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ABSTRACT 

 

Fuel properties impact the combustion and emissions behavior of diesel engines 

through their influence on the physical process associated with fuel injection, 

entrainment and fuel-air mixing, as well as by changes to the combustion chemistry 

associated with fuel properties. In addition, these influences are also impacted strongly 

by various engine sizes. Thus, to find fuel effects on engine behavior between two 

engines, the research is conducted through a series of experimental tests at 1500 rev/min 

and two loads for commercial diesel and Fuels for Advanced Combustion Engines fuels 

between two engines.  

First, baseline testing and simulation was aimed at using experiment and a 

simulation model of two differently sized engines to identify the effects of engine size 

on combustion characteristics and emissions. The results are compared for the same 

brake mean effective pressure and show that engine size has a significant impact on 

indicated efficiency, with the larger displaced engine having a higher indicated 

efficiency than the smaller displaced engine. 

Second, the effects of cetane number (CN) on combustion and emissions 

between differently sized engines were investigated using a fuel matrix with each 

variable having a base value as well as a lower and higher level. The results show that 

CN significantly affects combustion phasing and emissions of the two engines in similar 

ways. As CN increases, the magnitude of heat release rate (HRR) increases and its peak 

location advances as CN increases.  



 

iii 

 

Moreover, the effects of distillation temperature (T90) on engine efficiency and 

emissions are performed. The results show comparing with medium-duty (MD) engine 

performance, increasing T90 shows relative stronger effects on HRR for light-duty (LD) 

engine, especially for the low-load condition.  

Finally, the effects of aromatic content on engine efficiency and emissions are 

discussed. The results show increasing aromatic content increases the magnitude of the 

peak HRR, and delays its location for both engines at the low-load condition. At the 

medium-load condition, increasing aromatic content has similar effect on LD engine, but 

does not show obvious effect on MD engines. 
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NOMENCLATURE 
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BTDC Before top dead center 
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SAE Society of Automobile Engineers 

ASME American Society for Testing and Materials 
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°CA Degree crank angle 
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1. INTRODUCTION  

 

1.1 Background 

In the commercial transportation sector, the increasingly stringent regulations for 

tailpipe pollutants and greenhouse gas emissions have motivated the development of 

high efficiency, clean diesel engines. Conventional diesel combustion is intrinsically 

dominated by mixing-controlled combustion, thereby posing challenges to control NOx 

and soot emissions.  

To meet the US EPA 2010 heavy-duty NOx and particulate matter (PM) 

standards, engine OEMs have chosen to implement urea-based selective catalytic 

reduction (SCR) and diesel particulate filter (DPF) devices. This not only makes the 

engine system more expensive, but also increases vehicle total fluid consumption (i.e., 

additional fluid consumption from urea and hydrocarbon dosing in the exhaust). 

Moreover, the continuous demand for lower tailpipe emissions puts increasing stress on 

the after-treatment system and requires further reduction in engine-out NOx emissions. 

Consequently, this drives the need to develop combustion systems that control soot 

while maintaining high fuel efficiency. 

In general, engine size strongly impacts engine combustion and emissions 

behavior. Different combustion characteristics such as peak temperature, peak pressure, 

combustion duration, and heat release rate can change as engine size changes, in spite of 

similar control and operating parameters. Consequently, engine performance and 

emissions will also change as engine size changes (at similar control parameters). 
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Moreover, fuel physical and chemical properties play an important role in diesel 

combustion. Some studies have suggested that fuels with medium octane number (ON) 

and gasoline-like distillation range [1] or a blend of gasoline and diesel fuel enhances 

diesel combustion [2]. However, there are still questions about what is the optimal fuel 

for diesel combustion among different-sized engines. Therefore, detailed studies on how 

different fuel properties affect diesel combustion and emissions among different-sized 

engines are of great interest to the engine community. 

The distillation characteristics of a fuel affect fuel-air mixture formation, as well 

as the ignition and combustion processes inside an engine. A real fuel consists of many 

components and thus exhibits a wide boiling range, with lighter fractions boiling at 

lower temperatures and heavier components boiling at higher temperatures. The 

temperature at which 90% of the fuel volume is vaporized (T90) is specified for 

commercial diesel fuels in North America. Fuels with a higher T90 temperature are less 

volatile. Diesel fuel contains a large selection of hydrocarbons ranging from 10 to 22 

carbon atoms per molecule. There are three major classes of molecules in diesel fuels: 

alkanes, cycloalkanes, and aromatics. Aromatics are known to increase oxides of 

nitrogen (NOx) emissions in conventional diesel combustion as they produce higher 

combustion temperatures. Because aromatics generally have a low CN, they may also 

affect the cold start performance of an engine. 

Cetane number (CN) is a measure of the auto-ignition quality of diesel fuels used 

for conventional compression ignition engines. Higher CN fuels have shorter ignition 

delays. Because CN is derived from the ignition delay in conventional diesel 
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combustion, it contains information related to both physical delays (atomization, 

vaporization, mixing) and chemical delays (reactivity). Hence, it also has a strong 

influence on diesel combustion phasing [3-5]. For example, Risberg et al. [4] found a 

strong correlation between CN and CA50 (the crank angle cycle where 50% of the total 

heat is released) for experimental and commercial diesel fuels. 

 

1.2 Objectives 

The project goals are identifying potential of fuel effects on combustion and 

engine behavior between light- and medium-duty diesel engines. The fundamental 

research question being addressed in this work is as follows: Do the design criteria for 

optimal fuel properties, as determined by desired combustion and engine behavior, 

change as size (bore diameter and stroke length) of a compression ignition (i.e., diesel) 

engine changes? Although combustion is fundamentally the same among different 

compression ignition platforms, certain phenomena (e.g., fuel injection, penetration, 

breakup, atomization, and vaporization) are strongly influenced by the engine bore 

diameter and stroke. These same phenomena are fundamentally dependent on fuel 

properties (e.g., viscosity, density, surface tension) and the subsequent combustion 

correspondingly is strongly dependent on fuel properties (e.g., cetane number). Thus, an 

optimal fuel for combustion and engine behavior of a light-duty (small displacement) 

engine may not necessarily be the optimal fuel for combustion and engine behavior of a 

medium-duty (larger displacement) engine. In this context, “engine behavior” is meant 

to include the engine’s performance (power), efficiency, and emissions, which of course 
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all strongly depend on combustion (characterized by ignition delay, combustion 

duration, and locations of combustion such as 50% mass fraction burned location). 

Therefore, the final objectives of the project are to clarify the following items: 

1) With increasing engine size, explain the changing trend (if any) of a higher 

CN on engine combustion (heat transfer, combustion duration) and emissions (smoke, 

NOx), 

2) With increasing engine size, explain the effect of aromatic content (AC) on 

engine combustion and emissions, 

3) With changing operating conditions, explain the effect that AC has on 

emissions for differently sized engines, 

4) With changing engine size, explain the effect that distillation temperature 

(T90) has on combustion and emissions.  

5) With changing operating parameters (i.e., load condition and injection timing) 

explain the impact of the studied fuel properties (CN, AC, T90) on combustion and 

emissions 

To clarify the five items, the whole project has four steps. First, the baseline 

testing is performed on both of engines. In the baseline testing, two nearly identical 

engines – differently only by displaced volume and stroke to bore (S/B) ratio – are tested 

at 1500 RPM and nominally 1.88 bar BMEP(low load)/5.65 BMEP (medium load) with 

injection timing changing from 3° BTDC to 15° BTDC. Through analysis of baseline 

testing results, effects of engine size on combustion and emissions are explained. 

Moreover, an idea of the two engines’ characteristics, which is helpful for FACE fuel 
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testing points design and results analysis, will be clarified. The second step is engine 

simulation development. In this step, the two engines’ models are established by using 

GT-Power and simulated at the same operation points of baseline testing. Deeper 

analysis on effect of engine size on combustion and emissions can be performed through 

simulation work and both of models are helpful for FACE fuel simulation step. The third 

step is FACE fuel testing on both of engines. Eight FACE fuels are designed around 

three properties of primary importance: cetane number (measure of ignition quality), 

aromatic content (affects fuel constituent composition), and distillation (measure of 

volatility).  All of fuels are tested with a single shot injection strategy, the timing of 

which was switched from 15 BTDC to 6 BTDC and controlled to maintain a constant 

combustion phasing (CA 50 –10deg ATDC) at both of loads (low load/medium load) 

either. Then, the first five gaps about effects of fuel properties on combustion and 

emissions between different sized engines will be clarified through the first three steps. 

In the final step, FACE fuel simulation will be performed, including changing operating 

conditions and NOx sweep simulation. The first simulation work (changing operation 

conditions) is helpful for deeper research on the first five gaps and the NOx sweep 

simulation will clarify the final gap from literature review.  
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2. LITERATURE REVIEW 

 

Fuel properties impact the combustion and emissions behavior of diesel engines 

through their influence on the physical process associated with fuel injection, jet 

penetration, entrainment and fuel-air mixing, as well as by changes to the combustion 

chemistry associated with fuel chemistry, aromatics, molecular weight, and additive 

concentrations. Continued focus on ultra-low NOx engine-out targets and variation of 

the available fuel on the worldwide market drives the need for a deeper understanding of 

the changes to the engine behavior caused by fuel property variations.  In addition, these 

influences are also impacted strongly by various engine sizes. Thus, to find fuel effects 

on combustion and engine behavior between light- and medium-duty diesel engines, the 

literature review was done. 

The literature review mostly involves 58 relevant papers, most of which study the 

effects of different engine sizes and fuel properties. Papers about GT-Power, a 

computational simulation software package specialized for engines, are reviewed 

recently. Within the 58 reviewed papers, 39 (68%) were published since 2005; 14 papers 

(24%) are about study of effect of injection timings and injection pressure; 17 papers 

(29%) are about study of effect of different engine sizes; 25 papers (43%) are about 

study of effect of fuel properties; three papers (5%) are about study of GT-power model. 

The general conclusions can be divided into: diesel engine combustion and emissions 

behavior, effect of engine size, effect of various fuel properties, and GT-Power diesel 

model. The literature review is correspondingly organized in this fashion. 
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2.1 Diesel combustion  

Combustion 

In a diesel engine, diesel fuel is injected into the cylinder toward the end of the 

compression stroke. The fuel then atomizes into small drops, penetrates through the 

combustion chamber, and mixes with the charge (mixture of air, residual gas, and/or 

recirculated exhaust gas) in the cylinder. Because the charge high temperature and 

pressure are above the fuel ignition point, spontaneous ignition of portions of the charge 

occurs after an ignition delay of a few crank angles. The combustion causes pressure and 

temperature to increase significantly, reducing the evaporation time of the remaining 

liquid fuel and improving the mixing of air and fuel vapor. 

Therefore, the fuel/air mixture within combustible limits then burns rapidly. 

Essentially all the fuel has to pass through the atomization, vaporization, fuel-air mixing, 

and combustion processes. Moreover, mixing of the air with burning and burned gases 

continues throughout the combustion and expansion processes [6]. 

The combustion process can be divided into four stages: ignition delay, premixed 

combustion, mixing-controlled combustion, and late combustion. Ignition delay is the 

period between start of fuel injection (SOI) and start of combustion (SOC). In premixed 

combustion stage, the mixture within flammability limits prepared in the ignition delay 

stage burns rapidly in a few crank angle degrees, featuring high heat release rate. In 

mixing-controlled combustion stage, the burning is controlled primarily by the air/fuel 

mixing process. 
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Several studies investigate the effect of the injection pressure in different 

engines. Benajes et al. [7] investigated the effect of injection pressure and boosting 

pressure on combustion process and pollutant emission in the medium-duty diesel 

engine. The research shows that the increasing boosting pressure and injection pressure 

caused NOx emissions to increase as a result of intense combustion from faster air-fuel 

mixing process. On the other hand, soot emissions and fuel consumption at higher 

injection pressure and boosting pressure were reduced by improved mixing process. 

Similar trends were observed in another study investigating the effect of the injection 

pressure on a light-duty engine [8].  The effect of injection pressure on emissions, 

however, is also impacted by other conditions, such as EGR rate and load conditions. In 

Hideyuki’s [9] research, using high EGR rate (60% EGR rate), the effect of injection 

pressure on soot emissions is very little. Tie’s [10] research of injection pressure on 

engine performance shows that combustion efficiency is increased by injection pressure 

increasing on a light-duty engine. Many researchers focused the effect of injection 

pressure on the engine performance and exhaust emissions for one engine. There is little 

research, however, comparing the effects of injection pressure among differently sized 

engines.  This is an area of needed future work. 

2.2 Effect of engine size 

In general, engine size impacts the engine combustion and emissions behavior 

strongly. Different combustion characteristics such as peak temperature, peak pressure, 

combustion duration, and heat release rate can change as engine size changes, in spite of 

similar control and operating parameters. Consequently, engine performance and 
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emissions will also change as engine size changes (at similar control parameters). 

Research on the effect of engine size on combustion and emissions can be divided into 

three parts: effect of stroke to bore ratio, engine displacement, and diesel engine size-

scaling relationships. 

Effect of stroke to bore ratio 

The stroke-to-bore (S/B) ratio has a fundamental impact on engine design 

because it determines the overall dimensions of the power plant for a given 

displacement. In addition, stroke to bore ratio determines the geometric proportions of 

the combustion chamber which impacts the combustion and emissions strongly. 

Therefore, the effect of S/B ratio on combustion, heat transfer and efficiency is analyzed 

through simulation [11-13] and experiment [14-17]. The engine displacements are the 

same in most of the cited research evaluating S/B ratio. Thus, all the comparisons are 

made on the same assumption: running the engines at the same operating condition. The 

conclusions are summarized in Table 1. 

Table 1 Effect of increasing S/B ratio on various in-cylinder parameters 

Rapid burning phase Decrease 

Brake torque output Increase 

Flame propagation Increase 

Dimensionless flame areas Increase 

Surface areas in contact with burned gases Decrease 
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Table 1 indicates that the duration of the rapid burning phase decreases with 

increased S/B ratio and the effect is non-linear, being more dramatic when the S/B ratio 

is increasing from below 1 to 1. The reason is that with the increased S/B ratio, there are 

more favorable flame front area characteristics and higher turbulence intensity which 

enhance the rate of entrainment in the engine. For heat transfer rate, the total heat 

transfer rate (i.e., heat loss) decreases with decreasing S/B ratio. Specifically, the heat 

transfer rate to cylinder wall decreases [11, 13] with decreasing S/B, with mitigating 

increases of heat transfer through the piston top and cylinder head. Further, short stroke 

engines (lower S/B ratio) cause earlier piston contact to burned gases, which causes 

steep gradient of the heat transfer rate profile to occur earlier. The influence of 

turbulence rate on combustion of different S/B ratios is discussed [11] using simulation 

techniques; the conclusions follow: the dimensionless flame areas are larger in the long-

stroke engine (high S/B ratio), where surface areas in contact with burned gases (wall-

wetted-area / volume) are much larger in the short-stroke engine (low S/B ratio) when 

the piston is close to the TDC position. 

Effect of displacement 

The engine displacement is another important factor that affects combustion and 

emissions. It is difficult to separate the effects of displacement and S/B ratio from each 

other. Further, compression ratio is often different among differently sized engines; 

compression ratio also strongly impacts combustion and emissions. Thus, there are only 

a few studies that focus solely on the effect of engine displacement. The general effect of 

engine displacement on various parameters is described in Table 2 [17-21]. 
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Table 2 Effect of increasing engine displacement on various engine parameters 

Mechanical efficiency Decrease 

Combustion efficiency Decrease 

Thermodynamic efficiency Same 

Brake fuel conversion efficiency Decrease 

 

The combustion chamber area-to-volume ratio increases as displaced volume 

increases, which causes an increase in friction. Further, the boundary layer volume to 

bulk gas volume ratio increases which affects the emission of CO from the engine and 

consequently the combustion efficiency [18]. Typically, CO originates from mass in the 

cylinder that reaches a peak temperature between 1000 and 1400 K, characteristic of 

partial combustion. This mass is typically located in the crevice and boundary layer. 

Thus, the emission of CO increases with increasing of boundary layer volume. Related, 

trapped unburned hydrocarbons increase as crevice volume increases with increased 

displacement. The effects of displacement on various engine efficiencies, such as brake 

fuel conversion, combustion, thermal, volumetric, and mechanical efficiencies, have also 

been studied. Because of higher friction losses in larger displacement engine, the 

mechanical efficiency is decreased with increased displacement. Similarly, and as 

explained above with differences in HC and CO emissions, combustion efficiency 

decreases slightly with an increase in displacement. Thermal efficiency (the ratio of 

indicated output of an engine to the quantity of energy released during combustion) and 

the gas exchange efficiency (i.e., “pumping efficiency) seem to be mostly unaffected by 
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engine displacement [21]. The net result of these various efficiencies is captured in what 

is called the brake fuel conversion efficiency, summarized by this equation:  

gasmechcomthermal  ***fcb,  . In general, brake fuel conversion efficiency decreases 

with the increase in displacement. The trend is dependent, however, on engine speed and 

load. For low-and mid-load conditions, the brake fuel conversion efficiency seems to 

always decrease with an increase in displacement. The trend can also be impacted by 

other operating parameters such as injection timing in high load condition [19, 20]. 

Diesel engine size-scaling relationships 

This section describes the relationships between large diesel engines (e.g., off-

road heavy-duty engines) and small diesel engines (e.g., high speed automotive engines) 

as determined from CFD simulation results [22-25]. Firstly, the researchers used some 

theoretical equations, such as spray penetration equation, flame lift-off length equation, 

swirl ratio equation and other equations to establish some reasonable relationships 

between different engine displacements and other various engine parameters.  CFD 

simulation models include numerical mesh dependency, turbulence, and heat transfer 

effects. Different scaling behaviors related to turbulence and chemistry timescales and 

their effects on combustion and emissions in engines of different size were considered 

[22, 26-29]. From the results, the pressure and heat release rates are well scaled using the 

established relationships. NOx and soot emissions, however, do not scale well, 

especially under medium and high load conditions. Table 3 summarizes the scaling 

relationships between engine displacement (V) and other engine parameters. 
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Table 3 Scaling relationships between engine displacement (V) and other engine 

parameters 

Parameter Scaling Relationship 

Mass of fuel injected V 

Spray penetration tip length V1/3 

Flame lift-off length V1/3 

Injection velocity V2/9 

Injection duration V1/9 

Engine speed V-1/9 

Valve-lifts V1/3 

 

 

In Luke’s [24] research, the scaled engines were compared in a conventional 

diesel combustion regime. The test variables included start of injection (SOI), intake 

temperature, engine speed, and swirl ratio. Overall engine performances including IMEP 

and ISFC between the two engines were nearly the same (good agreement) in the 

operating conditions designed by the relationships from Table 3. This agreement persists 

with changes in engine speed, SOI, and intake temperature. Differences in the fuel spray 

characteristics or relative air entrainment rate were not captured with the scaling models. 

Moreover, the smaller engine exhibits higher heat release rates during the initial stages 

of the combustion which means there is an increase in the available combustible mixture 

during the initial stages of combustion in the smaller engine.  
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2.3 Effect of fuel properties 

Fuel properties impact the performance and emissions behavior of diesel engines 

through their influence on the physical process associated with fuel injection, jet 

penetration, entrainment and fuel-air mixing, as well as by changes to the combustion 

chemistry associated with fuel chemistry, aromatics, molecular weight, and additive 

concentrations. Continued focus on ultra-low NOx engine-out targets and variation of 

available fuel drive the need for a deeper understanding of the changes to the engine 

behavior caused by fuel property variations. 

