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ABSTRACT

The partially linear single-index model is a semiparametric model proposed to the case

when some predictors are linearly associated with the response variable, while some other

predictors are nonlinearly associated with the response variable. It is widely used for its

flexibility in statistical modeling. Furthermore, its generalized version is a generalization

of some popular models such as the generalized linear model, the partially linear model

and the single-index model. However, the proper estimation in partially linear single-index

models for longitudinal data, where multiple measurements are observed for each subject,

is still open to discussion. Our main purpose is to establish an unified estimation method

for the longitudinal partially linear single-index model and its generalized version.

With this question in mind, we propose a new iterative three-stage estimation method

in partially linear single-index models and generalized partially linear single-index models

for longitudinal data. With the proposed method, the within-subject correlation is properly

taken into consideration in the estimation of both the parameters and the nonparametric

single-index function. The parameter estimators are shown to be asymptotically semipara-

metric efficient. The asymptotic variance of the single-index function estimator is shown

to be generally less than that of existing estimators. Simulation studies are performed to

demonstrate the finite sample performance. Three real data examples are also analyzed to

illustrate the methodology.
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1. INTRODUCTION

Longitudinal data differs from cross sectional data in that each subject is observed for

multiple times and the characteristics of each subject are measured repeatedly over time.

We usually assume that the observations are independent from different subjects, but ob-

servations from the same subject are potentially correlated. Longitudinal data analysis is

popular in a variety of fields such as epidemiology, clinic trials and economics. There is

extensive literature discussing problems and developing theory and methodology in lon-

gitudinal data analysis; see Laird and Ware (1982), Liang and Zeger (1986), Zeger et al.

(1985), and Zeger and Liang (1986), etc. The main problems lie in the estimation of the

mean function, the within-subject covariance function and the regression parameters for

some specified models. There are generally three approaches to model the longitudinal

data: marginal models, random effect models and transition (Markov) models; see Diggle

et al. (2013). The mean and the covariance estimations are generally more well addressed

for balanced longitudinal cases, but they are often more difficult to handle in unbalanced

cases, where subjects have different number of observations over time.

Semiparametric models are popular in recent years since they enjoy the advantages of

incorporating both the parametric and nonparametric components. They can be defined by

{Pθ,ϕ : θ ∈ Θ, ϕ ∈ F}, where θ is a finite-dimensional vector in the finite dimensional

vector space Θ, while ϕ is a function in an infinite-dimensional space F . Semiparametric

models have many specific forms; see e.g., Ichimura (1993), Chen and Shiau (1994) and

Carroll et al. (1997). One of the applications of semiparametric models is the partially

linear single-index model (PLSIM)

Yi = Xiβ + φ(Ziθ) + εi (1.1)
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for i = 1, . . . , n. Here β and θ are parameters associated with covariates X and Z respec-

tively. The response variable Y is continuous and φ(·) is an unknown function. The error

term εi has mean zero. This model can be appropriately applied when some covariates (X)

are linearly associated with the response while some other covariates (Z) are nonlinearly

associated with the response.

The generalized partially linear single-index model (GPLSIM) is the generalized ver-

sion of (1.1). It is more flexible and more general in that we can model both categorical

response and transformation-necessary response such as heavy-tailed variable with mul-

tiple covariates, especially when some covariates are parametrically correlated with the

response and the others are nonparametrically correlated to the response. Suppose we

have an univariate response variable Y and possibly multi-dimensional covariates X and

W, The GPLSIM has the form

E(Y |X = x,W = w) = µ(x,w),

g−1{µ(x,w)} = xTβ + γ(wTα),

(1.2)

where β and α are possibly multi-dimensional parameters associated with predictors X

and W respectively, x and w are the realizations of X and W respectively and γ(·) is

an unknown function, referred by the single-index function hereafter. Besides, g−1(·) is

assumed to be a known monotonic and differentiable link function. The goal is to estimate

the parameters β and α and the single-index function γ(·) in (1.2).

The GPLSIM in (1.2) is the generalized model of several types of models. When

the single-index function is the identity function, it becomes the generalized linear model

(Nelder and Baker (2004)). When there are no covariates X, it becomes the generalized

single-index model (Ichimura (1993)). When W is one-dimensional, it becomes the gen-

eralized partially linear model (Chen and Shiau (1994)). When the link function g−1(·)

2



is the identity function and the response variable is continuous, it becomes the PLSIM in

(1.1); see Carroll et al. (1997) and Chen et al. (2015). Therefore, efficient estimation of

GPLSIM is of major interest in that it can unify the estimation of several important models

above and has broad applications.

Carroll et al. (1997) proposed and discussed estimation, testing and theoretical results

of PLSIM and GPLSIM for independent and identically distributed (i.i.d.) data. In the i.i.d.

case, Liang et al. (2010) proposed the profile least-squares method to obtain the semipara-

metrically efficient parameter estimators. Besides, the smoothly clipped absolute devia-

tion penalty (SCAD) approach is applied for variable selection. Chen and Parker (2014)

specifically calculated semiparametric information bound for PLSIM with the method of

Severini and Tripathi (2001). Hu et al. (2004) and Li et al. (2010) discussed the inferences

with PLSIM for longitudinal data.

However, the proper estimation of the parameters and the single-index function in

PLSIM and GPLSIM for longitudinal data continues to receive considerable attentions.

The most frequently used methods treat each observation independently which indicates

that the working independence is assumed in both the parameters estimation step and the

single-index estimation step. It does not lead to the efficient estimation in longitudinal

PLSIM and GPLSIM. Therefore, we investigate the research problems in the dissertation

listed as follows:

1. How to efficiently estimate the parameters in PLSIM and GPLSIM for unbalanced

longitudinal data;

2. How to estimate the single-index function by properly taking into consideration

within-subject correlation in the model;

3. Whether the parameter estimators are semiparametrically efficient.
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Our objective in the dissertation is to provide answers to the above questions by propos-

ing a more efficient methodology than the current estimation methods both theoretically

and numerically.

The following chapters are organized as follows. In Chapter 2, we review the recent

development of longitudinal data analysis and semiparametric models. Particularly, we

focus on some classic literature in recent years, especially in the estimation of semipara-

metric models for longitudinal data. In Chapter 3, we propose a new iterative method to

efficiently estimate the parameters and the single-index function in PLSIM for longitudinal

data. We also investigate its analytic properties and provide empirical studies and real data

analysis in support of the methodology. In Chapter 4, we extend the result in Chapter 3

to inference with GPLSIM. Theoretical results, simulation studies and real data examples

are performed as well. We conclude the dissertation in Chapter 5.

4



2. LITERATURE REVIEW

2.1 Introduction

In this chapter, we summarize and review the key concepts and relevant models in

longitudinal data analysis, semiparametric models and semiparametric models for lon-

gitudinal data. In Section 2.2, we introduce the characteristics of longitudinal data and

review some key literature in the field of estimating the mean function (Section 2.2.1)

and the covariance matrices (Section 2.2.2) for longitudinal data. In Section 2.3, we go

over the concepts of semiparametric models. We introduce the semiparametric efficiency

theories first in Section 2.3.1. Then in Section 2.3.2, we particularly discuss partially

linear single-index models (PLSIM) and generalized partially linear single-index models

(GPLSIM). The applications of these two models for longitudinal data will be our main

focus in Chapters 3 and 4 respectively. In Section 2.4, some related research in semi-

parametric models in longitudinal data, especially the longitudinal PLSIM and GPLSIM

(Section 2.4.1) is examined. Finally we conclude the whole chapter in Section 2.5.

2.2 Longitudinal Data Analysis

Longitudinal data, sometimes also named panel data, is widely applicable in many

fields, including economics, medical research, epidemiological studies and clinical tri-

als. Different from cross sectional studies when we assume subjects are independently

observed or measured for only once, in longitudinal data studies, subjects are observed

or measured for multiple times. The key feature of longitudinal data is that observations

within a subject are more likely to be associated than observations from different sub-

jects. Therefore, measurements within a subject are correlated, whereas measurements

from separate subject are usually treated as independent. Due to the difference in the data

structure from independent data, we have particular approaches for analyzing longitudinal
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data. There are typically three types of approaches for analyzing regression-based mod-

els for longitudinal data. They are marginal models, transition models and random/mixed

effects models; see Diggle et al. (2013). In this dissertation, we focus on the approach of

marginal models to analyze longitudinal data. The fundamental assumption for marginal

longitudinal models (Pepe and Anderson (1994)) is

E(Yij|Xi) = E(Yij|Xij), (2.1)

where Yij is the univariate response variable, Xij is the possibly multivariate explanatory

variables for the jth measurement of subject i and Xi = (Xi1, . . . ,Ximi
), i = 1, . . . , n,

j = 1, . . . ,mi. We usually assume in longitudinal data that the number of subjects n →

∞. The number of measurements mi could be different. Dense longitudinal data is that

mi ≥ Mn for some sequence Mn → ∞ as n → ∞. On the other side, if maximi ≤ M

for some positive constant M as n → ∞, we denote the longitudinal data sparse. When

mi = m across all subjects, the longitudinal data is balanced. However, in general case

where mi may not be all the same for all i, we call the longitudinal data unbalanced or

irregular.

There are two main goals in longitudinal data analysis. The first one is to properly esti-

mate the mean function. The mean function could be a (generalized) linear combination of

explanatory variables in (generalized) linear models, or more generally speaking, paramet-

ric models. It could also be a nonparametric function in nonparametric regression models,

partially linear models, etc. The second goal is to properly estimate the within-subject

covariance matrices/function, especially for unbalanced longitudinal data. Furthermore,

the accuracy for the covariance estimation determines the efficiency of the mean function

estimator.

6



2.2.1 Mean Function Estimation for Longitudinal Data

The estimation of the mean function in longitudinal data can be classified into two

groups:

• The mean function estimation in longitudinal parametric models;

• The mean function estimation in longitudinal nonparametric models.

For the study of longitudinal parametric models, it dates back to 1980s. Laird and Ware

(1982) proposed two-stage random effects models for longitudinal data when the response

variable is approximately normal. For generalized case when the response variable is

non-normal, Liang and Zeger (1986) extended the estimation method in generalized linear

models from cross sectional data to longitudinal data. They proposed the generalized

estimating equations (GEE) method for the generalized linear model (GLM)

E(Yij) = µij,

g−1(µij) = XT
ijβ,

(2.2)

where µij is the mean of the response variable Yij and Xij are the explanatory variables

of dimension p. Parameters β of dimension p are to be estimated and g−1(·) is a known,

monotonic link function. Here the marginal model assumption in (2.1) is assumed. We

introduce the idea behind the generalized estimating equation as follows to estimate the

parameters β in generalized linear model in (2.2). There are two key features for GLM:

• The expected value of the response µij = E(Yij) is linked to a linear combination of

the covariates Xij and regression parameter β through a proper link function g(·):

E(Yij) = g(XT
ijβ).

7



• The variance of the response might be represented as a function of the mean of the

response:

var(Yij) = φV {E(Yij)} = φV {g(XT
ijβ)}, (2.3)

where V is a function of the mean response and φ is a constant. For simplicity, here

we assume that the constant is the same for all i and j.

We can see that the GLM requires the specification of a model for the mean and co-

variance of the response variable. In many scenarios, it is not appropriate or there is not

always sufficient information to specify a certain probability distribution, e.g., multivariate

normal distribution. Therefore, the method of maximum likelihood estimation (MLE) is

not applicable for estimation and testing of the parameters.

We generally do not know the probability distribution for the response variable in

the GLM (2.2). However, we can start with two special cases in GLM to formulate the

estimating equations. Then we can extend them to the general case, i.e., the GEE.

First we define

Yi = (Yi1, . . . , Yimi
)T,

µi = (µi1, . . . , µimi
)T,

Xi = (Xi1, . . . ,Ximi
)T,

var(Yi) = Σi

for i = 1, . . . , n. Suppose Yi follows a multivariate normal distribution. Then from the

MLE theory, the estimator for β is

β̂ = (
n∑
i=1

XT
i Σ̂
−1
i Xi)

−1
n∑
i=1

XT
i Σ̂
−1
i Yi,

8



where Σ̂i is the estimator of covariance matrix Σi. We call it the working covariance

matrix. The above formula can be written as the estimating equation

n∑
i=1

XT
i Σ̂
−1
i (Yi −Xiβ̂) = 0. (2.4)

In the case of generalized linear models for the i.i.d. data (i.e., with mi = 1 in (2.2)),

similarly we solve equations for β as β̂ that satisfies the following

n∑
i=1

g(1)(Xiβ̂)

V̂ {g(Xiβ̂)}
XT
i

{
Yi − g(Xiβ̂)

}
= 0. (2.5)

Here g(1) is the first order derivative of g(·) with respect to its argument and V̂ is the

estimated variance function defined in (2.3). The method of iteratively reweighted least

squares or Fisher scoring methods are usually used to solve (2.5).

There is a similar pattern when comparing estimating equations (2.4) and (2.5): The

estimating equations are formulated by the linear functions of the difference between the

observed response values and their estimated means with weights. The weights are asso-

ciated with the inverse of the variance or the working covariances of the response.

From the above observations, a natural generalized approach for fitting longitudinal

data is to solve for an estimating equation consisting of p equations for β which satisfies

the following structure:

1. The estimating equations are a linear function of Yi − µi;

2. Similarly to (2.4) and (2.5), the weights in the proposed estimating equation are

associated with the inverse of the variance or the working covariance matrices Σ̂i.

These results lead to the consideration of the following equations to be solved for β in

9



longitudinal data:

n∑
i=1

∂µT
i

∂β
Σ̂
−1
i (Yi − µi) = 0. (2.6)

The estimating equation (2.6) is the GEE.

Liang and Zeger (1986) showed that the GEE estimators of the parameters are asymp-

totically consistent as long as the mean function µij is correctly specified, even if the

within-subject working correlation matrix R̂i is misspecified for i = 1, . . . , n, where

Σ̂i = SiR̂iSi.

Here Si is the diagonal matrix of the estimated standard deviation of the response variable

for subject i. The working correlation matrix R̂i could be specified to a particular form

such as AR(1) or ARMA(1,1). Then the estimation of Ri is equivalent to the estimation of

the association parameters ρ in Ri = Ri(ρ). Prentice (1988) extended the GEE approach

to estimate association parameters for binary data by specifying a second set of estimating

equations. The method is useful for simultaneous inference about the mean and association

parameters .

For the study of nonparametric models for longitudinal data, Lin and Carroll (2000)

considered local polynomial kernel estimating equations for the nonparametric function

estimation. Suppose that the data consist of n subjects with the ith subject having mi

observations as before. Considering the longitudinal nonparametric function model. It has

the form

E(Yij|Xij) = µij,

g−1(µij) = φ(Xij),

(2.7)
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where φ(·) is an unknown nonparametric smooth function to be estimated and Xij is the

univariate predictor variable. Other notation such as Yij , g−1(·) and µij are defined the

same way as in (2.2). Similarly to the parametric longitudinal models, the marginal model

assumption in (2.1) is also assumed.

For independent data, local polynomial smoothing method, especially the local linear

smoothing, has been widely used in nonparametric regression. Lin and Carroll (2000)

extended local polynomial kernel smoothing to model (2.7) for correlated data. When

constructing estimating equation for φ(·), first assuming that φ(·) is a parametric kth order

polynomial function which satisfies

φ(·) = Lk(·)Tβ

with

Lk(a) = (1, a, . . . , ak)T,

β = (β0, β1, . . . , βk)
T.

Define Lik = {Lk(Xi1), . . . ,Lk(Ximi
)}T. The GEE of Liang and Zeger (1986) has the

form

n∑
i=1

LT
ik∆iΣ̂

−1
i (Yi − µi) = 0, (2.8)

where jth component of µi is

µij = µ{LT
k (Xij)β}
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and

∆i = diag
[
µ(1){LT

k (Xij)β}
]
.

Here µ(1)(·) is the first derivative of µ(·).

When φ(·) is a nonparametric function, the parametric GEE (2.8) can be applied to

(2.7) with the kernel smoothing method. First we define the kernel function K(·) to be

symmetric and continuous. It also satisfies

∫ +∞

−∞
K(x)dx = 1,

∫ +∞

−∞
x2K(x)dx <∞.

We also denote

Kh(x) =
1

h
K(

x

h
),

where h is a bandwidth. It controls the smoothness of the kernel estimators.

To approximate φ(·) at any given u within the domain of X with the local polynomial

smoothing approach, we have

φ(X) = {Lk(X − u)}Tβ.

Define Lik(u) = {Lk(Xi1−u), . . . ,Lk(Ximi
−u)}T. To apply the kernel estimation of the

longitudinal nonparametric function, we need to incorporate the kernel weight function

Kh(·) in (2.8). Depending on where the kernel weight is placed, there are two kernel

estimating equations for estimating φ(u):

n∑
i=1

Lik(u)T∆i(u)Σ̂
−1
i (u)Kih(u){Yi − µi(u)} = 0, (2.9)
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and

n∑
i=1

Lik(u)T∆i(u)K
1/2
ih (u)Σ̂

−1
i (u)K

1/2
ih (u){Yi − µi(u)} = 0, (2.10)

where Kih(u) is the diagonal kernel matrix for subject i with the jth diagonal element

being Kh(Xij − u). Equation (2.10) weights the residuals {Yi − µi(u)} symmetrically,

while Equation (2.9) does not. As a result, they provide different estimators for φ(u). An

application of the Fisher scoring algorithm to (2.9) shows that the estimator of β can be

updated using iteratively re-weighted least squares. This type of estimating equations (2.9)

and (2.10) is called the kernel GEE or the profile kernel GEE.

Unlike the parametric GEE estimator in (2.8), if φ(u) is a nonparametric function

estimated by the kernel GEE in (2.9) or (2.10), the asymptotically most efficient estimators

are obtained by ignoring the within-subject correlation entirely; that is, assuming working

independence R̂i = Ii for all subjects, where I is the identity matrix. Correctly specifying

the correlation matrices in fact results in a less efficient estimator of φ(u) asymptotically;

see Lin and Carroll (2000).

Wang (2003) reviewed the profile kernel GEE methods. Using asymptotic theory, she

explained why this type of estimating equations requires working independence to achieve

more efficiency for estimating the nonparametric function φ(·).

First denote the (k, l)th element of Σ̂
−1
i by vkli and u is within the domain of Xij for

i = 1, . . . , n, j = 1, . . . ,mi. By examining on the estimation equation (2.10), if the

density of Xij is bounded away from 0 and K(·) has compact support, when h → 0, the

term Kih has only one nonzero element asymptotically. As a result, the following two

findings were obtained:

1. Asymptotically, each subject has only one observation to contribute for estimating

φ(u) in (2.10);
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2. From 1, suppose the only nonzero observation in the ith subject is the jth mea-

surement. When we “sandwitch” multiply (Kih)
1/2 to Σ̂

−1
i , there is also only one

nonzero term in Lik(u)T∆i(u)K
1/2
ih (u)Σ̂

−1
i (u)K

1/2
ih (u) in (2.10). The nonzero term

is Kh(Xij − u)(vi)jj .

From the two implications above, when n→∞, the linear term Yij −µij(u) is weighted

by Kh(Xij − u)(vi)jj . As we assume that the observations from different subjects are

uncorrelated, to obtain the function estimator with the smallest asymptotic variance by the

kernel GEE, the weighted term satisfies

vjji = var(Yij|Xij).

This result indicates that the estimated covariance Σ̂i has to be diagonal with its kth di-

agonal element being σkki . Therefore, the most efficient nonparametric function estimator

for kernel GEE type method is obtained by assuming working independence. The similar

result can be derived from kernel GEE estimating equation (2.9) as well.

For the kernel GEE method in (2.9) and (2.10), the kernel weights are used for the

purpose of reducing the bias for estimating the nonparametric function. However, it also

has the potential risk of eliminating the contributions of all correlated measurements for

each subject asymptotically. Therefore, the kernel GEE does not make use of all the infor-

mation with the repeated measurements by assuming working independence. Therefore,

the kernel GEE method is not optimal regarding to the asymptotic variance of the non-

parametric function estimator. To control the asymptotic variance, Wang (2003) proposed

the marginal kernel regression method. It is a two-step algorithm to control the bias and

variance at a certain level simultaneously.

Suppose the jth observation in subject i is within h distance of u, the kernel function

incorporates and weights this observation in estimating φ(u). Then we use all observations
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of subject i for estimating φ(u). This behavior leads to estimation bias. To accommodate

this, all except the jth observations contribute to estimate φ(u) by multiplying the residuals

calculated in step 1.

To be more specific, let Mij = [1j,1j(u − Xij)/h] be the mi × 2 matrix, where 1j

denotes the indicator vector with the jth entry equal to 1, and 0 elsewhere. Also, let φ̃(u)

be the working independence estimator. Define {φ̂(u), φ̂(1)(u)} = (b1, b2), where (b1, b2)

solves the kernel-weighted estimating equation

0 =
1

n

n∑
i=1

mi∑
j=1

Kh(u−Xij)µ
(1){b1 + b2(u−Xij)}(Mij)

TΣ̂
−1
i[

Yi − µ∗j{X i, b1, b2, φ̃(Xi)}
]
, (2.11)

where the kth element of µ∗j{X i, b1, b2, φ̃(Xi)} is

I(k = j)µ{b1 + b2(u−Xik)/h}+ I(k 6= j)µ{φ̃(Xik)},

where I(·) is the indicator function.

To see the difference between the marginal kernel GEE estimator displayed in (2.11)

and the working independence estimator, consider the simplest case when the link function

g(·) is the identity function. Then (2.7) has the form

Yij = φ(Xij) + εij.

In this case, the asymptotic form of the marginal kernel GEE estimator φ̂(u) is

φ̂(u) =

∑n
i=1

∑mi

j=1Kh(Xij − u)
{

(vjji Yij +
∑mi

k 6=j v
jk
i (Yik − φ̃ik)

}
∑n

i=1

∑mi

j=1Kh(Xij − u)vjji
.
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In the meantime, the asymptotic form of the working independence estimator φ̃(u) is

φ̃(u) =

∑n
i=1

∑mi

j=1 v
jj
i Kh(Xij − u)Yij∑n

i=1

∑mi

j=1 v
jj
i Kh(Xij − u)

.

