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ABSTRACT 

 

The importance of understanding the properties of textured surfaces is growing 

with their potential wide engineering applications. In this thesis research, nanopore 

structures of metals and oxides were examined to determine the interactions between 

environmental objects and the textured surfaces. The major applications of nanopore 

structures are micro/nanoelectromechanical systems (MEMS/NEMS), energy devices, 

sensors, and environmental devices.  In order to achieve better performance in each, it 

needs to consider three critical surface properties such as surface forces, electrochemical 

performances, and wettability. In this research, the surface properties of nanopore 

structures have been explored with understanding the essence of contact. This research 

uses experimental approach combined with basic analysis in physical principles.  

Experiments include fabrication of nanopore structures, investigation of surface 

force, electrochemical evaluation, and wetting/electrowetting studies of nanopore 

structures. Metallic nanopore structures (MNSs) of nickel were characterized by using 

an atomic force microscope (AFM) and a triboscope. The mechanisms of bacteria 

desorption were examined by alumina nanopore structures (ANSs) with various pore 

sizes. The kinetics of ion-transfer on MNSs was studied using Electrochemical 

Impedance Spectroscopy (EIS) and Cyclic Voltametry (CV). The (electro-) wetting 

behavior of MNSs were examined using a droplet shape measurement system. 

A physics based analysis was conducted in order to understand the principles of 

the nanopore effects on environments suitable for various applications. Results lead to 
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the successful identification of critical geometrical factors. A contact model has been 

established to understand properties of textured surfaces. Specific design factors, which 

are related to the geometry of the textured surfaces has been identified. This research 

revealed fundamental mechanisms of contact and establish a relationship between 

morphology/geometry and surface properties. The findings in this thesis research afford 

new approach to optimize applications of textured surface. The proposed contact models 

are beneficial to the surface design and application of sustainable micro/nanodevices. 

This thesis includes eight chapters. The first chapter introduces the background 

and fundamental knowledge related to current research in order to understand the basics. 

Followed by the chapter two of motivation and objectives, chapter three discusses 

materials and experimental details, chapter four and five cover the surface forces, 

chapter six studies the electrochemical performances, chapter seven investigates the 

(electro-)wettability, and the conclusions and future recommendations are presented in 

chapter eight.  
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NOMENCLATURE 

Acronyms 

AFM Atomic force microscope 

ANS Alumina nanopore structure 

CV Cyclic voltammetry 

EIS Electrochemical impedance spectroscopy  

ESA Effective surface area 

FESEM Field emission scanning electron microscopy  

LB  Luria-Bertani 

LbL Layer-by-layered 

LFM Lateral force microscope 

MNS Metallic nanopore structrue 

NEMS Nanoelectromechanical systems  

OD Optical density 

PS-HPC Polystyrene-based hierarchical porous carbon  

TEM Transmission electron microscopy 

ZTC Zeolite template carbon  

 

Symbols 

Chapter I 

P Applied load 

K Indentation modulus 
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A Contact area 

β Conversion factor by type of indenter tip 

 Chapter IV 

Aeq Equivalent contact area 

d Pore diameter 

a Inter-pore distance 

R Radius of tip 

E1, E2 Modulii of elastic 

ν1, ν2 Poisson’s ratios 

c Contact radius 

P Applied load 

K Indentation modulus 

A Hertzian contact area 

P.O. Surface porosity 

 Chapter V 

f(r)  Ratio of unit area 

l Pore to pore (interpore) distance 

r Radius of a pore 

S  Bottom area of bacteria 

F(r) Contact area 

a Semi-minor axis of bacteria cell  

b Semi-major axis of bacteria cell  
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 Chapter VI 

Γ  Effective surface area 

r radius of the pore 

h thickness of MNS 

d interpore distance  

 Chapter VII 

θ* 

Apparent contact angle between a MNS and liquid 

droplet  

S1 Area of liquid-solid interface on a flat surface 

S1
*  Area of liquid-solid interface on a MNS 

fl-s  Area of liquid-solid from a nanopore shape 

θ 

Intrinsic contact angle between a flat surface and liquid 

droplet  

S2 Area of liquid-vapor interface on a flat surface 

S2
* Area of liquid-vapor interface on a MNS 

fl-v  Area of liquid-vapor in a nanopore shape 

r Radius of a liquid droplet on a flat surface  

r* Radius of a liquid droplet on a MNS 

z Shape correction factor 

ɑ Pore-to-pore distance  

d Pore diameter 

h  Absorption depth of a liquid droplet in the pore 
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t  Distance from the top to the bottom of the crown shape 

P0  Atmospheric pressure 

γ Surface tension of a substrate 

L Pore depth 

Vflat Volume of a liquid droplet on a flat nonporous surface 

Vnanopore  Volume of a liquid droplet on a MNS 

α  Volume correction factor 

θe Apparent contact angle with applied electrical potential 

θ0  Contact angle without applied electrical potential 

C Capacitance of the dielectric layer 

V Applied electrical potential 

Ѱ cosθe  

c1 

Constant which relates to both the capacitance of the 

dielectric layer and the surface tension of the MNS 

κ, α, β  

Coefficients which correspond to the pore size of the 

MNS 
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CHAPTER I 

INTRODUCTION 

 

This chapter introduces the basic knowledge behind the current research. This 

thesis research focuses on design, performance, and potential applications of nanopore 

structures. The background of nanopore structures is briefly discussed in the first part. 

The fundamental principles of surface properties of nanopore structures are discussed in 

the second part. It covers basic knowledge in surface forces, electrochemical behaviors, 

and the fundamental of wettability. This chapter closes including short summary and 

brief introduction of following chapters. 

 

1.1. Nanopore structures of materials 

Nanostructures, including nanoscale features in microscale structures, have 

attracted great attention in recent years. This is because nanostructures have the potential 

to be sufficient the basis for various engineering applications due to their favorable 

strength, remarkable catalytic properties, and excellent electrical properties 1-3. In terms 

of shape of nanostructure, three-dimensional nanopore structures are particularly 

interesting due to their unique properties and numerous engineering applications 4-7. In 

this section, fundamental properties and applications of nanopore structure will be 

introduced.  
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1.1.1. Morphology of material surfaces 

As structured materials’ properties can be modified according to their features, 

surface morphology is a critical parameter in determining materials’ surface properties 8-

10. Because it is possible to manipulate the surface properties of materials by altering the 

surface morphology 11-13, it is important to understand the correlation between a 

surface’s morphology and its properties when designing and fabricating materials for 

specific purposes. 

 In order to systematically control surface properties, the surface morphology of 

a material should be designable and adjustable. In other words, materials with 

methodically alterable surface morphology are suitable to use as base materials for 

optimizing surface properties. 

 

1.1.2. Definition of nanopore structures 

Nanopore structures have nanoscale pores in their surfaces. Nanopore structures 

are extensively studied in various research areas, in keeping with their unique and 

critical properties: a size comparable to nanoscale structures, porous materials having a 

high surface-area-to-volume ratio, and a type of three-dimensional structure that features 

architectural rigidity [14-16].  
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1.1.3. Fabrication 

During the last decade, there have been many advances in designing and 

fabricating nanopore structures. In terms of conceptual design, the shape of nanopore 

structures could be controlled and uniformly distributed. Yet, it was difficult to 

uniformly control the shape of nanopore in large areas. This issue could be overcome by 

developed nanofabricating technologies such as electron beam lithography, 

nanoimprinting, focused ion beam milling, etc 14-21. However, most of developed 

fabricating technologies have some drawbacks; they are expensive, difficult and 

complicated, have a low productivity. Alumina nanopore structures (ANS) have been 

widely used to overcome the challenges. The ANS has benefits for its applications. The 

advantages of ANS are: a simple fabrication process, highly productive and costly 

effective, isolated straight channels with high aspect ratios, a tunable pore diameter and 

depth with large area, etc. It is possible to fabricate highly ordered nanopore structures 

that are called ANS using a two-step, aluminum, anodizing method 22, 23. The pore 

diameter of ANS can be manipulated from 10 nm to 450 nm. The interpore distance can 

be tuned from 25 nm to 500 nm. The thickness of ANS can be extended up to 700 µm. 

The morphology of the ANS surface can be systematically controlled by electrochemical 

conditions. Figure 1.1 shows typical shape of the ANS. The ANS is used as a typical 

nanopore structure itself. It can also be used as a template to fabricate other types of 

nanopore structures. Using ANS as a template, it is possible to fabricate highly-ordered 

three-dimensional metallic nanopore structure (MNS).   Due to the advantageous 

features of the ANS, this research focuses on ANS-based nanopore structures. Two types 
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of ANS-based nanopore structures have been used for this research. One is the ANS 

itself and the other one is MNS. In such ANS and MNS structures fabricated from ANS 

have the potential to provide a satisfactory basis for various engineering applications. 

 

Figure 1.1. SEM images of alumina nanopore structure (ANS): (a) SEM top view image of ANS, (b) SEM 

cross section view image of ANS. 

  

1.1.4. Properties and applications  

Four major categories in application of nanopore structures are summarized as 

shown in Figure 1.2 24-30. Those are energy devices, sensors, environmental devices, and 

MEMS/NEMS. For better performance of each application, three critical surface 

properties need to be considered: surface force, electrochemical performance and 

wettability.  

The durability of nanopore structures has been a problem for further 

improvement due to their unexpected interfacial failures. To eliminate such interface 

failures, the surface forces, which are pull-off force, friction force, and wear (scratch) 
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Figure 1.2. Major categories application and three critical surface properties of nanopore structure. 

 

resistance, of nanopore structure should be studied 31-35. In terms of biocompatibility, the 

cell adhesion on surfaces should be investigated as one type of surface force 36-38. In 

order to establish enhanced electrochemical performance, the electrochemical property 

of nanopore structures should be considered. Electrochemical behavior such as charge 

density and ion transfer can characterize the performance of electrochemical reaction for 

energy storages, double layer capacitors, etc 39-41. Wettability is a critical surface 

property for identification surface energy that is an important design parameter for 

sensors and environmental devices 42-44. According to the Young-Dupre’s equation, the 

contact angle can represent the level of surface energy; a lower contact angle indicates 

higher surface energy and a higher contact angle signifies lower surface energy 45. 

Understanding surface properties is important for better design and fabrication of 

nanopore structures. 
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1.2. Characteristics of nanopore structure 

There are classic theories and equations for each surface property. Since Hertz 

contact theory introduced the typical contact model for understanding surface forces 46, a 

variety of  modified contact theories such as JKR theory 47 and DMT theory 48 have 

been developed. The correlation between a surface energy and a contact angle is defined 

by Young’s equation 49, the Cassie-Baxter model 50, and the Wenzel model 51 to 

characterize a surface wettability. Using the Cottrell equation 52 and the Randles–Sevcik 

equation 53, it is possible to estimate the electrochemical property of a target material 54-

57. Table 1.1 shows the list of typical models and equations about surface properties. 

These typical models are useful to predict and comprehend the performance of each 

surface property. 

 

1.2.1. Surface force 

The durability of nanostructure-based devices has been a bottleneck for further 

development due to their unexpected interfacial failures. To eliminate such interface 

failures, the tribological properties of nanostructured devices are needed for design and 

fabrication [26-28, 30, 50, 51]. The atomic force microscope (AFM) and nanotriboscope 

are commonly used for measuring tribological properties such as adhesion and friction at 

the nanometer scale [52-55]. Moreover, understanding the bacterial adhesion is 

important to fabricate biocompatible structures, the behavior of bacterial adhesion has 

been widely examined through a shear stress experiment 58, 59.   
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Table 1.1. List of typical models and equations about the surface properties. 

 

Surface

Property
Typical theory   Representative equation

Hertz contact theory

JKR theory

DMT theory

Young's equation

Cassie-Baxter model

Wenzel model

Cottrell equation

Randles-sevcik

equation

Electrochemical

Property

       Terminology

Surface Force

Wettability
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1.2.1.1. Measurement of adhesive (pull-off) force by AFM 

The adhesive force at the interface between two objects can be measured by the 

force-displacement curve using AFM. Figure 1.3 shows a schematic diagram of AFM 

and a plotted graph of a typical force-displacement curve.  

 

Figure 1.3. Adhesive force (pull-off force) characterization by AFM: (a) schematic diagram of AFM, (b) 

schematic process of adhesive force (pull-off force) experiment by AFM. 

 

While performing the force-displacement experiment function, a laser beam is 

reflected onto the AFM tip and then detected by the photodiode detector in one direction 

(top to bottom). The process by which the substrate and the AFM tip approach one 

another involves an increase in force from steps (1) to (3). After the approaching 

process, retraction proceeds with a decreasing force value from steps (4) to (5). During 

these approaching and retracting processes, it is possible to measure the displacement 

(ΔZ) between the AFM tip set point and set-off point. The adhesive force (pull-off force) 

can be evaluated according to the product of the ΔZ and the spring constant of AFM 
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cantilever. 

 

1.2.1.2. Measurement of friction force by AFM 

By using lateral force microscope mode (LFM) in AFM, the friction behavior of 

nanostructure can be examined. Figure 1.4 represents the schematic of LFM mode and 

the typical friction signal measurement diagram. During lateral scanning from left-to-

right, the AFM cantilever can be twisted due to a sudden peak in the surface structure. 