Literature suggests there are three fuel properties of primary importance to the 

performance of advanced combustion engines: cetane number (measure of ignition 

quality), aromatic content (affects fuel constituent composition), and distillation 

(measure of volatility).  From the reference papers, cetane number varies from 7 to 80; 

most studies are in the range 0f 30-55. Aromatic content varies from 0-55%; most 

studies are in the range of 15-40%. Distillation temperature (T90) varies from 220 to 

400˚C; most studies are in the range of 300-320˚C. In some papers, the three parameters 

change simultaneously and the conclusions are drawn for one parameter often combined 

with others. Takahashi et al. [30] and Kumar, et al. [31], however, change fuel properties 

in a matrix such that that each could be isolated. 

Simple calculations based on Gallant, et al. [32] and involving select fuel 

properties (distillation temperature, cetane number, mono-aromatic content, poly-

aromatic content, total aromatic content, density, and heating value) show some 

correlations. For example, it is shown that the three distillation temperatures (T10, T50, 
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and T90) are all correlated to one another and with the poly-aromatic content. The cetane 

number is correlated with the mono- and the total aromatic content. The poly-aromatic 

content impacts fuel density and heating value indicating that heavy fuels tend to have a 

greater fraction of poly-aromatic components and lower heating values. 

FACE fuels 

The mission of the Fuels for Advanced Combustion Engines (FACE) Group is to 

recommend sets of test fuels well suited for advanced combustion engine research so 

there is a common platform of fuels.  The FACE group creates both diesel fuels matrix 

and gasoline fuels matrix [33]. The matrix of diesel fuels for advanced combustion 

engine research is introduced in Gallant, et al. [32]; the FACE diesel fuels matrix 

includes nine fuels and is designed around three properties of primary importance: 

cetane number (measure of ignition quality), aromatic content (affects fuel constituent 

composition), and distillation (measure of volatility).  The details are shown in Figure 1 

[33] and target properties are shown as center points in the figure. Specifically, the target 

properties are: cetane number of 42.5, aromatics content of 32.5%, and T90 of 305°C. 

Additionally, Gallant, et al.’s report [32] documents an overview of the comparison 

between the details of the actual results of the fuel chemical and physical properties and 

the design values by using ASTM analyses, GC/MS analyses, and thermodynamic 

characterizations. In the report, CN, aromatic content and T90 for each fuel are 

measured by Southwest Research Institute (SwRI), Chevron-Phillips Chemical 

Company’s Specialty Chemicals Group (CPChem) and NRCan’s National Centre for 

Upgrading Technology (NCUT)) using ASTM engine method and the actual values for 
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most of points are close to target value. Other fuel properties, such as viscosity, heating 

value, spec gravity are determined by the three laboratories either. Besides traditional 

ASTM analysis, fuel molecular composition and molecular structure are quantified by 

GC-FIMS and 1H/13C NMR analyses. 

 

Figure 1 FACE diesel fuels matrix [33] 

 

 

Mikhail’s [34] report provides detailed results from a variety of standard ASTM 

International-type analyses and advanced characterization techniques conducted to 

measure the chemical and physical properties of the FACE diesel fuels.  From the report, 

based on standard ASTM tests, most of the FACE diesel fuels are able to meet the target 

value of cetane number, aromatic content and T90. When the derived cetane number is 

measured by the Ignition Quality Tester (IQT) instrument, the IQT values are up to 6.6 

points higher for the fuels having a low nominal cetane number of 30. The possible 

reason is the ASTM equations for correlating the engine and IQT test results are usually 
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used for diesel fuels whose cetane numbers are in the range of 40 to 60. Moreover, those 

diesel fuels are also analyed on other advanced characterization techniques to obtain 

more details about chemical and structural composition information. The results show 

that some components in most of FACE fuels, such as n-paraffins, isoparaffins, 

cycloparaffins, and aromatics, have a good agreement with commercial fuels. The low 

cetane number FACE fuels (CN 30) contain more than 20% of light (C8–C10) 

monoaromatics, which is not typical of commercial diesel fuels. 

Recently, many researchers investigate the effects of various FACE diesel fuels. 

In Hosseini, et al.’s [35] research, cetane number and T90 distillation temperature in 

FACE fuels matrix are discovered to affect combustion phasing. Based on comparison of 

effects, cetane number clearly has the stronger effect. An increase in cetane number or a 

decrease in the T90 distillation temperature advances the combustion phasing. The effect 

of cetane number is linked to increased low temperature heat release (LTHR) with 

increasing cetane number. The T90 effect is primarily due to a change in the physical 

delay period associated with preparation of the fuel-air mixture. William et al. [36] make 

analysis of effect of FACE diesel fuels on low temperature combustion on various load 

conditions of a 0.75-L engine. In his research, at low load condition, the high CN is good 

for reducing THC and CO from incomplete reactions by shorting ignition delay and the 

highest level for THC and CO is generated at the fuel with lowest CN and highest 

aromatic content. It indicates that the aromatic contents also contribute to the products of 

the incomplete oxidization. At medium and high load conditions, low CN is good for 

reducing soot emissions by increasing ignition delay to decrease the part of diffusion 
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combustion which is the main period for soot formation. There is not any obvious 

benefit on reducing THC and CO as their absolute values are typically very low (e.g., 

less than 200 ppm for HC) for conventional diesel combustion. Although higher 

aromatic content shows an extended ignition delay, soot is not necessarily decreased by 

the extended ignition delay because the aromatics are considered as precursors of the 

soot production. Bonsack et al. [37] investigates the effects of FACE diesel fuels on low 

temperature combustion, focusing on the nanoparticle emissions from a GM 1.9-L diesel 

engine. The particle number concentrations and mean particle diameter increase 

simultaneously an increasing CN of the FACE fuels. The effects of distillation 

temperature (T90) on particle diameter are not consistent: the count mode diameter is 

found to be lower with higher T90 in the low CN condition; the diameter is found to be 

lower with lower T90 in the high CN condition. 

Spray Penetration 

Fuel sprays in diesel engine cylinders are extensively studied and reported on in 

the literature.  Schweitzer [38] and Wakuri et al. [39] observe the influence of injection 

pressure and ambient temperature on spray behavior and provide simple correlations 

describing the behavior. Wakuri et al. [39] report that the distance of spray penetration is 

proportional to the square root of injector diameter, time, and injection velocity.  Further, 

it is influenced by mixture density and pressure. Dent [40] studied spray behavior further 

and determined the spray penetration distance equation (𝑆 = 13.6 ∗ [(
∆𝑃

𝜌𝑔
)

1

2 ∗ 𝑡 ∗ 𝑑0]
1

2 ∗

(
530

𝑇𝑔
)1/4) from momentum conservation applied to two phase jets. Further, Dent [41] 
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verified the model by comparing calculation results with experimental data for cold 

bomb and hot bomb. The equation shows that the penetration distance is impacted by 

fuels’ density, injection pressure, injector diameter, and gas temperature in the cylinder 

and also indicates that spray penetration is proportional to the square root of time after 

the start of injection. Hiroyasu and Arai [42] study the spray at the beginning of injection 

and observe that spray penetration is initially linearly proportional to time. At later 

stages, it is proportional to the square root of time, in agreement with Dent [40]. The 

time transition between the two “regions” (i.e., early spray formation and later spray 

formation) corresponds to the beginning of the breakup process, (0 ≤ 𝑡 ≤ 𝑡𝑏   𝑆 =

0.39 ∗ √
2∆𝑃

𝜌𝑓
𝑡         𝑡𝑏 ≤ 𝑡  𝑆 = 2.95 ∗ (

∆𝑃

𝜌𝑎
)

0.25

∗ √𝑑0𝑡          𝑡𝑏 = 28.65 ∗
𝜌𝑓∗𝑑0

√𝜌𝑎∆𝑃
). 

Bao, et al. [43] compare spray penetration for different fuels (Ethanol, Gasoline, 

Iso-Octane) under various injection pressures (4, 7, 11 and 15 MPa) and found similar 

conclusions with Hiroyasu’s work on low injection pressure. The results show that under 

low injection pressure (4 MPa), a lower fuel density causes longer penetration length, 

due to higher injection velocity and decreased nozzle loss. As the injection pressure 

increases, droplet size conditions become the primary factor of penetration distance. 

Because the penetration is impacted by aerodynamic drag force applied to fuel droplets, 

instead of the injection velocity or nozzle loss of the liquid jet. The lower aerodynamic 

drag force with larger droplet size leads to longer penetration distance.  

Combustion  

In Lucas, et al. [44], the effects of jet fuel properties on compression ignition 

engine operation are investigated under high-load conditions for jet fuels with varying 
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cetane number. They find fuel cetane number could impact the pressure rise rate for the 

range of conditions tested. Cetane number indicates the quality of ignition of diesel fuel 

and reveals its effect in an engine with the ignition delay between start of injection and 

start of combustion. Ignition delay decreases as cetane number increases for moderate 

cetane numbers [32, 44, 45]. The correlation is not as strong, however with high cetane 

number fuels. In Hosseini, et al.’s [35] research, cetane number and T90 distillation 

temperature are changed separately; both are discovered to affect combustion phasing. 

Based on comparison of effects, cetane number clearly has the stronger effect. An 

increase in cetane number or a decrease in the T90 distillation temperature advances the 

combustion phasing. The effect of cetane number is linked to increased low temperature 

heat release (LTHR) with increasing cetane number. The T90 effect is primarily due to a 

change in the physical delay period associated with preparation of the fuel-air mixture. 

At a similar 50% mass fraction burned location, the high CN fuels exhibited 

significantly longer combustion duration than the low CN fuels.  Butts, et al. [46] report 

similar conclusions as Hosseini’s work: the magnitude of LTHR increases and its peak 

value location advances as CN increases. Aromatics content in fuels seems to have little 

impact on ignition delay and combustion period; however, it has a significant effect on 

flame temperature: higher aromatic content causes higher flame temperature, especially 

for poly-aromatic content [47].  
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Emissions 

Several studies have been conducted in the past to assess the effect of diesel fuel 

property changes on engine-out emissions. Many of these suggest conflicting results on 

the directional influences of critical fuel properties on engine behavior, some of which 

are explained by the significant differences in NOx levels and engine operating 

conditions under which the data are gathered. The problem is complicated by the 

typically high degree of confounding between fuel properties, which makes it difficult to 

isolate individual effects. 

In one of the early works on this subject, based on 7 various fuels, Rosenthal and 

Bendinsky [48] independently changed the fuels by cetane number from 20 to 60, 

aromatic contents from 0% to 70%, and T90 from 220 to 400˚C. The fuels were studied 

with transient and steady-state experiments on two heavy duty diesel engines to 

conclude that aromatic content is the primary fuel parameter influencing NOx and 

particulate emissions. Later, Ullman, et al. [49] reported that increasing CN (42-60) 

decreased all regulated emissions (HC, CO, NOx and PM) on a heavy-duty engine. In an 

effort to distinguish the effect of cetane improved fuels versus naturally high-cetane 

fuels, Green, et al. [50] study three commercial fuels of cetane number (CN) of 40-42, 

the same fuels raised to CN 48-50 with a cetane improver additive, and three commercial 

fuels of base CN 47-50. The study reports that the cetane improved fuels show benefits 

with respect to both power and fuel efficiency, owing to their higher volumetric energy 

content while generating the same emissions as fuels which are naturally high in cetane. 

Using laser elastic scatter imaging on a heavy-duty engine to characterize fuel volatility 



 

22 

 

effects, Canaan, et al. [51] describe a strong, linear correlation between the fuel’s mid-

boiling point and maximum liquid-phase jet penetration with the penetration increasing 

with higher boiling point temperatures. In contrast to previous studies, based on fuel 

matrix where the cetane number was varied from 40 to 55 (naturally and cetane 

improved) and aromatic content was varied from 10 to 30%, Ryan, et al. [52] found no 

significant differences that could be related to changes in the targeted fuel properties. 

Tamanouchi, et al. [53] tested fuels with T90 varying from 277 to 336°C and poly-

aromatic content varying from 3.2 to 9.6% while maintaining constant cetane number (at 

approximately 50) and total aromatic content (at approximately17%). They found that 

total hydrocarbon emissions and particulate matter (PM) decreased with lowering 90% 

distillation temperature (T90) or lower poly-aromatic content in the fuel and the effects 

are impacted by various engines. In general, T90 has similar performance with aromatic 

content on PM, better performance on THC emissions. 

Kidoguchi et al. [54] analyze the separate influences of cetane number (varying 

from 43 to 56) and aromatic content (varying from 0% to 38%). The study finds that 

higher cetane number increases NOx and decreases PM with constant aromatic content. 

When CN is constant, increasing aromatic content has little effect on combustion 

characteristics but increases PM and NOx. At retarded injection timing (from 5° before 

top dead center, or BTDC, to 2° after top dead center, or ATDC), total hydrocarbon 

emissions increase dramatically at low load with low cetane number fuels due to the 

over leaning caused by long ignition delay. Further, for low cetane number fuels, total 

hydrocarbon emissions and soluble organic fraction of particulate emissions increase at 
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low load with increases in aromatic content. The U.S. Environmental Protection Agency 

(EPA) published a technical document detailing the issues specific to relating engine-out 

emissions as a function of diesel fuel properties covering multiple data sources, test 

cycles, engine platforms and modeling strategies. Their results pointed to some 

improvements in PM with reducing poly-aromatic content for light-duty engines, but a 

wide variation in diesel fuel effects on NOx emissions dependent heavily on engine 

design, operating conditions, drive cycles and other factors. Kee, et al. [55] use rapid 

compression machine experiments to compare two fuels which varied significantly in 

their aromatic content (0% to 20%) and found that aromatic-containing fuels produce 

higher NOx due to longer formation durations. Azetsu [47] shows the flame temperature 

and soot formation increase with higher aromatic content by changing it from 0 to 20 at 

various injection pressures (60 MPa and 100 MPa). Sluder et al. [56] suggest that diesel-

range fuels with higher volatility in the top 50% of the distillation curve exhibited 

improved emissions. Recently, Eckerle et al. [57] and Li et al. [58] used fuel matrix to 

quantify the influence of aromatic content on NOx emissions at various speed-load 

conditions. The results show that the NOx emissions increase when total aromatic 

content increases in fuels. The correlation between NOx emissions and total aromatic 

content was more obvious at medium and high load conditions. At these conditions, 

major portion of fuel was burned at fuel-rich locations where the chemical composition 

of fuel impacts the local gas temperature more strongly. Specifically, for fuels with 

higher total aromatic content, the adiabatic temperature of the hydrocarbons with ring 
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structures tend to be higher which could generate higher temperature in fuel-rich region, 

ultimately causing higher NOx emissions. 

Kumar et al. [31] investigate experimentally the combustion and emissions 

performance of various diesel fuels on an advanced diesel engine. The study reveals that 

NOx is impacted by cetane number and distillation characteristics under high EGR, 

diffusion burn dominated conditions. Lower T50 (mid-distillation temperature) results in 

simultaneous reductions in both NOx and smoke while higher cetane number provides a 

small NOx benefit through reducing ignition delay and improving combustion quality. 

Warey et al. [59] observed similar results. Nishiumi’s [60] research on PM emissions 

show that fuel cetane number affects the insoluble organic fraction (ISOF) in PM 

emissions. Further, the total hydrocarbon and PM emissions decrease with lowering T90. 

A narrow distillation range that eliminates high boiling point components is effective in 

reducing the SOF at low speed/low load and high speed/high load conditions. 

Furthermore, the narrow distillation fuel results in lower ISOF under the high speed / 

high load conditions. Takahashi [30], however, shows that excessively high cetane (e.g., 

78) increases ISOF fraction in PM emissions, due to poor mixing of injected fuel and air. 

He also shows increasing cetane number (35-58) by lowering mono-aromatic content 

provides a small NOx benefit at medium load condition. 

Summary 

Pressure rise rate and ignition delay is decreased with increasing cetane number. 

An increased CN advances the combustion phasing. For PM emissions, the higher fuel 

cetane number increases the insoluble organic fraction (ISOF). Increasing cetane number 
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via the lowering of mono-aromatic content marginally decreases NOx; at high load, 

however, the effect of cetane is negligible compared to other parameters such as 

injection timing. For CO and HC, there are some benefits when the cetane number is 

increasing.  

Aromatics content in fuels seems to have little impact on ignition delay and 

combustion period; however, it has a significant effect on flame temperature and soot 

formation. Moreover, the effects of aromatic content on emissions also depend on the 

engine operating conditions.  

Total hydrocarbon emissions and PM decrease with the lowering of the 90% 

distillation temperature (T90) and rising of the 50% distillation temperature (T50). 

Creating a narrow distillation range by eliminating high boiling point components is 

effective in reducing SOF. Furthermore, a narrow distillation fuel results in lower ISOF 

under high speed / high load conditions.  

2.4 Combining Fuel Property Effects and Engine Size Effects 

Based on the above discussions, some connections between observed fuel 

property effects on performance, efficiency, and emissions and engine size effects on the 

same can be drawn. There are more than 25 papers about effect of fuel properties and 17 

papers about effect of engine size. In those papers, 8 papers are about engine sizes bigger 

than 4L; 12 papers are about engine sizes in range of 1 L to 4 L; 3 papers are about 

engine sizes smaller than 1L; 11 of them are about cetane number, 10 of them are about 

distillation temperature; five of them are about aromatic content. 
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Net apparent heat release rate (AHRR) shows a decrease in the premixed burn 

magnitude as cetane number increases. Low cetane number fuels have longer ignition 

delays, which cause the amount of energy converted during the premixed burn to be 

relatively higher (compared to shorter ignition delays), resulting in increased pressure 

rise rates in various sizes of engines. The changing trend of combustion characteristics 

are not impacted by changing engine sizes. Increasing cetane number decreases NOx, 

THC and CO emissions and this trend increases as engine displacement increases. 

Increasing cetane number increases soot emissions but the effect of increasing soot 

emissions with increasing cetane diminishes as size increases. 

Higher aromatics content in fuels has little impact on ignition delay and 

combustion period, especially in small size engine (in a 0.8 L diesel engine, higher 

aromatics content in fuels has little impact on heat release rate and cylinder pressure 

[54]); it has a significant effect, however, on flame temperature.  Moreover, the effect of 

aromatic content on emissions is impacted strongly by other factors, such as injection 

timing, EGR rate and load conditions. In general, lowering aromatics in fuel, especially 

lower poly-aromatic contents provide benefits of lower particulate emissions [36, 47]. 

Changes to distillation temperature have little impact on heat release rate and 

cylinder pressure, but lower T90 decreases penetration distance [51] and advances the 

combustion phasing [35] under various sizes of engines. Total hydrocarbon emissions 

and PM decrease with lowering T90 for all engines and the effect of T50 on emissions 

becomes important as engine size decreases. In small size engines, lower T50 (mid-

distillation temperature) results in simultaneous reductions in both NOx and smoke [31]. 
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These connections are made from comparison of reference papers, none of which 

had the specific objective of identifying the different effect of fuel properties on engine 

combustion and emissions of differently sized engines. Thus, no real conclusions on the 

effect of fuel properties and engine sizes on engine performance, efficiencies, and 

emissions can be made. Moreover, the conclusions of the effect of fuel properties and 

engine sizes on combustion and emissions are not detailed and accurate enough. This 

will continue to be a focus of study. 
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3. SIMULATING DIESEL ENGINE IN GT-POWER 

 

3.1 Purpose of GT-Power 

In the project, medium-duty and light-duty engines will be operated at 1500 rpm, 

low load and medium load conditions by changing injection timings from -15° ATDC to 

6° ATDC and rail pressure from 400 bar to 600 bar in both engines. The project will 

study 8 kinds of fuels which will be changed by cetane number (30-55) and distillation 

temperature (T90) (270-340) similar with FACE fuels. In this arrangement, the total 

testing points will approach 800, which is impractical to do all experimentally. Thus, the 

popular engine simulation software, GT-Power, is used to simulate engine performance 

after baseline testing to identify the critical points and conditions to study 

experimentally. After baseline testing, experiments with various fuels (of different 

properties) will provide validation data to the GT-Power simulation.  

