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ABSTRACT

Big data analysis and high dimensional data analysis are two popular and chal-

lenging topics in current statistical research. They bring us a lot of opportunities as

well as many challenges. For big data, traditional methods are generally not efficient

enough to handle them, from both time perspective and space perspective. For high

dimensional data, most traditional methods can’t be implemented, let alone maintain

their desirable properties, such as consistency.

In this disseration, three new strategies are proposed to solve these issues. HZ-

SIS is a robust model-free variable screening method and possesses sure screening

property under the ultrahigh-dimensional setting. It works based on the nonpara-

normal transformation and Henze-Zirkler’s test. The numerical results indicate that,

compared to the existing methods, the proposed method is more robust to the data

generated from heavy-tailed distributions and/or complex models with interaction

variables.

Double Parallel Monte Carlo is a simple, practical and efficient MCMC algorithm

for Bayesian analysis of big data. The proposed algorithm suggests to divide the big

dataset into some smaller subsets and provides a simple method to aggregate the

subset posteriors to approximate the full data posterior. To further speed up com-

putation, the proposed algorithm employs the population stochastic approximation

Monte Carlo (Pop-SAMC) algorithm, a parallel MCMC algorithm, to simulate from

each subset posterior. Since the proposed algorithm consists of two levels of par-

allel, data parallel and simulation parallel, it is coined as “Double Parallel Monte

Carlo”. The validity of the proposed algorithm is justified both mathematically and

numerically.
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Average Bayesian Information Criterion (ABIC) and its high-dimensional 

variant Average Extended Bayesian Information Criterion (AEBIC) led to an 

innovative way to use posterior samples to conduct model selection. The 

consistency of this method is established for the high-dimensional generalized linear 

model under some sparsity and regularity conditions. The numerical results also 

indicate that, when the sample size is large enough, this method can accurately 

select the smallest true model with high probability.
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1. INTRODUCTION

Big data and High dimensional data are two popular and challenging topics in

current statisticial research. Both have attracted lots of attention and lead to nu-

merous innovative methods. This dissertation contributes three new approaches, the

first and the third one can be used to deal with high dimensional data, and the

second one is developed for big data analysis.

1.1 High Dimensional Data

In statistics, high-dimensional data usually refers to the data whose dimension p

is larger than the sample size n and ultrahigh-dimensional data usually refers to the

data where p grows exponentially with n, that is, p = O(nα).

In recent years, high dimensional data analysis has become more frequent and im-

portant in diverse fields of our daily life, such as genomics, microarrays, proteomics,

brain images, climatology, geology, neurology, health science,economics, finance and

machine learning (Fan and Lv, 2010). For example, in genowide association stud-

ies between genotypes and phenotypes, millions of SNPs are potential covariates; in

disease classfication using microarray or proteomics data, thousands of expression

profiles are potential predictors; in biomedical and clinical studies, a large number

of magnetic resonance images (MRI) and functional MRI data are collected for each

subject. Moreover, when interaction are considered, the dimensionality will grow

more quickly. These massive amounts of high dimensional data have undoubtedly

brought many opportunities for scientific development. However, at the same time,

they have also significantly challenged traditional statistical theory (Fan and Li,

2007; Johnstone and Titterington, 2009).

One big challenge comes from the collinearity of the predictors. As we all know,
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even in the low dimensional case, the notorious collinearity will sometimes cause lots

of trouble, and force us to use PCA or any other techniques to solve it. In the high

dimensional setting, this problem becomes worser and usually makes us to overfit the

data and select wrong models, since any variable can be well approximated or even

replaced by a combination of spurious variables. Besides, under the high dimensional

setting, some traditional methods can’t even be implemented. For example, in gaus-

sian graphical models (GGM), the sample covariance matrix is singular when p > n,

thus we can no longer directly estimate the concentration matrix and use it to learn

the graph. (Liang et al., 2015) Noise accumulation in high dimensional prediction

has been recongnized as another challenge. In fact, in supervised learning problems,

prediction using all features can be as bad as random guess. Therefore, variable

selection is fundamentally important to high dimensional data analysis, for both re-

gression and classification. To overcome these challenges and make high dimensional

statistical inference possible, we usually impose the so called sparsity condition. For

example, in supervised learning, that means most of the features are irrelevant with

the response variable; in Gaussian Graphical Models, that means only few edges

truly exist. With sparsity assumption and specific methods, variable selection is able

to possess the consistency property and can be implemented to improve the model

interpretability and prediction accuracy.

In the past decades, numerous innovative methods have been proposed to deal

with high dimensional data. The frequentist methods are usually regularition-based,

imposing a penalty on the likelihood function to enforce sparsity. For example, Tib-

shirani (1996) employs a l1-penalty, Zou and Hastie (2005) employs a combination

of l1 and l2 penalties, Fan and Li (2001) employs a smoothly clipped absolute devia-

tion penalty, Zhang (2010) employes minimax concave penalty and Song and Liang

(2015) employes a reverse l1 penalty. The Bayesian methods usually employ appro-
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priate prior distributions to enforce sparsity, such as the non-local priors (Johnson

and Rossell, 2012), the priors used in EBIC (Liang et al., 2013; Chen and Chen,

2008, 2012), etc.

In this disseration, we contribute two more methods. In Chapter 2, we’ll intro-

duce a robust model-free variable screening method. It is well known that variable

screening can reduce the dimension of feature space to a moderate scale while keeping

all relevant features. Thereby it can act as a preliminary step ahead of variable se-

lection. Compared to the previous proposed model-free variable screening methods,

which more or less require some additional assumptions and are not robust to non-

regular data, our method only needs few assumptions to guarantee its sure screening

property under ultrahigh-dimensional setting, and is more robust to the heavy-tailed

data and data with interaction effects. In Chapter 4, we’ll describe a new informa-

tion criterion, ABIC and its high dimensional variant AEBIC. To our knowledge,

AEBIC is the first information criterion that use information from posterior samples

and possess model selection consistency.

1.2 Big Data

Big data often refers to the data whose the sample size is too large such that it

can not be processed and stored on a single computer.

Nowadays, we are entering the era of Big data, thanks to the technology develop-

ment and information explosion. Big data can be found almost everywhere around

our life. For example, Walmart handles more than 1 million customer transactions

every hour, which are imported into databases estimated to contain more than 2.5

petabytes of data - the equivalent of 167 times the information contained in all the

books in the US Library of Congress; Amazon.com handles millions of back-end

operations every day, as well as queries from more than half a million third-party
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sellers; Windermere Real Estate uses anonymous GPS signals from nearly 100 mil-

lion drivers to help new home buyers determine their typical drive times to and from

work throughout various times of the day.

Big data brings opportunities to modern society. It helps us discover many new

findings which are not possible with small-scale data. At the same time, the massive

sample size also brings unique challenges to computational and statistical research.

(Fan et al., 2014) They mainly come from two aspects. One is on data storage and

the other is on computational time. Although hardware is being upgraded in an

unprecedented speed to enlarge storage memory and decrease computational time,

more efficient algorithms are still highly required to solve these challenges.

Thanks to the advent of parallel computing, a large number of efficient approaches

have now been proposed to deal with Big data. For example, it is well known

that when making Bayesian inference for big data, traditional MCMC algorithms

are generally not efficient enough. Therefore, people propose to divide the large

dataset into a number of smaller subsets, and then conduct the Bayesian analysis

for each subset separately. Finally, the posterior samples generated for each subset

are aggregated in some way such that a correct inference can be made for the full

data posterior. Several algorithms have been developed to address the issue of subset

posterior aggregation, such as Scott et al. (2016); Neiswanger et al. (2013); Wang

and Dunson (2013); Minsker et al. (2014); ?); Srivastava et al. (2015)

In Chapter 3, we introduce a new method for aggregating subset posterior sam-

ples. The new method is surprisingly simple, which is to first simulate from some

modified subset posteriors, for which the log-likelihood functions are appropriately

scaled according to their sample size, and then recenter the subset posterior samples

to their global mean. In order to further speed up computation, we suggest to use

the Pop-SAMC algorithm (Song et al., 2014), rather than traditional single chain
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MCMC algorithms, to draw samples from each subset posterior. Since the proposed

method consists of two levels of parallel, data parallel and simulation parallel, it is

coined as "double parallel” Monte Carlo.

1.3 Dissertation Structure

The rest of the dissertation is organized as follows. Chapter 2 introduces a ro-

bust model-free variable screening method to deal with ultra-high dimensional data.

Chapter 3 develops the Double-Parallel Monte Carlo algorithm for Bayesian analy-

isis of big data. Chapter 4 is dedicated to the Average Bayesian Information Crite-

rion(ABIC) and its high-dimensional variant Average Extended Bayesian Information

Criterion(AEBIC). Chapter 5 gives a summary of this dissertation and points out

some directions for future research. The technical details and supplementary results

are included in the Appendix.
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2. ROBUST MODEL-FREE FEATURE SCREENING FOR ULTRAHIGH

DIMENSIONAL DATA

2.1 Introduction

Variable selection plays an important role in high-dimensional data analysis.

However, under the ultrahigh-dimensional setting, where the number of covariates

may grow at an exponential rate of sample size, current variable selection methods

may not work well due to the simultaneous challenges of computational expediency,

statistical accuracy, and algorithmic stability (Fan et al., 2009). A practical approach

is using a screening procedure to reduce the dimension of feature space to a moderate

scale, and then implementing variable selection methods on the reduced dataset. To

pursue this approach, Fan and Lv (2008) proposed the sure independence screening

(SIS) method for linear regression, which screens predictors by ranking their Pearson

correlations with the response variable. They established the sure screening property,

that is, all active predictors can be selected with probability approaching one as the

sample size increases to infinity. Fan and Song (2010) extended SIS to generalized

linear models, which screens features by ranking the maximum marginal likelihood

estimators. As for nonlinear feature screening, Hall and Miller (2009) suggested poly-

nomial transformations of predictors, and Fan et al. (2011) suggested to estimate the

nonparametric components marginally using B-splines and then screen the features

by ranking the magnitude of nonparametric components.

All the above methods require the specification of a particular model structure.

If the underlying model is correctly specified, these methods can perform well. How-

ever, if the underlying model is misspecified, their performance may be corrupted.

Under the ultrahigh dimensional setting, specifying a correct model is usually an

6



impossible task, thus the model-free feature screening methods are often appealing.

Toward this direction, Zhu et al. (2011) proposed a sure independence ranking and

screening (SIRS) method to screen significant features for multi-index models. Li

et al. (2012) proposed a distance correlation sure independence screening (DC-SIS)

method, which screens features based on their distance correlations (Székely et al.,

2007) with the response variable. It is known that for two random variables, zero dis-

tance correlation implies independence. He et al. (2013) proposed a quantile-adaptive

sure independence screening (Qa-SIS) method, which employs spline approximation

to model the marginal effects of the predictors at a quantile level and then uses it to

screen variables. A particular strength of this method is that it can handle the cen-

sored data arising in survival analysis. Recently, Cui et al. (2015) established a mean

variance sure independence screening (MV-SIS) method, where the dependence of

two random variables is measured using the mean variance of the conditional distribu-

tion function. This method is originally proposed for categorical response variables,

but can be extended to the problems for which the response variable is continuous

via discretization.

Although the model-free variable screening methods avoid the specification of a

particular model structure, they are still based on some assumptions for the pre-

dictor and response variables, more or less. For example, DC-SIS requires both the

predictors and the response variable to satisfy the sub-exponential tail probability

uniformly. That is, practically, the response variable and predictors should be uni-

formly bounded or follow a multivariate Gaussian distribution. Qa-SIS requires the

conditional quantile function’s derivative to satisfy a Lipschitz condition and the

conditional density function to be uniformly bounded for each feature.

In this chapter, we introduce a new model-free feature screening method and

establish its sure independence screening property under the ultrahigh dimensional
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setting. The proposed method works based on the nonparanormal transformation

(Liu et al., 2009) and Henze-Zirkler’s test (Henze and Zirkler, 1990). It is to first

transform the response variable and each of the predictors to Gaussian random vari-

ables using the nonparanormal transformation and then test the dependence between

the response variable and the predictors using the Henze-Zirkler’s test. Compared to

the existing methods, the proposed method requires fewer assumptions to guarantee

its sure independence screening property and thus performs more robustly. Our nu-

merical studies indicate that the new method can achieve better performance when

the covariates follow a heavy-tailed distribution and when the underlying true model

is complex with interaction variables.

The rest of this chapter is organized as follows. In Section 2.2, we describe the

proposed method and establish its sure independence screening property. In Section

2.3, we conduct simulation studies to evaluate the finite sample performance of the

proposed method along with comparisons with the existing methods. In Section

2.4, we apply the proposed method to screening of anticancer drug response related

genes.

2.2 Robust Feature Screening

2.2.1 The Method

Let Y denote the continuous response variable, let X = (X1, . . . , Xp) denote the

continuous covariates, let n denote the sample size of the data, and let f(y|x) denote

the conditional distribution of Y given X. Under the ultrahigh-dimensional setting,

where p = O(exp(nτ )) for some τ > 0, we generally assume that only few predictors

are relevant to the response variable, although the covariate dimension p greatly

exceeds the sample size n. Without specifying a parametric form for the regression
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model, we define the sets of active predictors and inactive predictors as follows:

D = {k : f(y|x) functionally depends on Xk},

I = {k : f(y|x) does not functionally depends on Xk}.

Directly identifying the active predictor set D is sometimes difficult or even impossi-

ble under the ultrahigh-dimensional setting. Therefore, people proposed to first find

a larger set with a moderate size including all elements in D, then apply variable

selection techniques on this larger set to accurately identify D. Note that if f(y|x)

functionally depends on Xk, then Y andXk are usually marginally dependent as well,

therefore we can select the marginally dependent predictors to construct the larger

set, which is usually referred to as independence screening. In fact, under the partial

orthogonality condition (Fan and Song, 2010; Huang et al., 2008), that is, {xi, i ∈ D}

is independent of {xj, j ∈ I}, we can further show that f(y|x) functionally depends

on xk if and only if Y and Xk are marginally dependent.

To implement independence screening, we need to find a metric to measure the

marginal dependence between each predictorXk and the response variable Y . Several

metrics have already been proposed, see e.g., Zhu et al. (2011), Cui et al. (2015), Li

et al. (2012), and He et al. (2013). In this chapter, we propose a new one with the

basic idea described as follows. Let Fy(·) denote the CDF of the response variable

Y , and Fk(·) denote the CDF of the kth predictor Xk. Consider the nonparanormal

transformation (Liu et al., 2009)

Ty(Y ) = Φ−1(Fy(Y )), Tk(Xk) = Φ−1(Fk(Xk)), k = 1, . . . , p, (2.1)

where Φ(·) denotes the CDF of the standard Gaussian distribution. Notice the
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nonparanormal transformation implemented here is slightly different with the original

one because we don’t need the mean and variance correction step. In addition, Liu

et al. (2009) imposed nonparanormal transformation on nonparanormal distributions,

but here we just use this transformation on common random vectors.

It is easy to see that Y is independent of Xk if and only if (Ty(Y ), Tk(Xk)) forms

a bivariate random vector following the distribution N2(0, I2), where I2 denotes

the 2 × 2 identity matrix. The latter can be tested using a multivariate normality

test, e.g., Henze-Zirkler’s test (Henze and Zirkler, 1990), with the known covariance

structure. If (Ty(Y ), Tk(Xk)) does not follow the distribution N2(0, I2), then the

Henze-Zirkler’s test statistic tends to take a large value. In practice, since Fy and Fk’s

are usually unknown, we can use the estimated nonparanormal transformation in Liu

et al. (2009). The estimated nonparanormal transformation has been implemented

in the R package huge.

In summary, the proposed method consists of the following steps:

1. Transform all variables, including the response variable and predictors, to stan-

dard Gaussian random variables by the estimated nonparanormal transforma-

tion. Let’s take the response variable as example, let

T̃y(yi) = Φ−1(F̃y(yi)), i = 1, . . . , n,

where yi denotes the ith observation of Y , F̃y is the truncated empirical distri-

bution of Y given by

F̃y(t) =


δn : F̂y(t) < δn,

F̂y(t) : δn ≤ F̂y(t) ≤ 1− δn,

1− δn : F̂y(t) > 1− δn,

10



F̂y(t) ≡ 1
n

∑n
i=1 1{yi≤t} is the empirical distribution of Y , and the default trun-

cation parameter δn = 1
4
n−1/4(π log n)−1/2.

2. For each predictor Xk, calculate the Henze-Zirkler test statistic

ω̃∗k =
1

n2

n∑
i=1

n∑
j=1

e−
β2

2
dij − 2

n(1 + β2)

n∑
i=1

e
− β2

2(1+β2)
di +

1

1 + 2β2
, (2.2)

where β is the smoothing parameter and its optimal value is (1.25n)1/6/
√

2,

corresponding to the optimal bandwidth for a nonparametric kernel density

estimator with Gaussian kernel (Henze and Zirkler, 1990). In addition, dij =

(T̃k(xki)− T̃k(xkj))2 + (T̃y(yi)− T̃y(yj))2, di = T̃ 2
k (xki) + T̃ 2

y (yi), and T̃k(xki) and

T̃y(yi) denote the ith realization of T̃k(Xk) and T̃y(Y ), respectively.

3. Select a set of important predictors with large value of ω̃∗k, i.e., set

D̂ = {k : ω̃∗k > cn−κ, for 1 ≤ k ≤ p},

where c and κ are predetermined threshold values.

Since c and κ are usually difficult to determine, we follow the other feature screen-

ing methods to set the size of D̂ to be [n/ log(n)], where [z] denotes the integer part

of z. Since the proposed method employes the Henze-Zirkler test statistic to measure

the dependence between the transformed response variable and predictors, we call it

the Henze-Zirkler sure independence screening method or HZ-SIS for short.
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2.2.2 Theoretical Properties

To study the theoretical properties of the HZ-SIS method, we first describe how

the HZ-test statistic ω̃∗k in (2.2) is derived. Define

ωk =

∫
R2

∣∣∣∣φk(t)− exp(−1

2
t′t)

∣∣∣∣2 ϕβ(t)dt, k = 1, 2, . . . , p,

where φk(t) is the characteristic function of (Φ−1(Fk(Xk)),Φ
−1(Fy(Y ))), and ϕβ(t)

is the density function of N(0, β2I2). Recall that exp(−1
2
t′t) is the characteristic

function of N(0, I2). Therefore, ωk can be viewed as the averaged difference between

the characteristic function of the transformed variables and the characteristic func-

tion of N(0, I2). It is easy to verify that ωk equals zero if and only if Xk and Y are

marginally independent.

Given observations {(x1, y1), . . . , (xn, yn)}, where xi = {x1i, . . . , xpi} denotes the

predictor variables in ith observation, we first use the truncated empirical distribution

to estimate the CDF for each variable. In order to estimate ωk, we re-express it in

the following form (Henze and Zirkler, 1990) by some algebra:

ωk = E
{
e−

β2

2
[(Φ−1(Fk(Xk))−Φ−1(Fk(X′k)))2+(Φ−1(Fy(Y ))−Φ−1(Fy(Y ′)))2]

− 2

1 + β2
e
− β2

2(1+β2)
(Φ−1(Fk(Xk))2+Φ−1(Fy(Y ))2)

+
1

1 + 2β2

}
,

where (X ′k, Y
′) is an independent copy of (Xk, Y ). With this representation, ωk can

be estimated using a V -statistic, which leads to the HZ-test statistic used in (2.2).

Next, we study the sure screening property of the HZ-SIS method. As mentioned

previously, compared to the existing methods, HZ-SIS requires fewer assumptions

for its sure screening property. The assumptions are given as follows.

C1 There exist positive constants c > 0 and 0 ≤ κ ≤ 1/4 such that mink∈D ωk ≥

12



2cn−κ.

C2 The dimension p = O(exp(nτ )) for some constant 0 ≤ τ < 1−4κ
3

.

Assumption (C1) can be viewed as a regularity condition for sure screening meth-

ods, which assumes that the minimum true signal cannot be too weak to be detectable

for a given sample size, although it can gradually diminish to zero as the sample size

increases to infinity. A similar assumption has been used in other methods, see e.g.,

Li et al. (2012) and Cui et al. (2015). Assumption (C2) allows an exponential growth

of the dimension p as a function of the sample size. It is also regular for ultrahigh

dimensional methods. To establish the sure screening property for HZ-SIS, the key

step is to establish an exponential probability bound for |ω̃∗k − ωk|. The following

lemma presents such an exponential probability bound with the proof given in the

Appendix.