Comparing the two estimators above, the marginal kernel GEE estimator has one extra

term – the kernel and covariance weighted residuals obtained from the working inde-

pendence step. The marginal kernel GEE function estimator is proved to have smaller

asymptotic variance than the working independence function estimator in general.

The idea of Wang (2003) is applied to the estimation of semiparametric models, e.g.,

partially linear models in Wang et al. (2005), the estimation of the covariance in Li (2011)

and the proposed methods in Chapters 3 and 4.

2.2.2 Covariance Estimation for Longitudinal Data

Covariance estimation plays an important role in multivariate data analysis, longitu-

dinal data analysis and spatial data analysis. The main concerns with estimating the co-

variance or the inverse of covariance (precision) matrices lie in high dimensionality and

positive definiteness. When the dimension (p) is relatively large to the sample size (n),

the sample covariance is not a good estimator of the true covariance matrix. When the

need for the precision matrix is stronger than the covariance matrix, even if we have the

estimated covariance matrix, it is still computationally expensive to do the inversion since

it generally takesO(p3) time. Also the inversion of a covariance matrix sometimes distorts

the structure of the precision matrix. The other main concern is that the estimated covari-

ance or precision matrix should be positive definite. For a p × p covariance or precision

matrix, it has as many as p × (p + 1)/2 constrained parameters to be estimated, which is

usually not an easy problem.

In longitudinal data analysis, we have repeated measurements for each subject. It is

common to assume that there is no correlation between subjects while correlation exists
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within each subject. The correlated observations are usually ordered by time. There is ex-

tensive literature discussing the estimation of the within-subject covariance. Meanwhile,

the precision estimation is also important since in most classical longitudinal data anal-

ysis, the GEE (Zeger et al. (1988)) is applied to estimate the mean function where the

precision matrix should be estimated. This finding leads to the idea of estimation of the

precision matrix and covariance matrix separately. Pourahmadi (1999) proposed a method

for covariance and precision matrix estimation based on the modified Cholesky decompo-

sition. This method decomposes a positive definite matrix into a unique lower triangular

matrix and a unique diagonal matrix. It provides an unconstrained and statistically in-

terpretable re-parameterization of covariances or precision matrices. A series of papers

based on the modified Cholesky decomposition were proposed to efficiently estimate the

covariances or precision matrices; see Pourahmadi (1999), Pourahmadi (2000), Wu and

Pourahmadi (2003). However, the method of Pourahmadi (1999) is not designed to han-

dle the unbalanced longitudinal case. Huang et al. (2012) adopted the EM algorithm for

missing data analysis to investigate this problem. However, this method has the limitation

that it applies to only mildly unbalanced cases where most subjects have similar observa-

tions. There are also approaches to estimate working covariance with variance-correlation

decomposition. Fan et al. (2007) and Fan and Wu (2008) proposed semiparametric esti-

mation of within-subject covariance for longitudinal data. There are also nonparametric

approaches to estimate the working covariance; see Li (2011).

We review the semiparametric estimation of longitudinal within-subject covariance by

Fan et al. (2007) since it is used in our development. Fan et al. (2007) estimated the

covariance function in longitudinal data by variance-correlation decomposition. To be

specific, the marginal variances are estimated by a kernel smoothing method. A specific

correlation model is assumed for the correlation matrix such as the AR(1) model. Then

the association parameters attached to the correlation model are estimated by minimizing
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the empirical asymptotic variance of the parameter estimators in the mean function.

The varying-coefficient partially linear model is considered in Fan et al. (2007), it has

the form

Yi(tij) = XT
i (tij)βi(tij) + ZT

i (tij)θ + εi(tij), (2.12)

where i = 1, . . . , n. In model (2.12), βi(tij) is a vector of smooth functions and θ are

parameters, both to be estimated. Covariates X and Z vary with time t. The error term

satisfies

E{εi(tij)|Xi(tij),Zi(tij)} = 0.

To estimate the working covariance matrices, Fan et al. (2007) assume that there exists

a q-dimensional association parameters φ. The association parameters are associated with

the working correlation matrix, such that Ri = Ri(φ). For example, for t 6= s, assuming

the AR(1) correlation structure, we have

cor{εi(tij), εi(tik)} = ρ|j−k|,

where φ = ρ. If we assume the ARMA(1,1) correlation structure,

cor{εi(tij), εi(tik)} =

γρ
|j−k|, j 6= k,

1, j = k,

where φ = (γ, ρ). The variance-correlation decomposition is applied: Σi = S
1/2
i Ri(φ)S

1/2
i ,

where Σi is the covariance matrix of residuals. Here Si is a diagonal matrix which satisfies

Si = diag{σ2(ti1), . . . , σ
2(timi

)}, where σ2(tij) = E{ε2i (tij)|Xi(tij),Zi(tij)}.
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To estimate the variance component, Fan et al. (2007) proposed the Nadaraya-Watson

estimator. Specifically, the kernel-smoothing-based estimator

σ̂2(t) =
1
n

∑n
1

∑mi

j=1 ε̂
2
i (tij)Kh(t− tij)

1
n

∑n
1

∑mi

j=1Kh(t− tij)

is applied to estimate σ2(t).

In order to estimate φ, the minimum generalized variance method by Fan et al. (2007)

is applied, which is chosen to minimize the asymptotic covariance of the parameter esti-

mators θ̂. Denote the generalized variance of θ̂ by cov(θ̂). To obtain φ̂, the generalized

minimum variance method is proposed to minimize the determinant of cov(θ̂). Therefore,

we can choose the working covariance matrix as Σ̂i(φ̂).

Chen et al. (2015) modified the Nadaraya-Watson estimation of the variance function

by Fan et al. (2007). They proposed a nonparametric approach to estimate the variance

function σ2(t) by taking log transformation. This method can deal with heavy tail errors.

Let ε2(tij) be the squared residuals of the model (2.12). Since it is a random variable,

we can find another random variable δ(tij) so that

ε2(tij) = σ2(tij)δ
2(tij) and E{δ2(tij)} = 1.

By taking log on both sides of the above equation, we have

log{ε2(tij)} = log{ψσ2(tij)}+ log{ψ−1δ2(tij)} = σ2
∗(tij) + δ∗(tij),

where ψ is a positive constant to make E{δ∗(tij)} = 0. Hence, δ∗(tij) can be treated as

an residual term with expectation zero. Using local linear approximation, σ̂2
∗(t) can be
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nonparametrically estimated. On the other hand, we have the equation

δ2(tij)

ψ
= r2(tij) exp{−σ2

∗(tij)}

with E{δ2(tij)} = 1. Hence, we can estimate ψ by

ψ̂ =
[ 1∑n

i=1mi

n∑
i=1

mi∑
j=1

r̂2(tij) exp
{
− σ̂2

∗(tij)
}]−1

.

Therefore, we have the estimate of σ2(t) by

σ̂2(t) =
exp σ̂2

∗(t)

ψ̂
.

It is shown that the semiparametric estimators for the association parameters are consistent

when the covariance structure is correctly specified.

The semiparametric regression estimator has the possible weakness of loss of effi-

ciency when the within-subject correlation structure is misspecified. Therefore, there is

literature discussing nonparametric estimation of the covariance matrices; see Wu and

Pourahmadi (2003) and Li (2011). Li et al. (2010) proposed a nonparametric covariance

function estimation method with the ideas in spatial statistics. This approach is compared

with the semiparametric covariance function estimation approach of Fan et al. (2007) and

Chen et al. (2015) in PLSIM in Chapter 3.

2.3 Semiparametric Models

Semiparametric models are flexible in statistical modeling with their advantages of

incorporating both the parametric and nonparametric components. It is popular in eco-

nomics, biomedical science and many other research fields.

The estimation of semiparametric models date back to Severini and Staniswalis (1994)
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when the quasi-likelihood method was proposed. A series of quasi-likelihood-based meth-

ods for different semiparametric models were then studies; see Chen and Jin (2006), Fan

and Li (2004) and He et al. (2005). The general approach for parameter estimation in

these models is likelihood based. The smoothing back-fitting algorithm method (Buja

et al. (1989)) is often applied for estimating the nonparametric functions.

To study semiparametric models, first we define the model P as a set of probability

distributions for the observed data. A statistical model Pθ is a collection of probability

measures defined by P = {Pθ : θ ∈ Θ}. It specifies the distribution of a random vari-

able X . For parametric models, Θ is a parameter in the finite dimensional Euclidean

space. While for nonparametric models, Θ is in an infinite dimensional Euclidean space.

Semiparametric models lie in between parametric and nonparametric models which can

be denoted by

P = {Pθ,ϕ : θ ∈ Θ, ϕ ∈ F}, (2.13)

where θ is in a finite dimensional space Θ and is usually of primary interest. Meanwhile,

ϕ is in an infinite dimensional space F and is usually of secondary interest. There may be

other components in P which are not of our interest. Hence they are not parameterized in

(2.13). It is possible that θ and ϕ may have multiple subcomponents as well. The goals of

semiparametric inferences are primarily but not limited to:

• Select an appropriate model of (2.13) with given data;

• Derive the semiparametric score function and information bound for θ;

• Estimate one or more subcomponents of θ or ϕ;

• Make inference (e.g., confidence intervals) for the parameters of interest;

21



• Obtain semiparametric efficient estimators for the parameters θ.

Some of the common semiparametric models are partially linear models (Chen and Shiau

(1994)), single-index models (Hardle et al. (1993)), Cox proportional hazard models (Lin

and Wei (1989)) and GPLSIM (Carroll et al. (1997)).

In Chapters 3 and 4, we focus on PLSIM and GPLSIM for longitudinal data. We derive

the score function and information bound for estimating parameters. Both components θ

and ϕ in the finite and infinite spaces are estimated. By deriving their asymptotic distribu-

tions, we can make inferences for both components. The proposed parameter estimators

are proved to be semiparametrically efficient.

2.3.1 Semiparametric Efficiency

To define the semiparametric efficiency for parameters in a semiparametric model, we

start with an asymptotic theorem with a parametric model. Suppose there is an estimator

Tn for θ based on the dataX1, . . . , Xn. The estimator Tn is called regular when the limiting

distribution of
√
n(Tn − θ) does not depend on θ. Suppose that E{

√
n(Tn − θ)} → 0 in

probability. Then to efficiently estimate θ, the limiting variance of
√
n(Tn − θ) has to be

the smallest among all regular estimators for θ. The inverse of the limiting variance is the

information bound for Tn.

For a semiparametric model P in (2.13), if the information for the regular estimator

Tn for θ equals the minimum of the information bounds for all parametric submodels of

P , then Tn is semiparametric efficient for estimating θ. Besides, the associated informa-

tion for Tn is call the “efficient information” (also called the efficient information for P).

Sometimes it is important for us to consider a collection of many one-dimensional sub-

models surrounding a representative P . Each submodel is represented by a score function

S. The score function is defined in terms of the Fréchet derivatives; see Van der Vaart

(2000). The collection of score functions ṖP is called a tangent set. When the tangent
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set is closed under linear combinations, it is called a tangent space. The tangent space for

model P is the closed linear span of all score functions of regular parametric submodels

of P . The general definitions of score function and tangent space can be used to describe

the projection method below. More details can be found in Bickel et al. (1993).

Bickel et al. (1993) proposed the projection method to find the semiparametric effi-

cient score and the semiparametric information bound. Consider a regular semiparametric

model P = Pθ,ϕ, where θ is the finite dimensional parameters and ϕ is the nonparametric

part with infinite dimension. Let Sθ be the score function with respect to θ in submodel

Pθ which isM with the true function φ0 given. Besides, let Ṗϕ be the tangent space for

submodel Pϕ which is model P evaluated at the true parameters values θ = θ0. Consider

Sθ as an element in the Hilbert space and Ṗϕ as a subset of the same Hilbert space with

inner product E(ηT1 η2), where η1 and η2 are two elements in Ṗϕ. Then the residual from

the projection of Sθ on Ṗϕ exists and there is a unique vector Se satisfying

Sθ − Se ∈ Ṗϕ and E(ST
e w) = 0 for all w ∈ Ṗϕ. (2.14)

If the likelihood function is regular with score function Sθ and E(SeST
e ) is nonsingular,

then the semiparametric information bound is Ω = {E(SeST
e )}−1 and the semiparametric

efficient score is Se. The project method is useful for obtaining the semiparametric effi-

ciency of parameters for PLSIM and GPLSIM with longitudinal data in Chapters 3 and

4.

2.3.2 Partially Linear Single-Index Models

Semiparametric models such as partially linear models are flexible in statistical mod-

eling. However, they still have limitations. For example, the partially linear model with

one multivariate nonparametric function suffers from the “curse of dimensionality” when

the number of covariates in the nonlinear component is large. On the other side, a semi-
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parametric model with multiple univariate nonparametric functions such as partially linear

nonparametric additive models does not take into account the interaction effects. Carroll

et al. (1997) first proposed GPLSIM. It has the form:

E(Y |Xi,Zi) = µ(Xi,Zi),

g−1{µ(Xi,Zi)} = Xiβ + γ(Ziθ),

(2.15)

where β and θ are possibly multi-dimensional parameters associated with predictors X

and Z respectively, γ(·) is an unknown single-index function and g−1(·) is a known mono-

tonic and differentiable link function. Model (2.15) is a generalization of several models

such as generalized linear models, partially linear models and single-index models. It has

the advantage of modeling when some covariates, X, are parametrically associated with

the response Y and some other covariates, Z, are nonparametrically associated with the

response variable.

With such a complicated model in (2.15), the first problem is to make constraints to

make it identifiable. Lin and Kulasekera (2007) discussed this problem in detail. The first

requirement is ||θ|| = 1, where ||θ|| indicates the Euclidean norm of θ. Besides, the first

element of θ should be positive. Depending on the estimation methods, other assumptions

are required to make the parameters and the single-index function estimable. For example,

the “delete-one-component” method is used in Yu and Ruppert (2002) and Zhu and Xue

(2006) where partial derivatives are used as a component of the estimators.

For the estimation of PLSIM, the back-fitting algorithm for the quasi-likelihood method

proposed by Carroll et al. (1997) is not stable and computationally expensive. Further-

more, undersmoothing of the single-index function is required to reduce the bias of the

parameter estimators. Yu and Ruppert (2002) proposed the penalized spline method and

Xia and Härdle (2006) proposed the minimum average variance method to accommodate
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this problem. However, the parameter estimators and the single-index function estimator

of these methods are still not efficient. Liang et al. (2010) approached the model with a

iterative estimation idea. They applied the profile least-squares procedure to obtain the

efficient estimators with i.i.d. data. Li et al. (2010) proposed bias-corrected block empiri-

cal likelihood inference for GPLSIM and provided confidence regions for the parameters.

Methods based on the least squares and kernel smoothing or spline smoothing are further

proposed and semiparametric efficient estimators are obtained.

2.4 Semiparametric Models for Longitudinal Data

It is more difficult to efficiently estimate in semiparametric models with correlated

data. The main difficulty is the proper incorporation of the within-subject correlation in

both the parametric component estimation step and the nonparametric component estima-

tion step.

For this problem, there are typically two types of approaches to consider. The first type

is the combination of the kernel-based method and the GEE. Wang et al. (2005) studied

the efficient estimation of generalized partially linear models for longitudinal data. They

extended the results of Wang (2003) for the longitudinal nonparametric function estima-

tion. The second type is the spline-based method. Yu and Ruppert (2002) proposed the

penalized spline method for PLSIM on i.i.d. data. Huang et al. (2007) further investigated

the spline-based additive models for partially linear models. They also studied the effi-

cient estimation of generalized partially linear models for longitudinal data. Cheng et al.

(2014) extended the results of Huang et al. (2007) to generalized partially linear additive

models. They also showed that the estimated parameters are semiparametric efficient. In

the following section, we particularly reviewed the literature in the estimation of PLSIM

for longitudinal data.
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2.4.1 Partially Linear Single-Index Models for Longitudinal Data

In PLSIM for longitudinal data, the following marginal model is considered:

Yij = XT
ijβ + γ(ZT

ijθ) + εij (2.16)

for i = 1, . . . , n and j = 1, . . . ,mi. For the ith subject, the continuous response variable

Yij and covariates {Xij,Zij} are observed for the jth time. The parameters β and θ and

the single-index function γ(·) are to be estimated.

A list of recent works on this topic are summarized here. Ping et al. (2010) used

the generalized penalized spline least squares method and assumed working correlation

matrices to estimate the parameters and the single-index function. Lai et al. (2013) and

Ma et al. (2014) proposed the bias-corrected quadratic inference function method (Qu

et al. (2000)) to estimate the parameters in model (2.16) by accounting for the within-

subject correlation. Chen et al. (2015) proposed a unified semiparametric GEE analysis

of (2.16) for both sparse and dense unbalanced longitudinal data. We particularly review

their work and relate it to our proposed methods in Chapters 3 and 4. Chen et al. (2015)

showed that the convergence rate and the limiting variance/covariance are different for the

sparse and dense longitudinal cases with the proposed method; see Kim and Zhao (2012).

However, their parameter estimators are generally not semiparametrically efficient. For the

estimation of the single-index function, they applied local linear approximation adjusted

by the number of measurements for each subject. To be specific, given β and θ, they

estimated the single-index function γ(·) and its first derivative γ′(·) at point u by applying

local linear approximation, which is to minimize the following loss function

n∑
i=1

[
ωi

mi∑
j=1

{
yij −XT

ijβ − a− b(ZT
ijθ − u)

}2
Kh(Z

T
ijθ − u)

]
(2.17)
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where ωi = 1/(nmi) since the number of observations may not be relatively similar across

the subjects; see Li and Hsing (2010).

We pay a special attention to the choices of weight ωi when estimating the single-index

function since the weight in (2.17) is not the most efficient one for every type of longitu-

dinal data. In other words, the simply weighted local linear approximation approach in

(2.17) does not fully take into consideration the within-subject covariance. The two exam-

ples of the weights

1. ωi = 1/
∑n

i=1mi

2. ωi = 1/(nmi)

correspond to the independence within-subject and perfect correlation within-subject cases

respectively. While in real scenarios, there is some correlation in within subject measure-

ments. Therefore, a more proper weighting approach is desired in (2.17).

One idea to efficient estimate the parameters in PLSIM and GPLSIM is to make use

of the GEE in parameter estimation and marginal kernel method in the single-index func-

tion estimation. Inspired by the novel marginal kernel method of Wang (2003) in the

nonparametric function estimation, we properly take into consideration the within subject

correlation in sparse longitudinal data setting. We will particularly introduce our proposed

approach in Chapters 3 and 4.

For the estimation of GPLSIM for longitudinal data, Grace et al. (2009a) and Grace

et al. (2009b) proposed marginal estimation of semiparamtric methods for correlated bi-

nary response data. The mean response parameters as well as the association parameters

in odds ratio (Lipsitz et al. (1991)) are efficiently estimated and the theoretical results of

the estimators are established. Chowdhury and Sinha (2015) considered the same prob-

lem with the second-order GEE method where similar results are obtained. For correlated

count data, Wang et al. (2015) proposed the profile MLE for GPLSIM. The zero-inflated
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Poisson approach is applied as the base model. In our model development, we would like

to propose a general estimation method for longitudinal GPLSIM. The response variable

can be Bernoulli, Poisson, Gamma or other distributions in the exponential family. The

detailed descriptions on this topic is in Chapter 4.

2.5 Summary

From the literature reviews above, we observe that the efficient estimation of PLSIM

and GPLSIM for longitudinal data is still a challenging work. It consists of several sub-

problems:

1. Efficient estimation of the parameters;

2. Semiparametric efficiency of the parameter estimators;

3. Optimal asymptotic properties of the single-index function estimator;

4. Covariance (precision) matrix estimation;

5. Comparison of the proposed method with the existing methods.

In the rest of the dissertation, we focus on the analysis of longitudinal PLSIM and GPLSIM

on the sub-problems listed above. By properly taken into consideration the within-subject

correlation, the proposed methods effectively estimate the parameters and the single-index

function. The semiparametric efficiency theories discussed in this chapter are applied. We

will also compare the proposed method with the existing methods reviewed above.
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3. PARTIALLY LINEAR SINGLE-INDEX MODELS FOR LONGITUDINAL

DATA

In this chapter, we discuss the estimation of partially linear single-index models for

longitudinal data which may be unbalanced. In particular, a new iterative five-step method

is established to estimate the parametric components with the GEE and the single-index

function by the marginal kernel method. The resulting estimators properly account for

the within-subject correlation. The parameter estimators are shown to be asymptotically

semiparametric efficient. The asymptotic variance of the single-index function estimator

is shown to be minimized when the working error covariance matrices are correctly speci-

fied. The new estimators are more efficient than estimators in the existing literature. These

asymptotic results are obtained without assuming normality. Simulation studies are per-

formed to demonstrate the finite sample performance. To illustrate the proposed method,

two real data examples are appropriately analyzed.

3.1 Introduction

Longitudinal data analysis is popular in a variety of fields such as biology, epidemiol-

ogy and economics. There is an extensive literature discussing problems and developing

theory and methodology in longitudinal data analysis; see Laird and Ware (1982), Liang

and Zeger (1986), Zeger et al. (1985), and Zeger and Liang (1986), etc. The main prob-

lems lie in the estimation of the mean function, the within-subject covariance function and

the regression parameters for some specified models. These problems are generally more

well addressed for balanced longitudinal cases, but they are much more difficult to handle

in unbalanced cases.

Semiparametric models are popular in recent years since they enjoy the advantages

of incorporating both the parametric and nonparametric components. They have many
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applications in longitudinal data; see, e.g., Ichimura (1993), Chen and Shiau (1994) and

Carroll et al. (1997). One of the applications of semiparametric models is PLSIM

Yi = Xiβ + φ(Ziθ) + εi

for i = 1, . . . , n, where β and θ are parameters and φ(·) is an unknown single-index

function, all to be estimated. The residual term εi has mean zero. This model enjoys the

advantages when some covariates are linearly related to the response while some other

covariates are nonlinearly related to the response. Carroll et al. (1997) proposed and dis-

cussed estimation, testing and theoretical results of the above models for the i.i.d. case.

