randall Davis. Ladder, a sketching language for user
interface developers. In ACM SIGGRAPH 2007 Courses, SIGGRAPH ’07,
New York, NY, USA, 2007. ACM.

Tracy Hammond, Brian Eoff, Brandon Paulson, Aaron Wolin, Katie Dahmen,
Joshua Johnston, and Pankaj Rajan. Free-sketch recognition: Putting the chi
in sketching. In CHI 08 Extended Abstracts on Human Factors in Computing
Systems, CHI EA "08, pages 3027-3032, New York, NY, USA, 2008. ACM.

67

[48]

[49]

[50]

[51]

[53]

Tracy Hammond, Krzysztof Gajos, Randall Davis, and Howard E Shrobe. An
agent-based system for capturing and indexing software design meetings. In
In Proceedings of the International Workshop on Agents in Design (WAIDO02,
volume 2, pages 203-218, 2002.

Tracy Hammond, Drew Logsdon, Brandon Paulson, Joshua Johnston, Joshua
Peschel, Aaron Wolin, and Paul Taele. A sketch recognition system for rec-
ognizing free-hand course of action diagrams. In Innovative Applications of

Artificial Intelligence, page 17811786, July 11-15 2010.

Tracy Hammond, Drew Logsdon, Joshua Peschel, Joshua Johnston, Paul Taele,
Aaron Wolin, and Brandon Paulson. A sketch recognition interface that rec-
ognizes hundreds of shapes in course-of-action diagrams. In CHI ’10 Extended
Abstracts on Human Factors in Computing Systems, CHI EA ’10, pages 4213~
4218, New York, NY, USA, 2010. ACM.

Tracy Hammond and Brandon Paulson. Recognizing sketched multistroke
primitives. ACM Transactions on Interactive Intelligent Systems (TiiS),
1(1):1-34, 2011.

Tracy Hammond, Manoj Prasad, and Daniel Dixon. Art 101: Learning to draw
through sketch recognition. In Proceedings of the 10th International Conference
on Smart Graphics, SG’10, pages 277-280, Berlin, Heidelberg, 2010. Springer-

Verlag.

Tracy Anne Hammond, Drew Logsdon, Brandon Paulson, Joshua Johnston,
Joshua Peschel, Aaron Wolin, and Paul Taele. A sketch recognition system
for recognizing free-hand course of action diagrams. In Twenty-Second TAAI

Conference, pages 1781-1786, July 11-15 2010.

68

[54]

[55]

[57]

[58]

[59]

[60]

Jay D. Helsel. Reading Engineering Drawings Through Conceptual Sketching.
Glencoe/Mcgraw-Hill, Columbus, Ohio, USA, 1 edition, 1979.

H Hse and R Newton. Sketched symbol recognition using zernike moments.
In Proceedings of the Pattern Recognition, 17th International Conference on
(ICPR’04) Volume 1 - Volume 01, ICPR 04, pages 367-370, Washington, DC,
USA, 2004. IEEE Computer Society.

Emmanuel Tarussi, Adrien Bousseau, and Theophanis Tsandilas. The drawing
assistant: Automated drawing guidance and feedback from photographs. In
Proceedings of the 26th Annual ACM Symposium on User Interface Software
and Technology, UIST 13, pages 183-192, New York, New York, USA, 2013.
ACM.

Ross Thaka and Robert Gentleman. R: A language for data analysis and graph-

ics. Journal of Computational and Graphical Statistics, 5(3):299-314, 1996.

J. Johnston and T. Hammond. Computing confidence values for geometric
constraints for use in sketch recognition. In Proceedings of the Seventh Sketch-
Based Interfaces and Modeling Symposium, SBIM 10, pages 71-78, Aire-la-

Ville, Switzerland, Switzerland, 2010. Eurographics Association.

Jr. Joseph J. LaViola and Robert C. Zeleznik. Mathpad2: A system for the
creation and exploration of mathematical sketches. In ACM SIGGRAPH 2004
Papers, SIGGRAPH 2004, pages 432-440, New York, New York, USA, 2004.
ACM.

LB Kara and TF Stahovich. An image-based, trainable symbol recognizer for

hand-drawn sketches. In Computers and Graphics, pages 501-517, 2004.

69

[61]

[62]

[63]

[65]

[66]

[67]

[68]

[69]

LB Kara and TF Stahovich. An image-based trainable symbol recognizer for
sketch-based interfaces. In AAAI Fall Symposium, pages 99-105, 2004.

