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ABSTRACT

The Oxygen Consumption Rate of biological cells is an important parameter of cellu-

lar metabolism. In order to study the behaviour of cell populations, it becomes necessary

to capture and store them in one location for analysis. Individual cell analysis within a

cell group can provide useful information about the average response of the cell group, as

well as identify outliers. Such analysis can be used to identify different groups of cells

based on their oxygen levels. However, characterizing the individual cell response within

a cell group is challenging since cell dimensions are on the order of a few micrometers.

Conventional techniques, such as microtiter plates and flow cytometery, are unable to of-

fer both the high temporal and the high spatial resolution that is required to characterize

individual cells. Modern micromachining and microfabrication techniques, on the other

hand, allow for the creation of devices that have dimensions that are on the order of a

few micrometers. Through a series of thin film deposition, photolithography and thin film

etching techniques, it is possible to create single cell trapping structures whose dimensions

are only slightly larger than that of individual cells. The aim of this thesis is to create a

process flow in order to fabricate such structures on a single crystalline silicon substrate

using available micromachining techniques.
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1. INTRODUCTION

1.1 Micro-well Arrays for Single Cell Analysis

The Oxygen Consumption Rate (OCR) is used for the diagnosis of cellular meta-bolic

status. OCR of cell populations can be used in medical screening, cancer research, drug

developement and genetic studies among many others [2]. For instance OCR plays an im-

poratant role in identifying hypoxic tumor cells which are known to have a low oxygena-

tion content (pO2 < 10 mmHg). Hypoxia causes these cells to be resistant to radiation

and drug treatment as well as known to cause metastasis [3]. Thus, finding out the OCR

of cancer cells is a key tool in identifying different groups of cancer cells.

Typically cells have dimensions that are on the order of the few micrometers and the

latest MEMS fabrication technologies can help create cell trappment structures for moni-

toring the activities of cell populations. Conventional techniques use mircrotiter plates and

flow cytometry. Microtiter plates consist of an array of wells or tubes that are embedded

in a plate. Each tube can hold a few milliters of liquid which contains a sample set of a

cell group. Flow cytometery consists of a funnel like structure that allows cells to flow

through a narrow channel. A laser beam or an electromagnetic wave is used to irradiate

the a cell at a given instant in time and based on the spectral response the cell can be cate-

groized into different groups. While microtitter plates can be used to monitor cells over

extended periods in time it is difficult to monitor the cell to cell variations. Flow cytometry

monitors indivdual cells but is not suitable for obtaining vaild statistical data since only

one data point is available from a cell at a given time [4]. Hence it becomes imperative

to create live cell arrays that can combine the spatial resolution of flow cytometry and the

temporal resolution of microtitter plates so as to allow continous monitoring of indivdual

cells [5]. These cell arrays can also be used for visual examination of the cells under a
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microscope. Microwell structures fabricated on glass plates or polysterene can be used to

create cell catchment areas using microfabrication techniques. Microwells consists of two

vertically stacked chambers where the upper chamber is tapered for cell trapping and the

a lower chamber is used to supply oxygen or nutrients to the trapped cells. These trapped

cells can then be characterized for their OCR.

1.2 Characterization of Oxygen Consumption Rate of Cells

Current methods for measuring the overall OCR of a cell population are either electri-

cal or optical.The OCR content of cells has been measured using numerous methods such

as:

1. Oxygen flux in environment of cells

2. Optically detecting singlet of oxygen form its phosphorescence

3. Measuring pO2 using a CMOS based sensor

4. OCR Measurement Using Fluorescence Life Time via imaging.

Traditional electrical methods are widely used but have low sensitivity and face prob-

lems such as signal drift [6]. Recently optical methods have become more popular by using

platinum based fluorophores whose fluorescence life time (FLT) can be altered by oxygen

molecules [7]. The partial pressure of oxygen can be monitored by the FLT measurements

[8] [9].

The cell population can be estimated by using a mircowell array. OCR measurements

can be performed by creating a cell array substrate consisting of an array of microwells.

Inside each microwell is an FLT sensor to measure oxygen. The cell arrays act as catch-

ments or trapping structures. After capturing one or more cells the cover glass plate is

placed on top of the substrate which holds the cells and the FLT of oxygen is monitored
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by a microscope to estimate the OCR. Unlike the other methods mentioned above the FLT

imaging method can be be performed in an oxygen depletion environment so that more

accurate data can be obtained from individual cells[8] [9]. Fig 1.1 shows a traditional

setup of microwells on a glass subsrate that is used to trap a group of cells.

Figure 1.1: Microwells that Trap Cell Groups on a Glass Plate with Built in Fluorescence
Sensors for OCR Measurements.

1.3 Motivation for Single Cell Array Fabrication for OCR Measurements

So far OCR measurements were performed on bulk cell populations. Recent studies

have shown increasing evidence of cell to cell heterogeneity that need to be identified and

hence measuring the average response of a cell population stimulus may not reflect well

on single cell responses [10] [11]. Therefore conducting OCR measurements of single

cells is critical to provide accurate graphical information about the cellular functioning in

order to get more information about single cells as well as for gathering information about

the entire cell population. To enable high throughput single cell OCR measurements a sin-

gle cell array substrate suitable for OCR measurement needs to be developed. The array
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should have a high density of cell placement which provides for a larger sample set while

minimizing the overall chip size which makes the device compact and also reduces data

acquisition time for the device. A high filling ratio of single cells minimizes voids. Single

cell substrates can be developed to achieve good OCR measurements by isolating the FLT

sensor from the cell trap thus ensuring good oxygen sealing capability. The single cell ar-

ray can provide an oxygen limited diffusion environment that can be used to achieve high

accuracy in OCR measurements. The single cell array can be fabricated using microfab-

rication processes which allow them to be manufactured in high volumes at lower costs.

Fig 1.2 depicts single cell array arrays on a substrate. Each well has an upper chamber for

cell trappment which is separated from a lower chamber for oxygen supply.

Figure 1.2: Schematic of a Single Cell Array Substrate.