Fuel properties, injection timing, and rail pressure will be adjusted using the GT-

Power simulation. For fuel properties, due to different cetane number or distillation 

temperature, properties such as premixed/diffusion combustion rate multiplier, ignition 

delay multiplier, convection multiplier, entrainment rate multiplier will be adjusted in 

the GT-Power combustion section. The injection timing and rail pressure can be adjusted 

in the “injector” object. 

GT-Power is a popular engine simulation tool designed for steady-state and 

transient simulations. It is applicable to many types of internal combustion engines and 

provides the user with many components to model any advanced concept. GT-Power 
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uses several physics-based models to calculate engine performance and emissions; the 

relevant models for the current study are described here.  

3.2 Combustion Model 

In order to obtain more accurate simulation results on combustion and emissions 

area, the applicability of GT-Power’s predictive combustion model (DI-Jet combustion 

model) is investigated.  

The combustion model (DI-Jet Model) is a quasi-dimensional multi-zone 

combustion model for direct injection compression ignition engine. It is primarily used 

to predict burn rate and NOx emissions. Soot is also predicted, but the predicted 

concentrations are not particularly meaningful and should be used to study only trends in 

the results. 

 

Figure 2 GT-Power’s DI-Jet model divides the injected fuel mass into many radial zones 

issuing axially at a given angle from the injector tip. 

 

 

 

 

Figure 3 Numbering rule of the zones 
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As shown in Figure 2, GT-Power creates a computational region by dividing the 

injected fuel mass is divided into several radial zones issuing axially at a given angle 

from the injector. Five radial zones and a maximum of 80 axial zones (depending on the 

value specified in the 'EngCylCombDIJet' model) [61]. Figure 3 shows how the zones 

are numbered. At each time step taken by the code during the injection period, an axial 

“slice” (five radial zones) is injected into the cylinder (if the time steps are very small, 

the fuel may be injected at only every other time step). The total mass of fuel in all of the 

zones will be equal to the specified injection rate (mg/stroke) divided by the specified 

number of nozzle holes; the DI-Jet model really models the plume from only one nozzle 

hole. The mass of fuel in each axial “slice” is determined by the injection pressure at that 

time step and the elapsed time since the last zones were injected. This mass injected at 

each time step is divided equally among the five radial zones. The instantaneous 

injection pressure is also used to calculate the injection velocity of each axial slice. Each 

zone additionally contains subzones for liquid fuel, unburned vapor fuel and entrained 

air, and burned gas. Immediately after a zone is injected, the zone is 100% liquid fuel. 

As the zone moves into the cylinder, it “entrains” air and the fuel begins to evaporate, 

thus forming the unburned subzone. The mass of the entrained air causes the velocity of 

the zone to decrease because momentum of the zone is conserved. The outer zones 

entrain air more quickly than the inner zones, thus decreasing their velocity more 

quickly and resulting in less penetration distance as can be seen in Figure 1. From the 

mass of vapor fuel and entrained air in each unburned subzone, the zonal fuel to air ratio 
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is known. The zonal temperature is calculated taking into account the temperature of the 

injected fuel, entrained air temperature, and the effects of the fuel evaporation. When the 

combination of cylinder pressure, zonal temperature, and fuel-to-air ratio becomes 

combustible, the fuel in the zone ignites, further changing the temperature and 

composition. All products of combustion will be moved to the burned subzone. NOx and 

soot are calculated independently in each burned subzone taking into account the fuel/air 

ratio and temperature. The total cylinder NOx and soot are the integrated total of all of 

the individual burned subzones. 

3.3 Model Description and Validation 

The sub-combustion model in GT-Power for the two engines is DI-PULSE 

model. It includes: Entrainment Rate Multiplier, Ignition Delay Multiplier, Premixed 

Combustion Rate Multiplier, Diffusion Combustion Rate Multiplier. The simulation 

parameters is kept the same for varying operating conditions (such as injection timing) at 

the same load condition, but changed between different two loads. The comparisons of 

measured and predicted pressure traces and heat release rates as functions of crank angle 

for the medium-duty and light-duty engines are shown in Figure 4 and Figure 5, 

including low load and medium load condition. The simulation results are reasonably 

close to experimental data. Additionally, the comparisons of engine performance are 

shown in Table 4 and 5. The percent differences in brake torque between the simulation 

and experiment for low load and medium load conditions are 0.9% and 2.8%, 

respectively. The percent differences in brake specific fuel consumption (BSFC) are 
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3.7% and 2.6%. The percent differences in CA50 location are 1.9% and 0.99%, 

respectively. Light duty engine model has similar accuracy. 

 

 

Figure 4 (a) In-cylinder pressure and (b) heat release rate at low load condition and (c) 

in-cylinder pressure and (d) heat release rate at medium load condition as functions of 

engine crank angle for experimental and simulated data of medium-duty engine. Each 

condition is at 1500 rpm engine speed and injection timing = -9°CA ATDC 

(a) 

(b) 

(c) 

(d) 
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Figure 5 (a) In-cylinder pressure and (b) heat release rate at low load condition and (c) 

in-cylinder pressure and (d) heat release rate at medium load condition as functions of 

engine crank angle for experimental and simulated data of light-duty engine. Each 

condition is at 1500 rpm engine speed and injection timing = -9°CA ATDC 

(a) 
(b) 

(c) 

(d) 
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Table 4 Comparison between experiment and simulation of various engine performance 

parameters of the medium-duty engine at the chosen validation condition 

 Low-Load Medium-Load 

 Experi

ment 

Simul

ation 

Differ

ence 

(%) 

Experim

ent 

Simulat

ion 

Differe

nce 

(%) 

Speed (RPM) 1500 1500  1500 1500  

Torque (N-m) 67 68 0.9 203 207 2.8 

BMEP (bar) 1.87 1.9 0.9 5.65 5.75 2.8 

Peak pressure 

(bar) 

55.9 56.1 0.4 63.8 64 0.3 

Location of 

Peak pressure 

(deg) 

8.8 8.7 1.13 8.6 8.5 1.1 

BSFC 

(g/kWh) 

345.5 332.4 3.7 243 237.5 2.6 

CA50 location 

(deg) 

7.6 7.45 1.9 10.1 10 0.99 

Ignition Delay 

(°CA) 

14.3 14.1 0.14 9.1 9.1 0 

 

 

Table 5 Comparison between experiment and simulation of various engine performance 

parameters of the light-duty engine at the chosen validation condition 

 Low-Load Medium-Load 

 Experi

ment 

Simul

ation 

Differ

ence 

(%) 

Experi

ment 

Simulati

on 

Differe

nce (%) 
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Table 5 Continued 

Location of 

Peak pressure 

(deg) 

6.8 7.2 5.8 7.4 7.4 0 

BSFC 

(g/kWh) 

373 376 0.8 272.3 281.2 3.2 

CA50 

location (deg) 

5.375 5.4 0.4 10.1 10 0.99 

Ignition 

Delay (deg) 

11.7 11.8 0.85 8.7 8.7 0 

Speed (RPM) 1500 1500  1500 1500  

Torque (N-m) 29 29.05 1.7 86 86.3 0.3 

BMEP (bar) 1.908 1.911

8 

1.6 5.65 5.67 0.3 

Peak pressure 

(bar) 

60.7 61.3 0.9 70.7 71 0.4 

 

Based on these comparisons, the two simulations are believed to be an 

appropriate representation of the engines for calculating reaction temperature and 

turbulence intensity. 

3.4 Relationship between GT-Power parameter and fuel properties 

For diesel fuel, the composition of diesel varies by location in the world, time of 

the year, and even the engine which will consume the fuel. GT-Power’s fuel library (GT-

ISE library) provides multiple diesel fuels and is named using the following convention: 

diesel-XXXkg-m3. The XXX represents the density of the fuel at 1 bar and 20°C. The 

library includes diesel fuels with the following densities: 770, 785, 810, 812, 818, 845, 

and 858. Information about enthalpy, density, and transport properties in those fuels are 
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different; they are just distinguished by their densities at a reference condition. Thus, for 

the current project, certain properties such as cetane number or distillation temperature 

cannot be directly adjusted as a fuel property in GT-power; other property-dependent 

parameters (e.g., ignition delay with CN), however, can change as a result of changing 

fuel property. 

 

 

Effect of fuel properties on engine combustion 

An increase in cetane number decreases ignition delay to advance the combustion 

phasing. At a similar 50% mass fraction burned location, the high CN fuels exhibited 

significantly longer combustion duration than the low CN fuels.  The effect of cetane 

number is linked to increased low temperature heat release (LTHR) with increasing 

cetane number and decreases the premixed heat release fraction. Because of the 

decreased premixed heat release fraction, an increase in cetane number also generally 

decreases the pressure rise rate. 
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Figure 6 Effect of cetane number on in-cylinder pressure and heat release rate [36] 

Higher AC causes higher flame temperature. AC in fuels seems to have little 

impact on ignition delay and combustion period; it has a significant effect, however, on 

flame temperature and soot formation. The specific effects of AC on emissions seem to 

depend on the engine operating conditions.  

Although AC has little impact on combustion characteristics, it seems to have a 

general relationship with density. The poly-aromatic content impacts fuel density and 

heating value indicating that heavy fuels tend to have a greater fraction of poly-aromatic 

components and lower heating values. This relationship is concluded by Jeihouni Y et al 

[62]. Figure 7 illustrates this relationship [62]. 
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Figure 7 Density under various aromatic content [62] 

 

 

 

Figure 8 Heat release rate under various T90 

A decrease in the T90 distillation temperature advances the combustion phasing 

and increases the combustion duration. The T90 effect is primarily due to a change in the 
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physical delay period associated with preparation of the fuel-air mixture. Moreover, 

higher T90 has higher flame temperature.  The relationship [35] between distillation 

temperature (T90) and heat release rate is shown in Figure 8. 

 

Table 6 Effects of CN, Aromatic content and T90 on combustion characteristics 

 

 

Capture Fuel Effects in GT-POWER 

There are several parameters that can be used in GT-Power to achieve the effect 

of differing fuel properties on combustion. These parameters include: Entrainment Rate 

Multiplier, Ignition Delay Multiplier, Premixed Combustion Rate Multiplier, Diffusion 

Combustion Rate Multiplier, fuel density, fuel lower heating value, and fuel enthalpy of 

vaporization. 

Density and Heating value 

Increasing density with other parameters being held constant, including total fuel 

injection quantity, causes lower rates of heat release as shown in Figure 9 and 10 and 

summarized in Table 7. This is likely caused by differences in spray penetration, 
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breakup, and vaporization. Lowering the fuel’s heating value has a similar effect on rates 

of heat release; but in that case, less energy is available for release. 

 

Figure 9 In-cylinder pressure sensitivity to fuel density 

 

 

 

Figure 10 Heat release rate sensitivity to fuel density 
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Table 7 Engine output sensitivity to fuel density 

 Density 770 kg/m3 Density 830 kg/m3 

Torque (N-m) 212.4 196 

BMEP (bar) 6 5.5 

BSFC (g/kWh) 226.6 245.5 

Burn Duration 10-90%(deg) 53.4 53 

Ignition Delay (deg) 7.8 7.8 

 

 

From Figure 9 and 12 and Table 7, the effect of lower heating value or higher 

density can be concluded as: higher density or lower heating value decreases pressure 

peak value and heat release rate.  Due to lower rates of heat release, the torque output 

and BMEP decreases, but there is little influence on burn duration and ignition delay. 

Entrainment Rate Multiplier 

Entrainment Rate Multiplier is a very sensitive parameter in GT-Power 

simulations. It impacts the entrainment rate directly which mainly impacts air-fuel 

mixing condition, turbulence speed, and flame speed.  Thus, the combustion 

characteristics change drastically when the parameter is changed. Those changing trends 

are shown in the Figure 11 and 12. 
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Figure 11 In-cylinder pressure sensitivity to entrainment rate multiplier 

 

 

 

Figure 12 Heat release rate sensitivity to entrainment rate multiplier 
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Table 8 Engine output sensitivity to entrainment rate multiplier 

 Entrainment Rate 

Multiplier 1.35 

Entrainment Rate 

Multiplier 1 

Torque (N-m) 196 191.78 

BMEP (bar) 5.5 5.37 

BSFC (g/kWh) 245.5 250.95 

Burn Duration 10-90%(deg) 53 52.7 

Ignition Delay (deg) 13.4 17 

 

Increasing entrainment rate multiplier increases turbulence strength and improves 

fuel-air mixing. This causes an increase in peak pressure and heat release rate. Because 

of the higher heat release rate, BMEP and torque increase entrainment rate multiplier.  

Although entrainment rate multiplier has a significant influence on in-cylinder pressure 

and heat release rate, there is little net influence on burn duration and ignition delay; 

although increasing entrainment rate multiplier enhances mixing it also increases the 

heat convection rate between cylinder wall and mixture. Increasing entrainment rate 

multiplier, however, advances B50 location. 
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Ignition Delay Multiplier 

The ignition delay in a diesel engine is defined as the time interval between the 

start of injection and the start of combustion. This parameter impacts ignition delay 

directly. Figure 13 and 14 show the sensitivity with the ignition delay multiplier 

 

Figure 13 In-cylinder pressure sensitivity to ignition delay multiplier 
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Figure 14 Heat release rate sensitivity to ignition delay multiplier 

Table 9 Engine output sensitivity to ignition delay multiplier 

 Ignition delay Multiplier 1.1 Ignition delay Multiplier 2 

Torque (N-m) 196 196.2 

BMEP (bar) 5.5 5.5 

BSFC (g/kWh) 245.5 245.2 

Burn Duration 10-

90%(deg) 

53 47 

Ignition Delay (deg) 13.4 10.5 
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Increasing ignition delay multiplier increases the ignition delay. Thus, the 

fraction of premixed combustion Qpre/Qtotal is higher because more combustible 

mixture is formed during ignition delay period; accordingly, peak pressures are higher 

and a higher maximum heat release rate is attained. The longer ignition delay results in a 

shorter combustion duration ∆θburn since a larger fraction of the fuel burns in a 

premixed fashion. 

Premixed/Diffusion Combustion Rate Multiplier  

Premixed/Diffusion Combustion Rate Multiplier is used to control the premixed 

and diffusion combustion rates. Figure 15 and 16 and Table 10 show with the sensitivity 

with the premixed/diffusion combustion rate multiplier. 

 

Figure 15 In-cylinder pressure sensitivity to premixed/diffusion combustion rate 

multiplier 
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Figure 16 Heat release rate sensitivity to premixed/diffusion combustion rate multiplier 

Table 10 Engine output sensitivity to premixed/diffusion combustion rate multiplier 

 Premixed Combustion Rate 

Multiplier 1.1 

Premixed Combustion Rate 

Multiplier 2.5 

Torque (N-m) 196 196 

BMEP (bar) 5.5 5.5 

BSFC (g/kWh) 245.5 245.99 

Burn Duration 10-

90%(deg) 

53 53 

Ignition Delay (deg) 13.4 12 
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A larger Premixed Combustion Rate Multiplier leads to higher premixed 

combustion rate. Thus, the pressure rise rate is larger ultimately causing a higher peak 

pressure and advancement of the location of peak pressure. The location of combustion 

start is nearly unchanged, but the rise rate of premixed combustion heat release increases 

and location of first peak value advances causing an advance in the diffusion combustion 

period.  In spite of the different rates of heat release curves, the combustion duration is 

unchanged but the B50 location advances nearly 1.5 degrees. Further, the BMEP and 

brake torque output is unchanged; the changes to heat release are small compared to 

those effected by the entrainment and ignition delay multipliers. 

Convection Multiplier 

Convection Multiplier is used for adjusting the convective heat transfer between 

cylinder wall and burned mixture. Figure 17 and 18 and Table 11: Summary of fuel 

property and GT-Power multiplier effects on various combustion phenomena. show the 

sensitivity of the convection heat transfer multiplier. A higher multiplier increases the 

rate of heat transfer between the cylinder gas and walls. 
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Figure 17 In-cylinder pressure sensitivity to convection multiplier 

 

 

Figure 18 Heat release rate sensitivity to convection multiplier 
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Table 11 Engine output sensitivity to convection multiplier 

 Convection Multiplier 1 Convection Multiplier 2 

Torque (N-m) 196 166 

BMEP (bar) 5.5 4.65 

BSFC (g/kWh) 245.5 290 

Burn Duration 10-

90%(deg) 

53 57 

Ignition Delay (deg) 13.4 13.3 

 

Both peak pressure and rate of heat release decrease only slightly as convection 

multiplier is increased. More dramatically, however, is the steep decrease in BMEP and 

brake torque with an increase in the convection multiplier. Even though combustion 

(heat release rate) is largely unaffected by the heat transfer, the increased heat transfer 

during expansion removes energy that otherwise could have been used for useful work. 

Also, increasing convection multiplier increases combustion duration as the heat release 

rate slows toward the later portions of combustion (not shown); location of B50 and 

ignition delay, however, do not change. 
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Combination Summary 

It is necessary to relate the above discussion to how these parameters will 

materialize differences in the studied fuel properties, namely CN, AC, and T90. The 

table summarizes how the various GT-Power parameters can materialize a change in one 

of the fuel properties. For example, the effect of increasing ignition delay multiplier is 

nearly the same as decreasing CN.  Additionally, changing premixed combustion 

multiplier is helpful for the effect of changing CN on pressure or heat release rate.  AC 

plays little effect on combustion characteristics and the only part which it impact is 

flame temperature. Jeihouni, Y. et al [62] provide a relationship between AC and 

density. Thus, changing fuel density may appropriately capture the change in AC.  

Several parameters need to be adjusted to capture the effect of distillation temperature.  

Changing T90 seems to most substantially impact ignition delay, combustion duration, 

and flame temperature.  Thus, it is possible to decrease ignition delay, increase 

entrainment rate multiplier and premixed multiplier to achieve the same effect of 

decreasing distillation temperature. 
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Table 12 Summary of fuel property and GT-Power multiplier effects on various 

combustion phenomena 
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4. BASELINE TESTING  

 

4.1 Overview 

In order to get an idea of how engine size impacting combustion and emissions, 

and build a fundamental relationship between light duty engine and medium duty engine, 

the two engines are tested and simulated at 1500 RPM and nominally 1.88 bar BMEP 

with injection timing changing from 3° BTDC to 15° BTDC. This study investigates the 

effects of engine size on diesel engine performance and combustion characteristics (in-

cylinder pressure, ignition delay, burn duration, and fuel conversion efficiency) using 

experiments between two differently sized diesel engines. The engine and combustion 

characteristics are investigated at various injection timings. Moreover, a 1-D model is 

used to calculate turbulence and reaction temperature with respect to geometric factors. 

The results are compared for the same brake mean effective pressure and show that 

engine size has a significant impact on indicated efficiency, with the larger displaced 

engine having a higher indicated efficiency than the smaller displaced engine. Although 

the larger sized engine has higher turbulence intensities, longer burn duration and higher 

exhaust temperature, the lower area to volume ratio and lower reaction temperature leads 

to lower heat loss to cylinder wall; the differences in heat loss to cylinder wall between 

the two engines increases with increasing engine load. In addition, due to smaller 

volume-normalized friction loss, the larger sized engine has higher mechanical 

efficiency. In the net, since the brake efficiency is a function of indicated efficiency and 

mechanical efficiency, the larger sized engine has higher brake efficiency and the 
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differences in brake efficiency between the two engines increase with increasing engine 

load.  

4.2 Experimental Methodology 

Test Engines 

The different engines are used in the performance comparisons in this paper. The 

different engines are a four-cylinder 4.5 L diesel engine, and a four-cylinder 1.9L diesel 

engine. Some advanced engine technologies that enable the experimental study 

presented here include a high-pressure common rail fuel system coupled with 

electronically controlled direct-injection fuel injectors, a variable geometry turbocharger, 

and a cooled EGR system. Both engines have similar nominal compression ratios and 

similar combustion chambers. Some engine specifications and the properties of the fuel 

used in both engines are provided in Table 13 and 14, respectively. The fuel is 

commercially-available US diesel #2.  

