
DIGITAL CIRCUIT DESIGN USING FLOATING GATE

TRANSISTORS

A Dissertation

by

MONTHER Y. A. ABUSULTAN

Submitted to the Office of Graduate and Professional Studies of

Texas A&M University

in partial fulfillment of the requirement for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Sunil P. Khatri

Committee Members, Peng Li

Laszlo B. Kish

Duncan M. Walker

Head of Department, Miroslav M. Begovic

May 2017

Major Subject: Computer Engineering

Copyright 2017 Monther Y. A. Abusultan

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/287618275?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

Floating gate (flash) transistors are used exclusively for memory applications today.

These applications include SD cards of various form factors, USB flash drives and SSDs.

In this thesis, we explore the use of flash transistors to implement digital logic circuits.

Since the threshold voltage of flash transistors can be modified at a fine granularity during

programming, several advantages are obtained by our flash-based digital circuit design ap-

proach. For one, speed binning at the factory can be controlled with precision. Secondly,

an IC can be re-programmed in the field, to negate effects such as aging, which has been a

significant problem in recent times, particularly for mission-critical applications. Thirdly,

unlike a regular MOSFET, which has one threshold voltage level, a flash transistor can

have multiple threshold voltage levels. The benefit of having multiple threshold voltage

levels in a flash transistor is that it allows the ability to encode more symbols in each de-

vice, unlike a regular MOSFET. This allows us to implement multi-valued logic functions

natively. In this thesis, we evaluate different flash-based digital circuit design approaches

and compare their performance with a traditional CMOS standard cell-based design ap-

proach. We begin by evaluating our design approach at the cell level to optimize the

design’s delay, power energy and physical area characteristics. The flash-based approach

is demonstrated to be better than the CMOS standard cell approach, for these performance

metrics. Afterwards, we present the performance of our design approach at the block level.

We describe a synthesis flow to decompose a circuit block into a network of interconnected

flash-based circuit cells. We also describe techniques to optimize the resulting network of

ii

flash-based circuit cells using don’t cares. Our optimization approach distinguishes itself

from other optimization techniques that use don’t cares, since it a) targets a flash-based

design flow, b) optimizes clusters of logic nodes at once instead of one node at a time, c)

attempts to reduce the number of cubes instead of reducing the number of literals in each

cube and d) performs optimization on the post-technology mapped netlist which results

in a direct improvement in result quality, as compared to pre-technology mapping logic

optimization that is typically done in the literature. The resulting network characteristics

(delay, power, energy and physical area) are presented. These results are compared with

a standard cell-based realization of the same block (obtained using commercial tools) and

we demonstrate significant improvements in all the design metrics. We also study flash-

based FPGA designs (both static and dynamic), and present the tradeoff of delay, power

dissipation and energy consumption of the various designs. Our work differs from pre-

viously proposed flash-based FPGAs, since we embed the flash transistors (which store

the configuration bits) directly within the logic and interconnect fabrics. We also present

a detailed description of how the programming of the configuration bits is accomplished,

for all the proposed designs.

iii

To my parents.

iv

ACKNOWLEDGMENTS

My sincere thanks to my committee chair, Dr. Sunil P. Khatri. I thank him for his

guidance, support and encouragement throughout my Ph.D. program.

I would also like to thank my committee members: Dr. Peng Li, Dr. Laszlo B. Kish,

Dr. Duncan M. Walker and Dr. Gianfranco Gerosa for their valuable suggestions and

feedback. Dr. Gerosa deserves special thanks for his insightful feedback and comments

that helped me strengthen this work further. His industrial background bridged the gap

between my research and current VLSI industry challenges and needs.

Finally and most importantly, I would like to thank my dear mother, father and

siblings for their endless encouragement and support. They have always stood behind me

in every step towards my success. I would also like to thank my loving wife for her support

and for standing next to me during the stressful times I have been through. I thank her also

for taking care of our baby, especially during the late and long hours I have spent in the

office working on my research.

v

CONTRIBUTORS AND FUNDING SOURCES

Contributors

This work was supported by a dissertation committee consisting of Professors Sunil

P. Khatri (advisor), Peng Li and Laszlo B. Kish of the Department of Electrical and Com-

puter Engineering, Professor Duncan M. Walker of the Department of Computer Science

and Engineering and Dr. Gian Gerosa from Intel Corporation.

All work conducted for the dissertation was completed by the student independently.

