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ABSTRACT 

The overall goal of the first project of this thesis was to find ways to improve 

homogeneous catalysts and render them more recyclable and thus improve their 

lifetimes. One way to generate such superior catalysts is to whether them to solid, 

insoluble supports. The nature of the latter is crucial for the activities and lifetimes of the 

catalysts. Flexible linkers such as long alkyl chains allow contact of the catalysts with 

the surface and potentially their decomposition. Tetraphosphine linkers with rigid 

tetraphenylelement cores had been immobilized previously. The rigid nature of the 

scaffold ligands prevented interactions with the reactive surface and led to an 

immobilized Wilkinson's catalyst that could be recycled many times in a batchwise 

manner. In this new project, in order to test whether further increasing the distance 

between the immobilized catalyst and the surface would improve the lifetime of the 

catalysts, biphenyl spokes have been incorporated into the tetraphosphine linkers. The 

catalytic activity of these new catalysts compares favorably with that of previously used 

flexible linkers. 

In the second project of this thesis polyetheretherketone (PEEK) polymers, which 

are utilized in applications of extreme service environments in the oil and gas industry, 

are studied. PEEK material is rather tolerant of high temperatures and pressures and 

chemically comparatively resistant. However, PEEK degrades quite rapidly in the 

commonly used ZnBr2 containing completion fluids, in combination with the high 

temperatures and pressures needed for hydraulic fracturing. The degradation of the 
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polymer leads to machine parts breaking during the operation and results in costly 

delays in the drilling process. 

Therefore, the main goal of the second project of this thesis was to elucidate the 

molecular mechanisms that lead to the degradation of the polymer, and to define the 

factors that influence these decomposition pathways. 

Mechanistic studies after the identification of the small molecules produced, 

reveal the simultaneous occurrence of several decomposition pathways. The initial 

reaction in the PEEK polymer is the C-C bond cleavage at the ketone position. 

Subsequently, bromination by the ZnBr2 in the completion fluids, other radical based 

decompositions, and hydrolysis under the acidic conditions take place. 
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NOMENCLATURE 

δ  chemical shift in ppm 

λ  wavelength 

29Si  silicon nucleus (NMR) 

13C  carbon nucleus (NMR)  

2H   deuterium nucleus (NMR)  

1H   proton nucleus (NMR)  

31P   phosphorus nucleus (NMR) 

1H} proton decoupled 

31P} phosphorus decoupled 

Å  Ångstrom 

dpb 1,4-diphenoxybenzene 

br  broad 

Bu  butyl 

COSY COrrelation SpectroscopY (2D NMR)  

CP  cross-polarization  

CP/MAS cross-polarization/magic angle spinning 

CSA chemical shift anisotropy 

Cy  cyclohexyl 
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d  doublet (NMR), days 

D  deuterium (2H) atom 

DCM dichloromethane 

DD  dipolar dephasing 

DMSO dimethylsulfoxide 

D2O deuterium oxide 

eq    equivalents, equatorial (NMR)  

FID free induction decay (NMR) 

FT   Fourier Transformation 

GC  gas chromatography 

h  hours 

HRMAS high-resolution magic angle spinning 

HSQC heteronucular single quantum coherence spectroscopy (2D NMR) 

Hz  Hertz 

i  ipso 

J  scalar coupling constant 

IR  infrared 

m  multiplet (NMR), medium (IR) 

m  meta 
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MAS magic angle spinning 

Me  methyl 

NCPh benzonitrile 

NMR nuclear magnetic resonance 

NOESY Nuclear Overhauser Effect SpectroscopY (2D NMR) 

o  ortho 

p  para 

Ph  phenyl 

ppm parts per million 

py  pyridine 

R  alkyl group 

RT  RT 

s  singlet (NMR), strong (IR) 

t  triplet (NMR) 

t  tertiary 

tert  tertiary 

TEM transmission electron microscopy 

THF tetrahydrofuran 

TMEDA tetramethylethylenediamine 
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UV  ultraviolet 

∆ν1/2 signal width at half height 

Vis  visible 

vs  very strong (IR) 

w  weak (IR) 
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CHAPTER I 

TETRAPHOSPHINES WITH TETRA(BIPHENYL)SILANE AND STANNANE 

CORES AS RIGID SCAFFOLD LINKERS FOR IMMOBILIZED CATALYSTS 

1.1 Introduction 

 Catalysis represents one of the most central aspects of chemistry. Unfortunately, 

the "ideal catalyst"1 with eternal lifetime, superior activity and total selectivity has still 

not been discovered. Therefore, different approaches have been investigated to improve 

the removal and recyclability of originally homogeneous catalysts. For example, one 

successful approach is based on biphasic catalysis using two liquid phases, one fluorous 

and one conventional organic phase, and controlling their miscibility via temperature 

under different conditions.2 In another approach a rhodium catalyst could successfully be 

adsorbed on a teflon tape and reversibly released into solution for performing as a 

homogeneous catalyst.3 

 Our group and others have successfully pursued the immobilization of catalysts on 

solid supports via diverse linkers.4 Optimally, an immobilized catalyst retains all the 

qualities of the homogeneous analog, while it allows for easy catalyst separation from 

the reaction mixture, batchwise recycling, or application in a continuous flow setting.  

 After experimenting with zirconium phosphate nanoplatelets5 and various other 

oxides as support6, silica7 remains the most favorable support for immobilized catalysts. 

Silica can easily be modified with linkers incorporating ethoxysilane groups,8,9 it 

__________________ 

* Reproduced in part with permission from Baker, J. H.; Bhuvanesh, N.; Blümel, J. J. Organomet. Chem. 

2017, 847, 193-203. https://doi.org/10.1016/j.jorganchem.2017.03.034 

 © 2017 Elsevier. 

https://doi.org/10.1016/j.jorganchem.2017.03.034
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is mechanically robust, stable at higher temperatures, and settles within minutes after the 

reaction, so that the supernatant containing the products can simply be decanted. After 

washing the silica, the covalently bound immobilized catalyst can be used for the next 

catalytic run. 

 Using bifunctional phosphine linkers incorporating ethoxysilane groups, 

immobilized nickel catalysts for cyclotrimerization,10 palladium and copper catalyst 

systems for Sonogashira reactions,11 and rhodium catalysts for olefin hydrogenation12 

have been generated. All these catalysts showed unprecedented activities and lifetimes 

and could be recycled many times. 

 Nevertheless, some problems remain. For example, neighboring catalyst molecules 

on the surface can dimerize or agglomerate. Wilkinson’s catalyst readily dimerizes 

already when stirred at room temperature in benzene,13 and the dimer is catalytically not 

active. Accordingly, it was found that diluting the immobilized Wilkinson-type catalysts 

on the surface improved the catalytic performance substantially.12b,12c However, diluting 

surface-bound species entails a relative increase in the bulk of the support material, 

which is an unpopular scenario in industrial settings. Another, fatal problem arises when 

linkers decompose upon reaction with silica.14 Additionally, phosphine linkers 

incoporating ethoxysilane groups can be transformed into the corresponding 

ethylphosphonium salts at higher temperatures, which are no longer able to coordinate to 

metal complexes.15 The detachment of the catalyst complex from monodentate linkers, a 

general problem for immobilized catalysts which is typically classified as "leaching", 

leads to the gradual loss of metal complexes. We have investigated this issue using 
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palladium complexes by solid-state NMR and found that this problem can only be 

ameliorated by using favorable chelate linkers.11a,11b Finally, homogeneous catalysts that 

are tethered to the support via linkers with flexible alkyl chains can reach the support 

surface and decompose or form nanoparticles.5,12a  

 Recently, we have explored a rigid tetraphosphine linker system with 

tetraphenylelement cores16 that successfully prevented rhodium catalysts from 

dimerization and kept the metal centers at a safe distance from the reactive silica 

surface.17 Indeed, Wilkinson-type rhodium catalysts with unprecedented activity and 

selectivity could be obtained by using the rigid tetrahedral linker [Sn(p-C6H4)PPh2]4.
17 

 In this contribution we extend the rigid linker theme and explore whether using the 

longer biphenyl instead of  phenyl units will further improve the immobilized catalysts 

by preventing dimerization and decomposition by contact with the surface, as the 

distance between the substituents at the linker should increase from about 10 to 15 Å. 

For this purpose, diverse new tetraphosphines with tetra(biphenyl)element cores have 

been synthesized and fully characterized. They have been immobilized on silica and 

Wilkinson-type rhodium catalysts have been coordinated. 

 Selected linkers have been tested for their activity and recyclability in the 

important catalytic olefin hydrogenation18 because there is already a substantial body of 

data on rhodium-catalyzed hydrogenation from our group.12,17 A comparison with the 

hydrogenation results of other groups, using different catalytic systems, will be 

interesting as well.19 Special interest in the work described here is placed on a linker 
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with a silicon atom at the core instead of a tin atom17 in order to exclude the participation 

of the center atom of the linker in the catalytic hydrogenation.  

 Besides our application as linkers for immobilized catalysts, tetrahedral scaffold-

type molecules are also of general interest in other fields. For example, they function as 

rigid structural elements for metal organic frameworks (MOFs),20 porous organic and 

aromatic frameworks (POFs, PAFs)21 and dendrimers.22 Furthermore, they are of interest 

for studying photochemical effects,23 and for materials chemistry in general.24 

 The most powerful method for characterizing amorphous solids is solid-state NMR 

spectroscopy.25 It has been an invaluable tool for characterizing covalently bound 

linkers, catalysts, and supports, and recently the dynamics surface-adsorbed solid metal 

complexes could be determined by solid-state NMR analysis.26 Silica as the support 

material is very advantageous for solid-state NMR studies as it does not interfere with 

the measurements as other supports do, for example, alumina containing quadrupolar 

nuclei,6 or polymers producing 13C NMR background signals. 

 In this contribution, new tetraphosphines with tetra(biphenyl)silane and -stannane 

cores will be synthesized, characterized, immobilized, and tested as linkers for 

immobilized Wilkinson-type rhodium catalysts for olefin hydrogenation. 

1.2 Results and Discussion  

1.2.1 Syntheses of Tetra(biphenyl)element Compounds  

 We have previously reported on tetraphosphines with tetraphenylmethane, 

tetraphenylsilane, and tetraphenylstannane cores.16-17 In the following the syntheses of 

the analogs 1-7 (Scheme 1.1) with tetra(biphenyl)silane and -stannane cores are 
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described. Different strategies for syntheses of rigid tetrahedral aryl systems have been 

reported in the literature,27 making use of multiple palladium coupling reactions and 

boronic acid derivatives, as well as Grignard reagents. For the sake of simplicity and to 

avoid multiple steps in the synthesis, our approach to the biphenyl systems was 

analogous to the successful previous syntheses of the tetraphenylelement compounds.16-

17 

 

 

Scheme 1.1. Synthesized and characterized tetra(biphenyl)element compounds 1-7. 

 

 Unfortunately, the syntheses of these tetra(biphenyl)element compounds proved to 

be more difficult as compared to the previously synthesized molecules with 

tetraphenylelement cores. When the syntheses of the tetrabromo compounds 1 and 6, the 
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precursors for 2-5 and 7, are pursued according to Scheme 1.2, the yields are not 

optimal. 

 

Scheme 1.2. Synthesis of 1 and 6. 

 

 The reason for the lower yields is that 4,4’-dibromobiphenyl can not be 

monolithiated selectively.28 In comparison, the monolithiation of 1,4-dibromobenzene is 

very selective and dilithiation does not even take place when applying an excess of four 

equivalents of n-butyllithium at room temperature (Scheme 1.3).29 The monolithiation of 

4,4’-dibromobiphenyl has been described in the literature and often used as a benchmark 

for the selectivity of a metalation reaction performed with an organolithium or Grignard 

reagent. However, even with the use of micromixers and temperatures as low as -78 °C 

absolute selectivity has not been achieved.28b Scheme 3 presents a typical distribution of 

mono- versus dilithiated dibromobiphenyl, as determined by quenching with methanol. 

This distribution has been reproduced in our hands, and the percentage of monolithiation 

of 4,4’-dibromobiphenyl is among the highest reported in the literature to the best of our 

knowledge.  
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Scheme 1.3. Br/Li exchange products with 1,4-dibromobenzene and 4,4’-

dibromobiphenyl (5% remaining starting material). 

 

 

 

 The lack of selectivity of the monolithiation of 4,4'-dibromobiphenyl is 

problematic considering that the dilithiated biphenyl can lead to oligomers when being 

reacted with SiCl4 or SnCl4 in the next step. This further reduces the yields substantially.  

 After numerous experiments aimed at ameliorating the outcome of the Br/Li 

exchange, it could be determined that the best approach was to remove the dilithiated 

byproduct from the reaction mixture prior to proceeding with the following synthetic 

steps. Fortunately, the dilithiated biphenyl precipitates out of diethyl ether while the 

monolithiated biphenyl is soluble in ether at room temperature. Therefore, the separation 

of the ether solution from the precipitate allows the isolation of the mono- and dilithium 

salts. Starting from the clean lithium salts limits the amounts of side products formed in 

subsequent reactions. In order to test the quality of the separation by the solubility in 

ether, the precipitate was quenched with water. The resulting 1H and 13C NMR spectra of 

the water-quenched precipitate show that it consisted of pure dilithium salt. The signals 
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in the spectra perfectly match the literature values for biphenyl.30 The unoptimized yield 

of the isolated compound after the lithiation was 19%. 

