
INVESTIGATION OF SOLUTION VERIFICATION AND VALIDATION OF

NUCLEAR THERMAL HYDRAULICS COMPUTATIONAL FLUID DYNAMICS

USING TWIN RECTANGULAR TURBULENT JETS

A Dissertation

by

LANE B. CARASIK

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Yassin A. Hassan
Committee Members, Mark L. Kimber

Maria D. King
Hamn-Ching Chen

Head of Department, Yassin A. Hassan

May 2017

Major Subject: Nuclear Engineering

Copyright 2017 Lane B. Carasik



ABSTRACT

The research and development of advanced nuclear reactors requires complementary

experimental and computational approaches. These approaches are used in such a manner

that experimental campaigns help validate computational tools. These computational tools

are then utilized for similar scenarios where experimental efforts would be prohibitive

due to variety of reasons including cost. Advanced reactor designs, such as sodium fast

reactors, very high temperature reactors, and molten salt reactors motivate this work due

to the exotic coolants used. The exotic coolants require surrogate experiments for fluids of

specific thermal physical properties to mirror their properties.

There are established standards of verification and validation methods that are broken

up into code and solution (also known as calculational) pathways. Code verification and

validation is in the realm of the code developer while solution verification and validation

is in the realm of the user. The current work reported is focused on the later and tries

to do so without any assumptions regarding code verification and validation. The work

conducted focuses on a case study to show an alternate means of solution verification that

is pursued without restrictive methods such as Grid Convergence Index and its variants.

It is not meant to be a rigorous means of developing error bands (uncertainty bands) for

realistic computational fluid dynamics analysis (including 3-D effects such as turbulence)

though there is an attempt to do so. The sample case study provides future users an ap-

proach to determine if their computational fluid dynamics studies are sufficient without

the aforementioned methods (i.e. mesh convergence without a commentary on the error

bands).

The case study used in this work is based on twin planar-like turbulent jets exhaust-

ing into a large volume of fluid. The two jets combine into a single turbulent free shear
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planar jet which can be shown through velocity, vorticity, and Reynolds stress informa-

tion in the areas of interest. The simulations used to model this case are done using the

computational fluid dynamics code, Star-CCM+. Based on this effort, a simple mesh con-

vergence methodology is proposed and a solution validation analysis was conducted. The

computational fluid dynamics simulations were shown to have reasonable agreement with

the experimental works within the Twin Jet Water Facility. It is hoped this work will help

provide an alternate pathway for code users of computational fluid dynamics tools to do

simple and effective solution verification and validation.
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1. INTRODUCTION AND LITERATURE REVIEW∗

1.1 Generation IV Reactor Development

The next era of advanced reactors, coined "Generation IV" reactors, are considered

the next evolutionary step of reactor technologies. In 2000, the Gen IV forum deter-

mined that a shortlist of six types (figure 1.1) of reactor designs are need to be focused on

for development and potential deployment. These reactors have various advantages such

as higher operating temperatures, closed fuel cycles, and coupling to high temperature

thermo-chemical production or desalination. The higher temperatures allow for higher

thermal power cycle efficiency while achieving lower operating pressures. The lower op-

erating pressures, due to the properties of the working fluids (such as sodium or molten

salt), contribute towards a potentially lower design, construction, and maintainability cost.

Many of the designs have geometric features that encourage the formation of hot co-

herent jets that may impinge on vessel structures or free surfaces. The impingement on

vessel structures can cause thermal striping which is the frequent cycling of fluid flow-

ing over a structure with varying temperatures [14] and [4]. This can occur during both

operation and accident conditions for reactors with large upper structures such as upper

plenums in sodium fast reactors (SFR) and upper vessel heads in very high temperature

reactors (VHTR) (figure 1.2). Thermal stratification, which is the layering of hotter lighter

fluid on cooler denser fluid, can result from the hot jets injecting into these large vessels or

∗Reprinted with permission from "Some thermal hydraulic challenges in sodium cooled fast reactors"
by D. Tenchine, 2010, Nuclear Engineering and Design, 240, 1195-1217, Copyright 2010 by Elsevier.

∗Reprinted with permission from "The Structure of a self-preserving turbulent plane jet" by L. J. S.
Bradbury, 1965, Journal of Fluid Mechanics, 23, 31-64, Copyright 1965 by Cambridge University Press.

∗Reprinted with permission from "Experimental and Numerical Investigation of Two-Dimensional Par-
allel Jets" by E. A. Anderson and R. E. Spall, 2001, Journal of Fluids Engineering, 123, 401-406, Copyright
2001 by ASME.

∗Reprinted with permission from "Flow structures in initial region of two interacting parallel plane jets"
by N. W. M. Ko and K. K. Lau, 1989, Experimental Thermal and Fluid Science, 2, 431-449, Copyright 1989
by Elsevier.
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Figure 1.1: The Six Shortlisted Generation IV Reactors

enclosures. Like thermal striping, thermal stratification can lead to severe consequences if

the impacted structures are not designed to accommodate the large temperature gradients

between the layers of fluids. This can be intensified when a free surface (interface between

a working fluid and fill gas) is encountered such as in a SFR. The temperature difference

between the fill gas and working fluid with the oscillatory behavior of the free surface will

cause thermal fatigue.

Neither of these behaviors are usually desirable effects in reactor safety context and

are intended to be minimized. These thermal-fluid phenomena involve behavior which

increase the difficulty of experimental and computational efforts. The specific behaviors

such as jets of fluid injected into a free shear environment, the interaction of two or more

jets, buoyancy effects, and high aspect ratios of geometry are particularly impactful on

these efforts.
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Figure 1.2: Sodium Fast Reactor [1] (Left), Very High Temperature Reactor [2] (Right)

1.1.1 Sodium Fast Reactors

There are two types of SFRs that all of the major components are contained within one

large vessel (pool) or individually connected by piping (loop). This discussion focuses on

the former which involves large upper plenums or enclosures with an example (European

Fast Reactor) seen in figure 1.3. The SFR core, during operation and accident conditions,

heat fluid that injects into the upper plenum that develop into multiple coherent heated jets.

The jets experience a significantly larger environment that can be considered free shear

environments for analysis purposes. These jets eventually impact on the aforementioned

structures or free surfaces [14], [3]. This behavior has been the focus of experimental

[15] and computational campaigns [16] and the behaviors of importance are highlighted

in figure 1.4. In particular, the called out transient thermal stratification and temperature

measurements are motivating current studies in this area of work.

3



Figure 1.3: JESSICA Water Test Facility of the European Fast Reactor Upper Plenum [3]

The different behaviors seen in figure 1.4 need to be appropriately predicted to deter-

mine points of interest for operational needs such as instrumentation placement or compo-

nent design. For instance, to accurately measure outlet reactor temperature, thermocouples

should be placed in regions that do not encounter significant thermal striping and are rep-

resentative of that region of the core. Further, these behaviors can be determined to be the

4



limited behavior during accident conditions and can result in significant design ramifica-

tions to account for the phenomena.

Figure 1.4: Sodium Fast Reactor Upper Plenum Behavior [3]

1.1.2 Very High Temperature Reactors

Gas reactor designs have two different types of designs, pebble bed and prismatic

block, which result in radically different core geometries. The prismatic block geometry

has been the focus of reactor design such as the modular high temperature gas reactor

(MHTGR) [17] of which the high temperature test facility (HTTR) is based on [4]. The

geometry of the MHTGR and similar designs involve a core of graphite bricks with coolant
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channels placed throughout it. The coolant channels are connected to lower and upper

plenums where the gas flows through as it gets heated by the core (figure 1.5. During

accident scenarios such as a pressurized conduction cooldown (PCC) event, the flow in

the reactor (from upper to lower plenums) reverses due to the loss of forced convection

from circulator shutdown. The reactor shuts down, but the decay heat causes buoyancy

effects to drive the flow in the opposite direction. Heated coherent jets develop and exhaust

out of the coolant channels into the upper plenum and impinge on the upper vessel head.

Aforementioned thermal striping could result and lead to severe structural damage leading

to offsite releases. The experimental efforts of the HTTF and other similar facilities are

used to investigated this scenario. This is a similar situation to the SFR upper plenum

behavior of heated jets injected in a larger free shear environment.

1.1.3 Motivation of Current Works

Jets from small nozzles (rectangular or circular) impinging into large enclosures which

are treated as free shear environments is a phenomenon that motivate the works discussed

in this dissertation. The environments do not have any major structures for the jets to

impact on such that the simplest case can be investigated. Specifically, this work will focus

on verification and validation (V&V) techniques for computational fluid dynamics (CFD)

tools simulating this behavior in a test facility (chapter 2). The next sections will discuss

the current state of V&V for CFD tools, what is applicable, and where can improvements

be made. Additionally, the physics involving twin planar turbulent jets are discussed in

detail to provide a basis for the analysis.

1.2 Verification & Validation

CFD tools or codes have been shown to be useful for research/design in advanced re-

actors previously [3], but the process of verifying and validating the solutions have much

left to be desired. Although it was published over a decade ago, Oberkampf’s and Tru-
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Figure 1.5: CAD Representation of High Temperature Test Facility [4]

cano’s [18] paper on V&V for CFD tools still provides insightful commentary on the

subject. It suggests that solution (known as calculational in some publications) V&V is

more an afterthought for CFD analysis. In that, it is not commonly conducted for research

efforts and much less so for design efforts. Or if conducted, they are regularly done as

limited visual comparisons using data plotted on figures in the case of both verification
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(computational vs. analytical or higher order computational results) and validation (com-

putational vs. experimental results). This can be regularly seen in a significant number of

recent CFD journal articles such as Journal of Fluid Engineering or Nuclear Engineering

and Design. These articles make no mention or discussion of solution V&V which leave

concerns about the validity of the analysis. For instance, Jayaraju et. al. [19] provides

an insightful view of Reynolds averaged Navier Stokes (RANS) modeling as compared

to quasi-DNS for pebble bed reactor-like geometries. Unfortunately, the work does not

provide any meaningful discussion regarding the validity of the mesh used and how was

it determined to be suitable for the simulations conducted. This is acceptable depending

on the application or purpose of a study but the work has to be considered carefully for

supporting design purposes.

Large eddy simulations (LES) and direct numerical simulations (DNS) are also diffi-

cult to conduct solution V&V methods for various reasons. Solution verification for LES

and DNS are approached in a different manner such as ensuring the full range of length

scales are resolved. These methods will not be a topic of discussion in this work.

For both steady and unsteady RANS, the overarching community has reached some-

what of a census that V&V efforts should be pursued but not how. In particular, a growing

interest in using CFD for nuclear safety applications with solution V&V included can be

seen. This is demonstrated by the Nuclear Regulatory Commission (NRC) NUREG doc-

uments outlining various CFD calculations. In NUREG-2152 [20], they suggest using

generalized Richardson extrapolation (GRE) [21] with the usage of the grid convergence

index (GCI) [22] as a form of verification. In the report, the authors did not present an

exhaustive case to support the usage of GCI or GRE and had issues regarding inaccuracies

in the use of turbulence modeling. Further, the report does not cover the determination of

mesh convergence (i.e. sufficient amount of refinement) for a calculation’s set of meshes.

The role of V&V is fundamental towards making CFD tools suitable for these usage
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of design and development efforts for advanced reactors [23]. V&V of computational

tools can be separated into two major types, code and solution (or calculational). Code

V&V is predominantly in the domain of the developers of a specific tool or code. Whereas

solution V&V would be activities conducted by users/analysts of the tool/code for their

specific case. This discussion is focused on the latter in the context of advanced reactors.

1.3 Solution Verification

Solution verification for CFD emphasizes building a case of evidence for showing a

specific CFD calculation is correct and accurate within a specific bound. The standard

version of solution verification is focused on grid and time step convergence/sensitivity

as a posteriori type of analysis [18]. When solution verification is provided for a CFD

study, mesh convergence can be shown by simple visual comparisons and/or numerical

comparisons such as L2 norms. This has been a steadfast manner of observing mesh

convergence, but there has been movement towards a more rigorous process since the

early 1990s. This process was initiated by Roache [22] in his early efforts to establish a

basic means of showing mesh convergence and sensitivity.

For the work presented in this dissertation, a differentiation between mesh convergence

and mesh sensitivity is provided to ensure clarity of the results and conclusions. Mesh

convergence is defined as the mesh density or grid size shown to be sufficient for further

sensitivity analysis or comparisons to validation data. Mesh sensitivity is defined as the

development of uncertainty/error bands associated with a specific mesh density or grid size

determined using a posteriori analysis. These definitions are likely not consistent with the

V&V communities definitions of these items, though most of the CFD community does

not use these terms consistently.
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1.3.1 Mesh Convergence

In order to do mesh convergence studies, an analyst would traditionally plot a meaning-

ful quantity or parameter resulting from a series of CFD simulations. The plotted results

are obtained using different meshes of an arbitrary, but significant, level of refinement

between each mesh. The analyst would compare the graphical results and through either

qualitative and/or quantitative comparison determine what amount of mesh refinement is

needed for further studies. For the quantitative comparison, the analyst may define a spe-

cific criteria of two numbers that are within some percent or absolute difference as con-

verged (for instance, 5% difference where neither are treated as the "true" answer). This is

found to be effectively standard practice within the overall CFD community. An example

of which can be found in Anderson’s twin jet works [7] which is topically related to the

current works. Currently, there is no census on how mesh convergence studies should be

conducted by the overarching CFD community. Some groups argue mesh convergence

can be shown by determining the uncertainty from the discretization error. While other

groups use visualizations and basic numerical comparisons to show mesh convergence.

Although one significant point that can be drawn from both ends of the spectrum, a basic

means of showing mesh convergence is important and should be shown/provided. A large

effort of current V&V work is focused on determining the discretization error of a specific

set of calculations. The discretization error is defined as the difference between the exact

solution of a PDE and the numerical solution. The error is associated with converting a

continuous function or equation into a discrete set of equations. The discretization error is

shown as,

En = fn − fexact (1.1)

where fn is a meaningful quantity predicted by a numerical method and fexact is the exact
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solution.

This is complicated by the majority of meaningful engineering analysis do not have

an exact solution. Which is why numerical methods are used for solving PDEs, but exact

solution estimators such as GRE can be used to as a replacement. This is complicated

by two points, the first being the requirement that solutions used for estimating the exact

(or extrapolated) solution need to be in the asymptotic range (i.e. mesh size becomes

small or close to zero). An example of an asymptotic range is shown in figure 1.6 for the

1 − D transient heat conduction equation for an insulated rod. The second point is that

it is difficult to reach the asymptotic range for every flow situation due to the demand of

computational resources.