This twisting motion can generate two lateral force signals: trace and retrace. These 

signals are recorded by the photodiode detector of AFM in one direction (left to right). 

Using the gap of friction signal between trace and retrace (ΔF.S), it is possible to 

determine the frictional force of the surface 60. 

 

Figure 1.4. Friction signal investigation by AFM: (a) schematic diagram of LFM mode, (b) typical friction 

signal measurement diagram. 
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1.2.1.3. Indentation modulus for surface force 

In order to understand the surface forces of nanostructures, the indentation 

modulus should be considered in defining the contact area between two surfaces. 

Previously presented contact models are focused on defining the contact area, including 

the indention modulus. The indentation modulus can be obtained through indentation 

experiments 61. Figure 1.5 demonstrates a typical load-displacement curve during an 

indentation experiment.  

 

Figure 1.5. Schematic diagram of typical load-displacement curve during an indentation experiment. 

 

The indentation modulus can be determined from the unloading stiffness. The 

unloading stiffness is expressed by following equation: 
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(1-1) 

 

where P is the applied load, h is the indentation displacement, K is the indentation 

modulus, and A is the contact area. From the equation (1-1), the indentation modulus is 

specified by following equation: 

  

                 (1-2) 

 

where β is the conversion factor by type of indenter tip; β = 1.000 for flat and cylindrical 

indenter tips, β = 1.012 for Vickers indenter tip, β = 1.034 for Berkovich indenter tip, 

and β = 1.08 for conical indenter tip 62-66. 

 

1.2.1.4. Bacterial adhesion 

Bacterial cells persist innumerous environments where humans live, including our 

food and bodies, among many others. They attach to various kinds of surfaces and grow 

well on them. Having bacterial free surfaces is an important component of not only 

keeping our daily life healthy and clean 67, 68 but also providing better medical treatments 

69, 70. Infection is often due to bacterial adhesion on medical implant materials such as 

orthopedic joint prosthetics and artificial dental implants. Minimizing the risk of 

infection is a hot issue for medical professionals 71, 72. In the case of surgery, bacterial 
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adhesion is also serious. A surgeon can spread bacterial cells due to their adherence to 

surgical instruments and the patient during surgery 73, 74. Many research groups state that 

surface texturing can manipulate the cell adhesion 75-77. Jiang et. al. reported that 

increasing surface area can assist cell contact and it can enhance the cell adhesion on the 

substrate 78. Xu et al. demonstrated that a surface having a sub-bacterial size texturing 

can decrease a prevalence of bacterial cells on the surface due to the decrease in the 

accessible surface area 79. The adhesive force between bacteria cell and surface could be 

reduced by decreasing the area of contact 80. 

 

1.2.2. Electrochemical behavior 

The electrochemical behavior of the nanostructure can be investigated by various 

types of nanostructures. The evaluation of electrochemical behavior; ion transfer and 

energy storage can be examined by electro-potential stat. These experiments can be 

characterized using a three-electrode cell setup including a reference electrode, a counter 

electrode, and a working electrode in an electrolyte. The cyclic voltammetry (CV) 

measurement has been widely used for kinetics studies in electrochemical reactions 81-83. 

The CV diagrams represent ion formation in electrode and migrate to electrolyte and 

vice versa. The anodic and cathodic limits shown in the CV diagrams will be observed in 

an ionic liquid due to the electrochemical reaction 84, 85. In order to understand the 

impedance data of the nanostructure as the working electrode, the Nyquist plot and Bode 

plot can be obtained from electrochemical impedance spectroscopy (EIS) measurement. 

The Nyquist and Bode plots can be used to determine electrochemical impedance 
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through the plotted curve 86-88. The potentiodynamic experiment can determine the 

relation between the applied potential and the responding current density (Tafel curve).  

 

1.2.2.1. Surface morphology effect to electrochemical behavior 

Understanding the surface morphology of solid electrodes is important for 

designing better electrochemical devices such as electrochemical double layer 

capacitors, batteries, fuel-cells and sensors 41, 89-91. Through manipulating the surface 

morphology, it is possible to enhance the kinetics of electrochemical reactions at the 

interface between the electrode and the electrolyte solution. One of the major factors 

affecting the kinetics of the electrochemical reaction is ion transfer at the interface of an 

electrode and the electrolyte. Improving ion (or charge) transfer is desirable to enhance 

the performance of electrochemical devices 92-94. Modification of the surface of 

electrodes continues to be a major challenge 95. Increasing the surface area of electrodes 

through surface modification makes it possible to reduce their resistance 96-100. This can 

boost the ion transfer by making the redox behavior more reactive at the interface.  

 

1.2.2.2. Modification surface area for electrochemical behavior 

Reports have been found in specific modification of the surface area 101-103. 

Fabrication of electrodes with large surface area has been seen promising. Lee et al. 104 

reported that the layer-by-layered (LbL) carbon-based-nanostructured electrodes can 

enhance the power of batteries by reducing the ion transfer resistance resulting reduced 

ion-diffusion time. Nishihara et al. 105 showed that zeolite template carbon (ZTC) which 
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has three-dimensionally-ordered-microporous structure can reduce ion transfer 

resistance. Xu et al. 106 reported that polystyrene-based hierarchical porous carbon (PS-

HPC) is able to facilitate fast ion transfer with larger ion accessible surface area. 

Moreover, many researchers make great effort to fabricate the porous type electrodes, 

which have high surface area for enhancing electrochemical reactions 107-109. The large 

surface area can improve the electrochemical response at the interface between the 

electrode and electrolyte; it can reduce the resistance of ion transfer. Once the pores 

form on the electrode, the overall surface area of electrode is increased but there is no 

fundamental design criteria for obtaining the largest surface area.  

 

1.2.3. Wettability 

Understanding the wetting characteristic of surfaces is important for microfluidics, 

self-cleaning surfaces, anti-icing surfaces, bio-sensors, and filtrations 110-120. A substrate 

which has low surface energy will have a high contact angle with deionized water, and a 

high surface energy of certain substrate will have a small contact angle 121. This means 

that the contact angle can represent the degree of surface energy of a substrate. From the 

contact angle measurement on the nanostructure, it is possible to see how the type of 

nanostructure affects to the surface wettability 122. 

 

1.2.3.1. Wetting models 

Young’s wetting model explains wettability of flat surface including a liquid 
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droplet 49. The surface roughness is crucial factor to explain the wetting characteristic of 

surfaces. Cassie-Baxter and Wenzel model have been widely used to anticipate the 

wetting characteristic 50, 51, 123. Cassie-Baxter model is mainly suitable to clarify 

heterogeneous wetting state which has air gap between a liquid droplet and a surface. 

Wenzel model is applicable to figure out the homogeneous wetting state that has full 

liquid-solid contact without air gap. 

To characterize a surface wettability, the correlation between a surface energy 

and a contact angle is defined by those three wetting models: Young’s model, the Cassie-

Baxter model, and the Wenzel model. According to both the Cassie-Baxter model and 

the Wenzel model, the contact angle is determined by the surface fraction of the solid in 

contact with the liquid and the surface roughness. It means that the two parameters, 

contact angle and apparent contact area, can be affected by surface morphology. The 

relationship between contact angle and apparent contact area in terms of surface 

morphology can be used as a critical design parameter for surface wettability. In order to 

define the wetting behavior of a nanostructure, the wettability should be characterized by 

contact angle measurement with a liquid droplet on the top surface of the nanostructure. 

 

1.2.3.2. Electrowetting effect 

Based on the electrowetting effect, it is possible to control surface wettability by 

applying electrical potential to a metallic electrode or dielectric material coated electrode 

124. Figure 1.6 shows typical electrowetting effect on a surface. This electrowetting 
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technology has been used to manipulate the surface tension for controlling the contact 

angle between a liquid droplet and a surface in various applications: pH-filters 125, oil-

water mixtures 126, liquid droplet actuators 127, 128, liquid lenses 129, and display devices 

130. 

 

Figure 1.6. Schematic diagram of electrowetting effect: a) before applying electrical potential and b) after 

applying electrical potential. 

 

The electrowetting effect has long been demonstrated on planar surfaces, but 

recently many researchers have performed electrowetting research on 

micro/nanotextured surfaces 131-133. Under electrowetting conditions, it is possible to 

switch the wettability from hydrophobic to hydrophilic by texturing surfaces 

characterized by hydrophobicity 134. Most textured surfaces for electrowetting 

applications are micro/nanoscale pillar shape-based structures 131, 133, 135. Hydrophobicity 

of micro/nanoscale pillar structures results from decreasing the contact diameter between 

a liquid droplet and a surface structure, creating an air gap under the liquid droplet 131, 

135. The fundamental mechanism of electrowetting on textured surfaces has been 
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reported in studies on pillared structures 134. Young−Lippmann model is widely used to 

understand electrowettability 136-138. In electrowetting conditions, the wettability between 

a liquid droplet and hydrophobic surface can be altered by applying electrical potential 

from the Cassie-Baxter model to the Wenzel model 131, 135, 139. These typical models are 

useful in predicting and comprehending the performance of any given surface’s wetting/ 

electrowetting property.  

 

1.3. Summary 

Fundamental background on surface properties and the applications of nanopore 

structures have been discussed, including classic theories and models. The advantages of 

nanopore structures and fabrication methods have also been discussed. The fundamental 

information on major surface properties such as surface force, electrochemical behavior, 

and wettability has been reviewed for deeper understanding of nanopore structures’ 

characteristics. 

The following chapters will discuss this research in detail. Chapter 2 deals with the 

motivation behind this research and its objectives. The materials and experimental 

methods will be described in Chapter 3, along with theoretical background. The surface 

forces of nanopore structure will be demonstrated in Chapters 4 and 5. Chapter 6 will 

examine the performance of ion-transfer, one of the electrochemical properties of 

nanopore structures. Wettability and electrowettability of nanopore structures will be 

examined in Chapter 7. Finally, Chapter 8 will summarize the findings of this study and 

suggest future tasks and research directions. 
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CHAPTER II 

MOTIVATION AND OBJECTIVES 

 

As discussed in Chapter I, the surface properties of materials are largely 

dependent on their morphology. Nanopore structures can be fabricated by using alumina 

nanostructures (ANSs), which have a controllable fabrication process. Although ANSs 

could be widely used to fabricate highly ordered nanopore structures, knowledge of the 

correlation between ANS and surface properties is still lacking. Furthermore, critical 

design factors for ANS-based devices are still not well understood. In order to develop 

beyond the current status quo, geometrical factors able to optimize and functionalize 

ANS-based nanopore structures need to be established.  

 It is hypothesized here that, with the development of the requisite geometrical 

factors and a fuller understanding of the surface properties, nanopore structures could be 

used in the development of biological, electrochemical, environmental and tribological 

applications. Towards this goal, this research study will focus on ANS-based nanopore 

structures and three of their critical surface properties: surface force, electrochemical 

performance, and wettability. This thesis has four crucial objectives. To achieve these 

objectives, the research approaches in the research flow chart shown below in Figure 2.1 

will be followed. 
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Figure 2.1. Research flow chart. 

 

2.1. Investigation of the surface forces of ANS-based nanopore structures 

Effects of an applied electrical potential on the surface structure and forces will 

be studied in this research. This study can determine the critical mechanism for active 

control of surface forces of the MNS. Surface forces such as pull-off (adhesive) force 

and friction force will be investigated by applying electrical potential into the MNS. 

With this study, the behavior of electrical potential induced surface forces will be 

developed. 

Adhered cells introduce diseases and infections to humans, through biomaterials 

such as implants and surgical tools. Bacteria desorption is crucial for reducing bacterial 
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infections in biomaterial such as artificial joints and implants. The mechanisms of 

bacteria adhesive force and repelling force will be studied using ANS. The critical 

design factors for fabricating bacteria repelling surfaces will be studied as well.  

 

2.2. Evaluation and understanding of electrochemical performance of nanopore structures 

Improving ion transfer is one of the key factors to store energy effectively. This 

research will examine the feasibility using nanopore structured electrodes to enhance ion 

transportation. An analytical approach to design the most efficient electrode is necessary 

for improving electrochemical response. In order to comprehend electrochemical 

performance of the MNS as an electrode, the performance of ion (charge) transfer and 

capability of energy store of the MNS will be determined. The fundamental principles 

and relationship between surface structure and ion transfer will be investigated through 

predesigned MNS. 

 

2.3. Determining the wetting/electrowetting mechanism of nanopore structures 

Wettability is a critical factor for the design and fabrication of micro- and 

nanoscale structures. Manipulating surface wettability using physical methods such as 

electrowetting is advantageous for many engineering applications. This study will 

examine the intrinsic wettability and the effects of an electrical potential on the 

wettability of nanopore structures. In the interest of extending the scope of 

electrowetting applications, this work will propose further insights into how a nanopore 
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structure’s surface wettability and structural characteristics, including various pore sizes, 

correlate with externally applied electrical potential. 

 

2.4. Defining essential geometrical factors to optimize the surface properties of nanopore 

structures. 