 Removal of the dilithiated biphenyl prior to subsequent synthesis steps proved to 

be extremely beneficial for generating the tetrabromo compound 1 (Scheme 1). The 

compound was obtained with high purity in 88% yield. The product could be crystallized 

by slow evaporation of acetone producing clear needle-like crystals with high enough 

quality to subject them to single crystal X-ray analysis (Figure 1.1).31 There are two 

distinct molecules in the unit cell which matches the 29Si solid-state NMR spectrum of 

polycrystalline 1, which shows two isotropic lines at -14.7 and -15.7 ppm, representing 

each molecule in the unit cell. This corresponds nicely with our earlier results on tetra(p-

bromophenyl)silane.17 

 It is interesting to note the very obvious high degree of bending in the biphenyl 

spokes in the molecules that is most probably enforced by the strain of packing in the 

crystal lattice (Figure 1.1). In one case, the deviation from linearity amounts to 0.7 Å 

(Figure 1.1). This feature is reminiscent of the bending of the conjugated oligoacetylene 

chains described earlier in the context of "molecular wires".32 
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Figure 1.1. Single crystal X-ray structure of 1. Two independent molecules are 

displayed.31 

 

  

 The bends in 1 create significant changes in the distances between the four 

bromine atoms in each molecule. The two that are bent towards each other are 14.7 Å 

apart, whereas the two that are bent away from each other are 19.0 Å apart. The bending 

even affects the lengths of the biphenyl units, for example, it shortens the length of one 

"arm" from 10.87 Å on the left to 10.84 Å on the right. It should be noted that in the only 

other literature known crystal structure of a tetra(biphenyl)silane33 the bends are smaller. 

Due to the strains in the crystal lattice, the deviations from the ideal tetrahedral angle of 

109.5° are substantial. For example, the right molecule in Figure 1.1 shows two 

deviating values of 107.0° and 110.7°. This leads again to very different distances 
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between the bromine atoms within one molecule, 18.4 versus 16.5 Å. The tight packing 

of the molecules within the crystal lattice results in a comparatively high density of the 

crystal of 1.58 g/cm3. Finally, with respect to using these tetrahedral scaffolds as linkers 

for immobilizing catalysts, it should be noted that they will not clog the large pores of 

the silica used in the presented studies, which are on average 40 Å in diameter.  

 Four new tetraphosphines with tetra(biphenyl)silane cores (2-5) could be 

synthesized from 1 in high yields (Scheme 1.4). For the tetralithiation of 1 with ether as 

the solvent, the number of equivalents of nBuLi had to be increased to 20. This excess 

proved necessary because even 8 equivalents, an amount that had successfully been used 

previously with the tetraphenyl core linkers,17 produced a mixture of starting bromides 

and phosphines after quenching the reaction with the chlorophosphines at -78 °C. The 

incomplete tetralithiation was proven by 13C NMR after allowing the reaction mixture to 

warm to room temperature and stirring for 3 hours. Most diagnostic for this purpose was 

the 13C NMR signal of the nucleus bound to Br at about 122 ppm. In THF the lithiation 

proceeds much more rapidly and a significantly smaller amount of nBuLi is needed, 

which is more atom economic and beneficial for the subsequent purification. 
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Scheme 1.4. Synthesis of the tetraphosphines 2-5. 

 

 After quenching the tetralithium species with the corresponding chlorophosphines, 

the products 2-5 (Scheme 1.4) could easily be isolated in high purities and yields by 

removing the solvent, adding ethanol to the residue, filtering the suspension through a 

frit and thoroughly washing the solid product with ethanol. Figure 1.2 displays the 

solution 31P NMR spectra of the tetraphosphines 2-5 in CDCl3. Noteworthy is the 

absence of phosphorus-containing sideproducts, and that the phosphines are only 

moderately sensitive towards oxidation and can tolerate chlorinated solvents. 

Furthermore, there is only one signal for each tetraphosphine, confirming the symmetry 

of the compounds in solution. None of the signals shows any "fine structure" or 

additional signals, which would indicate the presence of triphosphines or diphosphines 
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from stemming from incomplete Br/Li exchange in the previous step of the synthesis 

(Scheme 4). It should also be noted that the tetraphosphines 2-5 are rather soluble in 

organic solvents, excluding the formation of oligomers. 

  

Figure 1.2. 31P NMR spectra of tetraphosphines 2-5. Numbers next to the signals 

correspond to the chemical shift values (ppm). 
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Figure 1.3. 13C,1H COSY NMR spectrum of 3 used for signal assignments in the 

cyclohexyl rings.   

 

 

 

 The signal assignments in the 1H and 13C NMR spectra are straightforward. They 

are based on the assignments of the tetraphosphines with tetraphenylelement cores 

reported earlier,16-17 and on various two-dimensional techniques, such as 1H,1H COSY, 

and 13C,1H COSY NMR spectra. Figure 1.3 shows, for example, the COSY spectrum 

detailing the assignments of the cyclohexyl ring signals, which are additionally aided by 

the NMR study of PhPCy2 reported in the literature.34 Furthermore, especially with 

respect to distinguishing the signal sets of the two aryl rings in the biphenyl units, the 1-
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3J(31P-13C) values are very helpful. The splittings of the carbon NMR signals due to 1-

4J(31P-13C) couplings can clearly be seen in the 13C NMR trace in Figure 1.3. 

1.2.2 Synthesis of Tetra(biphenyl)stannane Scaffolds 

 The synthesis of the tin compound 6 (Scheme 1.1) in analogy to 1 proceeded 

without difficulties. However, problems were encountered when trying to obtain the 

tetraphosphine 7 using the synthesis that was successful for 2-5 (Scheme 1.4). The main 

problem proved to be that a stoichiometric amount of nBuLi only led to incomplete Br/Li 

exchange. A twofold excess of nBuLi, however, resulted in the cleavage of the Sn-C 

bond and formation of dilithiated biphenyl. This is obvious, for example, when the 

tetrabromide 6 is treated with eight equivalents of nBuLi, the reaction is quenched with 

chlorodiphenylphosphine, and 4,4'-bis(diphenylphosphanyl)-1,1'-biphenyl is obtained as 

the sole phosphorus containing product (Scheme 5). The product has been identified 

unequivocally by 31P and 13C NMR spectroscopy and ESI MS. To corroborate the attack 

of the lithiating reagent at the tin center, tetraphenyltin has been subjected to the same 

treatment with nBuLi and chlorodiphenylphosphine, and Ph3P was found as the sole 

phosphorus containing product by 31P NMR. Therefore, tetralithiation of 6 is not a viable 

method for generating 7, due to the Sn-C bond cleavage under these reaction conditions.  
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Scheme 1.5. Generating 4,4'-bis(diphenylphosphanyl)-1,1'-biphenyl by attempted 

tetralithiation of 6.  

 

 

 

 Since the tetralithiation of 6 with the, according to experience, required excess of 

nBuLi16-17 did not work, other approaches were tested. Unfortunately, addition of 

tetramethylethylene diamine (TMEDA) to activate the lithiating reagent35 did not lead to 

the desired outcome even after varying the stoichiometries and reaction conditions. For 

example, using 4 equivalents of nBuLi only about 50% lithiation was observed. With 6 

equivalents about 33% of arylbromides remained, besides decomposed material. 

Diagnostically most valuable in these attempts proved to be 13C NMR that allowed to 

identify residual bromoaryl moieties by the C-Br signal at 121.8 ppm.  

 A more successful attempt to synthesize 6 is outlined in Scheme 1.6. In a first step, 

the phosphine 8 was prepared in high yields using the protocol for obtaining the clean 

monolithiated biphenyl described above. The lithiation of 8 with nBuLi had to be 

optimized next. Since triarylphosphines can undergo a P-C bond cleavage with an excess 
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of lithiating reagents, only one equivalent of nBuLi was used with 8. The optimal 

conditions were identified as the solvent THF, a reaction temperature of -78 °C, and 1.25 

equivalents of TMEDA with respect to nBuLi. After lithiation of 8 the quench of the 

reaction mixture with SnCl4 leads to the tetraphosphine 7 (Scheme 1.6) in a respectable 

crude yield of 52%.  

 

 

Scheme 1.6. Syntheses of the tetraphosphine 7 via phosphine 8.  

 

1.2.3 Immobilization of the Tetraphosphine Linkers 

 It has been described previously that phosphines form ethylphosphonium salts 

with siloxide counteranions in the presence of ethoxysilanes and silica.15a,16-17 Alkylation 

of arylphosphines with chloroalkanes does not take place, for example, Ph3P does not 

react with the silane used here, 3-chloropropyltriethoxysilane, in solution even if the 

components are stirred in toluene at 90 °C for several days.29 Furthermore, ethoxysilanes 

do not react with arylphosphines in solution even under these harsh conditions. The 
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silica surface is needed to activate the ethoxysilanes in order for an ethylgroup to be 

taken up by the phosphine.15b Any di-, tri-, or tetraethoxysilane can form 

ethylphosphonium salts from phosphines in the presence of silica.15a As a precursor in 

the synthesis of other phosphine linkers, chloropropylethoxysilane is readily available in 

our lab and was used for the immobilization described here. While the transferred ethyl 

group clearly stems from the ethoxysilyl group, the siloxide counteranion could be 

associated with the silica surface, or the ethoxysilyl group. The latter is covalently linked 

to the surface via the residual ethoxy groups, so the linkage of the phosphine might not 

only be electrostatic in nature, but it could be a combination of electrostatic cation-anion 

interactions and covalent bonding to the surface-bound ethoxysilyl group. The latter is 

most likely, as the phosphonium salts are strongly bound to the support surface, and they 

cannot be washed off the support even by polar organic solvents. It has been 

demonstrated with quantitative 31P MAS NMR spectroscopy that in the case of 

tetrahedral tetraphosphine linker scaffolds with tetraphenylelement cores three 

phosphine groups are transformed into phosphonium groups that are bound to the 

surface under the right conditions.16-17 Due to the tetrahedral geometry, one phosphine 

group cannot react with surface-activated ethoxysilyl groups and remains unchanged, 

ready to coordinate a metal complex.16-17 Using this principle, together with the 

optimized reaction conditions, the tetraphosphines 2-4 have been immobilized 

successfully to give 2i-4i as depicted in Scheme 1.7.  
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Scheme 1.7. Immobilization of 2-4 on silica to generate 2i-4i. 

 

 The number of binding phosphonium groups versus phosphine groups in 2i-4i has 

been determined by quantitative 31P MAS (Figure 1.4). For this purpose, cross-

polarization (CP)25 cannot be applied, because it would give the phosphonium signals an 

"unfair" boost in signal intensity due to the many alkyl protons in the ethyl groups that 

provide optimal magnetization transfer. Therefore, the spectra in Figure 4 have been 

recorded only with high-power 1H decoupling and MAS without magnetization transfer, 

combined with a long relaxation delay of 10 s.16 The chemical shifts of the downfield 

phosphonium and upfield phosphine resonances lie within the expected ranges.15-17 The 

signal intensity ratios are about 3:1 for the phosphonium and the phosphine signals. The 

exact values are given in Table 1.1. Therefore, it can be concluded that the 
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tetraphosphines with tetrabiphenylsilane cores match the immobilization behavior of the 

previously studied tetraphosphines with tetraphenylsilane and -stannan cores.16-17 The 

configuration with three "feet" down and one up, as displayed in Scheme 1.7 is 

confirmed.   

 

 

Figure 1.4. 31P MAS NMR spectra of the immobilized linkers 2i-4i. The chemical shifts 

are given in ppm. 
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 The surface coverages of 2i-4i have been obtained by reacting the silica with 

known specific surface area with an amount of tetraphosphine that creates a 

submonolayer of molecules on the surface, as estimated by the footprint of the 

tetrahedral molecules, bound by three "feet". After the reaction the supernatants have 

been checked carefully for residual phosphines by 31P NMR. The surface coverages are 

given in Table 1.1. They were chosen to lie within the typical range for tetraphosphines 

with tetraphenylelement cores.16 

 

Table 1.1. 31P NMR chemical shifts of resonances from phosphonium (P+) and 

phosphine (P) groups, their integral ratios, and surface coverages for 2i-4i.  

 

Immobilized Species δ(31P+) δ(31P) Ratio P+:P Molecules per 100 nm2 

2i 

3i 

4i 

23.5 

31.3 

37.5 

-5.5 

1.0 

10.4 

3:1.3 

3:1.5 

3:1.1 

2.9 

4.7 

4.0 

 

 

 

1.2.4 Generating Immobilized Wilkinson-type Catalysts 

 The immobilized Rh complexes 2iRh, 3iRh and 4iRh have been generated from 

the immobilized linker phosphines 2i, 3i, and 4i, respectively. This has been achieved 

via ligand exchange by stirring the modified silica with a slight excess of Wilkinson’s 

catalyst, ClRh(PPh3)3, at room temperature (Scheme 1.8). Within a few minutes the 

originally white silica support turns orange while the color of the supernatant is fading. 

After decanting the supernatant and washing the silica with toluene to remove PPh3 and 
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excess Wilkinson's catalyst, the solid is dried in vacuo and subjected to 31P solid-state 

NMR analysis.  

 

 

Scheme 1.8. Immobilized catalysts 2iRh-4iRh, generated from 2i-4i by ligand exchange 

with Wilkinson's catalyst. 