Levent Burak Kara and Thomas F Stahovich. An image-based, trainable sym-
bol recognizer for hand-drawn sketches. Computers & Graphics, 29(4):501-517,
2005.

K Kebodeaux, M Field, and T Hammond. Defining precise measurements with
sketched annotations. In Proceedings of the Eighth FEurographics Symposium
on Sketch-Based Interfaces and Modeling, pages 79-86. ACM, 2011.

Kourtney Kebodeaux, Martin Field, and Tracy Hammond. Defining precise
measurements with sketched annotations. In Proceedings of the Eighth Euro-
graphics Symposium on Sketch-Based Interfaces and Modeling, SBIM ’11, pages
79-86, New York, NY, USA, 2011. ACM.

Dae Hyun Kim and Myoung-Jun Kim. A curvature estimation for pen input
segmentation in sketch-based modeling. Computer-Aided Design, 38(3):238—
248, 2006.

Ron Kohavi and George H John. Wrappers for feature subset selection. Arti-
ficial Intelligence, 97(1):273-324, 1997.

W Li and T Hammond. Recognizing text through sound alone. In Twenty-Fifth
AAAI Conference on Artificial Intelligence, pages 1481-1486. AAAI, 2011.

W Li and T Hammond. Using scribble gestures to enhance editing behaviors of
sketch recognition systems. In CHI'12 Extended Abstracts on Human Factors

in Computing Systems, pages 2213-2218. ACM, 2012.

Wenzhe Li and Tracy Hammond. Using scribble gestures to enhance editing

behaviors of sketch recognition systems. In CHI ’12 Extended Abstracts on

70

[70]

[71]

[74]

[75]

Human Factors in Computing Systems, CHI EA 12, pages 22132218, New
York, NY, USA, 2012. ACM.

A. C. Long, J. A. Landay, L. A. Rowe, and J Michiels. Visual similarity of
pen gestures. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI 00, pages 360-367, New York, NY, USA, 2000.
ACM.

G Lucchese, M Field, J Ho, R Gutierrez-Osuna, and T Hammond. Gesturecom-
mander: Continuous touch-based gesture prediction. In CHI’12 Extended Ab-
stracts on Human Factors in Computing Systems, pages 1925-1930. ACM,
2012.

George Lucchese, Martin Field, Jimmy Ho, Ricardo Gutierrez-Osuna, and
Tracy Hammond. Gesturecommander: Continuous touch-based gesture predic-
tion. In CHI ’12 Extended Abstracts on Human Factors in Computing Systems,
CHI EA 12, pages 1925-1930, New York, NY, USA, 2012. ACM.

Nic Lupfer, Martin Field, Andruid Kerne, and Tracy Hammond. sketchy: Mor-
phing user sketches for artistic assistance. In 2011 Intelligent User Interfaces
Workshop on Sketch Recognition, page 4, Palo Alto, CA, February 13-16 2011.
ACM.

Michael Helms Julie S. Linsey Matthew G. Green, Benjamin W. Caldwell and
Tracy Anne Hammond. Using natural sketch recognition software to provide
instant feedback on statics homework (truss free body diagrams): Assessment
of a classroom pilot. In 2015 ASEE Annual Conference and FExposition, Seattle,
Washington, June 2015. ASEE Conferences. https://peer.asee.org/25007.

Ryszard S Michalski, Jaime G Carbonell, and Tom M Mitchell. Machine learn-

ing: An artificial intelligence approach. Springer Science & Business Media,

71

[80]

[81]

2013.

Erik G Miller, Nicholas E Matsakis, and Paul A Viola. Learning from one
example through shared densities on transforms. In Computer Vision and

Pattern Recognition, 2000. Proceedings. IEEE Conference on, volume 1, pages
464-471. IEEE, 2000.

Jace Miller and Tracy Hammond. Wiiolin: A virtual instrument using the wii

remote. In NIME, pages 497-500, 2010.

ME Mott, R Vatavu, SK Kane, and JO Wobbrock. Smart touch: Improving
touch accuracy for people with motor impairments with template matching. In

Proceedings of the ACM Conference on Human Factors in Computing Systems
(CHI ’16), 2016.