 As a final goal, new and requisite geometrical factors of nanopore structures will 

be established. By understanding in effects of nanopore structures on surface properties, 

it will be possible to determine the critical design parameters of nanopore structures for 

their applications. A surface-morphology dependent design parameter will be developed 

by combining three major surface properties (surface force, electrochemical 

performance, and wettability) of ANS-based nanopore structures. Understanding effects 

of nanoscale contact is critical for design and development of in nanodevices. Thus, the 

fundamental contact phenomena on the ANS-based nanopore structures will be revealed 

to help the development of material’s design and manufacturing for application fields in 

sustainable micro/nanodevices.  
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CHAPTER III 

MATERIALS AND METHODS 

 

This chapter addresses materials and methods which were used to perform this 

research. The information about the materials including fabrication process is discussed 

in the first part of this chapter. The characterization approach is demonstrated in the 

second part. Experimental details of tribological, electrochemical, and 

wetting/electrowetting experiment are described in the following sections.  

 

3.1. Fabrication of materials 

In the present study, two types of nanopore structures were fabircated to conduct 

this research. Alumina based nanopore structure (ANS) and nickel based metallic 

nanopore structure (MNS) were fabricated and prepared for the research. As stated in 

Chapter I, nanopore structures are extensively studied in various research areas due to 

their unique and critical properties. ANS can be used not only as a typical nanopore 

structure itself, but also as a template to fabricate other types of structures. Using ANS as 

a template, it is possible to fabricate the highly-ordered three-dimensional MNS. 

Fabrication details are depicted in following sections. 

 

3.1.1. Alumina based nanopore structure (ANS) 

ANSs were used to perform the bacterial adhesive and repelling force 
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experiment. The pore sizes of ANSs for the experiment were in the range of 30 to 80 nm. 

The self-assembled ANS was fabricated using a two-step aluminum anodizing method 

140. Figure 3.1 illustrates the process steps of ANS fabrication. The pure aluminum 

(99.999%, thickness: 1mm) foil was used as a substrate to fabricate ANS. 

 

Figure 3.1. Overall process schemes for ANS fabrication. 

 

The thickness of the aluminum foil was 1mm. Electropolishing was performed 

with a mixture of ethanol and perchloric acid (C2H5OH: HClO4=4:1 by volumetric 

ratio) to eliminate the oxidation film and surface defects by applying DC type 20 V and 

constant 7°C temperature. As a pre-requisite process to get highly ordered nanopore 

structure, the electropolished aluminum substrate should be treated firstly by anodizing 

with applying 40 V (DC) in oxalic acid (0.3 M) at 15 °C. It was possible to get randomly 

formed alumina nanopore film having highly ordered nanodimple structure as a substrate 

after the first anodizing process. A mixture of chromic acid (1.8 wt %) and phosphoric 
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acid (6 wt %) applied for 6 h at 65 °C dissolved the alumina nanopore film. The highly-

ordered ANS could not be obtained from the first anodizing process. The pore realms 

were originated at the bottom of the anodized layer, whereas the pores were created 

randomly at the top surface of anodized layer. Due to the volume expansion of the 

aluminum substrate during oxidation, the mechanical stress, which can affect repulsive 

force among each pore structure, is generated and this mechanical stress leads to have 

highly-ordered nanodimple arrays at the bottom of the layer 141. Using the aluminum 

substrate having nanodimple structures, the uniformly shaped highly ordered ANS was 

fabricated through the performing second aluminum anodizing process in an identical 

manner with first one. The initial pore diameter of ANS from the second anodizing 

process is about 35 nm. The pore diameter of ANS was controlled by 0.1M phosphoric 

acid in rate of 0.6 nm / min at 30 °C. All samples were rinsed with deionized water and 

ethanol.  

 

3.1.2. Metallic nanopore structure (MNS) 

Highly–ordered MNSs are fabricated through ANSs 142. The MNSs are composed 

of nickel including nanopored shape while the ANSs are made of alumina. By using the 

MNSs, electrical potential induced surface forces, electrochemical performance, and 

wetting/electrowetting experiments were conducted. The pore sizes of MNSs were in the 

range of 150 to 380 nm. Figure 3.2 shows schemetic process of MNS fabrication. ANSs 

were used as a template to fabricate MNSs. In order to fabricate the ANS, a pure 

aluminum (99.999%) foil, which thickness was about 1mm, was prepared as a base 
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material. To remove the oxide film and surface irregularities, electropolishing was 

conducted with a mixture of perchloric acid and ethanol (HClO4 : C2H5OH =1:4 by 

volumetric ratio). A DC type 20 V was applied and the temperature was maintained at 

7°C during the electropolishing process. The electropolished aluminum was then rinsed 

using deionized water and ethanol. After rinsing, a first anodization was conducted by 

treating the aluminum with applying 195 V (DC) in 0.1 M phosphoric acid for 8 hours at 

0 °C. During this process, nanoporous were randomly formed on the top and uniform 

dimpled aluminum substrate formed on the bottom. To get a uniform nanodimple 

aluminum substrate, the randomly formed nanoporous alumina was removed by putting 

it in mixed chemicals: 1.8 wt% chromic acid and 6 wt% phosphoric acid for 5 hours at 

65 °C. After rinsing with deionized water and ethanol, a second anodizing step was 

performed by applying 195 V (DC) on the substrate submerged in 0.1 M phosphoric acid 

for 10 minute at 0 °C. After this process, the highly-ordered nanoscale porous alumina 

structure was fabricated. The pore-to-pore distance was about 500 nm, the initial pore 

size was about 100 nm, and the thickness was of about 1um. It is possible to widen the 

pore diameter through widening process with 0.1 M phosphoric acid at 30 °C. The pore 

widening rate was about 0.6 nm / min.. In order to get the final MNE, nickel was 

evaporated on top of the porous alumina structure by using E-beam evaporator with 4 

As−1 deposition rate in a vacuum of 5 × 10−6 Torr. Various pore sizes of nickel-based 

highly ordered MNS formed on top surface of ANSs with different pore sizes. The 

aluminum substrate was eliminated by saturated mercuric-chloride solution. After 

removing the porous alumina structure by a mixed chemical solution of 6 wt% 
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phosphoric acid and 1.8 wt% chromic acid at 65◦C for 5 h, it is possible to get the nickel 

based MNS.  

 

Figure 3.2. Fabrication process of a MNS by using ANS. 

 

3.2. Characterization 

The surface morphology of both ANSs and MNSs were characterized using an 

atomic force microscope (AFM: Nano-R, Pacific Nanotechnology, Inc.). To scan the 

surface of each sample, non-contact AFM mode was used with silicon nitride (Si3N4) 

based cantilever tip. The tip diameter is about 30 nm and the normal spring constant of 

the tip is 0.2 N/m. The top surface of each material was scanned by AFM tip. Both the 

height and the phase images of the materials obtained from non-contact mode of AFM. 

A field emission scanning electron microscopy (FESEM: Quanta 600) was used to 

scan MNSs for examining pore size. The surfaces of the MNSs were coated by platinum 

(Pt-80%) and palladium (Pd-20%) with 5 nm thickness. The detailed of scanning 

conditions are: the working distance was between 9.4 μm and 10.4 μm, the accelerating 

voltage was 10.0 kV, and image acquisition mode was secondary electron mode. 

Using a digital optical microscope (VHX-2000, Keyence), images of bacteria cells 

were acquired from each ANS. Software ImageJ (NIH, Bethesda, MD) was used in order 
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to calculate the percentage of bacteria present.  

In order to check the detail shape of single pore of both ANS and MNS, a 

transmission electron microscopy (TEM: JEOL-1200). The TEM was operated with 

following detailed conditions: the accelerating voltage was 100.0 kV, image acquisition 

mode was transmitted image mode with CCD at -10oC, and 200 mesh-flashed copper 

grid was used to hold the ANS and MNS samples. 

 

3.3. Surface force investigation 

The effects of an electrical potential on the tribological properties of nickel-based MNS 

using an AFM. In order to study the effects of electrical potential on the tribological 

performance, an electrical circuit configuration was built and attached to the AFM, as 

illustrated in Figure 3.3. This electrical circuit configuration includes both a multimeter 

(Wavetek Meterman 35XP) and an ampere meter (keithley 486 picoammeter) for 

checking the magnitude of the electrical potential and current signal, it also contains a 

DC type adjustable power source that can apply an electrical potential to the MNS 

during scanning. The AFM probe tips were made of silicon nitride (Si3N4). One AFM 

tip which was for contact mode tribology test has a tip diameter of 950 nm and another 

AFM tip which was for non-contact mode image scan has a tip diameter of 30 nm. 

During scanning, the electrical potential applied was from 0 mV to 800 mV. AFM test 

was done by repeating over 15 times. The pull-off force was measured using the AFM 

under an applied electrical potential. Using force-distance measurements from AFM and 

knowing the spring constant and deflection distance from the initial set point of the 
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cantilever, one can readily calculate the pull-off force at a point of contact of the AFM 

tip and the sample. The friction properties of the sample are measured using the lateral 

force microscope (LFM) mode of the AFM.  

 

Figure 3.3. Schematic electrical circuit set-up for applying electrical potential into the metallic nanopore 

structure. Reproduced from ‘S. Kim, A.A. Polycarpou, and H. Liang, Active control of surface forces via 

nanopore structures, APL materials, Vol. 1, Issue 3, 2013’ with permission from AIP (Copyright © 2013). 

 

Bacterial repelling experiment was conducted to understand the behavior of 

bacteria desorption in the room temperature with centrifugal force. The centrifugal force 

was applied to bacterial cells using the rotator (Model 616, EG&G PARC). The ANS 

with bacterial cells was attached on the Teflon plate. The rotational speed can be set by a 

magnetic motor. Figure 3.4 shows that schematic diagram for bacterial repelling 

experimental set-up. All attached ANS samples were rotated with 2000 rpm for 10 
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minute at room temperature. After being rotated, each of the ANS was taken off from the 

Teflon plate and all were rinsed with deionized water 3 times. Extra water was carefully 

removed by using a Kimwipe. Using a digital optical microscope (VHX-2000, 

Keyence), adhered bacterial cell images were acquired from each ANS. 

 

Figure 3.4. Schematic diagram of experimental set-up for bacterial repelling experiment. 

 

3.4. Electrochemical evaluation 

The electrochemical performances of the MNS were investigated by various 
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pore diameters in this research. Electrochemical Impedance Spectroscopy (EIS) and 

Cyclic Voltametry (CV) experiments were performed using an electro potential stat 

(Reference 600, Gamry Instruments) in 1M potassium hydroxide (KOH) as an 

electrolyte. These experiments were conducted using a three-electrode cell setup, 

Ag/AgCl as a reference electrode, Pt as a counter electrode, and MNS as the working 

electrode as shown in figure 3.5. For EIS experiments, AC type voltage was applied with 

10 mV amplitude at the frequency ranged from 1 MHz to 100 mHz. CV experiments 

were conducted with the scan rate of 100 mVs−1 and scan range from −0.8 V to 0.8 V. 

The apparent area of working electrode in the cell is 0.25 cm2. Electrochemical 

experiments were conducted at the room temperature. 

 

Figure 3.5. Schematic experimental setup for electrochemical evaluation of MNSs. 
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3.5. Wetting/electrowetting study 

The wettability and electrowettability were characterized by contact angle measurement 

with a water droplet on the top surface of the MNS with various pore sizes. A 

wetting/electrowetting experimental setup is depicted in Figure 3.6. A shape of water 

droplet was taken by a droplet shape measurement system with a digital camera (Canon 

PowerShot SD750).The electrowetting experiment was performed to carry out the effect 

of electrical potential to the wettability of the MNS. Contact angles between water 

droplets and MNSs were measured from a volume of each 2 μl-deionized-water droplet. 

The intrinsic contact angle was measured without applying the electrical potential. In 

order to study the electrowetting behavior of MNS, the anode was connected with the 

water droplet and the cathode was connected with the aluminum substrate. Various 

electrical potentials were applied between the water droplet and the MNS substrate. The 

application range of electrical potential was from 0 V to 20 V.  

 

Figure 3.6. Illustration experimental setup for wetting/electrowetting on MNS: a) scheme of the liquid 

droplet shape measurement system, b) schematic electrowetting experiment setup by using MNS. 
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CHAPTER IV 

SURFACE FORCES, PART I:   

ELECTRICAL-POTENTIAL INDUCED TRIBOLOGICAL PERFORMANCE* 

 

The effect of electrical potential on surface morphology and friction has been 

reported in various materials 143-146 . To date, however, the tribological performance of 

nanodevices under the influence of an applied electrical potential has not been well-

studied. An understanding of the effects of electrical potential on the tribological 

performance at the nanoscale is important for the design and reliability of 

nanoelectromechanical systems (NEMS). The effect of electrical potential on surface 

morphology and on tribological performance of MNS will be discussed in this chapter. 

 

4.1. Effect of electrical potential on surface morphology 

MNSs were prepared by evaporating nickel as a metal source on ANSs as described 

in Chapter III. The MNS pore diameter is controlled by changing the pore diameter of 

ANS, which in this work varied from 150 nm to350 nm (zero nm pole implies dense 

surface with no pores). By using AFM, the surface morphology of MNS were scanned 

with applying electrical potential. 