 

Table 13 Specification of the two engines under study 

Engine 
Medium Duty 

Engine 

Light Duty 

Engine 

Bore 106 mm 82 mm 

Stroke 127 mm 90.4 mm 

Number of Cylinders 4 4 

Displacement Volume 4.7L 1.9L 

Compression Ratio 18.3 18.3 

IVC timing -134.4°CA ATDC -132 ATDC 
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Table 13 Continued 

 

EVO timing 116 ATDC 106 ATDC 

Area to volume ratio          

(at 0°CABTDC) 
0.34 [1/cm] 0.465 [1/cm] 

Combustion chamber Toroidal Toroidal 

 

 

Table 14 Summary of the properties of the fuel used in this study 

Density (kg/m3) (ASTM D4052s)  825.5 

Net heat value (MJ/kg) (ASTM D240N)  43.008 

Gross heat value (MJ/kg) (ASTM D240G) 45.853 

Sulfur (ppm) (ASTM D5453) 5.3 

Viscosity (cSt) (ASTM D445 40C) 2.247 

Cetane number (ASTM D613) 51.3 

Hydrogen (% mass) (SAE J1829) 13.41 

Carbon (% mass) (SAE J1829) 85.81 

Oxygen (% mass) (SAE J1829) 0.78 

Initial boiling point (C) (ASTM D1160) 173.4 

Final boiling point (C) (ASTM D1160) 340.5 
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The engines were studied at the operating conditions summarized in the 

following two tables. Notice that an injection timing sweep was studied, where the 

injection timings were the same for both engines. Recognizing the influence of 

geometrical features on combustion phasing, the engines were also evaluated at the same 

50% mass fraction burned location (CA50) injection timing; these timings for each 

engine are also shown in the table. Engine speed was controlled by a DC electric 

motoring dynamometer; where load is controlled through adjustment of the fuel delivery 

rate. 

Table 15 Studied Operating Conditions for low load  

Engines Medium duty (MD) engine conditions /  

Light duty (LD) engine conditions 

Speed (RPM) 1500 

Torque (Nm) 67.66 (MD) / 28.56 (LD) 

BMEP (bar) 1.88 

Fuel flow rates (g/s) 1.003 (MD) / 0.45 (LD) 

Injection timings (deg BTDC) Variable between 6 and 15, in 3 deg 

increments, for both engines 

CA50 (deg BTDC) injection 

timings 

Variable between 8.7 and11.5, depending on 

engine 
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Table 16 Studied Operating Conditions for medium load 

Engine Medium duty engine conditions / Light duty 

engine conditions 

Speed (RPM) 1500 

Torque (N-m) 203.3 (MD) / 85.85 (LD) 

BMEP (BAR) 5.65 

Fuel flow rates (g/s) 2.14 (MD) / 1.06 (LD) 

Injection timing (deg BTDC) Variable between 6 and 15, in 3 deg 

increments, for both engines 

CA50 (deg BTDC) injection 

timing 

Variable between 8.7 and11.5, depending on 

engine 

Injection pressure (bar) 450 (MD) / 550 (LD) 

 

The design specifications of the two engines’ injectors are reported in Table 17. 

Both engines have the same number of holes per nozzle and similar spray cone angles. 

As described below, an engine simulation is used to help distinguish the differences 

between the two engines. The injection rate profiles which are used in the simulation are 

shown in Figure 19. Notice the two engines’ injectors have similar mass flow rates for 

each respective load condition, with the exception of injection duration that reflects the 

different engine displacements. For matching the same BMEP, the fuel flow rates are 

different, as shown in Table 16. Thus, the needle lift currents, at the same BMEP, 

between the two engines are different.  
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Table 17 Summary of injectors’ design specifications 

Engine  Medium Duty Engine Light Duty Engine 

Injector Type Denso G4 Bosch CRIP 2.2 

Number of Holes per 

Nozzle 

7 7 

Spray Cone Angle 147° 149° 

 

 

 

 

   
Figure 19: Injection profiles between the two engines at a) low-load and b) medium-

load conditions. Each condition is at 1500 rev/min engine speed and injection timing = -

9°ATDC  

 

Several measurements are taken at each operating condition from both engines. 

A typical, commercially-available automotive emission analyzer system (Horiba MEXA 

7000) is used to measure gaseous species of NOx, HC, CO, CO2 and O2 concentrations 

in the engine’s exhaust and intake (intake CO2 concentration is measured for calculation 

(b) (a) 



 

59 

 

of EGR level). The measuring techniques for the gaseous species are heated 

chemiluminescence for NOx, heated flame ionization detection (FID) for HC, 

nondispersive infrared (NDIR) for CO and CO2, and magneto-pneumatic for O2. Gas 

samples are delivered either through sample lines heated to 190°C (to NOx and HC 

analyzers, and smoke meter) or through sample lines cooled and dehumidified (CO, 

CO2, and O2 analyzers). Each analyzer is calibrated at the start of each test and checked 

routinely throughout the day’s testing. Moreover, a commercially-available smokemeter 

(AVL 415S) is used to measure smoke concentration, reported as filter smoke number 

(FSN). Gaseous species, along with speed (optical dynamometer-mounted disk), torque 

(dynamometer-mounted load cell), fuel flow rate (using positive displacement flow 

meter), air flow rate (using laminar flow element), and several temperatures 

(thermocouples) and static pressures (strain-gage transducers) are measured at 1 Hertz. 

All crank angle resolved measurements (rail pressure, needle lift, injection 

current, and in-cylinder pressure) are collected on a 0.2° crank angle basis for 300 

consecutive cycles. The analysis is performed on the average of the 300 cycles to 

integrate cyclic variation and get a good measurement of the true steady-state operation.  

In-cylinder pressure is measured from all 4 cylinders of each engine every 0.2º 

CA using commercially-available (Kistler 6056A) piezo-electric pressure transducers. 

The ordinary calibration and fidelity checks are carried out according to [63]. The 

reported pressure data are from a collection of 300 consecutive cycles. A low-pass zero-

phase IIR (infinite impulse response) filter is used to remove high frequency 

reverberations so that relatively smooth heat release rate profiles can be obtained (it is 
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noted such pressure filtering is carefully monitored to prevent data shifting or excessive 

loss of signal). A filter order of three is used with a cutoff frequency of about 10% of the 

sampling frequency (1800 samples/revolution). The filter properties are determined so 

that the peak value and width of the pressure derivative maximums associated with 

combustion events are minimally affected. 

The engines’ in-cylinder pressure traces under a motored condition are shown in 

Figure 20. The maximum motored cylinder pressures are different. These features 

suggest the engines’ compression ratios are slightly different, in spite of having the same 

nominal values of 18.3:1 (this is common for actual compression ratios to slightly differ 

from reported compression ratios). To create a basis of comparison, the effective 

compression ratio (defined as maximum motored pressure divided by IVC pressure, 

similar to an effective pressure ratio) is determined and reported as 14.7:1 for the light-

duty engine and 14.3:1 for the medium-duty engine. The differences between geometric 

compression ratio and effective compression ratio are caused by various intake and 

exhaust valve events. Moreover, differences in in-cylinder pressure are related to 

different heat transfer during combustion, as described below.  
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Figure 20: In-cylinder pressure for the two studied engines of different displacement 

and S/B ratio at a motored condition. 

 

4.3 Results and discussion for effects of displacement and S/B on efficiency 

The brake fuel conversion efficiency is a function of net indicated thermal 

efficiency, combustion efficiency, and mechanical efficiency. In this content, brake fuel 

conversion efficiency is brake work divided by delivered fuel energy. Net indicated 

thermal efficiency is net indicated work divided by released fuel energy. Combustion 

efficiency is released fuel energy divided by delivered fuel energy. Mechanical 

efficiency is brake work divided by net indicated work. Generally, a shorter burn 

duration (phased properly), lower heat losses, higher mixture ratios of specific heats, and 

lower pumping losses result in relatively higher indicated thermal efficiencies. 

Combustion efficiency tends to be very high in diesel engines (i.e., greater than 98%), 

but can be impacted by mixture over-leaning, poorly phased combustion, and some 
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piston ring crevice flow. Mechanical efficiency is impacted by friction losses from 

piston rings, bearings, and engine accessories. This section investigates all factors 

impacting the effects of engine size on brake efficiency by using experimental data and 

simulation for a sweeping injection timing (15° BTDC to 3° BTDC) and low load and 

medium load conditions (BMEP 1.88 and 5.65 bar, respectively). The uncertainty is 

calculated for the experimental data corresponding to 95% confidence. 

 

Brake Fuel Conversion Efficiency 

Figure 21 shows brake fuel conversion efficiency with different injection 

timings at the low and medium load conditions of the two engines. Over the range of 

studied injection timings, both engines show some sensitivity to injection timing but it is 

not dramatic. Of interest to this study is the difference in efficiency between the two 

engines. Medium duty engine has a slightly higher brake fuel conversion efficiency at 

low load condition but a much higher brake fuel conversion efficiency at medium load 

condition. As mentioned above, the brake fuel conversion efficiency is a function of net 

indicated thermal efficiency, combustion efficiency, and mechanical efficiency. In order 

to clarify engine size effect on brake efficiency, factors impacting the three efficiencies 

will be discussed.  
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Figure 21: Comparison of brake fuel conversion efficiency between both engines at a) 

low-load and b) medium-load conditions as functions of injection timing corresponding 

to 95% confidence. 

 

Net Indicated Thermal Efficiency 

Generally, good combustion phasing, shorter burn duration (phased properly), 

high ratios of specific heats of the burned gas mixture, lower pumping losses (i.e. high 

pumping efficiency), and lower heat transfer losses result in relatively higher net 

indicated thermal efficiency. Figure 22 shows net indicated thermal efficiency of both 

engines at various injection timings of the low load and medium load conditions. The 

light duty engine mostly has slightly higher indicated thermal efficiency among the 

studied injection timings at low load condition, but similar performance at medium load 

condition. The reason might be that at low load condition, due to shorter ignition delay, 

combustion of light duty engine is phased better. Thus, in order to isolate combustion 

phasing effects from engine size effects, the injection timing is adjusted independently 

(a) (b) 
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on each engine for matching 50% mass fraction burn locations (8.7°CA ATDC and 

11.5° CA ATDC). The comparison of net indicated thermal efficiency at same MFB50 is 

shown in Table 18. Similarly, light duty engine has higher indicated thermal efficiency 

at low load condition, but similar efficiency at medium load condition. The various 

phenomena affecting combustion phasing, including ignition delay, combustion 

duration, and heat transfer are discussed further next.  

 

    

Figure 22: Comparison of net indicated thermal efficiency between the two engines at a) 

low-load and b) medium-load conditions as functions of injection timing corresponding 

to 95% confidence. 

(b) (a) 
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Table 18: Comparison of net indicated thermal efficiency between the two engines at a) 

low-load and b) medium-load conditions at the same CA50 location (effected through 

different injection timings) 

Load Conditions Low Load Condition Medium Load Condition 

Engine Medium Duty 

Engine 

Light Duty 

Engine 

Medium Duty 

Engine 

Light Duty 

Engine 

Indicated Thermal 

Efficiency at 8.7°CA 

ATDC 50%MFB 

0.39 

 

0.43 0.41 0.42 

 

Indicated Thermal 

Efficiency at 11.5°CA 

ATDC 50%MFB 

0.41 

 

0.43 

 

0.40 

 

0.40 

 

 

Combustion Efficiency 

To continue the analysis of brake fuel conversion efficiency, combustion 

efficiency, shown in Figure 23, quantifies the extent of complete oxidation of fuel 

burned in the combustion process; combustion inefficiency is revealed by the presence 

of unburned hydrocarbons (HC) and carbon monoxide (CO) in the exhaust. Both engines 

at the low and medium load conditions exhibit high combustion efficiency (higher than 

98 percent), which is typical of conventional diesel combustion. In detail, the two 

engines exhibit slightly different trends of combustion efficiency with increasing load; 
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these are very small and likely insignificant. Higher turbulence intensity on medium duty 

engine, shown in Figure 27, provides promotion of fuel-air mixture formation, which 

may contribute to this engine’s higher combustion efficiency. 

  

Figure 23: Comparison of combustion efficiency between both engines at a) low-load 

and b) medium-load conditions as functions of injection timing corresponding to 95% 

confidence. 

 

 

Mechanical Efficiency 

The final parameter for analysis in the comparison of brake fuel conversion 

efficiency is mechanical efficiency, which is shown in Figure 24a. Further, to assist the 

analysis, the friction losses of indicated power between both engines are shown in 

Figure 24b. The mechanical efficiency of the medium-duty engine is 6%-10% higher 

than the light-duty engine at the two load conditions. Generally, contributors to friction 

include that from piston rings and bearings, pumping losses, and engine accessories. 

(a) 
(b) 
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Although the long-stroke engine causes higher piston velocities and swept surfaces, 

increasing piston and piston ring losses [64], the higher cylinder pressure with higher 

effective compression ratio increases the friction from the piston rings and bearings. In 

balance, the impact of higher effective compression ratio is stronger, resulting in higher 

mechanical efficiency for the medium-duty engine. 

      

Figure 24 a) Mechanical efficiency and b) friction loss as a fraction of indicated power 

for both engines at low and medium load conditions as functions of injection timing 

corresponding to 95% confidence. 

 

 

Ignition Delay 

The variations in ignition delay with respect to injection timing at the two 

conditions of the two engines are compared in Figure 25a. Comparing to light-duty 

engine, ignition delay of medium-duty engine is higher, but the difference decreases 

with increasing engine load. Ignition delay is mainly impacted by mixture temperature 

(b) 

(a) 
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and air/fuel (A/F) ratio. Thus, the mixture temperature at injection timing and A/F ratio 

are shown in Figure 25. At the two load conditions, lower mixture temperature and 

higher A/F ratio (relatively leaner mixture) in medium duty engine seems to result in a 

longer ignition delay. With increasing engine load, due to increasing mixture 

temperature at time of injection and decreasing A/F ratio of both engines, ignition delay 

decreases further. Ignition delay will increase as timing is advanced from top dead 

center, because the fuel is injected into a lower-temperature environment, thus increasing 

the time it takes to prepare and ignite the fuel.  Similar with net indicated thermal 

efficiency discussions, the comparison of ignition delay at same MFB50 is shown in 

Table 19. The light duty engine has shorter ignition delay and the ignition delay 

difference for the same CA50 is larger than the difference for the same injection timing. 

The reason is that the light duty engine has relative later injection timing for matching 

the same CA50 and the ignition delay decreases with injection timing delayed.  
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Figure 25  (a) Ignition delay, (b) mixture temperature at time of injection, and (c) 

air/fuel (A/F) ratio for the two studied engines at low and medium load conditions, as 

functions of injection timing corresponding to 95% confidence. 

(b) (a) 

(c) 
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Table 19 Comparison of ignition delay between the two engines at a) low-load and b) 

medium-load conditions at the same CA50 location (effected through different injection 

timings) 

Load Conditions Low Load Condition Medium Load Condition 

Engine Medium Duty 

Engine 

Light Duty 

Engine 

Medium Duty 

Engine 

Light Duty 

Engine 

Ignition delay at 

8.7°CA ATDC 

50%MFB 

14.7 

 

11.3 9.5 8.8 

 

Ignition delay at 

11.5°CA ATDC 

50%MFB 

14.1 

 

10.7 

 

9.3 

 

8.1 

 

 

Burn Duration 

Figure 26 shows the mass fraction burned calculated from measured in-cylinder 

pressure for the two engines at the same CA50 location ((8.7°CA ATDC and 11.5° CA 

ATDC), low and medium load conditions.  For the two different CA50 locations, the 

mass fraction burned curves exhibit similar trend with engine size changing. Due to 

shorter ignition delay of light duty engine (as shown in Table 19), the injection timing is 

relatively delayed for matching the same CA50 location. Thus, although the light duty 

engine has shorter ignition delay, later injection timing along with the higher mixture 
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temperatures (due to higher compression ratio) has stronger impact on burn rate, 

requiring a slightly delayed combustion start location to achieve matched 50% burn 

fraction location. For the two load conditions, the mass fraction burned curves of the 

medium-duty engine are less steep than those of the light-duty engine. The burn rate is a 

balance result between fuel quantity and in-cylinder flow condition which is impacted by 

turbulence intensities (as shown in Figure 27). The turbulence intensity (u’) is calculated 

using a zero-dimensional turbulence sub-model in the engine simulation. Turbulence 

intensity behavior through the engine cycles are similar between the engines for different 

load conditions, which has a rapid increase at the time of intake valve opening, then a 

gradual decrease due to compression.  In the beginning of combustion, turbulence is 

increased again by the rapid compression of mixture ahead of reaction. Generally, 

turbulence intensity, especially the first turbulence intensity peak value is impacted by 

mean flow velocity, which is related to intake flow velocity and piston speed. Thus, at 

the same engine speed, the medium-duty engine with longer stroke has a higher piston 

speed which causes the larger first peak; meanwhile, because of more diesel burned in 

combustion duration, the compression condition of mixture ahead of flame is 

pronounced, leading to a larger second peak value. The higher turbulence intensity on 

medium duty engine would tend to result in higher burn rate and shorter burn duration, 

but the effect of injecting more fuel and higher mixture temperatures (due to higher 

compression ratio), shown in Figure 28 in the light-duty engine seems to cause the light-

duty engine to have a higher burn rate and thus relatively shorter burn duration.  
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The mixture gas temperatures of Figure 28 are calculated assuming ideal gas 

behavior and using measured in-cylinder pressure and calculated cylinder volume (from 

measured crankshaft angular location). At low load, Figure 28a show that the medium 

duty engine has lower peak mixture gas temperatures, but maintains a more constant 

mixture gas temperature over the duration of the combustion event. This may be due to 

the slightly longer combustion duration and lower compression ratio. As discussed in 

previous section, the net indicated thermal efficiency is impacted by burn duration and 

heat transfer losses. In the study, although light duty engine has higher peak mixture gas 

temperature which tends to increase heat transfer, the effect of shorter burn duration 

seems to dominate and result in higher indicated efficiency. With engine load increasing, 

Figure 28b shows that the mixture gas temperature increases, but the temperature 

difference between the two engines decreases when operating at medium load. This 

would tend to cause the light-duty engine efficiency to increase even further above that 

of the medium-duty engine. The medium duty engine’s burn rate more closely matches 

that of the light-duty engine, however, at medium load condition, thus making the 

combustion phasing nearly the same. These observations suggest combustion phasing 

has a stronger impact on indicated efficiency near the matched MFB50 location than 

heat transfer.  
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Figure 26 Burned mass faction profiles between the two engines at a) low-load and b) 

medium-load conditions at the same CA50 location (effected through different injection 

timings)  

(a) 

(b) 



 

74 

 

 

 

Figure 27 Simulated turbulence intensity for the two studied engines at a) low load and 

b) medium load conditions, 11.5° CA ATDC CA50 location. 
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Figure 28 Mixture gas temperature between the two engines at a) low-load and b) 

medium-load conditions, 11.5° CA ATDC CA50 location (effected through different 

injection timings) 

 

Heat Transfer to Cylinder Wall 

The heat transfer to cylinder walls, as fraction of fuel energy, between the two 

engines for different load conditions are shown in Figure 29. As cylinder size increases, 

(a) (b) 
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the fractional heat transfer deceases and this difference increases as engine load 

increases. Moreover, the fractional heat transfer of light duty engine is more sensitive to 

injection timing. As explained in burn duration section, mixture gas temperature, as 

shown in Figure 28, impacts heat transfer to cylinder wall; on the other side, with engine 

size increasing, the ratio of surface area to volume decreases, as shown in Table 13. The 

final result is lower heat rejection to cylinder wall for the larger-sized engine. As engine 

load increases, the mixture gas temperature increases for both engines. The coolant fluid 

temperature of both engines are similar, maintaining at 90-92°C. Higher mixture 

temperatures mean larger temperature difference between bulk gas and cylinder wall, 

causing increased heat transfer to cylinder wall. Meanwhile, the proportion of the area-

to-volume effect increases, resulting in a larger difference of heat transfer to cylinder 

wall between two engines. Moreover, the comparison of heat transfer to cylinder wall at 

same MFB50 is shown in Table 19. Similarly, the light duty engine has higher heat 

transfer to cylinder wall and the heat transfer differences between the two engines 

increase with the engine load increasing. 
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Figure 29 Comparison of heat rejection to cylinder wall between two engines at a) low 

load and b) medium-load conditions as functions of injection timing corresponding to 95% 

confidence. 