For the i.i.d. data, Liang et al. (2010) proposed the profile least-squares method to obtain

the semiparametrically efficient parameter estimators. Besides, the smoothly clipped ab-

solute deviation penalty (SCAD) approach to is applied for variable selection. Chen and

Parker (2014) specifically calculated semiparametric information bound for PLSIM with

the method of Severini and Tripathi (2001). Hu et al. (2004) and Li et al. (2010) discussed

how PLSIM are applied to longitudinal data.

However, how to properly estimate the parameters and single-index function in PLSIM

in the longitudinal data setting continues to receive considerable attention. Recently, Chen

et al. (2015) proposed a unified semiparametric generalized estimating equation (GEE)

analysis in PLSIM for both sparse and dense unbalanced longitudinal data. Hereafter the

method is referred as SGEE. They pointed out that the convergence rate and the limit-

ing variance/covariance are different for the sparse and dense longitudinal cases with the

proposed method. However, their parameter estimators are generally not semiparametric

efficient. For the estimation of the single-index function, they applied local linear approx-

imation adjusted by the number of measurements for each subject. This method does not

fully take into consideration the within-subject covariance.
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Considering within-subject correlation for nonparametric function estimation for sparse

longitudinal data, Lin and Carroll (2000, 2001) proposed the nonparametric profile-kernel

GEE for partially linear models. They showed that among all profile-kernel GEEs, the

consistent and most efficient estimator can be obtained by completely ignoring the within-

subject correlation and undersmoothing the nonparametric single-index function. Wang

(2003) re-examined the profile-kernel GEE methods. She pointed out that when kernel

weights are used to control the bias for single-index function estimation, they also elimi-

nate the contributions of correlated measurements for each subject asymptotically. There-

fore, the profile-kernel GEE does not use all the information provided by the repeated

measurements for the single-index function estimation. As a result, the profile-kernel GEE

method is not optimal regarding to the asymptotic variance of the single-index function

estimator. To control the asymptotic variance, she proposed marginal kernel regression

which is a two-step algorithm to control the bias and variance simultaneously.

In this chapter we focus on the estimation efficiency of the parameters as well as the

single-index function in PLSIM with a general unbalanced sparse longitudinal data set-

ting. Specifically, first we use the working independence (WI) kernel GEE for the single-

index function estimation by fixing the parameters as known and use the WI least square

estimation for the parameters by fixing the single-index function as known. After conver-

gence in the iteration, we estimate the within-subject covariance semiparametrically with

variance-correlation decomposition. In the refined iterated estimation step, we estimate the

unknown single-index function by using the marginal kernel regression as in Wang (2003)

and estimate the parameters with GEE. We show that the proposed refined estimators for

the parameters are semiparametric efficient. Furthermore, we also show that the proposed

single-index function estimator is more efficient than the single-index function estimator

in SGEE. It is important to note that in our proposed methodology and its corresponding

theory no distributional assumptions such as multivariate normality are needed for Xi, Zi
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or εi.

The rest of the chapter is organized as follows. In Section 3.2 we describe an estima-

tion procedure to obtain new estimators for the parameters and the single-index function

in longitudinal PLSIM. Section 3.3 provides some asymptotic results for the estimators

where the asymptotic variance, asymptotic bias and convergence rates are presented. We

show that the proposed single-index function estimator is more efficient than the working

independence estimator. Moreover, both the parameter and single-index function estima-

tors reach minimum asymptotic variances when the covariances are correctly specified

in which case the parameter estimators are further shown to be semiparametric efficient.

Regularity conditions and some technical arguments are also given after each theorem.

Section 3.4 gives some finite sample simulations to compare the proposed method with

some existing ones. In Section 3.5 we apply the proposed method in two real data ex-

amples. In Section 3.6 we conclude the chapter and discuss some possible extensions for

future research.

3.2 Methodology

Rewrite the longitudinal PLSIM as follows:

Yij = XT
ijβ + φ(ZT

ijθ) + εij (3.1)

for i = 1, . . . , n and j = 1, . . . ,mi. In the sparse longitudinal case mi is bounded for

all i while n → ∞. Parameters β and θ of dimension p and q respectively are to be

estimated. The univariate unknown single-index function φ(·) is also to be estimated. The

continuous response variable Yij and covariates (XT
ij,Z

T
ij) are observed at time tij and εij

is a random error. For simplicity, in this chapter we assume that Zij are continuous random

variables and Xij can be either continuous or categorical. As in most longitudinal studies,

we assume that the subjects are mutually independent, while there is a within-subject
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correlation for each subject. Let Σi = cov(Ei) with ET
i = (εi1, . . . , εimi

).

The main task is to estimate the true parameters Θ0 = (βT
0 ,θ

T
0 )T and the true un-

known nonparametric single-index function φ0(·) in Equation (3.1). To guarantee identi-

fiability, we assume that the Frobenius norm of θ0 is 1 with the first element of θ0 being

positive as in Liang et al. (2010). To simplify the notation, we denote N =
∑n

i=1mi,

Yi = (Yi1, . . . , Yimi
)T, Xi = (Xi1, . . . ,Ximi

)T, Zi = (Zi1, . . . ,Zimi
)T, φ(Ziθ) =

(φ(ZT
i1θ), . . ., φ(ZT

imi
θ))T and Θ = (βT,θT)T. Besides, let K(·) be a symmetric ker-

nel density function and Kh(x) = h−1K(x/h), where h is the bandwidth. The proposed

estimation procedure has the following steps:

1. Let u be a point in G, the domain of ZT
ijθ defined in Assumption 3.3.4. Given Θ,

the one-step estimate of φ(·) and φ(1)(·), denoted by WI kernel GEE, is obtained by

solving the following estimating equation

n−
1
2

n∑
i=1

Li(u)TKi
h(u)

{
Yi −Xiβ − Li(u)a

}
= 0, (3.2)

where Li(u) is an mi × 2 matrix with the (j, k)th element (ZT
ijθ − u)k−1 and

Ki
h(u) = diag{Kh(Z

T
ijθ −u)} with the (l, l)th entry being Kh(Z

T
ilθ − u). Here

h is a proper bandwidth to be discussed later. The obtained estimates are ã(u,Θ) =

{φ̃(u,Θ), φ̃(1)(u,Θ)}T.

2. With the estimated single-index function, the one-step estimates of Θ which ignore

the within-subject correlation structure are obtained by minimizing

n−
1
2

n∑
i=1

{
Yi −Xiβ − φ̃(Ziθ,Θ)

}T{
Yi −Xiβ − φ̃(Ziθ,Θ)

}
. (3.3)

So the initial estimates Θ̃ and φ̃(·) are obtained by iterating between Steps 1 and 2
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until convergence.

3. Let Vi be the estimated working covariance matrix for subject i, i = 1, . . . , n. From

the initial estimates, we get the residual term ẽij = Yij − XT
ijβ̃ − φ̃(ZT

ijθ̃) as an

estimate of eij . A semiparametric variance correlation decomposition approach is

applied to estimate the true covariance Σi.

4. Re-estimate φ(·). Given Θ, let Mij = [1j,1j(Z
T
ijθ − u)] be the mi × 2 matrix,

where 1j denotes the indicator vector with jth entry equal to 1, and 0 elsewhere.

Define {φ̂(u,Θ), φ̂(1)(u,Θ)} = (b1, b2), where (b1, b2) solves the kernel-weighted

estimating equation

n−
1
2

n∑
i=1

mi∑
j=1

Kh(Z
T
ijθ − u)MT

ijV
−1
i[

Yi − µ∗
{
u,Xi,Zi,Θ, φ̂c(·), b1, b2

}]
= 0, (3.4)

where µ∗{u,Xi,Zi,Θ, φ̂c(·), b1, b2} is an mi × 1 vector with the kth element being

XT
ikβ + I(k = j)

{
b1 + b2(Z

T
ijθ − u)

}
+ I(k 6= j)φ̂c(Z

T
ikθ,Θ)

and h is another proper bandwidth. Here φ̂c(·) is the current estimate of φ(·) and I(·)

is the indicator function.

5. Re-estimate the parameters Θ using the following GEE

n−
1
2

n∑
i=1

∂
{
Xiβ + φ̂(Ziθ,Θ)

}T
∂Θ

V−1i
{
Yi −Xiβ − φ̂(Ziθ,Θ)

}
= 0. (3.5)

The solutions of (3.5) are updated parameter estimates. We then assign the updated

parameter estimates values to Step 4 for iteration. The final estimates of the param-
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eters Θ̂ = (β̂
T
, θ̂

T
)T and the single-index function estimate φ̂(u, Θ̂) = φ̂(u) are

obtained by iterating between Steps 4 and 5 until convergence.

The estimation procedure above can be generally separated into three stages. The first

stage (Steps 1 and 2) is to apply the WI kernel GEE and the WI least square methodology

to obtain the initial estimates of the parameters, the unknown single-index function and

the residuals. The resulting estimates are
√
n–consistent (Lin and Carroll (2000)). The

second stage (Step 3) is to obtain proper covariance estimates. The last stage (Steps 4

and 5) is to obtain the refined estimates. By plugging in the working covariance matrices

estimated in the second stage, the within-subject correlation is taken into consideration in

both the parameter and single-index function estimation steps. More efficiency is expected

of the refined estimators. We will investigate the efficiency issue both theoretically and

empirically in later sections.

Remark 3.2.1. The unknown single-index function φ0(u) in PLSIM does not depend on

parameters Θ0. However, while in the estimation steps of the unknown single-index func-

tion, the estimated single-index function depends on the parameter estimates in the current

step. When the iteration stops, we have the final estimate for the single-index function

φ̂(u, Θ̂) = φ̂(u). For clarity, we use φ̂(u,Θ) to emphasize its dependence on Θ in the

estimation procedure and use φ̂(u) for simplicity when no confusion arises.

Remark 3.2.2. Given the residual estimates ẽij from the initial estimation step, there are

several ways to obtain the working covariance matrix estimates Vi for longitudinal data,

such as Wu and Pourahmadi (2003). One of the covariance modeling techniques is based

on variance-correlation decomposition. Some recent works include Fan et al. (2007), Fan

and Wu (2008) and Li (2011). In Step 3 above we choose to follow the method employed

by Chen et al. (2015). The main idea is based on a variance-correlation decomposition.
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First we estimate the variance term by taking a log transformation to accommodate pos-

sibly nonstationary error variance and use a local linear approximation to obtain the es-

timates. Then we assume a common specific correlation structure for all subjects such

as compound symmetry or AR(d) with unknown parameters to be estimated. Finally we

estimate the parameters in the correlation structure by minimizing the determinant of the

asymptotic variance of the parameter estimators introduced by Fan et al. (2007). The de-

tails of the covariance estimation can be found in Section 4 of Chen et al. (2015).

3.3 Theoretical Properties

In our theoretical development, we assume that the number of subjects n goes to ∞

and the number of measurements mi is bounded for i = 1, . . . , n. Wang et al. (2005) pro-

posed the semiparametric efficient estimators for the marginal generalized partially linear

models when the multivariate normality is assumed. Their theoretical and empirical in-

vestigations were focused on the parameter estimation part. Inspired by Lin and Carroll

(2001) and Wang et al. (2005), we start with the semiparametric efficient score function

and the information bound for longitudinal PLSIM but without making any distributional

assumptions. We then show that when the covariance matrices are correctly specified,

the proposed parameter estimators achieve the semiparametric information bound. More-

over, the asymptotic results for the nonparametric single-index function are also presented,

showing that the asymptotic variance of the estimator is minimized when the covariance

matrices are correctly specified. These results are formally presented in Theorems 3.3.1–

3.3.6 with some detailed proofs.

3.3.1 Assumptions

Before we provide all theoretical results, we need the following essential assumptions.

Assumption 3.3.1. Kernel function K(·) is bounded and symmetric with a compact sup-

port. It also has continuous first-order derivative K(1)(·).
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Assumption 3.3.2. The residuals are unbiased and bounded for the second-order moment,

i.e., E(eij) = 0, E(e2ij) ≤M for some M > 0, i = 1, . . . , n and j = 1, . . . ,mi.

Assumption 3.3.3. φ(·) has second continuous derivative.

Assumption 3.3.4. For i = 1, . . . , n, j = 1, . . . ,mi, Zij is bounded with a compact

support. The density of ZT
ijθ, denoted by fij(u), is twice continuously differentiable and

positive for all u ∈ G with G = {u = ZT
ijθ : Zij ∈ Z,θ ∈ Ξ}. Here Ξ is the a compact

parameter space for θ and Z is a compact support for Zij . In addition, the joint density

of (ZT
ijθ,Z

T
ikθ) has first partial derivatives.

Assumption 3.3.5. E(Xij|ZT
ijθ = u) and E(Zij|ZT

ijθ = u) are smooth functions of u with

continuous derivatives up to the second order. In addition, supu∈G E(||Xij||2|ZT
ijθ = u)

and supu∈G E(||Zij||2|ZT
ijθ = u) are bounded for all i = 1, . . . , n, j = 1, . . . ,mi.

Assumption 3.3.6. h→ 0, nh8 → 0 and nh/log(1/h)→∞.

Assumption 3.3.1 lists some regularity conditions for the kernel function. Assumption

3.3.2 is imposed for the consistency and asymptotic normality of our estimators. Assump-

tion 3.3.3 is the smoothness restriction for the unknown single-index function. Assumption

3.3.4 ensures that the denominator of the kernel estimator for the single-index function in

Steps 1 and 4 in Section 3.2 is meaningful and that some relevant asymptotic expansions

are valid. Assumption 3.3.5 is a commonly used moments condition for predictors in

PLSIM. Assumption 3.3.6 imposes some bandwidth conditions to allow the optimal band-

width to be included. Existing works impose various bandwidth smoothness conditions.

The general conditions given in Assumption 3.3.6 are sufficient for the properties obtained

in this chapter.
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3.3.2 Theory for Semiparametric Efficiency

First we define the L2 norm of a square-integrable function f(u) for all u ∈ G by

[
∫
G{f(u)}2du]1/2, where G is defined in Assumption 4 in Section 3.3.1. Besides, we

denote (Xi,Zi) = [Xi, {φ(1)
0 (Ziθ0) ⊗ 1T

q } � Zi], where ⊗ is the Kronecker product and

� is the component-wise product. Using the notation in Proof 3.3.2, we have

X̃i,e = Xi − ψn,β(Ziθ0), Z̃i,e = Zi − ψn,θ(Ziθ0), (3.6)

where ψ
n,β(Ziθ0) = {ψn,β1(Ziθ0), . . . , ψn,βp(Ziθ0)} is an mi × p matrix with ψn,βl(·) ∈

L2, l = 1, . . . , p. It satisfies

1

n

n∑
i=1

E
{

X̃T
i,eΣ

−1
i κn(Ziθ0)

}
= 0 (3.7)

for all κn(·) ∈ L2. Here κTn (Ziθ0) = {κn(ZT
i1θ0), . . . , κn(ZT

imi
θ0)}. Besides, ψ

n,θ(Ziθ0) =

{ψn,θ1(Ziθ0), . . . , ψn,θq(Ziθ0)} is an mi × q matrix with ψn,θl(·) ∈ L2, l = 1, . . . , q. It

also satisfies

1

n

n∑
i=1

E
{

Z̃T
i,eΣ

−1
i κn(Ziθ0)

}
= 0 (3.8)

for all κn(·) ∈ L2. Similarly to the arguments in Lemma A4 in Huang et al. (2007), the

semiparametric efficient score function of Θ0 is (see Proof 3.3.2)

Se =
n∑
i=1

(X̃i,e, Z̃i,e)
TΣ−1i

{
Yi −Xiβ0 − φ0(Ziθ0)

}
. (3.9)

We now present our first theorem below.

Theorem 3.3.1. If Assumptions 3.3.4–3.3.5 hold, the semiparametric information bound

38



of Θ0 is

Ue = lim
n→∞

{ 1

n
E(SeS

T
e )
}−1

= lim
n→∞

[
1

n

n∑
i=1

E
{

(X̃i,e, Z̃i,e)
TΣ−1i (X̃i,e, Z̃i,e)

}]−1
. (3.10)

From Kress et al. (1989), each element of ψ
n,β(·) and ψ

n,θ(·) solves the Fredholm in-

tegral equation of the second kind, which is shown in Equations (3.26) and (3.28). We use

these equations to show that the proposed parameter estimators reach the semiparametric

information bound in the proof below.

Proof. We apply the projection method (see Bickel et al. (1993), Chapter 3) to find the

semiparametric efficient score and the semiparametric information bound. Consider a

regular semiparametric modelM =Mα,φ, where α is the finite dimensional parameters

and φ is the nonparametric part with infinite dimension. Let Sα be the score function

with respect to α in submodelMα which isM with the true function φ0 given. Besides,

let Ṁφ be the tangent space for submodelMφ which is modelM evaluated at the true

parameters values α = α0. Consider Sα as an element in the Hilbert space and Ṁφ as

a subset of the same Hilbert space with inner product E(ηT1 η2), where η1 and η2 are two

elements in Ṁφ. Then the residual from the projection of Sα on Ṁφ exists and there is

a unique vector Se satisfying

Sα − Se ∈ Ṁφ and E(ST
e w) = 0 for all w ∈ Ṁφ. (3.11)

If the likelihood function is regular with score function Sα and E(SeST
e ) is nonsingular,

then the semiparametric information bound is U = {E(SeST
e )}−1 and the semiparametric

efficient score is Se.

Now we denote the longitudinal PLSIM in Equation (3.1) by M . This is a special

case of the general framework above. Model M has three unknown parts: Θ0, φ0(·) and
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the joint distribution of (Yij,Xij,Z
T
ijθ0) for i = 1, . . . , n, j = 1, . . . ,mi. To derive the

efficient score for Θ0, consider three submodels of model M :

M1: Model M with only Θ0 unknown;

M2: Model M with only φ0(·) unknown;

M3: Model M with both Θ0 and φ0(·) known.

Let SΘ be the score function in submodel M1 and Ṁk be the tangent space for sub-

model Mk, k = 2, 3. By applying the projection method in (3.11), the semiparametric

efficient score for model M is

Se = SΘ − Π(SΘ|Ṁ2 + Ṁ3)

= SΘ − Π(SΘ|Ṁ3)− Π(SΘ|ΠṀ⊥
3
Ṁ2), (3.12)

where M⊥ is the perpendicular space of model M , Π(SΘ|R) is the projection of score

function SΘ on space R and ΠRT is the projection of space T on space R.

Let M4 be the submodel of M with only φ0(·) known. Then M1 and M3 are two

subspaces of M4 corresponding to the finite dimensional part and infinite dimensional

part, respectively. From (3.11) SΘ − Π(SΘ|Ṁ3) is the efficient score for Θ0 in model

M4. According to Lemma A4 in Huang et al. (2007),

Π(SΘ|Ṁ
⊥
3 ) =

n∑
i=1

(Xi,Zi)
TΣ−1i {Yi −Xiβ0 − φ0(Ziθ0)}.

Similarly, by considering the parametric submodels of M2, together with Lemma A4 in

Huang et al. (2007), we have

ΠṀ⊥
3
Ṁ2 =

{ n∑
i=1

κTn (Ziθ0)Σ
−1
i {Yi −Xiβ0 − φ0(Ziθ0)}, κn(·) ∈ L2

}
.
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Projecting the score function SΘ on space ΠṀ⊥
3
Ṁ2 and putting the above two equa-

tions back to (3.12), we have

Se =
n∑
i=1

(X̃i,e, Z̃i,e)
TΣ−1i {Yi −Xiβ0 − φ0(Ziθ0)},

where X̃i,e = Xi − ψn,β(Ziθ0), Z̃i,e = Zi − ψn,θ(Ziθ0) for some unique ψ
n,β(·) ∈ L2

and ψ
n,θ(·) ∈ L2 by (3.11).

According to (3.11), Se is orthogonal to any member in Ṁ2 + Ṁ3. Besides, ΠṀ⊥
3
Ṁ2 is

a subset of Ṁ2+Ṁ3. Therefore, (3.11) implies Equations (3.7) and (3.8) for all κn(·) ∈ L2.

The existence and uniqueness of the semiparametric score function Se for model M are

guaranteed by (3.11). Therefore, we have the semiparametric efficient score function as

shown in Equation (3.9). Finally, we have the semiparametric information bound Ue given

in Equation (3.10), completing the proof of Theorem 3.3.1.

3.3.3 Theory for the Single-Index Function Estimator

To establish the asymptotic distribution theory for the single-index function estimator

φ̂(u), we first define the following notation. Let fij(·) be the density of ZT
ijθ and ci,j =∫

uiKj(u)du. Of course, as a special case we may assume a common density function,

i.e., fij(·) = f(·). Furthermore, define

Q1(u) = lim
n→∞

1

n

n∑
i=1

mi∑
j=1

vjji fij(u), Q2(u) = lim
n→∞

1

n

n∑
i=1

mi∑
j=1

ξi,jjfij(u),

Q3(u) = lim
n→∞

1

n

n∑
i=1

mi∑
j=1

σjji fij(u), Q4(u) = lim
n→∞

1

n

n∑
i=1

mi∑
j=1

σ−1i,jjfij(u),

where vjji , ξi,jj , σ
jj
i and σi,jj are the (j, j)th element of V−1i , V−1i ΣiV

−1
i , Σ−1i and Σi

respectively. These Q functions are simply the limits of some weighted averages. In the

special case when Vi = Σi for all i, Q1(u) = Q2(u) = Q3(u).
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We now present the following theorem whose proof is given in Proof 3.3.3.

Theorem 3.3.2. If Assumptions 3.3.1–3.3.6 hold, we have

√
nh{φ̂(u)− φ0(u)− c2,1b(u)h2} D−→ N(0, σ2

ξ (u)), (3.13)

where b(u) satisfies

b(u) +

∫
b(w)η(u,w)dw =

1

2
φ
(2)
0 (u)

with

η(u,w) =
limn→∞

1
n

∑n
i=1

∑mi

j=1

∑
k 6=j v

jk
i fijk(u,w)

limn→∞
1
n

∑n
i=1

∑mi

j=1 v
jj
i fij(w)

and σ2
ξ (u) = c0,2Q2(u)/Q2

1(u).