Figure 4.1 depicts AFM height images of theMNS under various applied electrical 

potentials from 0 to 800 mV. As shown in the figure, the higher regions (peaks) become 

* Part of this chapter reprinted with permission from “Active control of surface forces 

via nanopore structures” by Sunghan Kim, et al., APL materials, Vol. 1, Issue 3, 2013 

(Copyright ©  2013, AIP Publishing LLC) 
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larger as the applied electrical potential increases. The lower regions (valleys), on the 

other hand, become deeper with increased electrical potential. The circle in the figure 

represents a unit wall of the MNS. It is seen to expand with increasing electrical  

 

Figure 4.1. AFM height images about MNS with various electric potential energy from 0 to 800 mV. 

White circles highlight the same area in various electric potential conditions and white lines are for profile 

checking regions. Horizontal scanning distance is 5.55 μm. The scale bar represents height level of MNS 

from 0 to 600 nm. 
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potential. Figure 4.2 shows profiles of MNS (corresponding to white lines in Figure 4.1) 

are changed with the electrical potential applied in comparison 0 mV electrical potential 

with 800 mV applied condition. As a result, the morphology of the MNS was expanded 

with the increase in electrical potential. To analyze the AFM height image change, 

alteration of over 350 nm height regions were examined with applying electrical 

potential. Figure 4.3 shows a percentage change of over 350 nm regions 

 

Figure 4.2. MNS profiles which are represented by white lines in Figure 2 with 0 mV and 800 mV applied 

electrical potential conditions. 

 

in certain areas of MNS height image when the electrical potential increases. The 

percentage of over 350 nm height region was increased by increasing electrical potential. 
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This result indicates that the surface morphology of MNS is influenced by the electrical 

potential. In one of our previous studies, we have reported expansion of a piezoelectric 

polymer  under an applied voltage 147. It is interesting that the current letter showed 

similar effects on Ni-containing MNS. Figure 4.4 shows the corresponding AFM phase 

images of the MNS. 

On the same scale bar, the contrast of MNS phase images change with electrical 

potential that was varied from 0 to 800 mV. The brighter region (phase-shift signal: over  

 

Figure 4.3. Percent of over 350 nm height region with electrical potential applying from AFM height 

image. 
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Figure 4.4. AFM phase images about MNS with various electric potential energy from 0 to 800mV. 

Horizontal scanning distance is 5.55 μm. The scale bar represents phase-shift signal of MNS from 0 to 

6000 mV. 
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4000 mV) becomes larger with the increase in potential. The AFM phase images clearly 

show that surface property of MNS is affected by applied electrical potential and it can 

be related to tribological behavior of MNS. These height and phase image alterations 

indicate the change of contact area that is related to friction and adhesion. This will be 

discussed next part. 

 

4.2. Effect of electrical potential on tribological performance 

Using the force-distance AFM mode, we conducted MNS pull-off force which is 

represented as a characteristic parameter of the adhesion and friction experiments, and 

the results are shown in Figure 4.5. It is possible to identify that the pull-off force was 

reduced due to the existence of the pores. The white bar is that of the “flat” (no pores) 

surface that exhibits the highest pull-off force values. The lowest values of pull-off force 

are obtained from the sample with the largest pores of 350 nm, showing an 88.32% 

reduction in pull-off force, in comparison with the flat surface without the applied 

electrical potential. It is known that the pull-off force is affected 
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Figure 4.5. Electrical potential activated pull-off force with various MNS samples. Each bar represents 

average value of pull-off force and error bars show standard deviation with one sigma. 

 

by the real contact area. A contact radius c, which is based on the Hertz contact theory 

148, between the AFM tip and the flat (no pores) nickel surface is represented by the 

following equation: 

             (4-1) 

 

where P is the applied load, R is the radius of tip, and K is the indentation modulus 

expressed by: 

                                   (4-2) 
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where both E1 and E2 are modulii of elastic, and υ1 and υ2 are Poisson’s ratios. Those 

parameters (1 and 2) represent tip and surface. The Hertzian contact area A is assuming 

infinitely smooth surfaces. 

                                                                (4-3) 

 

When the AFM tip comes in touch with the MNS, the Hertzian contact area is set by the 

surface porosity of MNS 149. Basically, the contact area is decreased with the increase in 

surface porosity based on the Hertzian contact. The inter-pore distance of MNS is about 

500nm, the surface porosity for flat surface (no pore) is 0, for 150 nm pore is 8.16%, for 

350 nm pores is 44.43 %. An equivalent contact area Aeq is represented by: 

                                                             (4-4) 

 

(4-5) 

 

where P.O. is surface porosity, d is the pore diameter, and a is the inter-pore distance. 

The equivalent contact area is reduced by pore size enlarging which means that the 

surface porosity increasing without electrical potential applied (0mV). When an 

electrical potential is applied, the magnitude of pull-off force of MNS is gradually 

decreased, in Figure 4.5. According to the equation (4-1), the contact area is decreasing 

with increasing indentation modulus. From AFM phase image results, the brighter region 

which represents even higher stiffness or elastic modulus 150-152 of MNS gradually 
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increased with increasing electrical potential. This means indentation modulus between 

the MNS and AFM tip is increasing. The contact area between AFM tip and MNS 

decreases with increasing electrical potential due to the stiffness of the MNS increasing. 

On the other hand, the equivalent contact area increases with decreasing pore size due to 

the porosity decreased, according to Eq. (4-4). Figure 4.1 shows that the pore size is 

decreased by applying electrical potential due to the unit wall expanded.  

For the discussion of MNS’ contact area, the increasing stiffness conflicts with 

the porosity decreasing under same electrical potential increased condition. Porosity-

decreased works to increase the contact area, however, stiffness-increased works to 

decrease contact area. Overall, pull-off force decreases with increasing electrical 

potential. This means that stiffness factor more intensively affects to change the 

equivalent contact area of MNS than porosity factor. This result proves that the pull-off 

force could be changed by applying electrical potential into the MNS. According to 

Figure 4.5, the flat sample has the highest pull-off force. This indicates the more active 

interactions between AFM tip and the surface itself. Without any porous, the contact 

between the AFM tip and the surface is expected to be larger hence the high force. 

Friction experiments were conducted using the AFM with LFM mode and 

results are shown in Figure 4.6. The flat surface (no pore) with much smoother surface 

profile shows lower electrical volt, i.e., friction volt than MNSs. The friction volt, 

overall, is decreased with the increase in electrical potential. The frictional performance 

which is determined by LFM mode depends on the degree of the lateral twist of an AFM 

tip. Surface morphology and contact area of MNS are critical parameters to determine 
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the friction performance of MNS with AFM. According to results of height images, the 

edge of the surface became much blunter rather than sharp with applying electrical 

potential due to the swelling of surface (inset image of figure 4.3). In this case, AFM 

 

Figure 4.6. Electrical potential activated friction signal with various MNS samples. Each bar represents 

average value of friction signal and error bars show standard deviation with one sigma. 

 

tip can be less twisted than before applied electrical potential into the MNS. Moreover, 

contact area decreasing at interface between AFM tip and MNS with increasing 

electrical potential could contribute to the decrease in friction. The big error bar of each 

data point is due to the relative size comparison between the AFM tip and sample 
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surface. The variation of the surface with pores will cause the high variation of the tip-

surface interactions. This is correlated to our analysis in contact area.  

On average, the pull-off force was non-linearly decreasing with increasing 

electrical potential. This is because the pore size of MNS is not the same in the scanning 

area. Basically, the pull-off force experiments were performed by single point of contact 

of the tip and target. The result of pull-off force which depends on localized pore size 

could show non-linear behavior with applying electrical potential due to the lack of 

uniformity about pore size in MNS. In comparison, friction test is relatively insensitive 

to localized pore size, because the friction result stems from scanning large area of 

surface. The conflict interaction by electrical potential increasing between porosity and 

stiffness is also caused that tribological behavior of the MNS decreased, non-linearly. It 

is possible to indicate how many percent of tribological property such as pull-off force 

and friction signal changed in case of the MNS which pore size is 150 nm and 350 nm. 

Based on 0mV applied condition, the pull-off force decreased at 800mV applied 

condition. In case of 150 nm pore size sample, the friction signal and pull-off force were 

decreased by 28.82% and 24.71%, respectively. About 350 nm pore size sample, the 

friction signal and pull-off force were decreased by 43.41% and 67.70%, respectively. 

Reduction gap appears even larger in 350 nm pore size than 150 nm pore size. This 

result can reveal that degree of contact area alteration depends on the pore size of MNS. 

The results of pull-off force and friction performance in MNS clearly indicate 

that applying electrical potential into the MNS can change the surface shape, surface 

morphology, and material property such as stiffness which are important parameter to 
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determine tribological performance of MNS. We can identify that the reason of 

triobolgical behavior changing about MNS is attributed the surface condition alteration 

by applying electrical potential. 

 

4.3. Effects of electrical potential on indentation modulus  

To study effects of an electrical potential, nanoindentation under an applied 

potential was performed using the TS 75 TriboScope nanoindentation device (Hysitron, 

Inc.). A conical indenter tip made of diamond with a radius of about 1μm was used. 

Figure 4.7 shows a SEM image of the conical indenter tip. To apply electrical potential 

to each metallic nanopore structure (MNS), an electrical circuit was set with the 

TriboScope as described in Chapter III. Current and voltage signals can also be checked 

be using an ampere-meter and voltage-meter with this electrical circuit. A tunable DC-

mode power source was also used to apply an electrical potential into the MNSs. Using 

the applied load and indentation distance curve measurement function of the TriboScope, 

the indentation moduli of the MNSs were measured when accompanied by applied 

electrical potential. 
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Figure 4.7. SEM images of the conical indenter tip: a) top view of the conical tip, b) side view of the 

conical tip. 

 

Figure 4.8 shows the applied loads and resulting indentation depth curves of 

MNSs with various pore sizes. In each case, the indentation modulus was able to be 

measured by the slope of the unloading curve. Greater stiffness of the curve represents a 

greater indentation modulus. As the figure indicates, the slope of the unloading curve 

decreased as the pore size of the MNS increased. Moreover, the corresponding 

indentation depth increased with pore size increase. Increased pore size naturally leads to 

increased porosity of the MNS. When porosity increases, there is a corresponding 

decrease in the mechanical properties of materials, such as indentation modulus 153. The 

results of this experiment demonstrate that the indentation modulus decreased as the 

pore size of the MNS increased.  
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Figure 4.8. Load and indentation depth curves for MNSs with various pore sizes. 

 

The effect of electrical potential on the indentation modulus occurred when 

electrical potential was applied into the MNSs during indentation experiments. Figure 

4.9 shows the indentation modulus of MNSs with various pore sizes according to the 

applied electrical potential. As the figure shows, the indentation modulus observed 

without applying electrical potential (0 mV) decreased as the pore size of MNS 

increased. These results correlate with the load and indentation depth curve results. 

Moreover, the indentation modulus showed an overall trend of decreasing as the 

application of electrical potential increased. Results indicate that the electrical potential 

affects the electronic and atomic structures of surfaces in accordance with the observed 

Loading 
Unloading 
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indentation modulus behavior. 

As stated above, the indentation modulus is a critical factor in defining the 

contact area, with contact area decreasing as the indentation modulus increases. 

Previously, AFM phase images have been used for qualitative analysis of the effect of 

electrical potential application on the stiffness of MNS. As the indentation experiment 

indicates, the indentation modulus, which can represent the stiffness of the MNS, 

increased with increased application of electrical potential. This feature demonstrates 

that, in terms of quantitative analysis, the contact area between the tip and the MNS 

decreased with an increased applied electrical potential.  

 

Figure 4.9. Indentation modulus against application of electrical potential in MNSs with various pore 

sizes. 
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4.4. Summary 

Effects of an applied electrical potential on the surface structure and forces were 

studied in this chapter. Nickel-based MNS were fabricated and characterized with AFM 

and Triboscope. Surface morphology, tribological performance, phase distribution, and 

indentation modulus were evaluated. Results showed that the MNS was expanded and 

stiffened with the increase in electrical potential. The friction and pull-off force obtained 

using the AFM were found to decrease with the increase in electrical potential. The 

indentation modulus was dependent not only on pore size but also the amount of 

electrical potential applied. The contact area was altered by porosity and indentation 

modulus. The nickel based MNS enables the control of friction and pull-off force. This 

characteristic can be used to optimize pore size and amount of electrical potential 

applied for enhanced performance of MNS-based devices, in terms of durability and 

design for enhanced reliability. 
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CHAPTER V 

SURFACE FORCE PART II:  

INFLUNCE OF NANOPORES ON BACTERIA 

 

Bacteria introduce diseases and infections to humans, by their adherence to 

biomaterials such as implants and surgical tools. Cell desorption is an effective step to 

reduce such damage. This chapter studies the effects of nanopored surface on the 

bacteria adhesion and repelling performance. In terms of contact area a cell on alumina 

nanopore structure (ANS), the bacteria accessibility on ANS can be manipulated by 

altering the pore size of ANS. Both the surface morphology of ANS and the shape of 

bacteria cell will be evaluated to determine contact area. The number of bacteria cell on 

the ANS will be examined before and after rotating experiment. The correlation between 

pore size and bacterial adhesion and repelling performance on the ANS will be 

determined. 