Currently there are two ways of creating single cells - settling and trapping [12]. The

settling approach is preferred since it has a high filling ratio and high density array of mi-

crowells. The dimensions of each microwell are such that the cells settle into the wells by

themselves and the extra cells are washed away. It is possible to isolate single cells using

this technique [13][14]. The trapping method is more versatile when it comes to trapping
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different types of cells but its drawbacks include low density and higher chance of multi-

cell trappment. Therefore, the cell settling method using a high density of microwells is

gaining more traction when it comes to adopting a design technique for creation of single

cell arrays. The goal of the thesis is to investigate and develop a process flow to fabricate

a high density of single cell arrays onto a single crystalline silicon substrate using existing

microfabrication and micromachining techniques.
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2. OVERVIEW OF SILICON ETCH PROCESS

Silicon is the primary substrate material used in microelectronics and MEMS Devices

[15].The etch processing techniques have been throughly developed for silicon and can be

used to create a variety of devices such as pressure senors, accelerometers and micropumps

using a number of different electrical and mechanical properties such as the piezoresistive

effect or the resonance in single crystalline silicon [16] [17]. Bulk and Surface Microma-

chining are processes used to create microstructures in MEMS Devices. Bulk Microma-

chining is used to create microfeatures and membranes by selectively removing material

from a substrate while surface micromachining is used to build microstructures by deposi-

tion and etching of different layers on top of a substrate [18] [19]. Bulk Micromachining

refers to etching through the wafer from the back side in order to form desired structures

and makes used of a hard mask to define the features while surface micromachining uses a

suitable sacrifical layer that is eventually removed to create free standing structures. Many

devices are fabricated using both technologies. Bulk micromachining is primarily used

to create an array of features inside a silicon substrate by etching thorough and removing

layers of silicon that make up the substrate.A hard mask is created on top of the silicon

substrate inorder to define the features that need to be etched. Mask patterns created after

photolithography can be used as an etch mask. These masks have to be resistant to the

etchant that attacks silicon. The mask is generally made from photoresist, a thin film of

metal or insulating material. Photoresist masks are known to have a limited temperature

range and high and low temperatures are known to harm the resist. Also thicker photore-

sist is prone to cracking and not suitable for high aspect ratio structures. Thus it becomes

imperative to use a hard mask during the etching of Silicon. Silicon Dioxide, Silicon Ni-

tride, Aluminum and Chromium are some of the materials that are common hard mask
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materials that can be grown or deposited on top of Silicon using standard micromachining

techniques. Etching techniques are categorized as either wet etching or dry etching de-

pending on the phase of the etchant. The etch processing and quality of the etched profile

can be evaluated on the following three parameters.

1. Etch Rate: The Etch Rate is defined as the amount of time it takes to chemicall or

physically remove layers of material or materials from a surface of a wafer during

fabrication. Precise control of the widths of etched lines is required for a good etch

profile. A fast etch rate achieves a desirable throughput of wafers that is needed

for batch processing.It also lowers the risk of contamination that occurs when gases

flow for a prolonged period of time inside a vaccum chamber [20].

Rate =
Thickness before etch− Thickness after etch

Etch T ime
(2.1)

2. Selectivity: Selectivity is the ratio of the etch rate of the target material being etched

to the the etch rate of other materials above and below the target [20].

Selectivity =
Etch Rate Material 1

Etch Rate Material 2
(2.2)

3. Anisotropy: Anisotropy of an etch is defined as uniformity of the etch in a particular

direction. A number of MEMS structures require deep etching of Silicon to obtain

high aspect ratio structures. Hence it becomes necessary to characterize the impact

of etchants on the the materials being etched. Isotropic etchants attack the material

in every direction while anisotropic etchants selectively attack the substrate in one

direction in particular thus allowing the creation of high aspect ratio features [20].

Anisotropy = 1− Bias

2h
where Bias = dbottom − dtop (2.3)
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2.1 Wet Etching

Wet etching is a liquid phase etching where the substrate is immersed in a bath of

etchant and agitated in order to create features in the substrate. Wet etching is generally

isotropic and has a selectivity depending on the crystallographic direction. It is often used

in surface micromachining to remove sacrificial layers to create free standing structures.

Anisotropic Silicon etchants such as KOH etch faster in one particular direction (1100

nm/min for (100) oriented wafer) while isotropic etchants attack the material in all direc-

tions at a slower rate (150 nm/min for (100) oriented wafer) [21] as depicted in Fig 2.1.

(a) Anisotropic Wet Etch of Silicon. (b) Isotropic Wet Etch of Silicon.

Figure 2.1: Wet Etching.

For KOH the etching plane the order of etch rate is given by (100) > (110) > (111)

for the mentioned crystal plane orientations. When etching in the (100) direction the KOH

etchant forms a 54.7o angle with the base (intersection of the (100) and (111) planes)

as the etch is not perfectly anisotropic. KOH is a non-toxic, economical and commonly

used metal hydroxide silicon etchant that provides high Silicon etch rate and moderate

Silicon Dioxide etch rate [22]. The rate of etching of Silicon Dioxide in standard KOH

solution is around 15 nm/min which is significantly smaller in comparison to the Silicon
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etch rate. However, KOH attacks Aluminum very rapidly (greater than 12000 nm/min)

and this impedes its use in microfabrication processes [21]. TMHA is another anisotropic

etchant that is widely used in the semiconductor industry. The etching rate of TMAH

is comparable to KOH but the etching rate of the masking materials silicon dioxide and

aluminum is considerably smaller [22]. The etch plane selectivity in the (100) direction is

better in KOH than TMAH but TMAH provides better material selectivity with respect to

Silicon and is hence very suitable for MEMS technologies.

Wet Etching however cannot create highly anisotropic structures that is required for

certain MEMS devices like comb drives. In wet etching undercutting takes place at the

extruded corners and curved edges of the mask pattern on the wafer surface due to the

intersection of different crystalographic planes. Fig 2.2 depicts a profile obtained if KOH

etchant were to be used to create 100 um features by etching through a silicon wafer with

a thickness of 220 um. The features sizes at the start of the etch would have to nearly 4

times larger in order to obtain the desired 100 um features on the backside after the through

etch. Thus the 54.7o degree angle is detrimental to the formation of a dense vertical array

of bulk etched features.

Figure 2.2: Tapering of Structures Due to Use of KOH Etchant.
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While this is advantageous for creating suspended structures in a bulk etch it becomes

detrimental to the creation of grooves and V shaped structures thus limiting the resolution

[23]. Hence wet etching is typically not used while creating structures with small feature

sizes. In the micro-electronics industry dry etching is generally used to create small feature

sizes which require a higher degree of anisotropy.

2.2 Dry Etching

Dry etching is mainly a plasma based etching technique. The substrate is introduced

into a chamber whose pressure is typically between 10 mT to 100 mT. Etch gases are

passed into the chamber and their flow rate is controlled by a mass flow controller. These

gases are then ionized to produce ions and free radicals which are then directed towards

the substrate for etching.The reactants are transported through a boundary layer to the

surface that is to be etched. The mass transport to the surface being etched is followed

by a reaction between reactants and films to be etched. The by products that are formed

are then diffused past the boundary layer and passed out of the etching chamber. Fig 2.3

depicts the dry etching steps.

Figure 2.3: Etch Steps.
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Plasma etching can be either isotropic or anisotropic. Anisotropy can be enhanced

using a plasma technique known as Reactive Ion Etching.