Figure 1.6: Asymptotic Range shown using a Mixed-Order (1st Order Time and 2rd Order
Space) Scheme for Transient Heat Condition [5]
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Other convergent behavior that can be observed are oscillatory convergence and di-

vergence and monotonic divergence. To determine what type of behavior is encountered

using a set of three solutions, the discriminating ratio [24] can be used

R =
f1 − f2
f2 − f3

(1.2)

where 1 is the finest mesh and 3 is the coarsest mesh. The "apparent" convergence behavior

can then be classified using the following conditions.

1. Monotonic convergence: 0 < R < 1

2. Oscillatory convergence: R < 0 and |R| < 1

3. Monotone divergence: R > 1

4. Oscillatory divergence: R < 0 and |R| > 1

Richardson Extrapolation and Generalized Richardson Extrapolation

Richardson extrapolation is used to build error estimators and error bands (uncertainty

bands) of discretization error for systems described by partial differential equations (PDE)

[21]. This is through the usage of estimating an exact solution of the quantity of interest.

The Richardson Extrapolation was originally based on a 2nd order numerical scheme in-

volving grid refinements of 2. Without rigorous derivation, the Richardson extrapolated

solution can be found using the following,

fexact = f1 +
f1 − f2

3
(1.3)

where f1 and f2 are the fine and coarse solutions.

The extrapolation solution from the above is considered 3rd order accurate but can be

extended to 4th order accuracy. This scheme depends on uniform grid refinement and that
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all levels (meshes) of refinement are in the asymptotic range. The formal order of accu-

racy (pf ) is order of the leading truncation term that dominates the error of the numerical

prediction and an exact solution (i.e. 2nd order accuracy). In order to use a generic pf and

a refinement (factor) that is not restricted to 2, GRE can be presented as,

fexact = f1 +
f1 − f2
rp12 − 1

(1.4)

where r12 is (using h as the uniform grid size). It is defined as

r12 =
h2
h1

(1.5)

Other Forms of Determining Extrapolated Solution

Due to the issues associated with reaching an asymptotic range, alternate methods

discussed and proposed for use by Celik et. al. ([25], [26], [27], [28]) to calculate an

extrapolated value for oscillatory convergence. These methods include the polynomial

method, power law method, cubic spline method, and Appropriate Error Spline (AES)

with the last one being the most promising. Though, these methods will not be pursued

for usage in this work and left for future studies.

Observed Order of Accuracy

For situations where the exact solution is not known (i.e. most CFD analysis), an

observed order of accuracy (as opposed to the formal) can be approximated using at least

three meshes (referred to as a mesh triplet). One could use the formal order of accuracy,

but it would be viewed as more of a guess or estimate and not properly reflective of the

discretization error. For three meshes with equal refinement factors between each meshing

level, the equation 1.6 can be used.
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p =
ln
(
f3−f2
f2−f1

)
ln(r)

(1.6)

For unequal refinement factors between successive meshes, the observed order of accuracy

(P) can be estimated using equation 1.7.

f2 − f1
rp12 − 1

= rp23
f3 − f2
rp23 − 1

(1.7)

where f1 would be the finest mesh and f3 is the coarsest mesh. This equation has to

be solved using a simple iterative method where the initial guess is usually based on the

formal order of accuracy.

In the case of simulations conducted with unstructured meshing and a constant refine-

ment, the following equation can be used to definite a representative refinement factor.

r12 =

(
N1

N2

) 1
D

(1.8)

where N is the total number of degrees of freedom (D.O.F.) for the specific mesh level and

D is the dimension of the simulation.

Based on the discussions by Roache [22], it can be inferred that mesh convergence can

be determined using the observed order of accuracy assuming each mesh in the asymptotic

region and does not violate any baseline assumptions. This can be done by using the solu-

tions for a mesh triplet or several mesh triplets (if available) to determine if the observed

order of accuracy is consistent with the formal order. This leaves a few questions such

as, "What is considered a parameter indicative of global behavior of the mesh?", "What

is the metric to determine the observed order is ’close enough’ to the formal order?", and

"What can be done in situations where asymptotic regions are feasible or the underlying

assumptions are violated?"
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1.3.2 Mesh Sensitivity

Mesh sensitivity in the CFD community is still relatively new due to a variety of fac-

tors. For instance, one telling point is the majority of the community does not even con-

sider mesh sensitivity (based off the definition above) to be a standard part of a CFD

analysis. Very rarely are error or uncertainty bands provided with any meaningful quan-

tities shown in CFD analysis. There are several means to create error bands based on L2

norms, GCI, and GCI variants which have associated pros and cons.

L2 Norm

The L2 norm has been historically used to show the reduction of error with decreasing

mesh size (increasing D.O.F.) due to giving an indication of global behavior. The L2 or

"Euclidean norm" or root mean square value is defined as

L2 =

(
1

N

N∑
n=1

f 2
i

) 1
2

(1.9)

where the L2 norm error can be defined as

ErrorL2 =

(
1

N

N∑
n=1

(fi − f)2
) 1

2

(1.10)

f is the average quantity of interest or the exact solution of a PDE. L2 norm could be a

decent metric for determining sensitivity, but Roache [22] argues against it. This is due to

L2 norm not taking into account mesh information (refinement factor) and observed order

of accuracy.

Grid Convergence Index

Roache [22] originally proposed GCI to develop uncertainty bands using a posterior

information of any meaningful quantities, the mesh information (refinement factor), and

15



observed order of accuracy. The observed order of accuracy is the order of accuracy de-

termined using an a posteriori estimate based off the mesh information and corresponding

meaningful quantities. GCI is based off GR) and the suffers from the same deficiencies

found below.

1. The simulations have to be shown to be in a region of asymptotic convergence.

2. The mesh and mesh refinement must be done in a uniform and consistent manner.

3. Localized areas of refinement can not be used.

GCI for a mesh triplet can be calculated as a relative quantity for the finest mesh using

the following equation,

GCI12 =
Fs

rp12 − 1

∣∣∣∣f2 − f1f1

∣∣∣∣ (1.11)

where Fs is the factor of safety. When the quantities are close to zero, the absolute quantity

GCI is calculated without the normalization [29].

GCI12 =
Fs

rp12 − 1
|f2 − f1| (1.12)

The medium mesh can then be calculated using the solutions for the coarse and medium

meshes. The factor of safety is usually selected to be 1.25 or 3.0 depending on the follow-

ing.

1. Fs = 3.0, if only two grids are used.

2. Fs = 1.25, if a grid triplet is used and the observed order of accuracy is considered

to match the formal order of accuracy.
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The factor of safety is still an open question with work conducted by Xing and Stern

[30] to address issues when the observed order of accuracy is larger than the formal order

and others. Roache [31] and Xing [32] had an exchange where Xing and Stern revised their

original discussed approach and it is solely included for completeness and not included in

the current study.

The deficiencies of this method are quite restrictive considering most CFD analysis in-

clude turbulence, wall regions, localized refinement, unstructured grids, and are not found

to be in an asymptotic range. Roache struggles to justify the usage of GCI in turbulence

based on his comments [24], "By creating the words ’laminar’ and ’turbulent’ and using

them in juxtaposition, we can deceive ourselves into thinking that they have equal weight

and meaning. In fact ’laminar’ means something, but ’turbulent’ does not define the condi-

tion." These comments, in the author’s opinion, undermine the argument that GCI should

be aggressively pursued for turbulent CFD analysis which are the vast majority of current

CFD analysis. The requirement against localized meshing supports this due the need for

localized near wall refinement to resolve boundary layer behavior through near wall func-

tions. Localized areas of refinement may also be needed to resolve key areas of gradients

to be within the available computational resources. Further, the majority of CFD analysis

found in industrial and research environments can not be done without the assistance of

unstructured meshes. Finally, the determination of the observed order of accuracy using

a global or local quantity is not well commented and is without consensus. It is up to the

CFD analyst to determine the best approach possible which can lead to pitfalls for even

the most experienced CFD analysts.

Least Squares - Grid Convergence Index

There are several forms of GCI developed in an attempt to address simulations con-

ducted outside the asymptotic region. The most prominent being the Least Squares GCI
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(LS-GCI or LSQ-09) by Eca [33], which involves minimizing an error function involving

observed order of accuracy, solution of a function at some point, grid spacing, and oth-

ers. An improved version (LSQ-10) was proposed and discussed in detail by Phillips [34]

and Eca [35] which added more complexity but overcame some of the deficiencies of the

previous. It suffers from the requirement of at least four meshes are needed which maybe

unobtainable in large enough cases.

There are potentially other variants meant to overcome issues with non-asymptotic

convergence with a direct estimate of error bands, but at the time of writing this was the

most prominent one found.

1.4 Solution Validation

Solution validation for CFD is commonly based on the accuracy of the simulation re-

sults as compared to the experiment [29]. The validation can be in several forms including

basic color maps, single data points and line profiles with or without error bars shown.

Traditionally, solution validation in CFD is shown as the simple graphical comparison of

the two results without error bars. This is due to a variety of factors but different forms

are needed based on the extent of validation desired. For instance, an analyst may only

find experimental data that is not well documented with regards to measurement error and

uncertainty. It is better for them to at least have some comparison even if it isn’t the best

situation possible.

In general and strongly suggested by Roache [24], solution verification should occur

before solution validation. Fortunately, solution verification allows the analyst to construct

error bands based on the previously mentioned methods. Using that information, we can

compare the experimental measurements with their associated error bands, Standard Error

of the Mean (SEM), and the simulation results. If the error/uncertainty bands overlap,

the measurements are suggested to agree within the uncertainty bands. This is a simple
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method for validation and is well accepted for comparing two measurements of the same

quantity. In this case, the simulation results are treated as a measurement of the same

quantity of interest with GCI [36], [24] or two times the ErrorL2 acting as the 95% con-

fidence interval based on a normal distribution for the reported quantity. The caveat being

that the GCI and ErrorL2 do not include uncertainty attributed to boundary conditions,

initial conditions, and others and solely attributed to discretization error. Additionally, a

direct comparison between the experiment and simulation results can be shown as percent

difference calculated as,

%Diff =

∣∣∣∣∣U1 − U2

U1+U2

2

∣∣∣∣∣ (1.13)

to show a quantification of the difference between the two reported quantities. This is if

the magnitudes of the quantities are large enough to not cause artificially large differences.

In cases such as this, absolute difference based off the definition below can be used.

Absdiff = |fn − fexp| (1.14)

Using the aforementioned validation comparison, the CFD simulations should be able

to be determined if they are considered validated. This is only for the specific calculation

and the stipulations surrounding it. Such that a CFD analyst does not attempt to try and

claim calculations are validated for flow over a flat plate is now validated for flow in a

complex reactor geometry.

1.5 Governing Physics

1.5.1 Turbulent Free Shear Planar Jets

The turbulent free shear planar jets (see figure 1.7) can be described using the boundary

layer equations for free shear flow.
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Figure 1.7: Schematic of Turbulent Planar Jet

To get there we start with the RANS equation in a 3-D form beginning with the conti-

nuity equation,

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (1.15)

where u, v, w are the streamwise and spanwise velocity components. The momentum

(Reynolds) equations for x, y, and z components are,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −1

ρ

∂P

∂x
+ ν∇2u−

(
∂u′2

∂x
+
∂u′v′

∂y
+
∂u′w′

∂z

)
(1.16)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −1

ρ

∂P

∂y
+ ν∇2v −

(
∂u′v′

∂x
+
∂v′2

∂y
+
∂v′w′

∂z

)
(1.17)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −1

ρ

∂P

∂z
+ ν∇2w −

(
∂u′w′

∂x
+
∂v′w′

∂y
+
∂w′2

∂z

)
(1.18)

where u′2, v′2, w′2 are the Reynolds normal (diagonal) stresses and u′v′, u′w′, v′w′ are the
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Reynolds shear (off-diagonal) stresses.

The turbulent planar jets are by definition 2-D which results in the w spanwise com-

ponent terms of the RANS equations to disappear. In this case, we are looking at steady

behavior which reduces all time dependent terms to zero and results in the following equa-

tions for continuity and momentum.

∂u

∂x
+
∂v

∂y
= 0 (1.19)

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂P

∂x
+ ν∇2u−

(
∂u′2

∂x
+
∂u′v′

∂y

)
(1.20)

u
∂v

∂x
+ v

∂v

∂y
= −1

ρ

∂P

∂y
+ ν∇2v −

(
∂u′v′

∂x
+
∂v′2

∂y

)
(1.21)

In this flow, we have a much larger streamwise component of velocity for the majority of

the jet which allows for the assumption of the spanwise velocity component to be negli-

gible. The gradients of the stress terms are reduced by the gradient terms in the spanwise

direction being much larger than the x direction allowing these terms to be considered

negligible. This results in the equations being of the following form.

∂u

∂x
+
∂v

∂y
= 0 (1.22)

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂P

∂x
+ ν

∂2u

∂2y
−

(
∂u′2

∂x
+
∂u′v′

∂y

)
(1.23)

0 = −1

ρ

∂P

∂y
− ∂v′2

∂y
(1.24)

Then by taking the equation 1.24 and integrating to a point outside the mean flow, we can

get the following equation for pressure using p∞ as the free stream pressure.
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P = p∞ − ρv′2 (1.25)

After which, we can then substitute equation 1.25 into equation 1.23 after differentiating

with respect to the streamwise direction to get the following.

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p∞
∂x

+ ν
∂2u

∂2y
−
(
∂u′v′

∂y
+

∂

∂x
(u′2 − v′2)

)
(1.26)

The last term in equation 1.26 is quite small and will be ignored but not entirely negligi-

ble ([37]). Also, p∞ is written as p for simplicity to get the boundary layer momentum

equation for turbulent free shear planar jet flow.

u
∂u

∂x
+ v

∂u

∂y
= −1

ρ

∂p∞
∂x

+ ν
∂2u

∂2y
−
(
∂u′v′

∂y

)
(1.27)

For the following discussions, the free shear region of flow results in a significantly larger

turbulent shear stress than laminar shear stress. This results in the second term on the right

side in the above equation to be assumed negligible and the following relationship is used

τ = −u′v′. Also, the pressure gradient in the streamwise direction is considered negligible

leading the final equation set used for analytical solutions discussed later.