 

5.1. Morphological characteristics 

ANS were fabricated by following the described fabrication method in Chapter 

III. Surface images of ANS were taken using an AFM with non-contact mode. Figure 5.1 

shows the AFM height images of the controlled ANS sizes: 35 nm, 55 nm, 70 nm, and 

80 nm in terms of average pore diameter. For all samples, the distance from pore to pore 

is about 100 nm. The images show that the ANS is hexagonally highly-ordered nanopore 
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structure. Understanding the contact condition between bacterial cells and ANSs is 

important to study for bacterial adhesion. The bacterial cells were cultured on ANS with 

various pore sizes. The examined bacterial cells are E. coli strain DH5α. E. coli is widely 

studied and one of the most understood cell systems 154-158. Previous understanding is the 

basis of the current work. The cells of E. coli were extracted from -80°C storage and 

streaked on a Luria-Bertani (LB) 

 

Figure 5.1. Atomic force microscope (AFM) images of alumina nanopore structure (ANS) with various 

pore diameters: The pore diameters are about: (a) 35 nm, (b) 55nm, (c) 70 nm, and (d) 80 nm. 
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based agar plate. The culture medium, liquid LB, was inoculated with individual 

colonies that were collected from the agar plate. The bacterial cell culturing is inoculated 

with optical density at 600 nm (OD600) of 0.3. Cell culturing was continued with 

constant stirring for 24 h at 37.5 °C. For cell culturing on ANS, 40ml of the LB media 

were poured into Petri dishes having different pore size ANSs with 1% bacterial cells 

addition from the inoculum. All ANS samples were rinsed using deionized water and 

ethanol and then put into the Petri dish with the nanopore surface facing up. Cultured E. 

coli were kept in an incubator for 18 h at 37.5 °C. After incubating, all ANS samples 

were taken out from the Petri dish and rinsed using deionized water 5 times. The bottom 

of each ANS was cleaned using ethanol. Remaining water was absorbed by carefully 

touching a Kimwipe on the side of ANS. 

Figure 5.2 shows the AFM images of bacteria on ANS. The image was taken 

using the non-contact AFM mode. Before imaging, the sample was rinsed using 

deionized water and then air dried. As the figure shows, the bacterial cells are on the top 

surface of the ANS. From the AFM height image (figure 5.2.a), the parallel cross section 

shape with ANS surface of single bacterial cell looks like ellipse. A white circle 

highlighted a single bacterial cell was zoomed in at figure 5.2.b. The bacterial cells are 

covering several nanopore of the ANS. The phase image of AFM (figure 5.2.c and 5.2.d) 

clearly indicates that the elliptical shaped objects are bacterial cells due to them having a 

darker region which represents even lower stiffness. The surface of ANS which is made 

by ceramic (alumina) generally has a greater stiffness than bacterial cells. These AFM 

images show that a bacterial cell, which has elliptical shape, is attached on the ANS. 
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According to the AFM images, it is possible to simplify the contact model between 

bacterial cell and ANS. 

 

Figure 5.2. Atomic force microscope (AFM) images of bacterial cells on alumina nanopore structure 

(ANS,pore diameter: 55 nm) (a) 2-dimensional height mode AFM image of bacterial cells on the ANS, (b) 

zoomed in 3-dimensional height mode AFM image of single bacterial cell on the ANS, (c) 2-dimensional 

phase mode AFM image of bacterial cells on the ANS, and (d) 3-dimensional phase mode AFM image of 

bacterial cells on the ANS. 

 

5.2. Contact area calculation between bacteria and ANS 

Based on the AFM images, a contact area between a bacterial cell and ANS can 
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be calculated. A relative contact model 149, which is about between AFM tip and ANS, 

was used to calculate the contact area. In order to calculate the contact area, the porosity 

of ANS should be considered. As illustrated in figure 5.3, the contact area could be 

defined by hexagonal shape unit area which is extracted from the AFM height image 

with connection six center of pore in ANS. The contact area is determined by the 

following equations: 

(5-1) 

 

(5-2) 

 

where f(r) is a ratio of unit area, l is the pore to pore (interpore) distance, r is the radius 

of a pore, S is bottom area of bacteria, and F(r) is the contact area. The interpore 

distance ‘l’ is fixed with 100 nm among all ANS samples. The contact area is simply 

determined by multiplying ‘f(r)’ and ‘S’. Based on the bacteria images taken on the 

ANS, the bottom area of bacterial cell ‘S’ can be expressed by: 

                                                                (5-3) 

 

a measurement of semi-minor axis of bacteria cell is expressed by ‘a’ and a 

measurement of semi-major axis of bacteria cell is expressed by ‘b’. The average value 

of ‘a’ and ‘b’ are 0.25 μm and 1 μm, respectively. The bottom area of single bacterial cell 

is about 0.79 μm2. The contact condition between a bacterial cell and the ANS is 
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identified by AFM images and contact area calculations.  

As shown in Table 5.1, the contact area between bacterial cell and the ANS 

decreased with the increasing pore size. This result clearly indicates that ANS having 

larger pore size is rarely in contact with bacterial cells.  

 

Figure 5.3. Schematic diagram to define the contact area between a bacterial cell and alumina nanopore 

structure (ANS). The extracted atomic force microscope (AFM) image of ANS (pore diameter: 80 nm) 

shows the hexagonal shape unit area. 

 

Table 5.1. Average (Avg) pore diameter of alumina nanopore structure (ANS) and the corresponding 

Contact area with unit area ratio. 

 

Avg. Pore Diameter (nm) Avg. Pore Diameter (stdv) Unit area ratio Contact area (μm2)

0 (no pore) 0 1.00 0.79

35 2.877 0.89 0.7

55 2.747 0.73 0.57

70 2.76 0.56 0.44

80 2.714 0.42 0.33
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5.3. Number of bacterial cells on ANS 

Figure 5.4 shows the represented optical microscope images (color converted: 

black and white) of bacterial cells on ANS. The black color represents adhered bacterial 

cells on ANS. The top images are taken before conducting repelling experiment with 

various ANS’s pore size and the bottom images are taken after performed repelling 

experiment.  

 

Figure 5.4. Optical microscope images of bacterial cells on the alumina nanopore structure (ANS) with 

various pore diameters. Black color represents bacterial cells. Top images stem from before repelling 

experiment and bottom images stem from after repelling experiment. The scale bar in each image 

represents 100 μm. 

 

As shown in this figure, the adhered bacterial cells are decreased with the 

increasing the pore size in case of ‘before repelling’. The other interesting result is that 

the adhered bacterial cells are mostly removed by the repelling experiment from all ANS 

samples, but there is slightly reduced number of bacterial cells after the repelling 

experiment on the samples without pores. In order to understand the adhesion 
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mechanism of bacterial cells on the ANS both in case of ‘before repelling’ and ‘after 

repelling’, the contact condition between bacterial cells and ANS needs to be considered. 

 

5.4. Analysis of bacterial adhesion and repelling force 

As shown in figure 5.4, the number of adhered bacterial cells decreased with 

increasing pore size in the first case ‘before repelling’. The numbers of adhered bacterial 

cells are fewer in number when the contact area of the bacterial cell decreases. In order 

to study the adhesion of bacterial cells to the ANS with various contact area, the 

percentage of adhered bacterial cells on the ANS was measured by optical microscope 

with the ‘ImageJ’ software. To calculate the percentage of bacterial cells, the total area 

covered by bacterial cells were divided by the sampling area of the ANS: the size of the 

unit area is 150 um x 150 um. As stated above, the bacterial cells were represented as a 

black color while the ANS surface were typified by white color in figure 5.4. The total 

area of bacterial cells were figured out by summing all black color area (bacterial cells). 

On the cultured sample surface, 6 regions were chosen and evaluated for number of 

adhered cells. Table 5.2 shows the statistical data result of the adhered bacterial cells on 

the ANS.  

Figure 5.5 shows how many bacterial cells are on the ANS in terms of 

percentage (%) and contact angle via pore size of ANS. The figure represents two main 

results: the rectangular shape data point represents the ‘before repelling’ condition and 

the circular data point indicates the ‘after repelling’. The result of before repelling  



56 

 

Table 5.2. Percentage of adhered bacterial cells before and after repelling experiment on various pore size 

of the ANS  

 

 

clearly shows that the percentage of bacterial cells decreased almost linearly with 

increase in the pore size. As the inset in figure 5.5 shows, the contact area between the 

bacteria and the ANS decrease with increasing the pore size of ANS. This means that the 

adhered cells decreased with the decrease in the contact area. The 0.33 μm2, 0.44 μm2, 

0.57 μm2, 0.7 μm2, and 0.79 μm2 contact area showed 5.64 %, 6.78 %, 16.56 %, 

17.37 % and 25.07 % cultured bacterial cell on ANS, respectively. This result confirms 

that a large contact area can lead to the increase in probability for bacteria to grab the 

ANS surface during cell culturing.  

As a result of the ‘after repelling’ condition, the percentage of bacterial cells is 

dramatically decreased between no pore and 35 nm pore size ANS, and there is no 

visible difference in the percentage of bacterial cells via contact area. It has been 

reported that a substrate which has low surface energy will have a high contact angle in 

deionized water 159. This means that the contact angle can represent the degree of surface 

energy of a substrate. From the contact angle measurement on the ANS in figure 5.5, it is 

noted that the surface energy of the ANS decreased with increasing pore size. As 

Avg. percentage of adhered bacteria cells (%) Stdv Avg. percentage of adhered bacteria cells (%) Stdv

0 (no pore) 25.07 6.14 23.62 5.25

30 17.37 3.25 2.65 0.62

55 16.56 4.41 4.09 1.85

70 6.78 2.52 2.41 0.91

80 5.64 1.69 2.92 1.80

Pore size (nm)
Before repelling experiment After repelling experiment
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Figure 5.5. Percentage of adhered bacterial cells on alumina nanopore structure (ANS) and the contact 

angle via pore size. The inset graph shows a relation between the pore size and the contact area. The 

contact area decreased with pore size increase. Left side y-axis represents the result of bacteria repelling 

experiment. Right side y-axis indicates the result of contact angle measurement. Arrows designate each 

assigned y-axis. Error bars show standard deviation with one sigma. 

 

discussed above, increasing the pore size represents decreasing the contact area. In other 

words, the contact angle decreased with increasing contact area. 

This contact angle trend shows opposing results on the percentage of adhered 

bacterial cells. There is the contact angle decrease significantly between 0 nm (no pore) 

and 35 nm pore size; except that, there are slight increases of the contact angle with an 
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increase in the pore size. As mentioned, there is no significant difference in the 

percentage of adhered bacterial cells between 35 nm and 80 nm pore size after the 

repelling experiment: the 66.62 degree, 90.41, 91.71, 98.70, and 101.83 degree contact 

angle condition showed 23.62 %, 2.65 %, 4.09 %, 2.41 %, and 2.92 % bacterial cell on 

ANS, respectively. It appears that the bacterial adhesion, which is against the repelling 

force relates to the surface energy which is represented by the contact angle. A 

combination of a larger contact area and a smaller contact angle can make surface hold 

more bacterial cells. This is because of not only the capability for additional contact area 

between bacterial cells and the ANS, but also the high surface energy as represented by a 

low contact angle. The gap between the “before repelling” and “after repelling” 

experiment, in figure 5.5, indicates how many bacterial cells are removed by the 

repelling experiment. The 0 nm (no pore), 35 nm, 55nm, 70 nm, and 80 nm pore size 

show that the percentages of repelled bacterial cells are about 5.80 %, 84.76 %, 75.29 %, 

64.54 %, and 48.27 % respectively. 

According to the results of the percentage of adhered bacterial cells, the 

adhesive strength of bacterial cells is the combination of the capability of the contact 

area and the surface energy. Specifically, the initial adhered bacterial cells can be mainly 

predicted by the contact area between the bacterial cell and the ANS and the bacteria’s 

repelling performance can be primarily determined by the surface energy of the ANS. 

The strength of bacterial adhesion depends heavily on the surface energy of a substrate. 