 

Table 20 Comparison of ignition delay between the two engines at a) low-load and b) 

medium-load conditions at the same CA50 location (effected through different injection 

timings) 

Load Conditions Low Load Condition Medium Load Condition 

Engine Medium Duty 

Engine 

Light Duty 

Engine 

Medium Duty 

Engine 

Light Duty 

Engine 

Heat transfer to 

cylinder wall at 

8.7°CA ATDC 

50%MFB 

0.413  0.425 0.343 0.397 

 

(a) (b) 
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Table 20 Continued 

Heat transfer to 

cylinder wall at 

11.5°CA ATDC 

50%MFB 

0.395 0.424 0.344 0.443 

 

  



 

*Section 5.3 is reprinted with permission from Li, J., Bera, T., Parkes, M., and Jacobs, 

T., "A Study on the Effects of Cetane Number on the Energy Balance between 

Differently Sized Engines," SAE Technical Paper 2017-01-0805, 2017 
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5. FACE FUELS TESTING* 

5.1 Overview 

In order to identify potential of fuel effects on combustion and engine behavior 

between light- and medium duty diesel engines, tests were performed with a single 

injection strategy, the timing of which was switched from 15 BTDC to 6 BTDC and 

controlled to maintain a constant combustion phasing (CA 50 –10deg ATDC) at all loads 

either. Injection quantity was adjusted for different duty engines, to match the same 

BMEP output. Boost pressure and injection pressure were kept the same value between 

two different duty engines.  

 

5.2 Results and discussion for effect of cetane number on combustion and emissions 

between different duty engines 

In order to discuss the potentially changing influence of CN on efficiency and 

emissions as engine size changes, it is best to first study the effects and potential 

differences of CN on combustion characteristics. To this end, the effects of CN on 

combustion characteristics are quantified using experimental data for a sweeping 

injection timing (15° before top dead center (BTDC) to 3° BTDC) at low load and 

medium load conditions (1.88 and 5.65 bar BMEP, respectively) between the MD and 

LD engines. As described above, combustion phasing effects are isolated from CN and 

engine size effects by matching the 50% burn location for both engines, loads, and fuels, 

to equal 10°ATD
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Heat Release Rate 

As shown in Figure 30 increasing the CN advances combustion phasing of both 

engines, under both load conditions. Figure 30(a) shows heat release rate (HRR) with 

crank angle for both engines and fuels at low load (-12° after top dead center, or ATDC, 

injection timing) while Figure 30(b) shows the same at mid load (-9° ATDC injection 

timing). Increasing the CN decreases the magnitude of the peak HRR for the MD engine, 

and advances its location for both engines at both load conditions. The relative advance 

in heat release of the LD engine relative to the MD engine for both load points and fuels 

is attributed to the compression ratio being slightly higher for the LD engine. This 

caused the temperatures, and pressures (with the pressures shown in Figure 20) to be 

higher at start of injection. This effect appears amplified at the mid load condition, 

where injection timing is slightly later. Moreover, a clear dual-stage HRR in the MD 

engine at the medium load condition, operating on the high CN fuel (Figure 30 (b)) can 

be observed. This does not appear in the LD engine under the same load condition and 

fuel. In fact, this observation reveals the MD engine’s higher sensitivity to CN than the 

LD engine. The reason may be due to a longer burn duration and lower heat transfer to 

the cylinder walls of the MD engine. This concept is explored in more detail below.  

Figure 31 and Figure 32 show the HRR for the two studied fuels at the same 50% 

mass fraction burn location, at the low and medium load conditions for both engines. 

Contrary to the matched injection timing data of Figure 30, increasing the CN increases 

the magnitude of the HRR and advances its location for both engines at low load 
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conditions. This result is attributed to the nearly all-premixed burn taking place at low 

load; since both fuels’ mixtures are nearly fully-premixed, the chemical component of 

ignition delay of the higher CN fuel causes it to ignite and burn more rapidly allowing a 

higher ROHR (compared to the low CN fuel). The opposite phenomenon is observed at 

medium load (Figure 32). Now, at the higher load condition requiring a longer injection 

duration, the short ignition delay of the high CN fuel causes a necessary fraction of 

diffusion burning, leading to less premixed burn and lower HRR magnitude. 

Another noticeable difference resulting from the two different fuels is a low 

temperature heat release rate (LTHR) for the low CN fuel observed in both engines. This 

is particularly noticeable at the low load condition. LTHR is not observed for the high 

CN fuel under any test condition. The magnitude of the LTHR is larger in the MD 

engine and this could be due to both a longer lift-off length (made possible by the larger 

bore) and / or the compression ratio being slightly lower. Both factors will cause the 

resulting temperatures and pressures to be lower and increasing the magnitude of the 

LTHR. With increasing engine load the observable magnitude of the LTHR decreases, 

and indeed, cannot be observed in the LD engine under medium load. It should be noted 

that this result doesn’t suggest that the LD engine, or indeed the high CN fuel do not 

have LTHR reactions, rather the transition to high temperature heat release, masks the 

appearance of LTHR in the ROHR profiles.  
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Figure 30 Heat release rate for the medium-duty (MD) and light-duty (LD) engines at a) 

low load (1500 RPM, nominally 1.88 bar BMEP, -12° after top dead center, or ATDC, 

injection timing) and b) medium load (1500 RPM, nominally 5.65 bar BMEP, -9° ATDC 

injection timing) conditions 

 

 

 

 

 

(b) (a) 
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Figure 31 Heat release rate of the two studied CN fuels of a) MD engine and b) LD 

engine operating at the same CA50 location (effected through different injection 

timings) and low load condition  

 

 

  

Figure 32 Heat release rate of the two studied CN fuels of a) MD engine and b) LD 

engine operating at the same CA50 location (effected through different injection 

timings) and medium load condition   

(a) 
(b) 

(a) (b) 
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Ignition Delay 

The results of Figure 30 through Figure 32 are supported by the various ignition 

delays, shown in Figure 33. Again, as expected, increasing CN decreases ignition delay 

(defined as time between start of injection and 1% mass fraction burned location) for 

both engines at both load conditions. The ignition delay of the MD engine was relatively 

longer than the LD engine, which corresponds to the observed HRR trends discussed 

above. It was also noticed that the difference in the MD engine’s ignition delay, due to 

changing CN, was larger than the LD engine’s difference. This was true for most of the 

test conditions. Specifically, the ignition delay at the low load condition  (12° BTDC 

injection timing) changed by over 4 crank angle degrees for the MD engine, while it 

changed by less than 2 crank angle degrees for the LD engine, as the fuel was changed 

from the low to high CN fuel. Similarly, ignition delay at the medium load condition  (9° 

BTDC injection timing) changed by 5 crank angle degrees for the MD engine, while it 

changed by approximately  2 degrees for the LD engine, as the fuel changed from the 

low to high CN fuels. Moreover, it is worth noting that the MD engine misfired when 

injection timing was delayed further. This may have been due to a relatively longer 

ignition delay, and a lower in cylinder pressure and temperature. 

One trend that may be interesting to note is the at-times increasing ignition delay 

with the MD engine at both low load and medium load conditions for the low CN fuel, 

and for the high CN fuel at late injection timings. It seems this increasing ignition delay 
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trend as injection timing retards is due to the MD engine’s start of main combustion 

occurring later in the expansion stroke. This same behavior does not seem to happen 

with the LD engine, where start of main combustion occurs before or near TDC. Again, 

the difference in start of main combustion between the two engines, as described above, 

seems to be due to lower in-cylinder temperatures resulting from the small difference in 

compression ratio. 

The variations in ignition delay of the two CN fuels under matched 50% MFB 

conditions are compared in Table 21. Similar to the observed behavior at same injection 

timings (Figure 33), increasing CN reduces the ignition delay (start of injection to 1% 

MFB).  The magnitude of the change due to increasing CN in ignition delay increases 

with increasing engine load. It should be noted that for the matched 50% MFB location, 

injection timings are adjusted to different values. This result in different mixture 

temperatures of the studied conditions thus preventing a direct comparison in data 

presented between Table 21 and Figure 33. 



 

86 

 

  

Figure 33 Ignition Delay for the MD and LD engines at a) low load and b) medium load 

conditions with the two studied CN fuels as functions of injection timing. 

 

 

Table 21 Ignition delay for the two engines at the same CA50 location, low and mid load 

conditions (effected through different injection timings) 

Ignition delay (degrees) Low load Medium load 

MD engine 15 (low CN) 

12.7 (high CN) 

14.7 (low CN) 

9.37 (high CN) 

LD engine 11.2 (low CN) 

9.3 (high CN) 

12.1 (low CN)  

6.7 (high CN) 

 

 

 

 

(a) (b) 
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Mass Fraction Burned 

Figure 34(a) show the relationship between mass fraction burned (MFB) and 

crank angle for both engines and fuels at low load (12° BTDC, injection timing) while 

Figure 34(b) shows the same at mid load (9° BTDC injection timing). An increase in CN 

advances combustion phasing and increases the combustion duration of both engines at 

both load conditions. This agrees with HRR and ignition delay characteristics discussed 

above. Moreover, Figure 35 and 8 show the MFB curves with the two fuels at the 

matched 50% MFB location for both the low and medium load conditions and both 

engines. The MFB curves with the two fuels at the matched 50% MFB location are 

similar to the observed characteristics at the same injection timings.  

It should be noted that the initial burn rate of low CN fuel at the low load 

condition (Figure 35) is very low. This corresponds to the LTHR period in the HRR plot 

shown in Figure 31. After the LTHR burn period, the two fuels have similar burn rates, 
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until the mass fraction burned reaches near 60 percent. In later phases of combustion, 

increasing the CN reduces the burn rate resulting in a longer burn duration.  

At the mid load condition (Figure 36) the time taken for high CN fuel to ignite is 

relatively shorter. This reduces the burn rate and leads to a longer burn duration. The 

influence of LTHR does not appear at medium load on the MFB curve for either engine. 

 

  

Figure 34 Mass fraction burned for the medium-duty (MD) and light-duty (LD) engines 

at a) low load (1500 RPM, nominally 1.88 bar BMEP, -12° after top dead center, or 

ATDC, injection timing) and b) medium load (1500 RPM, nominally 5.65 bar BMEP, -

9° ATDC injection timing) conditions 

(a) 

(b) 
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Figure 35 Mass fraction burned profiles of the two studied CN fuels of a) MD engine 

and b) LD engine operating at the same CA50 location (effected through different 

injection timings) and low load condition 

 

 

  

Figure 36 Mass fraction burned profiles of the two studied CN fuels of a) MD engine 

and b) LD engine operating at the same CA50 location (effected through different 

injection timings) and medium load condition 

(a) (b) 

(a) (b) 
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Net Indicated Fuel Conversion Efficiency 

The results presented in the above section enable analysis of the net indicated 

fuel conversion efficiency (IFCE). The net IFCE is the product of net indicated thermal 

efficiency (ITE) and combustion efficiency (CE). It is essentially the net indicated work 

divided by the delivered fuel energy. It follows that the net ITE is the net indicated work 

divided by the released fuel energy. CE is the released fuel energy divided by the 

delivered fuel energy. This metric quantifies the extent of combustion from a heat 

release perspective.  

Figure 37 shows net IFCE for the two different fuels at both the low and medium 

load conditions in both engines. For both engines, CN has a small and non-conclusive 

effect on the net IFCE at the low load condition. At the medium load condition, 

increasing CN generally decreases the net IFCE for the MD engine, and increases net 

IFCE for the LD engine. The net IFCE at same 50% MFB location, shown in Table 22, 

are similar to the observed performance at the same injection timings; there is, however, 

a dramatic increase in IFCE for the LD engine at medium load condition with increased 

CN. 

Generally a shorter burn duration (phased correctly), lower heat losses, and better 

combustion results in relatively higher IFCE [6]. At the low load condition there appears 

to be a near-equal trade-off between the higher combustion efficiency of the high CN 

fuel (which can increase net IFCE and discussed more thoroughly in the below section), 
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and the longer burn duration of the high CN fuel (which can reduce net IFCE and as 

shown in Figure 36(b)). 

The medium-load condition, however, first reveals the different sensitivity of the 

LD engine to CN effects than MD engine. As shown in Table 22, IFCE decreases a 

small amount for the MD engine at medium load, but increases by a large amount for the 

LD engine at medium load. A small part of this is different burn durations, as can be 

seen in Figure 36. More dominantly, however, seems to be combustion efficiency 

effects. These effects are discussed next. 

   

Figure 37 Net Indicated Fuel Conversion Efficiency for the MD and LD engines at a) 

low load and b) medium load conditions with the two studied CN fuels as functions of 

injection timing 

(a) (b) 
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Table 22 Net Indicated Fuel Conversion Efficiency for the two engines at the same 

CA50 location, low and mid load conditions (effected through different injection 

timings) 

Net Indicated Fuel 

Conversion Efficiency 

Low load Medium load 

MD engine 0.385 (low CN) 

0.393 (high CN)  

0.428 (low CN) 

0.417(high CN)  

LD engine 0.455 (low CN) 

0.46 (high CN)  

0.426 (low CN)  

0.441 (high CN)  

 

 

 

Combustion Efficiency 

Continuing the discussion concerning differences in IFCE between the two fuels 

and engines, the variations in combustion efficiency with respect to the two fuels at the 

test conditions are compared in Figure 38. Increasing CN increases the combustion 

efficiency of both engines at both load conditions. It is worth noting that the MD 

engine’s combustion efficiency drops dramatically when the injection timing was 

delayed to 9° BTDC; further retard in injection timing caused engine misfire. These 

behaviors support the ignition delay characteristics discussed above and in the context of 

Figure 33. The sensitivity of the combustion efficiency on the CN for different sized 

engines changes with engine load. At the medium load condition, the impact of CN on 
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the combustion efficiency of the MD engine is small; as discussed above, the longer 

burn duration of the high CN fuel resulted in a lower IFCE. The opposite, however, is 

true for the LD engine which seems to have a much higher sensitivity (at least in the 

context of CE, which is calculated from measurements of HC and CO emissions) to CN 

than the MD engine. Specifically, note the CE increases by around 2 percentage-points 

in the injection timing range used to achieve a 50% MFB location of 10° ATDC (i.e., the 

timing corresponding to those data shown in Table 22. This 2 percentage-point increase 

is nearly equal to the difference in IFCE for the LD engine at MD conditions. Thus, in 

spite of having a slightly longer combustion duration at medium load with the high CN 

fuel (Figure 36(b)), the substantially higher combustion efficiency at medium load with 

the high CN fuel causes the LD engine’s efficiency to increase with higher CN. 

Although this is a rather nuanced result, it’s important to note the differing sensitivity of 

an engine’s combustion and efficiency behavior to CN based on its size. The discussion 

will now transition to evaluating potential differences in emissions between the two 

engines. 
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Figure 38 Combustion efficiency for the MD and LD engines at a) low load and b) 

medium load conditions with the two studied CN fuels as functions of injection timing 

 

 

Brake Specific Nitrogen Oxides 

Figure 39 shows the brake specific nitrogen oxides (BSNOx) emissions with 

respect to the two fuels, the two conditions, and the two engines at the same injection 

timing. At the low load condition, the high CN fuel resulted in lower NOx emissions on 

both engines for most test conditions. The low CN fuel appears to cause higher NOx 

emissions because the long ignition delay leads to a higher fraction of pre-mixed 

combustion. Pre-mixed combustion leads to a higher rate of heat release (ROHR) and 

thus higher reaction temperatures. It follows that high CN fuel (which give rise to lower 

ROHR, but has a longer combustion duration) leads to lower NOx emissions. As NOx 

emissions are linked to temperature [6] the higher fraction of premixed combustion and 

higher (ROHR) leads to higher NOx emissions.  

(a) 
(b) 
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At the medium load condition, ignition delay is shorter with the high CN fuel in 

the MD engine, and advances combustion. The resulting low premixed heat release and 

long diffusion heat release results in lower overall burn temperatures. In contrast, low 

CN fuel increases ignition delay and leads to relatively high percentage of premixed 

combustion, leading to a larger HRR. These factors tradeoff to a smaller extent with the 

LD engine, where the high CN fuel had slightly higher NOx emissions than the low CN 

fuel.  

Table 23 shows the BSNOx emissions for the matched 50% MFB locations at the 

low and medium load conditions of both engines. Similar to the BSNOx emissions at the 

matched injection timings, the low CN fuel has higher BSNOx emissions for both 

engines at the low load condition. Correspondingly, the low CN fuel results in higher 

BSNOx emissions in the MD at medium load, but slightly lower BSNOx emissions for 

the LD engine at medium load. The differing trend of BSNOx for the LD engine at 

medium load is again believed to be attributed to the LD engine’s different sensitivity to 

CN, in the context of hydrocarbons and combustion efficiency. Specifically, the higher 

BSNOx with low CN fuel at low load and medium load for MD engine all seem to be 

largely related to the CN effects on combustion. The LD engine at medium load, 

however, experiences a large difference in combustion efficiency; specifically, the 

higher CN fuel has a higher combustion efficiency. It is believed that the more complete 

burn perhaps contributes to higher NOx formation for the LD engine at medium load 

condition, in spite of the overall longer burn duration presumably at lower temperatures 

(i.e., in spite of the CN effects on combustion, which seem to dominate the NOx 
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behavior at other conditions for both engines). The same idea might explain why 

BSNOx for the MD engine using low CN fuel falls below that of the high CN fuel at the 

9° BTDC injection timing (Figure 39); this point also corresponds to that where 

combustion efficiency is also low (Figure 38) 

 

Figure 39 BSNOx for the MD and LD engines at a) low load and b) medium load 

conditions with the two studied CN fuels as functions of injection timing 

 

Table 23 BSNOx for the two engines at the same CA50 location, low and mid load 

conditions (effected through different injection timings) 

BSNOx (g/kW-h) Low load Medium load 

MD engine 7.9 (low CN)  

5.83 (high CN) 

5.27 (low CN) 

3.97 (high CN) 

LD engine 11.06 (low CN) 

7.32 (high CN) 

6.58 (low CN)  

6.68 (high CN) 

 

(a) 

(b) 
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Filter Smoke Number 

In general, it would be expected that filter smoke number (a surrogate indication 

of soot and in some cases particulate matter) follows an opposite trend of BSNOx 

emissions, considering the common soot-NOx tradeoff of diesel combustion. A high 

combustion temperature will typically lead to a lower FSN, while a low combustion 

temperature will typically lead to a higher FSN. Figure 40 shows the filter smoke 

number (FSN) with respect to the two fuels at the low and medium load conditions for 

both engines at the same injection timing. As expected, FSN is effectively the opposite 

of NOx emissions. That is, the high CN fuel results in a higher FSN for both engines. 

 At low load, it should be noted that for all the test conditions, the FSN is very 

small (lower than 0.17). This implies that FSN is very sensitive to changing in-cylinder 

conditions, such as the local A/F ratio etc. This is also reflected in the large uncertainty 

bars for these data. At the medium load condition, increasing the CN increases FSN on 

both MD and LD engines. It appears that in the MD engine, as injection timing is swept 

from 15˚BTDC to 6˚BTDC, FSN number increases. This trend for the MD engine 

when using the low CN, however, is not as strong (and even changes direction at later 

injection timings).   This result suggests that injection timing has a relatively smaller 

influence on the relative roles of premixed and diffusion burning with the low CN fuel. 