Lemma 2.1. If the truncation parameter δn =
(
4n

m
2

√
2πm log n

)−1, where m =

2
3
− 2κ

3
, then there exist positive constants c1 > 0 such that

P ( max
1≤k≤p

|ω̃∗k − ωk| > cn−κ) ≤ O
(
p exp{−c1n

1−4κ
3 }
)
,

for 1 < k ≤ p.

Here we note that we set m = 1/2 as the default value for the HZ-SIS method

and this default value has been used in all examples of this chapter. Based on this

lemma, we establish the sure screening property for HZ-SIS in the following theorem.

Theorem 2.1. Under conditions (C1) and (C2), we have

P (D ⊆ D̂)→ 1, as n→∞.

13



Proof. If D * D̂, there must exist k′ ∈ D such that ω̃∗k′ < cn−κ. Recall that

ωk > 2cn−κ for all k ∈ D. Therefore, we have |ω̃∗k′ −ωk′| > cn−κ. This indicates that

{D * D̂} ⊆ { there exist k′ ∈ D such that |ω̃∗k′ − ωk′| > cn−κ}. Consequently,

P (D ⊆ D̂) = 1− P (D * D̂)

≥ 1− P (there exist k′ ∈ D such that |ω̃∗k′ − ωk′| > cn−κ)

≥ 1− P ( max
1≤k≤p

|ω̃∗k − ωk| > cn−κ) ≥ 1−O{p exp{−c1n
1−4κ

3 }}

= 1−O{exp{−c1n
1−4κ

3 + log(p)}}

= 1−O{exp{−c1n
1−4κ

3 + c2n
τ}} = 1− o(1),

which concludes the proof.

2.3 Simulation Studies

In this section, we used three simulated examples to assess the finite sample

performance of HZ-SIS, along with comparisons with SIS (Fan and Lv, 2008), DC-

SIS (Li et al., 2012), Qa-SIS (He et al., 2013) and MV-SIS (Cui et al., 2015). In

addition, NIS (Fan et al., 2011) was implemented for additive model(Example 2.3.1),

and the screening step in slice inversion regression for interaction detection (SIRI)

was implemented for model with interactions(Example 2.3.2 & 2.3.3). For each

example, we generated 100 independent datasets and summarized the performance

of the methods on these 100 datasets in a few statistics. These statistics include the

minimum size of D̂ needed to cover all active variables, which is denoted by MSD

for short; and for the given size νn = [n/ log(n)] of D̂, the proportion of D̂ covering

a single active predictor Xk (denoted by Pk), and the proportion of D̂ covering all

active variables (denoted by Pa). The reason for choosing the above statistics is that

in practice, we usually specify the size νn of D̂ instead of the thresholding value cn−κ
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for feature screening.

2.3.1 An Additive Model Example

This example is adopted from Cui et al. (2015). Let

f1(x) = − sin(2x), f2(x) = x2 − 12

25
, f3(x) = x, f4(x) = e−x − 2

5
sinh(

5

2
),

and consider the additive model

Y = 3f1(X1) + f2(X2)− 1.5f3(X3) + f4(X4) + ε,

where the error term ε follows a t(1) distribution. For the predictors, we consider

two different distributions:

1. Xk’s, k = 1, . . . , p, are generated independently from the distribution t(4);

2. Xk’s, k = 1, . . . , p, are generated independently from the Uniform[−2.5,2.5].

We set (n, p) = (200, 2000) and repeated each case for 100 times. In Qa-SIS, we

set τ = 0.5 and the number of basis dn = [n
1
5 ] = 3. In NIS, we took the number

of basis dn = [n
1
5 ] + 2 = 5. In MV-SIS, we discretized each predictor into a four-

categorical variable using the first, second and third quartiles as knots. For MV-SIS,

the same discretization method has been used in all examples of this paper. The

results are summarized in Table 2.1.

From Table 2.1, we can see that when the predictors are generated from t(4), a

heavy-tailed distribution, HZ-SIS performs best, followed by MV-SIS, DC-SIS and

Qa-SIS. This result, combined with the fact that HZ-SIS requires fewer assump-

tions for the sure screening property, indicates that HZ-SIS is a more robust feature

screening method than the existing ones. When the predictors are generated from
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Table 2.1: Simulation results for the additive model example. For MSD, we report
the median with its associated interquartile range (IQR) in the parentheses.

Method MSD P1 P2 P3 P4 Pa
SIS 976.50(1023.00) 0.07 0.08 0.96 0.98 0.01
NIS 1342.50(704.75) 0.01 0.20 0.05 0.76 0.00
DC-SIS 279.50(656.75) 0.27 0.46 0.57 0.95 0.16

Case 1 MV-SIS 24.00(118.00) 0.83 0.73 0.97 0.95 0.58
Qa-SIS 347.50(653.50) 0.02 0.81 0.22 0.98 0.00
HZ-SIS 11.50(22.00) 0.98 0.90 0.97 0.94 0.80
SIS 1216.50(964.75) 0.10 0.02 1.00 1.00 0.00
NIS 924.00(1257.25) 0.16 0.17 0.30 0.33 0.06
DC-SIS 197.00(339.00) 0.20 0.31 0.98 0.98 0.06

Case 2 MV-SIS 11.00(28.00) 0.94 0.83 1.00 1.00 0.78
Qa-SIS 8.00(15.50) 0.91 0.91 1.00 1.00 0.82
HZ-SIS 24.50(52.25) 0.71 0.88 0.99 1.00 0.64

the uniform distribution, for which the support is bounded, HZ-SIS still performs

reasonably well. In this case, it is comparable with MV-SIS and Qa-SIS, but much

better than DC-SIS, NIS and SIS.

For the case where the predictors are generated from t(4) distribution, we also

plotted histograms of the calculated screening indices of each method. Specifically,

for each method, we first combined the corresponding screening indices from 100

simulations. Then we drew a histogram using all 400 indices from active variables and

a histogram using 600 indices from inactive variables, which are randomly selected

from a total of 199,600(100×1996) ones. Finally, we put two histograms in the same

figure and differentiated them by color. The histograms are shown in Figure 2.1. It

is clear that HZ-SIS has the smallest overlapping area for its two histograms, which

again confirms its superiority in separating active features and inactive ones.
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Figure 2.1: Histograms of the screening indices of different methods for the additive
model example with the predictors generated from the distribution t(4).

2.3.2 A Model with Interaction Variables

This example illustrates the performance of HZ-SIS for the models with interac-

tion variables. Let

Y = 0.5 +
10X1

1 +X2
50

+ ε,

The vector of covariates X = (X1, · · · , Xp)
T is generated from the multivariate

normal distribution having mean 0 and the covariance matrix Σ = (σij)p×p with

σij = 0.5|i−j|. For the error term ε, we considered two cases: (i) ε follows N(0, 12)

distribution. (ii) ε follows t(1) distribution. We set (n, p) = (200, 1000) and repeated

each experiment for 100 times.

Jiang and Liu (2014) recently proposed a procedure, called sliced inverse regres-

sion for interaction detection (SIRI), to conduct high dimensional variable selection
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for the model with interaction terms. Instead of building a predictive model of the

response given combinations of predictors, this procedure is based on modeling the

conditional distribution of predictors given responses. Since this procedure includes

a screening step, so we also implemented this step here and denoted it as SIRI-SIS.

In SIRI-SIS, we used a fixed slicing scheme with 10 slices of equal size (H=10).

In Qa-SIS procedure, we set τ = 0.4 and the number of basis dn = [n
1
5 ] = 3. The

results are summarized in Table 2.2.

Table 2.2: Results for the model with interaction variables. For MSD, we report the
median with its associated interquartile range (IQR) in the parentheses.

Method MSD P1 P50 Pa
SIS 686.00(321.25) 1.00 0.00 0.00
SIRI-SIS 3.00(1.00) 1.00 0.99 0.99
DC-SIS 50.50(52.25) 1.00 0.39 0.39

Case 1 MV-SIS 34.00(73.75) 1.00 0.52 0.52
Qa-SIS 426.00(478.00) 1.00 0.02 0.02
HZ-SIS 3.00(1.00) 1.00 1.00 1.00
SIS 575.50(387.00) 0.78 0.03 0.01
SIRI-SIS 11.00(52.00) 1.00 0.69 0.69
DC-SIS 167.00(251.25) 1.00 0.12 0.12

Case 2 MV-SIS 97.50(158.75) 1.00 0.23 0.23
Qa-SIS 414.50(403.75) 1.00 0.02 0.02
HZ-SIS 9.50(22.00) 1.00 0.86 0.86

Table 2.2 indicates that in the case where error term is normal, all methods can

detect X1 with ease, but when it comes to detecting X50, HZ-SIS and SIRI-SIS

substantially outperforms other methods. For the case where error term follows t(1)

distribution, we have similar conclusions as in the normal case. In addition, our

method performs slightly better than SIRI-SIS in this case.

To understand the performance of these methods, we show in Figure 2.2 the scat-
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ter plots of the transformed predictors T̃1(X1), T̃50(X50) and T̃100(X100) versus the

transformed response variable T̃y(Y ) in case 1. The scatter plots of X1, X50 and X100

versus Y are similar. Given the reference scatter plot of (T̃100(X100), T̃y(Y )) for which

the theoretical joint distribution is N(0, I2), we can see that the joint distributions

of (T̃1(X1), T̃y(Y )) and (T̃50(X50), T̃y(Y )) substantially deviate from N(0, I2), and

thereby HZ-test is powerful in detecting the dependence of Y on X1 and X50. How-

ever, not all other methods work well for this example. As indicated by the values

of P2 reported in Table 2.2, SIS and Qa-SIS essentially fail to detect the dependence

of Y on X50, and DC-SIS and MV-SIS have only limited success probabilities of

detecting this dependence.

Figure 2.2: Scatter plots of the transformed response variable T̃y(Y ) versus the
transformed predictors T̃1(X1), T̃50(X50) and T̃100(X100)

2.3.3 A Complex Model with More Interaction Variables

This example illustrates the performance of HZ-SIS for more complex models.

Let

Y = 1 + A[10X1 + exp(X2
2 + 3X3)] + 10

X5

2 +X6

+ 3(X7 +X8)2 + ε,
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Table 2.3: Results for the complex model with more interaction variables. For MSD,
we report the median with its associated interquartile range (IQR) in the parentheses.

Method MSD P1 P2 P5 P6 P7 P8 Pa
SIS 841.50(196.25) 0.07 0.30 0.78 0.06 0.08 0.06 0.00
SIRI-SIS 470.00(377.25) 0.73 0.99 0.34 0.05 0.48 0.53 0.00
DC-SIS 911.00(117.00) 0.04 0.94 0.04 0.07 0.04 0.07 0.00

Case1 MV-SIS 511.50(322.00) 0.28 1.00 0.88 0.09 0.38 0.33 0.00
Qa-SIS 420.50(305.25) 0.02 0.98 0.09 0.05 0.05 0.08 0.00
HZ-SIS 245.50(341.75) 0.90 1.00 0.93 0.30 0.76 0.53 0.12
SIS 882.50(183.50) 0.10 0.16 0.84 0.07 0.09 0.11 0.00
SIRI-SIS 432.00(378.25) 0.56 1.00 0.17 0.06 0.45 0.40 0.00
DC-SIS 899.50(134.25) 0.10 0.11 0.10 0.09 0.03 0.08 0.00

Case2 MV-SIS 484.00(325.00) 0.63 1.00 0.85 0.11 0.39 0.36 0.00
Qa-SIS 416.00(453.25) 0.04 0.99 0.06 0.08 0.03 0.08 0.00
HZ-SIS 200.50(309.25) 0.79 1.00 0.89 0.26 0.71 0.40 0.10

where A is generated from the set {−1, 1} with equal probability, Xk’s are indepen-

dently generated from t(4) distribution. For the error term ε, we considered two

cases: (i) ε follows N(0, 12) distribution. (ii) ε follows t(1) distribution. This model

is complex, containing more interaction variables than previous examples. We set

(n, p) = (400, 1000) and repeated each experiment 100 times.

In SIRI-SIS, we used a fixed slicing scheme with 10 slices of equal size (H=10).

In Qa-SIS procedure, we set τ = 0.4 and the number of basis dn = [n
1
5 ] = 3. The

results are summarized in Table 2.3.

From Table 2.3, we can see that in both case, HZ-SIS has an overall superior

performance against the other methods.

2.4 Screening of Anticancer Drug Response Genes

Recent advances in high-throughput biotechnologies, such as microarray, sequenc-

ing technologies and mass spectrometry, have provided an unprecedented opportunity

for biomarker discovery. Molecular biomarkers can not only facilitate disease diagno-
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sis, but also reveal underlying, biologically distinct, patient subgroups with different

sensitivities to a specific therapy. The latter is known as disease heterogeneity, which

is often observed in complex diseases such as cancer. For example, molecularly tar-

geted cancer drugs are only effective for patients with tumors expressing targets

(Grünwald and Hidalgo, 2003; Buzdar, 2009). The disease heterogeneity has directly

motivated the development of precision medicine, which aims to improve patient care

by tailoring optimal therapies to an individual patient according to his/her molecular

profile and other clinical characteristics.

Toward the ultimate goal of precision medicine, i.e., selecting right drugs for

individual patients, a recent large-scale pharmacogenomics study, namely, cancer

cell line encyclopedia (CCLE), has screened multiple anticancer drugs over hundreds

of cell lines in order to elucidate the response mechanism of anticancer drugs. The

dataset consists of the dose-response data for 24 chemical compounds across over 479

cell lines. For each cell line, it consists of the expression data of 18,988 genes. The

dataset is publicly available at www.broadinstitute.org/ccle. Our goal is to screen the

genes that respond to each chemical compounds, which will facilitate the followed

analysis for identification of anticancer drug response genes. In our analysis, we used

the area under the dose-response curve, which is termed as activity area in Barretina

et al. (2012), to measure the sensitivity of drug to a given cell line. Compared to

other measurements, such as IC50 and EC50, the activity area could capture the

efficacy and potency of a drug simultaneously.

The drug topotecan (trade name Hycamtin) is a chemotherapeutic agent that

is a topoisomerase inhibitor. It is a synthetic, water-soluble analog of the natural

chemical compound camptothecin and has been used to treat ovarian cancer, lung

cancer and other cancer types. After GlaxoSmithKline received final FDA approval

for Hycamtin Capsules in 2007, topotecan became the first topoisomerase I inhibitor
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Table 2.4: Top 10 genes selected for the drug topotecan by different methods.
Rank SIS DC-SIS MV-SIS Qa-SIS HZ-SIS
1 CADM2 ITGB5 HMGB2 FLJ35816 RFXAP
2 MMP27 PPIC KIF15 GATS HMGB2
3 WNT5B HMGB2 RFXAP HS3ST3A1 ITGB5
4 CDX4 ARHGAP19 ARHGAP19 ASIC4 BCLAF1
5 ELF4 RFXAP CD63 TRAV26-2 CPSF6
6 ECI2 CPSF6 TAF5 LOC10 HAUS1
7 GLIPR1 CD63 CPSF6 LOC11 ILF3
8 ABCC9 TAF5 ELAVL1 VPS72 ELAVL1
9 ADCY5 CNTRL ILF3 PIK3IP1 TAF5
10 PPIC SLFN11 S100A10 CRSF6 SLFN11

for oral use. Table 2.4 lists the top 10 important genes selected for topotecan by

HZ-SIS. For comparison, the table also includes the top 10 genes selected by SIS,

DC-SIS, MV-SIS and Qa-SIS. In Qa-SIS procedure, we set τ = 0.5 and the number of

basis dn = [n
1
5 ] = 3. For topotecan, the gene SLFN11 has been recognized as a very

important predictor for the sensitivity of topotecan (Barretina et al., 2012; Zoppoli

et al., 2012). HZ-SIS ranks it No. 10. In addition to SLFN11, Wang et al. (2014)

found the strong relevance of HMGB2 and BCLAF1 to topotecan. HZ-SIS ranks

these two genes No. 2 and No. 4, respectively. DC-SIS has a similar performance to

HZ-SIS for the drug topotecan, while the other methods do not.

The drug 17-AAG is a derivative of the antibiotic geldanamycin that is being

studied in the treatment of cancer, specific young patients with certain types of

leukemia or solid tumors, especially kidney tumors. 17-AAG works by inhibiting the

gene HSP90, which is expressed in those tumors, and belongs to the family of drugs

called antitumor antibiotics. Table 2.5 reports the top 10 genes ranked by different

methods for 17-AAG. According to Hadley and Hendricks (2014) and Barretina et al.

(2012), the gene NQO1 is the top predictive biomarker for 17-AAG. HZ-SIS ranks it
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Table 2.5: Top 10 genes selected for the drug 17-AAG by different methods.
Rank SIS DC-SIS MV-SIS Qa-SIS HZ-SIS
1 UXT NQO1 NQO1 MMP24 NQO1
2 IGFN1 MMP24 INO80 ATP6V0E1 OGDHL
3 MSH2 ZNF610 MMP24 ZFP30 TMEM198
4 ROCK1 ZFP30 ZNF610 GPR35 ZBTB7A
5 DDA1 NFKB1 ZFP30 SLC1A5 GYG2
6 SCEL CDH6 PRPUSD4 GPX2 CDH6
7 ST5 OGDHL LOC10 CNTRL ZNF610
8 THUMPD3 LOC10 PCSK1N VPS72 RPUSD4
9 ITGA9 PRUSD4 NFKB1 LOC10 CSK
10 C20orf141 IN080 ZBTB7A ZNF610 CTCF

first among all genes. DC-SIS and MV-SIS also rank it first.
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3. DOUBLE-PARALLEL MONTE CARLO FOR BAYESIAN ANALYSIS OF

BIG DATA

3.1 Introduction

The MCMC method has proven to be a very powerful and typically unique com-

putational tool for analyzing data of complex structures. However, it is difficult to

be applied to big data problems for which complex models are often needed. The

difficulty comes from two aspects. The first one is on data storage; the dataset

can be too large for a single computer to store and process. The second one is on

computational time; the MCMC method can be very time consuming for simulating

from the posterior of a large data set, which typically requires a large number of

iterations and a complete scan of the full dataset for each iteration. However, thanks

to strategy of embarrassingly parallel computing, the two issues can now be solved

simultaneously.

The strategy of embarrassingly parallel computing is to divide a large dataset

into a number of smaller subsets such that each subset can be stored in a single

machine, and then conduct the Bayesian analysis for each subset separately. Finally,

the posterior samples generated for each subset are aggregated in some way such

that a correct inference can be made for the full data posterior. During the past

few years, this strategy has been pursued by a few groups enthusiastically. Several

algorithms have been developed to address the issue of subset posterior aggregation.

To be a little more detailed, suppose that a large dataset has been partitioned

into k subsets, and N posterior samples have been generated for each subset. Let

{θ(i)
1 , . . .θ

(i)
N } denote the posterior samples generated from subset i. Based on the

Bernstein-von Mises theorem, which states that the posterior tends to a normal
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distribution centered around the true parameter value θ∗ as the number of obser-

vations grows, Scott et al. (2016) proposed to use the weighted average
∑k

i=1wiθ
(i)
j

to approximate a full data posterior sample, where the weight wi is the inverse of

the covariance matrix of {θ(i)
1 , . . .θ

(i)
N }. This algorithm is exact when the subset

posterior is exactly Gaussian. Based on the same theory, Neiswanger et al. (2013)

proposed to fit the posterior samples generated for each subset by a Gaussian den-

sity, denoted the fitted density by p̂i for i = 1, . . . , k, and then draw samples from

the product density p̂1 . . . p̂k. As an extension of this approach, Neiswanger et al.

(2013) also proposed to estimate the subset posterior density using a Gaussian kernel

density estimation method or a semiparametric density estimation method. Wang

and Dunson (2013) proposed a Weierstrass refinement sampler, where the samples

from an initial approximation to the full data posterior (e.g., obtained via variational

approximation or other methods) are refined using the information obtained from the

subset posterior samples within a Weierstrass approximation. Another method that

makes use of kernel approximation is by Minsker et al. (2014), where the subset pos-

teriors are combined by estimating a probability distribution that minimizes a loss

function defined in the reproducing kernel Hilbert space embedding the subset pos-

teriors. These methods generally work well, but their accuracy can vary significantly

depending on how close the subset posteriors are to Gaussian or the choice of kernel

and its bandwidth. In particular, their accuracy can be low when the dimension of

θ is high. Quite recently, the so-called WASP method was proposed by Srivastava

et al. (2015), where each subset posterior is approximated by an empirical measure

and they are combined by estimating their barycenter in the Wasserstein space of

probability measures. This method does not depend on the kernel density estimation

any more, but computing the Wasserstein barycenter needs to solve a huge linear

programming problem which often requires a lot of computer memory.
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In this chapter, we introduce a new method for aggregating subset posterior

samples. The new method is surprisingly simple, which is to first simulate from some

modified subset posteriors, for which the log-likelihood functions are appropriately

scaled according to their sample size, and then recenter the subset posterior samples

to their global mean. Under mild conditions, we show that the aggregated samples

have the same convergence rate toward the true parameter θ∗ as those drawn from

the full data posterior. The numerical results indicate that the new method can

be rather accurate compared to the existing ones. In order to further speed up

computation, we suggest to use the Pop-SAMC algorithm (Song et al., 2014), rather

than traditional single chain MCMC algorithms, to draw samples from each subset

posterior. Since the proposed method consists of two levels of parallel, data parallel

and simulation parallel, it is coined as “double parallel” Monte Carlo.