Proof. First denote µij = E(Yij) = XT
ijβ0 + φ0(Z

T
ijθ0). From Equation (3.2), we have

1

n

n∑
i=1

mi∑
j=1

Kh(Z
T
ijθ − u)

[( 1

ZT
ijθ − u

)
{Yij −XT

ijβ − φ̃(u)− φ̃(1)(u)(ZT
ijθ − u)}

]
=0.

It is equivalent to

1

n

n∑
i=1

mi∑
j=1

Kh(Z
T
ijθ − u)

{( 1

ZT
ijθ − u

)
[Yij −XT

ijβ − φ0(u)− φ(1)
0 (u)(ZT

ijθ − u)

− {φ̃(u)− φ0(u)} − {φ̃(1)(u)− φ(1)
0 (u)}(ZT

ijθ − u)]
}

= 0.

So we have the following exact form:

φ̃(u)− φ0(u) =

[
1 0

]
Q−1δ =

q22δ1 − q12δ2
q11q22 − q212

,
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where

Q =

q11 q12

q12 q22

 =
1

n

n∑
i=1

mi∑
j=1

Kh(Z
T
ijθ − u)

 1 ZT
ijθ − u

ZT
ijθ − u (ZT

ijθ − u)2

 ,

δ =

(
δ1
δ2

)
=

1

n

n∑
i=1

mi∑
j=1

Kh(Z
T
ijθ − u)

(
1

ZT
ijθ − u

){
Yij −XT

ijβ − φ0(u)

− φ(1)
0 (u)(ZT

ijθ − u)
}
.

Since

φ0(Z
T
ijθ) =φ0(u) + φ

(1)
0 (u)(ZT

ijθ − u) +
1

2
φ
(2)
0 (u)(ZT

ijθ − u)2

+
1

6
φ
(3)
0 (u∗)(ZT

ijθ − u)3,

where u∗ ∈ {min(ZT
ijθ, u),max(ZT

ijθ, u)},

E{Kh(Z
T
ijθ − u)} =

1

h

∫
K(

x− u
h

)fij(x)dx

=

∫
K(y)fij(hy + u)dy

=

∫
K(y)

{
fij(u)+hyf

(1)
ij (u)+

1

2
h2y2f

(2)
ij (u) + o(h2)

}
dy

= fij(u) +
1

2
c2,1h

2f
(2)
ij (u) + o(h2),

E{Kh(Z
T
ijθ − u)(ZT

ijθ − u)} = c2,1h
2f

(1)
ij (u) + o(h2),

E{Kh(Z
T
ijθ − u)(ZT

ijθ − u)2} = c2,1h
2fij(u) + o(h2),
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and

E{Kh(Z
T
ijθ − u)(ZT

ijθ − u)3} = o(h2),

we have

q11 = c1 +Op{h2 + (nh)−1/2},

q12 = Op{h2 + (nh)−1/2},

q22 = Op{h2 + (nh)−1/2},

δ1 = Op{h2 + (nh)−1/2},

δ2 = op(δ1) = op{h2 + (nh)−1/2},

where c1 > 0 is a constant. Therefore,

φ̃(u)− φ0(u) =
q22δ1 − q12δ2
q11q22 − q212

= q−111 δ1 + op{h2 + (nh)−1/2}

= { 1

n

n∑
i=1

mi∑
j=1

fij(u)}−1δ1 + op{h2 + (nh)−1/2}

since

q−111 = { 1

n

n∑
i=1

mi∑
j=1

fij(u)}−1
[
1 +Op{h2 + (nh)−1/2}

]
.

By calculating the mean and variance of φ̃(u)− φ0(u), when the parameters are evaluated

at true values, we have

φ̃(u,Θ0)− φ0(u) = { 1

n

n∑
i=1

mi∑
j=1

fij(u)}−1 1

n

n∑
i=1

mi∑
j=1

Kh(Z
T
ijθ0 − u)(Yij − µij)
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+
1

2
c2,1b

0(u)h2 + op{h2 + (nh)−1/2}. (3.14)

Now we derive the asymptotic properties of φ̂(·). To simplify the notation, we denote

an(u) =
1

n

n∑
i=1

mi∑
j=1

vjji fij(u),

Jn(u1, u2) =
1

n

n∑
i=1

mi∑
j=1

∑
k 6=j

vjki E{a−1n (ZT
ikθ0)}fijk(u1, u2),

brn(u) = b0(u)− a−1n (u)
1

n

n∑
i=1

mi∑
j=1

fij(u)
∑
k 6=j

vjki b
r−1
n (ZT

ikθ0),

where b0(u) = b0n(u) = φ
(2)
0 (u) and fijk is the joint density of (ZT

ijθ,Z
T
ikθ). For the first

step updated estimating equation from Equation (3.4), we have

1

n

n∑
i=1

mi∑
j=1

Kh(Z
T
ijθ − u)

[( 1

ZT
ijθ − u

)
vjji {Yij −XT

ijβ − φ̂(u)− φ̂(1)(u)(ZT
ijθ − u)}

+
∑
k 6=j

(
1

ZT
ijθ − u

)
vjki {Yik −XT

ikβ − φ̃(ZT
ikθ)}

]
= 0.

Similarly, we have

φ̂1(u)− φ0(u) =

[
1 0

]
R−1τ =

r22τ1 − r12τ2
r11r22 − r212

= r−111 τ1 + op{h2 + (nh)−1/2}

= a−1n (u)τ1 + op{h2 + (nh)−1/2},

where

R =

r11 r12

r12 r22

 =
1

n

n∑
i=1

mi∑
j=1

Kh(Z
T
ijθ − u)vjji

 1 ZT
ijθ − u

ZT
ijθ − u (ZT

ijθ − u)2

 ,
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and

τ =

(
τ1
τ2

)
=

1

n

n∑
i=1

mi∑
j=1

Kh(Z
T
ijθ − u)

[( 1

ZT
ijθ − u

)
vjji {Yij −XT

ijβ − φ0(u)

− φ(1)
0 (u)(ZT

ijθ − u)}+
∑
k 6=j

(
1

ZT
ijθ − u

)
vjki {Yjk −XT

ikβ − φ̃(ZT
ikθ)}

]
.

Similarly to (3.14), the one-step update of φ̃, defined as φ̂1, has the following asymptotic

expansion

φ̂1(u,Θ0)− φ0(u) = a−1n (u)(B1n +B2n +B3n) + op{h2 + (nh)−1/2}, (3.15)

where

B1n =
1

n

n∑
i=1

mi∑
j=1

Kh(Z
T
ijθ0 − u)vjji

{
Yij −XT

ijβ0 − φ0(u)− φ(1)
0 (u)(ZT

ijθ0 − u)
}
,

B2n =
1

n

n∑
i=1

mi∑
j=1

Kh(Z
T
ijθ0 − u)

{∑
k 6=j

vjki (Yik − µik)
}
,

B3n =− 1

n

n∑
i=1

mi∑
j=1

Kh(Z
T
ijθ0 − u)

[∑
k 6=j

vjki {φ̃(ZT
ikθ0)− φ0(Z

T
ikθ0)}

]
.

By plugging (3.14) into B3n, we have

φ̂1(u,Θ0)− φ0(u) = D1n(u) +D2n(u) +
1

2
c2,1b

1
n(u)h2 + op{h2 + (nh)−1/2}, (3.16)

where

D1n(u) = a−1n (u)
1

n

n∑
i=1

mi∑
j=1

Kh(Z
T
ijθ0 − u){

mi∑
k=1

vjki (Yik − µik)},

D2n(u) = −a−1n (u)
1

n

n∑
i=1

mi∑
j=1

vjji Jn(u,ZT
ijθ0)(Yij − µij).
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For the second iteration step, we have an equation similar to (3.15) except that φ̂(ZT
ikθ0)−

φ0(u) in B3n is replaced by φ̂1(ZT
ikθ0)− φ0(u), which can be obtained from (3.16). Thus

we have

φ̂2(u,Θ0)− φ0(u) = a−1n (u)(B1n +B2n +B4n) + op{h2 + (nh)−1/2},

where

B4n =− 1

n

n∑
i=1

mi∑
j=1

Kh(Z
T
ijθ0 − u)

(∑
k 6=j

vjki [D1n(ZT
ikθ0) +D2n(ZT

ikθ0)

+
1

2
c2,1b

1
n(ZT

ikθ0)h
2]
)
.

The bias term is then

1

2
c2,1h

2
{
b0(u)− a−1n (u)

n∑
i=1

mi∑
j=1

∑
k 6=j

vjki b
1
n(ZT

ikθ0)fij(u)
}

=
1

2
c2,1b

2
n(u).

Define

Hn(Jn;u1, u2) = − 1

n

n∑
i=1

mi∑
j=1

∑
k 6=j

vjki E{a−1n (ZT
ikθ0)Jn(ZT

ikθ0, u2)}fij(u1).

Then we have

a−1n (u)
1

n

n∑
i=1

mi∑
j=1

Kh(Z
T
ijθ0 − u)

∑
k 6=j

vjki D1n(ZT
ikθ0)

= a−1n (u)
1

n

n∑
i=1

mi∑
j=1

Kh(Z
T
ijθ0 − u){

∑
k 6=j

vjki a
−1
n (ZT

ikθ0)

1

n

n∑
i′=1

mi∑
j′=1

Kh(Z
T
i′j′θ0 − ZT

ikθ0)

mi∑
k′=1

vj
′k′

i (Yi′k′ − µi′k′)}
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= a−1n (u)
1

n

n∑
i=1

mi∑
j=1

Jn(u,ZT
ijθ0)

mi∑
k=1

vjki (Yik − µik) + op{(nh)−1/2},

a−1n (u)
1

n

n∑
i=1

mi∑
j=1

Kh(Z
T
ijθ0 − u)

∑
k 6=j

vjki D2n(ZT
ikθ0)

= − a−1n (u)
1

n

n∑
i=1

mi∑
j=1

Kh(Z
T
ijθ0 − u)

∑
k 6=j

vjki {a−1n (ZT
ikθ0)

1

n

n∑
i′=1

mi∑
j′=1

vj
′j′

i′ Jn(ZT
ikθ0,Z

T
i′j′θ0)(Yi′j′ − µi′j′)}

= a−1n (u)
1

n

n∑
i=1

mi∑
j=1

vjji Hn(Jn;u,ZT
ijθ0)(Yij − µij) + op{(nh)−1/2}.

Similarly to the second iteration step, for the rth (r ≥ 2) iteration step, we have

φ̂r(u,Θ0)− φ0(u) = D1n + Er
1n + Er

2n +
1

2
c2,1b

r
n(u)h2 + op{h2 + (nh)−1/2}, (3.17)

where

Er
1n = a−1n (u)

1

n

n∑
i=1

mi∑
j=1

Jrn,1(u,Z
T
ijθ0){

mi∑
k=1

vjki (Yik − µik)},

Er
2n = a−1n (u)

1

n

n∑
i=1

mi∑
j=1

vjji J
r
n,2(u,Z

T
ijθ0)(Yij − µij).

Here J1
n,1(u1, u2) = 0, Jrn,1(u1, u2) = −Jn(u1, u2) + Hn(Jr−1n,1 ;u1, u2), J1

n,2(u1, u2) =

−Jn(u1, u2), and Jrn,2(u1, u2) = Hn(Jr−1n,2 ;u1, u2). At convergence, φ̂(u) − φ0(u) has a

form similar to Equation (3.17) except that brn, Jrn,1, J
r
n,2 are respectively replaced by their
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limits bn(u), Jn,1 and Jn,2 which satisfy the following equations:

bn(u) = φ
(2)
0 (u)− a−1n (u)

1

n

n∑
i=1

mi∑
j=1

∑
k 6=j

vjki E{bn(ZT
ikθ0)}fij(u),

Jn,1(u1, u2) = −Jn(u1, u2) +Hn(Jn,1;u1, u2),

Jn,2(u1, u2) = Hn(Jn,2;u1, u2).

(3.18)

Since E(Er
1n) = E(Er

2n) = 0 and the variances of Er
1n and Er

2n are of order O(n−1) =

o{(nh)−1}, we have Er
1n = Er

2n = op{(nh)−1/2}. Thus, Equation (3.17) can be simplified

as

φ̂r(u,Θ0)− φ0(u) = D1n +
1

2
c2,1b

r
n(u)h2 + op{h2 + (nh)−1/2}.

Therefore, we have

φ̂(u)− φ0(u)

= a−1n (u)
1

n

n∑
i=1

mi∑
j=1

Kh(Z
T
ijθ0 − u)

{ mi∑
k=1

vjki (Yik − µik)
}

+ c2,1

[h2φ(2)
0 (u)

2
− h2a−1n (u)

1

n

n∑
i=1

mi∑
j=1

∑
k 6=j

vjki E{b(ZT
ikθ0)}fij(u)

]
+ op{h2 + (nh)−1/2},

where b(·) is defined in Theorem 3.3.2. Some standard calculations show that the asymp-

totic bias for φ̂(u) is c2,1b(u)h2, where b(u) satisfies

b(u) +

∫
b(w)η(u,w)dw =

1

2
φ
(2)
0 (u)

with η(u,w) given in Theorem 3.3.2. The asymptotic variance of
√
nh{φ̂(u) −φ0(u)} is
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readily seen to be σ2
ξ (u) = c0,2Q2(u)/Q2

1(u). In fact, the one-step update φ̂1(u) also has

the same asymptotic variance of σ2
ξ (u). That is, further iteration steps beyond the first

update do not change the asymptotic variance.

It has been shown in Theorem 3.3.3 that the asymptotic variance of φ̂(u) is minimized

when Vi = Σi. Therefore, when the covariance matrices are correctly specified, the

asymptotic variance of φ̂(u) is σ2
φ(u) as shown in Theorem 3.3.3.

In the following we show that the asymptotic variance of φ̂(u) is minimized if and

only if Vi = Σi, i = 1, . . . , n. Define F
1/2
i (u) as a mi × mi diagonal matrix with the

(j, j)th element being f
1/2
ij (u) and F

−1/2
i (u) as the inverse matrix of F

1/2
i (u). Further

define G−1i (u) = F
1/2
i (u)V−1i F

1/2
i (u) and Hi(u) = F

−1/2
i (u)ΣiF

−1/2
i (u). Then the prob-

lem of minimizing σ2
ξ (u) is asymptotically equivalent to minimizing

∑n
i=1 tr{G−1i (u)Hi(u)G−1i (u)}

[
∑n

i=1 tr{G−1i (u)}]2
,

where tr(A) is the trace of a matrix A. The extended Cauchy-Schwarz inequality (Magnus

and Neudecker (1995), p. 227, Theorem 2) shows that

{tr(ATB)}2 ≤ {tr(ATA)}{tr(BTB)}

for any square matrices A and B with equality if and only if A = cB for some constant c.

Now let A and B be two N ×N block diagonal matrices

A = diag(A1, . . . ,An) and B = diag(B1, . . . ,Bn),

50



where Ai = H
−1/2
i (u) and Bi = H

1/2
i (u)G−1i (u) for i = 1, . . . , n. Then we have

[
n∑
i=1

tr{G−1i (u)}]2 ≤
n∑
i=1

tr{H−1i (u)}
n∑
i=1

tr{G−1i (u)Hi(u)G−1i (u)}.

It is equivalent to

∑n
i=1 tr{G−1i (u)Hi(u)G−1i (u)}

[
∑n

i=1 tr{G−1i (u)}]2
≥ 1∑n

i=1 tr{H−1i (u)}
.

Without loss of generality, let c = 1. Then the equality holds if and only if A = B. It

leads to Hi(u) = Gi(u), which is equivalent to Vi = Σi for i = 1, . . . , n. The result is

formally presented in the following theorem.

Theorem 3.3.3. If Assumptions 3.3.1–3.3.6 in Section 3.3.1 hold, the asymptotic variance

of φ̂(u) is minimized if and only if Vi = Σi i.e., when the working covariance matrices are

correctly specified. In this case, the estimated single-index function φ̂(u) has the following

asymptotic normality property

√
nh{φ̂(u)− φ0(u)− c2,1b(u)h2} D−→ N(0, σ2

φ(u)), (3.19)

where σ2
φ(u) = c0,2Q

−1
3 (u).

Our method extends SGEE of Chen et al. (2015) by updating the estimation for the un-

known single-index function. To see the advantages of the proposed single-index function

estimator, we compare the asymptotic variances of the single-index function estimators.

When the working covariance matrices are correctly specified in SGEE, the asymptotic

variance of unknown single-index function estimator is (see Chen et al. (2015))

var(φ̃(u)) =
1

nh
c0,2Q

−1
4 (u). (3.20)
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Comparing (3.19) and (3.20), the SGEE estimator and the proposed estimator of the

single-index function share the same order of pointwise convergence rate of O(
√
nh),

but the asymptotic variances are different. To show that the proposed estimator is more

efficient, it is sufficient to show σjji ≥ 1/σi,jj for all i, j. We consider j = 1 without loss

of generality. Writing Σi in the block matrix form, we have

Σi =

 σi,11 Σi,12

ΣT
i,12 Σi,22

 ≥ 0.

By the extended Cauchy-Schwartz inequality,

σ11
i = (σi,11 − Σi,12Σ

−1
i,22Σ

T
i,12)

−1 ≥ (σi,11)
−1.

Therefore, when the working covariance matrices are correctly specified, the proposed

single-index function estimator has the asymptotic variance less than or equal to the asymp-

totic variance of SGEE estimator. Therefore, it is in general more efficient. The result is

formally presented in the following theorem.

Theorem 3.3.4. If Assumptions 3.3.1–3.3.6 hold, when the working covariance matrices

are correctly specified, the asymptotic variance of the proposed estimator φ̂(u) has a vari-

ance less than or equal to that of the SGEE estimator for the single-index function.

Remark 3.3.1. While here we have used the same bandwidth for easy comparisons of

different methods, in order to obtain the optimal numerical performance for each method,

our limited empirical experience suggests that it seems slightly helpful to select a different

bandwidth in each estimation step by cross validation.
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3.3.4 Theory for the Parameter Estimators

Now we investigate the asymptotic distribution of the estimators Θ̂ and prove that they

reach the semiparametric information bound. Define

ϕ
n,β(u, Θ̂) = −∂φ̂(u,Θ)

∂βT
|
Θ=Θ̂

→ ϕβ(u),

ϕ
n,θ(u, Θ̂) = −∂φ̂(u,Θ)

∂θT
|
Θ=Θ̂

→ ϕθ(u)

(3.21)

in probability as n → ∞. Moreover, by Assumption 3.3.3 on sufficient smoothness of

φ(·), it is readily seen that the convergence is uniform over u in the compact domain G.

Further define

Ω0 = lim
n→∞

1

n

n∑
i=1

E
{

(X̃i, Z̃i)
TV−1i (X̃i, Z̃i)

}
,

Ω1 = lim
n→∞

1

n

n∑
i=1

E
{

(X̃i, Z̃i)
TV−1i ΣiV

−1
i (X̃i, Z̃i)

}
,

(3.22)

where (X̃i, Z̃i) = {Xi − ϕβ(Ziθ0),Zi − ϕθ(Ziθ0)}. Assume that Ω0 and Ω1 are non-

negative definite matrices. Then we have the following theorem a proof of which is given

in Proof 3.3.4.

Theorem 3.3.5. If Assumptions 3.3.1–3.3.6 hold, we have

n1/2(Θ̂−Θ0)
D−→ N(0,Ω−10 Ω1Ω

−1
0 ) (3.23)

where D−→ denotes convergence in distribution.

Proof. To derive the asymptotic properties for the parameter estimators, the uniform con-

sistency of the single-index function estimator is required. However, the only difference

between the uniform consistency and pointwise consistency of the single-index func-
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tion estimator is a different order rate. It changes from op{h2 + (nh)−1/2} to op{h2 +

[log(n)/nh]1/2}. It does not affect the asymptotic results for the parameter estimators.

Now denote ∆i{β, φ̂(Ziθ,Θ)}T = ∂{Xiβ + φ̂(Ziθ,Θ)}T/∂Θ. From the GEE in Equa-

tion (3.5), the parameter estimates satisfy the equation

n−1/2
n∑
i=1

∆i{β̂, φ̂(Ziθ̂, Θ̂)}TV−1i

{
Yi −Xiβ̂ − φ̂(Ziθ̂, Θ̂)

}
= 0.

By expending the equation above at Θ = Θ0 and after some further algebra, we have the

following equation

n−1/2
n∑
i=1

∆i{β0, φ̂(Ziθ0)}TV−1i

[
Yi −Xiβ0 − φ̂(Ziθ0)

−∆i

{
β0, φ̂(Ziθ0)

}
(Θ̂−Θ0)

]
+ op(1) = 0,

where we recall that φ̂(Ziθ0) = φ̂(Ziθ0, Θ̂). Thus we have

n−1/2
n∑
i=1

∆i

{
β0, φ̂(Ziθ0)

}T
V−1i ∆i

{
β0, φ̂(Ziθ0)

}
(Θ̂−Θ0)

=n−1/2
n∑
i=1

∆i{β0, φ̂(Ziθ0)}TV−1i

[
Yi −Xiβ0 − φ0(Ziθ0)

−
{
φ̂(Ziθ0)− φ0(Ziθ0)

}]
+ op(1).