∂u

∂x
+
∂v

∂y
= 0 (1.28)

u
∂u

∂x
+ v

∂u

∂y
=

1

ρ

∂τ

∂y
(1.29)

A more guided discussion of this deviation can be found in the seminal book by Ra-

jaratnam [38].
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1.5.2 Self-Similarity/Self-Preserving Quantities

Before diving further into turbulent planar jets, the concept of self-similarity (also

referred to as self-preserving) for turbulent flows needs to be discussed [37]. Pope provides

a summary of self-similarly by supposing there exists a generic function Q(x, y) depends

on two independent variables such as two directions (x and y). The generic function can

have two characteristic scales associated with it that are dependent on x, Q0(x) and δ(x).

Both of these scales are independent of the y direction. We can then define new scaled

variables such as

ξ =
y

δ(x)
(1.30)

Q̃(ξ, x) ≡ Q(x, y)

Q0(x)
(1.31)

Using these, we can look at what it means if there exists a function Q̂(ξ) that is inde-

pendent of x. If this function does exist then the following holds true,

Q̃(ξ, x) = Q̂(ξ) (1.32)

This implies that Q(x,y) is self-similar. The following comments and qualifications are

particularly relevant for the proceeding discussion.

• The characteristic scales, Q0(x) and δ(x) must be chosen in a sensible manner.

• Self-similar behavior may only exist and be observed over a range of x.

• A partial differential equation is the governing form of the generic function Q(x, y)

but ordinary differential equations are the governing forms of Q0(x) and δ(x).
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Self-Similar/Self-Preserving Turbulent Planar Jet

The ideal turbulent free shear planar jet can be described by the characteristic velocity

U0(x) which is the centerline streamwise velocity. The characteristic scale is set as the

half-width height, b (figure 1.10), where u(x, b) = 1
2
u0(x). The following conditions

based on the discussion in subsection 1.5.1 are needed for self-similarity.

1. The streamwise component of the flow has to be much larger than the spanwise

components.

2. The streamwise and spanwise (y) component of velocity and resulting statistical

flow quantities are independent of the spanwise (z) direction.

3. The flow behavior such as streamwise velocity and statistical flow quantities en-

counter symmetry on the x axis.

4. The geometric ratio of H
w

is large enough to be free of end effects from the duct sides

(see figure 1.8) and effectively 2-D in the centerline profile of the jet.

These conditions are used during the derivation of the two analytical turbulent free

shear planar jet profiles and useful for the analysis in the latter chapters.

1.5.3 Analytical Velocity Profile Solutions for Turbulent Planar Jets

Tollmien Solution

The Tollmien solution to the turbulent free shear planar jet is approached using the

boundary layer equations 1.28 and 1.29 and the Prandtl mixing length hypothesis. The

hypothesis allows the Reynolds stress tensor τ to be related to the velocity gradient by a

mixing length lm characteristic of the flow geometry. This relationship is shown by the

following,
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Figure 1.8: Schematic of a Duct

τ = ρl2m

(
∂u

∂y

)2

(1.33)

where lm is related to the flow by defining it as proportional to the jet half-width height,

b. Using b, the similarity variable η is defined as η = y
b
. These relationships are used to

result in a non-linear second-order differential equation,

F ′′2 + FF ′ = C (1.34)

where F ′ is equal to u
u0

. The solution of this was originally determined numerically by

Tollmien and is shown in figure 1.9.

Goertler Solution

The Goertler solution to the turbulent free shear planar jet is approached using the

boundary layer equations 1.28 and 1.29 and the Prandtl turbulent shear stress equation

(equation 1.35.

τ = ρε

(
∂u

∂y

)
(1.35)
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Figure 1.9: Analytical Solutions for Planar Turbulent Jet

where ε is the turbulent viscosity. The turbulent viscosity is proportional to the u0 and b

that allows the following equation to result,

F 2 + F ′ = C (1.36)

where F ′ is again equal to u
u0

and C is a constant. The resulting analytical solution for F ′

is then shown in figure 1.9.
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1.5.4 The Turbulent Planar Jet Experiments

The turbulent free shear planar jet (figure 1.10) has been investigated extensively by

several groups found in the literature. Although previous work had been conducted before

hand, Bradbury [6] and Heskestad [39] provided the first sets of comprehensive measure-

ments of the turbulent planar jet using HWA and static pressure measurements (Pitot and

static tubes). These two groups measured the mean and fluctuating velocities, turbulent

intensities, Reynolds stresses, and higher order moments of the flow. Bradbury found that

for their setup, self-similarly is achieved by thirty jet nozzle widths from the injection

point.

Figure 1.10: Schematic of Turbulent Planar Jet [6]

Whereas, Heskestad found their jet reached self-similarly of the streamwise velocity

and turbulent fluctuations around sixty-five jet nozzle width from the injection point. The

motion of jet corresponding to the largest eddies (turbulent dissipation) was found to be-

come self-similar much later around one hundred jet nozzle widths. The differences found

relating to self-similarly are due to the different initial conditions. Such as Bradbury’s inlet
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profile was likely more similar to a "top-hat" whereas Heskestad was closer to a channel

flow profile (see figure 1.11).

Figure 1.11: Top Hat (Red) vs. Channel Flow (Black) Velocity Profiles

Bradbury’s experimental set up was also injected into free stream conditions that was

0.16 of the exhaust jet velocity. This was discussed in greater detail by Gutmark and Wyg-

nanski [40]. Gutmark and Wygnanski’s effort was focused on determining the structure of

turbulent free shear flows. They conducted experiments on mixing layer, axisymmetric jet,

and planar jets and found that the latter two were similar. Although, all three flows were

found to be anisotropic in nature which impacts modeling assumptions involving isotropy

for the Boussinesq eddy viscosity assumption. The planar jet was found to become self-

similar at forty jet widths from the injection point.
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1.5.5 Twin Jets

Previous Experimental Efforts

The first investigations into twin planar jets converging into one were done by Miller

and Comings [41]. Using Hot-Wire Anemometry (HWA) and static pressure disk probes,

Miller and Comings were able to determine that a sub-atmospheric static pressure region

was pulling the jets together. They found after merging together, the single jet behavior

was similar to that of a single free jet. In Tanaka’s first report [42], they discuss the

entrainment of fluid surrounding the twin jets causing the sub-atmospheric pressure region

(later referred to as converging region) to develop. In this early work, they look at the

effect of the separation distance between the jets on various jet parameters using HWA

and static pressure disk probes. In particular, the free stagnation point (later referred to as

merge point) is depending on the ratio of the separation distance between the centerline

of the two jets over the jet width. If the ratio becomes larger, the free stagnation point is

further away from the injection point of the jets. In the second report by Tanaka [43], the

work focused on the region of the combined single jet (later referred to as the combined

region) using the same experimental apparatus previously mentioned. Tanaka determined

that regardless of the separation distance over nozzle width ratio (
(
S
d

)
in figure 1.13), the

combined jet will have good agreement with Goerter’s single jet curve [38].

They did find the combined jet will not be observed to have the same turbulent intensity

profile as a true single jet. Further, the combined jet will spread similarly to a single jet

which is a linear relationship between jet half-width and downstream distance. Tanaka

also found that the Reynolds number did not have an effect on the combining physics of

the twin jets. The flow solely depends on geometry of the nozzles for a fully turbulent

twin jet. The previously discussed work were conducted in environments considered to be

"unventilated" due to the jets being injected perpendicular to a solid plane. An example of
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ventilated and unventilated jets are shown in figure 1.12

Figure 1.12: An example of Twin Planar Jets that are Unventilated (left) and Ventilated
(right)

In work conducted by Marsters [44] using HWA and static pressure probes, they con-

ducted the same twin planar jet in a "ventilated" experimental setup where the solid plane

does not exist. This was done in an effort to simulate conditions similar to that of an air-

craft. Marsters found that there is little impact of an environment that is considered unven-

tilated or ventilated on the mean flow behavior discussed previously. Marsters do support

the conclusion by Tanaka that the behavior is effectively independent of Reynolds number

assuming the jets are undergoing fully developed turbulence. Elbanna et. al. conducted

a similar experimental campaign to that of Marsters to capture turbulence fluctuations in

ventilated twin planar jets using HWA [45]. Elbanna et. al. confirmed the observations of
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Marsters while determining some properties of ventilated jets are not exactly the same as

a single jet. In the work by Lin and Sheu [46], they used HWA to investigate similar qual-

ities to discussed previously. They observed the twin jets and later combined jet exhibit

self-preserving behavior of the mean streamwise velocity in the converging and combined

regions. The turbulent intensities, and Reynolds shear stresses are not observed to be self-

similar except in the combined region. Whereas, the flow behavior in the merging region

is not considered self-preserving. It is in this work, that the terms merge and combined

points, converging, merging, and combined regions are seemingly defined which is used

exhaustively in later studies. Ko and Lau [8] used HWA to comprehensively investigate

the converging and merging regions of partially vented (a bluff body/separation plate sep-

arated the two jets) two planar-like turbulent jets for identifying the flow structures in

water. This work is similar to the experimental efforts shown in chp 2 but has a much

smaller aspect ratio
(
H
w

)
, smaller separation ratio (S

a
), and significantly lower Reynolds

number based on duct width. Ko and Lau were able to obtain a results of the streamwise

flucations, spanwise fluctations, and the off-diagonal Reynolds stresses in the converging

and merging regions.

Unlike previous studies, Nasi and Lai measured twin planar jets using LDV as opposed

to HWA [47]. They observed similar behavior to previous studies and further observed the

independence of flow behavior from Reynolds number.

Summarized Twin Jet Physics

The proceeding discussions regarding the twin jet will follow the vernacular of Ander-

son and Spall [7]. Figure 1.13 provides an schematic of the flow features notable of the

twin jets when combining together. The behavior is characterized by three regions that

will be referred to as the converging, merging, and combining regions. The converging

region starts from the point of the injection of the jets to the merge point of the jets. The
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merge point is defined in this study as the point where the centerline streamwise velocity

flips from negative to positive or considered zero. The merging region exists from the

merge point till the combined point. The two jets progress towards becoming a single

jet in this region. The combined point is defined as the point corresponding the maximum

centerline streamwise velocity. After the combined point, the single jet is encountering the

combined region where the jet exhibits self-preserving and self-similar behavior similar to

a true single jet.

Figure 1.13: Schematic of Twin Slotted Jets Merging into One Jet [7] where d = a for this
study

The twin planar-like turbulent jets have a Reynolds stress uv distribution similar to

figure 1.14 for the merging and converging regions of flow. This is This information
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Figure 1.14: Example of Reynolds Stress uv Components in Partially Vented Twin Planar-
Like Jet [8]

provides useful insight for the solution validation in chapter 5 to ensure the appropriate

Reynolds stress distributions are being captured.
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Previous CFD Validation Efforts

An initial effort to do basic CFD validation was done by Behrouzi and McGuirk using

a RANS framework (not stated whether steady or unsteady) with a high Reynolds number

κ − ε turbulence model [48]. This work is seemingly disconnected from the rest of the

literature on twin planar jets. This is likely due to the focus twin jets impinging into a

weak to strong crossflow. In their work, Behrouzi and McGuirk do a sample case test case

where no crossflow is experienced and is compared qualitatively to the CFD predictions.

They found that RANS with a high Reynolds number κ− ε turbulence model can predict

the gross features of the twin jets.

Anderson and Spall conducted an experimental and CFD validation campaign for twin

planar jets based off guidance of previous studies [7]. In this work, they gathered exper-

imental data using HWA of the centerline streamwise velocity and Reynolds stresses for

different
(
H
w

)
ratios. They compared this experimental data to CFD simulations using a 2-

D steady RANS framework with the standard κ−ε and Reynolds Stress turbulence (RSM)

models using Fluent V 4.4. Anderson et. al. found the standard κ − ε and RSM simula-

tions were able to capture the time averaged centerline streamwise velocity as compared

to the experiment. They did note the RSM model over-predicted the peak velocities while

the standard κ − ε model either directly captured it or slightly under-predicted the peak

for four different separation distance over nozzle width ratios. The authors found the CFD

results of velocity profiles in the merging and combined regions predicted a faster merging

of the two jets. For the merge points, the two CFD predictions were found to compare

well to their experimental results and previous investigations of other authors. Anderson

et. al. did know the RSM prediction of merge points was slight higher than the standard

κ− ε model. For the combined point, the authors found a significant amount of scatter for

any given separation distance over nozzle width ratio between all available and applicable
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data. They determined the reasoning behind the scatter is due to upstream effects of the

separate experimental facilities used. This is asserted by the authors to apply to both merge

and combined points.

Lastly, Anderson et. al. found the Reynolds stress components in the streamwise

and spanwise components of the RSM and experiments to be in decent agreement. Two

points to note about this analysis, the mesh convergence analysis was quite limited (based

solely on centerline streamwise velocity) and the experimental uncertainty was not shown.

This implies the results have to be considered carefully. For both studies discussed in

this section, the specific references for their turbulence models were not appropriately

listed. Both studies do not make any note of the vorticity profiles which can indicate mesh

resolution issues.

1.6 Objectives of Current Study

The objectives of this work are as follows:

1. What can be considered a simple quantitative and qualitative means of determin-

ing mesh convergence for meshes of high unstructured and/or specific area refined

meshes?

2. What currently proposed method using discretization error to calculate uncertainty/error

bands is generalized enough for high unstructured or specific area refined meshes?

3. What is a suitable way to show solution validation and can it involve uncertainty/error

bands?

4. Are these current metrics easy to implement for solution validation and if not, can

they be simplified?
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2. TWIN JET WATER FACILITY EXPERIMENTS

The Twin Jet Water Facilty (TJWF) and some of the experimental campaigns are

largely the focus of this dissertation. The Twin Jet Water Facilty (TJWF) created by the

University of Tennessee, Knoxville (UTK) is being used for on-going studies of many

purposes. It was originally developed for testing different types of fluid and heat transfer

instrumentation (ultrasonic velocimetry (UVP) and thermocouple rakes, thermal imaging

cameras) for opaque fluids such liquid sodium [49]. It included a complementary CFD

component to help design and do basic validations studies with. This was in an effort to

aide the development of sodium fast reactor instrumentation and monitoring technology.

The original experimental campaign was intended to have both a scaled water and liquid

metal (mercury) test facilities. The instrumentation was going to be tested in both facilities

to understand the potential measurement issues related to using a fluid other than water.

The TJWF was later re-purposed for a variety of studies including the development

of experimental databases for CFD V&V efforts. This campaign has become the focus

of the American Society of Mechanical Engineering (ASME) V&V symposium recent

benchmark and challenge workshops.