2.3 Reactive Ion Etching

Reactive Ion etching is used to create vertical anisotropic structures by using a combi-

nation of Physical and Chemical etching mechanisms. It achieves directional etching by

the reaction between active gas phase species and ion sputter etching [24]. A typical RIE

system, as shown in Fig 2.4, consists of a vacuum chamber with a wafer plate attached to

the bottom electrode. Gas is flown into the chamber and its flow rate is controlled with

the help of mass flow controllers. A strong RF (Radio Frequency) field is applied to the

wafer plates and this creates an oscillating electric field by ionizing the gas molecules and

converting them to plasma by stripping away the electrons. The plasma develops a strong

positive charge and is directed towards the bottom electrode during the negative half cycle.

The oscillating field ensures that charge build up does not take place on any one electrode.

Gases such as SF6 and CHF4 selectively attack one material in particular mimicking a

chemical wet etch with the byproducts transferred away past the boundary layer. On the

other hand gases such as Argon attack all materials present in the chamber once ionized

and thus create a physical etching mechanism. In order to ensure that structures obtained

are mechanically strong with near vertical sidewalls it is necessary to take selectivity, etch

rate and anisotropy into consideration while formulating the recipe. The RF power cre-

ates Ions with high energy and the ICP system increases the Plasma Density. SF6 is used

commerically to etch away silicon. SF6 gas on ionization creates Fluorine Free Radicals

and Fluorine Ions. As mentioned previously RIE systems have two etching mechanisms -

a reactive type and a physical type. The Fluorine Radicals react with Silicon to form the

byproduct SiF4. The Fluorine Ions on the other hand are responsible for a physical etch.

High RF power causes the Flourine ions to bombard the hard mask which protects the
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pattern, thus reducing selectivity and anisotropy. Also reactive ion etching is not very suit-

able for deep etching of Silicon since it creates ballooning and trenching problems which

make it impossible to create high aspect ratio structures with smooth side wall profile [25].

Hence it becomes imperative to create a process that can etch through silicon to create high

aspect ratio structures.

Figure 2.4: RIE Chamber.

2.4 Bosch Process

Deep Etching in MEMS Fabrication is obtained through two processes - Bosch Process

and Cryogenic Etching. The Bosch Process uses sidewall passivation inorder to protect

the sidewalls while plasma chemistry is used to etch the bottom layers to create vertical
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anisotropic structures. The Bosch process, as depicted in Fig 2.5, can be described as

consisting of sequential etching and passivation steps using C4F8 for passivation and SF6

for etching [26].

Figure 2.5: Bosch Process.

The Bosch Process can help fabricate structures with aspect ratios as high as 107:1.

Fig 2.6 depicts the quality of a bosch etch. The problems associated with deep etching

are mitigated and high aspect ratio structures can be obtained. It can be used to create

vertical comb drive structures for capacitive sensing in accelerometers, gyroscopes and

microscanners. The Bosch Process creates high aspect ratio microstructures with a high

flexibility of wiring while having an etch rate greater than 17 um/min [27]. However a

major drawback is its limited etch uniformity [28] and though it’s surface roughness of

features is better than isotropic wet etchants [29] there are still notches that are formed on

the sidewall that can impede device performance. High aspect ratio structures that require

a deep etch through a Si wafer require an etch depth of 300 um or more. The etch rate

reduction for high aspect ratio structures results in buildup of polymer since the attack of

ions on the sidewalls due to ion bombardment reduces. This results in negative profiles

that increase roughness. Additionally the Bosch process requires control of alternating gas
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flow into the chamber which increases the complexity of the system and requires expensive

equipment for process control. [30].

(a) Deep Etch of Silicon.

(b) Detailed View Showing Aspect Ratio of 107.

Figure 2.6: Room Temperature Bosch Process. Reprinted from [1] with Permission from
Elsevier.

2.5 Cryogenic Etching

Though the Bosch Process is the most popular method to create high aspect ratio ver-

tically etched structures in silicon it is an expensive process that is complicated due to the

need of controlling the etching and polymer passivation in an alternate manner. A viable

14



alternative is the use of a cryogenic process to obtain good profile control at moderate

etch rates. This can be done using an RIE chamber with ICP backing. As mentioned ear-

lier the presence of an ICP system helps produce a large number of free radicals without

generating ions that will produce high energy. Cryogenic cooling improves the selectiv-

ity of Silicon etching with respect to the mask material. The etch rate of Silicon remains

constant at low temperatures while that of the mask materials such as Silicon Dioxide,

Photoresist and Aluminum reduces significantly. Tachi et al showed that the temperature

dependancies on the etch rate of a Siilcon and Silicon Dioxide changes drastically at -100

oC. They observed that the etch selectivity of Silicon was more than 30 over an AZ 1350J

film mask or Silicon Dioxide film mask. [31] In order to get vertical anisotropic struc-

tures O2 gas in added to the SF6 mixture. The O2 gas passivates the sidewalls and the

bottom surface since O2 reacts readily with Silicon to form Silicon Dioxide. The Fluorine

ions that are created by the RF system attack the bottom surface of the structure physically

etching away the Silicon Dioxide at the bottom. Since these Ions have high Kinetic Energy

and the mean free path of the system is high, these Ions move towards the substrate (bot-

tom electrode) in a vertical manner and leave the Silicon Dioxide on the side walls intact.

Once the Silicon Dioxide on the bottom surface is eroded by the physical etch the Fluorine

radicals take over and etch away the Silicon selectively leaving the sidewalls intact. Thus

a cryogenic Bosch process can be developed to create through holes in silicon that have

a high anisotropy without the complexity of alternating gas flow that is needed for poly-

mer passivation at room temperature. Also the sidewalls are smoother and contouring and

notching is much less than a standard Bosch process, though the etch rate is considerably

smaller.

Equations 2.4 2.5 2.6 below describe the etch chemistry while Fig 2.7 gives a descrip-

tion of the Cryogenic Process.
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(a) Silicon Trench. (b) Oxygen Passivation. (c) Ion Bombardment.

(d) Silicon Etch using
Fluorine Radicals.

Figure 2.7: Cryogenic Process.

Si+O2 = SiO2 (2.4)

SF6 + e = SF5 + F + e (2.5)

Si+ 4F = SiF4 (2.6)

The goal of etch processing to create anisotropic structures in silicon devices in order

to fabricate a high density of bulk etched arrays in a silicon substrate.
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3. OPTIMIZATION OF THE CRYOGENIC ETCH PROCESS

In order to micromachine a dense array of structures onto a silicon substrate it becomes

necessary to optimize the dry etch process in order to create small feature sizes (less than

150 um) that possess a high anisotropy after etching through a silicon substrate. In order to

test and optimize the etch processes silicon delay lines with widths ranging from 500 um

down to 80 um were fabricated using a single crystalline silicon substrate. This section ex-

plores the developement of an optimized etch process to fabricate the Silicon Delay Lines.

Special emphasis is laid on selectivity and anisotropy since vertical silicon sidewalls are

essential for the delay line to pass the pulsed ultrasound signals without much attenuation.