Then it is readily seen that

1

n

n∑
i=1

(X̃i, Z̃i)
TV−1i (X̃i, Z̃i)

{
n1/2(Θ̂−Θ0)

}
=n−1/2

n∑
i=1

(X̃i, Z̃i)
TV−1i [Yi −Xiβ0 − φ0(Ziθ0)

− {φ̂(Ziθ0)− φ0(Ziθ0)}] + op(1). (3.24)
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By Equations (3.17) and (3.18) in the proof of Theorem 3.3.2 and a second-order bias

expansion, we have

n−1/2
n∑
i=1

(X̃i, Z̃i)
TV−1i {φ̂(Ziθ0)− φ0(Ziθ0)}

=n−1/2
h2

2

[ n∑
i=1

mi∑
j=1

mi∑
k=1

vjki (X̃ij, Z̃ij)
T
{
b(ZT

ikθ0) + hb1(Z
T
ikθ0) +Op(h

2)
}]

+

(
n−1/2

n∑
i=1

mi∑
j=1

mi∑
k=1

vjki (X̃ij, Z̃ij)
T

[
a−1n (ZT

ikθ0)
1

n

n∑
i′=1

m∑
j′=1

vj
′j′

i′

×
{
Kh(Z

T
i′j′θ0 − ZT

ikθ0)

mi∑
l=1

vj
′l
i′ (Yi′l − µi′l)

+ Jn,2(Z
T
ikθ0,Z

T
i′j′θ0)(Yi′j′ − µi′j′)

+ Jn,1(Z
T
ikθ0,Z

T
i′j′θ0)

mi∑
l=1

vj
′l
i′ (Yi′l − µi′l)

}])
+ op(1)

=T1 + T2 + op(1),

where b1 is the next higher-order bias expansion of φ̂. For T2, rewrite it as T2 = T21 +

T22 + T23. We then have

T21 =n−
1
2

n∑
i′=1

mi∑
j′=1

vj
′j′

i′

{ 1

n

n∑
i=1

mi∑
j=1

mi∑
k=1

Kh(Z
T
i′j′θ0 − ZT

ikθ0)(X̃ij, Z̃ij)
Tvjki

a−1n (ZT
ikθ0)

} mi∑
l=1

vj
′l
i′ (Yi′l − µi′l).

We now note that it is easy to see that when working covariances Vi are used in place of

Σi, Equations (3.7) and (3.8) are asymptotically equivalent to the following equation:

1

n

n∑
i=1

E
{

(X̃i, Z̃i)
TV−1i gn(Di)� fi(Di)|Di = di

}
= 0 (3.25)
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for any function gn(·) ∈ L2, where Di = Ziθ, di = (d11, . . . , dimi
)T and fi(di) =

(fi1(di1), . . . , fimi
(dimi

))T for dij ∈ G, j = 1, . . . ,mi.

Similarly to the derivations in Section A.4 of Wang et al. (2005), we can obtain that

T1 = op(1) if nh8 → 0. Moreover, the sample average term inside the braces in T21 is

asymptotically equal to

1

n

n∑
i=1

mi∑
j=1

mi∑
k=1

E
{

(X̃ij, Z̃ij)
Tvjki a

−1
n (Dik)|Dik = d

}
fik(d)|

d=ZT
i′j′θ0

with Dik = ZT
ikθ0, which is 0 in probability by (3.25). Therefore, we obtain that T21 =

op(1). Using similar arguments, we can also show that T22 and T23 are of order op(1).

As a result, with Assumptions 3.3.1–3.3.6, T1 + T2 = op(1). It follows from Equation

(3.24) that

n
1
2 (Θ̂−Θ0) = Ω−10 n−

1
2

n∑
i=1

(X̃i, Z̃i)
TV−1i

{
Yi −Xiβ0 − φ0(Ziθ0)

}
+ op(1).

This directly leads to Theorem 3.3.5.

Furthermore, in the following we show that when the covariance matrices are correctly

specified, the asymptotic covariance of the parameter estimators is minimized. That is, for

all estimated working covariance Vi, Ω−10 Ω1Ω
−1
0 −Ω−11 is a semi-positive definite matrix.

First denote A ≥ 0 when A is a semi-positive definite matrix. By the extended

Cauchy-Schwarz inequality, if

Σ =

Σ11 Σ12

Σ21 Σ22

 ≥ 0,

then Σ11 − Σ12Σ
−1
22 Σ21 ≥ 0. Further denote Ui = (X̃i, Z̃i). Then the problem of mini-
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mizing Ω−10 Ω1Ω
−1
0 is asymptotically equivalent to minimizing

(
n∑
i=1

UT
i V−1i Ui)

−1(
n∑
i=1

UT
i V−1i ΣiV

−1
i Ui)(

n∑
i=1

UT
i V−1i Ui)

−1.

Since ∑n
i=1 UT

i V−1i ΣiV
−1
i Ui

∑n
i=1 UT

i V−1i Ui∑n
i=1 UT

i V−1i Ui

∑n
i=1 UT

i Σ−1i Ui


=

n∑
i=1

UT
i

(
V−1i
Σ−1i

)
Σi(V

−1
i ,Σ−1i )Ui ≥ 0,

we have

n∑
i=1

UT
i V−1i ΣiV

−1
i Ui − (

n∑
i=1

UT
i V−1i Ui)(

n∑
i=1

UT
i Σ−1i Ui)

−1(
n∑
i=1

UT
i V−1i Ui) ≥ 0,

which leads to

(
n∑
i=1

UT
i V−1i Ui)

−1(
n∑
i=1

UT
i V−1i ΣiV

−1
i Ui)(

n∑
i=1

UT
i V−1i Ui)

−1 − (
n∑
i=1

UT
i Σ−1i Ui)

−1 ≥ 0.

The inequality becomes equality if and only if Vi = cΣi for some c > 0. Without loss of

generality, we set c = 1 here and in the proof of Theorem 3.3.3.

Moreover, the asymptotic covariance of the parameter estimators reaches the semipara-

metric information bound when Vi = Σi. We formally include this result in the following

theorem.

Theorem 3.3.6. Under Assumptions 3.3.1–3.3.6, if the covariance matrices are correctly

specified, then we have

ψ
n,β(u)→ ϕβ(u) and ψ

n,θ(u)→ ϕθ(u)
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in probability as n → ∞ for every u ∈ G, where ϕβ(u) and ϕθ(u) are defined in Equa-

tion (3.21). Furthermore, the proposed parameter estimators reach the semiparametric

information bound and are thus semiparametric efficient.

A proof of Theorem 3.3.6 is given in Proof 3.3.4 below. It is worth noting that the cen-

tering part of the asymptotic variance of the parameter estimators from Chen et al. (2015)

is the conditional mean of X and Z given the single-index part. Therefore, the asymptotic

properties in Theorem 3.3.6 generally do not hold for their parameter estimators. This

implies that their parameter estimators are generally not semiparametric efficient.

Proof. Denote the lth element of Xij and Zij by Xijl and Zijl, respectively. Similarly

to Wang et al. (2005), by (3.7) we can obtain that ψn,βl(·) solves the Fredholm integral

equation of the second kind:

ψn,βl(u1) = rn,βl(u1)−
∫
Wn(u1, u2)ψn,βl(u2)du2, (3.26)

where

Wn(u1, u2) =
1
n

∑n
i=1

∑mi

j=1

∑
k 6=j σ

jk
i fijk(u2, u1)

1
n

∑n
i=1

∑mi

j=1 σ
jj
i fij(u1)

(3.27)

and

rn,βl(u) =
1
n

∑n
i=1

∑mi

j=1

∑mi

k=1 σ
jk
i E(Xikl)fij(u)

1
n

∑n
i=1

∑mi

j=1 σ
jj
i fij(u)

for l = 1, . . . , p. Similarly, from Equation (3.8) we can obtain that ψn,θl(·) solves the

Fredholm integral equation of the second kind:

ψn,θl(u1) = rn,θl(u1)−
∫
Wn(u1, u2)ψn,θl(u2)du2, (3.28)
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where

rn,θl(u) =
1
n

∑n
i=1

∑mi

j=1

∑mi

k=1 σ
jk
i E(Zikl)fij(u)

1
n

∑n
i=1

∑mi

j=1 σ
jj
i fij(u)

for l = 1, . . . , q. If we take the limit of Equations (3.26) and (3.28) as n→∞ we see that

ψβ(u) = limn→∞ ψn,β(u) and ψθ(u) = limn→∞ ψn,θ(u) satisfy the Fredholm integral

equations of the second kind in the corresponding limiting form, respectively.

In order to show the semiparametric efficiency of the proposed estimators, it is suffi-

cient to show that ϕβ(u) and ϕθ(u) satisfy the Fredholm integral equations of the second

kind as same as ψβ(u) and ψθ(u), respectively. By Equation (3.4), when Vi = Σi for

i = 1, . . . , n, we have

1

n

n∑
i=1

mi∑
j=1

σjji Kh(Z
T
ijθ − u)

{
Yij −XT

ijβ − φ̂(u,Θ)− φ̂(1)(u,Θ)(ZT
ijθ − u)

}
+

1

n

n∑
i=1

mi∑
j=1

∑
k 6=j

σjki Kh(Z
T
ijθ − u)

{
Yik −XT

ikβ − φ̂(ZT
ikθ,Θ)

}
= 0. (3.29)

Taking derivative with respect to θ on both sides and evaluating at θ = θ0, we get

L1 + L2 + L3 + L4 = 0,

where

L1 =
1

n

n∑
i=1

mi∑
j=1

σjji
1

h
K

(1)
h (ZT

ijθ0 − u)Zij

{
Yij −XT

ijβ0 − φ̂(u,Θ0)− φ̂(1)(u,Θ0)(Z
T
ijθ0 − u)

}
,

L2 =
1

n

n∑
i=1

mi∑
j=1

∑
k 6=j

σjji
1

h
K

(1)
h (ZT

ijθ0 − u)Zij

{
Yij −XT

ijβ0 − φ̂(u,Θ0)− φ̂(1)(u,Θ0)(Z
T
ijθ0 − u)

}
,
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L3 =
1

n

n∑
i=1

mi∑
j=1

σjji Kh(Z
T
ijθ0 − u)

{
ϕ
n,θ(u,Θ0)−

∂φ̂(1)(u,Θ0)

∂Θ0

(ZT
ijθ0 − u)

− φ̂(1)(u,Θ0)Zij

}
= L31 + L32 + L33,

L4 =
1

n

n∑
i=1

mi∑
j=1

∑
k 6=j

σjki Kh(Z
T
ijθ0 − u)

{
ϕ
n,θ(ZT

ikθ0,Θ0)− φ̂(1)(ZT
ikθ0,Θ0)Zik

}
.

With Assumptions 3.3.1–3.3.6, when n → ∞ and taking expectations, some standard

calculations lead to L1 = op(1), L2 = op(1) and L32 = op(1). Then we get

ϕθ(u)
1

n

n∑
i=1

mi∑
j=1

σjji fij(u) =
1

n

n∑
i=1

mi∑
j=1

mi∑
k=1

σjki E
{
Zikφ

(1)
0 (ZT

ijθ0)
}
fij(u)

− 1

n

n∑
i=1

mi∑
j=1

∑
k 6=j

∫
σjki fijk(Z

T
ikθ0, u)ϕθ(ZT

ikθ0)d(ZT
ikθ0) + op(1)

as n→∞. By taking the limit of both (3.28) and the equation above, it is easily seen that

these two equations have the same limiting equations and thus are asymptotically equiv-

alent. Similarly, taking derivative with respect to β on both sides of Equation (3.29) and

applying similar steps, we can obtain Equation (3.26) as ψ
n,β , rn,βl and Wn are replaced

by ϕβ , rβl = limn→∞ rn,βl andW = limn→∞Wn respectively when n→∞. The unique-

ness is guaranteed by the projection method in (3.11). Therefore, the parameter estimators

reach the semiparametric information bound, completing the proof of Theorem 3.3.6.

3.4 Simulation Studies

3.4.1 Simulation Setup

In our simulation studies, we considered PLSIM in (3.1). The true parameter settings

are similar to Chen et al. (2015). Parameters β and θ are of dimensions 2 and 3 with

true values β0 = (2, 1)T and θ0 = (2/3, 1/3, 2/3)T. The covariates X and Z are jointly

generated from multivariate normal distribution with mean zero, standard deviation 1 and
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correlation 0.1. The true single-index function is φ0(x) = exp(x)/2. The observation

times tij are generated in the same way as in Fan et al. (2007): for each subject, there

is a set of time points {1, 2, . . . , T} where each time point has a 0.2 probability of being

missing. Then the simulated observation time is the sum of the non-missing time point and

a random number from the uniform [0, 1] distribution. Here T is set to be 12 to obtain an

average number of observations m̄i = 10. The number of subjects was set to be n = 30,

50 and 100, respectively.

For residuals, three different scenarios were considered respectively:

1. For each i, the within-subject correlation structure is AR(1) with γ = 0.75 so that

for εi(tj) = εij , cor(εi(t1), εi(t2)) = γ|t2−t1|, t1 6= t2. Besides, the variance is set to

be 1 for each observation time.

2. The within-subject correlation structure is AR(1) with γ = 0.75. For each i, the

residual terms εij are generated from a Gaussian process with mean 0, variance

function var{εi(t)} = 0.25 exp(t/12). Therefore, the residuals have nonstationary

heteroskedastic variances.

3. The true within-subject correlation structure is ARMA(1,1) with (γ, ρ) = (0.75, 0.6),

where cor(εi(t1), εi(t2)) = ργ|t2−t1|, t1 6= t2, but we model it as an AR(1) correlation

structure. The residuals are generated with var{εi(t)} = 0.25 exp(t/12).

3.4.2 Simulation Results

Under the above settings, we compared the proposed semiparametric marginal GEE

method, denoted as SMGEE, with the commonly used WI method and the SGEE method.

Li (2011) proposed nonparametric covariance estimation under the partially linear model

setting, hereafter referred as GEE-NC. In order to measure the sensitivity of within-subject

covariance estimation to the parameters and the single-index function estimation, we com-
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pared the proposed method under the current covariance estimation method, the nonpara-

metric estimation method (GEE-NC) and when the true covariance is assumed (GEE-TC).

Due to running time limitation, we limited this comparison to a particular case: n = 30,

m̄ = 10 and the residual term follows the second case in Section 3.4.1.

The simulation results indicate that the squared bias term is negligible relative to the

variance term. When presenting our numerical results we used the standard error (SE) and

sandwich standard error (SWSE) as the comparison criteria, where SE is the Monte Carlo

standard error and SWSE is the empirical average of the asymptotic standard error of the

parameter estimates. The performance of single-index function estimation φ̂(·) for φ0(·) is

evaluated by averaged mean squared error (AMSE) evaluated at the observed data points:

AMSE =
B∑
b=1

MSEb,

where

MSEb =
1

N

n∑
i=1

mi∑
j=1

{
φ̂b(Z

T
ijθ̂)− φ0(Z

T
ijθ̂)
}2
.

The Epanechnikov kernel was used and the bandwidths were selected with the leave-

one-subject-out cross validation. Since there are three bandwidths involved in Steps 1, 3

and 4, the iterative and sequential bandwidth selections to choose the optimal bandwidths

were compared in 20 replications. Here the iterative bandwidth selection is defined as to

select all optimal bandwidths simultaneously and the sequential bandwidth selection is to

choose one optimal bandwidth in each step. Simulation results from the case with n = 30,

m̄ = 10 indicate that there are no significant differences between the iterative and sequen-

tial bandwidth selection methods: the iterative method selected bandwidths 0.61, 0.75 and

0.68, while the sequential method selected 0.62, 0.74 and 0.65, respectively. We also
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compared the empirical relative efficiency, which is the ratio of the numerical variances

of the parameter estimates under the iterative and sequential bandwidth selections. The

empirical relative efficiencies are (0.99, 0.98, 0.99, 1.02, 0.98) for (βT,θT). Therefore, in

all the simulation studies we used the leave-one-subject-out cross validation to choose the

optimal bandwidths sequentially due to the huge savings in computation time.

Remark 3.4.1. Chen et al. (2015) used an iterative method to choose the optimal band-

widths – the first two bandwidths appeared in our proposed method. In order to compare

the results with that chapter, we also implemented the iterative method to choose the op-

timal values for the first two bandwidths and then used the chosen bandwidth in Step 1 as

the same bandwidth in Step 4. The differences are negligible.

As in Chen et al. (2015) the simulations were repeated for 200 times. The results

are given in Tables 3.1–3.4 with SE, SWSE and AMSE values being in percentage. In

Table 3.1, we compare the estimators under the true covariances, nonparametrically esti-

mated covariances and semiparametrically estimated covariances in the case of the sample

size n = 30, m̄ = 10. Besides, the nonstationary residual variance (residual type 2) is

assumed. We observe that the covariance estimation is not that sensitive to the estimation

results: SE, SWSE and AMSE of the estimated parameters and single-index function are

relatively close to those for the case when the true covariance is assumed. In Tables 3.2–

3.4 we see that both SGEE and SMGEE outperform the WI estimators in all simulation

settings. SMGEE is clearly more efficient than SGEE regarding the single-index function

estimation and is also overall more efficient than SGEE in the parameter estimation in

these settings.

3.5 Real Data Analysis

We now apply the proposed method to analyze two longitudinal datasets, one of which

studies the relationship between smoking and CD4 percentage and the other studies bond
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Table 3.1: Performance comparisons of the estimates of the parameters and single-index
function under different covariance estimation methods while all other estimation steps are
the same. The PLSIM with nonstationary residual variance and AR(1) correlation (γ =
0.75) is assumed. GEE-TC, GEE-NC and SMGEE are estimation methods with the true
covariance, nonparametrically estimated covariance (Li (2011)) and semiparametrically
estimated covariance (proposed) respectively. All the values are in percentage. SE stands
for Monte Carlo standard error, SWSE stands for empirical asymptotic standard error and
AMSE stands for averaged mean squared error.

Sample
Size

Models
β1 β2 θ1 θ2 θ3 φ(·)

SE SWSE SE SWSE SE SWSE SE SWSE SE SWSE AMSE

n = 30
m̄ = 10

GEE-TC 2.68 2.72 2.65 2.66 1.75 1.76 2.02 2.05 1.86 1.85 1.14
GEE-NC 2.80 2.84 2.73 2.76 1.77 1.80 2.08 2.08 1.95 1.93 1.40
SMGEE 2.73 2.80 2.71 2.76 1.74 1.75 2.09 2.07 1.91 1.88 1.23

maturity firms from the period 1980 to 1989.

3.5.1 CD4 Data Analysis

In the CD4 dataset, there are a total of 283 homosexual males who were HIV positive

from 1984 and 1991. They were scheduled to have the measurements but had differ-

ent numbers of repeated measurements which ranges from 1 to 14 because of missing or

rescheduled appointments. This dataset has also been analyzed by Qu and Li (2006). In

our model, the response variable Y is the CD4 cell percentage over time. The covariates

are patient’s measuring time Z1 calculated as the difference between the stopping time and

starting time, patient’s age Z2, the CD4 cell percentage before infection Z3, and smoking

status X which is a binary variable.

First we perform some exploratory data analysis of the CD4 data described above. In

Figure 3.1, we examined the relationship of CD4 percentage with each predictor variable.

Since the predictors measuring time, patients’ age and CD4 percentage before infection are

continuous, we presented the scatterplot together with its local linear smoothing fit for the

CD4 percentage with each predictor variable. There are nonlinear patterns for the three
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Table 3.2: Performance comparisons of the estimates of the parameters and single-index
function for estimation methods WI, SGEE and SMGEE. The data were generated using
PLSIM with constant residual variance and AR(1) correlation (γ = 0.75). All the values
are in percentage. SE stands for Monte Carlo standard error, SWSE stands for empirical
asymptotic standard error and AMSE stands for averaged mean squared error.

Sample
Size

Models
β1 β2 θ1 θ2 θ3 φ(·)

SE SWSE SE SWSE SE SWSE SE SWSE SE SWSE AMSE

n = 30
m̄ = 10

WI 3.82 3.89 4.12 4.14 2.72 2.75 3.12 3.15 2.66 2.70 1.77
SGEE 2.77 2.79 2.69 2.71 1.73 1.72 2.14 2.13 1.87 1.89 1.73

SMGEE 2.65 2.67 2.65 2.70 1.73 1.73 2.12 2.13 1.85 1.87 1.23

n = 50
m̄ = 10

WI 3.06 3.11 2.71 2.79 1.86 1.92 2.20 2.24 1.89 1.94 1.48
SGEE 2.61 2.62 2.10 2.13 1.17 1.19 1.06 1.04 0.96 0.99 1.34

SMGEE 2.54 2.56 2.10 2.14 1.15 1.16 1.03 1.03 0.96 0.98 0.90

n = 100
m̄ = 10

WI 2.19 2.21 2.29 2.30 1.61 1.65 1.74 1.76 1.48 1.50 1.07
SGEE 1.58 1.58 1.60 1.50 0.87 0.90 1.17 1.18 1.13 1.14 0.99

SMGEE 1.53 1.55 1.58 1.50 0.87 0.89 1.17 1.18 1.13 1.12 0.72

sub-figures, indicating that multiple linear regression may not be the most appropriate

approach to analyze this data. For smoking status, since it is a binary variable, we provided

with a side-by-side boxplot to compare the distribution of CD4 percentage in each smoking

category. The difference of distribution is not clear for each smoking status, but we can

see that there are some outliers of CD4 percentage for the smoking group.

After the exploratory data analysis, we attempt to analyze the CD4 data by multiple

linear regression for longitudinal data with GEE approach proposed by Liang and Zeger

(1986). From the diagnostic analysis, the relationship of the residual with each predictor

variable appears to have similar patterns to Figure 3.1. As a consequence, we apply PLSIM

in (3.1) to the data with Zij = (Z1ij, Z2ij, Z3ij)
T and θ = (θ1, θ2, θ3)

T.

Using the proposed method SMGEE and assuming the AR(1) working correlation

structure, we compared the parameter estimates with the existing methods WI and SGEE.

The results are listed in Table 3.5. Furthermore, the estimated single-index function φ̂(·)

evaluated at ZT
ijθ̂ and its pointwise 95% bootstrap confidence band are shown in Figure 3.2
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Table 3.3: Performance comparisons of the estimates of the parameters and single-index
function for estimation methods WI, SGEE and SMGEE. The data were generated using
PLSIM with nonstationary residual variance and AR(1) correlation (γ = 0.75). All the
values are in percentage. SE stands for Monte Carlo standard error, SWSE stands for
empirical asymptotic standard error and AMSE stands for averaged mean squared error.