Funding Sources

Graduate study was supported by a research assistantship from Texas A&M Univer-

sity.

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGMENTS . v

CONTRIBUTORS AND FUNDING SOURCES vi

TABLE OF CONTENTS . vii

LIST OF FIGURES . xii

LIST OF TABLES . xvi

CHAPTER I INTRODUCTION . 1

I.1 Digital Circuit Design . 1

I.2 Design Performance Metrics . 3

I.2.1 Delay . 3

I.2.2 Power Dissipation . 5

I.2.3 Energy Consumption . 6

I.2.4 Area . 7

I.3 Digital Design Challenges . 8

I.3.1 Process Variations . 8

I.3.2 Design Regularity . 8

I.4 Digital Design Approaches . 9

I.4.1 Full-custom Designs . 9

I.4.2 Fully Automated Designs . 10

I.5 Static CMOS Versus Dynamic Logic Designs 10

I.6 Application Specific Integrated Circuits 14

I.7 Programmable Logic Arrays . 16

I.8 Field Programmable Gate Arrays . 18

I.9 Floating Gate (Flash) Transistors . 20

I.9.1 Device Structure . 20

I.9.2 Programming the Flash Transistor 21

I.9.3 Flash Transistors in Memory 22

I.9.4 Read and Write Disturb . 24

I.9.5 Write Endurance . 25

vii

CHAPTER II THESIS OUTLINE . 26

II.1 Implementation of Flash-based Cells 28

II.1.1 Ternary-valued, Flash-based Digital Logic Cell Implementation 28

II.1.2 Binary-valued, Flash-based Digital Logic Cell Implementation . 28

II.1.3 PLA-like, Flash-based Digital Logic Cell Implementation 29

II.1.4 Multi-valued, Flash-based Digital Logic Cell Implementation . . 29

II.2 CAD Flow . 30

II.2.1 Block-level Implementation of Binary-valued, Flash-based Dig-

ital Designs . 30

II.2.2 SAT-based Optimization for Flash-based Digital Designs 31

II.3 Field Programmable Gate Array (FPGA) 31

II.3.1 Flash-based Field Programmable Gate Array (FPGA) 32

CHAPTER III TERNARY-VALUED, FLASH-BASED DIGITAL LOGIC CELL

IMPLEMENTATION . 33

III.1 Background . 34

III.2 Previous Work . 35

III.3 Approach . 36

III.3.1 Overview . 36

III.3.2 Ternary Logic Flash-based Design Conversion 36

III.3.3 Ternary Logic Cluster (TLC) Circuit Design 39

III.3.4 Programming the Flash Ternary Logic Cluster 47

III.3.5 Logic Minimization of the TLC 48

III.4 Experiments . 49

III.4.1 Simulation Environment . 49

III.4.2 Flash Model Card Regression 50

III.4.3 Ternary-valued, Flash-based Implementation Details 51

III.4.4 Results and Analysis . 52

III.5 Chapter Summary . 54

CHAPTER IV BINARY-VALUED, FLASH-BASED DIGITAL LOGIC CELL

IMPLEMENTATION . 56

IV.1 Background . 56

IV.2 Previous Work . 58

IV.3 Approach . 58

IV.3.1 Flash-based Design Conversion 59

IV.3.2 Flash Cluster Circuit Design 61

IV.3.3 Programming the Flash Cluster 68

IV.3.4 Read and Write Disturb . 70

viii

IV.3.5 Mapping a CMOS-based Design into a Flash-based Design . . . 71

IV.4 Experiments . 71

IV.4.1 Simulation Environment . 72

IV.4.2 Flash-based Implementation Details 73

IV.4.3 Results and Analysis . 73

IV.5 Chapter Summary . 80

CHAPTER V BLOCK-LEVEL IMPLEMENTATION OF BINARY-VALUED,

FLASH-BASED DIGITAL DESIGNS 83

V.1 Background . 83

V.2 Previous Work . 85

V.3 Approach . 85

V.3.1 Overview . 85

V.3.2 Flash-based Design Conversion 86

V.3.3 FC-based CAD Flow Overview 87

V.4 Experiments . 91

V.4.1 Simulation Environment . 91

V.4.2 Flash-based Analysis Details 92

V.4.3 Results and Analysis . 97

V.4.4 FC Statistics . 100

V.4.5 Shifting the Threshold Voltage 102

V.5 Chapter Summary . 104

CHAPTER VI SAT-BASED OPTIMIZATION FOR FLASH-BASED DIGITAL

DESIGNS . 106