 

 

 

 The 31P MAS NMR spectra of 2iRh-4iRh show that no surface-adsorbed PPh3
29 is 

left in the silica. This can, for example, be seen in Figure 5. Furthermore, the signals of 

the uncoordinated phosphines vanish when the complexes are bound. This can clearly be 

seen for 3iRh versus 3i (Figure 1.5), where the signal of the PCy2 group at 1.0 ppm 

vanishes upon coordination. Unfortunately, the 31P NMR signals of the bound 

Wilkinson-type catalyst at about 30 ppm12d are overlapping with the phosphonium 
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resonance and are therefore not resolved. However, the presence of unwanted 

sideproducts, like phosphine oxides, can be excluded, as those resonances15b,36 would 

have larger chemical shift anisotropies25 and their rotational sidebands would show 

prominently in the spectrum of Figure 1.5. 

 

 

Figure 1.5. 31P MAS spectra of 3i and 3iRh.  
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1.2.5 Catalytic Hydrogenation and Recycling 

 Rigid scaffold-type linkers are favorable for immobilized catalysts because they 

hold the catalyst at a safe distance from the reactive support surface. In this way, the 

premature decomposition of the catalyst by contact with the silica surface is prevented. 

Furthermore, due to the rigid nature of the linkers, the coordinated metal complexes 

cannot form dimers13 with neighboring catalysts that would no longer be catalytically 

active. It has been demonstrated with Wilkinson-type catalysts immobilized via rigid 

linkers with tetraphenylstannane cores previously that this is a winning concept.17 These 

catalyst could be recycled in a batchwise manner for 30 times, and the olefin conversion 

remained quantitative within a time window of 60 h.17 

 Regarding, in comparison, the immobilized catalysts 2iRh-4iRh, there are three 

important aspects. (a) The primary question is whether the catalytic performance and 

especially the longevity improves when the longer biphenyl units are used in the linkers, 

since the distances to the support and to neighboring catalysts are increased. (b) 

Furthermore, it is of interest to check whether the record hydrogenation activity reported 

for the rigid stannane linker reported previously17 is due in part to the presence of the tin 

in the center that could function as an activator for hydrogen. Therefore, linkers with 

silicon in the center that does not influence catalysis are chosen here. (c) Finally, it will 

be important to see whether the increased distance between the metal centers prevents 

nanoparticle formation or at least delays its onset. Nanoparticle formation at an early 

stage of catalysis, due to reduction of Rh(I) to Rh(0) by hydrogen, has been found 

primarily when using linker systems with flexible alkyl chains.5,12a 
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 In order to allow for optimal comparability with the previous studies, the same 

substrate, 1-dodecene, reaction conditions, and hydrogenation apparatus were applied for 

the catalytic runs.5,12a The immobilized catalyst 2iRh was studied first because it 

provides a silicon atom in the center and the biphenyl "distance holders", but leaves the 

coordination of the rhodium center by triarylphosphine groups in place for a direct 

comparison with the results in the literature.17 

 Figure 1.6 shows the results of 1-dodecene hydrogenation with 2iRh. The data 

points were collected during each hydrogenation cycle by monitoring the hydrogen gas 

consumption and recording the volume of H2 every hour. After each catalytic run, the 

immobilized catalyst was allowed to settle and the supernatant was removed. The 

catalyst was subsequently washed with toluene before the next catalytic run was started 

for checking the batchwise recyclability. Figure 1.6 shows that the catalytic activity 

decreases gradually with every run. However, even in the eighth run the catalytic 

reaction is completed within 40 hours. This performance of 2iRh is comparable to the 

results obtained previously,17 but does not exceed expectations. Interestingly, the 

differences between the completion times are not as pronounced as the ones reported in 

earlier work using the tetraphenylstannane linker.17  

 Overall, at this point regarding question (a) one can safely conclude that the 

activity and recyclability of the catalyst is similar when using linkers with phenyl versus 

biphenyl spacers. Perhaps the advantage that the larger distances between the metal 

centers and to the surface provides is partly diminished by the linkers filling a large 

portion of the pore space and thus impeding the diffusion of the substrate. This would 
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explain why the reaction is slower already in the first run as compared to the 

characteristics found in earlier work.17 Experiments with silica with larger pores will be 

necessary to answer this question.  

 Furthermore, one can tentatively answer question (b), the catalytic activity and 

recyclability are not influenced in a major way by the tin17 versus silicon center of the 

linker.  

 

 

Figure 1.6. Percent consumption of H2 over time for nine batchwise catalytic runs with 

2iRh. The last catalytic run was performed without inert atmosphere. 

 

 

 One of the factors indicating the presence of rhodium nanoparticles is that catalytic 

activity persists even when oxygen is allowed into the system. This has been described 

previously for rhodium nanoparticles formed when Wilkinson-type catalysts were 
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immobilized via linkers with long alkyl chains.12a When 2iRh was exposed to oxygen 

for several hours after the eighth run and used for the catalytic cycle 9 without inert gas 

atmosphere, the catalytic activity deviated only minimally from the one observed in run 

8 (Figure 1.6). Therefore, one has to conclude that question (c) can also be answered 

now. The more extended biphenyl containing linker scaffold does not prevent 

nanoparticle formation. Taking a close look at the characteristics displayed in Figure 1.6 

one might speculate that the onset of nanoparticle formation occurs in the fourth run, 

when the activity transitions into a slower, then persistent mode. This would mean that 

the onset of nanoparticle formation is delayed for 2iRh, as nanoparticles already form 

within the first hours of the initial run for the catalyst tethered with long alkyl chains.12a 

 In order to test the influence of alkyl versus aryl substituents at the phosphine 

groups of the biphenyl linker system, the characteristics of the catalyst 4iRh with PiPr2 

groups at the ends of the linker scaffold were investigated. Most importantly, this 

catalyst needs a reaction temperature of 80 °C before it becomes active. When catalyst 

4iRh is then recycled in a batchwise manner, the activity stays about the same in the first 

three cycles (Figure 1.7). However, in the 4th cycle, the hydrogenation slowed down 

substantially without obvious reason.  
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Figure 1.7. Hydrogenation of 1-dodecene using the catalyst 4iRh. 

 

 It is noteworthy with respect to point (c) that the material 4iRh darkened gradually 

and turned from originally orange to black at the end of the first run (Figure 1.8). This 

indicates the eventual formation of nanoparticles which proceeded faster than for 2iRh. 

This might be due to the higher temperature applied, or the nature of the phosphine 

groups. Again, in order to prove the nanoparticle formation during catalysis, the catalyst 

was exposed to air after the fourth run. The material remained catalytically as active as 

in run 4, meaning that no molecular rhodium catalyst that would get deactivated under 

these conditions remained. 
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Figure 1.8. Images of the catalyst 4iRh before (left) and after (right) the first 

hydrogenation cycle. The white spheres are the stirring bar. 

 

 

1.3 Conclusions  

 Two tetrabromo compounds (1,6) and five tetraphosphines (2-5,7) with 

tetra(biphenyl)silane and -stannane cores were synthesized and characterized. Three 

tetraphosphines were immobilized onto silica (2i-4i) and investigated by solid-state 

NMR. Surface-bound Wilkinson-type rhodium catalysts have been generated by ligand 

exchange with the immobilized linkers (2iRh-4i-Rh). Catalytic hydrogenation was 

performed using the catalysts immobilized with 2iRh and 4iRh. The former could be 

recycled at least 9 times without significant loss of activity and the reactions were 

completed within 40 hours. Based on the appearance change of the catalyst and previous 

results with similar linkers with tetraphenylelement cores, the formation of nanoparticles 

was suggested. Exposing the used catalyst to air and running another catalytic cycle 

confirmed the presence of catalytically active rhodium nanoparticles that were inert 

against oxygen. In future work different pore sizes for the support will be explored in 

combination with 2iRh to check whether substrate diffusion slows the catalytic runs. 
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Furthermore, a chelate phosphine group will be attached to the scaffolds which will 

reduce the detachment of the metal complex as compared to the present monodentate 

phosphine groups at the linker scaffolds. 

1.4 Experimental Section 

1.4.1 General Information and Procedures 

 All reactions were performed by using standard Schlenk techniques or in a glove-

box in an oxygen-free argon atmosphere. The solvents were dried by boiling over Na, 

distilled and kept under nitrogen. Alternatively, they were obtained from a solvent 

purification system. All the immobilization experiments were carried out with Merck 

silica 40 (specific surface area 750 m2/g; average pore size 40 Å; particle size 0.063-0.2 

mm) that was dried at 300 °C in vacuo (10-2 Pa) for at least three days in order to remove 

adsorbed water and condense surface silanol groups.  

 The 1H, 13C, and 31P NMR spectra of molecular compounds were recorded at 

499.70, 125.66, and 202.28 MHz on a 500 MHz Varian Inova spectrometer. The 13C and 

31P NMR spectra were measured with 1H decoupling if not stated otherwise. Neat 

Ph2PCl (δ(31P) = +81.92 ppm) in a capillary centered in the 5 mm NMR tubes was used 

for referencing the 31P chemical shifts of the compounds. For referencing the 1H and 13C 

chemical shifts the residual proton signals of the solvent CDCl3 and the carbon signal 

have been used (δ(1H) = 7.26 ppm, δ(13C) = 77.00 ppm). The signal assignments have 

been obtained by two-dimensional 1H,1H COSY, 13C,1H HSQC, and 13C,1H HMBC 

NMR measurements, and by comparisons with analogous tetraphosphines with 

tetraphenylelement cores.16-17 All 31P solid-state NMR spectra were recorded on a 
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Bruker Avance 400 spectrometer, equipped with a 2.5 mm broadband MAS probehead 

and ZrO2 rotors. The modified silica was loosely filled into the rotors under argon in a 

glove-box. The relaxation delays were 10 s for all surface-immobilized compounds, and 

the rotational frequency 4 kHz if not mentioned otherwise. High-power decoupling, but 

no cross-polarization (CP) 25 was applied. All spectra were recorded at room temperature 

(298 K). The 31P MAS NMR spectra were referenced with respect to 85% H3PO4 (aq) by 

setting the 31P NMR peak of solid (NH4)H2PO4 as the external standard to +0.81 ppm. 

For the 29Si NMR spectra the external chemical shift standard Si(SiMe3)4 was used. 
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1.4.2 Synthesis of Si(p-C6H4-p-C6H4Br)4 (1): 

 

 In a 500 ml Schlenk flask, 4,4’-dibromobenzene (2.718 g, 8.71 mmol) is dissolved 

in 300 ml of ether. The solution is cooled to -78 C and 4.00 ml of 2.5 M nBuLi (10.0 

mmol) in hexanes is added dropwise. After allowing the mixture to stir at room 

temperature for 90 min, the solution is separated from the precipitate via cannula and 

placed in a different 500 ml Schlenk flask. The flask is cooled to -78 C and 0.20 ml of 

SiCl4 (0.297 g, 1.75 mmol) is added dropwise. The reaction mixture is warmed to room 

temperature and stirred overnight. The solvent is then removed in vacuo and the crude 

product is redissolved in 80 ml of chloroform. Flash chromatography is then performed 

with chloroform as the eluent. The solvent is removed in vacuo and the powder is 

washed 3 times with 20 ml of hexanes. Residual solvent is removed in vacuo and the 

product is obtained as white powder in a yield of 88% (1.470 g, 1.54 mmol). Crystals 

suitable for single crystal X-ray analysis are grown by taking 10 ml of a saturated 

solution of 1 in acetone, diluting with another 10 ml, and slowly allowing the solvent to 

evaporate.  

 1H NMR (CDCl3, 500.1 MHz): δ = 7.73 (H2, d, 3J(H-H) = 7.5 Hz), 7.62 (H3, d, 

3J(H-H) = 7.8 Hz), 7.58 (H7, d, 3J(H-H) = 8.2 Hz), 7.50 (H6, d, 3J(H-H) = 8.5 Hz) ppm; 

13C NMR (CDCl3, 125.8 MHz): δ = 141.28 (C4, s), 139.67 (C5, s), 136.94 (C2, s), 
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133.07 (C1, s), 131.98 (C6, s), 128.72 (C7, s), 126.50 (C3, s) 121.95 (C8, s) ppm; 29Si 

NMR (CDCl3, 79.5 MHz): δ = -14.36 ppm; 29Si CP/MAS: δ = -14.7, -15.7 ppm (νrot = 10 

kHz). mp 149 °C. 
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1.4.3 Synthesis of Si(p-C6H4-p-C6H4PPh2)4 (2): 

 

 In a 250 ml Schlenk flask, 1 (0.600 g, 0.63 mmol) is dissolved is 75 ml of THF. 

The solution is cooled to -78 °C and 1.51 ml of 2.5 M nBuLi (3.8 mmol) in hexanes is 

added dropwise and the solution is stirred for 90 minutes. Then 0.84 g of ClPPh2 (3.8 

mmol) is added dropwise, the reaction mixture is allowed to warm to room temperature 

and stirred overnight. The solvent is removed in vacuo which results in an oil. The 

product is precipitated with ethanol and filtered onto a frit under N2. The powder is 

washed three more times with 25 mL of ethanol and dried in vacuo. The product is 

obtained as 0.695 g of a white powder (0.50 mmol, yield 80%).  