2.1 TJWF Design and Dimensions

The TJWF consists of the mixing tank and external piping/pumps. The mixing tank

is placed on top of a movable cart that can be used for local transport. It can be removed

from the cart in the case of moving across country (i.e. from UTK to TAMU). The mixing

tank is made up of 25.4 mm (1 inch) thick acrylic sheets glued together allowing for an

almost completely transparent measurement volume. The mixing tank is comprised of the

jet head and weir overflows. The jet head contains the two separated rectangular vertical

jets and the stagnation boxes that feed into the jets. The TJWF is shown in Figure 2.1 with
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the mixing tank, movable cart, and piping/pumps. The TJWF’s two jets are feed by two

186.43 watt (0.5 Hp) pumps that suction from separated header tanks. Each piping line

feeding a separate jet from the header tanks through the pumps includes a throttling valve

for volumetric flow control and an isolation valve. The two header tanks are connected by

a common piping line includes a value that allows isolation between the header tanks. The

water in the mixing tank will eventually reach the weir overflows that feed into the header

tanks. This allows the TJWF to be operating in several operational modes.

The TJWF as-built dimensions are 762 mm by 1016 mm by 1206.5 mm defined as the

outside length, width, and height including the thickness of the walls. The jet head extends

384.175 mm above the bottom of the TJWF and the top of the tank is 822.325 mm above

the jet head. A schematic of the jet head with major dimensions that are 171.45 mm by

47.752 mm by 279.4 mm in length, width, and height shown in Figure 2.2. Each jet is

87.63 mm by 5.8 mm in length and width and are separated by 12 mm sheet of acrylic.

This yields a centerline to centerline separation distance of 17.8 mm.

2.1.1 Hydraulic Diameter and Reynolds Numbers Definitions

The hydraulic diameter of the twin jet is calculated using the standard definition,

Dh = 4
A

P
=

2wL

L+ w
(2.1)

The Reynolds number definition used for the majority of the experimental work was

defined using the above definition as

ReDh
=
ρUDh

µ
(2.2)

Whereas the definition of Reynolds number in literature is based on the jet width and

stated as,
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Figure 2.1: Twin Jet Water Facility during the UTK Experimental Campaign [9]

Rea =
ρUa

µ
(2.3)
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Figure 2.2: Twin Jet Water Facility Jet Head Schematic

where ρ and µ are density ( kg
m3 ) and dynamic viscosity (Pa− s).

The aspect ratio (L
a

) of the jet which provides a basic means of determining if sec-

ondary flows are still contributing to the "centerline" behavior of jet is 15.1. This is not

high enough to suggest that the TJWF experiments can be simulated without consider-

ing the effect of secondary flows [50]. This requires 3-D simulations to be conducted to

appropriately account for the twin jet mixing behaviors. Based on this information, the

Reynolds number used for the duration of these studies will based off the hydraulic di-
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ameter of each jet. This is further motivated to ensure consistency with the experimental

efforts at UTK and TAMU.

2.2 UTK Experiments

The UTK Thermal Fluids group conducted one set of the experimental campaign using

Particle Image Velocimetry (PIV) and UVP measurements. Their efforts documents the

initial PIV data collected by Crosskey et. al. [9] presented with error estimates. These

error estimates are separated by the symmetric and random components. An effort to

determine difference in measurements of PIV and UVP techniques was done by Wiggins

et. al. [10]. In this work, they were able to show strong agreement of the two measurement

techniques in the combined region of flow shown. They did observe poor agreement of the

measurements in the converging region which is recommended for further study shown

in figure 2.3. The disagreement of the measurements manifested in the form of a strong

asymmetry where one jet had a much larger profile than the other.

2.3 TAMU Experiments

The TAMU Thermal-Hydraulic Research Laboratory has ongoing experimental efforts

using a variety of different measurement techniques within the TJWF. These efforts in-

clude LDV, PIV, UVP, and Laser Induced Fluorescence (LIF) to do both isothermal and

heat transfer experiments. The focus of the current work has been on isothermal condi-

tions using similar initial and boundary conditions that was utilized by Crosskey et. al.

[9]. These conditions establish the basis of the initial and boundary conditions of the twin

jet simulations discussed later and can be found in Table 2.3.

The LDV results are quite extensive and include many forms of data throughout the

converging, merging, and combining regions of flow [12]. This includes velocity profiles,

vorticity profiles, Reynolds stress profiles of streamwise and spanwise component, and

merge/combined points. The currently available PIV results [13] include velocity profiles,
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Figure 2.3: Comparison of UVP vs. PIV Measurements in TJWF [10]

and Reynolds stress profiles, and turbulent intensity profiles. These two sets of experimen-

tal results are utilized for the majority of the validation work discussed in later sections.

There are several ongoing efforts to collect additional using PIV, UVP, and LIF data.
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Institution UTK-PIV UTK-UVP TAMU-LDV & PIV TAMU - UVP
Pressure (kPa) Ambient Ambient Ambient Ambient
Temperature (◦C) 26 20 23 23
Flow rate (per jet - kg

s
) 0.385 0.378 0.385 0.385

Ave. Inlet Velocity (m
s

) 0.75 0.74 0.75 0.75
Reynolds Number (Dh) 9100 8000 9100 9100
Reynolds Number (a) 4900 4300 4900 4900

Table 2.1: Experimental Test Conditions for TAMU and UTK Campaigns

Recently, Lee and Hassan [51] published work involving additional collection of PIV data

and conducted Proper Orthogonal Decomposition (POD) on the data. A UVP effort by

Cabral et. al. [52] to determine the performance of the UVP measurements of the merge

point and combined point as compared to LDV and PIV. There is an on-going effort to

investigate thermal mixing within the TJWF using LIF, but published material does not

exist for it yet.

2.3.1 Experimental Uncertainty

The experimental uncertainty for the velocity in the streamwise and spanwise direc-

tions, and off-diagonal Reynolds stress component (uv on the measurement plane were

calculated using data measured at three different points in the domain. This data was pro-

vided by Wang et. al. [53] for the ASME V&V Symposium Benchmark Problem in 2016

for the different participants to apply their own form of solution validation. The data points

were provided in locations shown in figure 2.4 with each point in either the converging,

merging, or combined region of flow. This allows for an uncertainty representative of each

region to be applied to the quantities of interest used for solution validation.

Each point was sampled 3, 000 times randomly in time to get instantaneous values for

streamwise and spanwise velocity values. The streamwise and spanwise velocity com-

ponents for the merging region are shown in figure 2.5. The mean, standard deviation,
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Figure 2.4: Locations of Measurement Points for use of Determining Experimental Un-
certainty

and standard error of the mean for each component were calculated using the following

equations.

u = µu =

∑N
i=1 ui
N

(2.4)
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Figure 2.5: Velocity Signals of Streamwise and Spanwise Components at Z
a
= 3.45, X

a
=

1.51

σu =

√√√√ 1

N − 1

N∑
i=1

|ui − µu|2 (2.5)

αu =
σµu√
N

(2.6)

The Reynolds stress off-diagonal component of the streamwise and spanwise velocities at a

specific point is calculated by taking the covariance of the two signals. This is represented

as the following equation.

u′v′ = cov(ui, vi) = E[uivi]− E[ui]E[vi] =
∑N

i=1 ui × vi
N

− µuµv (2.7)
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The standard error of the mean for uv is calculated using the cross correlation of steamwise

and spanwise components.

ρuv =
cov(ui, vi)

σuσv
(2.8)

Then using the cross-correlation, the SEM of uv is calculated using the following equation

found in [54].

αu′v′ = σuσv

√
1 + ρ2uv
N − 1

(2.9)

The fractional uncertainties (fractional SEM) are calculated by normalizing by the mean

value of the quantity of interest. The overall quantities for each point are summaries in

table 2.3.1 and are applied as x± 2αx.

X
a

Z
a

u αu

u
v αv

v
u′v′

αu′v′

u′v′

1.55 3.45 0.751 0.00287 -0.0381 0.0416 0.00343 0.0575
-1.55 15.52 0.509 0.00363 0.0006 2.81 -0.00356 0.0513
0.52 34.48 0.495 0.00316 0.0197 0.0716 0.00148 0.0836

Table 2.2: Mean Values and Fractional SEM at Points in the Converging, Merging, and
Combined Regions
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3. COMPUTATIONAL MODELING AND METHODOLOGY

The computational modeling of the TJWF were focused on using steady RANS to

simulate the twin jet physics. Unsteady RANS simulations were not approached due to

the additional time requirement and additional complexity for analysis regarding solution

V&V. It is noted that unsteady effects of the twin jet behavior will not be captured using

steady RANS such as low frequency "flapping" of the combined jet. It is not believed to

significantly contribute to the parameters compared and discussed in chapters 4 and 5.

This chapter covers the governing equations, turbulence modeling, modeling assump-

tions, specific computational domain, and meshing used for the RANS efforts. Further,

the relevant post processing of quantities of interest will be covered to ensure no confu-

sion exists over how these were calculated.

3.1 Physics and Governing Equations

The twin jet simulations were approached using an incompressible RANS framework

with isothermal conditions. The simulations were conducted as steady state where the

time dependent terms were set to zero. The steady RANS equations in this work are

shown below in tensor form.

Continuity:
∂ui
∂xi

= 0 (3.1)

where ui includes the streamwise (1) and spanwise (2, 3) velocity components. The mo-

mentum (Reynolds) equations are,

ρ
∂

xj
uiuj = −

∂p

∂xi
+

∂

∂xj
(2µSij − ρu′iu′j) (3.2)

where u′21 = u′2, u′22 = v′2, u′23 = w′2 are the Reynolds shear (off-diagonal) stresses and
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u′1u
′
2 = u′v′, u′1u′3 = u′w′, u′2u′3 = v′w′ are the Reynolds normal (diagonal) stresses.

These quantities together are contained in the Reynolds stress tensor τ and are not solved

directly in two-equation turbulent models.

The Boussinesq eddy viscosity assumption which relates the Reynolds stress tensor

and the mean strain rate is used. The mean strain-rate tensor, Sij , is represented in the

equation 3.3.

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(3.3)

The relationship between mean strain rate and the Reynolds stress tensor is shown in equa-

tion 3.4

−uiuj = 2ντSij −
2

3
κδij (3.4)

where δij is the Kronecker delta and is zero for off-diagonal components (i = j), νtau is

the kinematic eddy viscosity, and κ is the turbulent kinetic energy. The turbulent kinetic

energy is represented by equation 3.5.

κ =
1

2
u′iu
′
i (3.5)

The kinematic eddy viscosity and turbulent kinetic energy are solved for using the

standard κ− ε turbulence model discussed partial in subsection 3.1.1.

3.1.1 Turbulence Modeling

Standard κ-ε Turbulence Model

The standard κ − ε turbulence model is an industry standard model implemented in

most commercial CFD solvers. It has almost ubiquitous usage throughout the overall CFD

communities and is commonly seen in most nuclear engineering CFD literature. It is

classified as a two-equation model involving both turbulent kinetic energy (TKE) (κ) and
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dissipation (ε).

The steady-state two equations for the standard κ − ε turbulence model are shown in

the equations below.

ρ∇κ−→u = ∇[(µ+
µt
σk

)∇κ] + Pκ − ρ(ε− ε0) + Sκ (3.6)

ρ∇ε−→u = ∇[(µ+
µt
σk

)∇ε] + 1

T0
Cε1Pε − Cε2f2ρ(

ε

T0
− ε0
T0

) + Sε (3.7)

The full time dependent equations, individual terms and coefficients are discussed in

detail in Appendix A.

The work by Behrouzi et. al. [48], Anderson et, al. [7]. involved the usage of the

standard κ − ε turbulence model. As previously mentioned, Behrouzi did a very minimal

qualitative comparison while Anderson did both an extensive qualitative and quantitative

comparison to the twin planar jet phenomenon based on centerline measurements. The

standard κ− ε turbulence model was selected to reduce the complexity of the analysis and

limit the computational resources needed. The underlying assumptions of tandard κ − ε

turbulence model are discussed in greater detail in the provided references [55], [56]. This

provides motivation for the inclusion of this turbulent model for the RANS studies.

3.1.2 Numerical Method

The RANS equations were discretized using the finite volume method and solved using

the SIMPLE algorithm with Rhoe-Chow interpolation. This is referred to as the segregated

solvers in Star-CCM+ v10.06.010 [57] and v11.04.012 [11].

3.1.3 Numerical Convergence Criteria

Each individual simulation was ran for a large enough number of iterations in order for

the residuals of continuity, momentum (x, y, and z), and turbulent quantities to reduce 3-4
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orders of magnitude. The residuals were run past the original reduction criteria to ensure

residual behavior did not significantly change after a meaningful number of iterations had

been calculated. In this case, the significant change is intended to mean the residuals began

oscillating around their specific reduction value and an example is shown in figure 3.1.

Figure 3.1: Example of Residual Behavior for the TJWF Simulations

The residuals are calculated as the root mean square of the absolute error of the quan-

tities discussed and normalized by the maximum residual for all of the iterations. This is

shown by the following equation,

Residual(φ) =

√
1
n

∑N
i=1 r

2

Max(Resj(φ))
(3.8)
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where r is the absolute error of the quantity and φ is a quantity of interest.

Quantities such as the centerline streamwise velocity and velocity profiles at differ-

ent characteristics heights were spot checked during runs to ensure calculations were ap-

proaching or had reached asymptotic behavior. Specific points of streamwise velocity in

the merging, converging, and combined regions of flow were plotted and tracked during

the runs. These plotted over the number of iterations to ensure they plateaued out values

to ensure numerical convergence.

3.1.4 Near Wall Modeling

The near wall modeling for the different turbulence models utilized a two-layer [58]

or all y+ wall treatment [11]. The wall treatment are damping functions meant to model

the viscosity-affected near-wall regions in a domain. The functions are utilizing a pre-

determined length-scale in specific near wall regions. The all y+ wall treatment is used

as a blended model between the low y+ wall and high y+ wall treatments. The low y+

treatment directly resolves the viscous sublayer and requires the first cell or node is placed

y+ < 1. The high y+ treatment uses damping functions to model the viscous sublayer and

places a requirement that the first cell or node is placed y+ > 30. A graphical depiction of

Star-CCM+’s low, blending (all wall), and high y+ approaches are shown in figure 3.2.

Figure 3.2: Near Wall Behavior and Wall Treatment used in Star-CCM+ [11]
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In general, this is quite important behavior to ensure is appropriately resolved. For the

twin jets, it is relaxed for the enclosure walls due to the extremely low velocities and lack

of impact on the twin jet physics. This is discussed in subsection 3.3.1.

3.2 Computational Domain Creation

The computational domain for the RANS studies was created using a trade off of rep-

resenting the true domain and computational intensity. This is generally true for any CFD

analysis and the major simplifications are discussed in detail below. The computational

domain could potentially be simplified further, but was acceptable for the author’s avail-

able computational resources. The computational domain used in the RANS studies is

shown in Figure 3.3.