The etch process developed for the delay line fabrication can be used as proof of concept

to bulk etch the silicon substrate with a large number of small circular features that possess

a high degree of anisotropy which is a requirement for the creation of a high density of

single cell arrays.

3.1 Primary Etching Parameters

Texas A and M’s fabrication facility - Aggie Fab has a dry etching bay with an Oxford

PlasmaLab ICP 100 ICP Unit shown in Fig 3.1. The system provides seperate RF and ICP

generator which provide seperate control over ion energy and ion density thus allowing

for high process flexibility. The system has a vacuum load lock and a process chamber

which are isolated from each other. A roughing pump is used to adjust the process pressure

between 10 mT -100 mT. A number of gases are provided for etch purposes. SF6 , CHF3

are the gases that are involved in a chemical etch mechanism while Argon and Oxygen are

known for their physical etch characteristics.

The RF power which is used to generate kinetic energy in Ions can be varied between

10 Watts - 150 Watts while the ICP which is used to increase ion density can be varied
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Figure 3.1: Oxford PlasmaLab RIE System.

between 0 Watts - 2000 Watts. The RIE system can be cooled down to -150 oC using liquid

nitrogen. The wafer chuck inside the system also provides for helium assisted backing for

the sake of better thermal distribution. The creation of the delay lines requires a clean

repeatable etch with good structural stability. Hence it becomes important to characterize

the system with respect to the three important etching parameters - etch rate, selectivity

and anisotropy. The thermal passivation, ion energy and ion directionality, the surface

passivation and the formation of free radicals are the intermediate factors that control the

etch quality. Thus the gas flow through the chamber, the pressure, the system temperature

and the RF/ICP power are knobs that can be controlled and modified by a process engineer

in order to get desired etch results.

Each one of these paramters affects the etch performance as explained in Fig 3.2.

The Fluorine free radicals attack the substrate in the manner of a chemical etch. The

SF6 gas flow through the system and the Inductively Coupled Plasma that creates a high
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Figure 3.2: Etch DOE.

density of ions are the parameters that are responsible for the creation of the Fluorine free

radicals that etch away silicon. The passivation layer creates silicon dioxide around the

sidewalls and the base of the etched profile. Thus the amount oxygen that flows through

the system plays the most crucial role in the formation of the passivation layers. The Ion

Directionality and Ion Energy are dependent on the Process Pressure and the RF Power.

The RF power ignites the plasma and creates the ions with kinetic energy stored in them.

The greater the kinetic energy, more is the directionality of the physical etch. The process

pressure should ideally be as low as possible to increase the mean free path which will

cause the ions to move vertically downwards without bouncing off other atoms that might

be present in the chamber. However there is tradeoff with the etch rate. A lower process

pressure would be more directional but the etch rate would be low. The Nitrogen gas cools

down the system to desired temperatures which affects the selectivity and anisotropy of

the etch while the helium backing and the use of oil between the substrate and the carrier

wafer causes the heat that builds up due to excessive ion bombardment to dissipate around

the substrate creating uniform temperatures around the wafer chuck. Each of these process
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parameters has to be characterized for the Oxford PlasmaLab system inorder to obtain a

good etch profile.

3.2 Etch Sample Fabrication

3.2.1 Silicon Acoustic Delay Lines

In order to achieved high imaging resolution and speed large transducer arrays and

Data Acquisition Systems are needed which create a complex and expensive Ultrasound

Imaging Setup. To address this issue ultrasound receiving systems using acoustic delay

lines can be created in order to replace the array of transducer elements. Each delay line

receives a signal and introduces an appropriate delay into the signal. A single transducer

at the end of the channel receives these time delayed signals sequentially. Thus, a delay

line system converts parallel signals into single channel serial signals and thus reduces

complexity of the system. Fig 3.3 shows the manner in which the delay lines converts the

parallel signals into a serial form by introducing a time delay which can be analyzed by a

single transducer [32].

Silicon is used for delay line material since it has extremely low attenuation in the

MHz range, is mechanically strong and can be easily fabricated using micromachining.

The dimensions of the delay line affect the transmission of the signal. In order to operate

at center frequency of 2.25 MHz the dimension of the delay line would have to be less than

3.7 mm. Since the acoustic velocity of silicon is high the delay lines also have to be long

inorder to achieve sufficient delay time in each channel. Hence curved or coiled struc-

tures have to be fabricated to satisfy the length requirements as well as remain compact in

size. The delay lines fabricated in this work have dimensions between 500 um to 80 um

and substrate thicknesses between 250 um -100 um. In order to maintain signal fidelity

through the delay line it is essentail that the edges of the structure remain consistent and

whole, and are not jagged or broken. Also the profile width needs to be consistent and the
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(a)
(b)

(c)
(d)

Figure 3.3: Delay Line Receiving System : (a) Delay Line with a Single Receiving Trans-
ducer, (b) Signal before Entering the Delay Lines, (c) Ultrasound Signal with a Delay 
Time, (d) Ultrasound Signal Received by the Transducer: Reproduced from ’Microma-
chined Silicon Acoustic Delay Lines for Ultrasound Applications’ by Zou et al, Used 
under CC BY Licence[27].

top and bottom sufaces should remain intact. Thus it becomes essential to obtain a good

anisotropic etch profile with high selectivity in order to achieve desired results. The moti-

vation of the fabrication process was to create coiled and straight structures with smooth

vertical side walls using dry etching.

3.2.2 Fabrication Process

Selecting the right type of silicon substrate is also critical to the fabrication process.

It was decided to use undoped, double side polished silicon that is either 3 or 4 inches in

diameter. The thickness of the silicon used was between 200 - 250 um to propagate a 2.2
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MHz ultrasound signal through the channel. The thickness of the wafer can be reduced to

propagate signals with higher frequency.

1. The first step involves cleaning a Double Side Polished silicon wafer in a Piranha

solution to remove contaminants on the surface and obtain a clean hydrophobic sur-

face. Piranha is a mixture of sulfuric acid(H2SO4) and Hydrogen Peroxide in a 3:1

ratio. The wafers are immersed in this bath and soaked for 15 minutes. They are

then rinsed in DI water and dry baked in a convection oven for 5 minutes.

2. The wafer samples were placed in an e beam evaporator to deposit a 400 nm of

Aluminum. E beam evaporation was chosen for growing the thin Aluminum film

since it creates good quality film at thicknesses greater than 100 nm.

3. Deposition process is then followed by a patterning process. Photoresist AZ 5214 is

spin coated onto the substrate. The spin speed is around 4000 rpm and the spin speed

time is 40 seconds. The film thickness obtained is close to 1.4 um. The substrate

and photoresist are then softbaked at 120 oC for 2 minutes on a hot plate. An L-line

MA6 Karl Suss mask aligner is used to expose the photoresist to Ultra Violet light at

an intensity of 90mJ/cm2. The film is then immersed in AZ 1:1 Developer solution

and gently shaken for 40 - 45 seconds to reveal the pattern.