 1H NMR (CDCl3, 500.1 MHz): δ = 7.72 (H2, d, 3J(H-H) = 7.8 Hz), 7.66 (H6, dd, 

3J(H-H) 7.5 Hz), 4J(P-H) = 1.6 Hz), 7.62 (H3, d, 3J(H-H) = 7.4 Hz), 7.39 (H7, dd, 3J(H-

H) = 7.6 Hz, 3J(P-H) = 7.6 Hz), 7.37 (H10-H12, m) ppm; 13C NMR (CDCl3, 125.8 

MHz): δ 141.70 (C4, s), 141.01 (C5, s), 136.92 (C2, s), 134.18 (C7, d, 2J(P-C) = 19.5 

Hz), 133.77 (C10, d, 2J(P-C) = 19.5 Hz), 133.69 (C1, s), 132.69 (C8, d, 1J(P-C) = 18.6 

Hz), 130.31 (C9, d, 1J(P-C) = 21.4 Hz), 128.79 (C12, s), 128.54 (C11, d, 3J(P-C) = 7.0 

Hz), 127.15 (C6, d, 3J(P-C) = 6.5 Hz), 126.59 (C3, s) ppm; 31P NMR (CDCl3, 162.0 

MHz) -6.11 ppm. mp 125 °C. ESI-MS+: [M+1] 1377.37 (96%) and [M+2] 1378.34 

(100%) plus decomposition products, calculated 1377.44 (96%), 1378.44 (100%). 
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1.4.4 Synthesis of Si(p-C6H4-p-C6H4PCy2)4 (3): 

 

 The synthesis of 3 was performed in analogy to the synthesis of 2 described above. 

Compound 3 was obtained as a white powder in a yield of 93%.  

 1H NMR (CDCl3, 500.1 MHz): δ = 7.75 (H2, d, 3J(H-H) = 8.1 Hz), 7.70 (H3, d 

3J(H-H) = 8.3 Hz), 7.64 (H7, d, 3J(H-H) = 7.8 Hz), 7.56 (H6, dd, 3J(H-H) = 7.3 Hz, 3J(P-

H) = 7.3 Hz), 1.98-1.66 (9, 10e, 11e, 13e, 12e, 14e, m), 1.43-0.91 (11a, 13a, 10a, 12a, 

14a, m) ppm; 13C NMR (CDCl3, 125.8 MHz): δ 141.70 (C4, s), 140.91 (C5, s), 136.91 

(C2, s), 135.18 (C7, d, 2J(P-C) = 19.1 Hz), 134.02 (C8, d, 1J(P-7C) = 17.7 Hz), 133.05 

(C1, s), 126.54 (C6, s), 126.40 (C3, d, 3J(P-C) = 7.4 Hz), 32.49 (C9, d, 3J(P-C) = 11.2 

Hz), 30.01 (C10, d, (1J(P-C) = 15.8 Hz), 28.82 (C14, d, 3J(P-C) = 7.0 Hz), 27.24 (C11, 

d, 2J(P-C) = 12.6 Hz), 27.00 (C13, d, 3J(P-C) = 7.4 Hz), 26.39 (C14, s) ppm; 31P NMR 

(CDCl3, 162.0 MHz) 1.92 ppm. mp 117 °C. ESI-MS+: [M+1] 1425.78 (96%) and [M+2] 

1426.76 (100%) plus decomposition products, calculated 1425.81 (92%), 1426.81 

(100%). 
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1.4.5 Synthesis of Si(p-C6H4-p-C6H4P
iPr2)4 (4):  

 

 The synthesis of 4 was performed in analogy to the synthesis of 2 described above. 

Compound 4 was obtained as a white powder in a yield of 64%.  

 1H NMR (CDCl3, 500.1 MHz): δ = 7.75 (H2, d, 3J(H-H) = 8.3 Hz), 7.70 (H3, d, 

3J(H-H) = 8.3 Hz), 7.64 (H6, d, 3J(H-H) = 7.8 Hz), 7.57 (H7, dd, 3J(H-H) = 8.0 Hz, 3J(P-

H) = 6.6 Hz), 2.16 (H9, m), 1.13 (H10, dd (3J(H-H) = 7.1 Hz, 3J(P-H) = 15.1 Hz), 0.98 

(H11, dd (3J(H-H) = 6.9 Hz, 3J(P-H) = 11.6 Hz) ppm; 13C NMR (CDCl3, 125.8 MHz): δ 

141.86 (C4, s), 141.12 (C5, s), 136.93 (C2, s), 135.05 (C7, d, 2J(P-C) = 18.5 Hz), 134.06 

(C8, d, 1J(P-C) = 16.0 Hz), 133.10 (C1, s), 126.58 (C3, s), 126.46 (C6, d, 3J(P-C) = 7.6 

Hz), 22.79 (C9, d, 2J(P-C) = 10.9 Hz), 19.86 (C10, d, (1J(P-C) = 18.5 Hz), 18.79 (C11, 

d, 2J(P-C) = 8.4 Hz) ppm; 31P NMR (CDCl3, 162.0 MHz) 10.54 ppm. 29Si NMR (CDCl3, 

79.5 MHz): δ = -15.3 ppm. mp 205 °C. ESI-MS+: [M+1] 1105.51 (100%) and [M+2] 

1106.49 (78%) plus decomposition products, calculated 1105.56 (100%), 1106.56 

(83%). 
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1.4.6 Synthesis of Si(p-C6H4-p-C6H4P
tBu2)4 (5): 

 

 The synthesis of 5 was performed in analogy to the synthesis of 2 described above. 

Compound 5 was obtained as a white powder in a yield of 75%.  

 1H NMR (CDCl3, 500.1 MHz): δ = 7.78 (H7, dd, 3J(H-H) = 7.6 Hz, 3J(P-H) = 7.6 

Hz), 7.75 (H2, d, 3J(H-H), 7.70 (H3, d, 3J(H-H) = 7.3 Hz), 7.62 (H6, d, 3J(H-H) = 7.6 

Hz), 1.24 (H10, d, 3J(P-H) = 11.7 Hz) ppm; 13C NMR (CDCl3, 125.8 MHz): δ 141.80 

(C4, s), 141.15 (C5, s), 136.93 (C2, s), 136.90 (C7, d, 2J(P-C) = 15.2 Hz), 136.15 (C8, d, 

1J(P-C) = 22.0 Hz), 133.10 (C1, s), 126.59 (C3, s), 126.13 (C6, d, 3J(P-C) = 8.4 Hz), 

32.02 (C9, d, 1J(P-C) = 20.2 Hz), 30.48 (C10, d, (2J(P-C) = 14.3 Hz); 31P NMR (CDCl3, 

162.0 MHz) 38.18 ppm. mp 240 °C (decomp.). ESI-MS+: [M+1] 1217.66 (100%) and 

[M+2] 1218.66 (100%) plus decomposition products, calculated 1217.69 (100.0%), 

1218.69 (92.8%). 
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1.4.7 Synthesis of Sn(p-C6H4-p-C6H4Br)4 (6): 

 

 In a 500 ml Schlenk flask, 4,4’-dibromobenzene (2.718 g, 8.71 mmol) is dissolved 

in 300 ml of ether. The solution is cooled to -78 C and 6.25 ml of 1.6 M nBuLi (10.0 

mmol) in hexanes is added dropwise. After stirring the mixture at room temperature for 

90 min, the supernatant is separated from the precipitate via cannula and placed in a 

different 500 mL Schlenk flask. The flask is cooled to -78 C and 0.20 mL of SnCl4 

(0.442 g, 1.70 mmol) is added dropwise. The reaction mixture is warmed to room 

temperature and stirred overnight. The solvent is then removed in vacuo and the crude 

product is redissolved in 80 ml of dichloromethane. Flash chromatography is then 

performed with dichloromethane as the eluent. The solvent is removed in vacuo and the 

powder is washed 3 times with 20 ml of hexanes. Residual solvent is removed in vacuo 

and the product is obtained as white powder in a yield of 29% (0.660 g, 0.49 mmol). 

 1H NMR (CDCl3, 500.1 MHz): δ = 7.74 (H2, d, 3J(H-H) = 8.3 Hz), 7.63 (H3, d, 

3J(H-H) = 8.0 Hz), 7.57 (H7, d, 3J(H-H) = 8.8 Hz), 7.47 (H6, d, 3J(H-H) = 8.8 Hz) ppm; 

13C NMR (CDCl3, 125.8 MHz): δ = 140.95 (C4, s), 139.75 (C5, s), 137.70 (C2, s), 

136.80 (C1, s), 131.98 (C6, s), 128.71 (C7, s), 127.19 (C3, s) 121.88 (C8, s) ppm; 119Sn 

NMR (CDCl3, 149.2 MHz): δ = -124.3 ppm. 
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1.4.8 Synthesis of Sn(p-C6H4-p-C6H4PPh2)4 (7): 

 

 In a 50 ml Schlenk flask, 8 (0.320 g, 0.77 mmol) is dissolved is 10 ml of THF. The 

solution is cooled to -78 °C and 5 ml of THF, together with nBuLi (0.77 mmol) and 

TMEDA (0.97 mmol), is added dropwise while stirring the solution for 5 minutes. Then 

SnCl4 (0.050 g, 0.19 mmol) is added dropwise, the reaction mixture is allowed to warm 

to room temperature and stirred overnight. The solution is then passed through SiO2 and 

the solvent is removed in vacuo. The residue is washed with ethanol and the suspension 

is filtered through a frit under N2. The retained powder is washed three more times with 

15 ml aliquots of ethanol and dried in vacuo. The product is obtained as 0.148 g of a 

light yellow powder (0.10 mmol, crude yield 52%).  

 1H NMR (CDCl3, 500.1 MHz): δ = 7.75 (H2, d, 3J(H-H) = 7.8 Hz), 7.66 (H6, dd, 

3J(H-H) 7.5 Hz), 4J(P-H) = 1.5 Hz), 7.63 (H3, d, 3J(H-H) = 7.8 Hz), 7.40 (H7, dd, 3J(H-

H) = 8.3 Hz, 3J(P-H) = 8.3 Hz), 7.37 (H10-H12, m) ppm; 13C NMR (CDCl3, 125.8 

MHz): δ 141.70 (C4, s), 141.01 (C5, s), 136.92 (C2, s), 136.82 (C1, s), 134.20 (C7, d, 

2J(P-C) = 19.6 Hz), 133.79 (C10, d, 2J(P-C) = 19.4 Hz), 132.69 (C8, d, 1J(P-C) = 17.4 

Hz), 132.31 (C9, d, 1J(P-C) = 25.5 Hz), 128.81 (C12, s), 128.57 (C11, d, 3J(P-C) = 7.0 

Hz), 127.22 (C3, s), 127.16 (C6, d, 3J(P-C) = 7.0 Hz) ppm; 31P NMR (CDCl3, 162.0 

MHz) -6.12 ppm. 
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1.4.9 Synthesis of p-BrC6H4-p-C6H4PPh2 (8): 

 

 In a 500 mL Schlenk flask, 4,4’-dibromobenzene (1.952 g, 6.26 mmol) is 

dissolved in 350 ml of ether. The solution is cooled to -78 C and 4.30 mL of 1.6 M 

nBuLi (6.9 mmol) in hexanes is added dropwise. After allowing the mixture to stir at 

room temperature for 90 min, the solution is separated from the precipitate via cannula 

and placed in a different 500 ml Schlenk flask. The flask is cooled to -78 C and 1.12 ml 

of ClPPh2 (6.9 mmol) is added. The reaction mixture is warmed to room temperature and 

stirred overnight. The solvent is then removed in vacuo and the crude product is filtered 

through a frit and washed 3 times with 20 ml of ethanol. The residual ethanol is removed 

in vacuo and the product is obtained as a white powder in a yield of 48% (1.230 g, 2.95 

mmol). 

 1H NMR (CDCl3, 500.1 MHz): δ = 7.57 (H2, d, 3J(H-H) = 8.3 Hz), 7.53 (H6, d, 

3J(H-H) = 7.8 Hz), 7.47 (H3, d, 3J(H-H) = 8.3 Hz), 7.39 (H7), 7.37 (H10-12) ppm; 13C 

NMR (CDCl3, 125.8 MHz): δ = 140.17 (C5, s), 139.41 (C4, s), 136.96 (C9, d, 1J(P-C) = 

10.2 Hz), 136.75 (C8, d, 1J(P-C) = 10.2 Hz), 134.43 (C7, d, 2J(P-C) = 19.5 Hz), 133.75 

(C10, d, 2J(P-C) = 19.5 Hz) 131.93 (C2, s), 128.83 (C3, s), 128.63 (C12, s), 128.56 

(C11, d, 3J(P-C) = 7.0 Hz) 126.92 (C6, d, 3J(P-C) = 7.0 Hz), 121.83 (C1, s) ppm; 31P 

NMR (CDCl3, 162.0 MHz) -6.17 ppm. 
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1.4.10 Immobilization of Si(p-C6H4-p-C6H4PPh2)4 to give 2i: 

 Immobilization of 2 on SiO2 via three phosphonium groups: 2.480 g of rigorously 

dried SiO2 is suspended in 10 ml of toluene, and a solution of 0.120 g (0.08 mmol) of 2 

in 20 ml of toluene, together with 1.70 g (7.0 mmol) of Cl(CH2)3Si(OEt)3 is added. The 

mixture is heated to 90 °C and stirred for 6 d in a gas storage vessel. After cooling to 

ambient temperature and allowing the silica to settle, the supernatant is decanted. Then 

the silica is washed with three 25 ml aliquots of toluene and dried in vacuo. Since no 

traces of phosphorus containing substances are found in the supernatant, the surface 

coverage can be determined to be about 2.9 linker molecules per 100 nm2 of silica 

surface. 31P MAS (quantitative): δiso = 23.5 (PPh2Et+), -5.5 ppm (PPh2), intensity ratio 

3.0:1.3. 