T Nelligan, S Polsley, J Ray, M Helms, J Linsey, and T Hammond. Mechanix:
A sketch-based educational interface. In Proceedings of the 2015 ACM Inter-

national Conference on Intelligent User Interfaces, pages 53—56. ACM, 2015.

Trevor Nelligan, Seth Polsley, Jaideep Ray, Michael Helms, Julie Linsey, and
Tracy Hammond. Mechanix: A sketch-based educational interface. In Pro-
ceedings of the 20th International Conference on Intelligent User Interfaces
Companion, IUl Companion 15, pages 53-56, New York, NY, USA, 2015.
ACM.

Tom Y. Ouyang and Randall Davis. Chemink: A natural real-time recognition
system for chemical drawings. In Proceedings of the 16th International Con-
ference on Intelligent User Interfaces, IUI "11, pages 267-276, New York, NY,
USA, 2011. ACM.

72

[82]

[83]

[36]

[87]

B Paulson and T Hammond. A system for recognizing and beautifying low-
level sketch shapes using ndde and der. In ACM Symposium on User Interface
Software and Technology (UIST), page 2. ACM, 2007.

B Paulson and T Hammond. Paleosketch: Accurate primitive sketch recogni-
tion and beautification. In Proceedings of the 13th International Conference
on Intelligent User Interfaces, IUI '08, pages 1-10, New York, NY, USA, 2008.
ACM.

B Paulson, P Rajan, P Davalos, R Osuna, and T Hammond. What!?! no
rubine features?: Using geometric-based features to produce normalized con-
fidence values for sketch recognition. In HCC Workshop: Sketch Tools for
Diagramming (VL/HCC), pages 56-63, 2008.

Brandon Paulson, Danielle Cummings, and Tracy Hammond. Object inter-
action detection using hand posture cues in an office setting. Int. J. Hum.-

Comput. Stud., 69(1-2):19-29, January 2011.

Brandon Paulson, Brian Eoff, Aaron Wolin, Joshua Johnston, and Tracy Ham-
mond. Sketch-based educational games: Drawing kids away from traditional
interfaces. In Proceedings of the 7th International Conference on Interaction
Design and Children, IDC 08, pages 133-136, New York, NY, USA, 2008.
ACM.

Brandon Paulson and Tracy Hammond. Marqgs: Retrieving sketches learned
from a single example using a dual-classifier. Journal on Multimodal User

Interfaces, 2(1):311, 2008.

Brandon Paulson and Tracy Hammond. Office activity recognition using hand

posture cues. In Proceedings of the 22Nd British HCI Group Annual Conference

73

[89]

[90]

[91]

[92]

[93]

[94]

on People and Computers: Culture, Creativity, Interaction - Volume 2, BCS-
HCI ’08, pages 75-78, Swinton, UK, UK, 2008. British Computer Society.

Brandon Paulson and Tracy Hammond. Paleosketch: Accurate primitive sketch
recognition and beautification. In Proceedings of the 13th International Con-
ference on Intelligent User Interfaces, IUI '08, pages 1-10, New York, NY,
USA, 2008. ACM.

Brandon Paulson, Pankaj Rajan, Pedro Davalos, Ricardo Gutierrez-Osuna,
and Tracy Hammond. What!?! no rubine features?: Using geometric-based fea-
tures to produce normalized confidence values for sketch recognition. In HCC
Workshop: Sketch Tools for Diagramming (VL/HCC), page 5763, Herrsching
am Ammersee, Germany, 9 2008. VL/HCC.

Joshua M Peschel and Tracy Anne Hammond. Strat: A sketched-truss recog-
nition and analysis tool. In 2008 International Workshop on Visual Languages
and Computing (VLC) at the 14th International Conference on distributed Mul-
timedia Systems (DMS), page 282287, Boston, MA, 9 2008. Knowledge Systems

Institute.

Joshua M. Peschel, Brandon Paulson, and Tracy Hammond. A surfaceless pen-
based interface. In Proceedings of the Seventh ACM Conference on Creativity
and Cognition, pages 433-434, New York, NY, USA, 2009. ACM.

Beryl Plimmer and Tracy Hammond. Getting started with sketch tools. In Pro-
ceedings of the 5th International Conference on Diagrammatic Representation
and Inference, Diagrams '08, pages 9-12, Berlin, Heidelberg, 2008. Springer-

Verlag.