3.2.1 Simplifying Assumptions

The following simplifying assumptions are utilized to reduce the meshing and physics

modeling requirements and consequently the computational and time requirements of the

simulations.

Water-Air Interface

The internal volume of the TJWF is mostly water with an water-air interface around the

same height as the weir overflows. The water surface of the water-air interface is assumed

to experience minor movement. This enables the usage of slip wall condition instead of

fully modeling the upper computational domain and the movement of the water surface.

A future sensitivity study in the future could look at the usage of moving (deforming)

mesh or fluid of volume implementations used by Carasik et. al. [59] for a similar study.

Though, it is not expected to have a significant impact on the results of the study.
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Figure 3.3: Twin Jet Water Facility Computational Geometry used for RANS Studies with
Inlet (Red) and Outlet (Green) Boundaries Highlighted

Reduction of Upstream Domain

The upstream effects from stagnation boxes feeding into the inlet jets cause some

asymmetry to be observed near the inlet jet exhausts [12]. Based on previous works by
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Carasik et. al. ([60], [61]), the impact of the asymmetry from the stagnation boxes was not

found to significantly impact the observed quantities of importance. A future sensitivity

study could be conducted to determine if the upstream conditions (and lack of inclusion

of stagnation boxes) affect the MP and CP. Anderson et. al. [7] determination of scatter of

MP and CP for different experimental facilities would support an investigation into this.

Additional Geometric Features

Components such as bolts, nuts, instrumentation (such as joint PIV UVP studies) are

not considered to impact the flow results. These are not reflected in the simulation efforts.

These features would likely add a significant number of additional mesh cells which would

be a waste of computational resources.

3.3 Meshing Techniques

3.3.1 Near Wall Meshing

The near wall mesh created using the prism layer mesher on all surfaces (excluding the

jets and the top surface of the jet head) using a total thickness of 2.0 mm. There are four

prism layers with a stretching factor of 1.1 to smooth the transition for each layer. The

flow in the regions near the walls, excluding the jet, experience very low flow velocities

and are not very important to simulate the behavior. In the these regions, the prism layers

are created for completeness and are checked to ensure the near wall modeling in valid.

An approximate calculation of the thickness of each layer is shown in table 3.3.1.

Prism Layer Thickness (mm) Distance from Wall (mm)
1 0.431 0.431
2 0.474 0.905
3 0.521 1.426
4 0.574 2.000

Table 3.1: Near Wall Prism Layer Properties
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3.3.2 Inlet Jets

The inlet jets were held constant for both refinement strategies analysis. Both inlet jets

are created using a target surface minimum size of 0.15 mm and target maximum size of

0.25 mm. The inlet jets are 50 meshing layers stretched by 1.3 ratio for a total distance of

279.4 mm. The mesh of the inlet jets was created using extrusions from the inlet surface.

It is defined at the point where the inlets are connected to the large enclosure. The surface

had target minimum size of 0.15 mm and a targeted maximum size of 0.25 mm.

Precursor Simulations

These sizes ensured that flow was sufficiently resolved the inlet flow and based on a

comparison to precursor simulations. The precursor simulations were conducted using

the Star-CCM+ v10.06.010 [57] for the entire 279.4 mm length of the jet. The inlet was

defined as a uniform velocity corresponding to the experimental and TJWF simulation inlet

velocity. The outlet was set as a static pressure out. The mass flow rate corresponded to the

same one used in the experimental and the full TJWF simulations. The mesh was created

using the directed mesher with double hyperbolic stetching in both spanwise directions

with the first cell starting at 0.1 mm. The streamwise direction was split evenly for the

specified number of layers. This was done to ensure the near wall regions were properly

resolved and the mesh parameters are shown in table 3.3.2. The resulting mesh counts and

effective refinement factor defined by equation 1.8 is shown in table 3.3.2.

Mesh X-Max (mm) # Layers Y-Max (mm) # Layers Z-Max (mm) # Layers
1 0.200 30 2.00 100 1.20 250
2 0.176 40 1.55 120 0.93 300
3 0.127 50 1.27 120 0.79 300

Table 3.2: Meshing Parameters for the Inlet Jet Precursor Simulations
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Mesh Mesh Count Eff. R12

1 7.50 ∗ 105 n/a
2 1.44 ∗ 106 1.24
3 2.45 ∗ 106 1.19

Table 3.3: Meshing Information for the Inlet Jet Precursor Simulations

The precursor simulations were ran using the same convergence criteria discussed in

subsection 3.1.3 and utilized the standard κ− ε turbulence model with the two-layer/all y+

wall treatment. The outlet profiles along the x-axis at the outlet boundary for the precursor

simulations and the profiles at exhaust and 1
4

in the inlet jet from the exhaust for the TJWF

simulations are shown in figure 3.4. The x-axis in this case is along the width of the jets

which is previously defined as being the y-axis in chapter 1. The profiles are very close

and provide support for the inlet meshing selected for the TJWF simulations.

3.3.3 Outlets

The outlet extensions are created by using the surface mesh where the original "outlet"

surface is defined. The mesh is extruded with 25 meshing layers being stretched using a 1.4

ratio for a total distance of 600 mm. The outlets extensions were made long enough to en-

sure backflow/reversed issues are strongly reduced and prevented numerical convergence

issues. The length was determined using the mesh with the lowest number of D.O.F. and

varying the length until the number of cells encountering reversed flow was minimized.

3.3.4 Bulk Refinement Strategy

The "bulk" refinement meshing strategy is being used to investigate the meshing re-

quirements for non-specific mesh refinement. The entire domain, excluding the inlet jets

and the outlet extensions, are being meshed using the same overall requirements. The bulk

meshing base size and maximum size and the resulting cell counts are shown in Table
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Figure 3.4: Inlet Jet Profile along the X-Axis

3.3.4. The meshing for the bulk region is shown in Figure 3.5.

Mesh Identifier Base Size (mm) Maximum Cell Size (mm) Cell Count
M1 25 50 4.8 ∗ 106
M2 12.5 25 14.3 ∗ 106
M3 6.25 12.5 14.5 ∗ 106
M4 3.125 6.25 16.9 ∗ 106
M5 1.5625 3.13 38.2 ∗ 106
M6 0.78125 1.56 236 ∗ 106

Table 3.4: Bulk Mesh Sizes and Cell Counts
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It is worth noting that the largest mesh is an enormous number of D.O.F. for a steady

state simulation of a reasonably simple geometry. At the point of writing, it would not

be expected to see such a large amount of mesh cells for a calculation such as this using

RANS.

3.3.5 Spot Refinement Strategy

The "spot" refinement meshing strategy is being used to investigate the reduced mesh-

ing requirements for when specific regions are being refined. There are three spot refine-

ment regions utilized and labeled; jet inlet, core, and expansion. Each of the refinement

regions were defined with in an isotropic manner such that x, y, and z directions with have

the same size. The base and maximum cell sizes defined for the mesh overall are the same

as seen in Table 3.3.4. The specific sizes for each spot region and the cell count for each

mesh is found in Table 3.3.5. An example of the meshing for the spot strategy is shown in

Figure 3.5.

This refinement strategy results in meaningful jumps in D.O.F with every successive

mesh level. This ensure that a global refinement is occurring while the localized refinement

in the areas of highest gradients are done. This does result in a significantly large mesh by

the fourth mesh as opposed to fifth mesh for the bulk refinement strategy. The consequence

is the needed computational resources increases faster for the spot refinement strategy as

opposed to the bulk refinement strategy but the benefit is discussed in chapter 4.

Mesh Identifier Jet Inlet Size (mm) Core Size (mm) Expansion Size (mm) Cell Count
M1 5 10 20 4.9 ∗ 106
M2 2.5 5 10 14.9 ∗ 106
M3 1.25 2.5 5 19.2 ∗ 106
M4 0.625 1.25 2.5 53.2 ∗ 106
M5 0.3125 0.625 1.25 322 ∗ 106

Table 3.5: Spot Mesh Sizes and Cell Counts
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Figure 3.5: Meshing for Bulk (left) and Spot (Right) Refinement Strategies âĂŞ Coarsest
Mesh for Each

3.3.6 Boundary and Initial Conditions

The inlet surfaces have a velocity inlet defined with a uniform constant profile. The

inlet turbulent specification is done using the turbulence intensity of 0.053 and a length

scale of 0.762 mm. The top surface is defined where a water surface with an average con-

stant water height is. The outlets are defined as static-pressure outlets where the velocity

gradients are set to zero. The boundaries are summarized in table 3.3.6 which were used
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for each simulation. The initial conditions were all initialized from their default values set

in Star-CCM+.

Boundary Type Value Surface
Velocity Inlet 0.75 m

s
Red

Static Pressure Outlet 0 Pa Green
Symmetry (Slip-Wall) n/a Purple
Wall (Non-Slip) n/a All Others

Table 3.6: Boundary Conditions used in the Simulations

3.4 Post Processing

The post processing was done using Star-CCM+ built-in post processing tools and

Mathworks MATLAB. The raw data was extracted from Star-CCM+ and the imported

using csv files into Matlab for data analysis and plotting. The measurement probe points

and lines are shown in figure 3.6 where the quantities of interest are extracted. These

are created to be analogous to the measurements found in literature (centerline streamwise

velocity) and experimental efforts (velocty profiles and Reynolds stress u′v′ at charateristic

heights).

3.4.1 Merge and Combined Points

Using a Star-CCM+’s line probe (see figure 3.6), the centerline streamwise velocity

was extracted from each RANS simulations. The merge point was calculated by finding the

centerline streamwise velocity that is closest to zero. The corresponding position was then

normalized by the jet width. The combined point was calculated by finding the maximum

centerline streamwise velocity and the resulting position was normalized by the jet width.

59



Figure 3.6: Measurement Points defined in the TJWF Simulations

3.4.2 Reynolds Stresses for Two Equation Models

Since the Reynolds stress tensor is not directly calculated when using two equation

turbulence models, it is not directly presented as one of the outputs in Star-CCM+. The

Boussinesq assumption about the relationship between the turbulent viscosity and veloc-

ity gradients are then used again to calculate the Reynolds stress components a posteriori.

This assumption is linear in nature and utilized the isotropy assumptions for Reynolds

stresses. The Reynolds stress off-diagonal component u′v′ will be calculated using equa-

tion 3.4.
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4. TECHNIQUES FOR SOLUTION VERIFICATION ANALYSIS

Two approaches to solution verification analysis are conducted for the TJWF simula-

tions using steady RANS. One approach discussed is based off the GCI and GRE estima-

tion of observed order of accuracy to determine mesh convergence. The second approach

is independent of the GCI and GRE framework and allows mesh convergence to be deter-

mined without observed order of accuracy.

These is using a form of solution verification to focus on the author’s own defined

mesh convergence and mesh sensitivity analysis discussed in section 1.3.

4.1 Meshing Strategy Comparison

In order to show the difficulty of applying GCI in an internal flow situation involving

turbulence, two mesh refinement strategies are compared for mesh convergence. The first

is a bulk strategy discussed in section 3.3.4 that the refinement occurs by reducing the base

and maximum cell size with each successful level. The second is a spot strategy discuss in

section 3.3.5 where the refinement is done by reducing the base, maximum, and isotropic

cell sizes in three large refinement regions.

The bulk strategy is meant to be similar to what is recommended by Roache [24].

Roache argues against highly localized refinements due to issues it causes with GCI. It is

shown in order to exemplify the difficulty of obtaining mesh convergence within a reason-

able and computationally achievable amount of D.O.F.

The spot strategy is shown as an example of a globally refined mesh with regions of

high local refinement. This is similar to approaches observed in standard CFD analyzes

found in journals and industry. It is done such that the global refinement recommend by

Roache is used and that the savings due to optimizing the number of D.O.F. in regions of

highest gradients.
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4.1.1 Centerline Streamwise Velocity

The centerline streamwise velocity profiles along the z axis with the starting point

defined at 0.5 ∗S and 0.5 ∗ l are shown in Figures 4.1 and 4.2 for bulk and spot refinement

simulations. The centerline streamwise velocity is considered a "global" quantity allowing

for a mesh convergence comparison of the meshing strategies. This is due to the centerline

being a probe of information throughout the main region of interesting physics.

Figure 4.1: Centerline Streamwise Velocity for Six Bulk Meshes of Successive Refinement

Immediately, the bulk strategy is observed to not converge between any two profiles.
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The structure of the velocity profile is vaguely similar between each mesh, but still char-

acteristically different. It is obviously deficient and leads to a questioning of the appro-

priateness of this type of meshing strategy for high aspect ratio problems. In particular,

it requires a reasonably large mesh of 16 million D.O.F. to begin resolving the highest

gradients of the flow.

Figure 4.2: Centerline Streamwise Velocity for Six Spot Refined Meshes of Successive
Refinement

Even for the smallest number of D.O.F. for the spot strategy, the flow in the centerline

is observed to begin resolving the highest gradients. Within one level increase, the flow
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is shown to approach the solution of the highest D.O.F. mesh. This is expected behavior

from putting an importance on resolving the highest gradients mentioned previously. The

behavior of both of these strategies is the same as the profiles observed by Tanaka [42], [43]

and Anderson [7]. In general, for a qualitative comparison these results are encouraging

but further investigation of other quantities are approached to confirm these observations.

4.1.2 Merge and Combined Points

The merge and combined points for each level of mesh for both meshing strategies are

viewed in Table 4.1.2 and 4.1.2. These are provided to show a quantitative measure of

mesh convergence or lack of convergence. The MP and CPs provide insight into when the

two twin jets are merging and combine into a single self-similar turbulent planar jet.

The MP for the bulk and spot refinement strategies tell entirely different stories of

when the flow is being resolved. For the spot meshes, the MP predictions congregate with

each increasing refinement of the mesh. This is consistent which the behavior seen of the

centerline streamwise velocity in figure 4.2. Whereas, the bulk meshes show an initial

amount of clustering for the four coarsest meshes and then significantly jump with the last

two meshes. This is not a desirable result in that it indicates that additional refined meshes

should be pursued. Further, it is expected due to the number of D.O.F. are not appreciably

changing. This is occurring even though the parameters are being consistently halved until

the M5 mesh.