1.4.11 Immobilization of Si(p-C6H4-p-C6H4PCy2)4 to give 3i: 

 The immobilization procedures for 3i was analogous to the one described above 

for 2i. Surface coverage: 4.7 particles/100 nm2, 31P MAS: 31.3 ppm (PCy2Et+), 1.0 ppm 

(PCy2), intensity ratio 3.0:1.5. 

1.4.12 Immobilization of Si(p-C6H4-p-C6H4P
iPr2)4 to give 4i:  

 The immobilization procedure for 4i was analogous to the one described above for 

2i. Surface coverage of 4.0 particles/100 nm2, 31P MAS: 37.4 ppm (PiPr2Et+), 10.4 ppm 

(PiPr2), intensity ratio 3.0:1.1. 

1.4.13 Generating Immobilized Catalysts 2iRh, 3iRh and 4iRh: 

 The linker-modified silica 2i-4i are suspended in 20 ml of toluene and combined 

with a solution of ClRh(PPh3)3 (slight excess, 1.1 mmol per 1 mmol of linker molecule) 
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in 10 ml of toluene. After stirring for 5 h at ambient temperature, the silica is allowed to 

settle and the supernatant is decanted. The silica is washed with three 15 ml aliquots of 

toluene to remove excess ClRh(PPh3)3 and PPh3, and dried in vacuo. The surface 

coverages are calculated based on the fact that no signals for uncoordinated PR2 (R = Ph, 

Cy, iPr) groups are visible in the 31P CP/MAS spectra, and the knowledge of the linker 

surface coverages. For 2iRh 2.9 Rh complexes, 3iRh 4.7 Rh complexes, and for 4iRh 

4.0 Rh complexes are bound on 100 nm2 of silica surface. 

1.4.14 General Hydrogenation Procedure 

 Immobilized catalyst 2iRh (240 mg, containing 10 mg of Wilkinson's catalyst, 

corresponding to 0.010 mmol Rh) is suspended in 5 ml of toluene in a Schlenk flask. 

The mixture appears opaque and orange/pink in color. The flask is then attached to the 

hydrogenation apparatus described earlier12d and 1 mmol of 1-dodecene, dissolved in 

toluene (5 ml), is added to the suspension of 2iRh with a syringe through the stopcock. 

Subsequently the suspension is stirred vigorously and the hydrogen consumption is 

monitored. After complete substrate conversion the catalyst is allowed to settle, the 

supernatant is removed via syringe and the material is washed three times with 5 ml of 

toluene. To start the second and following cycles, fresh toluene is added and the 

described procedure is repeated. 
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CHAPTER II 

SYNTHESES AND TREATMENT OF NOVEL PEEK MODEL COMPOUNDS 

 

 WITH COMPLETION FLUID AND BROMINATION OF PEEK 

 

2.1 Introduction 

 Polyaryletherketones (PAEK) represent an important group within the family of 

thermoplastic polymers.37 PEEK (polyetheretherketone) (Scheme 2.1) constitutes one 

part of the PAEK polymer family and is the most widely utilized for applications where 

high temperatures, high differential pressures and corrosive environments are 

encountered. However, ZnBr2 completion fluids which are often used in the most 

demanding downhole environments, have been long known in industry to greatly shorten 

the lifetime of PEEK components. Therefore, in this project the determination of the 

specific chemical changes to PEEK under HP/HT (high pressure/high temperature) 

conditions with ZnBr2 fluids was sought after to understand the predominant 

decomposition pathways and to offer solutions to this costly problem.  

PEEK is a semi-crystalline polymer which is essentially insoluble in conventional 

organic solvents and water and therefore the polymer itself is difficult to work with. 

Many studies have been completed using solid-state NMR as well as IR. These 

investigations show chemical as well as crystallinity changes within the PEEK polymer. 

However, none of these methods provide detailed enough information to define a 

mechanism of degradation to a satisfactory level. High resolution techniques needed to 

identify the chemical changes involved, such as NMR of liquids and mass spectrometry 

(MS), are not accessible without dissolving the material. To mimic the degradation 
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mechanisms with the capability of solubilizing all of the initial material, two novel 

model compounds, 1 and 2, were synthesized and fully characterized (Scheme 2.1). Both 

model compounds contain the same keto and bisarylether functional groups in the same 

sequence as the actual PEEK polymer. The only difference are the terminal methyl 

groups of 1, which further increase the solubility.  

 

Scheme 2.1. Structures of polyetheretherketone (PEEK) and molecular model 

compounds 1 and 2. 

 

2.2 Results and Discussion 

2.2.1 Syntheses of Model Compounds 

To mimic PEEK and facilitate the decomposition studies, the model compounds 1 

and 2 (Scheme 2.1) were required to have a minimum number of aryl ether linkages as 

well as diaryl ketone groups. PEEK contains activated benzene rings that are susceptible 

to electrophilic aromatic substitution. Under extreme temperatures radical pathways are 
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also expected as found in other studies.37 It is important to note that none of these studies 

were completed in an acidic environment prior to our work.  

Both model compounds were synthesized mimicking procedures developed 

previously for the nucleophilic aromatic substitution of either p-difluorobenzophenone 

or p-dichlorobenzophenone.38 This nucleophilic substitution route is also utilized in most 

modern PEEK polymer syntheses.39 This method produces a linear straight chain 

polymer with only little branching. The targeted compounds 1 and 2 were isolated in 

very pure form after the nucleophilic substitution and with high yields (Schemes 2.2 and 

2.3, respectively).  

 

Scheme 2.2. Synthesis of model compound 1. 
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Scheme 2.3. Synthesis of model compound 2. 

 

2.2.2 Treatment of Model Compounds under HP/HT Conditions with ZnBr2 

Completion Fluid 

Both model compounds were exposed to the same extreme conditions under which 

even the PEEK polymer degrades (Figure 2.1). The results were studied via high 

resolution solution NMR spectroscopy and mass spectrometry. After exposure to a fluid 

composed of  4.25 M ZnBr2 and 2.65 M CaBr2 at a temperature of 260 °C for 48 hours, 

both model compounds were found to be brominated at the aryl rings. Model compound 

1 was shown via MALDI-MS to also form larger compounds (Figure 2.1). The latter 

mechanism would mimic cross linking of the polymer strands. Interestingly, none of the 

ketone signals were detectable in the 13C NMR spectra after the treatment of 1 and 2. 

Considerable amounts of material that was insoluble in chloroform had formed in both 



 

46 
 

cases after the high temperature treatments. This was confirmed by mass measurements 

after extraction of the filtered solid with chloroform. 

 

Figure 2.1. MALDI-MS (top) and 1H NMR (bottom) of resulting soluble 1 after 

treatment with 4.25 M ZnBr2/2.65 M CaBr2 completion fluid for 48 hours at 260 °C.  

 

 

2.2.3 Low Temperature Exposure of Model Compounds in a Completion Fluid and 

Individual Components Thereof 

Since both model compounds were fully degraded after a short period of exposure 

at HP/HT in the completion fluid, long term treatments were completed at the lower 

temperature of 90 °C. This limits the degradation pathways to those chemically, but not 
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thermally induced. Experiments with pure water were completed and no chemical 

changes were seen. In the more corrosive fluids, however, substantial chemical changes 

are seen by 1H NMR. In general, 2 proved more resistant to the treatments. The methyl 

groups on 1 were oxidized to aldehydes in the concentrated 17.8 M ZnBr2 fluid, as 

evidenced by the characteristic 1H NMR signals at 9.96 ppm. The major conclusion that 

can be drawn from the resulting spectra of these low temperature treatments (Figure 2.2) 

is that increasing the concentration of ZnBr2 does cause faster chemical changes to the 

model compounds even at this much lower temperature of 90 °C. The spectra were 

calibrated with respect to the standard CHDCl2 in a centered capillary with a resonance 

at 5.30 ppm.  

 

Figure 2.2. Chloroform extracts of 1 after treatment at 90 °C for 17 days in different 

aqueous solutions. 
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2.2.4 Bromination of Model Compounds with Liquid Br2  

Since bromination was occurring when the model compounds were treated under 

HP/HT conditions in the ZnBr2 containing fluid, it was sought to determine the effects of 

bromination on the PEEK polymer. As the first step, the bromination was explored using 

the model compounds. The completion fluids are aqueous in nature, so we initially tried 

to brominate 1 and 2 using H2O as the solvent (Scheme 2.4). The model compounds are 

completely insoluble in water. A prefabricated aqueous Br2 solution added to the 

suspension of the model compounds did not result in any brominated products. 

However, at low temperatures bromination occurred readily when neat Br2 was brought 

into contact with the model compounds. 

 

Scheme 2.4. Bromination of model compound 1 with Br2. 

 

The endeavor to better understand the effects of bromine addition to the PEEK 

polymer induced numerous attempts to isolate the brominated model compounds. 
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However, due to the many activated positions in each benzene ring of the model 

compounds 1 and 2, only inseparable mixtures of the multiply brominated compounds 

were typically obtained. In order to determine the NMR signal assignments of the 

brominated model compounds an experiment with 1/3 equivalents of Br2 was initially 

completed. For 1 about 90% of the bromine was added to the outer benzene rings and the 

rest to the inner rings (Figure 2.3). Other attempts were made in organic solvents to 

isolate a monobrominated compound, including chloroform and dichloromethane with 

FeBr3 as a catalyst. 

 

Figure 2.3. 1H NMR of partially brominated 1 in CDCl3 with signal assignments based 

on 3/4J(1H-1H) couplings and calculated NMR chemical shifts.  

 

 

2.2.5 Bromination of PEEK with Br2 

Similarly to the model compounds, the bromination of PEEK occurs by simply 

exposing the polymer directly to neat Br2 (Scheme 2.5). Bromination takes place rapidly, 

initially at the surface, which is obvious within a few minutes. With a large excess of 
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Br2, relative to the polymer, it dissolves and becomes gel-like (Figure 2.4). The excess 

bromine can be washed off with a large amount of water. Further purification is achieved 

by first dissolving the brominated polymer in chloroform and then precipitating it with 

an excess of ethanol. A fine white powder of the brominated PEEK ("bromo-PEEK") 

results (Figure 2.4).  

 

Scheme 2.5. Bromination of PEEK to give bromo-PEEK. 
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Figure 2.4. PEEK specimen after being completely submerged in liquid Br2 (top right) 

and after only the bottom part being submerged and rinsed with water (left). A white 

powder is obtained after purification (bottom right) of the brominated PEEK. 

 

In contrast to PEEK, the brominated polymer is soluble in common organic 

solvents such as chloroform, dichloromethane and tetrahydrofuran. Therefore, its 

solution NMR data can easily be obtained (Figure 2.5). The 1H NMR signals are 

assigned in a straightforward manner based on the chemical shifts of the model 

compounds. For example, the signal at 8.15 ppm corresponds to the proton adjacent to 

the carbonyl group. The 13C NMR spectrum (Figure 2.5) shows that there are three 

different chemical environments for the carbonyl group. From the model compound 

results we know that these stem from the starting compound with no bromine, and then 

one and two Br substituents on the inner rings (Scheme 2.6). Mass spectrometry and 

microprobe results confirm that the polymer contains more than three bromine atoms per 

repeat unit. As there are multiple possible scenarios for the bromination of the ring 
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between the ether linkages, however, these cannot be easily distinguished even using 2D 

NMR experiments. 

 

Figure 2.5. Solution 1H (top) and 13C (bottom) NMR spectra (CDCl3) of PEEK 

brominated by submersion in liquid Br2. 
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Scheme 2.6. Positions of bromination of internal rings next to the ketone group.  

 

In contrast to the original specimen, the brominated PEEK is amorphous, as 

determined by DSC. Surprisingly, the DSC does have a very small change in slope at 

210 °C, which is reversible upon cooling. Investigating the polymer visually by heating 

it in a melting point apparatus does not clarify what is causing the change in slope at this 

point. No gas evolution or color change took place. 

The 13C CP/MAS spectrum of brominated PEEK shows subtle changes as 

compared to the spectrum of pristine PEEK (Figure 2.6). The generally increased signal 

linewidth in the spectrum of bromo-PEEK implies that there is lower crystallinity and 

this result correlates well with the DSC measurements.  
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Figure 2.6. 13C CP/MAS spectra of PEEK as received (pristine PEEK, top) and PEEK 

after bromination (bromo-PEEK, bottom). 

 

 

The TGA results of bromo-PEEK (Figure 2.7) show similar oxygen tolerance to 

that of PEEK. Using air as the flow gas, the onset point shifts from that of the original 

PEEK by 50 °C. With N2 as flow gas, the onset point of the bromo-PEEK did not 

deviate from the air gas measurement, similarly to PEEK.37b The decomposition profile 

of bromo-PEEK is very comparable to that of the original PEEK. The chemical 

processes occurring during TGA degradation seem to be similar, only taking place at 

lower temperatures. Results from parallel work comparing untreated PEEK to PEEK 

treated with completion fluids containing ZnBr2 also feature this lower onset 

temperature.  
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Figure 2.7. TGA results of bromo-PEEK and PEEK in air.  

 

2.3 Conclusions 

Two molecular model compounds with the functional groups arranged like in 

PEEK were synthesized and completely characterized. Then they were exposed to 

extreme heat and pressure (HT/HP) in completion fluids under controlled conditions. 