Beryl Plimmer and Tracy Hammond. Workshop on sketch tools for diagram-

ming. In Proceedings of the 2008 IEEE Symposium on Visual Languages and

74

[95]

[96]

[98]

[100]

Human-Centric Computing, VLHCC 08, pages 4—, Washington, DC, USA,
2008. IEEE Computer Society.

Manoj Prasad and Tracy Hammond. Observational study on teaching artifacts
created using tablet pc. In CHI ’12 Extended Abstracts on Human Factors in
Computing Systems, CHI EA 12, pages 301-316, New York, NY, USA, 2012.
ACM.

Pankaj Rajan and T. Hammond. From paper to machine: Extracting strokes
from images for use in sketch recognition. In Proceedings of the Fifth Furo-
graphics Conference on Sketch-Based Interfaces and Modeling, SBM’08, pages

41-48, Aire-la-Ville, Switzerland, Switzerland, 2008. Eurographics Association.

Pankaj Rajan, Paul Taele, and Tracy Hammond. Evaluation of paper-pen
based sketching interface. In Proceedings of the 16th International Conference

on Distributed Multimedia Systems (DMS), pages 321-326, 2010.

Vijay Rajanna, Patrick Vo, Jerry Barth, Matthew Mjelde, Trevor Grey, Cas-
sandra Oduola, and Tracy Hammond. Kinohaptics: An automated, wearable,

haptic assisted, physio-therapeutic system for post-surgery rehabilitation and

self-care. Journal of Medical Systems, 40(3):1-12, 2015.

Dwayne Raymond, Jeffrey Liew, and Tracy A Hammond. A vision for edu-
cation: Transforming how formal systems are taught within mass lectures by
using pen technology to create a personalized learning environment. In Tracy
Hammond, Stephanie Valentine, Aaron Adler, and Mark Payton, editors, The
Impact of Pen and Touch Technology on Education, pages 355-363. Springer

International Publishing Switzerland, 2015.

Dan Roam. The Back of the Napkin: Solving Problems and Selling Ideas with

Pictures. Portfolio Publishing, London, England, United Kingdom, 1 edition,

75

[101]

[102]

103]

[104]

[105]

[106]

[107]

[108]

[109]

2013.

Frank Rosenblatt. The perceptron: A probabilistic model for information stor-

age and organization in the brain. Psychological Review, 65(6):386, 1958.

D Rubine. Specifying gestures by example. In Proceeding of the 18th annual
conference on Computer graphics and interactive techniques, SIGGRAPH 91,
pages 329-337, 1991.

Dean Rubine. Specifying gestures by example. In Proceedings of the 18th
Annual Conference on Computer Graphics and Interactive Techniques, SIG-

GRAPH '91, pages 329-337, New York, NY, USA, 1991. ACM.

Irene Schiferl. Both sides now: Visualizing and drawing with the right and left
hemispheres of the brain. Studies in Art Education, 50(1):67-82, 2008.

Tevfik Metin Sezgin, Thomas Stahovich, and Randall Davis. Sketch based
interfaces: Early processing for sketch understanding. In ACM SIGGRAPH
2006 Courses, SIGGRAPH 06, New York, NY, USA, 2006. ACM.

N Shahzad, B Paulson, and T Hammond. Urdu qaeda: Recognition system
for isolated urdu characters. In Proceedings of the IUI Workshop on Sketch

Recognition, Sanibel Island, Florida, 2009.

K. Sjolén and A. MacDonald. Learning Curves: An Inspiring Guide to Improve
Your Design Sketch Skills. KEEOS Design Books, 2011.

Sheryl Sorby. Educational research in developing 3d spatial skills for engineer-
ing students. International Journal of Science Education, 31(3):459-480, Feb

2009.

Thomas F Stahovich. Segmentation of pen strokes using pen speed. In AAAIT

Fall Symposium Series, pages 21-24, 2004.

76

[110]

111]

[112]

[113]

114]

[115]

[116]

P Taele, L Barreto, and T Hammond. Maestoso: An intelligent educational
sketching tool for learning music theory. In The Twenty-Seventh Annual Con-
ference on Innovative Applications of Artificial Intelligence at AAAI (IAAI
2015), pages 3999-4005. AAAI, 2015.

P Taele and T Hammond. Chinese characters as sketch diagrams using a
geometric-based approach. In Proceedings of the 2008 IEEE Symposium on
Visual Languages and Human-Centric Computing Workshop on Sketch Tools

for Diagramming, pages 74-82, 2008.