4. The regions that were exposed to the UV light were developed to reveal the underly-

ing Aluminum pattern while the non exposed regions are unaffected. The patterned

photoresist is then hardbaked in an oven at 135 oC . A few nanometers of residual

resist often remains at the bottom of the exposed region. An O2 ashing recipe is

used to the remove the resist polymer in a Reactive Ion Etching chamber.

5. The Aluminum coating is now patterned by immersing the substrate in Aluminum

etchant. The etchant attacks Aluminum selectively leaving the photoresist and sil-
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icon unaffected [21]. Some undercutting of Aluminum is observed but that can

mitigated by adjusting the mask design to take such factors into consideration. The

Aluminum etchant is heated slightly on a hotplate to facilitate faster etching. How-

ever it should be ensured that the etchant does not start bubbling due to excessvie

heating since it can cause the film to start peeling. If heated properly it takes around

4 minutes to reveal the underlying Silicon layer.

6. The pattern is observed under a microscope to ensure that there is no residual Alumi-

mum. During the developement process care should be taken to ensure no scratches

appear on the surface of the Aluminum film, especially in regions where the pattern

is being created. This will cause the structure to be comprimised while etching and

should thus be avoided at any cost. Once the Aluminum has been patterened the

substrate is then placed in the RIE chamber. SF6 gas is used to etch away the ex-

posed silicon substrate while Aluminum acts as a hard mask during the fabrication

process.

Fig 3.4 depicts the process flow for the fabrication of the delay lines.

3.3 Etch Experiments and Results

In order to obtain vertically etched coiled structures for the delay lines it was imper-

ative that a thorough process characterization of the mask materials and silicon be per-

formed in the RIE chamber. The aim of this process characterization was to select a

suitable hard mask which would transfer the pattern onto a silicon substrate without being

affected by the etch recipe that was being used to etch away silicon. Silicon was intro-

duced into the chamber at room temperature and the effect of SF6 and O2 gas plasma was

observed on potential mask materials such as Silicon Dioxide, Aluminum and Chromium

at different temperatures. The forward power was kept at 60 Watts and ICP at 1000 Watts

which are the recommended values according to the Lab manual for the Oxford PlasmaLab
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(a) Si Wafer, Thickness 200 um. (b) Al Deposition, Thickness 400 nm.

(c) Photoresist, Thickness 1.5 um. (d) Photoresist Patterning.

(e) Al Patterning. (f) Si Through Etch.

Figure 3.4: Delay Line Fabrication.

100 machine. Aluminum, Silicon Dioxide and Chromium were deposited onto a silicon

substrate and introduced into the chamber to observe the effect of the temperature on the

etch rates. Silicon Dioxide was deposited using a PECVD machine. The maximum thick-

ness upto which a conformal consistent Silicon Dioxide film can be obtained from the

system is around 1.5 um. We deposited around 1.2 um of the same. An e beam evaporator

was used to deposit Aluminum and Chromium on a sample of Single crystalline Silicon

wafers. The thicknesses for the Aluminum were 400 nm and 200 nm respectively since

characteritzation of the e-beam’s deposition showed that consistent good quailty confor-

mal film can be obtained at the mentioned thicknesses for the two films. The samples

of Bare silicon, Silicon with Silicon Dioxide, Silicon with Aluminum and Silicon with
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Chromium were introduced into the RIE chamber and the thicknesses were monitored us-

ing a Dektak Profilometer which offers a vertical resoultion of 5 Angstrom if the step size

is greater that 0.1 um wide though previous experiments have shown that the accuracy is

more consistent at the order of a few nanometers. Pieces of Tape 2 mm x 2 mm in dimen-

sion were plastered at different locations on the samples so as to protect the underlying

layers from the etch. It had been previously observed that the tape holds well for extended

periods of time during the etch mechanism and is often used to hold the sample wafer

inplace over a carrier wafer. The samples were introduced in to the chamber at different

process temperatures. The process would run at intervals of 5 minutes in order to observe

if any change in thickness had taken place. If there was no observable change then the

process time would be increased gradually so as to observe the change in thickness.

Figure 3.5: Effect of Temperature on Etch Selectivity.

It was observed that while the etch rate of silicon remains constant at around 5.8

um/min while there is a noticeable drop in the etch rates of silicon dioxide and aluminum.

Chromium would easily crack due to the ion bombardment and hence is not a suitable ma-

terial for a hard mask. The selectivity of Silicon over Silicon Dioxide increased by a factor
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of 12 from 25 oC to -100 oC while the selectivity of Silicon over that of Aluminum was

even better and increased by a factor of 20. The 400 nm of Aluminum held well and the

surface did not look contaminated and was etched only a few nanometers. However care

must be taken to ensure that the RIE chamber is cleaned with oxygen ions before starting

every etch cycle using a O2 plasma chamber clean. The Aluminum’s selectivity degrades

considerably if the chamber is unclean and it gives away much faster. Since we wish to

etch away at least 250 um of silicon it would take nearly an hour to do so and even an

etch rate of a few nanometers per minute (around 80 nm/min in the case of a contaminated

chamber) would erode the thin Aluminum hard mask in a matter of a few minutes. The

Fig 3.5 indicates that given a clean RIE chamber a 400 nm layer of aluminum acts as a

good hard mask and can withstand an etch time of greater than 60 minutes.

The SF6/O2 ratio plays an important role in creating the vertical sidewalls. The O2

provides sidewall passivation by readily combining with the Silicon to form Silicon Diox-

ide. The Ions that are formed during the etch process have a high kinetic energy and attack

the surface of the carrier in an anisotropic manner. Thus the bottom of the trench gets

plowed away while the sides remain intact. The Fluorine radicals that etch away the sili-

con selectively can now attack the exposed layer. If the O2 gas flow is too high then the

thickness of the passivation Silicon Dioxide layer being formed will increase. This will

increase the etch time considerably. Hence it was imperative to obtain a SF6/O2 gas flow

ratio that gives a good etch rate along with high anisotropy. Coiled structures around 500

um wide were patterned onto an aluminum hard mask. These structures were then intro-

duced into an RIE chamber, first to observe the effect of forward power and SF6 gas flow

rate on the etch rate of silicon, and then to observe the effect of the introduction of oxygen

into the gas feed.

Fig 3.6 shows that the increasing the forward power from 10 Watts to 60 Watts in-

creases the etch rate but the effect of the SF6 concentration on the etch rate is much more
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prominent. A gas flow rate of 90 sccm can give a good etch rate at lower forward Power.

We desire the forward power to be as low as possible since the ions would have lower en-

ergy and not bombard the hard mask or sidewalls as strongly as they would with a higher

forward power.