VI.1 Background . 106

VI.2 Previous Work . 109

VI.3 Approach . 111

VI.3.1 Overview . 111

VI.3.2 Flash Cluster Circuit Design 113

VI.3.3 FC-based CAD Flow . 115

VI.4 Experiments . 121

VI.4.1 Simulation Environment . 121

VI.4.2 Results and Analysis . 123

VI.5 Chapter Summary . 128

CHAPTER VII PLA-LIKE, FLASH-BASED DIGITAL LOGIC CELL IMPLE-

MENTATION . 130

VII.1 Background . 130

VII.2 Previous Work . 132

VII.3 Approach . 134

ix

VII.3.1 Overview . 134

VII.3.2 PLA-like Flash Cluster (PFC) Circuit Design 134

VII.3.3 Programming the PFC . 143

VII.4 Experiments . 143

VII.4.1 Simulation Environment . 144

VII.4.2 Flash-based Implementation Details 145

VII.4.3 Results and Analysis . 145

VII.5 Chapter Summary . 149

CHAPTER VIII MULTI-VALUED, FLASH-BASED DIGITAL LOGIC CELL

IMPLEMENTATION . 151

VIII.1 Background . 151

VIII.2 Previous Work . 152

VIII.3 Approach . 154

VIII.3.1 Overview . 154

VIII.3.2 Flash-based Design Conversion 154

VIII.3.3 Multi-valued Logic Flash-based Design Conversion 155

VIII.3.4 Multi-valued Flash Cluster Circuit Design 157

VIII.3.5 Multi-valued Logic Array . 159

VIII.3.6 Multi-valued Logic Bundles 162

VIII.3.7 MVLB Configuration . 164

VIII.3.8 Programming the Multi-valued Flash Cluster 166

VIII.3.9 Logic Minimization of the MVFC 167

VIII.4 Experiments . 168

VIII.4.1 Simulation Environment . 168

VIII.4.2 Results and Analysis . 170

VIII.5 Chapter Summary . 173

CHAPTER IX FLASH-BASED FIELD PROGRAMMABLE GATE ARRAY

(FPGA) . 175

IX.1 Background . 175

IX.2 Previous Work . 181

IX.3 Approach . 183

IX.3.1 Overview . 183

IX.3.2 Conventional SRAM-based LUT Structure 184

IX.3.3 Conventional Flash-based LUT Structure 186

IX.3.4 Proposed Static Flash-based LUT (SF-LUT) 190

IX.3.5 Proposed Dynamic Flash-based LUT (DF-LUT) 194

IX.3.6 Configuration Time . 198

IX.3.7 Conventional SRAM-based Programmable Switch Structure . . 199

IX.3.8 Conventional Flash-based Programmable Switch Structure . . . 199

x

IX.3.9 Proposed Flash-in-path (FIP) Programmable Switch 200

IX.4 Experiments . 202

IX.4.1 Simulation Environment . 202

IX.4.2 LUT Implementation Details 202

IX.4.3 Results and Analysis . 203

IX.5 Chapter Summary . 207

CHAPTER X THESIS SUMMARY AND CONCLUSIONS 208

X.1 Choosing the Right Flash-based Design Approach 209

CHAPTER XI FUTURE WORK . 212

XI.1 Flash Technology Scaling . 212

XI.2 3D NAND Technology . 214

XI.3 Static Flash-based Implementation Using P-type Flash 215

XI.4 Preset VT Levels to Meet Application Needs 216

XI.5 Replacing Always-on Flash Transistors with Metal Wires 217

XI.6 Customized Espresso-MV for Multi-valued Flash-based Design 219

XI.7 Delay Driven Optimization . 220

REFERENCES . 224

xi

LIST OF FIGURES

FIGURE Page

1.1 Moore’s Law Trend from 1971 to 2011 1

1.2 Transition and Propagation Delays 4

1.3 Static CMOS NAND Gate . 11

1.4 Dynamic Logic NAND Gate . 12

1.5 Premature Discharge in Dynamic Logic 13

1.6 Domino Logic Circuit . 14

1.7 ASIC Design Flow . 15

1.8 Generic PLA Structure . 17

1.9 Example PLA Structure That Implements the Function G3,2 19

1.10 NMOS and Flash Device Structures 20

2.1 Thesis Outline Diagram . 26

3.1 Types of Ternary Logic Nodes in Our Implementation. 37

3.2 Converting a Logic Netlist into a Flash-based Design 38

3.3 Ternary Logic Cluster (TLC) . 40

3.4 ith Ternary Logic Array (TLAi) Structure. 42