Hereby, both model compounds fully degraded in the completion fluid and bromination 

occurred on the aryl rings. PEEK was brominated in liquid Br2 at ambient temperature 

and the material was obtained as a fine white powder after purification. Brominated 

PEEK is soluble in organic solvents and is easily analyzed with solution NMR methods. 

Bromo-PEEK is amorphous and has a significantly decreased onset temperature as 

compared to that of the unmodified PEEK.  
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2.4 Experimental Section 

All solution NMR spectra were measured in CDCl3 on either a 500 MHz INOVA 

spectrometer or a Bruker 500 MHz instrument equipped with a cryo probehead. Signal 

assignments for model compounds 1 and 2 and for bromo-PEEK were completed with 

2D measurements which included 1H,1H COSY, 1H,13C HSQC, and 1H,13C HMBC 

techniques. All calculated chemical shifts were obtained using the program 

ChemBioDraw Ultra, version 13.0, with CDCl3 set as the solvent. 

The solid-state NMR spectra were measured on a Bruker AVANCE 400 

spectrometer operating at 100.6 MHz for 13C. All experiments were carried out using 

densely packed powders of the polymers in 2.5 mm ZrO2 rotors. The 13C CP/MAS 

(Cross Polarization with Magic Angle Spinning) spectra were recorded at MAS rates of 

10 kHz. The 1H π/2 pulse was 2.5 µs and TPPM (two pulse phase modulation) 

decoupling was used during the acquisition. The Hartmann-Hahn matching condition 

was optimized using the polymer Victrex 450P at a rotational speed of 10 kHz. 

Adamantane served as the external 13C chemical shift standard (δ = 37.95 and 28.76 

ppm). All spectra were measured with a contact time of 1.5 ms and a relaxation delay of 

3.0 s. 

The IR spectra were recorded on a Shimadzu IRAffinity-1 FTIR spectrometer by 

placing the powdered polymers on top of a Pike Technologies MIRacle ATR diamond 

plate. Typically 100 scans were accumulated for optimal spectrum quality. 
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TGA presented here was recorded with air or N2 as flow gas. The temperature was 

equilibrated at 40 °C and then ramped at 10 °C/min until 700 °C after which the ramp 

was increased to 40 °C/min until 900 °C. 

2.4.1 Synthesis of 1 

1.99 g (9.1 mmol) of 4,4′-difluorobenzophenone, 2.55 g (2.5 mmol) of cresol and 

3.25 g (2.2 mmol) of potassium carbonate are placed in a Schlenk flask and 90 mL of a 

5:1 NMP/toluene (NMP: N-methylpyrrolidone) solution are added. The reaction mixture 

is heated to 140 °C and stirred at this temperature for 7 h. Then the crude mixture is 

exposed to oxygen and the temperature is increased to 150 °C. The mixture is stirred 

overnight. After cooling, 100 mL of H2O is added to precipitate the product. The 

precipitate is filtered and washed thoroughly with a 5% KOH solution (3x 100 mL), with 

H2O (3x 100 mL), and with cold ethanol (3x 50 mL), and subsequently dried to give a 

white crystalline powder (3.19 g, 8.1 mmol) 89.0%. mp. 155-158 °C. IR stretching band 

(cm−1): 1641 (C=O).  

 

1H NMR (500 MHz, CDCl3): δ (ppm) 7.79 (d, 9.1 Hz, 4H, H3); 7.21 (d, 7.8 Hz, 

4H, H8); 7.01 (d, 8.8 Hz, 4H, H7); 7.00 (d, 8.6 Hz, 4H, H4); 2.38 (s, 6H, H10). 13C 

NMR (125 MHz, CDCl3): δ (ppm) 194.20 (C1); 161.77 (C5); 153.13 (C6); 134.20 (C9); 

132.13 (C3); 131.95 (C2); 130.48 (C8); 120.10 (C7); 116.71 (C4); 20.75 (C10). ESI-MS 

(positive mode): m/z 395 [M+H]. 
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2.4.2 Synthesis of 2 

In a Schlenk flask 2.584 g (12.0 mmol) of 4,4′-difluorobenzophenone, 5.586 g 

(30.0 mmol) of p-hydroxydiphenylether and 4.110 g (30.0 mmol) of potassium 

carbonate are suspended in 90 mL of a 5:1 NMP/toluene solution. The reaction mixture 

is heated at 140 °C for 7 h and after being exposed to oxygen the temperature is 

increased to 150 °C. The mixture is then stirred overnight. After cooling, the desired 

compound is precipitated by the addition of 100 mL of H2O. The precipitate is filtered 

and washed thoroughly with a 5% KOH solution (3x 100 mL), with H2O (3x 150 mL) 

and with cold ethanol (2x 50 mL). The white crystalline powder weighs 6.202 g 

corresponding to a yield of 93.9%. mp. 197-199 °C. IR stretching band (cm−1): 1641 

(C=O). 

 

1H NMR (500 MHz, CDCl3): δ  (ppm) 7.81 (d, 8.7 Hz, 4H, H3); 7.37 (t, 7.6 Hz, 

4H, H12); 7.13 (t, 7.4 Hz, 2H, H13); 7.07 (d, 5.2 Hz, 4H, H7); 7.07 (d, 5.2 Hz, 4H, H8); 

7.04 (d, 7.9 Hz, 4H, H11); 7.04 (d, 8.8 Hz, 4H, H4). 13C NMR (125 MHz, CDCl3): δ 

(ppm) 194.20 (C1); 161.77 (C5); 157.36 (C10); 153.87 (C6); 150.88 (C9); 132.24 (C3); 

132.12 (C2); 129.82 (C12); 123.34 (C13); 121.60 (C7); 120.39 (C8); 118.62 (C11); 

116.71 (C4). 1J(13C-13C) Coupling constants for non-quaternary carbon nuclei with 

intensive signals: 132.23 (d, 58.1 Hz); 129.80 (d, 57.2 Hz); 123.31 (d, 56.4 Hz); 121.60 
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(d, 58.1 Hz, d, 69.0 Hz); 120.39 (d, 57.2 Hz, d, 68.2 Hz); 118.62 (d, 57.2 Hz, d, 67.3 

Hz); 116.71 (d, 58.1 Hz, d, 67.3 Hz). MALDI (positive mode): m/z 551.2 [M+H]. 

2.4.3 Treatment of 1 and 2 at 260 °C for 48 hours 

100 mg of 1 or 2 were suspended in 100 mL of 4.25 M ZnBr2/2.65 M CaBr2 and 

heated to 260 °C for 48 hours in a hastelloy pressure vessel. The resulting suspension 

was removed from the vessel and extracted two times with 50 mL of chloroform. The 

chloroform was removed in vacuo and the resulting solid was weighed. Subsequently, 

the solid was dissolved in CDCl3 for NMR and MALDI-MS experiments.  

2.4.4 Treatment of 1 and 2 at 90 °C for 17 days 

30 mg of 1 or 2 were suspended in 10 mL of the fluids described in Figure 2.2 

(17.8 M ZnBr2, 4.25 M ZnBr2/2.65 M CaBr2, 1.0 M ZnBr2, 0.1 M HCl) in a glass vial. 

The vial was heated to 90 °C and then sealed with a glass stopper. After 17 days the 

solution was filtered through weighed filter paper. The filtrate was extracted two times 

with 10 mL of chloroform. The chloroform was then removed in vacuo. 1.0 mL of 

CDCl3 was added to the resulting film and a 1H NMR spectrum was recorded. The 

remaining solid that had been filtered off was also dissolved in chloroform and measured 

by 1H NMR in CDCl3.  

2.4.5 Representative Bromination via Suspension in H2O 

100 mg of 1, 2, or PEEK450PF was suspended in 10 mL of H2O in a round bottom 

flask. While stirring vigorously between 0.3 and 10 equivalents of liquid Br2 was slowly 

added. The suspended material quickly cocooned around the stir bar. The reaction is 

complete immediately after the addition of Br2. The solid material was then removed 



 

60 
 

from the stir bar and washed thoroughly with H2O. 2D NMR techniques were utilized to 

determine signal patterns and assignments of specific brominated positions. 

2.4.6 Bromination with Br2 Vapor 

A vial with 0.875 g of PEEK450G was inserted into a Schlenk flask with 0.1 mL 

liquid Br2 at the bottom. Care was taken that the specimen did not get into contact with 

the liquid Br2. After sitting overnight the liquid was entirely gone and the polymer had 

swelled to fit the glass vial. The resulting material was thoroughly washed with H2O and 

its weight was determined to be 1.017 g. The material was orange on the outside, 

however, after removing the exposed outer surface, the color went away and the main 

body of the material was still unaltered PEEK.  

2.4.7 Bromination of PEEK450G by Submersion in Liquid Br2 

A small piece of a PEEK tensile specimen (0.520 g) was inserted into a vial 

containing liquid Br2. The polymer was completely submerged. Within minutes most of 

the liquid had soaked into the polymer and it stuck to the glass. After allowing it to sit 

overnight, the cap was unscrewed and HBr was released. The resulting material was 

pulled from the vial, washed with water and ethanol and weighed. The material now 

weighed 0.940 g, corresponding to a degree of bromination of 3 Br atoms per repetitive 

unit of the polymer. The bromine content of the bromo-PEEK was also measured by 

microprobe and the result was 52.16 weight%. This value also matches 3 bromine atoms 

on average per repetitive unit of the polymer. Furthermore, purification was performed 

by dissolving the brominated PEEK in chlorofrom and reprecipitating it with ethanol. 
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CHAPTER III 

PEEK AND PEKK TREATMENT UNDER HP/HT CONDITIONS IN ZINK 

BROMIDE COMPLETION FLUIDS WITH IDENTIFICATION AND 

QUANTIFICATION OF DECOMPOSITION PRODUCTS 

3.1 Introduction 

PEEK (polyetheretherketone) has a wide variety of applications including medical 

implants, 3D printing, and as fittings for analytical instruments such as HPLC 

equipment. PEEK is also utilized in the form of lightweight parts in the oil and gas 

industry. These PEEK parts are exposed to the harsh downhole conditions and 

completion fluids. Currently, PEEK performs well under most of these extreme 

conditions. Unfortunately, when ZnBr2 fluids are used the parts must be replaced 

frequently which stops the drilling process. There is considerable value in obtaining 

accurate lifetime predictions of the components based on the downhole conditions and 

the exact completion fluids used. This task is extremely difficult as PEEK itself is 

insoluble in common organic solvents, even at elevated temperatures, limiting the 

analytical methods available to study the polymer. New methods to analyze the PEEK 

polymer, as well as the mechanisms and causes of the degradation, need to be further 

explored. This will provide vital feedback to enable more accurate lifetime predictions 

and ultimately help prevent degradation and eventually extend the lifetime of the parts. 

Long-term high temperature treatment of PEEK has been reported under both 

aqueous and dry conditions previously.37a,40 However, these studies have not been 

performed under low pH conditions as, for example, with highly concentrated ZnBr2 
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fluids. Four different completion fluids were used to study the degradation of PEEK 

between 27 and 63 days of treatment. The four fluids used vary in the concentration of 

ZnBr2 to allow one the see the effect that the concentration of this salt has on the 

polymer degradation (Table 3.1). One fluid contained no ZnBr2 and was used as a 

control.  

Table 3.1. Fluids used for long term exposure experiments with PEEK.  

 Fluid 1 (M)  Fluid 2 (M) Fluid 3 (M) Fluid 4 (M) 

ZnBr
2
 4.25 4.09 3.63 0.00 

CaBr
2
 2.65 2.69 2.80 4.30 

 

 

 

Besides any more sophisticated analytical analyses, it was visually evident that 

there was extensive polymer degradation, caused by ZnBr2 in the solution (Figure 3.1). 

ZnBr2 has already for a long time been known in the oil and gas industry lore to be 

detrimental to PEEK. However, there has been no understanding as to how or why this is 

the case. 
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Figure 3.1. A) PEEK450G as received, B) PEEK after treatment for 63 days in fluid 4, 

C) PEEK after treatment for 28 days in fluid 3, and 35 days in fluid 4, and D) PEEK 

after treatment for 27 days in  fluid 1. All experiments were performed at 260 °C. 

 

Traditional methods to analyze insoluble polymers, including TGA, DSC, IR and 

solid-state NMR, were applied. DSC, IR, and solid-state NMR data all corroborate the 

assumption that initially there is a significant increase in crystallinity in the polymer 

after the treatments, especially with ZnBr2 fluids. TGA also shows a significant drop in 

onset temperature and that new events are occurring in these fluids as well. 

Unfortunately, these methods were not detailed enough to provide insight into any 

chemical mechanisms occurring within the polymer or even sufficient evidence to say 

whether there were any chemical reactions at all.  

Limited work has been devoted to studying the small molecules that result from 

the decomposition process.37c,40 Our novel and major method of analysis has been high 

resolution solution NMR. Extraction of the small molecules that are formed during the 

PEEK treatment can be completed with chloroform. The small molecules could then be 
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identified and quantified to provide mechanistic details that otherwise would never have 

been understood.  

3.2 Results and Discussion 

3.2.1 Identification and Quantification of Eluents 

As a first step to identify the major degradation products from PEEK, simple 

extractions with CDCl3 from both the completion fluid and the treated specimens were 

carried out. 1H, 13C, HSQC, HMBC and COSY NMR experiments were then performed 

for identification based on a concentrated sample (Figure 3.2, Figure 3.3). A capillary 

standard was used for quantification of the samples over long periods of time by 1H 

NMR. For the capillary standard to be at a concentration in the realm of the sub- 

millimolar concentrations of eluents being measured, the residual 1H NMR signal of 

deuterated dichloromethane was used. The capillary was calibrated to benzophenone 

because it has a relaxation time similar to those of the small molecules eluted from 

PEEK.  