The remainder of this chapter is organized as follows. Section 3.2 presents the

proposed sample aggregation method and describes its theoretical properties. Section

3.3 first gives a brief review of the pop-SAMC algorithm, and then discusses the

double parallel strategy. Sections 3.4 and 3.5 present some numerical results along

with some comparisons with the existing methods.

3.2 Subset Posterior Aggregation

Suppose that a random sample X = {X1, . . . , Xn} has been collected from the

distribution f(x|θ∗), where θ∗ ∈ Θ ⊂ Rp and Θ is the parameter space. Let g(θ)

denote the prior distribution of θ. Then the posterior distribution of θ is given by

π(θ|X) =

∏n
i=1 f(Xi|θ)g(θ)∫

Θ

∏n
i=1 f(Xi|θ)g(θ)dθ

. (3.1)

In most cases, π(θ|X) is analytically intractable and we have to approximate it using

the Markov chain Monte Carlo(MCMC) method. However, as mentioned previously,
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when n is very large, the MCMC method is computationally prohibitive because it

requires a large number of scans of the dataset.

To address this issue, we divide the data into k subsets, each containing about the

same number of samples. Let X [j] = (Xj1, . . . , Xjmj) denote the jth subset, where

mj denote the sample size of X [j]. Let π(θ|X [j]) denote the posterior distribution

corresponding to the subsetX [j], for which the variance is approximately n/mj times

the variance of full data posterior π(θ|X). To adjust the variance, for each subset,

we instead work on a modified subset posterior

π̃(θ|X [j]) =

∏m
i=1 f

n/mj(Xji|θ)π(θ)∫
Θ

∏m
i=1 f

n/mj(Xji|θ)π(θ)dθ
, (3.2)

where each sample is duplicated n/mj times. Such a modification, first introduced

in Minsker et al. (2014), ensures that π̃(θ|X [j]) has about the same variance as the

full data posterior. In what follows, we refers to π̃(θ|X [j]) as a subposterior and,

without loss of generality, assume that m1 = m2 = · · · = mk = m holds.

Let µ(1), · · · ,µ(k) denote the mean of the subposteriors, and let µ̂ = 1
k

∑k
j=1µ

(j)

denote their averages. We propose to recenter each of the subposteriors to µ̂ and

then use the following mixture of re-centered subposteriors to approximate the full

data posterior π(θ|X):

π̃(θ|X) =
1

k

k∑
j=1

π̃(θ + (µ̂− µ(j))|X [j]). (3.3)

To quantify the accuracy of the approximation, we make the following assump-

tions:

(A1) The log-likelihood function
∑m

i=1 log f(xji|θ) is Laplace-regular for each j =

1, . . . , k.
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(A2) θ∗ is an interior point of Θ, g(θ∗) > 0, and g(θ) is four times continuous

differentiable on Θ.

(A3) The number of subsets k can increase slowly with n, but can not exceed O(n1/2).

Since the quantification involves posterior expansions based on Laplace’s method,

the Laplace regularity condition is assumed. Refer to Kass et al. (1990) for the

detail. This condition is standard and generally holds for the exponentially family.

Under the above conditions, we have the following theorem, whose proof is given in

the appendix.

Theorem 3.1. If the conditions (A1)-(A3) are satisfied, then we have

E[Eπ̃(θ)− Eπ(θ)]2 = O(m−2), (3.4)

E|Varπ̃(θ)− Varπ(θ)| = o(n−1), (3.5)

E(d2(π, δθ∗)) = 2
tr(I−1)

n
+ o(n−1), (3.6)

E(d2(π̃, δθ∗)) = 2
tr(I−1)

n
+ o(n−1), (3.7)

where Eπ and Eπ̃ denote the expectations with respect to π and π̃, respectively;

Varπ and Varπ̃ denote the variances with respect to π and π̃, respectively; I =

−EX|θ∗ ∂
2 log f(X|θ(∗))

∂θ∂θT
is the Fisher information matrix, and d2(π̃, δθ∗) =

∫
Θ
‖θ −

θ∗‖2
2π̃(θ|X)dθ is the Wasserstein distance of order 2 between π̃(θ|X) and the Dirac

measure at θ∗.

Equations (3.4) and (3.5) measure the accuracy of the approximation π̃(θ|X) to

π(θ|X) in terms of mean and variance, respectively. In particular, equation (3.4)

implies that π̃(θ|X) and π(θ|X) will lead to the same Bayesian estimate (with

respect to the square loss function), and equation (3.5) implies that the Bayesian
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estimates led from π̃(θ|X) and π(θ|X) will have about the same variance when

n is large. Equations (3.6) and (3.7) imply that π̃(θ|X) and π(θ|X) share the

same convergence rate toward the true value θ∗. In other words, the subposterior

aggregation does not lose much information about the data.

Rather than θ itself, sometimes we are interested in h(θ), a Rp 7→ Rq function of

θ. A similar result, which measures the accuracy of the approximation π̃(h(θ)|X),

can be obtained under the following condition:

(A4) h(θ) is square integrable and thrice times continuous differentiable in a neigh-

borhood of θ∗.

Corollary 3.1. If A1-A4 are satisfied, then we have

E[Eπ̃h(θ)− Eπh(θ)]2 = O(m−2),

E|V arπ̃h(θ)− V arπh(θ)| = o(n−1),

E(d2(π(h(θ)|X), δh(θ∗))) = 2
tr(H∗(1)I

−1H∗
′

(1))

n
+ o(n−1),

E(d2(π̃(h(θ)|X), δh(θ∗))) = 2
tr(H∗(1)I

−1H∗
′

(1))

n
+ o(n−1),

where H∗(1) = ∂h(θ)

∂θT
|θ=θ∗, and I is the Fisher information matrix as defined in Theorem

3.1.

The proof is similar to that of Theorem 3.1, which is based on the expansion for

the posterior mean of h(θ) and thus omitted here.

3.3 Double Parallel Monte Carlo

In this section, we first give a brief review of the Pop-SAMC algorithm and discuss

its implementation on the OpenMP platform. Then we describe the double parallel

Monte Carlo scheme.
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3.3.1 Pop-SAMC Algorithm and Its OpenMP Implementation

As aforementioned, although MCMC is powerful for analyzing the data of com-

plex structures, its computer-intensive nature precludes its use for big data analysis.

To accelerate computation, one feasible way is to conduct parallel MCMC simula-

tions. People have debated for a long time to make a single long run or many short

runs. For conventional MCMC algorithms, such as the Metropolis-Hastings algo-

rithm(Metropolis et al., 1953; Hasting, 1970) and the Gibbs sampler (Geman and

Geman, 1984), parallel runs may not provide any theoretical advantages over a single

long run. In general, if you cannot get a good answer with a long run, then you can-

not get a good answer with many short runs either. However, this situation differs for

the population stochastic approximation Monte Carlo (pop-SAMC) algorithm (Song

et al., 2014), where it is shown that running pop-SAMC with κ chains (in parallel)

for T iterations is asymptotically more efficient than running a single SAMC chain

for κT iterations when the gain factor sequence decreases slower than O(1/t), where

t indexes iterations. This is due to that the chains in pop-SAMC interact with each

other intrinsically.

The pop-SAMC algorithm consists of two steps, population sampling and ξ-

updating, where ξ denotes an adaptive parameter evolving with iterations. In the

population sampling step, each chain is updated independently for one or a few

iterations. In the ξ-updating step, ξt (i.e., the value of ξ at iteration t) is updated

based on the collected information from individual chains, which enforces interactions

between different chains and, consequently, improves the efficiency of the algorithm.

The detailed algorithm is described below.

Suppose that we are interested in simulating samples from a density function

p(θ), θ ∈ Θ, and Θ has been partitioned into M subregions: E1 = {θ : U(θ) <
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u1}, E2 = {θ : u1 ≤ U(θ) < u2}, . . ., EM−1 = {θ : uM−2 ≤ U(θ) < uM−1},

and EM = {θ : U(θ) ≥ uM−1}, where U(θ) is a pre-specified function of θ, e.g.,

U(θ) = − log p(θ), and u1 < u2 < · · · < uM−1 are pre-specified numbers. To

explain the concept of SAMC, we assume for the time being that all the subregions

are non-empty; that is, zi =
∫
Ei
p(θ)dθ > 0 for all i = 1, . . . ,M . However, as

explained in Liang et al. (2007), the algorithm does allow the existence of empty

subregions. Let π = (π1, . . . , πM) denote the desired sampling distribution of the M

subregions, where
∑M

i=1 πi = 1 and πi > 0 for all i = 1, . . . ,M . Given the partition

and the desired sampling distribution, Pop-SAMC seeks to draw samples from the

distribution

pz(θ) ∝
M∑
i=1

πip(θ)

zi
I(θ ∈ Ei).

If zi’s are known and the space is partitioned appropriately, e.g., the energy band-

width of each subregion is small enough, then the sampling will lead to a random

walk in the space of subregions and thus the local-trap problem can be overcome

essentially. However, since z1, . . . , zM are generally unknown, Pop-SAMC employs

the stochastic approximation algorithm (Robbins and Monro, 1951) to learn their

values (up to a constant factor) in an adaptive way.

Let κ denote the population size, i.e., the number of parallel Markov chains

contained in Pop-SAMC, and let θt = (θt1, . . . ,θtκ) denote the current state of the

κ chains. Let ξt = (ξt1, . . . , ξtM) denote the working estimate of (z1/π1, . . . , zM/πM)

obtained at iteration t. One iteration of the algorithm consists of the following steps:

1. (Population sampling) For i = 1, . . . , κ, generate a new sample θt,i starting

from θt−1,i by a single MH update with the target distribution given by

pξt−1
(θ) ∝

M∑
j=1

p(θ)

eξt−1,j
I(θ ∈ Ej). (3.8)
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2. (ξ-update) Set ξt = ξt−1 + γt(H t − (1/M)1), where H t = (
∑κ

i=1 I(θt,i ∈

E1)/κ, · · · ,
∑N

i=1 I(θt,i ∈ EM)/κ)T , and γt is a gain factor.

To ensure the convergence of the algorithm, the gain factor {γt} is required to

satisfy the conditions:

∞∑
t=1

γt =∞, γt+1 − γt
γt

= O(γτt+1),
∞∑
t=1

γ
(1+τ ′)/2
t √

t
<∞,

for some τ ∈ [1, 2) and τ ′ ∈ (0, 1). For example, one can set γt = O(1/tζ) for

ζ ∈ (1/2, 1]. To accommodate the case that ξt takes values in an unbounded space,

a varying truncation version of the algorithm can be considered as in Andrieu et al.

(2005).

Like the SAMC algorithm(Liang et al., 2007), Pop-SAMC possesses the self-

adjusting mechanism, which operates based on past samples and enables the simula-

tion to be immune to local traps. This can be considered as a significant advantage

over conventional MCMC algorithms, such as the Metropolis-Hastings algorithm and

the Gibbs sampler. Also, we would like to state that the pop-SAMC algorithm is

essentially a dynamic importance sampling algorithm for which the trial distribu-

tion, i.e., the working target distribution (3.8), changes from iteration to iteration,

and the quantities of interest can be estimated through weighted averaging as in

conventional importance sampling (Liang, 2009). That is, Pop-SAMC generates a

sequence of importance samples {(θt,1, eξt,J(θt,1)), . . . , (θt,κ, eξt,J(θt,κ))}, where J(θt,i)

denotes the index of the subregion that θt,i belongs to, and e
ξt,J(θt,i) specifies the

importance weight of θt,i.

OpenMP is an application programming interface (API) for parallel programming

on multi-core CPUs which are now available in regular desktops/laptops. It works

in a shared memory mode with the fork/join parallelism, and is particularly suitable

32



for pop-SAMC. To be precise, the population sampling step of pop-SAMC can be

carried out in parallel through the pragma omp parallel to fork multiple threads with

each thread running for an individual Markov chain. After the parallel execution, the

threads join back to the master thread, where ξt is updated based on the information

collected from the multiple threads. Since OpenMP works in a shared memory mode,

distributing the updated ξt to different threads is avoided. Since the population

sampling steps cost the major portion of the CPU, the parallel execution provides a

nearly linear speedup for the simulation.

3.3.2 Double Parallel Monte Carlo

Based on the subposterior aggregation theory studied in Section 2 and the Pop-

SAMC algorithm, we suggest the following double parallel Monte Carlo algorithm

for Bayesian analysis of big data.

• (Data Parallel) Divide the dataset into k subsets with each containing about

the same sample size.

• (Simulation Parallel) Run Pop-SAMC for each subposterior π̃(θ|X [i]) sepa-

rately. Let {(θ(i)
1 , w

(i)
1 ), . . ., (θ

(i)
N , w

(i)
N )} denote the importance samples gener-

ated by Pop-SAMC from π̃(θ|X [i]) for i = 1, . . . , k. Let µ̂(i) =
∑N
j=1 w

(i)
j θ

(i)
j∑N

j=1 w
(i)
j

denote the mean of the subposterior π̃(θ|x[i]).

• (Sample aggregation) Calculate the global mean µ̂ =
∑k

i=1 µ̂
(i)/k, recenter the

importance samples as {(θ(i)
1 − µ̂

(i) + µ̂, w
(i)
1 ), . . . , (θ

(i)
N − µ̂

(i) + µ̂, w
(i)
N )} for

i = 1, . . . , k.

Then, for each i = 1, 2, . . . , k, the re-centered samples can be viewed as a batch

of importance samples generated from the full data posterior. For any function

h(θ) that satisfies (A4), the expectation ρ = Eπh(θ) can be naturally estimated by
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ρ̂1 =
∑k

i=1 ρ̂
(i)
1 /k, where ρ̂

(i)
1 =

∑N
j=1 w

(i)
j h(θ

(i)
j − µ̂

(i) + µ̂)/
∑N

j=1 w
(i)
j . Alternatively,

ρ can be estimated by

ρ̂2 =

∑k
i=1

∑N
j=1 w

(i)
j h(θ

(i)
j − µ̂

(i) + µ̂)∑k
i=1

∑N
j=1w

(i)
j

.

Let Ui =
∑N

j=1w
(i)
j h(θ

(i)
j − µ̂

(i) + µ̂), Si =
∑N

j=1w
(i)
j , S = E(Si), and Vi = Ui − ρSi.

Following from the property of SAMC, the variances of Ui and Vi are both finite.

Then the standard error of ρ̂2 can be calculated as for the ratio estimate (Ripley,

1987). The Vi’s can be treated as iid random variables with zero mean and finite

variance, and its variance can be estimated by σ̂2
V = 1/k

∑k
i=1 V

2
i . The law of large

numbers implies that 1/
√
k
∑k

i=1 Vi is asymptotically normal N(0, σ2
V ) and that

√
k(ρ̂2 − ρ) =

1√
k

∑k
i=1 Vi

1
k

∑k
i=1 Si

→ N(0, σ2),

where σ2 = σ2
V /S

2, and it can be estimated by σ̂2
V /Ŝ

2 with Ŝ =
∑k

i=1 Si/k.

3.4 Simulation Study

3.4.1 Logistic Regression

The first example is very simple, whose goal is to show the validity of the pro-

posed subposterior aggregation method. The example is adopted from Srivastava

et al. (2015). It is for a logistic regression with n = 104 and the true parameter

θ∗ = (1,−1)T . The covariates Z1 and Z2 are drawn from the standard Gaussian dis-

tribution. The prior distribution of θ is N(0, I2). To follow the notation in Section

3.2, we let X = (Y, Z1, Z2).

To implement the proposed double parallel algorithm, we randomly divided the

dataset into 10 subsets with each consisting of 1000 samples. Then Pop-SAMC was
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run for each subset. Specifically, for each subset, we partitioned the parameter space

Θ according to the energy function U(θ) = − log pj(θ) with an equal bandwidth

∆u = 0.5 into five subregions E1 = {θ : U(θ) < u+0.5}, E2 = {θ : u+0.5 ≤ U(θ) <

u+ 1}, E3 = {θ : u+ 1 ≤ U(θ) < u+ 1.5} E4 = {θ : u+ 1.5 ≤ U(θ) < u+ 2}, and

E5 = {θ : U(θ) ≥ u+ 2}, where pj denote the subposterior of the jth subset, and u

was chosen as the smallest value of U(θ) obtained in a preliminary trial. The gain

factor γt was set as 100/max(100, t). The proposal was set as a Gaussian random

walk distribution with the covariance matrix 0.22I2. The population size was set to

N = 10 and the number of iterations was set to T = 105. The first 104 iterations were

discarded for the burn-in process, and samples were collected from the remainder of

the run at every 5 iterations. In total, we had 1.8×105 importance samples collected

at the end of each run.

Figure 3.1 shows the contour plots of the full data posterior π(θ|X), each sub-

posterior π̃(θ|X [j]), and the proposed mixture posterior π̃(θ|X). The R package

KernSmooth was used to generate the corresponding binned kernel density esti-

mates. The plots indicate that each subposterior has a similar shape with the full

data posterior, however, most of them have a notably biased center from the true

parameter θ∗. By shifting the mean of each subposterior to the global mean, the

bias was successfully removed. The mixture posterior π̃(θ|X) closely matches the

full data posterior π(θ|X).

3.4.2 Linear Regression with Unknown Variance

We use this example to compare the accuracy of the approximations to the full

data posterior by the proposed algorithm, WASP(Srivastava et al., 2015) and con-

sensus Monte Carlo(Scott et al., 2016). The example was adopted from Liang et al.
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Figure 3.1: Binned kernel posterior density estimates for the parameters of a logistic
regression. The true parameter θ∗ = (1,−1)T (black dot).

(2016), which is about a normal linear regression with unknown variance:

yi = β0 + β1zi1 + β2zi2 + β3zi3 + εi, i = 1, 2, . . . , n

where (β0, β1, β2, β3) = (2, 0.25, 0.25, 0) the true regression coefficients, in addition,

ε1, · · · , εn are i.i.d. normal random errors with mean 0 and variance σ2 = 0.25. The

covariates z1 and z2 are drawn from standard normal distributions independently.

The covariate z3 = 0.7z2+0.3e, where e also follows the standard normal distribution.

Under this setting, z2 and z3 are highly correlated with a correlation coefficient of
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0.919. We generated n = 104 samples from this model. For this example, we are to

estimate both the regression coefficients and the variance of the random error, i.e.,

θ = (β0, β1, β2, β3, σ
2). For the regression coefficients, we use non-informative prior

g(β0, β1, β2, β3) ∝ 1; for the variance σ2, we use the prior g(σ2) ∝ ( 1
σ
)1/1000. To follow

the notation in Section 3.2, we set Xi = (yi, zi1, zi2, zi3).

For the double parallel algorithm, we randomly divided the dataset into 10 subsets

with each consisting of 1000 samples. Pop-SAMC was run for each subset separately

with the same setting as for the previous example except that the energy bandwidth

was set to ∆u = 2 and the covariance matrix of the Gaussian random walk proposal

distribution was set to 0.012I5. For comparison, consensus Monte Carlo and WASP

were also applied to this example. For WASP, due to the limitation of memory,

we only used 300 posterior samples that were randomly selected from the pool of

Metropolis-Hastings samples collected previously. Note that for consensus Monte

Carlo, the subset posterior is defined as

∏m
i=1 f(Xji|θ)g1/k(θ)∫

Θ

∏m
i=1 f(Xji|θ)g1/k(θ)dθ

, (3.9)

which is slightly different from the subposterior defined in (3.2), the one used in

WASP and double parallel.

Figure 3.2 shows the QQ-plots for each of the five parameters of the model and

for each of the methods, double parallel, consensus Monte Carlo and WASP, ver-

sus the full data posterior simulation. The QQ plots indicate that double parallel

and consensus Monte Carlo can provide more accurate approximations to the full

data posterior than WASP. Regarding efficiency of the three algorithms, we com-

pared the rough number of effective samples produced by them with the same CPU

time. Within a given CPU time, the double parallel algorithm produced 1.8 × 106
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Figure 3.2: QQ-plots for the normal regression example. The top, middle and bottom
panels are for the double parallel, WASP and consensus Monte Carlo, respectively.

importance samples (1.8 × 105 importance samples were collected for each of the

10 subsets). However, consensus Monte Carlo produced only 1.8 × 105 samples, for

which the samples produced by different chains (each for a different subset) are av-

eraged to get the final samples. For WASP, the samples produced by different chains

do not need to be averaged, but need to be weighted through linear programming in

estimating their Wasserstein barycenter. Again, the importance weighting procedure

will significantly reduce its effective sample size.