A substrate that has low surface energy can easily repel the bacterial cells from its own 

surface. 
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5.5. Summary 

This chapter discussed that the performances of bacterial adhesion and repelling 

were affected by the existence of the contact area between the cell and the surface of 

ANS. The ANS were fabricated using a two-step aluminum anodizing method. In order 

to study the repelling performance, a centrifugal experiment was conducted. After the 

repelling experiment, the percentages of adhered bacterial cells were measured. The 

initial existence of cultured bacterial cells on ANS and the strength of bacterial adhesion 

on ANS were examined with various pore sizes. The bacterial cells were cultured on 

ANS with different pore sizes. Contact angles were measured and the contact area 

between a bacterial cell and the ANS was calculated for analyzing the mechanism of 

bacterial adhesion. It was found that ANS can reduce the initial existence of cultured 

bacterial cells and the strength of bacterial adhesion compared to a smooth surface. ANS 

can have a less accessible area than a smooth surface due to the pores. It means that the 

ANS has bacteria repelling behavior. This study suggests that ANS can be successfully 

designed for biocompatible material which can restrict bacterial adhesion, and can 

improve medical treatment as a biomaterial with discussed two critical parameters: 

contact angle and contact area. 
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CHAPTER VI 

ELECTROCHEMICAL PROPERTIES OF NANOPORE STRUCTURES AND 

THEIR INFLUENCE ON ION-TRANSFER* 

The electrochemical performances of the nickel based hexagonally ordered self-

organized metallic nanopore structure (MNS) are investigated by various pore diameters 

in this chapter.  The experiments for Cyclic Voltametry (CV) and Electrochemical 

Impedance Spectroscopy (EIS) measurements are conducted by electro-potential stat 

using the MNS to investigate the performance of energy store and ion transfer. This 

chapter will discusses about our study that reveals the critical parameters affecting 

electrochemical property of the MNS. 

6.1. Morphological analysis 

The surface morphology of MNS is observed using the FESEM which was 

described in Chapter III. Figure 6.1 shows the MNS with different pore sizes. As shown 

in the Figure 6.1.a through 6.1.c, the average pore diameters are 168 nm, 253 nm, and 

348 nm. These images clearly show that all MNSs are highly ordered in nanoscale 

hexagonal shape. The oblique angle view of Figure 6.1.c of 348 nm pore MNS is in 

Figure 6.1.d. The thickness of those pore walls is about 300 nm. 

* Part of this chapter reproduced with permission from “Enhanced-Ion Transfer via 

Metallic-Nanopore Electrodes” by Sunghan Kim, et al., Journal of The Electrochemical 

Society, Vol.161 (10), A1475-A1479, 2014 (Copyright © 2014, The Electrochemical 

Society) 
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6.2. Cyclic voltammetry (CV) study 

The CV measurement has been widely used for kinetics study in electrochemical 

reactions 81-83. The CV diagrams represent ion formation in electrode and migration to 

electrolyte and vice versa. The behavior of ion transfer between an electrode and an 

electrolyte dominates to the formation of a CV diagram in terms of fat vs thin. The 

current peak of a CV diagram depends on the formation of electrochemical double layer, 

which includes ions 160, 161. The CV diagrams 

 

Figure 6.1. SEM images of MNS with various pore diameters: the pore diameter are about (a) 168 nm, (b) 

253 nm, (c) 348 nm. The cross section view of 348 nm pore size MNS is on image (d). 
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are obtained using the three-electrodes-electrochemical setup. The anodic and cathodic 

limits shown in the CV diagrams were produced in an ionic liquid during the 

electrochemical reaction on electrodes 84, 162. Figure 6.2 shows CV result from different 

pore diameter sample of MNS: 168 nm, 253nm, and 348 nm. As shown in the figure, all 

MNS samples exhibit two pairs of redox peaks: oxidation peak and reduction peak. 

These redox peaks are related to the electrochemical reaction between the MNS and 

electrolyte 163. Once the nickel based MNS has contact with aqueous alkali electrolyte, it 

is covered with a nickel hydroxide 164, 165. 

 

Figure 6.2. Cyclic voltammetry curves of MNS with various pore size: 168 nm, 253 nm, and 348 nm 1M 

potassium hydroxide (KOH) as an electrolyte. 
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oxidation and reduction peaks correspond to following electrochemical reaction 166 :                                                              

(6.1) 

 

Both the amplitude of oxidation and reduction peaks increase with increasing 

the MNS pore diameter. The MNS of 168 nm, 253 nm, and 348 nm pore sizes has the 

oxidation peak currents at 3.00 mA, 13.4 mA, and 23.7 mA, respectively. The 168 nm, 

253 nm, and 348 nm pore size MNS have the reduction peaks at -4.2x10-4 mA, -4.3x10-1 

mA, and -1.00 mA, respectively. The figure clearly shows that the behavior of ion 

transfer is influenced by the pore diameter of MNS. This study demonstrated that how 

the effective surface area affect electrochemical reaction behavior. The oxidation current 

increases with increasing pore diameter. Details will be discussed below. The pore 

diameter of highly ordered MNS can affect to the surface area alteration. At this case, 

the increase in pore size leads to the surface area increasing and reduces the resistance of 

MNS for electro chemical reaction, eventually. This will be discussed in the following. 

 

6.3. Identifying electrochemical double layer on MNS 

Understanding the fundamental mechanisms of electrochemical double layer is 

the first step for analysis. For energy storage applications, it is important to understand 

the Faradaic reactions as well as electrochemical double layer. It has been reported that 

the shape of a CV diagram reflects Faradaic reaction and electrochemical double layer 

167, 168. According to the study by Lee et. al., fast redox reaction accompanied Faradaic 
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reaction indicates the electrical potential dependent capacitance alteration from the CV 

curve. Wang et. al. referred that the charging and discharging process of electrochemical 

double layer shows the corresponding current peak of the electrical potential in the CV 

curve. According to our CV results shown in Figure 6.2, there are three different shapes 

observed. The structure of 168 nm pore size has the narrowest shape while the 348 nm 

the fattest. The area inside the CV circle represents the amount of energy stored. 169. As 

shown in the figure, the MNS with 348 nm pore diameter can store the most energy 

among all. The mechanism of energy storage is related to the ion transfer. There is an 

advantage to enhance the energy store of the nanopore electrode in Faradaic reaction 170. 

The density of energy can be increased in the nanopore electrode due to Faradaic 

reaction, i.e., fast redox reaction for pseudo-capacitance 171. An electrochemical double 

layer is generated at the interface between metal electrode and electrolyte 172-174. The ion 

transfer which is the main driving force for electrochemical reaction takes place at the 

electrochemical double layer. The stern-model is currently used for explanation about 

the electrochemical double layer and this model. The stern-model stated that there is a 

stern layer which composed mostly cations nearby electrode through diffusion 175. Based 

on our results obtained on MNS, a schematic diagram of the electrochemical double 

layer is illustrated as shown in Figure 6.3. The stern plane is formed parallel adjacent to 

the interface. By the stern plane, the electrochemical double layer is divided by two 

layers: stern and diffusive mobile layers 176. 
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Figure 6.3. Schematic diagram of electrochemical double layer at the MNS and electrolyte interface. 

 

The ions, mostly cations, are adhered to the interface and hardly moved at the stern 

layer. At the diffusive mobile layer, the ions are not attracted to the surface but freely 

movable, i.e. mobile. As shown in the figure, the MNS looks like three-dimensional 

shapes and the ion accessible surface area at the interface depends on the pore diameter 

and the thickness of MNS. 

 

6.4. Calculation effective surface area  

The effective surface area (ESA) was calculated in order to understand the 

electrochemical reaction under the condition of various surface areas. For a specific 
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sized electrode, the performance of its energy storage depends on the total surface area. 

A large total surface area of an electrode enhances the ion transfer and thus the 

capacitance improvement. Furthermore, the ESA become a critical and universal factor 

as a unit parameter to estimate the energy storage capacity when comparing electrodes of 

different sizes. Figure 6.4 shows the schematic diagram of the ESA for electrochemical 

reaction on the MNS. Here this study defines an ESA as the hexagonal shape that is 

extracted from SEM image by connecting 6 center point of each pore. The ESA of the 

MNS is represented by the following equation: 

 

(6.2) 

 

(6.3) 

 

where Γ is ESA, d is the interpore distance of pore to pore, r is the radius of the 

pore, and h is the thickness of MNS. Both the interpore distance and the thickness of 

MNS are fixed as a constant value among all MNS samples. The value of interpore 

distance ‘d’ and the thickness  ‘h’ is 500 nm and 300 nm, respectively. In case where of 

both ‘h’ and ‘d’ are constants, the only variable of equation (2) is ‘r’. Using the first and 

second derivative form from an original equation (2), it is possible to determine that the 

function has a locally maximum or minimum value at given critical point. From the 

equations (3), the Γ (ESA) has the maximum area when the radius ‘r’ is equal to its 

thickness ‘h’. The value of Γ (ESA) and total surface area of each sample are shown in 

table 6.1. In this table, the Γ (ESA) increases with increasing pore diameters. Among 

hrr  66)( 
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three types of pore diameters, 348 nm pore diameter sample has the largest area of 

134.81ⅹ104 nm2. The total surface areas of each MNS are calculated as ‘apparent area 

of working electrode (0.25cm2)’ multiply 

 

Figure 6.4. Schematic diagram of the effective surface area (Γ: ESA) for electrochemical reaction on the 

MNS. 

 

by ‘the ratio of each Γ (ESA) to unit area of hexagonal shape (64.95ⅹ104)’. Increasing 

the Γ (ESA) leads to the increase in total surface area of MNS, eventually, it affects to 

enhance the ion transfer and energy store. 
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Table 6.1. Calculated effective surface area (Γ: ESA) and corresponding total surface area of MNS with 

various pore diameters.  

 

 

6.5. Electrochemical impedance spectroscopy (EIS) analysis 

In order to understand the impedance data of MNS, the Nyquist plot was 

obtained. The Nyquist plot can be used to determine electrochemical resistance through 

the plotted semi-circle diameter. Figure 6.5 is the Nyquist plots of MNS with various 

pore sizes. As shown in the figure, the radius of each curve decreases with the increasing 

pore diameter. This means that the total impedance decreases as the pore diameter 

increases. The inset in figure 6.5 shows the Nyquist plot of a flat surface as a reference, 

the curve radius of the flat sample is much larger than that of any MNS’s. As shown in 

Table 6.1, the increasing pore diameter leads to the expansion of the Γ (ESA). The main 

reason of decreasing impedance relates to increased Γ (ESA) of MNS. The increasing Γ 

(ESA) enhances the electrochemical reaction 177. According to the inset graph of figure 

6.5, the Γ (ESA) continues to increase with the increasing pore diameter until the value 

of the radius is the same as the thickness. This means that the increasing surface area is 

favorable for ion transfer while the Γ (ESA) is the optimized dimension. 
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Figure 6.5. Electrochemical impedance spectroscopy (EIS) data with Nyquist plots of MNS with various 

pore size: 168 nm, 253 nm, and 348 nm in the 1M potassium hydroxide (KOH) as an electrolyte. 

 

Figure 6.6 shows both Bode impedance plots and bode phase plots. The Bode 

impedance plots (Figure. 6.6.a) show that the impedance of MNS decreases as pore size 

increases. Moreover, the Bode phase plots (Figure. 6.6.b) show that the magnitude of 

depression angle increases with the increasing pore size. All EIS results clearly indicate 

that a larger Γ (ESA) of the MNS is desirable for enhanced electrochemical reaction 

resulting effective ion transfer.  

These EIS results were obtained on samples with small pore size (radius less 

than thickness) are shown in figures 6.5 and 6.6. A parameter, i.e., Γ (ESA), was found 
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to be important for ion transfer. This was evidenced when the pore size was smaller than 

thickness. Since the ESA is an extrinsic property, i.e., volume related, it is important to 

find out the range of its usefulness. To answer the question, will the Γ (ESA) still works 

when the pore size is larger than the thickness, EIS experiment was conducted by 

aluminum-based micropore structure instead of MNS. Since there are two issues: 

fabricating issue and identifying universal validity of ESA. The first fabrication issue is 

from clogging. In the case of MNE, the pore-to-pore distance is about 500nm. To 

fabricate the MNE with a larger radius (r) than its thickness (h), the deposition depth 

should be smaller than 250 nm (half of pore to pore distance). However, as figure 6.7 

shows, the pore diameter of the MNE is not the same as its substrate (porous alumina 

structure) because the nickel molecules are gradually covered and clogged to its original 

pore shape. It is difficult to control the pore radius during the deposition. Thus, the 

possible deposition depth, which is smaller than pore radius, is much smaller than 250 

nm. As the thickness of MNE decrease, the MNE’s shape cannot be firmly maintained 

and it is difficult to do an experiment using them. The second is that the hypothesis 

about universal validity of ESA definition is based on the geometry and dimension. To 

prove this, the behavior of ESA dependent electrochemical reaction should be identified 

by different scale.  

Larger pores on an aluminum substrate were successfully fabricated using a 

simple punch method. The interpore distance is 500 μm and pore diameters are larger 

than its thickness (25 μm): 120 μm, 240 μm, and 350 μm. EIS experiment was 

performed by same experimental conditions with MNS EIS experiment. 
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Figure 6.6. Electrochemical impedance spectroscopy (EIS) data with both a) bode impedance plots and b) 

bode phase plots of the MNS with various pore diameters: 168 nm, 253 nm, and 348 nm. 

 

a) 

b) 
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Figure 6.7. TEM images of single pore in (a) porous alumina and (b) MNE. 