In other words, the low CN fuel is (for these studied timings) dominating the ignition 

delay behavior rather than in-cylinder conditions at the start of injection. This likely only 
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happens within the MD engine because of the size influence in mixture preparation for 

in-cylinder ignition. 

Table 24 shows the FSN for the two studied fuels at the same 50% MFB 

location, at the low and medium load conditions of both engines. The FSN behavior with 

matched CA50 in general is similar to that for the same injection timing study. The high 

CN fuel generated a higher FSN for both engines at the low load condition and the MD 

engine at medium load condition. As discussed above, the medium load condition of the 

LD engine has an opposite trend to the other conditions, but consistent with the BSNOx 

behavior. In other words, the soot-NOx tradeoff is present at this condition, and is 

consistent with the suggestion that the high CN fuel causing a higher combustion 

efficiency is dominating the combustion phasing effects.  

 

  

Figure 40 Smoke number for the MD and LD engines at a) low load and b) medium 

load conditions with the two studied CN fuels as functions of injection timing 

 

(a) (b) 
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Table 24 FSN for the two engines at the same CA50 location, low and mid load 

conditions (effected through different injection timings) 

FSN Low load Medium load 

MD engine 0.009 (low CN) 

0.116 (high CN) 

0.71 (low CN) 

1.57 (high CN) 

LD engine 0.0195 (low CN) 

0.083 (high CN) 

1.75 (low CN) 

1.74 (high CN) 

Brake Specific Hydrocarbon 

Figure 41 shows brake specific hydrocarbon (BSHC) emissions with respect to 

the two fuels, at the low and medium load conditions, and for both engines. Generally, 

higher combustion efficiency results in lower HC emissions. As the high CN fuel 

yielded a higher combustion efficiency, BSHC emissions decreased with increasing CN 

for both engines (this matches the trends presented in Figure 6) Increasing CN has strong 

effect on reducing the HC emissions, and this is especially true for the late injection 

strategies at the low load condition (9˚ and 6˚ BTDC). At low load and 9˚ BTDC, 

BSHC decreased by 25 g/kWh for the MD engine, and 12 g/kWh for the LD engines, as 

CN increased from 30.3 to 56.2. 
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Table 25 shows BSHC emissions at the same CA50 location, at the low and 

medium load conditions of both engines. BSHC emissions decreased with increasing CN 

for both engines, which corresponds to the trends seen for combustion efficiency.  

Table 25 BSHC for the two engines at the same CA50 location, low and mid load 

conditions (effected through different injection timings) 

BSHC (g/kW-h) Low load Medium load 

MD engine 9.55 (low CN) 

0.718 (high CN) 

0.56 (low CN) 

0.075 (high CN) 

LD engine 6.84 (low CN) 

1.35 (high CN) 

1.21 (low CN) 

0.62 (high CN) 

 

 

   

Figure 41 BSHC for the MD and LD engines at a) low load and b) medium load 

conditions with the two studied CN fuels as functions of injection timing 

 

(a) 
(b) 
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5.3 Results and discussion for effect of cetane number on energy balance between 

different duty engines 

This section investigates the effect of the cetane number (CN) of a diesel fuel on 

the energy balance between a light duty (1.9L) and medium duty (4.5L) diesel engine. 

The two engines have a similar stroke to bore (S/B) ratio, and all other control 

parameters including: compression ratio, cylinder number, stroke, and combustion 

chamber, have been kept the same, meaning that only the displacement changes between 

the engine platforms. Two Coordinating Research Council (CRC) diesel fuels for 

advanced combustion engines (FACE) were studied. The two fuels were selected to have 

a similar distillation profile and aromatic content, but varying CN. The effects on the 

energy balance of the engines were hence recorded at two operating conditions; a “low 

load” condition of 1500 rev/min (RPM) and nominally 1.88 bar brake mean effective 

pressure (BMEP), and a “medium load” condition of 1500 RPM and 5.65 BMEP. 

Results were recorded at the same crank angle 50% burn (CA50) condition to decouple 

fuel effects from engine effects. The results show that the CN of the fuel impacts the 

distribution of supplied fuel energy in both engine systems. At the low load condition, a 

decrease in the fractional cylinder heat transfer is seen for the medium duty engine as 

CN increases. In general, the sensitivity of the engines to CN is found to increase as 

engine load increases. At the medium load condition, the observed differences in the 

fractional heat transfer are larger, and this is especially true for the medium duty engine. 
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          This in turn balances the tradeoff between the changes in mixture temperatures 

and combustion durations. Moreover, as the CN increases, the energy lost to the exhaust 

increases for both engines at the medium load condition. This is in contrast to the low 

load condition, where increasing the CN increases the energy in the exhaust of the 

medium duty engine, but decreases the energy in the exhaust of the light duty engine. 

Finally, at the low load condition, a higher CN consistently increases the brake fuel 

efficiency of both engines. This is in contrast, to the medium load condition, where 

increasing the CN of the fuel increases the brake fuel efficiency of the light duty engine, 

but causes a slight decrease in the brake fuel efficiency of the medium duty engine. 

Theory of energy balance 

An internal combustion (IC) engine is an open thermodynamic system, thus 

enabling the tracking of mass, energy and entropy transfers between the system (i.e., the 

engine) and the surroundings. For the purposes of this study, the control system is 

assumed to be steady-state, thus not undergoing changes to mass, energy, or entropy. 

The control system and the associated energy transfer are shown in Figure 42. 
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Figure 42 Control volume under study showing various energy transfers between the 

system (IC engine) and its surroundings. System is assumed to be in steady-state, thus 

not undergoing changes in mass, energy, or entropy. 

 

 

The application of the first law of thermodynamics for the steady-state control 

system is given as Equation 1: 

 

𝐸̇𝑓𝑢𝑒𝑙 + 𝐸̇𝑎𝑖𝑟,𝑖𝑛𝑡𝑎𝑘𝑒

= 𝑊̇𝑏𝑟𝑎𝑘𝑒 𝑝𝑜𝑤𝑒𝑟 + 𝑄̇𝑐𝑜𝑜𝑙𝑎𝑛𝑡 + 𝑄̇𝑒𝑥ℎ𝑎𝑢𝑠𝑡 + 𝑄̇𝑠𝑢𝑟𝑓 + 𝑄̇𝑖𝑛𝑡𝑒𝑟𝑐𝑜𝑜𝑙𝑒𝑟 

(1) 

where 𝐸̇𝑓𝑢𝑒𝑙 is the energy supplied by the fuel, 𝐸̇𝑎𝑖𝑟,𝑖𝑛𝑡𝑎𝑘𝑒is intake air energy, 

𝑊̇𝑏𝑟𝑎𝑘𝑒 𝑝𝑜𝑤𝑒𝑟 is the output energy delivered by the engine, 𝑄̇𝑐𝑜𝑜𝑙𝑎𝑛𝑡 is heat rejected by 

coolant, 𝑄̇𝑒𝑥ℎ𝑎𝑢𝑠𝑡 is energy removed as exhaust mass flow rate, and 𝑄̇𝑠𝑢𝑟𝑓 is convection 

and radiation to the surroundings.  

The energy supplied by the fuel is: 
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 𝐸̇𝑓𝑢𝑒𝑙 = 𝑚̇𝑓𝑢𝑒𝑙 ∗ 𝑄𝐿𝐻𝑉 (2) 

where 𝑚̇𝑓𝑢𝑒𝑙 is mass fuel flow rate and 𝑄𝐿𝐻𝑉 is the lower fuel heating value. 

The intake air energy is: 

 𝐸̇𝑎𝑖𝑟,𝑖𝑛𝑡𝑎𝑘𝑒 = 𝑚̇𝑎𝑖𝑟 ∗ ℎ𝑎𝑖𝑟(T) (3) 

where 𝑚̇𝑎𝑖𝑟 is mass air flow rate and ℎ𝑎𝑖𝑟 is the enthalpy of the air. 

Since air is a mixture of numerous gases with disparate properties, the 

corresponding mixture enthalpy on a per mass basis must be calculated from the following: 

 ℎ𝑚𝑖𝑥 =
1

𝑀𝑊𝑚𝑖𝑥
∗ ∑ 𝑋𝑖ℎ̅𝑖

𝑚𝑖𝑥

𝑖=1

 (4) 

where 𝑀𝑊𝑚𝑖𝑥 is the mixture’s average is molecular weight, 𝑋𝑖is the mole 

fraction of a constitutive gas and ℎ̅𝑖 is the corresponding molar enthalpy. 

The output energy delivered by the engine can be calculated directly from the 

measured dyno torque and engine speed: 

 𝑊̇𝑏𝑟𝑎𝑘𝑒 𝑝𝑜𝑤𝑒𝑟 = 2𝜋 ∗ 𝑇𝑑𝑦𝑛 ∗ 𝑁 (5) 

where 𝑇𝑑𝑦𝑛 is the measured dyno torque and N is engine speed. 

The heat rejected by coolant is:  

 𝑄̇𝑐𝑜𝑜𝑙𝑎𝑛𝑡 = 𝑚̇𝑐 ∗ 𝐶𝑐 ∗△ 𝑇𝑐 (6) 

where 𝑚̇𝑐 is the mass flow rate of coolant, 𝐶𝑐 is the mass specific heat of the 

coolant and △ 𝑇 is the coolant temperature difference across the control system. 

Similar to the intake air, the exhaust energy transfer rate is: 
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 𝑄̇𝑒𝑥ℎ𝑎𝑢𝑠𝑡 = 𝑚̇𝑒𝑥ℎ ∗ ℎ𝑒𝑥ℎ(𝑇) (7) 

where 𝑚̇𝑒𝑥ℎ is the mass exhaust flow rate and ℎ𝑒𝑥ℎ is the enthalpy of the exhaust. 

With the steady state assumption, the mass exhaust flow rate is: 

 𝑚̇𝑒𝑥ℎ = 𝑚̇𝑓𝑢𝑒𝑙 + 𝑚̇𝑎𝑖𝑟,𝑖𝑛𝑡𝑎𝑘𝑒 (8) 

The surface heat loss is assumed to the total of convective and radiative 

components: 

 𝑄̇𝑠𝑢𝑟𝑓 = 𝑄̇𝑐𝑜𝑛𝑣 + 𝑄̇𝑟𝑎𝑑 (9) 

The radiative heat transfer is calculated using the Stefan Boltzmann equation [65]: 

 
𝑄̇𝑟𝑎𝑑 =

𝜎

1
𝜀𝑠𝑢𝑟𝑓

+
1

𝜀𝑠𝑢𝑟𝑟
− 1

𝐴𝑠𝑢𝑟𝑓[(𝑇𝑠𝑢𝑟𝑓)
4

− (𝑇𝑠𝑢𝑟𝑟)4] 
(10) 

where 𝜎 is the Stefan-Botlzmann constant, 𝜀 is the emissivity of the surface or 

surroundings, 𝐴𝑠𝑢𝑟𝑓  is the estimated surface area, and all temperatures are in Kelvin. 

The steady state convective heat transfer rate can be calculated using Newton’s law 

of cooling [65]: 

 𝑄𝑐𝑜𝑛𝑣 = ℎ̅𝑐𝑜𝑛𝑣𝐴𝑠𝑢𝑟𝑓(𝑇𝑠𝑢𝑟𝑓 − 𝑇∞) (11) 

The intercooler heat transfer is: 

 𝑄̇𝑖𝑛𝑡𝑒𝑟𝑐𝑜𝑜𝑙𝑒𝑟 = 𝑚̇𝑖𝑛𝑡𝑒𝑟𝑐𝑜𝑜𝑙𝑒𝑟 ∗ (ℎ𝑖𝑛 − ℎ𝑜𝑢𝑡) (12) 

where 𝑚̇𝑖𝑛𝑡𝑒𝑟𝑐𝑜𝑜𝑙𝑒𝑟 is mass flow rate of air and ℎ𝑖𝑛 and ℎ𝑜𝑢𝑡 are enthalpies of air 

mixture at the inlet and outlet. 

Moreover, the cylinder heat transfer is expressed as: 
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𝛿𝑄

𝑑𝜑
= ℎ𝑔 ∗ A ∗ (𝑇𝑔 − 𝑇𝑤) (13) 

And according to Woschni’s correlation [66]: 

 ℎ𝑔 = 𝐶0 ∗ [𝐵−0.2 ∗ 𝑃0.8 ((𝐶1 ∗ 𝑉𝑚𝑝) + 𝐶2 ∗
𝑉𝑑 ∗ 𝑇1

𝑃1 ∗ 𝑉1

(𝑃 − 𝑃𝑚))

0.8

∗ 𝑇−0.53 (14) 

where 𝑃1, 𝑉1 and 𝑇1 are reference state properties, such as at intake valve closure 

(IVC); 𝑃𝑚 is the motored in-cylinder pressure, B is the cylinder bore, P is the cylinder 

pressure, T is the cylinder temperature and 𝑉𝑑is the cylinder volume 

Results and Discussions 

The energy balance of the two engines is evaluated for the same combustion 

phasing. This isolates combustion phasing effects from engine size effects. One way to 

match the combustion phasing is to adjust the injection timing independently for each 

engine so that the crank angle 50% burn (CA50%) locations are the same. This 

methodology was applied in this study. The CA 50% locations were matched for both 

engines, for both load points (BMEP 1.88 and 5.65 bar), and for both fuels. CA 50% was 

reached at 10°ATDC. The uncertainty of the experimental data corresponds to 95% 

confidence and considers repeat measurements of the same conditions over different 

days. 

 

Cylinder heat transfer and net indicated thermal efficiencies 

As discussed, engine heat transfer is an important component of the overall 

engine energy balance. The heat transfer from the engine mostly emanates from the heat 
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transfer between the combustion gases and cylinder walls. Higher combustion and 

mixture gas temperatures result in a larger temperature gradient between the mixture gas 

and cylinder walls, which leads to an increase in cylinder heat transfer. Generally lower 

mixture temperatures and lower rates of heat release result in lower cylinder heat 

transfer.  

Figure 43 and Figure 44 show the mixture gas temperature with respect to the 8 

test conditions. Please note these temperatures are calculated assuming ideal gas 

behavior and using measured in-cylinder pressure and calculated cylinder volume (from 

measured crankshaft angular location). At low load, Figure 43 shows that the high CN 

fuel results in lower peak mixture gas temperatures, but maintains a more constant 

mixture gas temperature over the duration of the combustion event. This results in a 

slight reduction in the heat transfer to cylinder walls. Figure 4 shows that this effect is 

particularly significant for the medium duty engine when operating at medium load. The 

high CN fuel results in significantly cooler combustion and leads to lower cylinder heat 

transfer in the medium duty engine.  

The overall rate of cylinder heat transfer, as a fraction of the total fuel energy for 

the 8 test conditions are shown in the left-hand panel of Figure 45. The LD engine 

transfers more fuel energy through cylinder heat transfer than the MD engine. Likewise, 

the fraction of fuel energy leaving as heat transfer through the cylinders decreases as 

load increases for both engines. With the exception of the MD engine operating under 

medium load, the overall fractional cylinder heat transfer is relatively insensitive to 

changes in CN. At the low load condition, the lower bulk gas temperature on high CN 
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fuel results in directionally lower cylinder heat transfer for both engines. In contrast, a 

statistically significant change is seen for the MD engine at the medium load condition, 

where heat transfer to the cylinders decreases by approximately 2.5%. This observation 

is likely due to the tradeoff between changes in mixture gas temperature, and burn 

duration. 

The right-hand panel of Figure 45 shows the burn duration of the fuels at the 8 

operating conditions. The burn duration of both fuels is always longer in the MD engine 

than in the LD engine, and the burn duration is always longer at the medium load 

condition, than at the light load condition. By increasing the CN, the burn duration of the 

fuels increases and this is true for both the LD and MD engines at both load points. This 

can be explained by a reduction in premixed burn. 

The heat release rate (HRR) curves for the 8 test conditions, as shown in Figure 

46, also demonstrate the changes in the cylinder heat transfer processes. At the medium 

load condition, the impact of increasing the CN on the HRR is larger than at the low load 

condition. Increasing CN leads to a dual-stage HRR in the MD engine, which results in a 

significant decrease in heat release magnitude. 
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Figure 43 Mixture gas (i.e., bulk) temperature between the two different CN fuels with 

a) medium duty engine and b) light duty engine operating at the same CA50 location, 

and low load condition (effected through different injection timings) 

 

 

   

Figure 44 Mixture gas (i.e., bulk) temperature between the two different CN fuels with 

a) medium duty engine and b) light duty engine operating at the same CA50 location, 

and medium load condition (effected through different injection timings) 

(b) 

(a) 

(a) 
(b) 
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Figure 45 Comparison of a) cylinder heat transfer, and b) 1% - 90% burn duration 

between the two different CN fuels at the two load conditions operating with same CA50 

location (effected through different injection timings). 

 

 

   

Figure 46 Heat release rate between the two different CN fuels with a) medium duty 

engine and b) light duty engine operating at the same CA50 location, and low load 

condition (effected through different injection timings) 

(a) 

(b) 

(a) (b) 



 

111 

 

  

Figure 47 Heat release rate between the two different CN fuels with a) medium duty 

engine and b) light duty engine operating at the same CA50 location, and medium load 

condition (effected through different injection timings). 

 

 

Coolant heat transfer 

Figure 48 shows the coolant heat transfer for the 8 test conditions. Similar to the 

trends observed for the cylinder heat transfer, the LD engine transfers more fuel energy 

through coolant heat transfer than the MD engine. Similarly, the fraction of fuel energy 

leaving as coolant heat transfer decreases as the load increases for both engines. The heat 

transferred to the coolant in the LD engine appears to be insensitive to the change in CN. 

In contrast, the heat transferred to the coolant of the MD engine undergoes a significant 

decrease at both for the low and medium load conditions, as CN is increased.  

(a) (b) 
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Figure 48 Comparison of coolant heat transfer between the two different CN fuels at the 

two load conditions operating with same CA50 location (effected through different 

injection timings) 

 

Surface and intercooler heat transfer 

The surface and intercooler heat transfer is calculated with respect to equations 

(9 – 11). The surface and intercooler heat transfer rates for the 8 test conditions are 

shown in Figure 49. The behavior of the surface heat transfer rate is similar to the trends 

observed for the cylinder and coolant heat transfer rates. Both the surface and intercooler 

heat transfer rates appear to be statistically insensitive to changes in CN. The exception 

to this is the surface heat transfer of the MD engine operating at medium load, where 

directionally, a decrease in heat transfer is seen as CN is increased.  

Comparing the magnitude of the intercooler heat transfer rate to the other heat 

transfer processes reveals that it is smallest contributor to the overall energy balance. 
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Previous studies [67] have shown that the intercooler heat transfer rate is mainly 

impacted by the boost condition. As the boost pressure was kept constant at 1 bar for 

both engines, at both two load conditions, it is unsurprising that CN has no effect on the 

rate of intercooler heat exchange. 

 

   

Figure 49 Comparison of a) surface heat transfer and b) intercooler heat transfer 

between the two different CN fuels at the two load conditions operating with same CA50 

location (effected through different injection timings) 

 

 

Exhaust Energy and Temperature  

As described with Equation 6, exhaust energy transfer is calculated using the 

exhaust temperature, and knowledge of the exhaust species (i.e., thermal energy and 

chemical energy of the exhaust). The exhaust temperatures of the 8 test conditions are 

shown in (Figure 50).  

(a) 
(b) 
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Directionally, increasing the CN increases the exhaust temperature for both 

engines at the two loads. It should be noted that this effect is larger at medium load, and 

is only significant for the LD engine operating under medium load. The change in 

exhaust temperature can be partially explained by the results of Figure 2, where 

increasing the CN resulted in relatively higher mixture gas temperatures when the 

exhaust valves open. This appears correlated to higher exhaust energy transfer.  