The CP for both meshing strategies provide even more detail and a quantitative confir-

mation of the behavior seen in figures 4.1 and 4.2. The spot meshes quickly gather around

the CP prediction of roughly 21 starting between the M2 and M3 meshes. It is believed the

predictions will not deviate from this cluster due to this region being sufficiently resolved

and the associated percent difference in CP are small. The bulk meshes deviate consider-

ably for each successive refinement in the mesh and do not truly clutter in a meaningful
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Identifier MP - Bulk % Difference MP - Spot % Difference
M1 1.1066 n/a 1.906 n/a
M2 1.1066 0.0 2.6684 33.33
M3 0.88948 21.75 3.1767 17.39
M4 1.1066 21.75 3.3038 3.92
M5 2.1602 64.50 3.1767 3.92
M6 2.6684 21.05 n/a n/a

Table 4.1: Merge Points Comparison of Bulk and Spot Refinement Strategies

way.

Identifier CP - Bulk % Difference CP - Spot % Difference
M1 5.3369 n/a 15.1212 n/a
M2 4.7016 12.66 20.4581 30.00
M3 11.8174 86.15 20.9664 2.45
M4 17.153 36.83 21.3476 1.80
M5 28.9717 51.25 21.0934 1.20
M6 21.7288 28.57 n/a n/a

Table 4.2: Combined Points Comparison of Bulk and Spot Refinement Strategies

4.1.3 Velocity Profiles at Specific Vertical Height

The velocity profile along the x axis centered as the origin at a specified vertical height

in the converging region is shown in figures 4.3 and 4.4 for each meshing strategy. This

profiles are compared since this is the region of where the highest velocity outside of the

inlet jets will be found. It corresponds to the area were the highest gradients in velocity

and other quantities of interest are expected to be found. Further, this will give a different

piece of information outside of the centerline streamwise velocity, MP, and CP. It will give

an indication that the local behavior of the flow which later dominates the downstream

features is resolved properly. The information in this region is likely able to give the
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clearest signal of the minimal amount of mesh needed.

Figure 4.3: Velocity Profiles at Z
a
= 1.72 for Bulk Meshes

The bulk mesh predictions show a consistent set of behavior observed with the merge

points in section 4.1.2. The velocity profiles in this region show an early set of clustering

around a similar solution and then make significant jumps in predictions with the finest

two meshes. The coarsest meshes (M1-M4) could be mistakenly considered converged

but do not show a physical result seen in literature [7], [42]. It is not believed a converged

result could be determined from this information considering the meshing strategy.

As seen with the merge points in the section 4.1.2, the velocity profiles begin to con-
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Figure 4.4: Velocity Profiles at Z
a
= 1.72 for Spot Meshes

gregate within only two levels of mesh refinement. By the M3 mesh, the velocity profiles

have reached an undeviating behavior with additional levels of refinement. The veloc-

ity profile could serve as an indication of convergence in conjunction with the previously

discussed quantities for this meshing strategy. This is discussed in greater details in the

following subsections.
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4.1.4 Mesh Strategies Summary

In general, a bulk strategy of mesh refinement is a poor choice for high aspect ratio

changes in geometry where flow physics of interest are. It is not to say one could not

find the strategy to would work well for a simple pipe flow of constant diameter. The

evidence was presented here involving the centerline streamwise velocity, merge point

and combined points, and the velocity profile in the converging region of flow. All of the

evidence clearly presents a case that localized regions of refinement should be utilized in

order to reach a converged mesh. This specifically to be done with a reasonable amount

of computational resources. If an analyst was to select a bulk strategy of refinement, they

would need to go potentially into several billions of D.O.F. to show mesh convergence.

This is quite a restrictive amount of cells and would require thousands of cores since the

highest meshes were capped at 1000 cores each. Although, this could change in the future

with larger computing systems and the utilization of more efficient numerical methods. As

more complexities are introduced, it is likely the same problem would be encountered.

4.2 Application of Generalized Richardson Extrapolation Method for Determining

Mesh Convergence

Using the spot meshing strategy, mesh convergence was attempted using the general-

ized Richardson extrapolation method involving one set of grid triplets. This set of grid

triplets is the M3-M5 meshes due to clustering behavior discussed in section 4.1. From

these grid triplet set, the effective refinement factor was determined between the succes-

sive levels. The refinement factors are shown in table 4.2. It is a desired criterion that the

refinement factors be above 1.1 [22] or 1.3 [62] to determine if any appreciable difference

could be observed. With refinement factors of 1.40 and 1.82 based on equation 1.8, this

criterion should be satisfied for this discussion.
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Identifier Mesh Count Eff. Refinement Factor
M3 19238715 -
M4 53159429 1.40
M5 322941441 1.82

Table 4.3: Effective Refinement Factors between Spot Meshes

4.2.1 Observed Order of Accuracy

In order to determine the observed order of accuracy discussed in section ??, the tran-

scendental equation for non-equal refinement factors is used. Unfortunately, the guidance

is not well defined on what quantities should be utilized for determining P. In this case,

several different quantities relevant to the physics of interest are analyzed. Specifically,

the MP, CP, maximum streamwise velocity, centerline streamwise velocity profile, and

velocity profiles at different heights are compared.

The MP, CP, and maximum streamwise velocity are considered local quantities that

are potentially indicative of global behavior. The observed order of accuracy of each is

compared using the following equations [62],

p =
1

ln(r21)
|ln
∣∣∣∣ε32ε21

∣∣∣∣+ q(p)| (4.1)

q(p) = ln

(
rp21 − s
rp32 − s

)
(4.2)

s = 1 ∗ sgn
(
f3 − f2
f2 − f1

)
(4.3)

where 1 is the finest mesh and 3 is the coarsest mesh.

The observed order of accuracy is calculated iteratively using the formal order of dis-

cretization as an initial guess. The first and second equations are updated each iteration

until the defined tolerance between the previous and current iteration of P is reached. If
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the P becomes effectively zero, the observed P is set to 0.5. Whereas if the P goes above

the formal order, the observed P is set to the formal order. This is in accordance with guid-

ance provided by Oberkampf and Roy [29] for providing realistic estimates of observed

P. Additionally, the formal order of discretization for these simulations in Star-CCM+ are

reportedly 2nd order and Pf = 2 is used.

The centerline streamwise velocity profile points and the velocity streamwise profiles

can be used as global quantities due to the substantial amount of points in the domain

sampled. The observed P is calculated at each point individually and an average of all

individual P is created. The mean observed P for each global quantity is reported in table

4.2.1.

Quantity Type Observed P % Error
Merge Point Local 0.5 75
Combined Point Local 0.92 54
Maximum Vz Local 1.01 49.5
Centerline Vz Global 1.45 27.5
Vz Profiles Global 1.55 22.5

Table 4.4: Observed Order of Accuracy for Localized and Global Quantities

From observing table 4.2.1, what or which of these quantities should be used to deter-

mine a converged set of meshes has been reached? If one was to look at the local quantities,

they would find that they are not mesh converged due to a appreciable difference between

the observed P and the formal P. This may lead them to continually iterate on meshes and

meshing strategies. Which will result in either finding an "appropriate" mesh strategy or

fail to do so and consequentially waste a significant amount of computational resources.

In contrast, the mean observed P for each of the global quantities are much closer to the

formal order. The global observed Ps are observed to have large percent errors with re-
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spect to the formal order. This does not provide strong evidence that a converged mesh

is contained within this mesh triplet. Additionally, one should consider the distribution of

the observed P for the two global quantities which are found in figure 4.5 and 4.6.

Figure 4.5: Distribution of Observed Order of Accuracy for Centerline Streamwise Veloc-
ity

For the centerline streamwise velocity, the distribution is peaked in three places at 0.5,

1.5, and 2.0. The large amount of observed Ps at 0.5 and 2.0 are indicative of failed or non-

physical super-converged [63] orders. The smaller peak of 1.5 could be used to support the

mean value of 1.45. Although that conclusion is dubious at best, due to the overwhelming

amount of failed and super-converged calculated observed P which pollute the mean value.

The distribution of observed P for the velocity profiles shows only two significant

peaks of failed and super-converged orders. There is no other observable peak within this
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Figure 4.6: Distribution of Observed Order of Accuracy for Streamwise Velocity Profiles

distribution. This indicates the mean observed order of accuracy value of 1.55 is entirely

polluted by failed and super-converged orders. It is considered to be incorrect to base mesh

convergence off this quantity.

4.2.2 Determination of Applicability - GRE

Based off the discussion in the previous section, it quite difficult to determine if mesh

convergence can be determined from the grid triplet shown using the GRE method. This

gives little evidence for hope that mesh convergence could be determined using the GRE.

It would likely result in an aforementioned waste of time and computational resources

which is not a desirable outcome of any CFD analysis.

This result was expected due to the limitations of Richardson extrapolation outside

of the asymptotic region where the quantities found above were in the oscillatory and

72



monotonic divergent behavior. When there is the usage of large areas of local refinement,

this method has been shown to fail and leaves a CFD analyst searching for answers on how

to define convergence.

One could try and determine which observed order of accuracy to use for subsequent

creation of uncertainty (or error) bands on the simulation results. Based off the discussion

above and in the author’s opinion, a global quantity should be used assuming at least a

substantial peak of non-reject or super-convergence orders is shown. Further, the peak

should within a 5 − 10 percent difference from the mean value. In this case, the center-

line streamwise velocity calculated observed P (of 1.45) will be used during the solution

validation discussion found in Chp. 5.

4.2.3 Mesh Convergence using a Case of Evidence

An alternate proposed method for determining mesh convergence is presented consis-

tent with the definition discussed in chapter 1. This is presented as a "softer" means of

suggesting mesh convergence has been reached in lieu of predictions of observed orders

of accuracy. The method is intended as a mixture of qualitative and quantitative mixture of

evidence build using at least two supporting substantially difference quantities (or a gra-

dient of a quantity). If a quantity can be shown to reach "convergence" within some range

of meshes, it can be used to suggest a minimum requirement of mesh. This alone does not

take into account the mesh information on a global or local scale. In order to address this,

the gradient of the same quantity can be used to insert mesh information since it directly

involves the grid spacing locally. This provides coverage of mesh information in mesh

convergence studies strongly encouraged by Roache [22], [24]. It is intended that this can

provide an analyst with a simple and power methodology to determine mesh convergence

when GRE fails.

Using the results from the previous section 4.1, it could be argued based the M3 level
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of mesh would be sufficient. Of course this does not include any meaningful information

of mesh in any of the quantities compared. In order to address this, the vorticity in the

y-component is calculated and compared in the converging region. Vorticity is calculated

using the gradient information of velocity in two directions,

−→ω = ∇×−→u (4.4)

which results in y-vorticity being calculated as follows.

ωy =
∂u

∂z
− ∂w

∂x
(4.5)

Additionally, available correlations or analytical solutions from literature can be used

to help build the case of evidence. In fact, it is highly suggested this is included if the

analyst can find a suitable and meaningful analytical solution. Though it is not even con-

sidered a requirement because outside of specific cases, analytical solutions do not exist.

In this case, analytical solutions for the single turbulent planar jet region exist. The ana-

lytical solutions for turbulent planar jets [38] which is discussed in detail in section 1.5.3.

y-Vorticity in Converging Region

The vorticity profiles in the converging region for the spot meshes are shown in figure

4.7. The results are shown in the region because this is where vorticity will be largest.

If the vorticity is shown to converge within the shown meshes in this region, then the

rest of the mesh is likely sufficient. The results are observed to have significant spikes

at the X
a
= |1|, |2| points which are good to examine if the mesh is resolving. Based off

the previous information, the M3 mesh is able to mostly resolve the overall features of

the y-vorticity. Although, the differences are notable and the M4 mesh is the minimum

recommended for comparison and future studies.
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Figure 4.7: y-Vorticity Profiles at Z/a = 1.72 for Spot Meshes

Single Turbulent Planar Jets

The combined region of the twin jets has behavior that is comparable to that of a single

planar turbulent jet. The streamwise velocity profiles in this region can be compared to the

analytical solutions of Goertler and Tollmien discussed in section 1.5.3. Two sets of CFD

velocity profiles are plotted against the analytical solutions in figures 4.8 and 4.9 for the

M4 mesh.

The normalizing velocity for each profile is the maximum or peak velocity of the spe-

cific profile and not the maximum in the domain. The b for the CFD simulations is calcu-

lated for each profile. This is done by finding the points where the velocity is one half of
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the maximum velocity on the positive and negative sides of the X-axis. Then an average

of the two is calculated which is the jet half-width for each individual profile.

Figure 4.8: Analytical Solutions of Turbulent Planar Jets vs. RANS Spot M4 Set 1

For lower profiles in the combined region, the velocity profiles are observed to compare

well against the analytical solutions. There is some very slight deviation towards the edges

of the jets, but nothing that is a cause for concern.

For the highest profiles in the combined region, the velocity profiles are shown to

compared and are well bounded by the analytical solutions. In general, the comparisons to

the analytical profiles provides additional evidence and confidence the behavior is being
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Figure 4.9: Analytical Solutions of Turbulent Planar Jets vs. RANS Spot M4 Set 2

resolved using this mesh.

4.2.4 Determination of Applicability - Case of Evidence

The discussions in subsections 4.1.1, 4.1.2, 4.1.3, 4.2.3 provide support for a working

case of evidence meanings of determining mesh convergence. In this analysis, six different

parameters are compared in either a quantitative or qualitative manner using quantities of

interest, gradients of quantities, and comparisons to literature. It is observed that in each of

the comparisons of simulation data, a converged result with a corresponding mesh could be

determined. The quantities (streamwise velocity) of interest comparisons yielded a similar

suggested converged result starting at the M3 mesh. Whereas, the gradient of the quantity
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indicated the M4 mesh would be better suited based on the inclusion of mesh information.

This is supported by the favorable qualitative comparison to the analytical jet profiles

found in literature. It is then determined this approach is appropriate and recommended as

an alternate means of determining measure convergence. This is useful in cases of internal

flow with large aspect ratio changes in the geometry where localized meshing is effectively

a requirement. Whereas, the observed order of accuracy techniques are shown to fail and

proper guidance is not provided for these situations.

This analysis is quite extensive as compared to what is found in literature for simi-

lar studies (i.e. the number of parameters compared). Therefore, the follow criterion is

recommended to balance determining a suitable converged mesh and reasonable use of

resources. Also, this addresses the first question in section 1.6.

1. At least one quantity of interest (velocity field) that can indicate global behavior

(such as highest gradients) should be compared between at least three levels of mesh

refinement.

2. The gradient of the quantity of interest (such as vorticity) should be compared

to confirm the previous determination and determine in any further refinement is

needed.

3. If possible, a quantity of interest (global behavior) should be compared to analytical

or higher order (such as LES or DNS) solutions.

4. The quantity of interest or the gradient of the quantity of interest needs to be com-

pared using a quantitative metric such as percent difference or L2 norm.