3.5 A Big Data Example

The goal of this example is to show how efficient the double parallel algorithm can

be compared to the traditional single chain MCMC algorithm for a big data problem.

For this purpose, we applied the double parallel algorithm to the MiniBooNE particle

identification dataset, which is available at the UCI machine learning repository.
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This dataset records 130,064 events (observations), including 36,499 signal events

and 93,565 background events. Each observation consists of the event type (signal

event or background event) and 50 associated particle variables. The task of the

problem is to explore the relationship between the event type and the associated

particle variables. The more detailed description for the dataset and its physical

background can be found in Roe et al. (2005).

The problem can be naturally treated using a logistic regression, where the event

type is used as the response variable and the 50 associated particle variables are

used as the predictors. To identify the important variables that are associated

with the event type, we let the regression coefficients be subject to a heavy-tail

distribution, t(3), which belongs to the class of local shrinkage priors but is more

moderate in shrinking large regression coefficients than the Lasso prior(Tibshirani,

1996). Other local shrinkage priors, such as the horseshoe prior(Carvalho et al.,

2010), can also be used here without affecting on the efficiency of the proposed

algorithm. In data preprocessing, we first removed 468 samples with missing obser-

vations and then randomly divide the remaining samples into 10 subsets of nearly

the same sample size. For each subset, Pop-SAMC was run with the population size

κ = 20. The sample space was partitioned with an energy bandwidth ∆u = 1 and

the subregions determined through a preliminary run. The gain factor was set as

γt = min(1, (t/1000)−0.6). The algorithm was run for 1.1× 105 iterations, where the

first 104 iterations were for the burn-in process and the samples collected from the

remaining 105 iterations were used for inference. At each iteration, 20 parameters

was randomly selected to be updated along a random direction with a step size of

0.1. The acceptance rate was around 0.16, which indicates the effectiveness of the

simulation. On a high-end Dell Precision T7610 Workstation with 24 cores, one run

of Pop-SAMC costs about 9 minutes (wall clock time) or 166 minutes total CPU
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time.

For comparison, the single chain Metropolis-Hastings (MH) algorithm was di-

rectly applied to simulate from the full data posterior. The algorithm was run for

2.2 × 106 (= 20 × 1.1 × 105) iterations correspondingly, where the first 2.0 × 105

were discarded for the burn-in process and the samples collected from the remaining

iterations were used for inference. The MH algorithm used the same proposal as

the Pop-SAMC and the resulting acceptance rate was also about 0.16. On the same

computer, one run of the MH algorithm costs about 1,373 minutes (wall clock time)

or 1,371 minutes CPU time. In wall clock time, the computational cost by the double

parallel algorithm is only 0.67% of that by the single chain MH algorithm!

Table 3.1 shows the computational results produced by the two methods. For each

method, we reported only the ten most significant variables, including their posterior

mean and standard deviation. Here the significance of each variable was measured

according to the ratio of its posterior mean and standard deviation. The results from

the two algorithms are surprisingly consistent: All the variables have about the same

posterior mean and standard deviation. The top 10 significant variables are exactly

the same, even with the same order! This again indicates the validity of the double

parallel algorithm.
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Table 3.1: Comparison of computational time (wall clock time) and parameter esti-
mation for the MiniBooNE particle data set.

Double Parallel(k = 10, κ = 20) MH Algorithm
wall clock time

9.2 minutes 1,373 minutes
Top 10 significant variables
var13 -1.2273 (0.0153) var13 -1.2140 (0.0158)
var1 -1.3667 (0.0338) var1 -1.3529 (0.0328)
var16 3.4174 (0.0861) var16 3.3730 (0.0840)
var4 -0.8825 (0.0234) var4 -0.8788 (0.0254)
var32 1.0733 (0.0329) var32 1.0590 (0.0309)
var17 -2.1592 (0.0709) var17 -2.1169 (0.0672)
var6 0.3862 (0.0134) var6 0.3825 (0.0139)
var12 -0.7624 (0.0281) var12 -0.7503 (0.0278)
var34 -0.9335 (0.0344) var34 -0.9239 (0.0355)
var25 0.4082 (0.0206) var25 0.4004 (0.0206)
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4. AVERAGE BAYESIAN INFORMATION CRITERION AND ITS

APPLICATION TO HIGH DIMENSIONAL GENERALIZED LINEAR

MODEL

4.1 Introduction

Model selection is an important part of any statistical analysis. For example, in

polynomial regression one has to determine the degree of the polynomial; in mul-

tivariate regression one needs to select the covariates included into the model; in

stationary time series one should choose the order for their ARMA model. Due to

the importance and popularity of this topic, numerous model selection approaches

have been proposed in the past, such as Mallows’s Cp (Mallows, 1973), AIC (Akaike,

1974), cross validation (Stone, 1974), BIC (Schwarz, 1978), generalized cross valida-

tion (Wahba, 1979), RIC (Foster and George, 1994), Bayes model avaraging (Raftery

et al., 1997) and DIC (Spiegelhalter et al., 2002). Among these methods, some can

be classfied into "information criterion" family. These criteria try to strike a bal-

ance between the model’s fitting performance, usually measured by its maximized

log-likelihood, and its complexity, usually measured by a penalty term involving the

size of the model.

Akaike’s information criterion (Akaike, 1974) is the first and most famous member

of this family, which is defined as

AIC(s) = −2l(Dn|β̂s) + 2|s|

where s denotes a specific model, |s| denotes the size of the model s, l denotes log-

likelihood function, Dn denotes observed data, β̂s denotes the MLE of the parameters
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β in model s. AIC has a pretty good predictive performance, but it is not a con-

sistent criterion. As the number of observations n grows infinitely large, AIC is not

guaranteed to choose the true data generating model. Instead, it often tends to se-

lect more complex models that overfit the data. To overcome this problem, Bayesian

information criterion was proposed(Schwarz, 1978). This criterion is derived from

the bayesian perspective and imposes heavier penalty on the model size, that is

BIC(s) = −2l(Dn|β̂s) + |s| log(n)

Under specific conditions, BIC has been shown to be a consistent criterion and can

accurately select the smallest true model when n is large enough. See, for instance,

Nishii (1984); Haughton (1988).

Another interesting and important criterion is Deviance information criterion

(Spiegelhalter et al., 2002), which is defined as

DIC(s) = −2l̄(Dn|βs) + (−2)[l̄(Dn|βs)− l(Dn|β̄s)]

where l̄(Dn|βs) = Eβs|Dn,sl(Dn|βs) denotes the posterior mean of the loglikelihood

function for model s and β̄s = E(βs|Dn, s) denotes the posterior mean of βs for

model s. When sample size n is large enough, we have [l̄(Dn|βs) − l(Dn|β̄s)] ≈

−|s|/2 and l(Dn|β̄s) ≈ l(Dn|β̂s), thereby DIC can be viewed as an approximation

to AIC with posterior samples. Unfortunately, due to its similarity with AIC, DIC

is not a consistent criterion, either. Inspired by the idea of appximating maximum

log-likelihood function by posterior samples, we developed a new criterion, Average
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Bayesian Information Criterion,

ABIC(s) = −2l̄(Dn|βs)− |s|+ |s| log(n)

This time, instead of approximating AIC, we approximate BIC using posterior sam-

ples. Since BIC is a consistent criterion, it is reasonable that ABIC is also consistent.

In addition, for n sufficiently large, the term −|s| is ignorable, and we can rewrite

ABIC as

ABIC(s) = −2l̄(Dn|βs) + |s| log(n)

We want to point out that this name should be better interpreted as "a BIC-like

information criterion made from posterior Average of log-likelihoods ", rather than

"Average of BIC".

Recently, high-dimensional data has become very popular in many areas of mod-

ern scientific research, such as genomics, microarrays, proteomics and brain images.

For example, in genowide association studies between genotypes and phenotypes,

millions of SNPs are potential covariates; in disease classfication using microarray

or proteomics data, thousands of expression profiles are potential predictors. More-

over, when interaction are considered, the dimensionality will grow more quickly.

These massive amounts of high dimensional data bring not only opportunities but

also lots of challenges to statistical inference (Fan and Li, 2007; Johnstone and Tit-

terington, 2009). Particulary, in this high-dimensional setting, where the sample size

n is smaller than the dimension of parameters p, many traditional model selection

methods fail to maintain their good property, some even become non-implementable.

Therefore, there is increasing need to develop new techniques to select models in this

high-dimensional situation. In fact, some have already been proposed, to name a
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few, Lasso(Tibshirani, 1996), SCAD(Fan and Li, 2001), elastic net (Zou and Hastie,

2005), Dantzig selector (Candes and Tao, 2007), MCP (Zhang, 2010) and rLasso

(Song and Liang, 2015),

As with many of its fellows, BIC is no longer a consistent criterion under the high-

dimensional setting. Instead, it is usually too literal, tending to select a model with

spurious covariates. To deal with this problem, Chen and Chen (2008) developed

extended Bayesian information criterion (EBIC), which is defined as

EBIC(s) = −2l(Dn|β̂s) + |s| log(n) + 2γ|s| log(p)

where p denotes the total number of candidate parameters. Under some sparsity

and regularity conditions, EBIC has been proved to be a consistent information

criterion for both linear model and generalized linear model. (Chen and Chen, 2008,

2012; Chen and Luo, 2013). Correspondingly, ABIC can also be modified to Average

Extended Bayesian Information Criterion (AEBIC)

AEBIC(s) = −2l̄(Dn|βs) + |s| log(n) + 2γ|s| log(p)

to conduct model selection under the high-dimensional setting. Although AEBIC

should be applicable to a broad class of models, in this chapter we limit ourselves

to the generalized linear model. Under some sparsity and regularity conditions, the

consistency property of AEBIC is also established.

The remainder of this chapter is organized as follows. Section 4.2 describes an

informal derivation of AEBIC and a detailed algorithm for conducting model selection

based on this information criterion. Section 4.3 establishes the consistency property

of AEBIC under some assumptions. Section 4.4 and section 4.5 evaluates the finite
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sample performance of ABIC and AEBIC through some simulation studies and a

real data example, respectively.

4.2 Average Extended Bayesian Information Criterion

Let Dn = {(y(i),x(i)) : i = 1, . . . , n} denote a dataset of n observations, where

the explanatory variable x is a pn-dimensional random vector. In high dimensional

setting, pn can increase with the sample size n. Assume the conditional distribution

of y given x follows a parametric generalized linear model (GLM) (McCullagh and

Nelder, 1989) with the following form.

f(y|x,β) = exp(θy − b(θ) + c(y))

where b(·) is continuously differentiable and θ is the natural parameter, which relates

y to the predictors via a linear function

θ = xTβ = β1x1 + · · ·+ βpnxpn

Here the intercept term has been treated as a special predictor included in x. In this

model, the mean function u = E(y|x) = b′(θ). This class of GLMs includes poisson

regression, logistic regression and linear regression (with known variance).

In reality, the true parameter β∗ may contain lots of zero components. If we let

s be a subset of {1, . . . , pn} and S be a set consisting of all such subsets, then each

s can specify an individual model and S is just the model space. Accordingly, we

use s∗ to denote the true model, that is, the subset consisting of nonzero component

indexes of β∗. The objective of model selection is to correctly find s∗ from all possible

s ∈ S, based on the observed data.

In Bayesian perspective, we prefer to choose the model with maximum posterior
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probability. The likelihood function(ignoring the marginal density of x) of observed

data for model s is

L(Dn|βs) =
n∏
i=1

f(y(i)|x(i),βs)

where βs denotes the components in β corresponding to model s. If we further let

π(s) denote the prior probability of model s and π(β(s)) denote the prior probability

of parameters in model s, then the posterior probability of model s, P (s|Dn) is

P (s|Dn) =
m(Dn|s)π(s)∑
s∈Sm(Dn|s)π(s)

where

m(Dn|s) =

∫
L(Dn|β(s))π(β(s))dβ(s)

By choosing some appropriate priors, it can be shown that P (s∗|Dn) converges to 1

in probability as n goes to infinity (Liang et al., 2013), which is the so-called global

model consistency in Bayesian variable selection (Johnson and Rossell, 2012). This

further implies that P (arg maxs P (s|Dn) = s∗) converges to 1 in probability as n

goes to infinity.

But in most cases, it’s impossible to calculate P (s|Dn) exactly, so we need to

approximate it. One way is to use MCMC samples to approximate it. Another way

is to use Laplace approximation to deal with it, that is also how EBIC(Chen and

Chen, 2012) is derived:

To be more specific, since

arg max
s

P (s|Dn) = arg max
s

m(Dn|s)π(s) = arg max
s

log{m(Dn|s)π(s)}
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From now on, we only care about log{m(Dn|s)π(s)},

log{m(Dn|s)π(s)} = log

∫
L(Dn|βs)π(βs)dβs + log π(s)

To deal with the integral term, we first need to expand logL(Dn|βs) at β̂s, which is

the maximum likelihood estimator of βs given model s.

logL(Dn|βs) ≈ logL(Dn|β̂s) +
1

2
(βs − β̂s)′

[
∂2 logL(Dn|β̂s)

∂βs∂β
T
s

]
(βs − β̂s)

= logL(Dn|β̂s)−
1

2
(βs − β̂s)′

[
nÎ(Dn, β̂s)

]
(βs − β̂s)

where

Î(Dn, β̂s) = − 1

n

∂2 logL(Dn|β̂s)
∂βs∂β

T
s

is the averaged observed information matrix. To step it further,

L(Dn|βs) ≈ L(Dn|β̂s) exp{−1

2
(βs − β̂s)′

[
nÎ(Dn, β̂s)

]
(βs − β̂s)}

Now we have the following approximation for the integral term

∫
L(Dn|βs)π(βs)dβs

≈ L(Dn|β̂s)
∫

exp{−1

2
(βs − β̂s)′

[
nÎ(Dn, β̂s)

]
(βs − β̂s)}π(βs)dβs

≈ L(Dn|β̂s)π(β̂s)

∫
exp{−1

2
(βs − β̂s)′

[
nÎ(Dn, β̂s)

]
(βs − β̂s)}dβs

= L(Dn|β̂s)π(β̂s)(2π)
|s|
2 |nÎ(Dn, β̂s)|−

1
2

= L(Dn|β̂s)π(β̂s)(
2π

n
)
|s|
2 |Î(Dn, β̂s)|−

1
2

where |s| is the size of model s. The second approximation is valid provided that the
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prior π(βs) is "flat" over the neighborhood of β̂s and L(Dn|βs) is ignorable outside

the neighborhood of β̂s.

Finally,

log{m(Dn|s)π(s)} = log

∫
L(Dn|βs)π(βs)dβs + log π(s)

≈ logL(Dn|β̂s) + log π(β̂s) +
|s|
2

log(2π)− |s|
2

log(n)

−1

2
log |Î(Dn, β̂s)|+ log π(s)

≈ logL(Dn|β̂s)−
|s|
2

log(n) + log π(s)

The second approximation is justified by the fact that for n sufficiently large, log(2π)

is comparably ignorable than log(n),|Î(Dn, β̂s)| converges to a constant and log π(β̂s)

can be usually controlled as O(1).

For π(s), if we adopt the setting in Liang et al. (2013)

π(s) = λ|s|n (1− λn)pn−|s|

where λn denotes the probability of each individual variable to be selected for model

s and is taken a value of the form

λn =
1

1 + pγn
√

2π

for some parameter γ > 0; or adopt the setting in Chen and Chen (2008), that is

π(s) ∝
(
pn
|s|

)−γ
,

49



then for |s| far smaller than Pn, it is easy to verify

log π(s) = −γ|s| log(pn) +O(1)

Therefore, we can further have

log{m(Dn|s)π(s)} ≈ logL(Dn|β̂s)−
|s|
2

log(n)− γ|s| log(pn)

which exactly equals −1
2
EBIC

In this chapter, we propose a new method to approximate log{m(Dn|s)π(s)}.

To be more specific, starting from the second method, we can further approximate

logL(Dn|β̂s) by E{βs|Dn,s} logL(Dn|βs) + |s|
2
, where {βs|Dn, s} denote the posterior

distribution of βs given data Dn and model s. This approximation has also been

discussed in Spiegelhalter et al. (2002). To verify this, we notice that

P (βs|Dn, s) =
L(Dn|βs)π(βs)

m(Dn|s)
∝ L(Dn|βs)π(βs)

≈ L(Dn|β̂s)π(β̂s) exp{−1

2
(βs − β̂s)′

[
nÎ(Dn, β̂s)

]
(βs − β̂s)}

for n sufficiently large, at the neighborhood of β̂s, where L(Dn|βs) is dominant.

Therefore, {βs|Dn, s} is asymptotic normal with mean β̂s and covariance matrix
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[
nÎ(Dn, β̂s)

]−1

. Now we have

E{βs|Dn,s} logL(Dn|βs)

≈ E{βs|Dn,s}{logL(Dn|β̂s)−
1

2
(βs − β̂s)′

[
nÎ(Dn, β̂s)

]
(βs − β̂s)}

= logL(Dn|β̂s)−
1

2
E{βs|Dn,s}(βs − β̂s)

′
[
nÎ(Dn, β̂s)

]
(βs − β̂s)

= logL(Dn|β̂s)−
1

2
|s|

which verified our approximation. Thus, we can approximate log{m(Dn|s)π(s)} by

the following

log{m(Dn|s)π(s)} ≈ logL(Dn|β̂s)−
|s|
2

log(n)− γ|s| log(pn)

≈ E{βs|Dn,s} logL(Dn|βs) +
|s|
2
− |s|

2
log(n)− γ|s| log(pn)

≈ E{βs|Dn,s} logL(Dn|βs)−
|s|
2

log(n)− γ|s| log(pn)

In the large sample setting, |s|
2
is negligible because it is of lower order of |s|

2
log(n).

As with EBIC, we define AEBIC as -2 times the previous expression

AEBIC(s) = −2E{βs|Dn,s} logL(Dn|βs) + |s| log(n) + 2γ|s| log(pn)

so as to be on the deviance scale. In many cases, E{βs|Dn,s} logL(Dn|βs) doesn’t

have closed-form expression, so we should use MCMC samples to approximate it.

The detailed algorithm for the model selection based on AEBIC is described below

1. Use MCMC to generate T samples {β(t), s(t)}, t = 1, . . . , T
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2. Use set S ′ to include all models appearing in s(t), t = 1, . . . , T

3. For each s ∈ S ′, calculate

AEBIC(s) =
−2

#{t : s(t) = s}
∑

{t:s(t)=s}

logL(Dn|β(t)) + |s| log(n) + 2γ|s| log(pn)

4. Select ŝ, which has the smallest AEBIC among all s ∈ S ′, as our estimator for

s∗

Remark:

• Our method uses both Laplace approximation and MCMC samples, therefore

can be viewed as a combination of the two popular methods mentioned before.

• Compared to the first method, which directly uses MCMC samples to approx-

imate P (s|Dn), our method is generally more accurate.

• Compared to the BIC-like methods, our method has at least two merits: First,

it need not to calculate MLE, which is sometimes very difficult to obtain.

Second, in BIC-like methods,we should select a sequence of candidate models

in advance, and this selection is generally completed by other procedures, such

as stepwise regression or LASSO with different tuning parameters. However,

in our method, this ’selection’ is completed automatically, because we only

calculate the AEBIC for models appearing in the MCMC samples.

4.3 Consistency

In Section 4.2, we give an informal derivation and explanation of our method. In

this section, we’ll show the statistical properties of our method in a more rigorous

way.
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At first we present some assumptions (we treat the covariates as fixed in this

paper)

(A1) pn = O(nκ) for some positive constant κ.

(A2) |xj| ≤ 1, for j = 1, . . . , pn

(A3) |s∗| ≤ q for a fixed integer q ∈ N

(A4) a1 ≤ λmin( 1
n

∑n
i=1 x

(i)
s (x

(i)
s )T ) ≤ λmax( 1

n

∑n
i=1 x

(i)
s (x

(i)
s )T ) ≤ a2 for all model s

with |s| ≤ 2q, where xs denotes the sub-vector of x, with respect to model s.

λmin(·) and λmax(·) denote the mininum and maximum eigenvalue, respectively.