Sample
Size

Models
β1 β2 θ1 θ2 θ3 φ(·)

SE SWSE SE SWSE SE SWSE SE SWSE SE SWSE AMSE

n = 30
m̄ = 10

WI 3.98 4.02 4.17 4.20 2.84 2.86 3.19 3.19 2.74 2.77 1.81
SGEE 2.87 2.95 2.73 2.81 1.78 1.82 2.18 2.20 1.91 1.96 1.75

SMGEE 2.73 2.80 2.71 2.76 1.74 1.75 2.09 2.07 1.91 1.88 1.23

n = 50
m̄ = 10

WI 3.04 3.08 2.79 2.83 1.88 1.92 2.25 2.24 2.03 2.02 1.46
SGEE 2.67 2.70 2.15 2.20 1.20 1.23 1.01 1.04 0.99 1.00 1.37

SMGEE 2.61 2.56 2.11 2.13 1.19 1.20 0.98 1.01 0.97 0.99 0.92

n = 100
m̄ = 10

WI 2.21 2.23 2.33 2.34 1.68 1.69 1.83 1.83 1.52 1.54 1.03
SGEE 1.60 1.66 1.50 1.52 0.91 0.92 1.22 1.24 1.15 1.15 0.98

SMGEE 1.56 1.59 1.47 1.50 0.91 0.92 1.21 1.23 1.14 1.15 0.74

produced by WI, SGEE and SMGEE respectively. The parameter estimates in Table 3.5

are similar for the three methods. However, the standard errors are generally smaller with

the proposed SMGEE method. This finding supports our theoretical results developed in

Section 3.3. By comparing the estimated single-index function in Figure 3.2, the decreas-

ing patterns are similar for all three methods.

From the linear component estimates in Table 3.5, we observe that the estimated co-

efficient for variable smoking is positive. However, the standard error compared with the

coefficient estimate indicates that the smoking status is not a significant factor for CD4 cell

percentage. This conclusion agrees with previous findings that smoking is not an inducing

factor for HIV; see Uppal et al. (2003) and Qu and Li (2006). To study the relationship

between CD4 cell percentage and measuring time, patient’s age and CD4 cell percentage

before infection, we can look at the parameter estimates together with the nonparametric

single-index function estimate. Since the general trend for the single-index function is de-

creasing in Figure 3.2 by SMGEE, together with the sign and magnitude of the parameter
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Table 3.4: Performance comparisons of the estimates of the parameters and single-index
function for estimation methods WI, SGEE and SMGEE. The data were generated using
PLSIM with nonstationary residual variance and ARMA(1,1) correlation (γ = 0.75, ν =
0.6). The misspecified AR(1) was applied to model the correlation structure. All the values
are in percentage. SE stands for Monte Carlo standard error, SWSE stands for empirical
asymptotic standard error and AMSE stands for averaged mean squared error.

Sample
Size

Models
β1 β2 θ1 θ2 θ3 φ(·)

SE SWSE SE SWSE SE SWSE SE SWSE SE SWSE AMSE

n = 30
m̄ = 10

WI 4.20 4.24 4.26 4.29 3.44 3.53 3.93 4.09 2.95 2.95 2.09
SGEE 3.01 3.06 2.89 2.85 2.06 2.14 2.70 2.81 2.28 2.35 1.88

SMGEE 2.97 3.05 2.84 2.75 2.02 1.99 2.69 2.77 2.31 2.36 1.35

n = 50
m̄ = 10

WI 3.15 3.13 2.95 3.04 2.75 2.79 2.83 2.90 2.36 2.46 1.54
SGEE 2.83 2.85 2.20 2.28 1.62 1.70 1.40 1.48 2.04 2.10 1.39

SMGEE 2.80 2.79 2.21 2.26 1.63 1.68 1.42 1.48 2.07 2.11 0.94

n = 100
m̄ = 10

WI 2.66 2.69 2.56 2.64 1.85 1.93 2.08 2.11 1.88 1.84 1.30
SGEE 1.92 2.01 1.70 1.72 1.11 1.14 1.68 1.72 1.34 1.36 1.02

SMGEE 1.94 1.98 1.68 1.70 1.07 1.12 1.70 1.72 1.33 1.35 0.76

estimates by SMGEE, the CD4 cell percentage is negatively related to the measuring time

and patient’s age, but is positively related to the CD4 cell percentage before infection. It

means that as time goes by, for patients with older age and less CD4 cell percentage before

infection, the HIV condition is generally worse. The CD4 cell percentage drops slowly at

first, stays stable for a while afterwards and then drops sharply.

Table 3.5: Parameter estimates by WI, SGEE and SMGEE and their standard errors for
the CD4 data.

Model
Estimates

WI SGEE SMSEE
Estimate SE Estimate SE Estimate SE

β 0.044 0.058 0.050 0.055 0.046 0.052
θ1 0.880 0.036 0.842 0.033 0.827 0.033
θ2 0.065 0.013 0.061 0.009 0.057 0.008
θ3 −0.470 0.041 −0.536 0.040 −0.559 0.040
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Figure 3.1: Scatterplots associated with the local linear approximation and a side-by-side
boxplot for the CD4 Percentage versus each individual predictor variable. Top left: Scat-
terplot of the CD4 Percentage vs. Measuring Time; Top right: Scatterplot of the CD4
Percentage vs. Patients’ Age; Bottom left: Scatterplot of the CD4 Percentage vs. the CD4
Percentage before Infection; Bottom right: Side-by-side boxplot of the CD4 Percentage
vs. Smoking Status.

3.5.2 Debt Maturity Data Analysis

The debt maturity data previously analyzed by Ma et al. (2014) with the quadratic

inference function method have 328 unregulated firms with indexes observed annually

for 10 years from 1980 to 1989. The response variable is the log transformation of the

debt maturity index of the firms since the index is highly right skewed. Similar to the

exploratory data analysis of CD4 data, when judging from the scatter plots of the response

versus each predictor, we select two binary variables X1 and X2 as the covariates in the

linear component. Here X1 = Low bond being 1 only if the firm has a rating of CCC

or unrated. Similarly, X2 = High bond being 1 only if the firm has a rating of AA or

higher. There are four covariates in the nonlinear single-index component. They are Z1 =
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Figure 3.2: Estimated single-index function and its 95% bootstrap confidence band for the
CD4 data by WI, SGEE and SMGEE. The red dotted curves are for WI. The blue dashed
curves are for SGEE. The green solid curves are for SMGEE.

Leverage of a firm defined as the ratio of total debt to the market value, Z2 = Asset

Maturity which is the value-weighted average of the maturities of current assets and net

property, plant, and equipment, Z3 = MV/BV defined as the market value of the firm
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scaled by the assets value, and Z4 = VAR, the ratio of the standard deviation of the first

difference in earnings before interest, depreciation, and taxes to the average of assets over

the ten year period. Model (3.1) is fitted to the data with i = 1, . . . , 328 and j = 1, . . . , 10,

β = (β1, β2)
T and θ = (θ1, θ2, θ3, θ4)

T.

Assuming the AR(1) working correlation structure, we compared the parameter esti-

mates by SMGEE with those by WI and SGEE. The results are listed in Table 3.6. More-

over, the estimated single-index function evaluated at ZT
ijθ̂ and its pointwise 95% bootstrap

confidence band are shown in Figure 3.3. They are obtained with WI, SGEE and SMGEE

respectively. Table 3.6 shows again that the three methods have different standard errors.

Similarly to the results for the CD4 data, the SMGEE method leads to the smallest stan-

dard errors of the parameter estimates. Comparing the estimated single-index function in

Figure 3.3, the patterns are different with the narrowest confidence band for the SMGEE

method in the middle range where 1 < u < 5.

From the linear component of the fitted model by SMGEE, we see that the firms debt

maturity index is negatively related to both low bond and high bond, and low bond has a

more significant negative effect on the debt maturity. The estimated single-index function

by SMGEE increases sharply in the beginning and at the end, and is steady in the middle

range. In general, the trend for the single-index function is increasing. Together with

the sign and magnitude of parameter estimates, the firms debt maturity index is positively

related to the leverage and assets maturities, slightly positively related to the scaled market

value, but is negatively related to the VAR index.

3.6 Concluding Remarks

In this chapter, we proposed a three-stage procedure to estimate the parameters and the

unknown single-index function in partially linear single-index models under the general

sparse longitudinal setting. The parameter estimators have been shown to be semiparamet-
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Table 3.6: Parameter estimates by WI, SGEE and SMGEE and their standard errors for
the debt maturity data.

Model
Estimates

WI SGEE SMSEE
Estimate SE Estimate SE Estimate SE

β1 −0.357 0.037 −0.348 0.030 −0.346 0.027
β2 −0.136 0.046 −0.115 0.045 −0.121 0.044
θ1 0.843 0.009 0.796 0.009 0.782 0.007
θ2 0.535 0.097 0.596 0.095 0.612 0.089
θ3 −0.022 0.017 0.048 0.014 0.064 0.012
θ4 −0.050 0.020 −0.098 0.016 −0.102 0.016

rically efficient. Furthermore, the single-index function estimator is not only more efficient

than the working independence estimator of Chen et al. (2015), but also achieves the min-

imum asymptotic variance among a class of estimators when the covariance matrices are

correctly specified. These analytic results are supported by our empirical studies.
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Figure 3.3: Estimated single-index function and its 95% bootstrap confidence band for the
debt maturity data by WI, SGEE and SMGEE. The red dotted curves are for WI. The blue
dashed curves are for SGEE. The green solid curves are for SMGEE.

72



4. GENERALIZED PARTIALLY LINEAR SINGLE-INDEX MODELS FOR

LONGITUDINAL DATA

We study generalized partially linear single-index models for longitudinal data in this

chapter. We propose a method to efficiently estimate both the parameters and the non-

parametric single-index function in generalized partially linear single-index models when

subjects are observed or measured over time. This is an extension of the method devel-

oped in Chapter 3. The proposed estimation approach is more flexible and more general

in that we can model both categorical response and transformation-necessary response

such as heavy-tailed variable with multiple covariates, especially when some covariates

are parametrically correlated with the response and the others are nonparametrically cor-

related with the response. With minimal assumptions, we show that the semiparametric

information bound is reached for the parameter estimators. We also show that the asymp-

totic variance of the single-index function estimator is generally less than that of existing

estimators. Furthermore, we provide Monte Carlo simulation results and an empirical data

analysis that support our new method.

4.1 Introduction

Semiparametric models are flexible in statistical modeling with their advantages of

incorporating both the parametric and nonparametric components. It is popular in eco-

nomics, biomedical science and many other research fields. The generalized partially lin-

ear single-index model is one of semiparametric models proposed by Carroll et al. (1997).

Suppose we have an univariate response variable Y and possibly multi-dimensional co-
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variates X and W. GPLSIM has the form

E(Y |X = x,W = w) = µ(x,w),

g−1{µ(x,w)} = xTβ + γ(wTα),

(4.1)

where β and α are possibly multi-dimensional parameters associated with predictors X

and W respectively, x and w are the realizations of X and W respectively and γ(·) is

an unknown function, referred to as the single-index function hereafter. Besides, g−1(·)

is assumed to be a known monotonic and differentiable link function. The goal is to

estimate the parameters β and α and the single-index function γ(·) in (4.1). GPLSIM

is the generalized model of several types of models. When the single-index function is

the identity function, it becomes the generalized linear model (Nelder and Baker (2004)).

When there are no covariates X, it becomes the generalized single-index model (Ichimura

(1993)). When W is one-dimensional, it becomes the generalized partially linear model

(Chen and Shiau (1994)). When the link function g−1(·) is the identity function and Y is

continuous, it becomes the partially linear single-index model (Carroll et al. (1997), Chen

et al. (2015)). Therefore, efficient estimation of GLSIM is of major interest in that it can

unify the estimation of several important models above and has broad applications.

Partially linear single-index models has been studied extensively for independent and

identically distributed (i.i.d.) data. In the i.i.d. case, researchers have proposed a variety

of methods for the mean function estimation. Carroll et al. (1997) proposed GPLSIM and

the maximum quasi-likelihood method to estimate the parameters as well as the single-

index function. Yu and Ruppert (2002) proposed the penalized spline estimation approach

for PLSIM. Zhu and Xue (2006) provided the empirical likelihood confidence regions for

parameters of this model. To extend the work of Liang and Zeger (1986) on generalized

linear models for longitudinal data, Liang et al. (2010) proposed profile estimation method
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for the parameters and single-index function for PLSIM and obtained the semiparametric

efficient parameter estimators. Xia et al. (1999) and Xia and Härdle (2006) studied the

theoretical properties of estimators and extended the conditions for estimating PLSIM.

However, there are limited research on GPLSIM for dependent or correlated data, es-

pecially in the case of longitudinal/clustered data. There are some related literature dis-

cussing the problem of mean function estimation in longitudinal data. Lin and Carroll

(2000, 2001) studied nonparametric function estimation for clustered data under various

settings. They showed that for the profile-kernel GEE method, the estimated parameters

in partially linear models are not semiparametric efficient and the most efficient estimators

are obtained by ignoring the dependence and undersmoothing the nonparametric func-

tion. Wang (2003) proposed the marginal kernel generalized estimation equation (GEE)

method for the mean function in nonparametric regression to account for within-subject

correlation. Wang et al. (2005) extended this method to generalized partially linear mod-

els and showed that the parameter estimators reach the semiparametric efficiency bound

under some mild conditions. Huang et al. (2007) proposed spline-based additive mod-

els for partially linear models and Cheng et al. (2014) extended the results to generalized

partially linear additive models. They also showed that the parameter estimators are semi-

parametric efficient. Li et al. (2010) proposed a bias-corrected block empirical likelihood

inference for partially linear single-index models and provided confidence regions for the

parameters. Chen et al. (2015) proposed a unified semiparametric GEE analysis for par-

tially linear single-index models for both sparse and dense longitudinal data. In Chapter

3 we discussed how to efficiently estimate the parameters and the single-index function

in partially linear single-index models for longitudinal data. The main objective of Chap-

ter 4 is to extend the work in Chapter 3 to GPLSIM and propose efficient estimators in a

generalized approach.

The remainder of the chapter is organized as follows. In Section 4.2, the main problem
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is defined and the estimation method is introduced. In Section 4.3, the main theoretical

results as well as the detailed proofs are presented. Simulation studies are performed in

Section 4.4 to demonstrate the methodology and a real data analysis is given in Section

4.5 to apply the proposed method. Some concluding remarks are given in Section 4.6.

4.2 Methodology

One of the most common approaches to analyze longitudinal data is by assuming

marginal models; see Pepe and Anderson (1994). Consider the marginal longitudinal gen-

eralized partially linear single-index model

E(Yij|Xi,Wi) = E(Yij|Xij,Wij) = µij,

g−1(µij) = XT
ijβ + γ(WT

ijα)

(4.2)

for i = 1, . . . , n and j = 1, . . . ,mi. Besides, g−1(·) is assumed to be a known monotonic

and differentiable link function. This model extends model (4.1) for the i.i.d. case. Vari-

able Yij indicates the univariate response of the jth observation/measurement for subject

i. Multivariate covariates Xij and Wij of dimensions r and s respectively are defined

similarly. Joining together, Xi = (Xi1, . . . ,Ximi
)T and Wi = (Wi1, . . . ,Wimi

)T are co-

variates matrices for subject i. In this work we focus on the sparse case, i.e., max1≤i≤n(mi)

is bounded as n→∞.

The parameters ξ = (βT,αT)T with dimensions r and s and the univariate single-

index function γ(·) are to be estimated. To ensure identifiability, we make restrictions that

||α|| = 1 and the first element of α is positive. Let K(·) be a symmetric kernel density

function defined in Condition (C1) in Section 4.3, Kh(x) = h−1K(x/h) with bandwidth

h and D be the domain of WT
ijα defined in Condition (C2). The algorithm for estimating

the parameters and the single-index function has the following three stages.
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(I) For z ∈ D and fixed ξ, denote a1(z, ξ) = {γ̃(z, ξ), γ̃(1)(z, ξ)}T as the solution to

1

n

n∑
i=1

mi∑
j=1

(1,WT
ijα− z)Tµ(1)(ξ, a1, z)Kh(W

T
ijα− z)

{Yij − µ(ξ, a1, z)} = 0,

(4.3)

where µ(ξ, a1, z) and µ(1)(ξ, a1, z) are g(·) and its first derivative evaluated at XT
ijβ+

(1,WT
ijα− z)Ta1(z, ξ).

Given estimated γ̃(·), let ξ̃ = (β̃
T
, α̃T)T be the solution to

1

n

n∑
i=1

mi∑
j=1

∂g{XT
ijβ + γ̃(WT

ijα)}T

∂ξ

[
Yij − g

{
XT
ijβ + γ̃(WT

ijα)
}]

= 0. (4.4)

Iterating Stage (I) until convergence, we obtain the initial estimates ξ̃ and γ̃(z),

z ∈ D.

(II) Estimate the true covariance matrices Vi with the working covariance matrices Ci,

i = 1, . . . , n. With the estimated mean function µ̂(·) at observed values, the esti-

mated working covariance matrices Ĉi can be decomposed into the estimated stan-

dard deviation matrices and the estimated correlation matrices components with the

following equation:

Ĉi = diag(si1, . . . , simi
)Ri(ρ̂)diag(si1, . . . , simi

),

where sij is the estimated standard deviation of Yij and Ri(ρ̂) is the working corre-

lation matrix with estimated parameters ρ̂ for subject i, i = 1, . . . , n.

(III) Denote aT
2 = (a1, a2) = {γ̂(z, ξ), γ̂(1)(z, ξ)} and Gij = [kj,kj(W

T
ijα− z)] which

is an mi × 2 matrix, where kj denotes the indicator vector with jth entry equal to
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1, and 0 elsewhere, j = 1, . . . ,mi. Further denote γ[m](·) as the estimate of γ(·) in

the mth step. Then in the (m + 1)th estimation step, a2 solves the kernel-weighted

estimating equation

1

n

n∑
i=1

mi∑
j=1

Kh(W
T
ijα− z)µ(1)(ξ, a2, z)G

T
ijĈ

−1
i[

Yi − µ∗
{
z,Xi,Wi, ξ, γ[m](·)

}]
= 0,

(4.5)

where Yi = (Yi1, . . . , Yimi
)T and the kth element of themi×1 vector µ∗{z,Xi,Wi,

ξ, γ[m](·)} is

g
[
XT
ikβ + I(k = j){a1 + a2(W

T
ijα− z)}+ I(k 6= j)γ[m](W

T
ikα)

]
for k = 1, . . . ,mi. Here I(·) is the indicator function.

Given estimated γ̂(z, ξ̂), the parameters ξ = (βT,αT)T are estimated by solving

the GEE

1

n

n∑
i=1

∂g{Xiβ + γ̂(Wiα)}T

∂ξ
Ĉ−1i

[
Yi − g

{
Xiβ + γ̂(Wiα)

}]
= 0, (4.6)

where γ̂(Wiα) = (γ̂(WT
i1α), . . ., γ̂(WT

imi
α))T. We obtain the final parameter

estimate ξ̂ and the single-index function estimate γ̂(z, ξ̂) = γ̂(z) by iterating Stage

(III).

Note that at Stages (I) and (III), we can use the Newton-Raphson algorithm to update

the estimates for ξ. Moreover, for the within-subject covariances estimation at Stage (II),

we have different approaches for each type of link function in generalized models. For

example, for the identity link function and the working correlation matrix AR(1), we can

estimate the variance component with local linear approximation and estimate the param-
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eter in AR(1) with the quasi-likelihood method or with the minimum generalized variance

method; see Fan and Wu (2008). For binary response data with logit link function, the

standard deviation is estimated by ŝij = µ̂ij(1 − µ̂ij). Assuming the working correlation

matrix is compound symmetry with parameter ρ, we estimate the parameter ρ by

ρ̂ =
2∑n

i=1mi(mi − 1)

n∑
i=1

mi∑
j=2

j−1∑
j′=1

(Yij − µ̂ij)(Yij′ − µ̂ij′)
{µ̂ij(1− µ̂ij)µ̂ij′(1− µ̂ij′)}1/2

.

For other types of generalized models, the working covariance matrices can be estimated

in a similar way; see Prentice (1988) and Chan (2014).

4.3 Theoretical Properties

In this section, we explore the asymptotic properties of the parameter estimators and

the single-index function estimator obtained in Section 4.2. First of all, we list the neces-

sary conditions for the proposed method. Under the given conditions, we first analyze the

theoretical results for the parameter estimators. We derive that under some mild condi-

tions the parameter estimators are asymptotically consistent and normal. The asymptotic

variance is also specified. Furthermore, we obtain the asymptotic properties for the single-

index function estimator. From now on we assume that the true parameters in (4.2) are

ξ0 = (βT
0 ,α

T
0 )T and the true single-index function is γ0(·).

In our theoretical development, we assume the following conditions.

(C1) Kernel function K(·) is symmetric and bounded with a compact support, and has

a continuous first derivative, denoted by K(1)(·). Furthermore, when n → ∞, h → 0,

nh8 → 0 and log(1/h)/(nh)→ 0.

(C2) The density of WT
ijα, denoted by pij(z), is positive and has second continuous

derivatives in the domain D = {z = WT
ijα : Wij ∈ W ,α ∈ Θ} whereW is a compact

support for Wij and Θ is a compact parameter space for α. In addition, the joint density
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of (WT
ijα,W

T
ikα), denoted by pijk(z1, z2), z1, z2 ∈ D has first partial derivatives. i =

1, . . . , n, j = 1, . . . ,mi and k = 1, . . . ,mi. Furthermore, supz∈D E(||Xij||2|WT
ijα = z)

and supz∈D E(||Wij||2|WT
ijα = z) are bounded for all i = 1, . . . , n, j = 1, . . . ,mi.

(C3) The true covariance matrices Vi and the estimated working covariance matrices

Ĉi are non-negative definite matrices for all i = 1, . . . , n.

(C4) γ(·) and g(·) have second continuous derivatives.