The following requirements are carried from the GCI to ensure the method is appro-

priately applied. These requirements are retained to ensure there is at least some basic

structure and rigor retained for the mesh convergence analysis.
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1. A consistent refinement strategy that refines both the global (base) size and the re-

finement regions sizes (not including near wall refinement) are reduced using the

same multiplier.

2. The effective refinement factor defined in subsection 1.3.1 is at least 1.2 − 1.3 be-

tween successive meshing levels based on guidance by Celik et. al. [62].

4.3 Methods for Determining Mesh Sensitivity

This section will discuss the creation of uncertainty/error bands using the GCI and

ErrorL2 and the merits in internal flows in large aspect ratio changes in the geometry. The

results from this section will be used in chapter 5 for the solution validation analysis to the

TJWF experimental data. The uncertainty/error bands are determined for the streamwise

velocity and Reynolds Stresses of the off-diagonal component at the characteristic heights

for both methods.

4.3.1 Grid Convergence Index Uncertainty/Error Bands

The GCI is calculated for both quantities of interests using the observed order of accu-

racy of 1.45. It was determined using the centerline streamwise velocity profile observed

order of accuracy discussed in subsection 4.2.2. These are calculated as absolute GCI

quantities due to the low magnitude (close to or below unity) which can cause superflu-

ously large uncertainty bands for a relative GCI calculation. A factor of safety of 3 is used

in order for a conservative calculation of the uncertainty between M3 and M4 meshes. The

uncertainty bands are shown in figure 4.10 and 4.11 for both velocity and Reynolds stress

distributions in the converging region.

4.3.2 ErrorL2 Uncertainty/Error Bands

The ErrorL2 is calculated for each velocity profile or Reynolds stress profile and mul-

tiplied by two before being applied to the overall profile. The averaged or exact quantity
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Figure 4.10: Velocity with GCI Uncertainty Bands at Z
a
= 1.72

f is the M5 mesh result which is assumed to be the most accurate prediction. This is sim-

ilar to the SEM applied to the experimental measurements. For the velocity profiles, the

ErrorL2 is normalized by the maximum velocity of the profile before being applied with

the following equation.

ErrorMax
L2 (U) =

ErrorL2(U)

max(U(x(:), Z/a))
(4.6)

The Reynolds Stress profile of the u′v′ is normalized by either the largest value of the

maximum u′v′ or the absolute value of the minimum value u′v′ along the profile.
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Figure 4.11: Reynolds Stress Profile with GCI Uncertainty Bands at Z
a
= 1.72

ErrorMax
L2 (u′v′) =

ErrorL2(u′v′)

max[max(u′v′(x(:), Z
a
), |min(u′v′(x(:), Z

a
))|]

(4.7)

The uncertainty bands are shown in figures 4.12 and 4.13 for both velocity and Reynolds

stress distributions in the converging region.

4.3.3 Mesh Sensitivity Metrics Comparisons

Both set of uncertainty bands are observed to be reasonable and not a significant over-

shoot of the potential uncertainty (such as bands half the size of the graph). Though the

GCI uncertainty bands for the u′v′ stress are quite a notably larger than ErrorL2 bands.
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Figure 4.12: Velocity with ErrorL2 Uncertainty Bands at Z
a
= 1.72

The ErrorL2 results in a more uniform band along the profiles which is expected due to

the "global" value used. Whereas, the GCI bands change in sizes corresponding to the

individual differences at those points between the M3 and M4 meshes. Additionally, the

reader is reminded that several restrictions of the GRE and GCI methods are violated for

this mesh triplet (i.e. mesh stratergy, non-asymptotic range, etc). This requires that the

GCI uncertainty bands are not utilized in isolation.

The metrics discussed address the second question in section 1.6 which the answer

is somewhat general enough. Clearly, ErrorL2 is quite general and easily applied when

global data sets are available. It can be treated as analogy to how uncertainty bands are
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Figure 4.13: Reynolds Stress u′v′ Profile with ErrorL2 Uncertainty Bands at Z
a
= 1.72

developed for experimental efforts when uncertainty quantification is limited. Such as,

uncertainty for a large set of experimental measurement points is determined using the un-

certainty determined from one or two points. ErrorL2 should be normalized such that the

data where unreasonably large uncertainty bands would not result but should be meaning-

ful in purpose. The GCI "works" but with previously mention violations of requirements

for usage. In this case, a factor of safety of 3 should be used even when the mesh triplet

is used to provide a conservative but not artificially large (size of the graph) uncertainty.

Additionally, ErrorL2 is significantly easier to implement, does not require very strict

meshing strategies, and does not require significant work to determine a quantity to base
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the observed order of accuracy on. It does not include meshing information or formal

order that is a deficiency and could be investigated in the future.
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5. SOLUTION VALIDATION ANALYSIS∗

In this analysis, the validation is done by quantitatively and qualitatively comparing the

available experiment results to the analogous simulation results. The results of the MP and

CP, velocity profiles, and Reynolds Stress u′v′ profiles are compared and contrasted. This

is explicitly due to what experimental data was available at the time of writing for use in

solution validation. Qualitative approaches such as color map and graphical comparisons

are shown and discussed for the streamwise velocity and Reynolds stress u′v′ profiles. A

quantitative approach of percent difference and absolute difference calculations between

experiment and simulation results are done for MP/CP, velocity profiles, and Reynolds

Stress u′v′ . The reported quantities of interest are standard quantities found in twin planar

turbulent jet literature and are meaningful for comparisons to the experimental works. It is

likely that for a realistic situation involving twin jet-like geometry, that only qualities such

as MP, CP, and velocity data would be meaningful for design and development activities

such as discussed in chapter 1. All quantities are normalized based off the reported max

velocity for the simulation or experiment as needed.

Based off the discussion in chapter 4, the RANS results for the spot refinement strategy

created using mesh M4 will be used for comparisons. This mesh has been shown to be

converged based off a posteriori comparisons using the mesh data itself and the analytical

streamwise velocity profile solutions of turbulent free shear planar jets. The most readily

available data sets discussed above allow for a simple comparison of the data using the

experimental uncertainty and the simulation uncertainty. The uncertainty bands of the GCI

∗Reprinted with permission from "Laser-Doppler measurements of the turbulent mixing of two rectan-
gular water jets impinging on a stationary pool" by H. Wang et al., 2016, International Journal of Heat and
Mass Transfer, 92, 206-227, Copyright 2016 by Elsevier.

∗Reprinted with permission from "Particle image velocimetry measurements of the flow in the con-
verging region of two parallel jets" by H. Wang et al., 2016, Nuclear Engineering and Design, 306, 89-97,
Copyright 2016 by Elsevier.
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metric with the centerline velocity profile observed order of accuracy and the ErrorL2 are

shown and compared.

Ultimately, the question of "is this simulation validated using the available compar-

isons?" is discussed and determined if it is appropriately answered. This is meant to serve

as a potential case study for solution validation with a high resolution data set and to po-

tentially support the case of evidence method for the mesh convergence study in chapter

4. Additionally, questions 3-4 in section 1.6 will be addressed.

5.1 Merge and Combined Point Comparison

The merge and combined points for the LDV and PIV experiments and the spot M4

mesh are shown in Table 5.1. The merge point is presented as a range of value for both

experimental results which is a consequence of the two measurement techniques. For

the LDV measurements, the range is a occurs because of the experimentalists’ spatial

sampling where only the Z
a
= 1.72 and 3.45 heights were probed [12]. The authors did not

report additional measurements within these ranges which if sampled could have resulted

in a more specific point identified. For the PIV measurements, the range of the MP is

a consequence of two different magnification where the lower magnification (i.e. less

resolution) resulted in the smaller observed MP [13].

The CP results are reported as single quantities, but the LDV result is potentially a

consequence of no additional samples between Z
a
= 13.79, Z

a
= 15.52, and Z

a
= 17.24.

Though it has to be stated that these results in conjunction with the PIV results are the

highest resolution ones available to date for this geometry and conditions.

The MP for the simulations are shown to be well bounded within both LDV and PIV

experimental results. The percent difference for the lower range of the MP results is ex-

pectantly highest for the LDV and PIV lower bounds. The simulation prediction is quite

close to the predictions of the higher bounds of LDV and PIV measurements with low %
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Identifier MP %DiffMP CP %DiffCP
M4 3.30 n/a 21.35 n/a
LDV Exp 1.72-3.45 62.95-4.44 15.52 31.62
PIV Exp 2.66-3.50 21.48-5.88 16.84 23.62

Table 5.1: Merge and Combined Points - Solution Validation

differences. This is further encouraged by the PIV measurements’ higher bounds results

from the higher magnification which has a higher resolution used for the measurement in

this region. This result indicates the spot M4 mesh is able to reasonably predict the behav-

ior in merging region. It also suggests that the inlet jet conditions are sufficiently resolved

enough when a length of 279.4 mm to develop the flow profile before the exhaust point is

used.

The combined point for the spot mesh is approximately 31.62% and 23.62% different

and predicted higher than both the LDV and PIV measurements. This is an expected

result do the potential sensitivity of the inlet conditions on CP [7] and a consequence

of using a turbulent model based on the Boussinesq assumption (isotropy of Reynolds

stresses assumed). It is not believed the over-prediction of the CP is an indication that

concern needs to be placed in the results.

5.2 Velocity Profiles at Characteristics Heights Comparison

Color Map Comparisons

The color maps for the simulation, LDV experiment, and PIV experiment of the ve-

locity profiles are shown in figures 5.1,5.2,5.3,5.4. It is noted that the LDV and PIV

measurements are shown as either a full field view or as a close up in the converging and

merging regions of flow. A corresponding color map of the simulation results for each has

been generated for comparison. Additionally, the color bars have been addressed to the

corresponding minimums and maximums of each. The PIV measurement having a smaller
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color map view is due to the measurement window being restricted to this size to ensure

the features in these regions are captured properly. The spatial directions in LDV and PIV

results are scaled using the jet width whereas the simulation results are not. This is meant

to be shown as an example of a loose color map comparison and to point out the common

pitfalls.

Figure 5.1: Color Map of Streamwise Velocity Field for the RANS M4 Spot Mesh

The simulation results are observed to capture the experimental measurements are

shown to capture the flow behavior of the twin jets. The higher velocities in the jets

and the low velocity region corresponding to the recirculation cells are seen in converg-

ing and merging regions for the simulation and PIV color map. The combined region

does not have enough or clear enough information for the LDV measurement to make any

true qualitative comparison based off this information. Though a single combined jet is
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Figure 5.2: Color Map of Streamwise Velocity Field for the LDV Experiment [12]

observed for the simulations as in the LDV measurements. It is clear the comparison be-

tween the simulation and LDV color maps is quite inadequate and it is cautioned against

comparisons such as this.

The "left" jet is observed to have a slight asymmetry in both LDV and PIV measure-

ments that it is not captured by the simulation. The lack of asymmetry of this jet is due

to the upstream conditions in the experiment not producing a fully developed profile at

the point of exhaust which is desired for symmetry to be observed. The jet asymmetry is

shown to be quite minor and is viewed to not significantly impact the simulation results

which discussed further in the following subsection.
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Figure 5.3: Color Map of Streamwise Velocity Field for the RANS M4 Spot Mesh -
Zoomed in to Converging and Merging Regions

Graphical and Quantitative Comparisons

The velocity profiles at the different characteristic heights within the domain are shown

in figures 5.5 and 5.6. These heights are selected to exemplify the simulation results

in different characteristic regions of flow. In particular, the profiles in the converging

region before the merge point and in the merge point are presented. The profiles near

the combined point and well into the single self-similar jet region are presented as well.

The PIV experimental results of this same case were not reported for the same heights as

the LDV data and are not able to be included. The GCI and ErrorL2 uncertainty bands

are shown separately for clarity. These uncertainty bands are presented in conjunction

to the results in the following section to determine if the CFD results can be considered

validated. This is explicitly pertaining to the overlapping of uncertainty bands for both the

experimental measurements and the simulation results.
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Figure 5.4: Color Map of Streamwise Velocity Field for the PIV Experiment [13] -
Zoomed in to Converging and Merging Regions

The CFD predictions of the velocity profile in the converging region and at the merge

point are observed to favorably compare to the experimental measurements. Some slight

asymmetry of the "left" jet at the Z
a

= 1.72 height is not captured which is consistent

with previous observations in the preceding subsection. The lack of asymmetry prediction

is not found to significantly impact the results downstream as the absolute difference is

low at 0.068. The prediction at the merge point has no visible deficiencies observed and

in general shows decent agreement based off the visual comparisons. Interestingly, the

absolute differences calculated in some points were found to be high than initially expected

for the lower profiles. For instance, for the Z
a
= 1.72 profile, the absolute difference were

as high as 0.2965 on the side of "left" jet which is due the small difference in position
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Figure 5.5: M4 vs. LDV Results - Streamwise Velocity Profiles with GCI Uncertainty
Bands

between the measurement and prediction. It is not considered to be a large issue. The

absolute difference in the peaks for the same profile was found to be small at 0.0684 and

0.0068 for the "left" and "right" jets. Similar absolute differences were found for the

Z
a
= 3.45 where the jets have the lowest percent differences of 0.0049 and 0.0736 for the

"left" and "right" jets. The GCI and ErrorL2 uncertainty bands do overlap somewhat for

these two profiles. Due to the small difference in position between the measurements and

simulation results, these comparisons could actually be used against the solution being
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Figure 5.6: M4 vs. LDV Results - Streamwise Velocity Profiles with ErrorL2 Uncertainty
Bands

validated. For these two profiles, this seems very unreasonable based on the graphical (i.e.

the two profiles without considering the uncertainty bands) and MP comparisons which

are viewed to support validation.

The CFD results near the combined point (Z/a = 15.52) confirm the results observed

in the previous section of the over-predicted CP. The experimental measurements of the

two jets have merged into a single jet and reached a peak centerline velocity noticeably

before the simulation predicts. Whereas the CFD predicted profile is still in the process
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of merging into a single jet. This is seen by the twin peaks of two jets still merging in

the simulation results whereas the experiment is showing one jet profile. It is noted, the

overall velocity profile is captured excluding the peak of the profile (−2 < X
a
< 2). This

is confirmed by the absolute differences are at a small at 0.039 and 0.0207 at X
a

= |2|

for the "left" and "right" peaks. Whereas, the highest absolute difference between the two

peaks is found to be 0.062 at Z
a
= −0.172. Both GCI and ErrorL2 uncertainty bands do

not provide good coverage as compared to the small experimental uncertainty implying

low support for validation. In this profile, it is a little less clear cut to argue it supports the

validation effort, but excluding the center of the profile the majority of the results compare

favorably.