3.5 kth Ternary Logic Bundle in TLAi (TLBi,k) 43

3.6 Flash Transistor Threshold Voltages 44

3.7 Flash Output Generation Circuit . 47

3.8 Layout View of a TLC (des00) . 53

4.1 Converting a Logic Netlist into a Flash-based Design 59

4.2 Flash Cluster . 60

xii

4.3 Flash Logic Array i (FLAi) Structure 62

4.4 Flash Logic Bundle i, k (FLBi,k) . 64

4.5 Flash Transistor Threshold Voltages Used in an FC 65

4.6 Flash Output Generation Circuit . 68

4.7 Layout View of an FC (des00) . 73

4.8 Histograms of CMOS and Flash-based Designs (Before and After Ag-

ing Compensation) . 77

4.9 Delay, Power and Energy of the Flash-based Designs as VT is Shifted. 78

4.10 Delay of Flash-based Designs at Different Process Corners and VT

Levels. 80

4.11 Power of Flash-based Designs at Different Process Corners and VT

Levels. 82

4.12 Energy of Flash-based Designs at Different Process Corners and VT

Levels. 82

5.1 Converting a Logic Netlist into a Flash-based Design 85

5.2 Layout View of an FC . 99

5.3 Histograms of FCs for the b17 Benchmark 101

5.4 Delay, Power and Energy Characteristics of Flash-based Blocks as VT

is Shifted . 103

6.1 Converting a Logic Netlist into a Flash-based Design 111

6.2 Cluster Cut Based (CCB) Optimization 113

6.3 Layout View of Possible FLB Structures 116

6.4 Example Miter Circuit . 118

6.5 Optimization Opportunities Histogram for Benchmark ”b17” 127

6.6 Optimization Opportunities Histogram for Benchmark ”b14” 128

xiii

7.1 Example PLA Structure That Implements the Function G3,2 133

7.2 PLA-like Flash Cluster . 135

7.3 PLA-like Flash Output Group i (PFOGi) Structure 138

7.4 PLA-like Flash Logic Bundle i, k (PFLBi,k) 140

7.5 Flash Transistor Threshold Voltages Used in a PFC 141

7.6 Flash Output Generation Circuit . 142

7.7 Example Layout View of a PFC (des00) 145

7.8 Delay, Power and Energy of the Flash-based Designs as VT is Shifted. 148

8.1 MVFC Types in Our Implementation. 157

8.2 Multi-valued Flash Cluster (MVFC) 158

8.3 ith Multi-valued Logic Array (MVLAi) Structure. 160

8.4 kth Multi-valued Logic Bundle in MVLAi (MVLBi,k) 161

8.5 Threshold Voltages Used in Multi-valued Flash-based Designs 164

8.6 Layout View of an MVFC Implementing Benchmark ”des00” 169

8.7 Delay, Power and Energy of the MVFC-based Designs as the VT is

Shifted. 173

9.1 SRAM-based FPGA with Off-chip PROM 177

9.2 SRAM-based FPGA with On-chip PROM 178

9.3 Flash-based FPGA . 179

9.4 FPGA Logic and Interconnect Fabric Elements 184

9.5 Conventional 3-input LUT Structure 185

9.6 5T SRAM Cells . 186

9.7 Flash Memory Cells (FMCs) . 187

9.8 Threshold Voltages Levels Used in Flash-based Designs 188

xiv

9.9 Programming the Configuration Flash Memory Cells 190

9.10 MUX Tree Implementation in SF-LUT 192

9.11 Proposed Static Flash-based LUT Structure (SF-LUT) 194

9.12 LUT Structure Used in DF-LUT . 195

9.13 Array of Flash-in-path (FIP) Switches 201

9.14 Normalized Delay, Dynamic Power, Dynamic Energy and Static

Power of SF-LUT as the VT is Shifted. 206

11.1 NAND Flash-like Pulldown Stack Used in Our Flash-based Designs . 218

11.2 Proposed NAND Flash-like Pulldown Stack 220

xv

LIST OF TABLES

TABLE Page

1.1 Espresso-MV Minimization Output of the Function G3,2 18

3.1 The ’Flip’ Function. 46

3.2 Programming States of Each Transistor Pair Fx and Fx f
for Each Literal. 46

3.3 Delay, Power, Energy and Area Ratios of Ternary-valued Logic Cir-