The calculated exhaust energy transfer rates as a fraction of total fuel energy for 

the 8 test conditions are shown in Figure 51. Directionally, increasing the CN slightly 

increases the exhaust energy transfer of both engines at the medium load condition. At 

the low load condition, increasing the CN directionally increases the exhaust energy 

transfer of the MD engine, but has no significant effect of the exhaust energy transfer of 

the LD engine. These trends appear correlated to the observations for the exhaust 

temperature. 
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Figure 50 Exhaust temperatures of the 

two different CN fuels at the two load 

conditions operating with same CA50 

location (effected through different 

injection timings) 

 

Figure 51 Comparison of exhaust energy 

fraction between the two different CN 

fuels at the two load conditions operating 

with same CA50 location (effected 

through different injection timings). 

 

 

Brake Fuel Conversion Efficiency  

The brake fuel conversion efficiency is a function of net indicated thermal 

efficiency, combustion efficiency, and mechanical efficiency, where each term is defined 

separately below: 

• The net indicated thermal efficiency represents the efficiency of the 

collected thermodynamic processes, and additionally includes the pumping portion of the 

mechanical cycle. It is defined as the indicated power, divided by the released fuel energy 



 

116 

 

• The combustion efficiency quantifies the extent of heat release, and is 

defined as the released fuel energy divided by the delivered fuel energy.  

• The mechanical efficiency indicates the mechanical translation of the 

thermodynamic indicated work to mechanical brake work, and is simply the brake power 

divided by the net indicated power.  

Ultimately the brake fuel conversion efficiency is the power delivered by the 

engine divided by the delivered fuel energy. 

The brake fuel conversion efficiencies for the 8 test conditions is shown in Figure 

52.  

At low load, increasing the CN of the fuel increases the brake fuel conversion 

efficiency for both engines. At medium load, increasing the CN increases brake fuel 

conversion efficiency of the LD engine, but causes a slight decrease in the brake fuel 

conversion efficiency of the MD engine. 

As discussed, the overall brake fuel conversion efficiency is impacted by the 

indicated efficiency and the combustion efficiency. The indicated efficiencies of the 

engines were quantified through the cylinder heat transfer processes (Figure 2), while the 

combustion efficiencies for the 8 test conditions are compared in Figure 52(b).  

At low load, increasing the CN of the fuel increases the combustion efficiency of 

both engines. At medium load, increasing the CN of the fuel increases the combustion 

efficiency of the LD engine, but has little impact on the combustion efficiency of the 

MD engine. The magnitude of the impact that CN has on the combustion efficiency as a 

function of load appears to be variable. CN appears to have a larger effect on the 
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combustion efficiency at low load conditions. At low load, combustion efficiency 

changes by over 4 percent for the MD engine, while it changes by just under 2 percent 

for the LD engine, as the CN of the fuel is increased. In contrast, combustion efficiency 

at the medium load condition changes by only 0.2 percent for the medium engine, while 

it changes by as little as 0.15 percent for the LD engine, as the CN of the fuel increases.   

This performance can be attributed to various combustion characteristics with 

changing engine sizes. Specifically, the compression ratio for the MD engine, which is 

slightly lower which causes temperatures and pressures to be lower, resulting in a longer 

ignition delay. Hence, the ignition delay of low CN fuel when combusted in the MD 

engine at low load condition starts far away from TDC causing relatively lower 

combustion efficiency. With increasing engine load, the proportion of premixed 

combustion decreases, especially for MD engine with much longer burn duration [6]. 

Thus, the influence of CN on the combustion efficiency of the MD engine is less 

dependent on engine load.  
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Figure 52  Comparison of a) brake fuel conversion efficiency and b) combustion 

efficiency between the two different CN fuels at the two load conditions operating with 

same CA50 location (effected through different injection timings) 

 

 

Summary 

The presented work has investigated the effects of CN on energy balance for both 

LD (1.9L) and MD (4.5L) compression ignition engines at both 1500 RPM and 

nominally 1.88 bar and 5.65 bar BMEP conditions. The two engines have similar a 

stroke to bore (S/B) ratio, and all other control parameters including: valve timing, 

injection timing, rail pressure and EGR rate, have been kept the same, meaning that only 

the displacement changes between the engine platforms. Two diesel fuels for advanced 

combustion engines (FACE) were studied. The two FACE fuels were selected to have a 

similar distillation profile and aromatic content, but varying CN. Results were recorded 

at the same crank angle 50% burn (CA50) condition to decouple fuel effects from engine 

(a) (b) 
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effects. The following conclusions were reached following the experimental results and 

analysis: 

1. The fractional cylinder heat transfer is generally insensitive to changes in 

CN, except for the MD engine at medium load condition. This insensitivity appears to be 

caused by differing effects of CN on mixture gas temperature and combustion duration. 

Because of a decrease in heat release rate with in the high CN fuel being combusted in the 

MD engine at medium load, the mixture gas temperature drops more than combustion 

duration increases leading to a decrease in the heat transfer fraction.  

2. The coolant and surface heat transfer also appear insensitive to CN aside 

from the MD engine at the medium-load condition.  

3. The intercooler heat transfer does not change with increasing CN for both 

engines on the two load conditions.  

4. Increasing CN increases exhaust energy transfer for both engines at 

medium load. At low load, increasing CN increases the exhaust energy loss of the MD 

engine, but decreases the exhaust energy loss of the LD engine. This performance appears 

to be caused by changing exhaust temperatures when CN changes. At medium load 

exhaust temperatures are larger, resulting in an increase of exhaust energy loss. 

5. For both engines, increased CN consistently increases brake fuel 

conversion efficiency at low load. At medium load, increasing the CN of the fuel increases 

the brake fuel conversion efficiency of the LD engine at but causes a slight decrease in 

brake fuel conversion efficiency for the MD engine. 
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5.4 Results and discussion for effect of T90 on combustion and emissions between 

different duty engines 

We investigate the effects of T90 on the combustion characteristics and 

emissions by using experimental data for a sweeping injection timing (15° before top 

dead center (BTDC) to 3° BTDC) at low load and medium load conditions (1.88  and 

5.65 bar BMEP, respectively) between the MD and LD engines. Moreover, for isolating 

combustion phasing effects from engine size effects, matching the 50% burn location for 

both engines, loads, and fuels, to equal 10°ATDC are studied either. The uncertainty was 

calculated for the experimental data corresponding to 95% confidence and includes 

repeatability of the measurements of the same operating conditions on different days. 

Heat Release Rate 

Figure 53(a) shows heat release rate (HRR) with crank angle for both engines 

and fuels at low load while Figure 53(b) shows the same at mid load. Comparing with 

MD engine performance, increasing T90 shows relative stronger effects on HRR for LD 

engine, especially for low load condition. In details, at low load condition, high T90 fuel 

has earlier combustion start timing than low T90 fuel on LD engine, but has similar 

performance with low T90 fuel on MD engine. The reason is that with increasing T90, 

the injection timing of LD engine is advanced from 3° BTDC to 5.5° BTDC, but the 

injection timing of MD engine is kept at the same value—6° BTDC.  At medium load 

condition, increasing T90 does not show obvious effect on MD engine, but slightly 

advances HRR on LD engine.   
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Figure 53 Heat release rate of the two studied T90 fuels of a) low load and b) medium 

load operating at the same CA50 location (effected through different injection timings)  

 

 

Ignition Delay 

Figure 54 plots the change in ignition delay with respect to changing T90 for 

both the low and medium load conditions of the two engines. Increasing T90 decreases 

ignition delay (defined as time between start of injection and 1% mass fraction burned 

location) for LD engine at both load conditions, but does not show any obvious effect on 

MD engine. It was also noticed that the difference in the LD engine’s ignition delay at 

low load condition, due to changing T90, was larger than difference at medium load 

condition. In details, the ignition delay of LD engine at the low load condition  (12° 

BTDC injection timing) changed by over 2 crank angle degrees, while it changed by less 

than 0.5 crank angle degrees at medium load condition, as the fuel was changed from the 

low to high T90 fuel.  

(a) (b) 
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The variations in ignition delay of the two T90 fuel under the 4 test conditions 

are compared in Table 21. Different with the observe performance at the same injection 

timings, increasing T90 does not impact the ignition delay strongly for both engines. The 

magnitude of the change due to increasing T90 in ignition delay decreases with 

increasing engine load for LD engine. It should be noted that for the matched MFB50% 

location, injection timings are adjusted to different values. This result in different 

mixture temperatures of the studied conditions, and mean that the ignition delays 

presented in Table 21 cannot be directly compared to those in Figure 54. 

  

Figure 54 Ignition Delay for the MD and LD engines at a) low load and b) medium load 

conditions with the two studied T90 fuels as functions of injection timing. 

(a) (b) 
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Table 26 Ignition delay for the two engines at the same CA50 location, low and mid load 

conditions (effected through different injection timings) 

 Low load Medium load 

MD engine 12.7/12.7 (low 90/high 

T90) (deg) 

9.4/9.4 (low T90/high T90) 

(deg) 

LD engine 9/9.7 (low T90/high T90) 

(deg) 

9.45/9.6 (low T90/high 

T90) (deg) 

 

 

 

Mass Fraction Burned 

Figure 55 shows the MFB curves with the two fuels at the matched 50% MFB 

location for both the low and medium load conditions and both engines. Similar to the 

observe HRR performance, with the exception of the LD engine operating under low 

load, the MFB is relatively insensitive to changes in T90. For LD engine under low load 

condition, an increase in T90 advanced combustion phasing and increased the 
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combustion duration. This corresponds to the advanced injection timing of high T90 fuel 

for LD engine at low load, shown in Table 2.  

  

Figure 55 Mass fraction burned profiles for the MD and LD engines at a) low load and 

b) medium load conditions with the two studied T90 fuels. 

 

 

Figure 56(a) shows 50% MFB location (CA50) with injection timings for both 

engines and fuels at low load while Figure 56(b) shows the same at mid load. Increasing 

T90 delays CA50 location for LD engine at both load conditions, but does not show any 

obvious effect on MD engine. Moreover, the influence of T90 on CA50 location for LD 

engine is also impacted by load conditions: increasing load decreases the effect of T90 

on CA50 location. The reason is that although an increasing in T90 results shorter 

ignition delay, the burn rate is decreased either. Slower burn rate for high T90 fuel 

results relative delayed CA50 location on LD engine for both load conditions. With 

increasing engine load, the burn duration is longer and the proportion of premixed 

(b) (a) 
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combustion is decreased, which results smaller burn rate difference between two T90 

fuels, finally resulting smaller difference of CA50 between two T90 fuels for LD engine. 

 

Figure 56 CA50 locations for the MD and LD engines at a) low load and b) medium 

load conditions with the two studied T90 fuels as functions of injection timing.  

 

 

Combustion Efficiency 

The variations in combustion efficiency with respect to the two fuels at the test 

conditions are compared in Figure 57. Increasing T90 shows different effects on 

combustion efficiency of the two engines at low load condition: higher T90 fuel has 

higher combustion efficiency on MD engine, but lower combustion efficiency on LD 

engine. At medium load condition, the combustion efficiency is relatively insensitive to 

changes in T90 for both engines.  

(a) (b) 



 

126 

 

  

Figure 57 Combustion Efficiency for the MD and LD engines at a) low load and b) 

medium load conditions with the two studied T90 fuels as functions of injection timing 

 

 

Brake Specific Nitrogen Oxides 

Figure 58 shows the brake specific nitrogen oxides (BSNOx) emissions with 

respect to the two fuels, the two conditions, and the two engines at the same injection 

timing. Comparing with MD engine, the BSNOx of LD engine was more sensitive for 

changes in T90. In details, at low load condition, the high T90 fuel results in lower NOx 

emissions on LD engines, but similar performance of BSNOx on MD engines. At the 

medium load condition, the effect of T90 on BSNOx is smaller: an increasing in T90 

increases BSNOx on LD engine for most test points, but decreases the BSNOx on MD 

engine slightly. 
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Figure 58 BSNOx for the MD and LD engines at a) low load and b) medium load 

conditions with the two studied T90 fuels as functions of injection timing 

 

 

Filter Smoke Number 

Figure 59 shows the filter smoke number (FSN) with respect to the two fuels at 

the low and medium load conditions for both engines at the same injection timing.  At 

low load, high T90 results higher FSN for both engines. Another thing be noted that for 

all the test conditions, the FSN is very small (lower than 0.2). This implies that FSN is 

very sensitive to changing in-cylinder conditions, such as the local A/F ratio etc. At the 

medium load condition, increasing the T90 increases smoke number on both engines for 

most testing points and has stronger effects on LD engine. Moreover, FSN is effectively 

the opposite of NOx emissions. A high combustion temperature will lead to a lower 

FSN, while a low combustion temperature will lead to a higher FSN. It follows that the 

(a) 

(b) 
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advancing injection timing generated a higher FSN for both engines at medium load 

condition. 

  

Figure 59 Smoke number for the MD and LD engines at a) low load and b) medium 

load conditions with the two studied T90 fuels as functions of injection timing 

 

 

Brake Specific Hydrocarbon 

Figure 60 shows brake specific hydrocarbon (BSHC) emissions with respect to 

the two fuels, at the low and medium load conditions, and for both engines. Generally, 

higher combustion efficiency results in lower HC emissions. As the high T90 had 

different performance on combustion efficiency, HC emissions are different either with 

increasing T90 between two engines at low load condition (this matches the trends 

presented in Figure 57). Increasing T90 increased HC emissions on LD engine, but 

decreased HC emissions on MD engine. At medium load condition, the effect of T90 on 

(a) (b) 
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HC was relative smaller. Different T90 fuels showed similar HC emissions results on the 

two engines. 

 

Figure 60 BSHC for the MD and LD engines at a) low load and b) medium load 

conditions with the two studied T90 fuels as functions of injection timing 

 

5.5 Results and discussion for effect of Aromatic Content on combustion and emissions 

between different duty engines 

We investigate the effects of aromatic content on the combustion characteristics 

and emissions by using experimental data for a sweeping injection timing (15° before 

top dead center (BTDC) to 3° BTDC) at low load and medium load conditions (1.88 and 

5.65 bar BMEP, respectively) between the MD and LD engines. Moreover, for isolating 

combustion phasing effects from engine size effects, matching the 50% burn location for 

both engines, loads, and fuels, to equal 10°ATDC are studied either. The uncertainty was 

calculated for the experimental data corresponding to 95% confidence and includes 

repeatability of the measurements of the same operating conditions on different days. 

 

(a) (b) 
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Heat Release Rate 

Figure 61 (a) shows heat release rate (HRR) with crank angle for both engines 

and fuels at the same injection timing, low load while Figure 61 (b) shows the same at 

mid load. Increasing aromatic content has similar influence on the two engines. In 

details, increasing aromatic content increases the magnitude of the peak HRR, and 

delays its location for both engines at low load condition. At medium load condition, 

increasing aromatic content has similar effect on LD engine, but does not show obvious 

effect on MD engines. Moreover, it is also noticed that the effect of aromatic content is 

impacted by load condition: increasing load decrease effect of aromatic content on HRR 

for both engines. 

Figure 62 (a) and (b) show the HRR for the two studied fuels at the same 50% 

mass fraction burn location, at the low and medium load conditions for both engines. 

Contrary to the matched injection timing data of Figure 61, increasing the aromatic 

content does not show obvious effect on both engines at low load condition. At mid load 

condition, increasing aromatic content has relative stronger effect on LD engine, which 

increases the magnitude of the peak HRR, and delays its location.  
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Figure 61 Heat release rate of the two studied AC fuels of a) low load and b) medium 

load operating at the same injection timing  

 

 

 

Figure 62 Heat release rate of the two studied AC fuels of a) low load and b) medium 

load operating at the same CA50 location (effected through different injection timings) 

 

 

(a) (b) 

(a) (b) 
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Ignition Delay 

Figure 54 plots the change in ignition delay with respect to changing aromatic 

content for both the low and medium load conditions of the two engines. Increasing 

aromatic content increases ignition delay (defined as time between start of injection and 

1% mass fraction burned location) for LD engine at the two load conditions, but just 

shows the same effect for MD engine at low load condition. It was also noticed that the 

difference in the LD engine’s ignition delay at low load condition, due to changing 

aromatic content, was larger than difference at medium load condition. In details, the 

ignition delay of LD engine at the low load condition (12° BTDC injection timing) 

changed by over 2 crank angle degrees, while it changed by less than 0.2 crank angle 

degrees at medium load condition, as the fuel was changed from the low to high 

aromatic content fuel.  

The variations in ignition delay of the two aromatic content fuels under the 4 test 

conditions are compared in Table 21. Different with the observe performance at the 

same injection timings, increasing aromatic content does not impact the ignition delay 

strongly for both engines.  
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Figure 63 Ignition Delay for the MD and LD engines at a) low load and b) medium load 

conditions with the two studied AC fuels as functions of injection timing. 

 

 

Table 27 Ignition delay for the two engines at the same CA50 location, low and mid load 

conditions (effected through different injection timings) 

 Low load Medium load 

MD engine 12.7/12.5 (low AC/high 

AC) (deg) 

9.4/9.3 (low AC/high AC) 

(deg) 

LD engine 9/9.1 (low AC/high AC) 

(deg) 

9.45/9.7 (low AC/high 

AC) (deg) 

 

 

 

 

(a) 

(b) 
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Mass Fraction Burned 

Figure 55 shows the MFB curves with the two fuels at the same injection timing 

(12 deg BTDC) for both the low and medium load conditions and both engines. A 

decrease in aromatic content advances combustion phasing and increases the combustion 

duration of both engines at low load conditions, but does not show obvious effect at mid 

load condition. This agrees with HRR and ignition delay characteristics discussed above. 

Moreover, Figure 65 shows the MFB curves with the two fuels at the matched 50% 

MFB location for both the low and medium load conditions and both engines. The MFB 

curves with the two fuels at the matched 50% MFB location are very similar for both 

engines and loads. 

   

Figure 64  Mass fraction burned profiles for the MD and LD engines at a) low load and 

b) medium load conditions, the same injection timing with the two studied AC fuels.  

(b) (a) 
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Figure 65  Mass fraction burned profiles for the MD and LD engines at a) low load and 

b) medium load conditions, the same CA50 location with the two studied AC fuels. 

 

 

Figure 66(a) shows 50% MFB location (CA50) with injection timings for both 

engines and fuels at low load while Figure 66 (b) shows the same at mid load. Increasing 

aromatic content delays CA50 location for both engines at low load condition, but does 

not show any obvious effect for both engines at mid load condition. Moreover, the 

influence of aromatic content on CA50 location for MD engine is also impacted by 

injection timing: advancing injection timing increases the effect of aromatic content on 

CA50 location. 

(a) (b) 
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Figure 66 CA50 locations for the MD and LD engines at a) low load and b) medium 

load conditions with the two studied AC fuels as functions of injection timing. 

 

 

Combustion Efficiency 

The variations in combustion efficiency with respect to the two fuels at the test 

conditions are compared in Figure 67. Increasing aromatic content shows different 

effects on combustion efficiency for the two engines at the two load conditions: higher 

aromatic content decreases combustion efficiency for LD engine at the two load 

conditions, but does not show any obvious effect on MD engine. 

(a) (b) 
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Figure 67 Combustion Efficiency for the MD and LD engines at a) low load and b) 

medium load conditions with the two studied AC fuels as functions of injection timing 

 

 

Brake Specific Nitrogen Oxides 

Figure 68 shows the brake specific nitrogen oxides (BSNOx) emissions with 

respect to the two fuels, the two conditions, and the two engines at the same injection 

timing. Increasing aromatic content increases BSNOx for both engines at low load 

condition, and shows similar performance on LD engine, but no obvious effect on MD 

engine at mid load condition, which with HRR, ignition delay and MFB characteristics 

discussed above. For high aromatic content fuel, longer ignition delay results higher 

HRR magnitude and faster burn rate, finally resulting higher reaction and bulk peak 

temperature. Higher bulk peak temperature is the reason of an increase in aromatic 

content. Moreover, the effect of aromatic content on HRR and ignition delay is 

(a) (b) 
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decreased by increasing engine load. Thus, the effect of aromatic content on BSNOx at 

mid load condition is relative smaller either. 