In Condition (C1), some common regularity and smoothness conditions are given for

the kernel function. Besides, we make some mild conditions on bandwidths to allow the

asymptotic results of the parameter estimators and the single-index function estimator to

be valid. In Condition (C2), we assume some conditions on the domain and the compact

support for random variables. We also need the second moments to exist to make the

proposed parameter and the single-index function estimators to be consistent and asymp-

totically normal. Condition (C3) guarantees that both the true covariance matrices and

the estimated working covariance matrices are invertible, since the inverse of the matri-

ces are used when estimating the parameters in generalized estimating equations at Stage

(III). The smoothness conditions in Condition (C4) for the single-index function and the

link function are required to guarantee that the theoretical results are well founded and the

estimated single-index function is smooth.

4.3.1 Semiparametric Information Bound

We now derive the semiparametric efficiency bound for parameter estimators in GPLSIM

with the projection method first proposed by Bickel et al. (1993). First we define model

(4.2) by B and four submodels of B as follows:

B1: Model B with only ξ0 unknown;

B2: Model B with only γ0(·) unknown;

B3: Model B with both ξ0 and γ0(·) known;
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B4: Model B with only γ0(·) known.

In order to obtain the semiparametric efficient score for model B, we further denote Sξ as

the score function in submodel B1 and denote TBl as the tangent space for submodel Bl for

l = 2, 3. With the projection method, we have the following equation for the semipara-

metric efficient score Ss of model B:

Ss = Sξ − proj(Sξ|TB3)− proj(Sξ|projT⊥
B3

TB2), (4.7)

where B⊥ is the perpendicular space of model B, proj(Sξ|R) is the projection of score

function Sξ on space R and projS1S2 is the projection of space S2 on space S1.

From the definition of the submodels above, B1 is a subspace of B4 associated with

the finite dimensional component and B3 s a subspace of B4 associated with the infinite

dimensional component. By applying the projection method, Sξ − proj(Sξ|TB3) is the

efficient score for ξ0 in model B4. Lemma A4 in Huang et al. (2007) indicates that

proj(Sξ|T
⊥
B3) =

n∑
i=1

(Xi,W
∗
i )

T∆iV
−1
i

[
Yi − g

{
Xiβ0 + γ0(Wiα0)

}]
, (4.8)

and when considering the parametric submodels of B2, we have the following result:

projT⊥
B3

TB2 =

{
n∑
i=1

τTn (Wiα0)∆iV
−1
i

[
Yi − g

{
Xiβ0 + γ0(Wiα0)

}]
,

τn(·) ∈ L2

}
. (4.9)

Here τn(·) is any integrable function in the L2 norm. With the result in (4.8) and (4.9) and

then referring back to (4.7), we have

Ss =
n∑
i=1

(X̃i,s,W̃i,s)
T∆iV

−1
i

[
Yi − g

{
Xiβ0 + γ0(Wiα0)

}]
,
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where X̃i,s = Xi − τn,β(Wiα0), W̃i,s = W∗
i − τn,α(Wiα0) for some functions τ

n,β(·)

and τn,α(·) in the L2 norm. The requirement for τ
n,β(·) and τn,α(·) is that Ss should be

orthogonal to projT⊥
B3

TB2 . As a result,

1

n

n∑
i=1

E
{

X̃T
i,s∆iV

−1
i ∆iτn(Wiα0)

}
= 0, (4.10)

and

1

n

n∑
i=1

E
{

W̃T
i,s∆iV

−1
i ∆iτn(Wiα0)

}
= 0, (4.11)

where τTn (Wiα0) = {τn(WT
i1α0), . . . , τn(WT

imi
α0)} and for all τn(·) in the L2 norm.

The existence and uniqueness of the semiparametric score function Ss for model B are

guaranteed by the projection method.

Therefore, we have the semiparametric efficient score function of ξ and the semipara-

metric information bound U(ξ0) summarized in the following theorem:

Theorem 4.3.1. Assume that the conditions in Conditions (C2)–(C4) hold. Then the semi-

parametric efficient score function of ξ for GPLSIM in model (4.2) is

Ss =
n∑
i=1

(X̃i,s,W̃i,s)
T∆iV

−1
i

[
Yi − g

{
Xiβ0 + γ0(Wiα0)

}]
.

Therefore, we have the semiparametric information bound U(ξ0) by

U(ξ0) = { lim
n→∞

1

n
E(SsS

T
s )}−1 =

[
lim
n→∞

1

n

n∑
i=1

E
{

(X̃i,s,W̃i,s)
T∆iV

−1
i ∆i(X̃i,s,W̃i,s)

}]−1
.
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4.3.2 Theory for the Single-Index Function Estimator

Let k0 =
∫
z2K(z)dz, k1 =

∫
K2(z)dz. Furthermore, let cjji and ηi,jj be the (j, j)th

element of C−1i and C−1i ViC
−1
i respectively. The following theorem gives the asymptotic

properties of the single-index function estimator.

Theorem 4.3.2. Assume that the regularity and smoothness conditions in Conditions (C1)–

(C4) hold. Then for z ∈ D we have

√
nh{γ̂(z)− γ0(z)− k0b(z)h2} D−→ N(0, σ2

γ(z)), (4.12)

where

σ2
γ(z) = k1

limn→∞
1
n

∑n
i=1

∑mi

j=1 E{(µ(1)
ij )2|WT

ijα = z}ηi,jjpij(z)[
limn→∞

1
n

∑n
i=1

∑mi

j=1 E
{

(µ
(1)
ij )2|WT

ijα = z
}
cjji pij(z)

]2 ,
and b(z) satisfies

b(z) +

∫
b(v)ω(z, v)dv =

1

2
γ
(2)
0 (z)

with

ω(z, v) =
limn→∞

1
n

∑n
i=1

∑mi

j=1

∑
k 6=j E(µ

(1)
ij c

jk
i µ

(1)
ik |WT

ijα = z)pijk(z, v)

limn→∞
1
n

∑n
i=1

∑mi

j=1 E{(µ(1)
ij )2cjji |WT

ijα = v}pij(v)
.

The proof of Theorem 4.3.2 is given in Proof 4.3.2 below.

Proof. From Equation (4.3) with the second-order Taylor expansion, given that the param-
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eters are evaluated at true values, we have

γ̃(z, ξ0)− γ0(z) = { 1

n

n∑
i=1

mi∑
j=1

E(∆2
ijj|WT

ijα0 = z)pij(z)}−1

× 1

n

n∑
i=1

mi∑
j=1

µ
(1)
ij Kh(W

T
ijα0 − z)(Yij − µij)

+
1

2
c0γ

(2)
0 (z)h2 + op{h2 + (nh)−1/2}. (4.13)

Similarly to (4.13), from Equation (4.5) at Stage (III), we have the one-step update γ̂(1) of

γ̃ as follows:

γ̂(1)(z, ξ0)− γ0(z) = e−1n (z)(H1n +H2n) + op{h2 + (nh)−1/2}, (4.14)

where

en(z) =
1

n

n∑
i=1

mi∑
j=1

E(cjji ∆2
ijj|WT

ijα0 = z}pij(z),

H1n =
1

n

n∑
i=1

mi∑
j=1

Kh(W
T
ijα0 − z)µ

(1)
ij c

jj
i

[
Yij − g

{
XT
ijβ0 − γ0(z)

− γ(1)0 (z)(WT
ijα0 − z)

}]
+

1

n

n∑
i=1

mi∑
j=1

Kh(W
T
ijα0 − z)µ

(1)
ij

{∑
k 6=j

cjki (Yik − µik)
}
,

H2n = − 1

n

n∑
i=1

mi∑
j=1

Kh(W
T
ijα0 − z)µ

(1)
ij

[∑
k 6=j

cjki
{
γ̃(WT

ikα0)− γ0(WT
ikα0)

}]
.

Using (4.13) in H2n leads to the following re-expression of (4.14):

γ̃(1)(z, ξ0)− γ0(z) = J1n(z) + J2n(z) +
1

2
k0bn,1(z)h2 + op{h2 + (nh)−1/2}, (4.15)
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where

J1n(z) = e−1n (z)
1

n

n∑
i=1

mi∑
j=1

Kh(W
T
ijα0 − z)µ

(1)
ij {

mi∑
k=1

cjki (Yik − µik)},

J2n(z) = − e−1n (z)
1

n

n∑
i=1

mi∑
j=1

µ
(1)
ij c

jj
i Ln(z,WT

ijα0)(Yij − µij),

Ln(z1, z2) =
1

n

n∑
i=1

mi∑
j=1

∑
k 6=j

E
{

∆ijjc
jk
i ∆ikke

−1
n (WT

ikα0)|WT
ijα0 = z1,W

T
ikα0 = z2

}
× pijk(z1, z2),

bn,0(z) = γ
(2)
0 (z),

bn,t(z) = γ
(2)
0 (z)− e−1n (z)

1

n

n∑
i=1

mi∑
j=1

∑
k 6=j

E{∆ijjc
jk
i ∆ikkbn,t−1(W

T
ikα0)|WT

ilα0 = z}

× pij(z),

for t = 1, 2, . . .. For the second iteration step, by applying the result in (4.15), we have an

equation similar to (4.14) by replacing γ̃(WT
ikα0)−γ0(z) inH2n with γ̂(1)(WT

ikα0)−γ0(z)

which leads to the following equation:

γ̂(2)(z, ξ0)− γ0(z) = e−1n (z)(H1n +H3n) + op{h2 + (nh)−1/2},

where

H3n = − 1

n

n∑
i=1

mi∑
j=1

Kh(W
T
ijα0 − z)µ

(1)
ij

[∑
k 6=j

cjki
{
J1n(WT

ikα0) + J2n(WT
ikα0)

+
1

2
k0bn,1(W

T
ikα0)h

2
}]
.
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We can obtain the asymptotic bias term as

1

2
k0h

2
[
γ
(2)
0 (z)− e−1n (z)

1

n

n∑
i=1

mi∑
j=1

∑
k 6=j

E
{

∆jjc
jk
i ∆kkbn,1(W

T
ikα0)

}
pij(z)

]
=

1

2
k0bn,2(z).

Now we extend the above results to the tth (t ≥ 2) iteration step. First define

An(Ln; z1, z2) = − 1

n

n∑
i=1

mi∑
j=1

∑
k 6=j

E
{

∆jjc
jk
i ∆kke

−1
n (WT

ikα0)Ln(WT
ikα0, z2)

}
pij(z1),

Q1n,t = e−1n (z)
1

n

n∑
i=1

mi∑
j=1

µ
(1)
ij G

t
n,1(z,W

T
ijα0)

{ mi∑
k=1

cjki (Yik − µik)
}
,

Q2n,t = e−1n (z)
1

n

n∑
i=1

mi∑
j=1

µ
(1)
ij c

jj
i G

t
n,2(z,W

T
ijα0)(Yij − µij),

where G1
n,1(z1, z2) = 0, Gt

n,1(z1, z2) = −Ln(z1, z2) + An(Gl−1
n,1 ; z1, z2), G1

n,2(z1, z2) =

−Ln(z1, z2), and Gt
n,2(z1, z2) = An(Gt−1

n,2 ; z1, z2). Now we have the following expansion:

γ̂(t)(z, ξ0)− γ0(z) = J1n +Q1n,t +Q2n,t +
1

2
k0bn,t(z)h2 + op{h2 + (nh)−1/2}. (4.16)

At convergence, we replace bn,t, Gt
n,1, G

t
n,2 with their limits bn, Gn,1 and Gn,2, So γ̂(z)−

γ0(z) satisfies the following equation:

bn(z) = γ
(2)
0 (z)− e−1n (z)

1

n

n∑
i=1

mi∑
j=1

∑
k 6=j

E
{

∆jjc
jk
i ∆kkbn(WT

ikα0)
}
pij(z),

Gn,1(z1, z2) = − Ln(z1, z2) + An(Gn,1; z1, z2),

Gn,2(z1, z2) = An(Gn,2; z1, z2).

(4.17)

Since E(Q1n,t) = E(Q2n,t) = 0 and the variances ofQ1n,t andQ2n,t are of orderO(n−1) =
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o{(nh)−1}, we have Q1n,t = Q2n,t = op{(nh)−1/2}. Thus, Equation (4.16) can be simpli-

fied as

γ̂(t)(z, ξ0)− γ0(z) = J1n(z) +
1

2
k0bn,t(z)h2 + op{h2 + (nh)−1/2}.

It is now trivial to see that

γ̂(z)− γ0(z) = e−1n (z)
1

n

n∑
i=1

mi∑
j=1

Kh(W
T
ijα0 − z)µ

(1)
ij

{ mi∑
k=1

cjki (Yik − µik)
}

+ k0

[h2γ(2)0 (z)

2
−h2e−1n (z)

1

n

n∑
i=1

mi∑
j=1

∑
k 6=j

E
{

∆jjc
jk
i ∆kkb(W

T
ikα0)

}
pij(z)

]
+ op{h2 + (nh)−1/2},

which leads to the result in Theorem 4.3.2.

Similarly to the theoretical results for the parameter estimators, by applying the ex-

tended Cauchy-Schwarz inequality and some calculations, we can derive that the asymp-

totic variance of γ̂(z) is minimized when the covariance matrices are correctly specified.

Furthermore, when the covariance matrices are correctly specified, the asymptotic variance

of γ̂(z) is generally smaller than the asymptotic variance of γ̃(z), the working indepen-

dence estimator for the single-index function. The detailed proof is similar to the proof in

Chapter 3.
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4.3.3 Theory for the Parameter Estimators

To obtain theoretical results for the parameter estimators, we have the following nota-

tion. When n→∞, we have

λ
n,β(z, ξ̂) = −∂γ̂(z, ξ)

∂βT
|
ξ=ξ̂

P→ λβ(z), λn,α(z, ξ̂) = −∂γ̂(z, ξ)

∂αT
|
ξ=ξ̂

P→ λα(z),

(4.18)

where P→ indicates convergence in probability. Further define

Σ0 = lim
n→∞

1

n

n∑
i=1

E
{

(X̃i,W̃i)
T∆iC

−1
i ∆i(X̃i,W̃i)

}
,

Σ1 = lim
n→∞

1

n

n∑
i=1

E
{

(X̃i,W̃i)
T∆iC

−1
i ViC

−1
i ∆i(X̃i,W̃i)

}
,

(4.19)

where (X̃i,W̃i) = {Xi−λβ(Wiα0),W
∗
i −λα(Wiα0)} and ∆i is themi×mi diagonal

matrix with its (j, j)th element ∆ijj being g(1){XT
ijβ0 + γ0(W

T
ijα0)}. Here g(1)(·) indi-

cates the first derivative of g(·) and W∗
i = {γ(1)0 (Wiα0)⊗ 1T

s } ◦ Zi, where 1s is a vector

of 1 of dimension s, ⊗ is the Kronecker product and ◦ is the component-wise product.

Assume that Σ0 and Σ1 are non-negative definite matrices. Then we have the following

theorem.

Theorem 4.3.3. Assume that the regularity and smoothness conditions in Conditions (C1)–

(C4) are satisfied. Then

n1/2(ξ̂ − ξ0)
D−→ N(0,Σ−10 Σ1Σ

−1
0 ), (4.20)

where D−→ denotes convergence in distribution.

The proof of Theorem 4.3.3 is given below.
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Proof. In the proof of the asymptotic properties of the parameter estimators, it is required

that the single-index function estimator is uniformly consistent. As a result, the con-

vergence rate of the single-index function estimator changes from op{h2 + (nh)−1/2} to

op(h
2 + {log(n)/nh}1/2).

From (4.6), we have

n−
1
2

n∑
i=1

∂g{Xiβ + γ̂(Wiα)}T

∂ξ
|
ξ=ξ̂

C−1i

[
Yi − g

{
Xiβ̂ + γ̂(Wiα̂)

}]
= 0. (4.21)

Now we apply the first-order Taylor expansion to g
{
Xiβ̂ + γ̂(Wiα̂)

}
at g

{
Xiβ0 +

γ0(Wiα0)
}

. We have

g
{
Xiβ̂ + γ̂(Wiα̂)

}
= g
{
Xiβ0 + γ0(Wiα0)

}
+ g(1)

{
Xiβ0 + γ0(Wiα0)

}
◦ (X̃i,W̃i)(ξ̂ − ξ0)

+ g(1)
{
Xiβ0 + γ0(Wiα0)

}
◦
{
γ̂(Wiα0)− γ0(Wiα0)

}
+ op(n

−1/2). (4.22)

Then by plugging (4.22) into (4.21), we obtain that

n−
1
2

n∑
i=1

(X̃i,W̃i)
Tg(1)

{
Xiβ0 + γ0(Wiα0)

}
◦C−1i[

Yi − g
{
Xiβ0 + γ0(Wiα0)

}
− g(1)

{
Xiβ0 + γ0(Wiα0)

}
◦ (X̃i,W̃i)(ξ̂ − ξ0)

− g(1)
{
Xiβ0 + γ0(Wiα0)

}
◦
{
γ̂(Wiα0)− γ0(Wiα0)

}]
= op(1).

Then it is easy to derive that

1

n

n∑
i=1

(X̃i,W̃i)
T∆iC

−1
i ∆i(X̃i,W̃i)

{
n1/2(ξ̂ − ξ0)

}
=n−

1
2

n∑
i=1

(X̃i,W̃i)
T∆iC

−1
i

[
Yi − g

{
Xiβ0 + γ0(Wiα0)

}
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− g(1)
{
Xiβ0 + γ0(Wiα0)

}
◦
{
γ̂(Wiα0)− γ0(Wiα0)

}]
+ op(1). (4.23)

Then by Equations (4.16) and (4.17) and a second-order bias expansion, it is readily seen

that

L = n−
1
2

n∑
i=1

(X̃i,W̃i)
T∆iC

−1
i g(1)

{
Xiβ0 + γ0(Wiα0)

}
◦
{
γ̂(Wiα0)− γ0(Wiα0)

}
= L1 + L2,

where

L1 = n−
1
2
h2

2

[ n∑
i=1

mi∑
j=1

mi∑
k=1

µ
(1)
ij c

jk
i µ

(1)
ik (X̃ij,W̃ij)

{
b(WT

ikα0) + hb1(W
T
ikα0) +Op(h

2)
}]
,

and

L2 = n−
1
2

n∑
i=1

mi∑
j=1

mi∑
k=1

µ
(1)
ij c

jk
i µ

(1)
ik (X̃ij,W̃ij)

(
e−1n (WT

ilα)n−1
n∑

i′=1

mi∑
j′=1

µ
(1)
i′j′

×
[
Kh(W

T
i′j′α−WT

ilα)
{ mi∑
l=1

(ci′)
j′l(Yi′l − µi′l)

}
+ cj

′j′

i′ Gn,2(W
T
ilα,W

T
i′j′α)(Yi′j′ − µi′j′)

+Gn,1(W
T
ilα,W

T
i′j′α)

{ mi∑
l=1

cj
′l
i′ (Yi′l − µi′l)

}])
.

Here b(·) is the first-order and b1(·) is the second-order bias expansion of γ̂(z).

When working covariances Ci are used for Vi, Equations (4.10) and (4.11) are asymp-

totically equivalent to the following equation:

1

n

n∑
i=1

E
{

(X̃i,W̃i)
T∆iC

−1
i ∆iqn(Zi) ◦ fi(Zi)|Zi = zi

}
= 0 (4.24)
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for any function qn(·) ∈ L2, where Zi = Wiα, zi = (z11, . . . , zimi
)T and fi(zi) =

(pi1(zi1), . . . , pimi
(zimi

))T for zij ∈ D, j = 1, . . . ,mi. We can then use arguments similar

to that in Section A.4 of Wang et al. (2005) to obtain that L1 = op(1) if nh8 → 0. As for

L2, rewrite it as L2 = L21 + L22 + L23. Here L21 is asymptotically equivalent to

1

n

n∑
i=1

mi∑
j=1

mi∑
k=1

E
{

(X̃ij,W̃ij)
Tµ

(1)
ij c

jk
i µ

(1)
ik e
−1
n (Zik)|Zik = z

}
pik(z)|z=WT

i′j′α0

with Zik = WT
ikα0, which converges to 0 in probability by (4.24). Similarly, it can be

shown by the Central Limit Theorem that L22 = op(1) and L23 = op(1).

Consequently, from (4.23) we have

n
1
2 (ξ̂ − ξ0) = Σ−10 n−

1
2

n∑
i=1

(X̃ij,W̃ij)
T∆iC

−1
i (Yi − µi) + op(1).

By the Central Limit Theorem, Theorem 4.3.3 has been shown.

From Theorem 1, we know that the parameter estimators are asymptotic normal, con-

sistent and with convergence rate Op(n
−1/2). Furthermore, when the covariance matrices

are correctly specified, the asymptotic covariance of the parameter estimators can be sim-

plified from Σ−10 Σ1Σ
−1
0 to

Σ2 = lim
n→∞

1

n

n∑
i=1

E
{

(X̃i,W̃i)
T∆iV

−1
i ∆i(X̃i,W̃i)

}
.

Moreover, by the extended Cauchy-Schwarz inequality, we obtain that the asymp-

totic covariance of the parameter estimators is minimized when the covariance matri-

ces are correctly specified in the sense that for all estimated working covariances Ci,

Σ−10 Σ1Σ
−1
0 − Σ2 is a non-negative definite matrix. We omit the proof here since it is

similar to the proof in Chapter 3.

91



4.3.4 Semiparametric Efficiency of the Proposed Parameter Estimators

To show that the proposed parameter estimators reach semiparametric information

bound, it is equivalent to show that when n → ∞, the limit of τ
n,β(z) is λβ(z) and

the limit of τn,α(z) is λα(z). Actually, the asymptotic covariance of the parameter esti-

mators reaches the semiparametric information bound when Ci = Vi for i = 1, . . . , n.

We formally state this result in the following theorem.

Theorem 4.3.4. Assume that the conditions in Conditions (C1)–(C4) are satisfied and

assume that the covariance matrices are correctly specified. Then the centering part of the

asymptotic covariance of the proposed parameter estimators are asymptotically the same

as the centering part of the asymptotic covariance of semiparametric efficient estimators.

That is, for z ∈ D, when n→∞ we have

τ
n,β(z)

P→ λβ(z) and τn,α(z)
P→ λα(z)

Therefore, the proposed parameter estimators are semiparametrically efficient.

The proof of Theorem 4.3.4 is given in Proof 4.3.4.