(A5) ||β∗||2 ≤M for a positive number M

(A6) There exist a constant c0 such that minj∈s∗ |β∗j | ≥ c0n
−1/4, where |β∗j | denotes

the corresponding element in the vector β∗

(A1) allows pn to grow polynomially with sample size n. (A2) bounds the absolute

value of the covariates by 1, this assumption can be easily extended to the case where

all |xj| are bounded above by a larger constant. (A3) bounds the size of the true

model, although the true model can be changed with n. (A4) bounds the eigenvalue

of the second moment matrices uniformly for all models s with |s| ≤ 2q. (A5) gives

an upper bound for the norm of the true parameter. (A6) requires the signal can

not be too small to be detected.

Since we have already assumed the true model size |s∗| is smaller than q, we can

further adopt a modified prior for the models

π(s) ∝ λ|s|n (1− λn)pn−|s|I[|s| ≤ q]
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It is easy to see this modification won’t affect the validity of the approximation of

π(s) in Section 4.2

Conditional on s, we set the priors for the parameters as follows

π(βs) = N(0, Vs) = N(0, σ2
sI)

where σ2
s = 1

2π
eC0/|s| for some positive constants C0.

Under these assumptions and prior settings, we now present two theorems. The

first theorem provides a theoretical validation for approximating logL(Dn|β̂s) by

E{βs|Dn,s} logL(Dn|βs). The second theorem finally leads to the consistency of AE-

BIC. The proofs of these two theorems can be found in the Appendix

Theorem 4.1. Assume conditions (A1)-(A5) are satisfied and π(βs) is specified as

above. Then for sufficiently large n, with probability at least 1 − n−η (η can be any

positive number), it holds that for all models s with |s| ≤ q,

E{βs|Dn,s} logL(Dn|βs)− logL(Dn|β̂s) = −|s|
2

+ o(1)

Theorem 4.2. Assume conditions (A1)-(A6) are satisfied, π(βs) and π(s) are spec-

ified as above. Moreover, we set γ > 1 − 1−2η
2κ

for 0 < η < 1
2
. Then for sufficiently

large n, with probability at least 1 − n−η, it holds that for all models s with |s| ≤ q

and s 6= s∗

AEBIC(s) > AEBIC(s∗)

4.4 Simulation

In this section, we present some simulation studies in both low-dimensional and

high-dimensional cases. Although the previous sections are talking about high-
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dimensional cases, it is obvious that this algorithm remains consistent under the

low-dimensional setting.

4.4.1 Low Dimensional Logistic Regression

Let’s consider a simple logistic regression with only three active features

logit P (y = 1|x) = 2x1 + x2 + 3x3

Here we include 50 candidate features, x1, · · · , x50, generated from standard normal

distributions and sample size n is set as 500.

We first need to specify the priors. For π(s), we just let γ = 0 and ignored the

upper bound q since it is a low dimensional case. For π(βs), we let C0 = 10. In

order to generate posterior samples of (s,βs), we implemented Metropolis Hasting

algorithm, where the MH moves include three types: birth, death and parameter

updates. In the birth step, we randomly selected a βi outside current model s, and

added it into s to produce a larger model s′. The value of the new member βi was

generated from the distribution N(0, 102). In the death step, we randomly selected

a βi in our current model s, and deleted it from the model to obtain a smaller

model s′. In the parameter update step, we kept the current model s, and randomly

selected one parameter βi ∈ s and updated its value by f(βnew
i |βi) = N(0, 0.52). The

probability of the three types was set as (0.25, 0.25, 0.5). In order to accelerate the

convergence rates, more advanced algorithms should be implemented. We generated

106 samples in total. The first 105 were discarded as "burn-in" samples. For the rest,

we only kept every 10th samples, to reduce the autocorrelation effect.

After we collected useful samples of (s,βs), we implemented the procedures de-

scribed in Section 4.2 to calculate ABIC for different models and chose the model

with smallest ABIC. Notice in the low dimensional case, ABIC doesn’t include the
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term γ log(P ). With these posterior samples, we can also calculate AIC,BIC and

DIC for different models. In practice, it’s not necessary to calculate the four criteria

for each occurring model and here we only considered models having occurred more

than 100 times.

We repeated this simulation 100 times and summarized the results in the following

table. We used three metrics to evaluate the performance of each method.

1 Mean and standard deviation of the selected model ŝ s’ sizes across 100 datasets

2 Positive Selection Rate: calculated by
∑100
i=1 |s∗∩ŝ|
|s∗|·100

3 True Discovery Rate: calculated by
∑100
i=1 |s∗∩ŝ|∑100
i=1 |ŝ|

Table 4.1: Simulation results of AIC,BIC,DIC and ABIC for the low dimensional
logistic regression

AIC BIC DIC ABIC
Mean of Size (SD of size) 8.86(1.99) 3.72(0.96) 9.04(2.15) 3.33(0.57)
Positive Selection Rate 1.000 1.000 1.000 1.000
True Discovery Rate 0.339 0.806 0.332 0.901

From table 4.1, it is obvious that all methods can choose a model including x1, x2

and x3. But AIC and DIC often choose a larger model, while BIC and ABIC seldomly

adds redundant variables into its model. This observation is in good agreement with

the theoretical result, that is, BIC and ABIC are consistent model selection criteria,

while AIC and DIC are not.
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4.4.2 Low Dimensional Linear Regression

Next consider a linear regression with five active features

y = x1 + 2.2x2 − 1.6x3 + 2x4 − 1.4x5 + ε

where ε follows normal distribution with known variance 1. We still included 50

candidate features, x1, · · · , x50, independently generated from N(0, 1) and set sample

size n as 500. Similar procedure were implemented to generate posterior samples of

(s,βs). 106 samples were generated in total and the first 105 were discarded as

"burn-in" samples. For the rest, we only keft every 10th sample, as before. After

collecting useful samples, we calculated AIC, BIC, DIC, ABIC for each model which

have occurred more than 100 times , and then selected model based on these four

criteria, separately. We repeated this simulation 100 times and summarized the

results in the following table. The same three metrics were used again to evaluate

the performance of each criteria.

Table 4.2: Simulation results of AIC,BIC,DIC and ABIC for the low dimensional
linear regression

AIC BIC DIC ABIC
Mean of Size (SD of size) 8.70(1.15) 5.59(0.82) 9.05(1.08) 5.35(0.74)
Positive Selection Rate 1.000 1.000 1.000 1.000
True Discovery Rate 0.575 0.894 0.552 0.934

From table 4.2 we can obtain similar conclusions as those of the previous example.

All methods can include the true predictors x1 to x5. However, AIC and DIC often

lead to a larger model, while BIC and AveBIC can choose the correct model.
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4.4.3 High Dimensional Logistic Regression

Let’s consider the previous logistic regression again,

logit P (y = 1|x) = 2x1 + x2 + 3x3

But this time we increase p from 50 to 2000 while keeping n still as 500. Now it

becomes a high-dimensional problem.

For π(s), we tried four different γ values : (0.5, 0.6, 0.7, 0.8) and fixed the upper

bound q as 50. For π(βs), we let C0 = 10. We implemented similar MCMC algorithm

to generate posterior samples of (s,βs). In total 106 samples were generated, the first

105 were deleted as "burn-in" and for the left, every 10th samples were finally saved.

After collecting useful samples of (s,βs), we calculated both AEBIC and EBIC for

each model having occurred more than 20 times.

We repeated this simulation 100 times and summarized the results in the following

table.

Table 4.3: Simulation results of EBIC and AEBIC for the high dimensional logistic
regression

γ 0.5 0.6 0.7 0.8
Mean of Size (SD of size) 3.60(0.96) 3.21(0.46) 3.15(0.43) 3.07(0.30)
Positive Selection Rate 1.000 1.000 1.000 1.000
True Discovery Rate 0.833 0.935 0.949 0.977

Mean of Size (SD of size) 3.39(0.89) 3.11(0.31) 3.06(0.28) 3.02(0.20)
Positive Selection Rate 1.000 1.000 1.000 0.997
True Discovery Rate 0.885 0.965 0.977 0.990

From table 4.3, we can see as γ increases from 0.5 to 0.8, both EBIC and AEBIC

tend to select more sparse models, which is illustrated by their decreased model sizes
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and increased true discovery rates. This is due to the fact that larger γ imposes a

heavier penalty on the model size. In addition, both of their positive selection rate

stay at 1 and don’t decrease until γ reaches 0.8. When γ equals 0.8, PSR for AEBIC

slightly decreases to 0.997.

4.4.4 High Dimensional Linear Regression

Let’s consider the previous linear regression again,

y = x1 + 2.2x2 − 1.6x3 + 2x4 − 1.4x5 + ε

This time we increase p from 50 to 2000 while keeping n still as 500 to let it be a

high-dimensional problem

For π(s), we tried four different γ values : (0.5, 0.6, 0.7, 0.8) and fixed the upper

bound q as 50. For π(βs), we let C0 = 10. This time, we implemented a slightly

modified MCMC algorithm to generate posterior samples of (s,βs). That is, in

the birth step, we no longer randomly select new variables with same probability.

Instead, we assign a weight to each variable and then randomly select variables based

on their weights. The weight for any xk is proportional to |ρ(y, xk)|, where ρ is the

pearson correlation.This modification can significantly accelerate the convergence of

the Markov chain. In total 106 samples were generated, the first 105 were deleted

as "burn-in" and for the left, every 10th samples were finally saved. After collecting

useful samples of (s,βs), we calculated both AEBIC and EBIC for each model having

occurred more than 20 times.

We repeated this simulation 100 times and summarized the results in the following

table.

From table 4.4, we can observe the familiar trend. As γ increases, both EBIC

and AEBIC prefer more sparse models.

59



Table 4.4: Simulation results of EBIC and AEBIC for the high dimensional linear
regression

γ 0.5 0.6 0.7 0.8
Mean of Size (SD of size) 5.30(0.54) 5.15(0.39) 5.07(0.26) 5.03(0.17)
Positive Selection Rate 1.000 1.000 1.000 1.000
True Discovery Rate 0.943 0.971 0.986 0.994

Mean of Size (SD of size) 5.16(0.42) 5.06(0.24) 5.05(0.22) 5.01(0.10)
Positive Selection Rate 1.000 1.000 1.000 1.000
True Discovery Rate 0.969 0.988 0.990 0.998

4.5 Real Data Example

In Singh et al. (2002), the researchers measured 6033 genes on 102 samples (52

prostate cancer patients and 50 controls) with the aim of exploring the relationship

between these 6033 genes and the prostate cancer. In the next several years, this

dataset has been analyzed in multiple articles, such as (Chen and Chen, 2012; Efron,

2009; Liang et al., 2013).

In this section, we re-analyze the dataset by using our algorithm. First, we build

a logistic regression model with intercept term

logit P (y = 1|x) = xTβ

where y denotes the status of prostate cancer, x includes the microarray measure-

ments of 6033 genes and 1 for the intercept, so n = 102 and p = 6034. To identify

the active features and select the most reliable model, we generate posterior samples

of (s,βs) by implementing the MCMC algorithms. For π(s), we let γ = 0.7 and fix

the upper bound q as 50. For π(βs), we let C0 = 10. The MH move includes three

types as before, that is, birth, death and parameter update. In the birth step, the
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weight for gene k is defined as

wk = Null deviance−Deviancek + 0.1

where Null deviance denotes the deviance of the model including only intercept term

and Deviancek denotes the deviance of the model only including intercept term and

gene k. In total 107 samples were generated, the first 106 were discarded as "burn-

in" and for the left, every 10th samples were finally saved. After collecting useful

samples of (s,βs), we calculated AEBIC for each model having occurred more than

10 times.

In contrast to the previous simulation studies, where the second smallest AEBIC

is far behind the first one, this time we observed that multiple models have very

similar AEBICs. This phenomenon is reasonable. After all, this dataset only contains

102 observations, which is not large enough to guarantee the consistency property of

our algorithm. Therefore, in this case, it is unappropriate to only consider the model

Table 4.5: AEBIC and 1-CVMR for the top 10 models with highest AEBIC
Rank 1 2 3 4 5

AEBIC0.8 131.36 131.73 134.77 137.13 137.70
1-CVMR 0.118 0.127 0.167 0.137 0.137
Rank 6 7 8 9 10

AEBIC0.7 138.11 138.59 139.19 139.31 139.65
1-CVMR 0.078 0.098 0.186 0.157 0.107

with the minimum AEBIC. Instead, we should consider all models with relatively

very small AEBICS, such as the top 10 models. We further calculated the "leave-

one-out cross-validation misclassification rate", abbreviated by "1-CVMR", for each
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Table 4.6: Top 10 genes in Chen and Chen (2012) and their corresponding rankings
by our method

Gene 610 1720 332 364 1068
Chen and Chen (2012)’s ranking 1 2 3 4 5

Our ranking 1 15 8 6 10
Gene 914 3940 1077 4331 579

Chen and Chen (2012)’s ranking 6 7 8 9 10
Our ranking 5 3 7 4 19

of the top 10 models and listed them in table 4.5.

In addition, we also ranked genes based on their appearing frequencies in the

top 100 models and it is interesting that our ranking has a lot of overlapping with

the ranking in (Chen and Chen, 2012),which was established by a totally different

procedure. We listed the genes ranked as top 10 in Chen and Chen (2012) and their

corresponding rankings by our method in table 4.6 for reference.
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5. SUMMARY AND DISCUSSIONS

This dissertation covers three different topics on Big data and High dimensional

data.

In Chapter 2, we introduced HZ-SIS as a new model-free feature screening method,

and established its sure screening property under the ultrahigh dimensional setting.

The HZ-SIS method contains two components, nonparanormal transformation and

HZ-test. The numerical examples indicate that, compared to the existing methods,

HZ-SIS can achieve better performance when the covariates follow a heavy-tailed dis-

tribution and when the underlying true model is complex with interaction variables.

The reason why HZ-SIS can achieve such a robust performance can be understood

from two perspectives. First, HZ-SIS does not require any extra conditions except for

two regularity conditions which are generally required for high-dimensional feature

screening. Second, the truncated empirical CDF estimator used in the estimated

nonparanormal transformation helps to reduce the effect of extreme data.

In HZ-SIS, the HZ-test is employed to test the normality of the nonparanormally

transformed data. Other than the HZ-test, other multivariate normality tests, such as

Szekeley-Rizzo’s goodness-of-fit test (Székely and Rizzo, 2005) and Mardia’s skewness

and kurtosis tests (Mardia, 1970), can also be applied here. Since none of the tests

are universally superior, a combination of different tests might produce a higher

power. How to combine different tests to get a higher power test will be one of our

future research topics.

Henze and Zirkler (1990) showed that under the null hypothesis that the test-

ing data are drawn from a multivariate Gaussian distribution, the HZ-test statistic

follows a log-normal distribution. This implies that ω̃∗k approximately follows a log-
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normal distribution, although a rigorous theoretical justification is still needed to

account for the effect caused by the estimation error of the nonparanormal trans-

formation. Then, compared to the existing variable screening methods, HZ-SIS will

have an added advantage that the relevance of an individual predictor to the response

variable can be measured with p-value, and thus many of the existing multiple hy-

pothesis tests can be applied to the problem to assist variable screening.

In Chapter 3, we developed a simple, practical and efficient MCMC algorithm for

Bayesian analysis of big data. The proposed algorithm has two innovations. First, it

provides a simple and practical way to aggregate subposteriors to approximate the

full data posterior. Second, it suggests to implement the Pop-SAMC algorithm to

simulate from each subposterior. Since the whole algorithm consists of two levels of

parallel, data parallel and simulation parallel, it is called a Double Parallel Monte

Carlo algorithm. Theoretically, we have shown that the double parallel algorithm can

produce a good approximation to the full data posterior distribution. Empirically,

we have demonstrated that the results produced by the double parallel algorithm

agree well with those generated from the full data posterior, while enabling massive

speed-ups in computational time.

The double parallel algorithm works based on Laplace’s method, but it can also

cover some problems that are traditionally treated as discrete, such as variable selec-

tion problems. As shown in Section 3.5, these problems can be treated as continuous

by imposing a local shrinkage prior on the space of variable coefficients. A further

extension of the proposed algorithm to general discrete parameter space will be of

great interest.

In Chapter 4, we proposed ABIC, an innovative way of using posterior samples

to conduct variable selection. We also established the consistency property of this

information criterion for the high-dimensional generalized linear model under some
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sparsity and regularity conditions.

In order to simplify the technical details, we imposed relatively stronger con-

ditions on the true model. In fact, the consistency should still hold under weaker

conditions. For example, we can extend the canonical link to non-canonical link; we

can also consider models with dispersion parameter (such as linear regression with

unknown variance); the upper bound q of the true model size |s∗| can be allowed to

increase with n, rather than being a constant; the total number of variables pn can

be also allowed to grow exponentially with n, instead of polynomially, etc. How to

derive the theoretical proof of consistency under these weaker conditions will be one

of our research goals in the future.

As mentioned before, though this information criterion should be applicable to

a broader class of models, including some nonlinear models, this dissertation only

considers generalized linear model. How to modify the prior settings, implementation

procedures and consistency analysis to deal with nonlinear models would be a very

challenging topic and also one of our research goals in the future.

Another future work may be related to small sample problem. We noticed that

both the derivation and theoretical properties of this method are based on the large

sample assumption. When the sample size is relatively small, such as the dataset used

in section 5, the performance of this method is less satisfactory. In fact, this problem

also exists in most of high-dimensional variable selection methods. Therefore, how

to improve the performance of model selection for high-dimensional regression with

small sample size, would be of great interest.
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APPENDIX A

SUPPLEMENTARY MATERIALS FOR CHAPTER 2

A.1 Proof of Lemma 2.1

Define

ω∗k =
1

n2

n∑
i=1

n∑
j=1

e−
β2

2
Eij − 2

n(1 + β2)

n∑
i=1

e
− β2

2(1+β2)
Ei +

1

1 + 2β2
,

where

Eij = (Φ−1(Fk(xki))− Φ−1(Fk(xkj)))
2 + (Φ−1(Fy(yi))− Φ−1(Fy(yj)))

2,

Ei = Φ−1(Fk(xki))
2 + Φ−1(Fy(yi))

2.

For any ε > 0, we have

P (|ω̃∗k − ωk| > ε) = P (|ω̃∗k − ω∗k + ω∗k − ωk| > ε)

≤ P (|ω̃∗k − ω∗k| >
ε

2
) + P (|ω∗k − ωk| >

ε

2
).

For simplicity, in what follows we let T̃k(x) ≡ Φ−1(F̃k(x)), Tk(x) ≡ Φ−1(Fk(x)), and

gj ≡ T−1
j .
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For the first term, we have

P (|ω̃∗k − ω∗k| >
ε

2
) ≤ P (

1

n2

∑
i,j

|e−
β2

2
Dij − e−

β2

2
Eij| > ε

4
)

+ P (
1

n

∑
i

|e−
β2

2(1+β2)
Di − e−

β2

2(1+β2)
Ei| > 1 + β2

2

ε

4
)

≤ P (
1

n2

∑
i,j

β2

2
|Dij − Eij| >

ε

4
) + P (

1

n

∑
i

1

2
|Di − Ei| >

1 + β2

2

ε

4
)

= P (
1

n2

∑
i,j

|Dij − Eij| >
ε

2β2
) + P (

1

n

∑
i

|Di − Ei| >
(1 + β2)ε

4
).

Note that we only deal with P ( 1
n2

∑
i,j |Dij−Eij| > ε

2β2 ), because P ( 1
n

∑
i |Di−Ei| >

(1+β2)ε
4

) can be calculated in a similar way. First, we calculate

Dij − Eij

= (T̃k(xki)− T̃k(xkj))2 + (T̃y(yi)− T̃y(yj))2

−(Tk(xki)− Tk(xkj))2 − (Ty(yi)− Ty(yj))2

= (T̃k(xki)− Tk(xki))2 + (T̃k(xkj)− Tk(xkj))2 − 2(T̃k(xki)T̃k(xkj)− Tk(xki)Tk(xkj))

+(T̃y(yi)− Ty(yi))2 + (T̃y(yj)− Ty(yj))2 − 2(T̃y(yi)T̃y(yj)− Ty(yi)Ty(yj))

= (T̃k(xki)− Tk(xki))(T̃k(xki) + Tk(xki)) + (T̃k(xkj)− Tk(xkj))(T̃k(xkj) + Tk(xkj))

−2(T̃k(xki)− Tk(xki))(T̃k(xkj)− Tk(xkj))− 2(T̃k(xki)− Tk(xki))Tk(xkj)

−2(T̃k(xkj)− Tk(xkjς))Tk(xki) + (T̃y(yi)− Ty(yi))(T̃y(yi) + Ty(yi))

+(T̃y(yj)− Ty(yj))(T̃y(yj) + Ty(yj))− 2(T̃y(yi)− Ty(yi))(T̃y(yj)− Ty(yj))

−2(T̃y(yi)− Ty(yi))Ty(yj)− 2(T̃y(yj)− Ty(yj))Ty(yi).