   

Figure 68 BSNOx for the MD and LD engines at a) low load and b) medium load 

conditions with the two studied AC fuels as functions of injection timing 

 

 

Filter Smoke Number 

Figure 69 shows the filter smoke number (FSN) with respect to the two fuels at 

the low and medium load conditions for both engines at the same injection timing.  At 

low load, high aromatic content results higher FSN for LD engine, but lower FSN for 

MD engine. Another thing be noted that for all the test conditions, the FSN is very small 

(lower than 0.1). This implies that FSN is very sensitive to changing in-cylinder 

conditions, such as the local A/F ratio etc. At the medium load condition, increasing the 

aromatic content increases smoke number on MD engine, but decreases FSN on LD 

engine for most testing points. It is also noticed that the effect of aromatic content on 

(a) 

(b) 
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FSN is impacted by injection timing. Advancing injection timing decreases the effect of 

aromatic content on FSN. Moreover, FSN is effectively the opposite of NOx emissions. 

A high combustion temperature will lead to a lower FSN, while a low combustion 

temperature will lead to a higher FSN. It follows that the advancing injection timing 

generated a higher FSN for both engines at medium load condition. 

 

   

Figure 69 Smoke number for the MD and LD engines at a) low load and b) medium 

load conditions with the two studied AC fuels as functions of injection timing 

 

 

Brake Specific Hydrocarbon 

Figure 70 shows brake specific hydrocarbon (BSHC) emissions with respect to 

the two fuels, at the low and medium load conditions, and for both engines. Generally, 

higher combustion efficiency results in lower HC emissions. An increase in aromatic 

content increases BSHC for both engines, the two load conditions, and has relative 

(a) (b) 
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stronger effect on LD engine (this matches the trends presented in Figure 67). Moreover, 

the effect of aromatic content is impacted by engine load either. An increase in engine 

load decreases the effect of aromatic content on BSHC.  

   

Figure 70 BSHC for the MD and LD engines at a) low load and b) medium load 

conditions with the two studied AC fuels as functions of injection timing 

 

 

Brake Specific Carbon Monoxide 

Figure 71 shows brake specific carbon monoxide (BSCO) emissions with 

respect to the two fuels, at the low and medium load conditions, and for both engines. 

Generally, BSCO is mainly impacted by air/fuel mixing conditions. Increasing aromatic 

content increases BSCO emissions for both engines at low load condition. At mid load 

condition, increasing aromatic content decreases BSCO emissions for LD engine, but 

does not show obvious effect for MD engine. Moreover, the effect of aromatic content 

(a) (b) 
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on BSCO is impacted by engine size either: LD engine has relative stronger aromatic 

content influence on BSCO. 

  

Figure 71 BSCO for the MD and LD engines at a) low load and b) medium load 

conditions with the two studied AC fuels as functions of injection timing 

 

  

(a) 

(b) 
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6. CONCLUSIONS 

6.1 Cetane Number 

1. For any given injection timing, the magnitude of HRR increases and its 

location advances as CN increases for both engines. This result is expected. In the 

context of different engine sizes, it is noted that a distinctive dual-stage HRR process 

was often observed at the mid load condition for the MD engine and high CN fuel 

resulting in longer combustion durations. This result did not, however, translate to 

observable effects in other portions of the study (i.e., effect on efficiency or emissions). 

2. Although the HRR characteristics with matched 50% MFB locations 

follow those at low load when injection timing is the same, they are quite different at 

medium load. Specifically, HRR still tends to be advanced with high CN fuel, but much 

lower magnitude (hence, longer combustion duration). The reason being that ignition 

delay of the high CN fuel is shorter, establishing a smaller fraction of premixed heat 

release and larger fraction of diffusion heat release. These differences create different 

sensitivities of the engines to the fuels, as concluded below. 

3. The LD engine’s combustion efficiency (i.e., extent of heat release) 

demonstrates high sensitivity to CN. This high sensitivity causes the LD engine’s 

indicated fuel conversion efficiency, BSNOx, and FSN to trend differently at medium 

load than at low load condition or as compared to the medium duty engine. Such 

behavior, along with the differing combustion characteristics, suggest the need for 

careful consideration of CN on engine efficiency and emissions depending on the engine 

size. 
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6.2 Distillation Temperature 

1. Comparing with MD engine performance, increasing T90 shows relative 

stronger effects on HRR for LD engine, especially for low load condition. Similarly, 

increasing T90 decreases ignition delay for LD engine at both load conditions, but does 

not show any obvious effect on MD engine. 

2. Increasing T90 delays CA50 location for LD engine at both load 

conditions, but does not show any obvious effect on MD engine. Moreover, the influence 

of T90 on CA50 location for LD engine is also impacted by load conditions: increasing 

load decreases the effect of T90 on CA50 location. 

3. Comparing with MD engine, the BSNOx of LD engine was more sensitive 

for changes in T90. At the medium load condition, increasing the T90 increases smoke 

number on both engines for most testing points and has stronger effects on LD engine. At 

low load condition, increasing T90 increased HC emissions on LD engine, but decreased 

HC emissions on MD engine. At medium load condition, the effect of T90 on HC was 

relative smaller. Different T90 fuels showed similar HC emissions results on the two 

engines. 

6.3 Aromatic Content 

1. At low load condition, increasing aromatic content increases the magnitude 

of the peak HRR, and delays its location for both engines. At medium load condition, 

increasing aromatic content has similar effect on LD engine, but does not show obvious 

effect on MD engines. 
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2. A decrease in aromatic content advances combustion phasing and increases 

the combustion duration of both engines at low load conditions, but does not show obvious 

effect at mid load condition.  

3. Increasing aromatic content shows different effects on combustion 

efficiency for the two engines at the two load conditions: higher aromatic content 

decreases combustion efficiency for LD engine at the two load conditions, but does not 

show any obvious effect on MD engine. 

4. Increasing aromatic content increases BSNOx for both engines at low load 

condition, and shows similar performance on LD engine, but no obvious effect on MD 

engine at mid load condition. For smoke number, increasing the aromatic content increases 

smoke number on MD engine, but decreases FSN on LD engine for most testing points at 

mid load condition.  For HC emissions, an increase in aromatic content increases BSHC 

for both engines, the two load conditions, and has relative stronger effect on LD engine. 
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7. FUTURE WORK

Based on the study of baseline testing, the effect of engine size on combustion 

and engine behavior are clarified. Moreover, the effect of cetane number on combustion, 

emissions and energy balance between different sized-engines are clarified either 

through FACE fuel matrix testing. According to objectives in section 3, the effect of 

distillation temperature (T90) and aromatic content on combustion and engine behavior 

between different sized-engines need to be analyzed. 

Thus, the future work includes two main parts: 

1) Explain the influence of multi-injection strategy on CN effect on medium

duty engine efficiency and emissions. 

2) With increasing engine size, explain the effect of CN additive on engine

combustion and emissions. 



 

146 

 

REFERENCES 

1. Amann, M., T.W. Ryan, and N. Kono, HCCI Fuels Evaluations-Gasoline Boiling 

Range Fuels, 2005, SAE International. 

2. Zhong, S., et al., Experimental Investigation into HCCI Combustion Using 

Gasoline and Diesel Blended Fuels, 2005, SAE International. 

3. Risberg, P., et al., Auto-ignition quality of Diesel-like fuels in HCCI engines, 

2005, SAE International. 

4. Szybist, J.P. and B.G. Bunting, Cetane Number and Engine Speed Effects on 

Diesel HCCI Performance and Emissions, 2005, SAE International. 

5. Bunting, B.G., et al., Fuel chemistry and cetane effects on diesel homogeneous 

charge compression ignition performance, combustion, and emissions. 

International Journal of Engine Research, 2007. 8(1): p. 15-27. 

6. Heywood, J.B., Internal Combustion Engine Fundamentals1988: McGraw-Hill, 

Inc. 

7. Benajes, J., et al., Influence of Boost Pressure and Injection Pressure on 

Combustion Process and Exhaust Emissions in a HD Diesel Engine, 2004, SAE 

International. 

8. Tao, F., et al., Modeling the Effects of EGR and Injection Pressure on Soot 

Formation in a High-Speed Direct-Injection (HSDI) Diesel Engine Using a 

Multi-Step Phenomenological Soot Model, 2005, SAE International. 

9. Ogawa, H., et al., Characteristics of Diesel Combustion in Low Oxygen Mixtures 

with Ultra-High EGR, 2006, SAE International. 

10. Li, T., et al., Characterization of Low Temperature Diesel Combustion with 

Various Dilution Gases, 2007, SAE International. 

11. Filipi, Z. and D. Assanis, The Effect of the Stroke-To-Bore Ratio on 

Combustion, Heat Transfer and Efficiency of a Homogeneous Charge Spark 

Ignition Engine of Given Displacement. International Journal of Engine 

Research, 2000. 1(2): p. 191-208. 



 

147 

 

12. Yamin, J.A.A. and M.H. Dado, Performance simulation of a four-stroke engine 

with variable stroke-length and compression ratio. Applied Energy, 2004. 77(4): 

p. 447-463. 

13. Thornhill, D., et al., An Experimental Investigation into the Effect of Bore/Stroke 

Ratio on a Simple Two-Stroke Cycle Engine, 1999, SAE International. 

14. Altin, İ., İ. Sezer, and A. Bilgin, Effects of the Stroke/Bore Ratio on the 

Performance Parameters of a Dual-Spark-Ignition (DSI) Engine†. Energy & 

fuels, 2008. 23(4): p. 1825-1831. 

15. Wittek, K., C. Tiemann, and S. Pischinger, Two-Stage Variable Compression 

Ratio with Eccentric Piston Pin and Exploitation of Crank Train Forces. SAE Int. 

J. Engines, 2009. 2(1): p. 1304-1313. 

16. Bilgin, A., Geometric features of the flame propagation process for an SI engine 

having dual-ignition system. International Journal of Energy Research, 2002. 

26(11): p. 987-1000. 

17. Kleeberg, H., et al., Increasing Efficiency in Gasoline Powertrains with a Two-

Stage Variable Compression Ratio (VCR) System, 2013, SAE International. 

18. Aceves, S.M., et al., Piston-Liner Crevice Geometry Effect on HCCI Combustion 

by Multi-Zone Analysis, 2002, SAE International. 

19. Dong, J., et al., Study on Variable Combustion Chamber (VCC) Engines, 2012, 

SAE International. 

20. Dong, J., et al., Effect of Design Features on Dynamic Characteristics of VCC 

Piston for I. C. Engine. SAE Int. J. Engines, 2013. 6(1): p. 209-216. 

21. Hyvönen, J., C. Wilhelmsson, and B. Johansson, The Effect of Displacement on 

Air-Diluted Multi-Cylinder HCCI Engine Performance, 2006, SAE International. 

22. Shi, Y. and R.D. Reitz, Study of Diesel Engine Size-Scaling Relationships Based 

on Turbulence and Chemistry Scales, 2008, SAE International. 

23. Shi, Y. and R.D. Reitz, Assessment of Optimization Methodologies to Study the 

Effects of Bowl Geometry, Spray Targeting and Swirl Ratio for a Heavy-Duty 



 

148 

 

Diesel Engine Operated at High-Load. SAE Int. J. Engines, 2008. 1(1): p. 537-

557. 

24. Staples, L.R., R.D. Reitz, and C. Hergart, An Experimental Investigation into 

Diesel Engine Size-Scaling Parameters. SAE Int. J. Engines, 2009. 2(1): p. 1068-

1084. 

25. Ge, H.-W., et al., Coupling of Scaling Laws and Computational Optimization to 

Develop Guidelines for Diesel Engine Down-sizing, 2011, SAE International. 

26. Shi, L., K. Deng, and Y. Cui, Study of diesel-fuelled homogeneous charge 

compression ignition combustion by in-cylinder early fuel injection and negative 

valve overlap. Proceedings of the Institution of Mechanical Engineers, Part D: 

Journal of Automobile Engineering, 2005. 219(10): p. 1193-1201. 

27. Nevin, R.M., et al., PCCI Investigation Using Variable Intake Valve Closing in a 

Heavy Duty Diesel Engine, 2007, SAE International. 

28. Stager, L.A. and R.D. Reitz, Assessment of Diesel Engine Size-Scaling 

Relationships, 2007, SAE International. 

29. Musculus, M., et al., End-of-injection over-mixing and unburned hydrocarbon 

emissions in low-temperature-combustion diesel engines. 2007. 

30. Takahashi, K., et al., Effects of Cetane Number and Chemical Components on 

Diesel Emissions and Vehicle Performance, 2009, SAE International. 

31. Kumar, S., et al., The Effect of Diesel Fuel Properties on Engine-out Emissions 

and Fuel Efficiency at Mid-Load Conditions, 2009, SAE International. 

32. Gallant, T., et al., Fuels for Advanced Combustion Engines Research Diesel 

Fuels: Analysis of Physical and Chemical Properties. SAE Int. J. Fuels Lubr., 

2009. 2(2): p. 262-272. 

33. Ryskamp, R., Thompson, G., Carder, D., and Nuszkowski, J., "The Influence of 

High Reactivity Fuel Properties on Reactivity Controlled Compression Ignition 

Combustion," SAE Technical Paper 2017-24-0080, 2017. 



 

149 

 

34. Waqas, M., Naser, N., Sarathy, M., Morganti, K. et al., "Blending Octane 

Number of Ethanol in HCCI, SI and CI Combustion Modes," SAE Int. J. Fuels 

Lubr. 9(3):659-682, 2016 

35. Hosseini, V., et al., Effects of Cetane Number, Aromatic Content and 90% 

Distillation Temperature on HCCI Combustion of Diesel Fuels, 2010, SAE 

International. 

36. De Ojeda, W., et al., Impact of Fuel Properties on Diesel Low Temperature 

Combustion. SAE Int. J. Engines, 2011. 4(1): p. 188-201. 

37. Bonsack, P., et al., Number Concentration and Size Distributions of Nanoparticle 

Emissions during Low Temperature Combustion using Fuels for Advanced 

Combustion Engines (FACE), 2014, SAE International. 

38. Schweitzer, P.H., Penetration of Oil Sprays. Journal of Applied Physics, 1938. 

9(12): p. 735-741. 

39. Wakuri, Y., et al., Studies on the Penetration of Fuel Spray in a Diesel Engine. 

Bulletin of JSME, 1960. 3(9): p. 123-130. 

40. DENT.J, SAE Int. J. Engines, 1971: p. SAE Paper No.710571. 

41. Dent, J.C., P.S. Mehta, and J. Swan. A predictive model for automotive DI diesel 

engine performance and smoke emissions. in IMechE. 1982. 

42. Hiroyasu, H. and M. Arai, Structures of Fuel Sprays in Diesel Engines, 1990, 

SAE International. 

43. Bao, Y., et al., A Comparative Analysis on the Spray Penetration of Ethanol, 

Gasoline and Iso-Octane Fuel in a Spark-Ignition Direct-Injection Engine, 2014, 

SAE International. 

44. Murphy, L. and D. Rothamer, Effects of Cetane Number on Jet Fuel Combustion 

in a Heavy-Duty Compression Ignition Engine at High Load, 2011, SAE 

International. 

45. Aradi, A.A. and T.W. Ryan, Cetane Effect on Diesel Ignition Delay Times 

Measured in a Constant Volume Combustion Apparatus, 1995, SAE 

International. 



 

150 

 

46. Butts, R.T., et al., Investigation of the Effects of Cetane Number, Volatility, and 

Total Aromatic Content on Highly-Dilute Low Temperature Diesel Combustion, 

2010, SAE International. 

47. Azetsu, A., Y. Satao, and Y. Wakisaka, Effects of Aromatic Components in Fuel 

on Flame Temperature and Soot Formation in Intermittent Spray Combustion 

            in International Spring Fuels & Lubricants Meeting, JSAE, Editor 2003, SAE 

International: Yokohama, Japan. 

48. Rosenthal, M.L. and T. Bendinsky, The Effects of Fuel Properties and Chemistry 

on the Emissions and Heat Release of Low-Emission Heavy Duty Diesel 

Engines, 1993, SAE International. 

49. Ullman, T.L., K.B. Spreen, and R.L. Mason, Effects of Cetane Number on 

Emissions From a Prototype 1998 Heavy-Duty Diesel Engine, 1995, SAE 

International. 

50. Green, G.J., et al., Fuel Economy and Power Benefits of Cetane-Improved Fuels 

in Heavy-Duty Diesel Engines, 1997, SAE International. 

51. Canaan, R.E., et al., The Influence of Fuel Volatility on the Liquid-Phase Fuel 

Penetration in a Heavy-Duty D.I. Diesel Engine, 1998, SAE International. 

52. Ryan, T.W., et al., The Effects of Fuel Properties on Emissions from a 2.5gm 

NOx Heavy-Duty Diesel Engine, 1998, SAE International. 

53. Tamanouchi, M., et al., Effects of fuel properties and oxidation catalyst on 

exhaust emissions for heavy-duty diesel engines and diesel passenger cars, in 

SAE International Congress and Exposition1998, SAE International: Detroit, 

Michigan. 

54. Kidoguchi, Y., C. Yang, and K. Miwa, Effects of Fuel Properties on Combustion 

and Emission Characteristics of a Direct-Injection Diesel Engine, 2000, SAE 

International. 

55. Kee, S.-S., et al., Effects of Aromatic Hydrocarbons on Fuel Decomposition and 

Oxidation Processes in Diesel Combustion, 2005, SAE International. 



 

151 

 

56. Sluder, C.S., et al., Fuel Property Effects on Emissions from High Efficiency 

Clean Combustion in a Diesel Engine, 2006, SAE International. 

57. Eckerle, W.A., et al., Effects of methyl ester biodiesel blends on NOx emissions. 

SAE International Journal of Fuels and Lubricants, 2009. 1(SAE Paper No. 

2008-01-0078): p. 102-118. 

58. Li, X., <Effects of fuel cetane number, density and aromatic content on diesel 

engine NOx emissions at different operating conditions.pdf>. 2008. 

59. Warey, A., et al., Fuel Effects on Low Temperature Combustion in a Light-Duty 

Diesel Engine, 2010, SAE International. 

60. Nishiumi, R., et al., Effects of Cetane Number and Distillation Characteristics of 

Paraffinic Diesel Fuels on PM Emission from a DI Diesel Engine, 2004, SAE 

International. 

61. Technologies, G., GT- Suit Engine Performance Application Manual, 2012. p. 

106. 

62. Jeihouni, Y., et al., Relationship between Fuel Properties and Sensitivity 

Analysis of Non-Aromatic and Aromatic Fuels Used in a Single Cylinder Heavy 

Duty Diesel Engine, 2011, SAE International. 

63. Lancaster, D.R., R.B. Krieger, and J.H. Lienesch, Measurement and analysis of 

engine pressure data. SAE Transactions, 1975. 84(SAE Paper No. 750026): p. 

155-172. 

64. Patton, K.J., R.G. Nitschke, and J.B. Heywood, Development and evaluation of a 

friction model for spark-ignition engines1989. Medium: X; Size: Pages: (21 p). 

65. Incropera, F.P., et al., Fundamentals of heat and mass transfer2011: Wiley. 

66. Woschni, G., A universally applicable equation for the instantaneous heat 

transfer coefficient in the internal combustion engine. SAE paper 670931. SAE 

Trans, 1967. 76: p. 3065. 

67. Penny, M.A. and T.J. Jacobs, Efficiency improvements with low heat rejection 

concepts applied to diesel low temperature combustion. International Journal of 

Engine Research, 2015. 