P Taele and T Hammond. Initial approaches for extending sketch recognition
to beyond-surface environments. In CHI’'12 Eztended Abstracts on Human

Factors in Computing Systems, pages 2039-2044. ACM, 2012.

P Taele and T Hammond. Adapting surface sketch recognition techniques for
surfaceless sketches. In Proceedings of the Twenty-Third International Joint
Conference on Artificial Intelligence (IJCAI), pages 3243-3244. AAAT Press,
2013.

P Taele and T Hammond. Developing sketch recognition and interaction tech-
niques for intelligent surfaceless sketching user interfaces. In Proceedings of
the Companion Publication of the 19th International Conference on Intelligent

User Interfaces (IUI) Doctoral Consortium, pages 53-55. ACM, 2014.

P Taele, J Peschel, and T Hammond. A sketch interactive approach to
computer-assisted biology instruction. In Proceedings of the Workshop on
Sketch Recognition at the 14th International Conference of Intelligent User
Interfaces Posters (IUI). ACM, 2009.

Paul Taele, Laura Barreto, and Tracy Hammond. Hashigo: A next-generation

sketch interactive system for japanese kanji. In Proceedings of the Twenty-First

7

[117]

[118]

[119]

[120]

[121]

[122]

Innovative Applications of Artificial Intelligence Conference, IAAI '15, pages
153-158, Palo Alto, California, USA, 2009. AAAL

Paul Taele, Laura Barreto, and Tracy Hammond. Maestoso: An intelligent
educational sketching tool for learning music theory. In Proceedings of the
Twenty-Seventh Innovative Applications of Artificial Intelligence Conference,
TAAI ’15, pages 3999-4005, Palo Alto, California, USA, 2015. AAAL

Paul Taele and Tracy Hammond. Using a geometric-based sketch recognition
approach to sketch chinese radicals. In Proceedings of the 23rd National Con-
ference on Artificial Intelligence - Volume 3, AAAT’08, pages 1832-1833. AAAI
Press, 2008.

Paul Taele and Tracy Hammond. Hashigo: A next-generation sketch interactive
system for japanese kanji. In Proceedings of the Twenty-First Innovative Ap-
plications of Artificial Intelligence Conference (IAAI), page 153158, Pasadena,
CA, 7 2009. AAAL

Paul Taele and Tracy Hammond. Lamps: A sketch recognition-based teaching
tool for mandarin phonetic symbols i. J. Vis. Lang. Comput., 21(2):109-120,
April 2010.

Paul Taele and Tracy Hammond. Enhancing instruction of written east asian
languages with sketch recognition-based intelligent language workbook inter-
faces. In Tracy Hammond, Stephanie Valentine, Aaron Adler, and Mark Pay-
ton, editors, The Impact of Pen and Touch Technology on Education, pages

119-126. Springer Publishing Company, Incorporated, 1st edition, 2015.

Paul Taele and Tracy Anne Hammond. A geometric-based sketch recognition
approach for handwritten mandarin phonetic symbols i. In 2008 International

Workshop on Visual Languages and Computing (VLC) at the 14th Interna-

78

[123]

[124]

[125]

[126]

127]

[128]

[129]

tional Conference on distributed Multimedia Systems (DMS), Boston, MA, 9

2008. Knowledge Systems Instistute. 6 pages.

Barbara Tversky. Visualizing thought. Topics in Cognitive Science, 3(3):499—
535, 2011.

David G Ullman, Stephen Wood, and David Craig. The importance of drawing

in the mechanical design process. Computers & graphics, 14(2):263-274, 1990.

S Valentine, F Vides, G Lucchese, D Turner, H Kim, W Li, J Linsey, and
T Hammond. Mechanix: A sketch-based tutoring system for statics courses.

In Proceedings of the Twenty-Fourth Innovative Applications of Artificial In-
telligence Conference (IAAI), pages 2253-2260. AAAT, 2012.

Stephanie Valentine, Martin Field, Anne Smith, and Tracy Hammond. A
shape comparison technique for use in sketch-based tutoring systems. In 2011

Intelligent User Interfaces Workshop on Sketch Recognition, page 4. IUI, 2011.

Stephanie Valentine, Raniero Lara-Garduno, Julie Linsey, and Tracy Ham-
mond. Mechanix: A sketch-based tutoring system that automatically corrects
hand-sketched statics homework. In The Impact of Pen and Touch Technology

on Education, pages 91-103. Springer, 2015.