Figure 3.6: Effect of SF6 sccm on the Etch Rate of Silicon.

Fig 3.7 shows the effect of the amount of oxygen in the gas feed. The aim of the

process characterization was to obtain the highest possible O2 content in the feed without

drastically affecting the etch rate of silicon. Fig 3.7 shows that an SF6 : O2 ratio is around

3:1 ensures a good etch rate of silicon is obtained for a forward power of 30 Watts and an

ICP of 1000 Watts.

Table 3.1: RIE Recipe Table 1

Parameter Values
SF6/O2 75/10 sccm
RF/ICP 70/1000 W

Process Pressure 15 mT
Temperature -100 C
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Figure 3.7: Effect of O2 on the Etch Rate of Silicon.

The first set of delay lines that were fabricated used a forward power of 70 Watts

and an SF6 : O2 ratio of 7:1. It was observed that the hard mask was damaged due the

high forward power. Fig 3.8 shows the aluminum hard mask being damaged by excessive

forward power while Table 3.1 mentions the RIE recipe used to obtain the first set of

coiled structures.

The damage caused to the hard mask was clearly due to the physical etching caused

by ions with excessive kinetic energy. Cracks were formed in the hardmask which would

cause unwanted patterns in the silicon substrate.

The forward power was then reduced to 30 Watts while the ICP remains constant at

1000 Watts while fabricating the second set of coiled delay line structures. The lowering of

the forward power resulted in the hard mask staying intact as shown in Fig 3.9c. However,

the spacing between the silicon lines and the widths of the silicon lines was found to

vary considerably. This inconsistency creates line structures with varying anisotropy. The

edges were jagged and inconsistent. Table 3.2 mentions the RIE recipe that was was used

to obtain the second set of coiled structures.

The lack of consistency in these structures was due to the poor passivation since the
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(a) Delay Line 1.

(b) Straight Region. (c) Curved Region.

Figure 3.8: High Forward Power of 70 Watts Damaging the Hard Mask.

ratio of SF6 : O2 was not commensurate with the necessary ratio required to create a good

side wall passivation.

As shown in Fig 3.7 the SF6 : O2 ratio should be 3:1 in the gas feed to give a good

etched profile while maintaining a good etch rate. The SF6 : O2 ratio was modified to

a 3:1 ratio while fabricating the next set of delay lines. It was observed that the width

and spacing of the fabricated delay lines was consistent as compared to the previous set

of delay line structures. However the anisotropy was observed to be only 0.72 and edges

were not very consistent. Fig 3.10 depicts the third set of fabricated delay lines.

It was hypothesized that the low anisotropy and inconsistent edges were due to the Sil-
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(a) Delay Line 2.

(b) Bottom View. (c) Top View.

Figure 3.9: Varying Widths Due to Poor Sidewall Passivation.

icon Dioxide and Aluminum layers being attacked by the SF6 gas. The selectivity drops

when the temperature around the substrate increases as show by the process characteriza-

tion carried out in Fig 3.5.

This occurs due to heat generated by ion bombardment over a long period in time. Thus

our recipe needed the addition of some thermal passivation inorder to ensure conformal

cooling around the substrate. The OxfordPlasma Lab ICP 100 allows for the chuck to be

backed with Helium which can cool down the substrate. This allows the heat around the

substrate to be dissipated and the temperatures around the substrate to be consistent.

Table 3.3 shows the recipe that was used to obtain coiled delay structures of desired

anisotropy. The low RF forward power ensures the aluminum mask holds well while the
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Table 3.2: RIE Recipe Table 2

Parameter Values
SF6/O2 75/10 sccm
RF/ICP 30/1000 W

Process Pressure 15 mT
Temperature -100 C

Table 3.3: RIE Recipe Table 3

Parameter Values
SF6/O2 90/30 sccm
RF/ICP 30/1000 W

Process Pressure 15 mT
He Backing 35.5 sccm
Temperature -100 C

nitrogen cooling ensures greater selectivity of silicon etching over that of the aluminum

hard mask. The percentage of O2 in the feed was also modified to obtain a good passivation

layer while simultaneously maintaining a good etch rate. Fig 3.11 shows that a coiled delay

line structure was obtained with anisotropy of 0.84. The Aluminum hard mask holds well

and edges are consistent. The top and bottom layers do not vary in spacing by more than

80 um unlike in Fig 3.10 where the edges were inconsistent and the top and bottom widths

varied by more than 100 um.

The recipe was then test on delay line widths with feature sizes that were less that 100

um to observe if the anisotropy results held for smaller features. Fig 3.12 shows that the

anisotropy of greater than 0.9 was obtained for widths and features that were 80 um apart

while performing a through etch on a silicon wafer that is 110 um thick. The reduced

thickness of the silicon substrate contributed to a higher anisotropy since tapering is not

at as narrow as it would has been for wafers that are 220 um thick. The Aluminum once
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(a) Delay Line 3.

(b) Top View. (c) Bottom Region.

Figure 3.10: Low Anisotropy Due to Poor Thermal Passivation.

again holds well and edges are sharp and consistent.

3.4 Conclusions

Thus the dry etch process was optimized by creating straight and coiled delay line

structures on a Silicon substrate with feature sizes varying between 500 um to 80 um. The

Aluminum hard mask held well and an anisotropy of 0.84 and greater was obtained for

the fabricated devices with feature sizes as large as 500 um for silicon substrates with a

thickness of 220 um. An anisotropy of greater than 0.9 for feature sizes as small as 80

um on 100 um thick Silicon substrates. Thus crygoenic etching can be used to created

high aspect ratio, vertically through etched structures in Silicon. The etch profiles of the

fabricated devices is shown in Fig 3.13. The recipe developed in the fabrication of the
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(a) Delay Line 4. (b) Aluminum Holds.

(c) Top View. (d) Bottom Region.

Figure 3.11: High Anisotropy Obtained by Addition of Helium Backing.

(a) Bottom View. (b) Top View.

Figure 3.12: High Anisotropy for Smaller Features.

delay line structures can now be used to create a high density of micromachined arrays on

a Silicon substrate .
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(a) (b)

(c) (d)

Figure 3.13: Etch Profiles of Delay Lines Fabricated: (a) Second Set of Delay Lines with 
Varying Anisotropy, (b) Third Set of Delay Lines with Anisotropy 0.72, (c) Fourth Set of 
Delay Lines with Anisotropy 0.84, (d) Fifth Set of Delay Lines with Anisotropy 0.9.
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4. FABRICATION OF SINGLE CELL ARRAY ON SILICON SUBSTRATES

4.1 Design

The methods and techniques developed during the creation of the delay lines were

applied to create single cell arrays for cell trapping on silicon substrates. A dense array

of microwells is fabricated by etching through a silicon wafer. The anisotropic nature

of the cryogenic etch process developed in the previous chapter will be used to create

oxygen supply chambers. An upper chamber consisting of two vertically stacked layers

has one opening large enough to allow a cell to enter microwell and a smaller opening at

the bottom above the oxygen supply chamber to keep the cell in place. This two layered

structure positions the cell more precisely while controlling the oxygen supply to the cell.