Proof. From (4.10) we obtain that κn,βl(·) satisfies the following equation:

τn,βl(z1) = qn,βl(z1)−
∫
Qn(z1, z2)τn,βl(z2)dz2, (4.25)

where

Qn(z1, z2)

=
1
n

∑n
i=1

∑mi

j=1

∑
k 6=j E(∆ijjc

jk
i ∆ikk|WT

ijα = z1,W
T
ikα = z2)pijk(z2, z1)

1
n

∑n
i=1

∑mi

j=1 E(∆2
ijjc

jj
i |WT

ijα = z1)pij(z1)
(4.26)
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and

qn,βl(z) =
1
n

∑n
i=1

∑mi

j=1

∑mi

k=1 E(∆ijjc
jk
i ∆ikk|WT

ijα = z)pij(z)
1
n

∑n
i=1

∑mi

j=1 E(∆2
ijjc

jj
i |WT

ijα = z)pij(z)

for l = 1, . . . , r. When taking the limit of (4.25) as n → ∞, τβ(z) = limn→∞ τn,β(z)

satisfies the Fredholm integral equations of the second kind in the limiting form. Similarly

we have that τn,αl
(·) satisfies the following equation:

τn,αl
(z1) = qn,αl

(z1)−
∫
Qn(z1, z2)τn,αl

(z2)dz2, (4.27)

where

qn,αl
(z) =

1
n

∑n
i=1

∑mi

j=1

∑mi

k=1 E(∆ijjc
jk
i ∆ikkW

∗
ijl|WT

ijα = z)pij(z)
1
n

∑n
i=1

∑mi

j=1 E(∆2
ijjc

jj
i |WT

ijα = z)pij(z)

for l = 1, . . . , s and W ∗
ijl is the lth element of W∗

ij . Moreover, as n → ∞, τα(z) =

limn→∞ τn,α(z) satisfies the Fredholm integral equations of the second kind as well.

To show that the asymptotic covariance of the proposed parameter estimators reach

the semiparametric information bound, it is equivalent to prove that λβ(z) and λα(z)

satisfy the Fredholm integral equations of the second kind in (4.25) and (4.27). In the

following, we only show that λα(z) satisfies (4.27) in the limiting form. The proof of

λβ(z) satisfying (4.25) is similar.

When Ci = Vi for i = 1, . . . , n, Equation (4.5) can be expressed by

1

n

n∑
i=1

mi∑
j=1

Kh(W
T
ijα− z)µ

(1)
ij (ξ, a1, z)c

jj
i

[
Yij − g

{
XT
ijβ + γ̂(z, ξ) + γ̂(1)(z, ξ)

×(WT
ijα− z)

}]
+

1

n

n∑
i=1

mi∑
j=1

∑
k 6=j

Kh(W
T
ijα− z)µ

(1)
ij (ξ, a1, z)c

jk
i
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×
[
Yik − g

{
XT
ikβ + γ̂(WT

ikα, ξ)
}]

= 0. (4.28)

Now we take the partial derivative with respect to α on both sides of (4.28) and then

evaluate the parameters at the true values, obtaining the following equation:

M1n +M2n +M3n +M4n +M5n +M6n = 0, (4.29)

where

M1n =
1

n

n∑
i=1

mi∑
j=1

1

h
K

(1)
h (WT

ijα0 − z)Wijµ
(1)
ij (ξ0, a1, z)c

jj
i

×
[
Yij − g

{
XT
ijβ0 + γ̂(z, ξ0) + γ̂(1)(z, ξ0)(W

T
ijα0 − z)

}]
,

M2n =
1

n

n∑
i=1

mi∑
j=1

∑
k 6=j

1

h
K

(1)
h (WT

ijα0 − z)Wijµ
(1)
ij (ξ0, a1, z)c

jk
i

×
[
Yik − g

{
XT
ikβ0 + γ̂(WT

ikα0, ξ0)
}]
,

M3n =
1

n

n∑
i=1

mi∑
j=1

Kh(W
T
ijα0 − z)µ

(2)
ij (ξ0, a1, z){−λn,α(z, ξ0)

+
∂γ̂(1)(z, ξ0)

∂ξ0
(WT

ijα0 − z) + γ̂(1)(z, ξ0)Wij}cjji[
Yij − g

{
XT
ijβ0 + γ̂(z, ξ0) + γ̂(1)(z, ξ0)(W

T
ijα0 − z)

}]
,

M4n =
1

n

n∑
i=1

mi∑
j=1

∑
k 6=j

Kh(W
T
ijα0 − z)µ

(2)
ij (ξ0, a1, z){−λn,α(z, ξ0)

+
∂γ̂(1)(z, ξ0)

∂ξ0
(WT

ijα0 − z) + γ̂(1)(z, ξ0)Wij}cjki[
Yik − g

{
XT
ikβ0 + γ̂(WT

ikα0, ξ0)
}]
,

M5n =
1

n

n∑
i=1

mi∑
j=1

Kh(W
T
ijα0 − z){µ(1)

ij (ξ0, a1, z)}2cjji {−λn,α(z, ξ0)

+
∂γ̂(1)(z, ξ0)

∂ξ0
(WT

ijα0 − z) + γ̂(1)(z, ξ0)Wij},
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M6n =
1

n

n∑
i=1

mi∑
j=1

∑
k 6=j

Kh(W
T
ijα0 − z)µ

(1)
ij (ξ0, a1, z)c

jk
i µ

(1)
ik (ξ0, a1, z)

×{λn,α(WT
ikα0, ξ0)− γ̂(1)(ZT

ikα0, ξ0)Wik}.

Under Conditions (C1)–(C4), with some lengthy but standard calculations it is seen

that M1n = op(1), M2n = op(1), M3n = op(1) and M4n = op(1) when n→∞. For M5n,

we separate it by M5n = M5n1 + M5n2 + M5n3. When taking expectation with respect to

WT
ijα0, we get M5n2 = op(1) because of the symmetry of the kernel function. For M5n1

and M5n3, we have

E(M5n1) = − 1

n

n∑
i=1

mi∑
j=1

E(∆2
ijj|WT

ijα0 = z)cjji pij(z)λn,α(z, ξ0) + op(1),

E(M5n3) =
1

n

n∑
i=1

mi∑
j=1

E(∆2
ijjWij|WT

ijα0 = z)cjji pij(z)γ̂(1)(z, ξ0) + op(1).

Similarly, after we separate M6n by M6n = M6n1 + M6n2 and take the expectation with

respect to WT
ijα0, we have

E(M6n1) =
1

n

n∑
i=1

mi∑
j=1

∑
k 6=j

E
{

∆ijj∆ikkγ̂
(1)(ZT

ikα0, ξ0)Wik|WT
ijα0 = z

}
cjki pij(z) + op(1),

E(M6n2) =− 1

n

n∑
i=1

mi∑
j=1

∑
k 6=j

∫
E(∆ijj∆ikk|WT

ijα0 = z)cjki λn,α(WT
ikα0, ξ0)

× pijk(z,WT
ikα0)d(WT

ikα0) + op(1).

When n→∞, (4.29) becomes

λα(z)
1

n

n∑
i=1

mi∑
j=1

E(∆2
ijj|WT

ijα0 = z)cjji pij(z)

=
1

n

n∑
i=1

mi∑
j=1

mi∑
k=1

E{∆ijj∆ikkγ
(1)
0 (WT

ijα0)Wik|WT
ijα0 = z}cjki pij(z)
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− 1

n

n∑
i=1

mi∑
j=1

∑
k 6=j

∫
E(∆ijj∆ikk|WT

ijα0 = z)cjki pijk(W
T
ikα0, z)λα(WT

ikα0)

d(WT
ikα0) + op(1). (4.30)

By taking the limit of (4.27) and (4.30), the limiting equations are the same for (4.27)

and (4.30). As a consequence, λα(z) and τα(z) are asymptotically equivalent. Similarly,

after taking the partial derivative with respect to β on both sides of Equation (4.28) and

evaluating each term when n → ∞, λβ(z) and τβ(z) have the same limiting equation as

(4.25). Therefore, λβ(z) and τβ(z) are asymptotically equivalent as well. In conclusion,

the parameter estimators are semiparametrically efficient.

4.4 Monte Carlo Simulations

In this section, we conduct simulation studies in various settings to evaluate the perfor-

mance of the proposed method, denoted by SEE (semiparametric efficient estimators), in

estimating the parameters and the single-index function, in comparison with two existing

methods which have not fully taken into consideration the within-subject correlations. The

first method is totally working independence, denoted by WI. It applies the profile least

square method for the parameters estimation and the local linear approximation for the

single-index function estimation. The second method to be compared with is the method

of Chen et al. (2015) denoted by SGEE. With the initial estimators and working covari-

ances estimation, SGEE incorporates within-subject correlation in GEE for the parameter

estimation, while the local linear approximation is used for the single-index estimation.

Furthermore, we examine the sensitivity of the covariance estimation by comparing the

SEE estimation results with true covariances and estimated covariances.

In the first simulation study, we consider binary partially linear single-index model

in (4.2) with the link function by logit function g−1(p) = log{(p/(1 − p)}. As in Chen
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et al. (2015), parameters β and α have dimensions 2 and 3. Let true values β0 = (2, 1)T,

α0 = (2/3, 1/3, 2/3)T and the single index function γ0(x) = 0.5 sin(x). The covariates

X and W are jointly generated from the multivariate normal distribution with mean zero,

standard deviation 1 and correlation 0.1. The observation times tij are generated in the

same way as in Fan and Wu (2008), i.e., for each subject, there is a set of time points

{1, 2, . . . , 12} with each time point having a chance of 0.2 to be missed. Each simulated

observation time is the sum of a non-missing observation and a randomly generated value

from the uniform [0, 1] distribution. The binary response variable is generated in the same

way as in Chen and Zhou (2011) and Leisch et al. (1998) which can be easily implemented

by the “bindata” package in R. For the within-subject correlation structure, we use com-

pound symmetry with ρ = 0.75 so that for Yi(tj) = Yij , cor(Yi(t1), Yi(t2)) = ρ, t1 6= t2.

The estimated variance term is calculated with the estimated mean.

In the second simulation study, we consider Poisson partially linear single-index model

with the log link function. The parameters β and α, covariates X and W, the single-index

function as well as the observation times tij are generated in the same way as in the first

simulation study. The correlated Poisson response is generated by the Trivariate Reduction

method; see Mardia (1970) and Xu and Rahman (2004). This method is implemented

in the “corcounts” package in R. We use the compound symmetry correlation function

with ρ = 0.60. The estimated variance term is calculated with the estimated mean. In

optimization steps, simulated annealing method is used (“GenSA” package in R) to find

the global optimal points. The use of simulated annealing method reduces the impact of

initial values selection.

In our simulations, the average time dimensionmi is about 10. The number of subjects

was set to be n = 30, 50 and 100. The leave-one-subject-out cross validation is applied to

select the bandwidths. The simulation repetition is 200 due to heavy computational costs.

The simulation results for simulations 1 and 2 are shown in Tables 4.1 and 4.2. In
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each table, we compare the estimation accuracy for both the parameter estimators and

the single-index function estimator for WI, SGEE and SEE. Specifically, we provide the

Monte Carlo standard errors (SE) and empirical asymptotic standard errors – “sandwich”

standard errors (SWSE) for the parameter estimators, and the averaged mean squared er-

rors (AMSE) for the single-index function estimator. From both tables, we see that for

the parameter estimators, SE and SWSE for SEE are generally smaller than that for SGEE

and WI. For the single-index function estimator, AMSE for SEE are generally smaller than

that for SGEE and WI. The results indicate that in these simulation settings, SEE has better

estimation performance than WI and SGEE, which supports our theoretical findings.

In order to measure the sensitivity of within-subject covariance estimation to the pa-

rameter and single-index function estimation, we evaluated the proposed method in simu-

lation 1 with the estimated covariances and when the true covariances are assumed. The

comparison is limited to a particular case of n = 30 because of the highly computational

complexity. Table 4.3 gives the simulation results of the proposed method with the true

covariances plugged in (Tru-Cov) and with the estimated covariances (Est-Cov). Similarly

to the format of Tables 4.1 and 4.2, we provide SE and SWSE for the parameter estimators

and AMSE for the single-index estimator. While the method with the true covariances

plugged in has smaller SE and SWSE for the parameter estimators and smaller AMSE for

the single-index function estimator, the differences are generally as expected. Therefore,

it seems that the estimation accuracy is not very sensitive to the covariances estimation in

the proposed method with the given sample size even when the sample size is not large.

4.5 An Example of Real Data Analysis

We apply the proposed method to the Indonesian Children’s Health Study (ICHS) data

to analyze the problem of vitamin A deficiency in preschool children in the Aceh Province

of Indonesia. This longitudinal dataset was analyzed by Zeger and Liang (1991) with
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Table 4.1: Empirical comparisons of three methods WI, SGEE and SEE in the case of bi-
nary partially linear single-index model with compound symmetry correlation (ρ = 0.75).
SE = Monte Carlo standard error, SWSE = empirical asymptotic standard error and AMSE
= averaged mean squared error. All the values are in percentage.

n Methods
β1 β2 α1 α2 α3 γ(·)

SE SWSE SE SWSE SE SWSE SE SWSE SE SWSE AMSE

30
WI 3.79 3.81 4.39 4.30 2.78 2.76 3.25 3.21 1.91 1.92 1.70

SGEE 3.71 3.69 4.27 4.20 2.75 2.68 2.87 2.82 1.88 1.91 1.68
SEE 3.55 3.49 4.20 4.16 2.69 2.65 2.86 2.80 1.81 1.80 1.58

50
WI 3.08 3.13 3.42 3.40 2.29 2.31 2.47 2.44 1.44 1.45 1.36

SGEE 2.88 2.88 3.42 3.38 2.27 2.24 2.34 2.40 1.42 1.42 1.30
SEE 2.84 2.82 3.35 3.36 2.15 2.20 2.32 2.34 1.32 1.29 1.20

100
WI 1.35 1.37 1.68 1.65 0.92 0.93 1.17 1.14 0.89 0.87 0.73

SGEE 1.29 1.25 1.61 1.60 0.92 0.90 1.13 1.14 0.81 0.84 0.65
SEE 1.21 1.23 1.56 1.59 0.92 0.86 1.09 1.12 0.78 0.79 0.60

generalized linear models. In this dataset, the binary response variable Yij = 1 indicates

that the ith child suffers from respiratory infection at the jth visit, and 0 otherwise. The

predictor variable is ‘Xerop’ which indicates the presence (1) or absence (0) of xeroph-

thalmia. It is an ocular symptom of the chronic vitamin A deficiency. Other covariates are

‘Time’ which indicates the time passed by; ‘Age’, which, by centering at 36, indicates the

baseline of children’s age in months; ‘Height’, which, by centering at 90%, represents the

percent of the National Center for Health Statistics (NCHS) standard. ‘Height’ indicates

the long-term nutritional status. Chowdhury and Sinha (2015) applied GPLSIM to analyze

ICHS data with different estimating equations which are specifically for binary responses.

However, the dataset they used has a different sample size. In the data that we are analyz-

ing, the sample size n = 275 and the observation time mi ranges from 1 to 6. While in

Chowdhury and Sinha (2015) the sample size n = 137 and mi = m = 4.

Assume that the marginal mean response pij = E(Yij) and the covariates has the fol-
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Table 4.2: Empirical comparisons of three methods WI, SGEE and SEE in the case of
Poisson partially linear single-index model with compound symmetry correlation (ρ =
0.60). SE = Monte Carlo standard error, SWSE = empirical asymptotic standard error and
AMSE = averaged mean squared error. All the values are in percentage.

n Methods
β1 β2 α1 α2 α3 γ(·)

SE SWSE SE SWSE SE SWSE SE SWSE SE SWSE AMSE

30
WI 4.10 4.03 4.80 4.88 3.58 3.47 3.01 3.14 3.09 3.03 2.72

SGEE 4.09 4.07 4.06 4.03 3.34 3.37 2.83 2.77 2.38 2.32 2.37
SEE 3.45 3.38 3.81 3.71 3.11 3.19 2.53 2.51 2.59 2.56 2.29

50
WI 3.20 3.16 3.81 3.75 2.85 2.91 2.43 2.48 2.47 2.44 2.19

SGEE 3.15 3.15 3.30 3.26 2.57 2.59 2.31 2.24 2.22 2.19 1.94
SEE 2.72 2.65 2.99 3.96 2.40 2.41 2.03 2.12 2.01 2.06 1.80

100
WI 2.27 2.23 2.73 2.76 2.00 2.08 1.68 1.71 1.70 1.67 1.56

SGEE 2.21 2.18 2.36 2.36 1.86 1.87 1.52 1.49 1.48 1.53 1.38
SEE 1.91 1.91 2.12 2.11 1.80 1.77 1.40 1.38 1.44 1.47 1.25

Table 4.3: Empirical comparisons of SEE under true (Tru-Cov) and estimated (Est-Cov)
covariance estimation methods in the case of binary partially linear single-index model
with compound symmetry correlation (ρ = 0.75). GEE-TC and SEE are estimation meth-
ods with the true covariance and semiparametrically estimated covariance (proposed) re-
spectively. SE = Monte Carlo standard error, SWSE = empirical asymptotic standard error
and AMSE = averaged mean squared error. All the values are in percentage.

n Methods
β1 β2 α1 α2 α3 γ(·)

SE SWSE SE SWSE SE SWSE SE SWSE SE SWSE AMSE

30
Tru-Cov 3.10 3.04 4.43 4.41 2.15 2.19 2.23 2.16 1.81 1.74 1.40
Est-Cov 3.55 3.49 4.20 4.16 2.69 2.65 2.86 2.80 1.81 1.80 1.58

lowing form

logit(pij) = β0 + β1Xeropij + γ(α1Timeij + α2Ageij + α3Heightij).

The compound symmetry working correlation structure is also assumed. The parameter

estimates by WI, SGEE and SEE are given in Table 4.4. The SEE estimates are slightly

different from others and have the smallest estimated standard errors, while the WI esti-

mates have the largest estimated standard errors. Furthermore, the coefficient of covariate
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Age is seen to be significant by SEE. However, it is not significant by WI and SGEE. The

single-index function estimates evaluated at the observed values after smoothing with their

95% bootstrap confidence bands by WI, SGEE and SEE are shown in Figure 4.1. There is

a general increasing trend by SEE. However, this trend is not obvious by WI and SGEE.

Furthermore, comparing with WI and SGEE, the confidence band for the single-index

function by SEE is generally narrower. Table 4.4 shows that there is significant evidence

that the presence of xerophthalmia is positively related to respiratory infection. That is, the

presence of xerophthalmia is more likely for children to have vitamin A deficiency. More-

over, from Table 4.4 and Figure 4.1 we conclude that in general it is statistically significant

that older and taller children are less likely to get vitamin A deficiency. However, measur-

ing time is not a statistically significant factor for children’s vitamin A deficiency. These

conclusions are generally in line with that of Zeger and Liang (1991) and Chowdhury and

Sinha (2015) obtained with different approaches.

Table 4.4: Parameter estimates and their standard errors for the ICHS data by WI, SGEE
and SEE.

Model
Estimates

WI SGEE SEE
Estimate SE Estimate SE Estimate SE

β0 −2.220 0.624 −2.133 0.615 −2.537 0.604
β1 1.775 0.530 1.690 0.526 1.701 0.509
α1 0.541 0.587 0.455 0.551 0.748 0.530
α2 0.041 0.041 0.021 0.038 −0.118 0.031
α3 −0.840 0.195 −0.890 0.196 −0.653 0.192

4.6 Conclusions

A semiparametrically efficient estimation method for the longitudinal generalized par-

tially linear single-index model was proposed in this chapter, which extends the results
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Figure 4.1: Estimated single-index function and its 95% bootstrap confidence band for the
ICHS data by three estimation methods. The WI estimated single-index function and its
95% bootstrap confidence band are shown with red dotted curves. The SGEE estimated
single-index function and its 95% bootstrap confidence band are shown with blue dot-
dashed curves. The SEE estimated single-index function and its 95% bootstrap confidence
band are shown with green solid curves.

for the estimation of the longitudinal partially linear single-index model to the generalized

models. Asymptotic properties of the parameter estimators and the single-index function
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estimator were derived. The estimated parameters were shown to be semiparametrically

efficient and the single-index function estimator generally has a smaller variance when

compared with that of existing methods. Simulation studies and real data analysis were

performed that support the methodology and theoretical results.
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5. SUMMARIES AND FURTHER STUDIES

5.1 Summary

In this dissertation, we investigated efficient estimation methods in partially linear

single-index models and generalized partially linear single-index models for longitudi-

nal data. In these models, one or more covariates can be modeled parametrically and more

than one covariate should be modeled nonparametrically with the response variable. The

nonparametric component is indexed by a single-index function.

The parameters in both the parametric component and the within single-index function

are estimated when the single-index function is fixed. Meanwhile, the single-index func-

tion is estimated when all parameters are fixed. The estimation procedure is processed

in an iterative way. By taking into consideration the within-subject correlation properly,

the parameter estimators can reach semiparametric efficient bound when the covariances

are correctly specified. We also studied the asymptotic properties of the nonparametric

single-index function. We presented the asymptotic convergence rate, bias and variance

for the estimator. We compared the asymptotic results with those for existing methods and

showed that the asymptotic variance is not only more efficient, but also minimized when

within-subject covariances are correctly specified.

Simulation studies under various settings were conducted. The simulation results sup-

port our theoretical development. Two real data analyses using PLSIM and one data anal-

ysis using GPLSIM were performed to demonstrate the proposed methods.

5.2 Further Studies

There are several directions of further studies on this topic. Further research prob-

lems include studying possibly superior within-subject covariance estimation and direct

precision matrix estimation since the efficiency and convergence rates of the estimated
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covariance or precision matrix can affect the finite sample performance of parameter and

single-index function estimators. Another possible topic is variable selection for (gen-

eralized) partially linear single-index models for longitudinal data since it is sometimes

difficult to decide whether to keep or discard some covariates in practice. Furthermore, for

the retained covariates, there is still a problem of distinguishing them from the paramet-

ric component to the nonparametric component. All this is worth investigating in future

research.
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