Among the ten terms, (T̃k(xki)−Tk(xki))(T̃k(xkj)−Tk(xkj)) and (T̃y(yi)−Ty(yi))(T̃y(yj)−

Ty(yj)) are of a higher order, and the other terms share the same order. Hence, we
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only consider the probability P ( 1
n2

∑
i,j |(T̃y(yi)− Ty(yi))Ty(yj)| >

ε
20β2 ).

Define the event An as

An ≡ {gy(−nd) ≤ y1, . . . , yn ≤ gy(n
d)}.

Since for the standard Gaussian random variable Z,

P (Z > t) ≤ 1√
2π

e−
1
2
t2

t
, if t > 1, (A.1)

we have

P (Acn) ≤
n∑
i=1

2P (yi > gy(n
d)) ≤ 2n

1√
2π

e−
1
2
n2d

nd
=

√
2

π
n1−d exp {−1

2
n2d}.

Therefore,

P (
1

n2

∑
i,j |(T̃y(yi)− Ty(yi))Ty(yj)| >

ε

20β2
)

≤ P (
1

n2

∑
i,j

|(T̃y(yi)− Ty(yi))Ty(yj)| >
ε

20β2
,An) + P (Acn)

≤ P (
1

n2

∑
i,j

|(T̃y(yi)− Ty(yi))Ty(yj)| >
ε

20β2
,An) +

√
2

π
n1−d exp {−1

2
n2d}.

For simplicity, henceforth, we let ∆ij = (T̃y(yi)− Ty(yi))Ty(yj).

Set the truncation parameter δn = 1

4n
m
2
√

2πm logn
, m < 1 and split the interval

[gy(−nd), gh(nd)] into

Mn = (gy(−
√
m log n), gh(

√
m log n))
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and

En = [gy(−nd), gy(−
√
m log n)] ∪ [(gh(

√
m log n), gy(n

d)].

Therefore,

P (
1

n2

∑
i,j

|∆ij| >
ε

20β2
,An) ≤ P (

1

n2

∑
yi∈En∪yj∈En

|∆ij| >
ε

40β2
)

+P (
1

n2

∑
yi∈Mn∩yj∈Mn

|∆ij| >
ε

40β2
).

We now analyze these two terms separately.

From Lemma 12.3 of Abramovich et al. (2006), if we let Φ−1(η) denote the upper

ηth percentile of the standard Gaussian distribution, for η ≥ 0.99 we have

Φ−1(η) =

√
2 log

1

1− η
− r(η), r(η) ∈ [0, 1.5].

Based on this lemma, we can show

|T̃y(t)| < Φ−1(1− δn) =

√
2 log

1

δn
− r(1− δn)

≤
√

2[
m

2
log(n) + log(4

√
2πm log n)] <

√
log n,

for any t ∈ R, provided that n is sufficiently large.

Then we can bound ∆ij under An:

|∆ij| = |T̃y(yi)− Ty(yi)||Ty(yj)| ≤ (|T̃y(yi)|+ |Ty(yi)|)|Ty(yj)|

≤ (
√

log(n) + nd)nd < 2n2d,
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if n is sufficiently large. Therefore,

P (
1

n2

∑
yi∈En∪yj∈En

|∆ij| >
ε

40β2
)

≤ P (
1

n2

∑
i,j

1{yi∈En∪yj∈En} >
ε

80n2dβ2
)

≤ P (
1

n2

∑
i,j

1{yi∈En} + 1{yj∈En} >
ε

80n2dβ2
)

= P (
1

n

∑
i

1{yi∈En} >
ε

160n2dβ2
)

≤ P (
1

n

∑
i

(1{yi∈En} − P (yi ∈ En)) >
ε

160n2dβ2
− n−

m
2 ),

where the last inequality follows from the fact that

P (yi ∈ En) ≤ 2P (yi > gh(
√
m log n)) ≤ 2

1√
2π

e−
1
2
m logn

√
m log n

≤ n−
m
2 .

Recall ε = cn−κ and assume κ+ 2d < m
2
, we have

ε

160n2dβ2
− n−

m
2 =

cn−(κ+2d)

160β2
− n−

m
2 ≥ cn−(κ+2d)

200β2
,

if n is sufficiently large. Further, we have

P (
1

n

∑
i

(1{yi∈En} − P (yi ∈ En)) >
ε

160n2dβ2
− n−

m
2 )

≤ P (
1

n

∑
i

(1{yi∈En} − P (yi ∈ En)) >
cn−(κ+2d)

200β2
)

≤ exp{−2n
c2n−2(κ+2d)

40000β4
} = exp{− c2

20000β4
n1−2(κ+2d)},

where the last inequality follows from Hoeffiding’s inequality.
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Now we turn to P ( 1
n2

∑
yi∈Mn∩yj∈Mn

|∆ij| > ε
40β2 ). Define the event Bn as

Bn ≡ {δn ≤ F̂y(gj(−
√
β log n)) ∪ F̂y(gj(

√
β log n)) ≤ 1− δn}.

Following from (A.1), we have

P (Bcn)

≤ 2P (F̂y(gj(
√
β log n)) ≥ 1− δn)

= 2P (F̂y(gj(
√
β log n)− Fy(

√
β log n) ≥ 1− Fy(

√
β log n)− δn)

≤ 2P (F̂y(gj(
√
β log n)− Fy(

√
β log n) ≥ 1

2n
m
2

√
2πm log n

− δn)

≤ 2P (F̂y(gj(
√
β log n)− Fy(

√
β log n) ≥ 1

2n
m
2

√
2πm log n

− 1

4n
m
2

√
2πm log n

)

= 2P (F̂y(gj(
√
β log n)− Fy(

√
β log n) ≥ 1

4n
m
2

√
2πm log n

)

≤ 2 exp{−2n
1

16nm2πm log n
} = 2 exp{− n1−m

16πm log n
},

where last inequality follows from Hoeffiding’s inequality. Therefore

P (
1

n2

∑
yi∈Mn∩yj∈Mn

|∆ij| >
ε

40β2
)

= P (
1

n2

∑
yi∈Mn∩yj∈Mn

|∆ij| >
ε

40β2
,Bn) + P (

1

n2

∑
yi∈Mn∩yj∈Mn

|∆ij| >
ε

40β2
,Bcn)

≤ P (
1

n2

∑
yi∈Mn∩yj∈Mn

|∆ij| >
ε

40β2
,Bn) + P (Bcn)

≤ P (
1

n2

∑
yi∈Mn∩yj∈Mn

|∆ij| >
ε

40β2
,Bn) + 2 exp{− n1−m

16πm log n
}

≤ P (
1

n2

∑
yi∈Mn∩yj∈Mn

|T̃y(yi)− Ty(yi)| >
ε

40β2
√
m log n

,Bn) + 2 exp{− n1−m

16πm log n
}

≤ P (sup
t∈Mn
|T̃y(t)− Ty(t)| >

ε

40β2
√
m log n

,Bn) + 2 exp{− n1−m

16πm log n
}.
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Recall that under Bn, for t ∈ Mn, we have F̃y(t) = F̂y(t). So we can rewrite

T̃y(t) − Ty(t) as Φ−1(F̂y(t)) − Φ−1(Fy(t)). By the mean value theorem, we further

have

Φ−1(F̂y(t))− Φ−1(Fy(t)) = (Φ−1)′(s)(F̂y(t)− Fy(t)),

where s is between F̂y(t) and Fy(t). From Lemma 12.3 of Abramovich et al. (2006),

we know (Φ−1)
′
(s) = 1

φ(Φ−1(s))
. Also, recall that under Bn, for t ∈ Mn, both F̂y(t) and

Fy(t) are bounded by [δn, 1− δn]. Therefore,

sup
s∈[δn,1−δn]

(Φ−1)
′
(s) = sup

s∈[δn,1−δn]

1

φ(Φ−1(s))
=

1

φ(Φ−1(1− δn))
≤ 1

φ(
√

2 log( 1
δn

))
=

√
2π

δn
.

Combining them together, we are able to show

P (sup
t∈Mn
|T̃y(t)− Ty(t)| >

ε

40β2
√
m log n

,Bn)

≤ P (sup
t∈Mn
|Φ−1(F̂y(t))− Φ−1(Fy(t))| >

ε

40β2
√
m log n

,Bn)

≤ P ( sup
s∈[δn,1−δn]

1

φ(Φ−1(s))
sup
t∈Mn
|F̂y(t)− Fy(t)| >

ε

40β2
√
m log n

,Bn)

= P (

√
2π

δn
sup
t∈Mn
|F̂y(t)− Fy(t)| >

ε

40β2
√
m log n

,Bn)

= P (sup
t∈Mn
|F̂y(t)− Fy(t)| >

ε

40β2
√
m log n

1√
2π4n

m
2

√
2πm log n

,Bn)

= P (sup
t∈Mn
|F̂y(t)− Fy(t)| >

εn−
m
2

320β2πm log n
,Bn).

Using the Dvoretzky-Kiefer-Wolfowitz inequality, we have

P (sup
t∈Mn
|F̂y(t)− Fy(t)| >

εn−
m
2

320β2πm log n
,Bn) ≤ exp{−2n[

εn−
m
2

320β2πm log n
]2}

= exp{−2
ε2n1−m

102400β4m2π2 log2 n
}.
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Now it remains to deal with P (|ω∗k − ωk| > ε
2
). Recall that ω∗k is a V-statistic,

and the corresponding U-statistic ω∗∗k is given by

ω∗∗k =
1

n(n− 1)

n∑
i=1

∑
j 6=i

e−
β2

2
Eij − 2

n(1 + β2)

n∑
i=1

e
− β2

2(1+β2)
Ei +

1

1 + 2β2
.

By noting that e−
β2

2
Eij = 1 when i = j, and e−

β2

2
Eij < 1 for other cases, it is easy to

show

|ω∗k − ω∗∗k | = | 1

n2
(n+

n∑
i=1

∑
j 6=i

e−
β2

2
Eij)− 1

n(n− 1)

n∑
i=1

∑
j 6=i

e−
β2

2
Eij |

= | 1
n
− 1

n2(n− 1)

n∑
i=1

∑
j 6=i

e−
β2

2
Eij | ≤ 1

n
+

1

n
=

2

n
.

Recall that ε is of a lower order of 1
n
, therefore, we can consider P (|ω∗∗k − ωk| > ε

2
)

instead.

The kernel h(xki, xkj, yi, yj) of ω∗∗k is bounded,

|h(xki, xkj, yi, yj)| = |e−
β2

2
Eij − 1

1 + β2
e
− β2

2(1+β2)
Ei − 1

1 + β2
e
− β2

2(1+β2)
Ej +

1

1 + 2β2
|

≤ 1 +
2

1 + β2
+

1

1 + 2β2
≤ 4.

Therefore, we have

P (|ω∗∗k − ωk| >
ε

2
) ≤ exp{−2[

n

2
]
ε2

22

1

82
} = exp{−[

n

2
]
ε2

128
},

where [n
2
] denotes the integer part of n

2
.

In summary, by letting ε = cn−κ, we have

P (|ω̃∗k − ωk| > cn−κ) ≤ O{exp{−c1n
2d}+ exp{−c2n

1−2(κ+2d)}+ exp{−c3n
1−m−2κ}},
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with the additional constraint κ + 2d < m
2
. To optimize the convergence rate, we

should let m = 2(κ+ 2d) and d = 1
6
− 2

3
κ, then we can obtain

P (|ω̃∗k − ωk| > cn−κ) ≤ O{exp{−c1n
1−4κ

3 }}.

Hence,

P ( max
1≤k≤p

|ω̃∗k − ωk| > cn−κ) ≤ p max
1≤k≤p

P (|ω̃∗k − ωk| > cn−κ) ≤ O{p exp{−c1n
1−4κ

3 }},

which completes the proof.
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APPENDIX B

SUPPLEMENTARY MATERIALS FOR CHAPTER 3

B.1 Proof of Theorem 3.1

Under conditions (A1) and (A2), we can expand the mean of each subposterior

at the corresponding MLE, θ̂
(j)
, as follows:

µ(j) = Eπ̃j(θ) = θ̂
(j)

+
Î(j)−1

n

[
∂ log g(θ)

∂θ
|
θ̂
(j) −

1

2
Ĥ(j)Î(j)−1

]
+O(n−2)

where π̃j = π̃(θ|X [j]), Î(j) = − 1
m

∂2 log f(X[j]|θ)

∂θ∂θT
|
θ=θ̂

(j) , Ĥ(j) = − 1
m

∂3logf(X[j]|θ)

∂θ∂θT ∂θ
|
θ=θ̂

(j) ,

and Ĥ(j)Î(j)−1 is a vector whose rth element equals
∑

st Ĥ
(j)
rst Î

(j)−1
st . To simplify the

notation, we denote Î(j)−1[∂ log π(θ)/∂θ|
θ̂
(j) − 1

2
Ĥ(j)Î(j)−1] by ν(j). Moreover, for

each θ̂
(j)
, we have

θ̂
(j)

= θ∗ +
ξ(j)

√
m

+Op(m
−1),

where

ξ(j) =
1√
m
I−1

m∑
i=1

∂ log f(Xji|θ(∗))

∂θ
, I = −EX|θ∗

∂2 log f(X|θ(∗))

∂θ∂θT
.

Therefore, the mean of the mixture distribution π̃(θ|X) is

Eπ̃(θ) =
1

k

k∑
j=1

µ(j) = θ∗ +
1

k

k∑
j=1

ν(j)

n
+

1

k

k∑
j=1

ξ(j)

√
m

+Op(m
−1) +O(n−2).
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Note that ν(j) is of O(1), ξ(j)’s are independent of each other and each has the mean

0 and variance I−1. By condition (A3), we have

E[Eπ̃(θ)− θ(∗)]2 =
k

k2

1

m
diag(I−1) + o(n−1) =

1

n
diag(I−1) + o(n−1).

The variance of each subposterior can be approximated as follows:

V arπ̃(θ) =
Î(j)−1

n
+O(n−2)

Therefore, the variance of the mixture distribution π̃(θ|X) is

V arπ̃(θ) =
1

k

k∑
j=1

V arπ̃(θ) =
1

k

k∑
j=1

Î(j)−1

n
+O(n−2),

and

E[V arπ̃(θ)] =
1

n
I−1 + o(n−1).

By the definition of Wasserstein distance, we have

d2(π̃, δθ∗) =

∫
Θ

‖θ − θ∗‖2
2π̃(θ|X)dθ = ‖Eπ̃(θ)− θ∗‖2

2 + tr (V arπ̃(θ)) .

Then, from the above analysis, it is easy to see that

E(d2(π̃, δθ∗)) = 2
tr(I−1)

n
+ o(n−1).
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Following the same procedure, we can expand the full data posterior π(θ|X):

Eπ(θ) = θ(∗) +
ν

n
+

ξ√
n

+Op(n
−1) +O(n−2)

V arπθ =
Î−1

n
+O(n−2)

where ν, ξ and Î are defined correspondingly. Notice ξ√
n

= 1
k

∑k
j=1

ξ(j)√
m
, we thus have

E[Eπ̃(θ)− Eπ(θ)]2 = O(m−2),

E|V arπ̃(θ)− V arπ(θ)| = o(n−1),

E(d2(π, δθ∗)) = 2
tr(I−1)

n
+ o(n−1),

which completes the proof.
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APPENDIX C

SUPPLEMENTARY MATERIALS FOR CHAPTER 4

In the following text, we use l(Dn|βs) to denote the log-likelihood logL(Dn|βs),

use s(Dn,βs) to denote the score function ∂l(Dn|βs)/∂βs, and use H(Dn,βs) to

denote the observed information matrix −∂2l(Dn|βs)/∂βs∂βTs . So H(Dn,βs) =

nÎ(Dn|βs). Moreover, we introduce β∗s(for s ⊇ s∗) to denote the sub-vector of β∗

corresponding to the model s. For simplicity, we also depress the subscript of pn and

replace it by p.

Before giving the proof of Theorem 4.1 and Theorem 4.2, we first present a useful

lemma, which is modified from Lemma1 in Foygel and Drton (2011).

C.1 A Useful Lemma

Lemma C.1. Assume the conditions (A1)-(A5) are satisfied, then for sufficiently

large n, with probability at least 1 − n−η (η is any positive number) , the following

statements all hold.

1. For all |s| ≤ 2q, ||βs||2 ≤ r and ||β′s||2 ≤ r, where r > 0, There exists positive

numbers b1(r),b2(r) and b3(r) such that

b1(r) ≤ λmin[
1

n
H(Dn,βs)] ≤ λmax[

1

n
H(Dn,βs)] ≤ b2(r)

−b3(r)||βs − β′s||2 ≤ λmin[
1

n
H(Dn,βs)−

1

n
H(Dn,β

′
s)]

b3(r)||βs − β′s||2 ≥ λmax[
1

n
H(Dn,βs)−

1

n
H(Dn,β

′
s)]

2. ||H(Dn,β
∗
s)
−1/2s(Dn,β

∗
s)||2 ≤

√
2(1 + εn)|s\s∗| log(nηp) for all s ⊇ s∗ with
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|s| ≤ 2q, where εn = log−1/2(n) = o(1). In the case s = s∗, we define |s\s∗| as

1.

3. l(Dn|β∗s +ψs)− l(Dn|β∗s) ≤ −
b1(M+1)n

2
||ψs||2

[
min(1, ||ψs||2)− τ

√
log(nηp)

n

]
for

all s ⊇ s∗ with |s| ≤ 2q and ψs ∈ R|s|, where τ =
√

32qb2(M+1)

b21(M+1)

4. ||β̂s||2 ≤ R for all model s with |s| ≤ q and s + s∗, where R = M + 1 +

4b2(M+1)M2

b1(M+1)

Proof. In the generalized linear model, we have

l(Dn|βs) =
n∑
i=1

[y(i)(x(i)
s )Tβs − b((x(i)

s )Tβs)]

s(Dn,βs) =
n∑
i=1

[y(i) − b′((x(i)
s )Tβs)]x

(i)
s

H(Dn,βs) =
n∑
i=1

b′′((x(i)
s )Tβs)x

(i)
s (x(i)

s )T

Notice H(Dn,βs) does not depend on the response variable y

Part 1

|x(i)
j | ≤ 1 and ||βs||2 ≤ r lead to |(x(i)

s )Tβs| ≤ 2rq. Define d1(r) = inf |θ|≤2rq b
′′(θ) and

d2(r) = sup|θ|≤2rq b
′′(θ). We have

λmin(
1

n
H(Dn,βs)) ≥ min

i
(b′′((x(i)

s )Tβs))λmin(
1

n

n∑
i=1

x(i)
s (x(i)

s )T ) ≥ d1(r)a1

λmax(
1

n
H(Dn,βs)) ≤ max

i
(b′′((x(i)

s )Tβs))λmin(
1

n

n∑
i=1

x(i)
s (x(i)

s )T ) ≤ d2(r)a2

87



In addition

H(Dn,βs)−H(Dn,β
′
s) =

n∑
i=1

x(i)
s (x(i)

s )T [b′′((x(i)
s )Tβs)− b′′((x(i)

s )Tβ′s)]

=
n∑
i=1

x(i)
s (x(i)

s )T b′′′((x(i)
s )Tβ′′s)[(x

(i)
s )T (βs − β′s)]

where β′′s is between βs and β′s. Define d3(r) = sup|θ|≤2rq b
′′′(θ) and notice |(x(i)

s )T (βs−

β′s)| ≤ 2q||βs − β′s||2, we further have

λmax[H(Dn,βs)−H(Dn,β
′
s)] ≤ λmax{

n∑
i=1

x(i)
s (x(i)

s )T}d3(r)2q||βs − β′s||2

≤ 2qa2d3(r)||βs − β′s||2

λmin[H(Dn,βs)−H(Dn,β
′
s)] ≥ λmax{

n∑
i=1

x(i)
s (x(i)

s )T}(−1)d3(r)2q||βs − β′s||2

≥ −2qa2d3(r)||βs − β′s||2

Part 2

For any model s with s ⊇ s∗, |s| ≤ 2q and any vector u ∈ R|s| with ||u||2 ≤ 1, we

have

uTH(Dn,β
∗
s)
−1/2s(Dn,β

∗
s) =

n∑
i=1

[y(i) − b′((x(i)
s )Tβ∗s)](x

(i)
s )TH(Dn,β

∗
s)
−1/2u

=
n∑
i=1

[y(i) − µ(i)](x(i)
s )TH(Dn,β

∗
s)
−1/2u

Now define As,n =
√

2
√

1 + εn|s\s∗| log(nηp) and ψs = As,nH(Dn,β
∗
s)
−1/2u, we

have
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P{uTH(Dn,β
∗
s)
−1/2s(Dn,β