The lateral size and height of the cell chamber is determined based on the average size

of the cells being measured. Normal blood cells have an average diameter of 12- 25 um,

hence it was decided that the bottom layer will have a hole size of 10 um. The top layer

should be large enough to allow a cell to pass through it and the diameter was chosen to

be around 50 um. SU8 polymer was used to create the vertically stacked sections since

it provides high aspect ratio structures. It is a negative photoresist which can cover a

range of thicknesses from 1 um to 200 um while giving good dimensional control over

the feature sizes. It is a good material for the creation of microfluidic channels since it

is a soft material but still provides structural stability. It also provides excellent chemical

resistance to attacks from several acids and bases and these properties make SU8 a very

attractive material for making devices for cell handling, mixing and transport.

The Fig 4.1 shows the layered approach to creating the structure.
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Figure 4.1: Microwell Layers.

4.2 Fabrication Process Development

Single crystalline silicon substrate is used to fabricated an array of etched holes which

forms the bottom chamber through which oxygen can be supplied to the cell while SU8

polymer is processed in order to create the top chamber for cell trappment. The fabrica-

tion process flow that creates the high density of vertically stacked single cell arrays is

described below.

1. Creation of 100 um through holes in the silicon substrate: In order to get a

highly dense array of structures, (nearly 2500 microwells), within a 2 inch substrate

it becomes necessary to create through holes in silicon that are 100 um in diameter

on either side of the substrate. The cryogenic etch recipe that was used to create

anisotropic silicon delay lines was employed in order to create the dense array of

bulk etched through holes. Aluminum was coated on either side of the substrate

before etching . The Aluminum surface with the 400 nm thickness is patterned and
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will act as the hard mask during the bulk etch. The Aluminum on the opposite

surface is 1 um thick and is the base on which the SU8 layers will be fabricated.

The Aluminum film should be conformal and should hold firm while not bending

inwards.

2. Deposition of SU8-5 on the 1 um thick Aluminum surface: SU8 is fabricated

onto the 1 um thick Aluminum surface. In the fabrication of the microwell SU8-5

is spun on top of the Aluminum surface in order to create a film that is 5 um thick.

The spin speed for the fabrication is 2450 rpm and the spin time is 30 seconds at

an acceleration and de-acceleration rate of 400 rpm/second. The film is then placed

on a hot plate at room temperature for two minutes in order to allow the polymer to

reflow and settle. The hotplate is ramped up to 70 oC and the substrate is allowed to

sit on the hot plate for 2 mins at 70 oC . The hot plate is then ramped up to 100 oC

and the substrate sits at this temperature for 2 more minutes. The ramping is done

to ensure that the film is gradually heated and doesn’t suffer from a thermal shock.

Also sudden heating causes bubbles on the surface of the film which makes it very

uneven.

3. Creation of 10 um wide features in SU8-5 film: Once the substrate is cooled down

to room temperature the film is exposed using UV light via an MA6 mask aligner.

The exposure intensity for a film that 5 um thick is around 90 mJ/cm2. A mask

with 10 um feature sizes is used to create a pattern on the film and is aligned so that

it is formed over the 100 um through holes. The film is then post exposure baked

in convection ovens at that are at 65 oC and 95 oC for 2 mins each. This causes

cross linking in the polymer which hardens the exposed regions while causing a

faint pattern in the soft unexposed regions. The substrate in then introduced into a

beaker containing SU8 developer and agitated vigorously to develop the structures.
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Once the film is developed the susbstrate is dipped in a beaker filled with acetone

to remove residue. The film is inspected under a microscope to check for proper

development. The 10 um features will form the base on which the cells that enter

the microwell will rest since the feature size is less than the cell diameter.

4. Creation of 10 um wide through holes in the 1um thick Aluminum surface: The

SU8-5 film also acts as a hard mask for wet etching the Aluminum on which it rests.

Aluminum etchant is used to create 10 um holes in the Aluminum film. A small

amount of under cutting will take place as wet etchants are isotropic in nature. This

hole will be used to supply oxygen to the cell in a diffusion limited environment.

5. Creation of the 50 um wide features using SU8-50: SU8-50 polymer is spin

coated on top of the SU8 -5 structure. A spin speed of 4000 rpm for 40 seconds

creates a film that is 30 um thick. The film is heated in convection ovens at 70 oC

for 30 minutes before being transferred to a convection oven at 100 oC where it

is allowed to be heated for 2 hours. After cooling down to room temperature the

substrate in exposed to UV light and the MA6 is once again used for aligning the

50 um features on the mask with the 10 um and 100 um features on the substrate.

The exposure intensity for the 30 um features is around 200 mJ/cm2. The film is

then placed in the convection ovens for a post exposure bake with bake times of

8 minutes in the 70 oC oven and 12 minutes in the 100 oC oven. Once the cross

linking takes place the film is placed in the developer and agitated for one minute to

reveal the structures. Acetone is used to clean away residues and obtain a clean well

developed film.

The Fig 4.2 shows the design and dimensions of the microwell.
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Figure 4.2: Microwell Design.

4.3 Fabricated Devices

Fig 4.3a and Fig 4.3b show the top and bottom surfaces of a through etched silicon

wafer with the 100 um features. The 1 um of Aluminum that is an integral part of our

device was not deposited intially inorder to characterize the through etch. This allows the

use of a simple confocal microscope for characterizing the anisotropy. The figures show

that it is possible to create highly anisotropic through etched holes in silicon.

The features on the top surface had a diameter of 120 um to 130 um while the holes on

the bottom surface had feature diameters ranging from 110 um to 120 um. The Aluminum

hard mask that is 400 nm holds well though there are square shaped cracks that border

around the top surface. This is due to some of the photoresist sticking to the transparency

mask during the lithography process. This causes the pattern to be transferred onto the

aluminum surface. However the border cracks weren’t etched through and did not hamper

the circular features that we desired to etch away to create our bottom chamber.
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(a) Bottom View. (b) Top View.

Figure 4.3: 100 um Through Etched Features.

Once it was verified that a highly dense array with anisotropic structures could be fab-

ricated onto a silicon subsrtate using cryogenic etching, 1 um of aluminum was deposited

on the opposite surface of the wafer. E beam evaporator was used to deposit the aluminum.