3.2.2 Completion Fluid Extractions from Long Term Exposures of PEEK 

Each of the long term experiments started with 25 ASTM D638 type 5 tensile 

specimens and 600 mL of completion fluid in a hastelloy pressure vessel. After each data 

point, 5 tensiles were removed along with 30 mL of completion fluid. With fluid 3 there 

were initially 28 days of exposure, then the PEEK was removed and treated an additional 

35 days with fluid 4. The fluid change allowed us to study any potential further 

degradation in a fluid that does not cause degradation to pristine PEEK samples.  
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The identified compounds extracted from the completion fluid include the 

processing solvent, diphenylsulfone, phenol, and 1,4-diphenoxybenzene (dpb). Only 

diphenylsulfone does not degrade at any significant rate. In each set of measurements a 

small amount of the processing solvent is eluted and maintains concentration for the rest 

of treatment time.  

 

 

 

Figure 3.2. 13C NMR in CDCl3 after extraction from completion fluid 1, which was 

treated for 89 hours with PEEK. 
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Figure 3.3. HSQC in CDCl3 after extraction from completion fluid 1, which was treated 

for 89 hours with PEEK. 

  

 

The rate of phenol correlates with the concentration of dpb at most data points for 

each fluid set (Figure 3.4, Figure 3.5). There is a nearly linear rate in two of the four 

experiments. These are the two treatments with constant concentrations of dpb in 

solution. The constant concentration of dpb results from an initial saturation of the fluid. 

It can continue to decompose in the fluid and still maintain a constant concentration in 

this way, producing a constant source for the secondary production of phenol. In an 

additional experiment, after the PEEK was treated in the completion fluid for 28 days, it 

was removed. The remaining fluid still containing the eluents was kept under the same 
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conditions. Measurements showed that dpb and phenol are both degrading in the fluid. 

This result also means that as we are monitoring concentrations and one must keep in 

mind that these are rates of formation minus rates of degradation.  

 

Figure 3.4. Concentrations of 1,4-diphenoxybenzene after extractions from completion 

fluid with exposed PEEK specimens. 
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Figure 3.5. Concentrations of phenol after extractions from completion fluid with 

treated PEEK specimens. 

 

 

 

The extractions from the PEEK specimens further verify that the ZnBr2 completion 

fluids used are being saturated with dpb. Although in each of the fluid extractions an 

eventual concentration limit is reached, the specimen extractions show that the formation 

of dpb is continuing to occur and in fact at a faster rate with longer exposure. The NMR 

results of the extractions from the treated specimens of PEEK are surprisingly simple 

(Figure 3.6). Much higher concentrations of dpb are found inside the PEEK specimens. 

Furthermore, bis((4-phenoxy-4-phenoxy)phenyl)ketone, a model compound that we 

previously synthesized (model 2), was found as a degradation product. The identities of 

these products were also confirmed with MS experiments.   
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Figure 3.6. 1H NMR of PEEK specimen extraction after treatment in 3.63 M ZnBr2 and 

2.80 M CaBr2 fluid. 

 

 

 

Table 3.2 shows the amount of 1,4-diphenoxybenzene extracted from the PEEK 

material before and after it was cryomilled. It turns out that chloroform does not 

penetrate the PEEK material far enough to extract all of the small molecules produced. 

Even at elevated temperatures there was a limited amount of extracted dpb without prior 

cryomilling. 
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Table 3.2. Extraction of dpb with and without prior cryomilling of the PEEK specimen. 

These PEEK specimens were treated in fluid 2. The weight% is based on the amount of 

dpb after extraction from 200 mg of sample as measured by 1H NMR with a capillary 

standard. 

 

Treatment Time (d) Cryomilled (wt%) Solid Piece (wt%) 

0.88 0.0 0.0 

3.71 0.5 0.003 

11 1.5 0.27 

21 2.7 0.13 

28 6.7 -  

 

 

After determining there was such a high amount of dpb produced, we thought that 

this could potentially be quantified by TGA. TGA is a simple tool and an easy method to 

analyze many PEEK samples in a short period of time. As we had already measured 

TGA on the PEEK specimens, we measured pure dpb to see if it matched any of the 

TGA mass loss events (Figure 3.7). Indeed, dpb does match a mass loss event between 

150 and 350 °C with degraded PEEK samples from the ZnBr2 fluids. The pure dpb is 

lost in a much shorter period of time than it is released from the PEEK matrix. However, 

this is expected as even water in the polymer takes a longer period of time when 

measuring PEEK with TGA. This thermal event occurs with both N2 and air as the flow 

gas. The TGA mass results show that the NMR experiments correlate well with the 

amount of dpb, especially after longer treatment times (Figure 3.8). The difference in the 

amount of dpb as measured by TGA and NMR with shorter treatment times is most 

probably due to incomplete extraction with chloroform. As PEEK is exposed for longer 

times to ZnBr2 fluids, the crystallinity increases. Coupled with this increase in 
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crystallinity is increasing brittleness, so although the amount of time spent in the 

cryomill was the same for all samples, the particle size was likely smaller for the 

samples treated for longer times than for samples with shorter exposure periods. 

 

 
 

Figure 3.7. TGA of PEEK specimens that were treated in a 4.09 M ZnBr2/2.69 M CaBr2 

fluid, compared to the TGA of pure dpb.  
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Figure 3.8. Comparison of dpb quantified by TGA with dpb quantified by 1H NMR after 

cryomilling the samples.  

 

 

 

An important note at this point is that the concentration of dpb in the PEEK samples 

sharply increases between 21 days and 28 days of treatment in fluid 2 (Figure 3.8). This 

also corresponds to the time when the treated specimens are breaking apart while being 

exposed in the vessel (Figure 3.9). This breaking of the specimens increases the specific 

surface area and exposes the polymer to faster degradation by the corrosive ZnBr2 fluid.  
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Figure 3.9. Images of the PEEK specimens in the vessel, treated with fluid 3 for 21 days 

(left) and 28 days (right).   

 

 

 

3.2.3 Chemical Mechanisms: C-C Bond Cleavage and Subsequent Hydrolysis 

The major degradation pathway for PEEK under the conditions applied here is 

clearly C-C bond cleavage at the ketone group (Scheme 3.1). Others have measured CO 

and CO2 gas via GC/MS upon pyrolytic decomposition of PEEK.37c ZnBr2 is a Lewis 

acid causing a pH lower than 1.5 in aqueous fluids. It can be compared to other known 

Lewis acid catalysts for ketone activation and hydrolysis that lower the pH of aqueous 

solutions. 
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Scheme 3.1. C-C bond cleavage at the ketone position of PEEK to produce major 

identified degradation products.  

 

 

 

With phenol being a major degradation product it was initially expected to stem 

from a hydrolysis mechanism, although the formation of phenol has been seen 

previously in thermal degradation pathways.37b,37c Diaryl ether linkages are very stable 

and much more difficult to hydrolyze. However, In(OTf)3 has been shown to be very 

active for the hydrolysis of diphenylether under similar conditions.41 To determine if dpb 

could be the source of phenol, we treated pure dpb similarly to PEEK in fluid 1 (Figure 

3.10). The results are unequivocal and confirm that phenol is primarily produced from 

dpb. This also explains why the concentration of phenol and dpb are correlated well 

together over long periods of time (Figure 3.4, Figure 3.5). There is a short initiation 

period to producing significant quantities of phenol from PEEK treatments. When dpb is 

added to the system initially, within 24 hours the quantity of phenol is much larger than 

the one obtained after PEEK treatments, even with a much smaller starting amount (200 

mg/150 mL vs 50 g PEEK/600 mL). The initiation period corresponds to the formation 

of dpb from PEEK and its release into the system.  
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Figure 3.10. Showing relative amounts of phenol when treating dpb compared to 

treating PEEK.  

 

 

 

 Hydroquinone and/or p-hydroxybenzophenone should also be produced with the 

hydrolysis of dpb (Scheme 3.2). A 13C NMR experiment in the completion fluid after 

extraction with a 5% D2O addition for shimming did identify hydroquinone but not 

quantitatively. It was confirmed to be hydroquinone by an NMR spiking experiment 

with the completion fluid using purchased hydroquinone. When p-phenoxyphenol was 

treated in the same way as dpb, it rapidly turns into dibenzofuran among other minor 

unidentified products. The same 1H NMR signals as for dibenzofuran were also found in 

the dpb treatment (Figure 3.11). Therefore, it can be assumed that hydrolysis of dpb 

occurs in the ZnBr2 completion fluids. We were able to measure phenol but also found 

other byproducts from the hydrolysis of dpb in the system.  
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Scheme 3.2. Hydrolysis mechanism of dpb to produce phenol, p-phenoxyphenol and 

hydroquinone. 

 

 

 
 

Figure 3.11. 1H NMR of the extracted fluid after treatment of 1,4-diphenoxybenzene in 

fluid 1. 
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3.2.4 Bromination and Radical Chemistry 

Previously, two model compounds were synthesized and exposed to fluid 1 at the 

elevated temperature of 260 °C (chapter 2). After extraction from the fluids both 

compounds were subjected to 1H NMR and MS analyses with other 2D NMR techniques 

and were found to have 1,2,4-trisubstituted aryl couplings and bromine substituents. 

After finding bromination of the model compounds it was expected that the PEEK 

polymer would be brominated, too. Elemental analyses were performed with Microprobe 

(Figure 13.12). The results confirm some very important facts. The first is that the 

concentrations of the elements Zn, Br, and Ca all correlate with the degradation of the 

PEEK specimens. The longer the exposure and the more concentrated the fluid, the 

higher is the concentration of the elements. Next, the question arises whether these 

elements are just adsorbed on the surface of the polymer specimen, or whether they are 

bound covalently as in the case of an aryl bromide. The long term study where PEEK 

specimens were treated in fluid 3 for 28 days, then removed and treated an additional 35 

days with fluid 4, shows that even after 35 days in fluid 4 at 260 °C bromine and zinc 

remain with the polymer. This is an astonishing result considering that the specimens, 

after treatment only with fluid 4, hardly contain any Ca or Br elements. A third, very 

important insight comes from an additional experiment in which the outer surface of one 

treated PEEK specimen was sanded off. About 0.1 mg was removed from the specimen 

treated for 12 days in fluid 1, and the sample's elements were measured with 

Microprobe. The sample showed no Zn, Ca, or Br after sanding. This means that the 

bromination initially takes place at the surface of the polymer. Furthermore, this 
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corroborates the earlier result that the surface area also plays a role in the formation of 

dpb (Figure 3.8, Figure 3.9). 

 

 

Figure 3.12. Microprobe analyses of PEEK specimens after different exposure times and 

fluids. 

 

 

 

It has already been established that Br2 brominates the aryl rings of PEEK upon 

contact of the neat reagents at room temperature (chapter 2). However, bromination did 

not occur at low temperature when bromine was diluted in aqueous solution. However, 

at the high temperature of 260 °C, bromination should take place at any offered aryl ring. 

The formation of bromine is expected to occur during PEEK treatments. The PEEK 

degradation itself starts from C-C bond cleavage. The degradation products formed 

directly from PEEK are dpb and model 2. There are likely other, larger polymer 

fragments also from ketone cleavage, however, at some point these would be insoluble 

in chloroform. The C-C bond breakage is a radical process that will be accelerated by a 
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strong Lewis acid like ZnBr2. Dpb and model 2 both have hydrogen atoms where the 

ketone groups were located in PEEK. These hydrogen atoms are likely from the acid or 

water. The extraction of the hydrogen atom from water with a C radical comes with an 

electron and generates a short lived hydroxyl radical (Scheme 3.3). Bromide is known to 

be an excellent hydroxyl radical scavenger and would result in a Br radical.42 A Br 

radical could generate Br2 if it came into contact with a second Br radical. 

 



 

80 
 

 

Scheme 3.3. Proposed mechanism for the formation of the primary degradation products 

during the PEEK treatment and bromination of the polymer.  

 

 

 

3.2.5 PEKK Treatments in Completion Fluids and PAEK Degradation Mechanisms 

Polyetherketoneketone (PEKK) was exposed to completion fluids under HP/HT 

conditions to help validate our mechanisms and to show that we can now predict 
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products formed during PAEK polymer treatment under downhole conditions with 

completion fluids containing ZnBr2. PEKK was treated with fluid 1 at 260 °C in the 

same way as the PEEK samples previously. The PEKK specimens studied were not as 

thermally stable as the PEEK studied, however, for our purposes of comparing the 

chemical mechanisms it did not affect the results in any meaningful way. In fact, causing 

degradation at a faster rate is even beneficial with respect to the timeline of the 

performed studies.  

PEKK has more ketone groups in its molecular structure and produces more small 

molecules that are soluble in chloroform. Fortunately, the products identified by NMR in 

the fluid and after specimen extractions appear exactly how we expected to see them 

based on the PEEK studies (Figure 13.13, Scheme 3.4). The compounds eluted into the 

completion fluid stem from cleavage at the ketone groups and subsequent hydrolysis of 

the primary degradation product, diphenyl ether, to give the secondary degradation 

product phenol. The fluid extractions after exposure of PEKK to fluid 1 produce 

surprisingly clean NMR spectra (Figure 13.13). 