The single self-similar jet profile at Z/a = 48.28 is observed to have a strong compar-

ison between the CFD and experiment in the peak region of the profile. The left and right

"legs" are found to be under-predicted by the CFD results. The absolute differences in this

profile is actually a bit higher where the majority of the points due to the aforementioned

under-predicted "legs". The lower experimental uncertainty in these measurements were

of interest and have been investigated. It is suspected the experimental data collected in

the upper profile were not collected for a long enough period of time. This area has a much

lower velocity than in the converging region. Which requires significantly more averaging

time for the velocity profile, than in the converging region, to reach a statistically station-

ary state (i.e. measured for a substantially long enough period of time). The uncertainty

bands in this region is likely not capturing the true uncertainty at those points. This is

due to the uniform uncertainty applied for all points along this profile that is not directly

associated with this profile. The low magnitude of the experimental uncertainty and simu-

lation uncertainties, using both GCI and ErrorL2 methods, made a validation comparison

difficult. It again would not readily support the case for the solution to be argued to be

"validated".
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In general, the simulation results for the lower profiles are considered to strongly sup-

port the validation case even with low overlapping of experimental and simulation uncer-

tainty bands. This is due to an overall low absolute difference between the results. The

combined point profile also suffers from low uncertainty overlap but the absolute differ-

ences were found to be low. This is excluding the peak of the profile where the simulation

shows clear deficiencies. For the combined region profile, the top of the jet shows a strong

comparison between the simulation and experiment but the "legs" suffer from a significant

under-prediction which is believed to be an issue with the experiment.

5.3 u′v′ Stress Profile at Characteristic Heights Comparison

Color Map Comparisons

The color maps for the simulation, LDV experiment, and PIV experiment of the u′v′

profile are shown in figures 5.7,5.8,5.9,5.10. It is noted that the PIV measurements are

shown as a close up in the converging and merging regions of flow. The spatial directions

in LDV and PIV results are scaled using the jet width whereas the simulation results are

not. The LDV measurements are shown normalized with the maximum measured velocity

which is done similarity for the simulation colormap for the full field measurement. The

PIV color map is not normalized and the simulations again are not normalized to reflect

this.

In each figure, four distinct regions of large positive and negative shear stress regions

are observed which is expected based off the literature. It is worth noting that these re-

sults are of flipped magnitudes than seen in figure 1.14. This is due to the datum and

the direction of the spanwise being flipped. For the LDV and simulation colormaps, the

shear regions are observed to extend well into the combined region which is observed in

the simulation. There is an observed reduction of the Reynolds stress component which is

due to the velocity of the combined jet slowly reducing in magnitude going downstream.
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Figure 5.7: Color Map of u′v′ Field for the RANS M4 Spot Mesh

The higher fidelity PIV measurements are captured by the simulation results in that the

elongated structures show a good comparison. It is worth noting that these are in regions

were entrainment is expected to be significant on the edges of the jets and in the recircu-

lation region as seen in literature. The shear layer that occurs between the jet flow and

the entrained flow which causes large shear stress regions to be observed. In the case of

the converging and merging regions between to the two jets, the jets are interaction and

beginning to exchange momentum which is expressed by the large pockets of positive and

negative u′v′ stress which then dissipates as the jets fully merge as seen in the LDV mea-

surements. For the Reynolds stress u′v′ component, the color maps provide a reasonable

qualitative comparison, but this is still dubious and analysts again should push towards

more direct forms of comparison.
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Figure 5.8: Color Map of u′v′ Field for the LDV Experiment [12]

Graphical and Quantitative Comparisons

The Reynolds stress profiles of the off-diagonal component in the streamwise and span-

wise directions at the previously mentioned characteristic heights are reported in figures

5.11 and 5.12. The CFD stresses profiles were constructed a posteriori using the Boussi-

nesq assumption (section 3.4.2) with the calculated turbulent viscosity and gradients of

velocity on the measurement plane. This is required due to the Reynolds stresses are not

directly calculated when two equation turbulence models are used. The PIV experimental

results of this same case were not reported for the same heights as the LDV data and are

not able to be included. Again, the uncertainty bands for both GCI andErrorL2 are shown

in the separate graphs for clarity.

The Reynolds stress u′v′ component in the converging and merging regions are pre-
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Figure 5.9: Color Map of u′v′ Field for the RANS M4 Spot Mesh - Zoomed in to Con-
verging and Merging Regions

dicted well in the general shape by the CFD simulation. The profiles are observed to

experience significant under prediction of the spikes in the profiles at X
a
= |0.862|, |2.07|

for the Z
a
= 1.72 profile and X

a
= −2.069,−0.517, 0.862, 1.9 for the Z

a
= 3.45 profile.

In the spikes, the maximum absolute difference is highest at 0.0105 and 0.00731 for the

Z
a
= 1.72 and Z

a
= 3.45 profiles. The absolute difference drastically reduces outside of

the highest points of the spikes to minuscule amounts. The GCI uncertainty bands show

large overlapping with the experimental uncertainty in the spike regions which is some-

what surprising. The ErrorL2 bands for these profiles are observed to be much smaller

for the Z
a
= 1.72 profile which undermines the validation support from the GCI metric.

This is similarly seen for the Z
a
= 3.45 profile which has a larger uncertainty in the spikes

but again the same overlap is not observed. Additionally, this behavior from the simula-

tion of strongly under-predicting the spikes is expected due to the assumed isotropy of the
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Figure 5.10: Color Map of u′v′ Velocity Field for the PIV Experiment [13] - Zoomed in to
Converging and Merging Regions

Reynolds stress tensor. Excluding the highest point of the spikes, the two profiles provide

another amount of support that the solution results are validated.

For the CP Reynolds stress u′v′ profile (Z
a
= 15.52, the general shape is captured but

significant structural differences are seen. Aroung the X
a

= |0.25|, the separate positive

and negative peaks corresponding to the still merging jets are observed but the absolute

differences are still low in this region. Whereas, the experimental data is observed to be

mostly flattened in this region. The peaks in the experimental profile are under-predicted

by approximately half the total magnitude corresponding to absolute differences of 0.0053

for the left negative peak and 0.0034. These results are still in a region of higher anistropy

of the Reynolds stresses which is not surprising to see under-prediction by the RANS
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Figure 5.11: M4 vs. LDV Results - u′v′ Profiles with GCI Uncertainty Bands

model. The capturing of the shape does provide support for validation. There is little

overlap of the ErrorL2 uncertainty while the GCI uncertainty is quite large and almost

entirely encapsulates the experimental results. The GCI overlap is again inconsistent and

does not truly support a validation conclusion.

The combined region profile shows similar under and over prediction of the Reynolds

stress profiles of the experiment results by the simulation. The largest absolute error of

0.0035 and 0.0036 corresponding to the maximum and minimum u′v′ which is not surpris-

ing. These results do capture the shape of the profile very well, but the Reynolds stress
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Figure 5.12: M4 vs. LDV Results - u′v′ Profiles with ErrorL2 Uncertainty Bands

predictions should be much closer in magnitude since the anistoropy is heavily reduced.

Again, these measurements where these large discrepancies are observed are in regions

which experimental measurements may not have been collected for a long enough period

of time. This could lead to the larger stresses we observe in the profiles. Interesting, the

GCI and ErrorL2 are very close in magnitude with each other overall. There is overlap

with the experimental uncertainty bands from −3.5 < X
a
< 2 to both sets of simulation

uncertainties.

The general trends are captured based off these visual comparisons and the expected

101



deficiencies were observed for the simulation results. The GCI and ErrorL2 error bands

do not give significant confidence as a usage of a validation metric since there is little

overlap with the experimental uncertainty.

5.4 Is the Calculation Validated?

Based on the adequately predicted experimental results by the simulation, the simu-

lations are believed to be validated with some caveats. This is supported by the basic

quantitative and qualitative comparisons except for areas that are well characterized for

their deficiencies. These deficiencies are not felt to be deal breakers and are considered to

be areas that can be approached for future works to improve the simulations.

The quantitative metrics were focused on merge/combined points of the twin jets and

for each of the profiles of velocity and Reynolds stresses u′v′ at characteristic heights.

The merge point was found to be bounded by both LDV and PIV measurements while the

combined point showed a notable over-prediction. The CFD over-prediction was approx-

imately 31.62% and 23.62% different above the LDV and PIV measurements. This is not

considered to be greatly worrying because ultimately the dimensionalized difference was

around one to two centimeters which is quite small.

Absolute differences for each characteristic velocity profile was used to determine the

how far were the predictions from the experiment as a quantative measure. For the majority

of the profiles, the absolute differences were found to be reasonably low excluding three

situations. The first is a slight offset of the corresponding points between the experimen-

tally measured and the simulation predicted velocities which can result in an abnormally

large difference in areas of large gradients. The second being regions where the mea-

sured velocity profile may have been collected for an insufficient amount of time. Such as

towards the upper range of the measurement profile where lower velocities require signif-

icantly longer measurement times. The third was where the CFD prediction of the higher
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combined point resulted in a velocity profile that was not combined where the experiment

was observed to be.

For the Reynolds stress u′v′ profiles, the simulations were observed to predict the gen-

eral behavior of the flow, but the absolute differences were quite high in certain regions.

These regions were where the predictions were expected to under-predict the Reynolds

stress such as high anisotropic regions of flow. For the combined point profile where

a considerable anisotropic region is still experienced, the behavior of the flow was cap-

tured but the peaks were again under predicted. The absolute differences in this region

were higher but not terrible. The combined jet region where the self-similar jet behavior

could be observed experienced the same higher absolute difference behavior in the "legs".

Though, this last profile is difficult to conclude if the simulation is actually deficient or

due to aforementioned issues with the experimental measurements in that region.

The qualitative means of comparing the color maps and graphical profiles provided

insight into if the flow behavior was sufficiently predicted in the simulations. It was ob-

served that the overall general trends and the behavior was predicted correctly while the

previously mentioned deficiencies were identified using the graphical comparisons. The

color maps were useful in determining qualitative flow comparisons, but were limited in

their scope for discussing validation.

Using the discussion above, it is felt that the question 3 in section 1.6 is answered. It

is suitable to show solution validation through basic quantitative and qualitative metrics

that investigate meaningful quantities of the flow. It is felt that engineering judgment

and ultimately what experimental data is available can help determine the extent of what

needs to be compared. Ultimately, it is found the uncertainty bands were not useful for

determining validation in this solution validation analysis.

With regards to question 4 in section 1.6, it was found by the author that these metrics

were easy to apply for solution validation. Though, certain metrics were found to not be
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as useful as others and require additional study.
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6. SUMMARY AND CONCLUSIONS

Solution V&V methodologies for CFD simulations were analyzed using the twin jet

semi-classical case to find or determine a meaningful yet simple solution verification tech-

nique. A solution validation analysis was conducted to ensure the predicted behavior was a

reasonable approximation of reality. This was done using data collected from experimental

campaigns in the TJWF at Texas A&M University.

The solution verification investigation resulted in the following case of evidence method-

ology to be recommended for usage of mesh convergence. It is felt this methodology is

general and simple enough that it can be applied in many cases where others fails. For

instance, internal flows with high aspect ratio changes of geometry in areas of interest

which are found in SFRs and VHTRs. This is exemplified by the twin jet case which is

where GCI is not able to be applied properly. The GCI issues are due to the inability of

reaching the asymptotic region due to computational requirements. The case of evidence

methodology is recommended as follows.

1. At least one quantity of interest (velocity field) that can indicate global behavior

(such as areas of highest gradients) should be compared between at least three levels

of mesh refinement.

2. The gradient of the quantity of interest (such as vorticity) should be compared to

confirm the previous determination and be used to determine if any further refine-

ment is needed.

3. If possible, a quantity of interest (global behavior) should be compared to analytical

or higher order (such as LES or DNS) solutions.

4. If possible, a quantity of interest or the gradient of the quantity of interest needs to be
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compared using a quantitative metric such as percent difference, absolute difference

or L2 norm.

The solution validation analysis was used to find that the twin jet simulations using

steady RANS with the standard κ − ε turbulent model could provide a decent prediction

of reality. Simple qualitative comparisons of color maps and extensive graphical compar-

isons were shown to be of value in determining the strength and weaknesses of the CFD

efforts. The quantitative comparisons of MP/CP and absolute differences of the velocity

and Reynolds stress u′v′ profiles at characteristic heights were used as well. These resulted

in confidence that the behavior compared in the qualitative metric was reflective in quanti-

tative comparisons. In general, the uncertainty bands from the GCI and ErrorL2 for mesh

sensitivity were not found to be particular useful. It is understandable that there is con-

siderable investigative effort (mesh sensitivity metrics) occurring in this area (uncertainty

quantification), but the value is lost on the author at the time of writing for this specific

analysis.
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APPENDIX A

TWO-EQUATIONS TURBULENCE MODELS

A.1 Standard κ− ε Turbulence Model

The two equations for the standard κ− ε turbulence model are shown in

ρ
∂κ

∂t
+ ρ∇κ−→u = ∇[(µ+

µt
σk

)∇κ] + Pκ − ρ(ε− ε0) + Sκ (A.1)

ρ
∂ε

∂t
+ ρ∇ε−→u = ∇[(µ+

µt
σk

)∇ε] + 1

T0
Cε1Pε − Cε2f2ρ(

ε

Te
− ε0
T0

) + Sε (A.2)

where κ and ε are the turbulent kinetic energy and turbulent dissipation. The dynamic

viscosity is shown as µ and µt is the dynamic eddy viscosity which is calculated using

equation A.3. The terms Pκ and Pε are the production terms for each equation. The terms

Sκ and Sε are source terms that can be added as needed. ε0 is the ambient dissipation in

the source terms. T0 is the user defined turbulent time-scale defined in equation A.5. The

coefficient f2 is a damping function. Te is the eddy turbulent time scale defined as κ
ε
. The

coefficients; σκ, σε, Cε1, Cε2 are all model coefficients that are summarized in table A.1.

µt = ρCµfµκT (A.3)

where Cµ is a modeling coefficient, fµ is a damping function and T is the turbulent time

scale defined in equation A.4.

T = max

(
Te, Ct,

√
ν

ε

)
(A.4)
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where Ct is a modeling coefficient.

T0 = max

(
k0
ε0
, Ct,

√
ν

ε0

)
(A.5)

Coefficient or Parameter Value
σκ 1.3
σε 1.0
Cµ 0.09
Cε1 1.44
Cε2 1.92
Ct 1.0
f2 1.0
fµ 1.0

Table A.1: Summary of Values used for the Model Coefficients
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