The deposition rate was kept as low as possible inorder to get a film that a good amount

of intrinsic stress since it internal stress helps create a conformal film that doesn’t shrivel

up due to tension or compression. A small amount of photoresist was spun onto the back

surface of the aluminum inorder to protect the surface from contamination due to fomblin

oil. The substrate is introduced into the reactive ion etching chamber with the 400 nm alu-

minum hard mask facing upwards while the thin film of photoresist is in contact with the

carrier wafer. A few drops of fombin oil were added for better thermal passivation. The

cryogenic etch processing was carried out as before and the results of the etch are shown

in Fig 4.4a and Fig 4.4b.

The view from the hard mask side shows that the features were etched through and

that the aluminum pattern doesn’t get eroded. The photoresist on top of the 1 um thick

aluminum was stripped away and gently blow dried using a nitrogen gun. The microscopy
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(a) Bottom View. (b) Top View.

(c) Micromachined Array.

Figure 4.4: 100 um Features with 1 um Thick Aluminum Deposited as a Base for Vertical
Stacking.

results show that the aluminum surface holds well and a faint outline of the etched holes

can observed. The anisotropy of greater than 0.9 is maintained. Fig 4.4b shows the

highly dense bulk etched array from the hard mask side. The four crosses at the corners

are present for alignment purposes. The next stage of the fabrication process involved

creation of the 10 um and 50 um features on top of the 1 um Aluminum surface while

ensuring that the vertically stacked layers align their feature sizes properly.
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(a) Misalignment of features.

(b) Cracking of SU8 due to Excessive
Baking

(c) Under Development of 10 um
Features.

Figure 4.5: Issues Faced During Fabrication.

The processing techniques developed for SU8 polymer were employed to create the

vertically stacked cell holding chambers on top of the 1 um thick aluminum film. However

there were many issues that were faced in creating these structures. Fig 4.5 depicts some

of the issues that impeded the fabrication of the vertically stacked layers. While some

layers would align others would not as shown in Fig 4.5b. This is due to some offset that

is created if the mask and wafer are not parallel to each other. Alignment can be improved
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by making the array more dense and the alignment marks closer together. Excessive pre

exposure and post exposure baking causes the film to crack and create inconsitencies in the

features being developed as shown in Fig 4.6c. Certain features are developed while others

remain undeveloped. This is due to uneven leveling of the hot plates which causes the film

to cross link differently thus causing variation in the feature profile during development.

This can be avoided by ensuring that the film is not heated excessively by following the

baking times mentioned in the data sheet for the SU8 film of a particular thickness. Also

the wafers should be placed on a even surface during baking. Fig 4.5c shows the effects

of under developement of the 10 um features. If the either the exposure time or the post

exposure bake time is insufficient, the features do not cross link properly, especially near

the bottom surface. This causes the film to either peel away or not develop through the

required thickness. Thus, it comes important to calibrate the right exposure time and right

baking time for the SU8 features. This is even more important for the 10 um features

which face a lot of development issues if not processed properly.

Fig 4.6 depicts the 10 um and 50 um features when properly developed. The patterns

are consistent and the film is smooth on the surface and etched in a consistent profile in the

valleys. The valleys in Fig 4.6d will form the cell catchment areas while the top region of

the valleys in Fig 4.6b will form the base on which the cell rests.

Fig 4.7 shows the proper alignment of the 10 um features on top of the 100 um through

holes. Though the centering is not perfect the huge difference in the two feature sizes

enables a large number of aligned structures. Fig 4.8 shows the final device with the

vertically stacked layers on top of each other. Fig 4.8c shows a top view of the 3 types

of features being aligned and stacked on top of one another. The outline of the 100 um

through holes are seen at the bottom of the substrate. A small circular ring 10 um wide is

observed at the center of each the pattern. This is the 10 um hole formed in the Al mask

through the 5 um thick SU8-5 polymer. These features form the base on which the cell
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(a) Well Developed 10 um Features. (b) 5 um Film Thickness.

(c) Well Developed 50 um Features. (d) 30 um Film Thickness.

Figure 4.6: Well Developed Features with Conformal Thickness for 10 um and 50 um
SU8 Features.

rests while providing an oxygen supply route through the 10 um hole in the aluminum.

The circular orange features within the 100 um patterns as shown in Fig 4.8b are the 50-

60 um SU8-50 structures that are 30 um thick. These structures form the entrance of the

single cell array. The feature sizes obtained were consistent throughout the array. The

substrate can now be tested for its cell trapping ability and single cell filling ratio as well

as for measuring the OCR content of cells.
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(a) Bottom View. (b) Top View.

Figure 4.7: First Stage of Alignment.

(a) Bottom View. (b) Top View.

(c) Top View.

Figure 4.8: Final Device Structure with Aligned Features.
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4.4 Conclusion

This section of the thesis covered the fabrication of the single cell array on a sin-

gle crystalline silicon substrate. The etch processing techniques that were developed for

the fabrication of the silicon delay lines were successfully applied to create high density

(around 2500 cell wells) of micromachined arrays in silicon. SU8 polymer was used to

create vertical chambers on top of the silicon substrate. The 50 um opening at the top of the

well is wide enough to allow cells to enter while the 10 um opening at the bottom is small

enough to prevent the cell from falling through and acts as a base on which the cell can

rest. The vertical dimensions of the upper chamber of the well is around 35 um which is

compact and will allow for a high filling ratio of single cells. The 100 um through etched

features at the bottom can be used to provide oxygen to the cell in a diffusion limited

environment for OCR analysis.
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5. CONCLUSION AND FUTURE WORK

Micromachining techniques were used to fabricate 2500 single cell arrays on a single

crystalline silicon substrate. Initially Silicon delay lines with widths varying from 500

um to 80 um were fabricated to characterize and optimize the dry etch process. Special

emphasis was laid on obtaining highly anisotropic structures and process paramteres were

modified till an anisotropy of greater than 0.85 was obtained using an Oxford PlasmaLab

100 ICP reactive ion etching system. Thus, an optimized dry etch process at cryogenic

temperatures was developed to create a dense array of anisotropic through hole structures

in the silicon substrate which were only a hundred micrometers in diameter. This would

form the lower chamber of the microwell through which oxygen can be supplied to the

cell. SU8 polymer was used to fabricate the upper chamber. The feature sizes of around

50 um forms an opening for the chamber while a 10 um opening at the bottom forms

the base on which the cell rests. The cell can now enter the microwell through the larger

opening while the smaller opening supplies oxygen to the trapped cell from the bottom in

a diffusion limited environment.

The next stage involves testing the cell array and observing the filling ratio of the cells.

Ideally each array should trap only one cell which will help identify outliers in a cell group

while giving a better indication of the average cell group parameters. Oxygen can be sup-

plied to the cell from the lower chamber and the oxygen consumption rate of the cell can be

obatined for different types of cells. Improvements can also me made in the process flow

of the micromachining of the single cell array to obtain a higher throughput of success-

fully fabricated arrays. Additionally glass can be used as a substrate for micromachining

in place of silicon. This would open the array system up to optical analysis techniques

thereby enhancing the capabilities of the cell array system.
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