 

 
 

Scheme 3.4. PEEK and PEKK units. The primary degradation products of each polymer 

result from cleavage at the ketone groups. 
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Figure 3.13. 1H NMR of CDCl3 extract of fluid 1 after PEKK was exposed for 4 days. 

 

Unlike PEEK, PEKK forms many small molecules incorporating ketone groups 

that are soluble in chloroform. Extraction from a specimen treated for four days shows at 

least eight different ketone signals in the 13C NMR spectrum (Figure 13.15). Many of 

these compounds were identified by NMR in combination with mass spectrometry 

(Figure 13.14). Interestingly, there were also some unidentified brominated compounds 

in this PEKK study, in contrast to the PEEK studies, where none were found by MS. 

This is likely due to the low concentrations and lack of solubility of many of these 

products from PEEK. It is also worth noting that a hydrolyzed larger product was 
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identified with MS. This shows that phenol does not only stem from diphenyl ether in 

PEKK or from dpb in PEEK, but also from larger polymer fragments.   

 

Figure 3.14. Compounds identified in PEKK extracts of the fluids and the specimens.  
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Figure 3.15. 13C NMR of PEKK specimen extract after exposure for 4 days to fluid 1. 

3.3 Conclusions 

Using chloroform extraction and quantitative NMR in combination with other 

analytical techniques, different degradation mechanisms for PEEK as well as PEKK 

were identified. 

1. Radical cleavage at the ketone with subsequent protonation.

2. Hydrolysis

3. Bromination

4. Ring closure to form benzofurans

Especially completion fluids containing ZnBr2 are very detrimental to PAEK 

polymers, and the ZnBr2 concentration of the fluids plays a large role. In summary, in 
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order to prevent polymer degradation under extreme HP/HT conditions, ZnBr2 should be 

avoided as an ingredient of completion fluids. 

3.4 Experimental 

3.4.1 Materials and Instrumentation 

PEEK450G compression molded specimens (6378 tensiles) were provided by the 

company Hoerbiger and experiments were performed at Texas A&M and at Baker 

Hughes in Parr Hastelloy Pressure Vessels. The molecular compounds were 

characterized after extraction by NMR spectroscopy. The liquids NMR spectra were 

recorded on a Varian Inova-500. The signal assignments have been obtained by 1H,1H 

COSY, 13C,1H HSQC, and 13C,1H HMBC NMR measurements. Samples were quantified 

by a separate capillary standard calibrated to the concentration CHDCl2 from CD2Cl2. 

All solid-state NMR spectra of the PEEK specimens were recorded on a Bruker Avance 

400 spectrometer, equipped with a 2.5 mm broadband MAS probehead and ZrO2 rotors. 

All spectra were recorded at room temperature (298 K). DSC measurements were 

completed in air with a ramp of 10 °C/min both forward and reverse. TGA 

measurements were measured at a 10 °C/min in air unless noted.  

3.4.2 Extractions from Fluids 

In all experiments, 5 mL of completion fluid was extracted with 2.5 mL of CDCl3. 

After the CDCl3 was added the mixture was stirred for at least 2 hours. Subsequently, 

0.78 mL of the CDCl3 was removed and placed in an NMR tube with the centered, 

calibrated capillary standard. The remaining fluid was checked multiple times to ensure 
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complete extraction of the small molecules. There were no cases where additional small 

molecules were extracted after the first procedure.  

3.4.3 Extractions from Specimens 

Unless noted otherwise, the specimens were first broken into smaller pieces and 

cryomilled for 5 minutes. This resulted in a fine powder. For the extraction 200 mg of 

the polymer was weighed and placed in a vial. Then 1.5 mL of CDCl3 was added. This 

was allowed to sit for at least two hours. Subsequently, the solution was filtered with a 

micron frit and 0.78 mL of the CDCl3 was measured.  

3.4.4 Data of Compounds Identified from PEEK Degradation 

 

1H NMR (CDCl3, 500.1 MHz): δ = 7.33 (H2, t, 3J(H-H) = 7.5 Hz), 7.09 (H1, t, 

3J(H-H) = 7.3 Hz), 7.00 (H3, d, 3J(H-H) = 7.5 Hz), 7.00 (H6, s) ppm; 13C NMR (CDCl3, 

125.8 MHz): δ = 157.75 (C4, s), 152.66 (C5, s), 129.72 (C2, s), 122.98 (C1, s), 120.45 

(C6, s), 118.26 (C3, s) ppm. GC-MS (retention time 17.85 m), Electron Ionization: 

262.09 m/z. 
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1H NMR (CDCl3, 500.1 MHz): δ = 7.24 (H2, t, 3J(H-H) = 7.3 Hz), 6.93 (H1, d 

3J(H-H) = 7.5 Hz), 6.83 (H3, d, 3J(H-H) = 7.7 Hz) ppm; 13C NMR (CDCl3, 125.8 MHz): 

δ 155.72 (C4, s), 129.65 (C2, s), 120.77 (C1, s), 115.25 (C3, s) ppm. The chemical shifts 

and coupling constants match those of a pure phenol sample.  

 

Identified from the 13C NMR signal of the non-quaternary carbon at 117.19 ppm in 

the completion fluid 1 after 12 days of PEEK treatment and being extracted with CDCl3. 

To confirm that this signal stems from hydroquinone, both hydroquinone spiked D2O 

and completion fluid were compared. 

 

1H NMR (500 MHz, CDCl3): δ(ppm) 7.81 (d, 8.7 Hz, 4H, H3); 7.37 (t, 7.6 Hz, 4H, 

H12); 7.13 (t, 7.4 Hz, 2H, H13); 7.07 (d, 5.2 Hz, 4H, H7); 7.07 (d, 5.2 Hz, 4H, H8); 7.04 

(d, 7.9 Hz, 4H, H11); 7.04 (d, 8.8 Hz, 4H, H4). 13C NMR (125 MHz, CDCl3): δ (ppm) 

194.20 (C1); 161.77 (C5); 157.36 (C10); 153.87 (C6); 150.88 (C9); 132.24 (C3); 132.12 
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(C2); 129.82 (C12); 123.34 (C13); 121.60 (C7); 120.39 (C8); 118.62 (C11); 116.71 

(C4). MALDI (positive mode): m/z 551.2 [M+H]. 

 

1H NMR (CDCl3, 500.1 MHz): δ = 7.95 (H2, t, 3J(H-H) = 7.3 Hz), 7.57 (H1, d 

3J(H-H) = 7.5 Hz), 7.51 (H3, d, 3J(H-H) = 7.7 Hz) ppm; 13C NMR (CDCl3, 125.8 MHz): 

δ 145.52 (C4, s), 131.00 (C1, s), 129.26 (C2, s), 124.72 (C3, s) ppm. The NMR data 

from the extractions matches 1H and 13C NMR literature values43 as well as the NMR 

data of a compound synthesized by oxidation of diphenylsulfide.  

3.4.5 Data of Compounds Identified from PEKK Degradation 

 

1H NMR (CDCl3, 500.1 MHz): δ = 7.33 (H3, t, 3J(H-H) = 7.8 Hz), 7.10 (H4, d 

3J(H-H) = 7.0 Hz), 7.01 (H2, d, 3J(H-H) = 7.8 Hz) ppm; 13C NMR (CDCl3, 125.8 MHz): 

δ 157.25 (C1, s), 129.75 (C3, s), 120.33 (C4, s), 118.80 (C2, s) ppm. 
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1H NMR (CDCl3, 500.1 MHz): δ = 7.36 ppm; 13C NMR (CDCl3, 125.8 MHz): δ 

128.37 ppm.44 

 

 

1H NMR (CDCl3, 500.1 MHz): δ = 7.24 (H2, t, 3J(H-H) = 7.3 Hz), 6.93 (H1, d 

3J(H-H) = 7.5 Hz), 6.83 (H3, d, 3J(H-H) = 7.7 Hz) ppm; 13C NMR (CDCl3, 125.8 MHz): 

δ 155.72 (C4, s), 129.65 (C2, s), 120.77 (C1, s), 115.25 (C3, s) ppm.  
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CHAPTER IV 

SUMMARY 

Various tetraphosphine linkers with rigid scaffolds have been synthesized to 

determine whether increasing the distance between the catalyst and the support surface 

would increase the lifetime of the catalysts and prevent nanoparticle formation. This 

hypothesis was proven to be correct. It has been determined that the biphenyl spacers 

incorporated in the linker scaffolds led to highly active and recyclable immobilized 

catalysts. The reaction time for complete olefin hydrogenation and the recyclability of 

these catalysts were similar to the results obtained for catalysts immobilized by linkers 

with tetraphenylelement cores. Catalysts coordinated by alkylphosphine linkers required 

higher temperatures for the hydrogenation and could not be recycled as many times as 

those with arylphosphine linkers. Future work will focus on rigid scaffold linkers 

incorporating chelating alkyldiarylphosphine ligands that do not dissociate readily from 

the metal center while still allowing for fast catalytic reactions.  

PEEK degradation mechanisms in ZnBr2 completion fluids were shown to follow 

complicated pathways that are still under investigation. A novel standardized method of 

studying small molecules being eluted during the degradation process with quantitative 

solution NMR has been developed. This method allowed the determination of three main 

chemical mechanisms and to distinguish primary degradation products from secondary 

products. The three mechanisms found are radical C-C bond cleavage, hydrolysis of 

diaryl ether linkages, and bromination. New molecular model compounds were 

synthesized that were crucial for determining that bromination occurred at the polymer 
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backbone during exposure of specimens to high temperatures under high pressures. 

Higher concentrations of ZnBr2 accelerated the PEEK degradation processes. Future 

work is focused on other variables during the treatment of the specimens, such as the 

influence of the surface area of the polymer.  
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APPENDIX A 

SUPPLEMENTARY CHAPTER 1 

Molecular Compounds 
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APPENDIX B 

SUPPLEMENTARY CHAPTER II 

DSC of Bromo-PEEK 
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IR Spectra of Model Compounds 
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TGA of Model Compounds (Air) 

 

 

 

TGA of Model Compounds (N2) 
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TGA Bromo-PEEK both Air and N2 

 

NMR Spectra of Model Compounds 
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Bromo-PEEK 1H NMR, 13C NMR Signal Assignments 

 

1H NMR (500 MHz, CDCl3): δ(ppm) 8.14 (H7); 7.70 (H3); 6.88 (H4). 13C NMR (125 

MHz, CDCl3): δ (ppm) 191.1 (C1); 156.8 (C5); 135.9 (C7); 133.6 (C2); 130.8 (C3); 

117.1 (C4); 113.5 (C6).  
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1H NMR (500 MHz, CDCl3): δ(ppm) 8.14 (H7); 7.86 (H9); 7.70 (H3); 7.06 (H10); 6.88 

(H4). 13C NMR (125 MHz, CDCl3): δ (ppm) 192.5 (C1); 160.2 (C11); 156.8 (C5); 135.9 

(C7); 133.6 (C2); 132.2 (C9); 132.2 (C8); 130.8 (C3); 117.1 (C4); 116.8 (C10); 113.5 

(C6).  

 

1H NMR (500 MHz, CDCl3): δ(ppm) 7.86 (H3); 7.06 (H4).13C NMR (125 MHz, 

CDCl3): δ (ppm) 193.8 (C1); 160.2 (C5); 132.2 (C3); 132.2 (C2); 116.8 (C4).  
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2D NMR Data for Bromo-PEEK 
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APPENDIX C 

SUPPLEMENTARY CHAPTER III 

TGA of PEEK After Treatment in Different Fluids 
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DSC of PEEK After Treatment in Different Fluids 

Treatment Time 7 days 14 days 28 days 42 days 

Completion Fluid 
% Crystallinity 

Tm  (°C) 
% Crystallinity 

Tm (°C) 
% Crystallinity 

Tm (°C) 
% Crystallinity 

Tm (°C) 

3.63 M ZnBr
2
 

2.80 M CaBr
2
 

41.7   
346.3 

56.6  
349.3 

48.6  
348.7 

62.5  
345.1 

 4.30 M CaBr
2
 36.5 

343.2 
41.1  

343.4 
24.0  

342.5 
38.0  

342.3 
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pH of Completion Fluid After Treatments at 260 °C 

 

Treatment Time with PEEK 
4.25 M ZnBr

2
 / 2.65 M CaBr

2
 Fluid pH 

Initial 1.29 

24 h 1.22 

89 h 1.32 

12 d 1.33 

27 d 1.47 

 

 

 

Treatment Time with PEEK 

 4.09 ZnBr
2
 / 2.69 M CaBr

2
 Fluid pH 

Initial 1.37 

21 h 1.34 

89 h 1.38 

11 d 1.44 
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Treatment Time with PEEK 

3.63 ZnBr2 / 2.80 M CaBr2 Fluid 
pH 

As Received 1.98 

7 d 2.14 

14 d 2.06 

28 d 2.10 

 

 

Treatment Time with PEEK 
4.30 M CaBr

2
 Fluid pH 

Initial 7.17 

7 d 4.46 

14 d 4.82 

28 d 4.89 

42 d 4.66 

63 d 5.77 

 

 

Treatment Time No PEEK 

4.30 M CaBr
2 Fluid pH 

Initial 7.17 

4 d  4.29 
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NMR from Extraction of Fluid 1 after PEEK Treatment, 89 h, for Identification of 

Small Molecules 
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