Stephanie Valentine, Francisco Vides, George Lucchese, David Turner, Hong
hoe Kim, Wenzhe Li, Julie Linsey, and Tracy Hammond. Mechanix: A sketch-
based tutoring system for statics courses. In Proceedings of the Twenty-Fourth
Innovative Applications of Artificial Intelligence Conference, IAAI "12, pages
2253-2260, Palo Alto, California, USA, 2012. AAAL

Stephanie Valentine, Francisco Vides, George Lucchese, David Turner, Hong-

Hoe Kim, Wenzhe Li, Julie Linsey, and Tracy Hammond. Mechanix: A sketch-

79

[130]

[131]

[132]

[133]

[134]

[135]

based tutoring and grading system for free-body diagrams. Al Magazine,
34(1):55-66, 2013.

R Vatavu, L Anthony, and J Wobbrock. Gestures as point clouds: A $ p
recognizer for user interface prototypes. In Proceedings of the 14th ACM in-

ternational conference on Multimodal interaction, pages 273-280. ACM, 2012.

Francisco Vides, Paul Taele, Hong-Hoe Kim, Jimmy Ho, and Tracy Hammond.
Intelligent feedback for kids using sketch recognition. In ACM SIGCHI 2012
Conference on Human Factors in Computing Systems Workshop on Educa-

tional Interfaces, Software, and Technology, Austin, TX, USA, 2012. ACM.

Jacob O. Wobbrock, Andrew D. Wilson, and Yang Li. Gestures without li-
braries, toolkits or training: A $1 recognizer for user interface prototypes. In

Proceedings of the 20th Annual ACM Symposium on User Interface Software
and Technology, UIST 07, pages 159-168, New York, NY, USA, 2007. ACM.

JO Wobbrock, AD Wilson, and Y Li. Gestures without libraries, toolkits,
or training: A $1 recognizer for user interface prototypes. In Proceeding of

the 20th annual ACM symposium on User Interface Software and Technology,
UIST-07, pages 159-168, 2007.

A. Wolin, B. Eoff, and T. Hammond. Shortstraw: A simple and effective
corner finder for polylines. In Proceedings of the Fifth Eurographics Conference
on Sketch-Based Interfaces and Modeling, SBM’08, pages 33-40, Aire-la-Ville,

Switzerland, Switzerland, 2008. Eurographics Association.

A. Wolin, B. Paulson, and T. Hammond. Sort, merge, repeat: An algorithm
for effectively finding corners in hand-sketched strokes. In Proceedings of the
6th Eurographics Symposium on Sketch-Based Interfaces and Modeling, SBIM
'09, pages 93-99, New York, NY, USA, 2009. ACM.

80

[136]

[137]

[138]

[139)]

[140]

Aaron Wolin, Brian Eoff, and Tracy Hammond. Shortstraw: A simple and
effective corner finder for polylines. In Proceedings of the Fifth FEurographics
Conference on Sketch-Based Interfaces and Modeling, SBIM’08, pages 33—40,

Aire-la-Ville, Switzerland, Switzerland, 2008. Eurographics Association.

Aaron Wolin, Brian Eoff, and Tracy Hammond. Search your mobile sketch: Im-
proving the ratio of interaction to information on mobile devices. In Proceedings
of the Workshop on Sketch Recognition at the 14th International Conference

of Intelligent User Interfaces (IUI), page 4. ACM, 2009.

Aaron Wolin, Martin Field, and Tracy Hammond. Combining corners from
multiple segmenters. In Proceedings of the Fighth FEurographics Symposium on
Sketch-Based Interfaces and Modeling, SBIM ’11, pages 117-124, New York,
NY, USA, 2011. ACM.

Aaron Wolin, Brandon Paulson, and Tracy Hammond. Eliminating false pos-
itives during corner finding by merging similar segments. In Proceedings of
the 23rd National Conference on Artificial Intelligence - Volume 3, AAAT08,
pages 1836-1837. AAAI Press, 2008.

Jun Xie, Aaron Hertzmann, Wilmot Li, and Holger Winnemoller. Portraits-
ketch: Face sketching assistance for novices. In Proceedings of the 27th Annual
ACM Symposium on User Interface Software and Technology, UIST 14, pages
407-417, New York, New York, USA, 2014. ACM.

81