∗
s) ≥ As,n}

= E

[
1{As,nuTH(Dn,β

∗
s)
−1/2s(Dn,β

∗
s) ≥ A2

s,n}
]

= E

[
1{

n∑
i=1

[y(i) − µ(i)](x(i)
s )Tψs ≥ A2

s,n}
]

≤ E

[
exp{

n∑
i=1

[y(i) − µ(i)](x(i)
s )Tψs − A2

s,n}
]

= exp{
n∑
i=1

−µ(i)(x(i)
s )Tψs − A2

s,n}E
[ n∑
i=1

exp{y(i)(x(i)
s )Tψs}

]
= exp{

n∑
i=1

−µ(i)(x(i)
s )Tψs − A2

s,n}
n∏
i=1

E

[
exp{y(i)(x(i)

s )Tψs}
]

= exp{
n∑
i=1

−µ(i)(x(i)
s )Tψs − A2

s,n}
n∏
i=1

exp{b((x(i)
s )T (ψs + β∗s))− b((x(i)

s )Tβ∗s)}

= exp{
n∑
i=1

−µ(i)(x(i)
s )Tψs − A2

s,n} exp{
n∑
i=1

[b((x(i)
s )T (ψs + β∗s))− b((x(i)

s )Tβ∗s)]}

By Taylor expansion, we can rewrite the contents in the second exponential function

n∑
i=1

[b((x(i)
s )T (ψs + β∗s))− b((x(i)

s )Tβ∗s)]

=
n∑
i=1

{
b′((x(i)

s )Tβ∗s)(x
(i)
s )Tψ(Dn) +

1

2
b′′((x(i)

s )Tβ∗s)[(x
(i)
s )Tψ(Dn)]2

+
1

2
[b′′((x(i)

s )T (ψs + β∗s))− b′′((x(i)
s )Tβ∗s)][(x

(i)
s )Tψs]

2

}
=

n∑
i=1

µ(i)(x(i)
s )Tψs +

n∑
i=1

1

2
b′′((x(i)

s )Tβ∗s)[(x
(i)
s )Tψs]

2

+
1

2
ψT
s

n∑
i=1

[b′′((x(i)
s )T (ψs + β∗s))− b′′((x(i)

s )Tβ∗s)][x
(i)
s (x(i)

s )T ]ψs

To step it further, we have to analyze the second term and third term. For the

89



second one, notice

n∑
i=1

b′′((x(i)
s )Tβ∗s)[(x

(i)
s )Tψs]

2

= A2
s,n

n∑
i=1

b′′((x(i)
s )Tβ∗s)[(x

(i)
s )TH(Dn,β

∗
s)
−1/2u]2

= A2
s,nu

TH(Dn,β
∗
s)
−1/2

[ n∑
i=1

(x(i)
s )T b′′((x(i)

s )Tβ∗s)x
(i)
s

]
H(Dn,β

∗
s)
−1/2u

= A2
s,nu

TH(Dn,β
∗
s)
−1/2H(Dn,β

∗
s)H(Dn,β

∗
s)
−1/2u

= A2
s,nu

Tu ≤ A2
s,n

For the third one, we can apply part 1 of the lemma, with r set as M + 1, and get

||ψs||22 = A2
s,nu

TH(Dn,β
∗
s)
−1u ≤ A2

s,n

1

nb1(M + 1)
uTu ≤

A2
s,n

nb1(M + 1)

We should also observe that for n sufficiently large,

||ψs||22 ≤
A2
s,n

nb1(M + 1)
=

2
√

1 + εn|s\s∗| log(nηp)

nb1(M + 1)
≤ 5q log(nηp)

nb1(M + 1)
< 1

Then apply part 1 of the lemma again, with r set as M + 1

ψT
s

n∑
i=1

[b′′((x(i)
s )T (ψs + β∗s))− b′′((x(i)

s )Tβ∗s)][x
(i)
s (x(i)

s )T ]ψs

= ψT
s [H(Dn,ψs + β∗s)−H(Dn,β

∗
s)]ψs

≤ nb3(M + 1)||ψs||2ψT
sψs =

1

2
nb3(M + 1)||ψs||32

≤ nb3(M + 1)
A3
s,n

n1.5b1.5
1 (M + 1)

=
A3
s,nb3(M + 1)

n0.5b1.5
1 (M + 1)
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By combining the above inequalities together, we finally have

n∑
i=1

[b((x(i)
s )T (ψs + β∗s))− b((x(i)

s )Tβ∗s)]

≤
n∑
i=1

µ(i)(x(i)
s )Tψs +

A2
s,n

2
+

A3
s,nb3(M + 1)

2n0.5b1.5
1 (M + 1)

Now go back to the analysis of P{uTH(Dn,β
∗
s)
−1/2s(Dn,β

∗
s) ≥ As,n} and con-

tinue,

P{uTH(Dn,β
∗
s)
−1/2s(Dn,β

∗
s) ≥ As,n}

≤ exp{
n∑
i=1

−µ(i)(x(i)
s )Tψs − A2

s,n} exp{
n∑
i=1

[b((x(i)
s )T (ψs + β∗s))− b((x(i)

s )Tβ∗s)]}

≤ exp{
n∑
i=1

−µ(i)(x(i)
s )Tψs − A2

s,n} exp{
n∑
i=1

µ(i)(x(i)
s )Tψs +

A2
s,n

2
+

A3
s,nb3(M + 1)

2n0.5b1.5
1 (M + 1)

}

= exp{−
A2
s,n

2
+

A3
s,nb3(M + 1)

2n0.5b1.5
1 (M + 1)

}

To link this inequality to our final objective, we rely on lemma 2 in Chen and Chen

(2012), which states that for a given δn > 0, there exists a finite set of unit vectors

U(δn) ⊂ R2q such that for all v ∈ R2q, we have ||v||2 ≤ (1 + δn) maxu∈U(δn) uTv.

Since U(δn) is a finite set, we use N(δn) to denote its cardinality.

In fact, in the following, we use a corollary of this lemma, that is, for v with

length l ≤ 2q, we have

||v||2 ≤ (1 + δn) max
u∈U(δn)

uTl v

where ul denotes the first l elements in u. This corollary can be verified easily.

So for a fixed model s with s ⊇ s∗ and |s| = d ≤ 2q. If we let δn = 4
√

1 + εn − 1,
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then we have

P{||H(Dn,β
∗
s)
−1/2s(Dn,β

∗
s)||2 ≥ (1 + δn)As,n}

≤
∑

u∈U(δn)

P{uTdH(Dn,β
∗
s)
−1/2s(Dn,β

∗
s) ≥ As,n}

≤
∑

u∈U(δn)

exp{−
A2
s,n

2
+

A3
s,nb3(M + 1)

2n0.5b1.5
1 (M + 1)

}

= N(δn) exp{−
A2
s,n

2
+

A3
s,nb3(M + 1)

2n0.5b1.5
1 (M + 1)

}

For neatness and conciseness, we only give the proof excluding s = s∗

P{∃ s with s ⊃ s∗ and |s| ≤ 2q, ||H(Dn,β
∗
s)
−1/2s(Dn,β

∗
s)||2 ≥ (1 + δn)As,n}

≤
∑

s⊃s∗ and |s|≤2q

P{||H(Dn,β
∗
s)
−1/2s(Dn,β

∗
s)||2 ≥ (1 + δn)As,n}

≤
∑

s⊃s∗ and |s|≤2q

N(δn) exp{−
A2
s,n

2
+

A3
s,nb3(M + 1)

2n0.5b1.5
1 (M + 1)

}

=

2q−|s∗|∑
d′=1

(
p

d′

)
N(δn) exp{−

A2
s,n

2
+

A3
s,nb3(M + 1)

2n0.5b1.5
1 (M + 1)

}

≤
2q−|s∗|∑
d′=1

exp{−
√

1 + εnd
′ log(nηp)

[
1−

√
2(1 + εn)d′ log(nηp)b2

3(M + 1)

nb3
1(M + 1)

]
+d′ log(p) + log(N(δn))}

Now we analyze the term inside exponential function by splitting it into the following

two component

−
√

1 + εnd
′ log(p)

[
1−

√
2(1 + εn)d′ log(nηp)b2

3(M + 1)

nb3
1(M + 1)

]
+ d′ log(p)

= d′ log(p)

{
1−
√

1 + εn

[
1−

√
2(1 + εn)d′ log(nηp)b2

3(M + 1)

nb3
1(M + 1)

]}
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and

−
√

1 + εnd
′ log(nη)

[
1−

√
2(1 + εn)d′ log(nηp)b2

3(M + 1)

nb3
1(M + 1)

]
+ log(N(δn))

= d′ log(nη)

{
−
√

1 + εn

[
1−

√
2(1 + εn)d′ log(nηp)b2

3(M + 1)

nb3
1(M + 1)

]
+

log(N(δn))

d′ log(nη)

}

For the first component, we should notice when the n is sufficiently large

√
2(1 + εn)d′ log(nηp)b2

3(M + 1)

nb3
1(M + 1)

= O(

√
log(nηp)

n
) = o(

1

log1/2(n)
) = o(εn)

So
√

1 + εn[1 −
√

2(1+εn)d′ log(nηp)b23(M+1)

nb31(M+1)
] = 1 + O(εn) should be larger than 1 for n

sufficiently large, and component 1 should be smaller than 0.

For the second component, we should further notice when n is sufficiently large

N(δn) = O(1/δn) = O(
1

4
√

1 + εn − 1
) = O(

1

εn
) = O(log1/2(n))

so
log(N(δn))

d′ log(nη)
= O(

log log(n)

log(n)
) = o(

1

log1/2(n)
) = o(εn)

and component 2 becomes

d′ log(nη)(−1−O(εn)) = −d′ log(nη)−O(log1/2(n))

For n sufficiently large, O(log1/2(n)) > log(4).
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Combing them together, we finally have

P{∃ s with s ⊃ s∗ and |s| ≤ 2q, ||H(Dn,β
∗
s)
−1/2s(Dn,β

∗
s)||2 ≥ (1 + δn)As,n}

≤
2q−|s∗|∑
d′=1

exp{−
√

1 + εnd
′ log(nηp)

[
1−

√
2(1 + εn)d′ log(nηp)b2

3(M + 1)

nb3
1(M + 1)

]
+d′ log(p) + log(N(δn))}

≤
2q−|s∗|∑
d′=1

exp{−d′ log(nη)− log(4)} <
∞∑
d′=1

1

4
exp{−d′ log(nη)} ≤ 1

2
n−η

Following very similar procedure, we can also obtain

P{∃ s with s ⊇ s∗ and |s| ≤ 2q, ||H(Dn,β
∗
s)
−1/2s(Dn,β

∗
s)||2 ≥ (1 + δn)As,n} ≤

1

2
n−η

Part 3

Suppose part 2 of this lemma holds, then for any model s with s ⊇ s∗, |s| ≤ 2q and

ψs with ||ψs||2 ≤ 1, we have

l(Dn|β∗s +ψs)− l(Dn|β∗s)

= ψT
s s(Dn,β

∗
s)−

1

2
ψT
sH(Dn,β

∗
s + tψs)ψs

≤ ||ψs||2||s(Dn,β
∗
s)||2 −

b1(M + 1)n

2
||ψs||22

= ||ψs||2||H(Dn,β
∗
s)

1/2H(Dn,β
∗
s)
−1/2s(Dn,β

∗
s)||2 −

b1(M + 1)n

2
||ψs||22

≤ ||ψs||2
√
λmax(H(Dn,β

∗
s))||H(Dn,β

∗
s)
−1/2s(Dn,β

∗
s)||2 −

b1(M + 1)n

2
||ψs||22

≤ ||ψs||2
√
nb2(M + 1)

√
2(1 + εn)|s\s∗| log(nηp)− b1(M + 1)n

2
||ψs||22

≤ −b1(M + 1)n

2
||ψs||2

[
||ψs||2 −

√
log(nηp)

n

√
32qb2(M + 1)

b2
1(M + 1)

]
≤ −b1(M + 1)n

2
||ψs||2

[
||ψs||2 − τ

√
log(nηp)

n

]
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From the above inequality, we also obtain ||β̂s − β∗s||2 ≤ τ
√

log(nηp)
n

= o(1), which

means for n sufficiently large, β̂s and β∗s are very close with each other. Next, by

concavity of the log-likelihood, for ||ψs||2 > 1, we have

l(Dn|β̂s +ψs)− l(Dn|β̂s) ≤ ||ψs||2[l(Dn|β̂s +
ψs

||ψs||2
)− l(Dn|β̂s)]

By replacing β̂s by β
∗
s , now we have

l(Dn|β∗s +ψs)− l(Dn|β∗s) ≤ ||ψs||2[l(Dn|β∗s +
ψs

||ψs||2
)− l(Dn|β∗s)]

≤ ||ψs||2
[
− b1(M + 1)n

2

(
1− τ

√
log(nηp)

n

)]
= −b1(M + 1)n

2
||ψs||2

[
1− τ

√
log(nηp)

n

]

By combining these two cases together, we finally proved

l(Dn|β∗s +ψs)− l(Dn|β∗s) ≤ −
b1(M + 1)n

2
||ψs||2

[
min(1, ||ψs||2)− τ

√
log(nηp)

n

]

Part 4

Suppose part 2 of this lemma holds (part 3 also holds). For any model s with |s| ≤ q

and s + s∗, let s′ = s ∪ s∗. It is easy to verify s′ ⊆ s∗ and |s′| ≤ 2q. We also use

β̂s,s′ to denote a vector corresponding to model s′, generated by β̂s augmented with

zeros in s′\s. Recall R = M + 1 + 4b2(M+1)M2

b1(M+1)
, if ||β̂s,s′−β∗s′ ||2 ≤ 1 then ||β̂s,s′ ||2 ≤ R

obviously. So we only consider the case where ||β̂s,s′ − β∗s′||2 > 1
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By part 3 of this lemma, for n sufficiently large, we have

l(Dn|β̂s,s′)− l(Dn|β∗s′)

≤ −b1(M + 1)n

2
||β̂s,s′ − β∗s′ ||2

[
min(1, ||β̂s,s′ − β∗s′ ||2)− τ

√
log(nηp)

n

]
≤ −b1(M + 1)n

2
||β̂s,s′ − β∗s′ ||2

[
1− τ

√
log(nηp)

n

]
≤ −b1(M + 1)n

4
||β̂s,s′ − β∗s′ ||2

We also have

l(Dn|0s′)− l(Dn|β∗s′)

= (−β∗s′)T s(Dn,β
∗
s′)−

1

2
(−β∗s′)TH(Dn, tβ

∗
s′)(−β∗s′)

= −(H(Dn,β
∗
s′)

1/2β∗s′)
TH(Dn,β

∗
s′)
−1/2s(Dn,β

∗
s′)−

1

2
(−β∗s′)TH(Dn, tβ

∗
s′)(−β∗s′)

≥ −||H(Dn,β
∗
s′)

1/2β∗s′ ||2||H(Dn,β
∗
s′)
−1/2s(Dn,β

∗
s′)||2 −

1

2
(β∗s′)

TH(Dn, tβ
∗
s′)(β

∗
s′)

= −
√

(β∗s′)
TH(Dn,β

∗
s′)β

∗
s′||H(Dn,β

∗
s′)
−1/2s(Dn,β

∗
s′)||2 −

1

2
(β∗s′)

TH(Dn, tβ
∗
s′)(β

∗
s′)

≥ −
√
nb2(M + 1)(β∗s′)

Tβ∗s′
√

2(1 + εn)|s′\s∗| log(nηp)− 1

2
nb2(M + 1)(β∗s′)

Tβ∗s′

≥ −
√
nb2(M + 1)M2

√
8q log(nηp)− 1

2
nb2(M + 1)M2

≥ −nb2(M + 1)M2

The last inequality is valid since for n sufficiently large,
√
nb2(M + 1)M2

√
8q log(nηp) =

o(nb2(M + 1)M2)

Notice l(Dn|β̂s,s′) > l(Dn|0s′), so we can combine the above two inequalities
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together and obtain

−nb2(M + 1)M2 ≤ l(Dn|0s′)− l(Dn|β∗s′) ≤ l(Dn|β̂s,s′)− l(Dn|β∗s′)

≤ −b1(M + 1)n

4
||β̂s,s′ − β∗s′||2

which leads to

||β̂s,s′ − β∗s′ ||2 ≤
4b2(M + 1)M2

b1(M + 1)

and

||β̂s,s′ ||2 ≤ R

C.2 Proof of Theorem 4.1

From Lemma C.1, we know for sufficiently large n, with probability at least

1− n−η,

1. For all model s with |s| ≤ q and s + s∗, ||β̂s||2 ≤ R ,where R = M + 1 +

4b2(M+1)M2

b1(M+1)

2. For all model s with |s| ≤ q and s ⊇ s∗, ||β̂s−β∗s||2 = o(1), therefore ||β̂s||2 ≤ R

as well.

To sum up, for all model s with |s| ≤ q, ||β̂s||2 is bounded by R.
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Notice

E{βs|Dn,s}

[
l(Dn|βs)− l(Dn|β̂s)

]
=

∫
βs

P (βs|Dn, s)

[
l(Dn|βs)− l(Dn|β̂s)

]
dβs

=

∫
βs

L(Dn|βs)π(βs)

m(Dn|s)

[
l(Dn|βs)− l(Dn|β̂s)

]
dβs

=

∫
βs
L(Dn|βs)π(βs)

[
l(Dn|βs)− l(Dn|β̂s)

]
dβs

m(Dn|s)

In the following, we deal with the numerator and denominator, respectively.

Part 1: Numerator

For the numerator, we split the integral domain into three regions, a small neighbor-

hood of the MLE β̂s denoted by N1, the area between the small neighborhood N1

and a larger neighborhood N2, and the rest Rs\N2. More specifically, N1 and N2 are

defined as

N1 = {βs : ||H(Dn, β̂s)
1/2(β − β̂s)||2 ≤

√
4 log(n)}

N2 = {βs : ||H(Dn, β̂s)
1/2(β − β̂s)||2 ≤

√
nb1(R + 1)}

Now the numerator can be written as a sum of three integrals.