 

Figure 6.8 shows that the radius of each curve increases with the pore diameter 

increasing. This means that the total impedance increases with the increase of pore 

diameter. In other words, the electrochemical reaction is decreased by reduced ion 

transfer with increasing pore diameter. This is because the Γ (ESA) is decreased as 

increasing pore radius of metallic micropore electrode when the pore size is larger than 

the thickness. As shown in the inset graph of figure 6.8, the Γ (ESA) keeps decreasing as 

pore radius increasing after the point of ‘h’; thickness of electrode. The represented 

image of metallic micropore structure is shown at the bottom of figure 6.8 (scale bar is 

300um). The 120 μm, 240 μm, and 350 μm diameters show that the values of Γ (ESA) 

are 64.39x104 μm2, 57.04x104 μm2, and 44.34x104 μm2, respectively.  
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Figure 6.8. Nyquist plots of aluminum based metallic micropore electrode with various pore size: 120 μm, 

240 μm, and 350 μm in the 1M potassium hydroxide (KOH) as an electrolyte. (Inset image scale bar: 

300um). 

 

As discussed above, a new parameter, Γ (ESA) was proposed that is critical for 

ion transfer. The value of Γ (ESA) depends on the relation between the thickness and 

pore diameter. When the pore size is the same as its thickness, the value of surface area 

is optimized. The Γ (ESA) keeps increasing with increasing pore radius when the range 

of radius is smaller than thickness. When the range of MNS pore radius is larger than its 

thickness, then the Γ (ESA) keeps decreasing with increasing pore radius. Ion transfer 

can be optimized through Γ (ESA). The Γ (ESA) can be optimized through design of the 
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MNS structure with dimensions such as interpore distance ‘d’ and the thickness ‘h’. The 

pore radius cannot be larger than the half of interpore distance ‘d’. The direct evidence 

of effects of Γ (ESA) on ion transfer can be seen in Figure 6.9. It shows current-voltage 

characteristics of MNS with various pore diameters. The current-voltage curves are 

obtained with a 1M sodium chloride (NaCl) electrolyte. The scan rate is 100mVs-1 and 

scan range is from -1.5 V to 1.0 V. As shown, the improvement of electrical current 

generation is a result of increasing the pore diameter of MNS. This result also clearly 

shows that the performance of ion transfer is enhanced by increasing Γ (ESA) of MNS. 

 

Figure 6.9. Observed current-voltage curves of the MNS with various pore diameters: 168 nm, 253 nm, 

and 348 nm in the 1M sodium chloride (NaCl) electrolyte. 
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6.6. Summary 

In this chapter, the highly ordered self-assembled nickel-based metallic-

nanopore structure (MNS) was studied for the application in ion transfer. Using two step 

aluminum anodizing and E-beam evaporating, the various pore sizes of MNS were 

fabricated and their electrochemical behaviors were examined. Results clearly indicated 

that the behavior of ion transfer was influenced by the pore diameter of MNS. This study 

revealed the critical parameter that can affect to electrochemical property of the MNS. 

The effective surface area (ESA) was derived as the critical parameter to optimize the 

design for ion transfer. Increased ESA enhanced the electrochemical reaction of the 

MNS as the electrode. As discussed, the MNS is able to control the electrochemical 

reaction performance further it is desirable to design of enhanced ion transfer electrode 

or membrane for energy devices. 
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CHAPTER VII 

(ELECTRO-)WETTING BEHAVIOR 

 

The wettability and electrowettability of nanopore structures are examined in 

this chapter. Using a droplet shape measurement system, the contact angle between 

water droplet and metallic nanopore structures with various pore size will be evaluated. 

In order to analyze the wettability of MNS in terms of contact angle, wetting model will 

be established. The electrowetting effect on MNS will be investigated by applying 

electrical potential into the MNS from 0 V to 20 V. The correlation between contact 

angle and pore size of MNS can be used as a critical parameter for understanding surface 

wettability/electrowettability. 

 

7.1. Wettability of MNS via pore size 

The wettability was characterized by contact angle measurement with a water 

droplet on the top surface of the MNS. The fabricating method of MNSs and 

experimental details for wettability were described in Chapter III In order to understand 

the fundamental wettability of MNSs, the contact angle between a water droplet (2μl) 

and a given MNS was investigated as a base study. A nickel-based MNSs were used with 

various pore sizes, in terms of diameter 154 nm, 258 nm, and 379 nm, as shown in the 

scanning electron microscope (SEM) images in Figure 7.1. A substrate with low surface 

energy including high contact angle with deionized water is hardly wetted, and vice 

versa 159. This means that the contact angle reflects the degree of wettability of a 
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substrate. By investigating the MNS’s contact angle in terms of pore size, it is possible 

 

Figure 7.1. SEM images of MNS with various pore sizes: (a) 154 nm pore size, (b) 258 nm pore size, and 

(c) 379 nm pore size. 

 

to understand the behavior of wettability in the MNS. Figure 7.2 represents the behavior 

of contact angles in terms of a MNS’s pore size. MNSs with pore sizes of 0 nm (no 

pore), 154 nm, 258 nm, and 379 nm presents contact angles of 84.5o, 95.0o, 106.5o, and 

120.0o, respectively. As Figure 7.2 illustrates, increases in pore size led to the increases 

in contact angle. This indicate that the wettability of a MNS depends on its pore size. 

These results agree with the published data 178, 179. 
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Figure 7.2. Intrinsic contact angle of MNS with 2ul water droplet on top surface of MNS. Error bars show 

standard deviation with one sigma. Error bars show standard deviation with one sigma.  

 

7.2. Numerical analysis of wettability on MNS 

By using the energy balance concept, it is possible to solve the wettability of 

heterogeneous surfaces 180. Based on both the energy balance concept and Young’s 

equation, the wetting model for MNS can be defined with geometrical factors of a liquid 

droplet on MNSs. In order to establish a basic wetting model for MNS, the surface net 

energy of a flat surface (a nonporous surface with no texture) should be considered. By 

combining the surface net energy on both the flat surface and the MNS, the following 

final equilibrium equation can be obtained 181, 182: 
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(7.1) 

 

where θ*is the apparent contact angle between a MNS and liquid droplet, S1 is the area 

of liquid-solid interface on a flat surface, S1
* is the area of liquid-solid interface on a 

MNS, fl-s is the area of liquid-solid from a nanopore shape, θ is the intrinsic contact 

angle between a flat surface and liquid droplet, S2 is the area of liquid-vapor interface on 

a flat surface, S2
*is the area of liquid-vapor interface on a MNS, and fl-v is the area of 

liquid-vapor in a nanopore shape. All these variables can be verified by using the 

geometry of a liquid droplet on a surface. Figure 7.3 shows the geometry of a liquid 

droplet on a surface. S1, S1
*, S2, and S2

*can be defined from Figure 7.3.a and 7.3.b: 

(7.2) 

 

(7.3) 

 

(7.4) 

 

(7.5) 

 

where r is the liquid droplet radius on a flat surface (nonporous), r* is the radius of a 

liquid droplet on a MNS. It is possible to resolve fl-s and fl-v from Figure 7.3.c: 
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(7.7) 

 

where z is the shape correction factor, ɑ is the pore-to-pore distance (interpore distance), 

d is the pore diameter, and h is the absorption depth of a liquid droplet in the pore. 

Figure 7.3.d represents the unit area of the MNS. The real shape of the MNS is the 

crown shape. Due to the shape difference between the schematic model and actual 

features, the shape correction factor ‘z’ should be considered to calculate the fl-s. Figure 

7.4 shows the geometric difference between the actual shape and the schematic model of  

 

Figure 7.3. Schematic diagram of a liquid droplet’s geometries (a) on a flat nonporous surface, (b) on a 

MNS, and (c) in a MNS; (d) represents the unit area of the MNS. 
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a MNS. The shape correction factor ‘z’ can be determined under the assumption that the 

length of the outline of the crown shape is the same as the length of the outline of the 

triangle shape by: 

 

(7.8) 

 

where t is the distance from the top to the bottom of the crown shape. As Figure 7.4.a 

shows, the height value of t is about 300 nm. It is assumed that the value is fixed for all 

other pore size structures.  

 

Figure 7.4. SEM image and schematic diagram for calculating the area of the liquid-solid interface at the 

nanopore shape and the area of liquid-vapor interface in the nanopore shape. The SEM image in a) shows 

a cross-section of a MNS, and b) is the geometry of cross-section of a pore shape. 

 

The absorption depth of the liquid droplet in the pore can be expressed under the 

assumption that the size of the single pore is much smaller than the size of the liquid 

droplet 183: 
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(7.9) 

 

where P0 is atmospheric pressure, γ is the surface tension of the surface, and L is the pore 

depth. In order to determine fl-v, it is assumed that the liquid-air interface is flat. The 

variables of d, P0, γ, L, θ, and a are all known values. Using the above equations (7.2) 

through (7.9), it is possible to set the equation (7.1) as a function of θ*, r*, and r. In order 

to determine θ*, the r*and r should be verified with the volume conditions of liquid 

droplets. The volume conditions are determined from figure 7.3 and figure 7.4: 

 

 

(7.10) 
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volume of a liquid droplet on a MNS, and α is the volume correction factor. The α is 

used to determine the volume difference between the schematic model and the crown 

shape of the actual model. The volume of liquid droplets on both a flat nonporous 

surface and a MNS are the same and thus have a constant value of 2μl. Wettability 

behavior on a MNS can be verified by calculating the θ*, which can be numerically 

solved (using Matlab). All known variables are shown in Table 7.1. 

 

Table 7.1. Value of variables for determining the contact angle of a MNS 

 

 

Figure 7.5 shows the results of a simulation of the contact angle between a liquid droplet 

and a MNS with various pore sizes. There are discrepancies between the simulation and 

experiment results, but both conditions showed a consistent contact angle alteration 

trend as pore size increases. The surface energy variation due to oxidation effect or 

surface irregularities could be the major reason for the discrepancies between simulation 

and experiments results 178, 184. The deviation between simulation and experiment results 

is almost identical across all pore sizes. This indicates that the surface energy variation 

affected error occurrence in a linear manner. The simulation results could be 

compensated for by using the surface energy variation as an external parameter.  

 

 

P0 (N/m
2
) a (m) L (m) θ (degree) t (m) γ (N/m) V (m

3
)

101300 500x10
-9

1000x10
-9

84.5 300x10
-9

1.77 2.0x10
-9
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Figure 7.5. Comparison of the simulation and experiment results for contact angle determination across 

various pore sizes. 

 

7.3. Electrowettability of MNS via pore size 

It has been reported that the contact angle of a liquid droplet on a substrate 

decreases with the increase of an applied electrical potential 124. The results obtained on 

MNS seem to be in agreement. Figure 7.6 shows the contact angle alteration when an 

electrical potential was applied on the MNSs. As shown in the figure, MNSs with larger 

pore diameters displayed lower contact angles, with and without externally applied 

electrical potential. Furthermore, the contact angle decreased as the electrical potential 

increased from 0 V to 20 V, regardless of substrate. The decreasing trend of the contact 

angle, however, is different from result of flat (no pore) surface depending on the pore 
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sizes of the MNSs. By comparing the contact angles under 0 V and 20 V condition, the 

0nm (no pore), 150 nm, 250 nm, and 350 nm pore sizes showed that the percentage of 

decreased contact angles are about 20.28 %, 10.57 %, 12.27 %, and 12.68 % 

respectively. No saturation section occurred in contact angle behavior on the 0 nm (no 

pore) MNS, while the 379 nm MNS was saturated by increasing the electrical potential. 

These behaviors indicate that the eletrowettability of MNSs can be controlled by their 

pore size. This issue will be analyzed in the next section. 

 

Figure 7.6. The contact angle alteration with applying electrical potential in various pore size of MNS. 

Error bars show standard deviation with one sigma. 
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The correlation between surface energy and contact angle has been defined in 

Young’s equation 185, the Cassie-Baxter model 123, and the Wenzel model 186. 

Young−Lippmann’s equation is widely used to understand electrowettability 136-138. In 

electrowetting conditions, the wettability between a liquid droplet and hydrophobic 

surface can be altered from the Cassie-Baxter model to the Wenzel model by applying 

electrical potential 139, 187, 188. These typical models are useful in predicting and 

comprehending the performance of any given surface’s wetting/electrowetting 

performance. However, it is in sufficient to use these equations to explain the behavior 

of MNSs due to the highly-ordered pores. To understand the inherent 

wetting/electrowetting behavior of MNSs, a new model is needed that takes into account 

the effect of pore structure. As stated in Chapter I, the typical electrowetting equation 

follows the Young−Lippmann model: 

 

(7.13) 

 

where θe is the contact angle, θ0 is the contact angle without any externally applied 

electrical potential, C is the capacitance of the dielectric layer, γ is the surface tension 

between the substrate and liquid droplet, and V is the applied electrical potential. The 

equation (7.13) has been widely used for understanding the electrowetting of a flat 

substrate. If the substrate is fixed, the main variable of equation (7.13) is the value of the 

applied electrical potential. The value of cosθ, according to equation (7.13), keeps 

increasing with increasing electrical potential on a smooth surface. In the case of MNSs, 
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the contact angle was saturated by increasing electrical potential, as discussed earlier. 

This means that, with respect to electrowetting behavior, MNSs do not follow the 

common Young−Lippmann model. In order to verify a modified electrowetting equation 

for MNSs, the effect of highly-ordered pore structures should be considered and 

examined. Based on both MNSs’ contact angle behavior and the Young−Lippmann 

model, the MNS’s modified electrowetting equation can be formulated as below: 

              (7.14) 

 

where Ѱ is cosθe, θ0 is the intrinsic contact angle (without externally applied electrical 

potential) of MNS and θ0 depends on the pore size of MNS, c1 is the constant which 

relates to both the capacitance of the dielectric layer and the surface tension of the MNS 

(in this case c1 is about 6.786ⅹ10-4 (1/V2), and V is the applied electrical potential, and 

κ (1/V2), α (V) and β are coefficients which correspond to the pore size of the MNS. 

Table 7.2 shows the value of the coefficients κ, α, and β via pore size of MNS. The 

obtained coefficients: κ, α, and β indicated 

 

Table 7.2. Value of κ, α and β coefficients for determining the MNS’s modified electrowetting equation in 

terms of pore size of MNS. 

 

pore size (nm) k α β

0 (no pore) 0 0 0

154 ± 11 7.32E-04 6.92 2.87E-02

258 ± 12 8.44E-04 8.56 5.59E-02

379 ± 10 1.08E-03 10.74 1.09E-01

  22
10 )(cos VVc
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that each coefficient increased with pore size increases in a linear manner. By using this 

relation, it is possible to generalize the coefficients in terms of pore diameter of PMNs. 

The coefficients can be determined as following equations: 

(7.15) 

 

(7.16) 

 

(7.17) 

 

where d is pore diameter of a PMN. Using the above equations (7.15) through (7.17), the 

Ѱ can be determined by: 

(7.18)  

 

According to equation (7.18) the electrowetting equation for a PMN can be generalized 

as a function of θ0, V and d. 

(7.19)  

 

As shown in figure 7.7, the experimental results of Ѱ correspond to the 

calculation results using the modified electrowetting equation involving applied 

electrical potential. In the figure, each single dot represents the result of experiment 

values, while each dashed line shows data that was calculated based on the MNS’s 

modified electrowetting equation. The experimental result of Ѱ for the 0 nm (no pore) 

sample fits well into Young−Lippmann’s electrowetting model, while the experimental 

42
1 1075.4)1058.15()(  ddf

26.4)1001.17()( 6
2  ddf

03.0)1091.35()( 4
3  ddf

)())()((cos 3
2

21
2

10 dfdfVdfVc  

),,( 0 dVF 
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results for the other samples match the modified electrowetting equation for MNS. This 

indicates that the modified electrowetting equation, which considered the pore structure 

of a given MNS, can properly identify a MNS’s electrowettability behavior. 

 

Figure 7.7. Ѱ (cos θ) using contact angle of water droplet on the MNS as a function of the applied 

electrical potential. Each solid dot represents the results from experiments and each dash line demonstrates 

the calculated results by using modified electrowetting equation for MNS.  

 

 As stated above, the intrinsic contact angle and the electrowetting behavior are 

altered by the pore formed on the MNS’s surface. The results show that the specific 

electrowetting behavior of any given MNS is affected by its pore size. In order to verify 
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the contact angle alteration with externally applied electrical potential, the specifics of 

the wetting mechanism on the interface between the water droplet and the MNS should 

be determined. The flat surface (no pore) and MNS demonstrate different wettability 

mechanisms at the interface. Figure 7.8 shows a schematic electrowetting mechanism on 

both a flat surface and a MNS. In the case of the flat surface, a water droplet can fully 

cover the top flat surface without any air gap between the water droplet and the surface. 

With externally applied electrical potential, the water droplet can be spread across the 

electrically-charged flat surface as in Figure 7.8.a 189. In contrast, an air gap exists 

between the surface of a MNS and a water droplet. Due to this air gap, the water droplet 

can be absorbed into the pore by applying an electrical potential. As shown in Figure 

7.8.b, the electrically-charged nickel-coated MNS structure can drag the water droplet 

into the pore under applied electrical potential. Buijnsters et al. explained that the 

wetting behavior of water droplets on porous structures was affected by compressed air 

in the pore 178. The compressed air can prevent the water droplet’s full absorption into 

the pore structure. The pore diameter of a MNS mainly affects the volume of air 

compression and it determines the depth of water droplet penetration (h) 183, 190. A 

schematic diagram of the electrowetting balance model is proposed in Figure 7.8.c based 

on the results obtained for MNSs.  
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Figure 7.8. Schematic expression the electrowetting mechanism of MNS. a) electrowetting experiment on 

flat (no pore) surface, b) electrowetting experiment on MNS surface, and c) the electrowetting balance 

model at the pore. 

 

 When the electrical potential was applied between the water droplet on the MNS 

and the aluminum substrate, the water droplet was able to be absorbed into the pore. 

Increases in the electrical potential can result in increased absorption of a water droplet 

into the pore. However, due to the presence of trapped air, the water droplet cannot be 

fully absorbed into the pore. The trapped air acts as a basis of resistance to absorption to 

repel the water droplet. These absorbing and repelling forces reach a balance to maintain 

a state of equilibrium. Once the repelling force is the same as the absorbing force, the 

water droplet will no longer be absorbed into the pore. It is possible to calculate the 

balanced value of ‘h’ by using equations (7.9) and (7.13). Figure 7.9 shows the ‘h’ 

alteration with applying electrical potential on the PMNs. As the figure shows, the value 

of ‘h’ increased with increasing the application of electrical potential. 
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This study found that the contact angle saturation progressively decreased as 

externally applied electrical potential increased. This behavior is based on the 

equilibrium mode. According to the electrowetting results, the length of the absorbing 

liquid droplet on the MNS can be manipulated by controlling the pore size, pore depth, 

and the electrical potential. By using the MNS as a template, it may be feasible to 

fabricate nanopillar structures having various pillar lengths by applying electrical 

potential.  

 

 

 Figure 7.9. The depth of water droplet penetration with applying electrical potential for various pore size 

of MNS. 
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Not only was the contact angle altered, but the contact diameter between the 

water droplet and the surface also changed when an electrical potential was applied to 

the MNS. Figure 7.10 plots the contact diameter against the applied electrical potential. 

In contrast with the contact angle behavior, the contact diameter increased in all 

substrates as an increased electrical potential was applied. As a general rule, when the 

contact angle decreases, the contact diameter increases. The contact diameter behavior of 

MNSs also follows this general trend. As shown in Figure 7.10, the contact diameter 

decreased with increasing pore diameters, while the contact angle increased with 

increasing pore diameters. The behavior of contact diameter against the electrical 

potential shows saturation with increasing pore size. A remarkable feature of the 

electrowetting of the MNS is that the water droplet does not spread much across the 

surface. The smaller the pore size of the MNS, the more widely a water droplet spreads: 

the 0nm (no pore), 154 nm, 258 nm, and 379 nm pore sizes demonstrated increasing 

contact diameters of 22.03%, 14.19%, 9.18% and 7.22% on MNS respectively. 

 This signifies that a water droplet on a MNS is mostly absorbed into the pore 

when electrical potential is applied. Moreover, the capillary force of the pore can prevent 

the water droplet from spreading across the MNS’s surface, as indicated by the 'rose 

petal effect' 190, 191. Thus, it is possible to retain hydrophobic properties of a MNS’s 

surface by applying electrical potential for electrowetting.  
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Figure 7.10. The plot of contact diameter against the applied electrical potential with various pore size. 

 

This result contradicts the general electrowetting effect in which wettability is 

manipulated from the Cassie-Baxter model to the Wenzel model when an electrical 

potential is applied between a liquid droplet and a substrate. Further research is needed 

for more in-depth analysis of this behavior to identify critical factors for manipulating 

the electrowettability of MNS structures. 

 

7.4. Summary 

In this chapter, the wetting dynamics of an initial droplet on a MNS were firstly 

examined to determine the intrinsic contact angle. The wetting model was established to 
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simulate intrinsic contact angle on a MNS. Subsequently, electrowetting studies were 

conducted by analyzing the behavior of the contact angle and the contact diameter. By 

measuring the contact angle on a MNS while applying an electrical potential, it was 

possible to see how the electrical potential affects the surface wettability. This study 

sought to determine the wettability and electrowettability mechanism of MNSs, using a 

droplet shape measurement system to evaluate the contact angle.  

Wettability/electrowettability were primarily characterized by contact angle. It was 

found that both the wettability/electrowettability of MNS depended on its pore size. The 

energy balance among water droplet, surface, and air was altered by pore size of MNS. It 

provides that the shape of pore can manipulate the contact phenomena for determining 

wettability/electrowettability. This study offers a guide to the functional 

wetting/electrowetting behavior of MNSs with various pore sizes. 
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CHAPTER VIII  

CONCLUSIONS AND FUTURE WORKS 

 

8.1. Conclusions 

This research investigated the properties of textured surfaces through 

experimental and theoretical analysis approaches. In order to understand the physical 

interactions between environmental entities and the textured surfaces, metallic and 

oxidic nanopores structured were focused. Metallic nanopore structures (MNSs) were 

studied to examine the effect of electrical potential on surface forces, electrochemical 

performances, and wettability/electrowettability. Alumina nanostructures (ANSs) were 

studied to explore the interfacial interaction between bacteria and a nanoporous surface. 

Effects of applied electrical potential on surface morphology and tribological 

performance of MNSs were performed using an AFM. Indentation modulus of MNSs 

were also investigated by a Triboscope with applied electrical potentials. The 

mechanisms of adhesion of E. coli cells on ANSs were examined using a bacteria 

repelling experiment method. Electrochemical Impedance Spectroscopy (EIS) and 

Cyclic Voltametry (CV) experiments of MNSs were conducted using an electro potential 

stat in 1M KOH as an electrolyte. The wettability/electrowettability of MNSs with 

various pore sizes were investigated using a liquid droplet shape measurement system. 

The wetting model was contrived to simulate the wettability of MNS in terms of contact 

angle. 

Research results indicated that surface properties, including surface forces, 
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electrochemical performances, and wettability/electrowettability, depended on the nature 

of contact. A universal contact model is proposed in order to understand and predict the 

behavior of a textured surface. Specifically, the contact between the environment (air, 

liquid, and (quasi-) solid) and a textured surface can be classified into three 

characteristic modes. These modes depend on a geometrical parameter, i.e., the breadth 

(h), at the interface. When the value of h is equal to zero, contact occurs only on the top 

surface, and no contact in the pore. If the contact involves full contact with the pore, the 

value of h is same as the pore depth (L). The value of h will exist between zero and L if 

the contact involves partial contact with the pore. All these classifications represent ways 

of determining contact modes: mode I stands for contact via h=0; mode II stands for 

contact via h=L; and mode III stands for contact via 0<h<L. Figure 8.1 illustrates each 

mode of contact with nanopore structures.  

 

Figure 8.1. Various contact modes in nanopore structures. 
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The above model can be applied to the designated conditions and applications 

discussed in the thesis: The contact area for mode I with surface force dominate; 

effective surface area (ESA) for mode II with desirable electrochemical performance; 

and areas of liquid-solid and liquid-vapor interface for mode III with wettability. Surface 

forces decreased with decreasing the contact area in case of mode I. Increase of the ESA 

enhanced electrochemical performances under mode II. The wettability/eletrowettability 

were controlled by areas of each interface as mode III. All contact modes are controlled 

by the pore size of the nanopore structure. The upshot is that the requisite geometrical 

factor can be represented by contact phenomena in terms of contact mode, and the 

crucial design factor for all contact modes is the feature size of nanopore structures. 

The discovery of the parameter h is applicable to other textured surfaces. 

Despite the materials and types of surface textures, the contact area and/or geometry is a 

critical factor. The value of h can provide proper approaching way to analyze the 

properties of textured surface via each contact mode. Once the contact mode is decided, 

each surface properties can be identified by proposed design factors: contact area, ESA, 

and areas of each interface. 

The findings in this study can provide an understanding of the characterization 

of surface properties and support the conceptual design of nanopore structures for 

particular applications. The requisite geometrical factors and specific design factors can 

be used for optimization of surface properties for specific applications. Having an 

understanding of the interrelationship of nanostructures/surface properties/device 

performance will enhance future design and optimization of new devices.  
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8.2. Future works 

Based on the findings of this research, the following future tasks are 

recommended: 

1) Use other materials-based nanopore structures: This research focused two specific 

types of nanopore structures: nickel-based metallic nanopore structures and alumina-

based oxidic nanopore structures. This study found that surface properties are 

mainly affected by surface morphology (i.e., shape and topography). In order to 

confirm this effect in a wider range of materials, surface properties in other types of 

materials should be investigated.  

2) Investigate other surface properties: This research considered three major surface 

properties: surface force, electrochemical performance, and wettability/ 

electrowettability. Other surface-related properties include plasmonic properties, 

photonic properties, and surface fluidics such as the coffee ring effect. Exploring 

other surface properties would be helpful for extending the scope of this study.  

3) Establish a simulation model for analyzing surface properties: A wetting model of a 

nanopore structure for numerical analysis was demonstrated in this study. 

Establishing simulation models for surface forces, electrochemical performances, 

and electrowettability will be beneficial for anticipating the behavior of surface 

properties with respect to their applications. 
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