∫
L(Dn|βs)π(βs)

[
l(Dn|βs)− l(Dn|β̂s)

]
dβs

=

∫
βs∈N1

L(Dn|βs)π(βs)

[
l(Dn|βs)− l(Dn|β̂s)

]
dβs (Int1)

+

∫
βs∈N2\N1

L(Dn|βs)π(βs)

[
l(Dn|βs)− l(Dn|β̂s)

]
dβs (Int2)

+

∫
βs∈Rs\N2

L(Dn|βs)π(βs)

[
l(Dn|βs)− l(Dn|β̂s)

]
dβs (Int3)

Int1:
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By applying part 1 of lemma C.1, for βs ∈ N1, we have

√
4 log(n) ≥ ||H(Dn, β̂s)

1/2(β − β̂s)||2

=

√
(β − β̂s)TH(Dn, β̂s)

1/2(β − β̂s)

≥
√
nb1(R + 1)||β − β̂s||2

Thus ||β − β̂s||2 ≤
√

4 log(n)
nb1(R+1)

< 1

In this small neighborhood around β̂s, expand l(Dn|βs) at β̂s, and we have

l(Dn|βs)− l(Dn|β̂s)

= −1

2
(βs − β̂s)T

[
H(Dn, β̂s + t(βs − β̂s))

]
(βs − β̂s)

= −1

2
(βs − β̂s)T

[
H(Dn, β̂s)

]
(βs − β̂s)

−1

2
(βs − β̂s)T

[
H(Dn, β̂s + t(βs − β̂s))−H(Dn, β̂s)

]
(βs − β̂s)

Since ||βs − β̂s||2 < 1, we have ||β̂s + t(βs − β̂s)||2 ≤ R + 1. By applying part 1 in

lemma C.1, we have

∣∣∣∣(βs − β̂s)T{H(Dn, β̂s + t(βs − β̂s))−H(Dn, β̂s)

}
(βs − β̂s)

∣∣∣∣
≤ ntb3(R + 1)||βs − β̂s||32 ≤ nb3(R + 1)||βs − β̂s||32

and ∣∣∣∣(βs − β̂s)TH(Dn, β̂s)(βs − β̂s)
∣∣∣∣ ≥ nb1(R + 1)||βs − β̂s||22
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Combing them together, we further have

∣∣∣∣(βs − β̂s)T{H(Dn, β̂s + t(βs − β̂s))−H(Dn, β̂s)

}
(βs − β̂s)

∣∣∣∣∣∣∣∣(βs − β̂s)TH(Dn, β̂s)(βs − β̂s)
∣∣∣∣

≤ b3(R + 1)

b1(R + 1)
||βs − β̂s||2 ≤

√
4 log(n)b2

3(R + 1)

nb3
1(R + 1)

In order to simplify the notation , we let ξn =
√

4 log(n)b23(R+1)

nb31(R+1)

Recall

π(βs) = N(0, Vs) = N(0, σ2
sI)

where σ2
s = 1

2π
eC0/|s| for some positive constants C0. It’s easy to verify there exists

three constants K1, K2 and K3 such that for any model s with |s| ≤ q, we have

sup
βs

π(βs) ≤ K1 <∞

inf
||βs||2≤R+1

π(βs) ≥ K2 > 0

sup
||βs||2≤R+1

||∇π(βs)||2 ≤ K3 <∞

These also imply

sup
||βs||2≤R+1

||∇ log π(βs)||2 = sup
||βs||2≤R+1

||∇π(βs)

π(βs)
||2 ≤

K3

K2

<∞

and

sup
||βs||2≤R+1

| log π(βs)− log π(β̂s)| ≤
K3

K2

√
4 log(n)

nb1(R + 1)
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Combining all the above analysis together, we can obtain the lower bound of Int1

∫
βs∈N1

L(Dn|βs)π(βs)

[
l(Dn|βs)− l(Dn|β̂s)

]
dβs

= exp{l(Dn|β̂s)}
∫
βs∈N1

exp{l(Dn|βs)− l(Dn|β̂s)

+ log π(βs)}
[
l(Dn|βs)− l(Dn|β̂s)

]
dβs

≥ exp{l(Dn|β̂s) + log π(β̂s) +
K3

K2

√
4 log(n)

nb1(R + 1)
}

×
∫
βs∈N1

exp{−1

2
(βs − β̂s)TH(Dn, β̂s)(βs − β̂s)(1− ξn)}{

− 1

2
(βs − β̂s)TH(Dn, β̂s)(βs − β̂s)(1 + ξn)

}
dβs

Introduce new variable t =
√

1− ξnH(Dn, β̂s)
1/2(βs− β̂s), the lower bound becomes

exp

{
l(Dn|β̂s) + log π(β̂s) +

K3

K2

√
4 log(n)

nb1(R + 1)

}
(1− ξn)−|s|/2|H(Dn, β̂s)|−1/2

×
∫
||t||2≤

√
1−ξn
√

4 log(n)

1 + ξn
1− ξn

exp{−1

2
tT t}

{
− 1

2
tT t

}
dt

≥ exp

{
l(Dn|β̂s) + log π(β̂s) +

K3

K2

√
4 log(n)

nb1(R + 1)
+ log(

1 + ξn
1− ξn

)

}
(1− ξn)−|s|/2|H(Dn, β̂s)|−1/2(2π)|s|/2

∫
t∈R|s|

(2π)−|s|/2 exp{−1

2
tT t}

{
− 1

2
tT t

}
dt

= exp

{
l(Dn|β̂s) + log π(β̂s) +

K3

K2

√
4 log(n)

nb1(R + 1)
+ log(

1 + ξn
1− ξn

)

}
(1− ξn)−|s|/2|H(Dn, β̂s)|−1/2(2π)|s|/2(−|s|

2
)
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The last equality is derived from the fact

∫
t∈R|s|

(2π)−|s|/2 exp{−1

2
tT t}

{
tT t

}
dt = E(χ2(|s|)) = |s|

We can also obtain the upper bound of Int1

∫
βs∈N1

L(Dn|βs)π(βs)

[
l(Dn|βs)− l(Dn|β̂s)

]
dβs

= exp{l(Dn|β̂s)}
∫
βs∈N1

exp{l(Dn|βs)− l(Dn|β̂s)

+ log π(βs)}
[
l(Dn|βs)− l(Dn|β̂s)

]
dβs

≤ exp{l(Dn|β̂s) + log π(β̂s)−
K3

K2

√
4 log(n)

nb1(R + 1)
}

×
∫
βs∈N1

exp{−1

2
(βs − β̂s)TH(Dn, β̂s)(βs − β̂s)(1 + ξn)}{

− 1

2
(βs − β̂s)TH(Dn, β̂s)(βs − β̂s)(1− ξn)

}
dβs

Introduce new variable t =
√

1 + ξnH(Dn, β̂s)
1/2(βs−β̂s), the upper bound becomes

exp

{
l(Dn|β̂s) + log π(β̂s)−

K3

K2

√
4 log(n)

nb1(R + 1)

}
(1 + ξn)−|s|/2|H(Dn, β̂s)|−1/2

×
∫
||t||2≤

√
1+ξn
√

4 log(n)

1− ξn
1 + ξn

exp{−1

2
tT t}

{
− 1

2
tT t

}
dt

≤ exp

{
l(Dn|β̂s) + log π(β̂s)−

K3

K2

√
4 log(n)

nb1(R + 1)
+ log(

1− ξn
1 + ξn

)

}
(1 + ξn)−|s|/2|H(Dn, β̂s)|−1/2(2π)|s|/2

∫
||t||2≤

√
4 log(n)

(2π)−|s|/2 exp{−1

2
tT t}dt

≤ exp

{
l(Dn|β̂s) + log π(β̂s)−

K3

K2

√
4 log(n)

nb1(R + 1)
+ log(

1− ξn
1 + ξn

)

}
(1 + ξn)−|s|/2|H(Dn, β̂s)|−1/2(2π)|s|/2(−|s|

2
)(1− 2|s|/2n−1/2

|s|/2
)
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The last inequality is based on the observation that for n sufficiently large and

||t||2 ≥
√

4 log(n), we have 1
2
tT t ≤ exp{1

4
tT t}, so

∫
||t||2≥

√
4 log(n)

(2π)−|s|/2 exp{−1

2
tT t}

{
1

2
tT t

}
dt

≤
∫
||t||2≥

√
4 log(n)

(2π)−|s|/2 exp{−1

4
tT t}dt

= 2|s|/2
∫
||t||2≥

√
4 log(n)

(2π)−|s|/2(2)−|s|/2 exp{−1

2
tT (2I)−1t}

= 2|s|/2P (χ2(|s|) ≥ 2 log(n)) ≤ 2|s|/2e− log(n)/2 = 2|s|/2n−1/2

By carefully reorganizing the terms in upper bound and lower bound, we can finally

obtain that for n sufficiently large, there exists two positive constants c1 and c2 such

that

Int1 ≤ −|s|
2
L(Dn, β̂s)π(β̂s)|H(Dn, β̂s)|−1/2(2π)|s|/2

{
1 + c1

√
log(n)

n

}
Int1 ≥ −|s|

2
L(Dn, β̂s)π(β̂s)|H(Dn, β̂s)|−1/2(2π)|s|/2

{
1− c2

√
log(n)

n

}

Int2

By applying part 1 of lemma C.1, for βs ∈ N2, we have

√
b1(R + 1)n ≥ ||H(Dn, β̂s)

1/2(β − β̂s)||2

=

√
(β − β̂s)TH(Dn, β̂s)

1/2(β − β̂s)

≥
√
nb1(R + 1)||β − β̂s||2
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Thus ||βs − β̂s||2 ≤ 1. Apply part 1 of lemma C.1 again and we obtain

|l(Dn|βs)− l(Dn|β̂s)| = | − 1

2
(βs − β̂s)TH(Dn, β̂s + t(βs − β̂s))(βs − β̂s)|

≥ 1

2

b1(R + 1)

b2(R + 1)
(βs − β̂s)TH(Dn, β̂s)(βs − β̂s)

It is also easy to verify that for n sufficiently large,

|l(Dn|βs)− l(Dn|β̂s)| ≤ exp{1

2
|l(Dn|βs)− l(Dn|β̂s)|}

Based on these information, now let’s deal with Int2

|Int2|

=

∣∣∣∣ ∫
βs∈N2

L(Dn|βs)π(βs)[l(Dn|βs)− l(Dn|β̂s)]dβs
∣∣∣∣

= exp{l(Dn|β̂s)}
∫
βs∈N2

exp{l(Dn|βs)− l(Dn|β̂s)}π(βs)[l(Dn|β̂s)− l(Dn|βs)]dβs

≤ exp{l(Dn|β̂s)}
∫
βs∈N2

exp{1

2
[l(Dn|βs)− l(Dn|β̂s)]}π(βs)dβs

≤ K1 exp{l(Dn|β̂s)}
∫
βs∈N2

exp{−1

4

b1(R + 1)

b2(R + 1)
(βs − β̂s)TH(Dn, β̂s)(βs − β̂s)}dβs

≤ K1 exp{l(Dn|β̂s)} ×∫
||(β−β̂s)||2≥

√
4 log(n)

exp{−1

4

b1(R + 1)

b2(R + 1)
(βs − β̂s)TH(Dn, β̂s)(βs − β̂s)}dβs
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Let t =
√

b1(R+1)
2b2(R+1)

H(Dn, β̂s)
1/2(βs − β̂s), then the upper bound becomes

K1 exp{l(Dn|β̂s)}(
b1(R + 1)

2b2(R + 1)
)−|s|/2|H(Dn, β̂s|−1/2(2π)|s|/2

×
∫
||t||2≥

√
2b1(R+1) log(n)

b2(R+1)

(2π)−|s|/2 exp{−1

2
tT t}dt

= K1 exp{l(Dn|β̂s)}(
b1(R + 1)

2b2(R + 1)
)−|s|/2|H(Dn, β̂s|−1/2(2π)|s|/2

P (χ2(|s|) ≥ 2b1(R + 1) log(n)

b2(R + 1)
)

≤ K1 exp{l(Dn|β̂s)}(
b1(R + 1)

2b2(R + 1)
)−|s|/2|H(Dn, β̂s|−1/2(2π)|s|/2n

− b1(R+1)
2b2(R+1)

By carefully reorganizing the terms above, we can finally obtain that for n sufficiently

large, there exists a positive constant c3 such that

|Int2| ≤ |s|
2
L(Dn, β̂s)π(β̂s)|H(Dn, β̂s)|−1/2(2π)|s|/2

{
c3n
− b1(R+1)

2b2(R+1)

}

Int3

For ||H1/2(Dn, β̂s)(βs − β̂s)||2 =
√
b1(R + 1)n, we have ||βs − β̂s||2 ≤ 1, thus

|l(Dn|βs)− l(Dn|β̂s)| ≥
1

2

b1(R + 1)

b2(R + 1)
(βs − β̂s)TH(Dn, β̂s)(βs − β̂s)

=
b

3/2
1 (R + 1)

√
n

2b2(R + 1)
||H1/2(Dn, β̂s)(βs − β̂s)||2

By concavity of log-likelihood, for ||H1/2(Dn, β̂s)(βs−β̂s)||2 ≥
√
b1(R + 1)n, we also

have

|l(Dn|βs)− l(Dn|β̂s)| ≥
b

3/2
1 (R + 1)

√
n

2b2(R + 1)
||H1/2(Dn, β̂s)(βs − β̂s)||2

Another important observation is that for n sufficiently large, for ||H1/2(Dn, β̂s)(βs−
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β̂s)||2 ≥
√
b1(R + 1)n, the following holds

|l(Dn|βs)− l(Dn|β̂s)| ≤ exp{1

2
|l(Dn|βs)− l(Dn|β̂s)|}

Consequently,

|Int3|

=

∣∣∣∣ ∫
βs∈N3

L(Dn|βs)π(βs)[l(Dn|βs)− l(Dn|β̂s)]dβs
∣∣∣∣

= exp{l(Dn|β̂s)}
∫
βs∈N3

exp{l(Dn|βs)− l(Dn|β̂s)}π(βs)[l(Dn|β̂s)− l(Dn|βs)]dβs

≤ exp{l(Dn|β̂s)}
∫
βs∈N3

exp{1

2
[l(Dn|βs)− l(Dn|β̂s)]}π(βs)dβs

≤ K1 exp{l(Dn|β̂s)} ×∫
||(β−β̂s)||2≥

√
b1(R+1)n

exp{−b
3/2
1 (R + 1)

√
n

4b2(R + 1)
||H1/2(Dn, β̂s)(βs − β̂s)||2}dβs

Let ξn =
b
3/2
1 (R+1)

√
n

4b2(R+1)
and t = ξnH

1/2(Dn, β̂s)(βs−β̂s) , now the upper bound becomes

K1 exp{l(Dn|β̂s)}|H(Dn, β̂s)|−1/2(ξn)−1

∫
||t||2≥ξn

√
b1(R+1)n

exp{−||t||2}dt

From Lemma2 in Foygel Barber et al. (2015), for n sufficiently large, we have

∫
||t||2≥ξn

√
b1(R+1)n

exp{−||t||2}dt

≤
4(π)|s|/2[ξn

√
b1(R + 1)n]|s|−1

Γ(|s|/2)
exp{−ξn

√
b1(R + 1)n}

≤ exp{−ξn
2

√
b1(R + 1)n}

By carefully reorganizing the terms above, we can obtain that for n sufficiently
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large, there exists two positive constants c4 and c5 such that

|Int3| ≤ |s|
2
L(Dn, β̂s)π(β̂s)|H(Dn, β̂s)|−1/2(2π)|s|/2

{
c4 exp{−c5n}

}

After analyzing the above three integrals one by one, we can finally add them

together and have

∫
L(Dn|βs)π(βs)

[
l(Dn|βs)− l(Dn|β̂s)

]
dβs

= −|s|
2
L(Dn, β̂s)π(β̂s)|H(Dn, β̂s)|−1/2(2π)|s|/2

{
1 + o(1)

}

Part 2: Denominator

The denominator can be processed similarly to the numerator. Here we omit the

details and only list the result:

m(Dn|s) =

∫
L(Dn|βs)π(βs)dβs = L(Dn, β̂s)π(β̂s)|H(Dn, β̂s)|−1/2(2π)|s|/2

{
1 + o(1)

}

Part 3: Combination Step

At last, we have

E{βs|Dn,s}

[
l(Dn|βs)− l(Dn|β̂s)

]

=

∫
βs
L(Dn|βs)π(βs)

[
l(Dn|βs)− l(Dn|β̂s)

]
dβs

m(Dn|s)

=

− |s|
2
L(Dn, β̂s)π(β̂s)|H(Dn, β̂s)|−1/2(2π)|s|/2

{
1 + o(1)

}
L(Dn, β̂s)π(β̂s)|H(Dn, β̂s)|−1/2(2π)|s|/2

{
1 + o(1)

}
= −|s|

2
[1 + o(1)] = −|s|

2
+ o(1)
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which ends the proof.

C.3 Proof of Theorem 4.2

Proof of theorem 4.2 is based on the proof of theorem 2 in Foygel and Drton

(2011). Define A0 = {s : s∗ ⊂ s, |s| ≤ q} and A1 = {s : s∗ * s, |s| ≤ q}, then we

consider two cases

Case 1: s ∈ A0

For n sufficiently large, apply lemma C.1 and we have

l(Dn|β̂s)− l(Dn|β∗s)

= (β̂s − β∗s)T s(Dn,β
∗
s)−

1

2
(β̂s − β∗s)TH(Dn,β

∗
s + t(β̂s − β∗s))(β̂s − β∗s)

≤ (β̂s − β∗s)T s(Dn,β
∗
s)−

1

2
(β̂s − β∗s)TH(Dn,β

∗
s)(β̂s − β∗s)

−1

2
(β̂s − β∗s)T

{
H(Dn,β

∗
s + t(β̂s − β∗s))−H(Dn,β

∗
s)

}
(β̂s − β∗s)

≤ (β̂s − β∗s)T s(Dn,β
∗
s)−

1

2
(β̂s − β∗s)TH(Dn,β

∗
s)(β̂s − β∗s)

+
1

2
nb3(R + 1)||β̂s − β∗s||32

≤ sup
βs

{
(βs − β∗s)T s(Dn,β

∗
s)−

1

2
(βs − β∗s)TH(Dn,β

∗
s)(βs − β∗s)

}
+

1

2
nb3(R + 1)

{
τ

√
log nηp

n

}3

Notice supβs

{
(βs − β∗s)T s(Dn,β

∗
s)− 1

2
(βs − β∗s)TH(Dn,β

∗
s)(βs − β∗s)

}
is achieved

when βs − β∗s = H(Dn,β
∗
s)
−1s(Dn,β

∗
s). Plug it into the expression, we can obtain

sup
βs

{
(βs − β∗s)T s(Dn,β

∗
s)−

1

2
(βs − β∗s)TH(Dn,β

∗
s)(βs − β∗s)

}
=

1

2
s(Dn,β

∗
s)H(Dn,β

∗
s)
−1s(Dn,β

∗
s)
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Then

l(Dn|β̂s)− l(Dn|β∗s)

≤ 1

2
s(Dn,β

∗
s)H(Dn,β

∗
s)
−1s(Dn,β

∗
s) +

1

2
nb3(R + 1)

{
τ

√
log nηp

n

}3

≤ (1 + εn)|s\s∗| log(nηp) +
b3(R + 1)τ 3

√
log nηp

2
√
n

log(nηp)

= (1 + o(1))|s\s∗| log(nηp)

Therefore, for n sufficiently large

AEBIC(s)− AEBIC(s∗)

= −2E{βs|Dn,s}l(Dn|βs) + 2E{βs∗ |Dn,s}l(Dn|βs∗) + |s\s∗| log(n) + 2γ|s\s∗| log(p)

≥ −2

[
l(Dn|β̂s)−

|s|
2

+ 1

]
+ 2

[
l(Dn|β̂s∗)−

|s∗|
2
− 1

]
+|s\s∗| log(n) + 2γ|s\s∗| log(p)

≥ −2

[
l(Dn|β̂s)− l(Dn|β̂s∗)

]
+ |s\s∗| log(n) + 2γ|s\s∗| log(p)− 4

≥ −2

[
l(Dn|β̂s)− l(Dn|β∗s)

]
+ |s\s∗| log(n) + 2γ|s\s∗| log(p)− 4

≥ −2(1 + o(1))|s\s∗| log(nηp) + |s\s∗| log(n) + 2γ|s\s∗| log(p)− 4

= −2|s\s∗|
{

(1 + o(1)) log(nηp)− log(n1/2pγ)

}
− 4

Recall p = o(nκ) and η < 1
2

log(nηp)− log(n1/2pγ) = (η − 1

2
) log(n) + (1− γ) log(p)

≤ (η − 1

2
)
1

κ
log(p) + (1− γ) log(n)

= (
η

κ
− 1

2κ
+ 1− γ) log(n)
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Note also γ > 1− 1−2η
2κ

implies η
κ
− 1

2κ
+ 1− γ < 0,. Therefore we finally proved

AEBIC(s)− AEBIC(s∗) > 0

for n sufficiently large

Case 2: s ∈ A1

Let s′ = s∪ s∗ and β̂s,s′ denote a vector corresponding to model s′, generated by

β̂s augmented with zeros in s′\s. By applying part 3 of lemma C.1, we have

l(Dn, β̂s,s′)− l(Dn,β
∗
s′)

≤ −b1(M + 1)n

2
||β̂s,s′ − β∗s′ ||2

[
min(1, ||β̂s,s′ − β∗s′ ||2)− τ

√
log(nηp)

n

]

Since minj∈s∗ |β∗j | ≥ c0n
−1/4. For n sufficiently large, we have

l(Dn, β̂s,s′)− l(Dn,β
∗
s′)

≤ −b1(M + 1)n

2
min
j∈s∗
|β∗j |
[

min(1,min
j∈s∗
|β∗j |)− τ

√
log(nηp)

n

]
≤ −b1(M + 1)n

2
c0(n−1/4)(

1

2
c0n
−1/4) = −b1(M + 1)c2

0

√
n

4
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Therefore, for n sufficiently large

AEBIC(s)− AEBIC(s∗)

= −2E{βs|Dn,s}l(Dn|βs) + 2E{βs∗ |Dn,s}l(Dn|βs∗)

+(|s| − |s∗|) log(n) + 2(|s| − |s∗|)γ log(p)

≥ −2

[
l(Dn|β̂s)−

|s|
2

+ 1

]
+ 2

[
l(Dn|β̂s∗)−

|s∗|
2
− 1

]
+(|s| − |s∗|) log(n) + 2(|s| − |s∗|)γ log(p)

≥ −2

[
l(Dn|β̂s)− l(Dn|β̂s∗)

]
+ (|s| − |s∗|) log(n) + 2(|s| − |s∗|)γ log(p)− 4− q

≥ −2

[
l(Dn|β̂s)− l(Dn|β∗s)

]
+ (|s| − |s∗|) log(n) + 2(|s| − |s∗|)γ log(p)− 4− q

≥ b1(M + 1)c2
0

√
n

2
− q log(n)− 2qγ log(p)− 4− q

Simple analysis reveals

AEBIC(s)− AEBIC(s∗) > 0

for n sufficiently large
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