cuits Relative to CMOS Standard Cell Based Circuits 52

4.1 Example of Input Minterm and Cube Distribution of an m-input and

n-output Logic Function . 71

4.2 Delay, Power, Energy and Cell Area Ratios of Flash-based Digital Cir-

cuits Relative to Their CMOS Standard-cell Based Counterparts . . . 74

4.3 Process Corners . 81

5.1 Example of Minterm Distribution of an n-output Logic Function with

m Inputs . 91

5.2 Delay, Power, Energy and Cell Area Ratios of Flash-based Digital Cir-

cuits Relative to Their CMOS Standard-cell Based Counterparts . . . 96

6.1 Delay, Power and Cell Area Ratios of Flash-based Digital Circuits

(with and without Optimization) Relative to Their CMOS Counter-

parts (K = 2) . 122

6.2 Delay, Power and Cell Area Ratios of Flash-based Digital Circuits

(with and without Optimization) Relative to Their CMOS Counter-

parts (K = 3) . 126

7.1 Espresso-MV Minimization Output of the Function G3,2 131

7.2 Association of PFOGi to Output State and Effect on Fm,3 Output

When Minimizing Against Off-sets 136

7.3 Delay, Power, Energy and Cell Area Ratios of PFC-based Digital Cir-

cuits Relative to Their CMOS Standard Cell-based Counterparts . . . 146

8.1 Flash Transistor Configuration Fx for Each Minterm/Cube Literal. . . 166

xvi

8.2 Delay, Power, Energy and Area Ratios of Multi-valued (Ternary)

Logic Circuits Relative to CMOS Standard Cell-based Circuits 170

9.1 SF-LUT Programming VT ’s Configuration 193

9.2 Delay, Dynamic Power (PDyn), Dynamic Energy (EDyn) and Static

Power (PStatic) Ratios of the LUTs 203

9.3 Delay, Dynamic Power (PDyn), Static Power (PStatic) and Total Power

(PTotal) Ratios of the Programmable Switches 204

10.1 A Comparison Between Flash-based Design Approaches to Imple-

ment Digital Circuits . 209

xvii

CHAPTER I

INTRODUCTION

I.1 Digital Circuit Design

curve shows transistor
count doubling every
two years

2,300

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000

2,600,000,000

1971 1980 1990 2000 2011

Date of introduction

4004

8008

8080

RCA 1802

8085

8088

Z80

MOS 6502

6809

8086

80186

6800

68000

80286

80386

80486

Pentium

AMD K5

Pentium II
Pentium III

AMD K6

AMD K6-III
AMD K7

Pentium 4
Barton

Atom

AMD K8

Itanium 2 Cell
Core 2 Duo

AMD K10
Itanium 2 with 9MB cache

POWER6

Core i7 (Quad)
Six-Core Opteron 2400

8-Core Xeon Nehalem-EX
Quad-Core Itanium Tukwila
Quad-core z196
8-core POWER7

10-Core Xeon Westmere-EX

16-Core SPARC T3

Six-Core Core i7

Six-Core Xeon 7400

Dual-Core Itanium 2

AMD K10

Microprocessor Transistor Counts 1971-2011 & Moore's Law

T
ra

n
s
is

to
r

c
o
u
n
t

Figure 1.1: Moore’s Law Trend from 1971 to 2011 (Figure Courtesy of W. G. Simon,

Wikimedia Commons [1])

Complementary metal oxide semiconductor (CMOS) very large scale integration

(VLSI) circuit design is one of the technologies that have vastly improved our daily

lives. CMOS-based circuits use two types of metal oxide semiconductor (MOS) tran-

1

sistors. These are N-channel metal oxide semiconductor (NMOS) and P-channel metal

oxide semiconductor (PMOS) transistors. In 1965, Gordon Moore predicted that the num-

ber of transistor in an integrated circuit (IC) will double approximately every 18 months.

This prediction is called Moore’s law [2]. Figure 1.1 shows the transistor count in ICs

in the period from 1971 to 2011. In Figure 1.1, the x-axis shows the year of production

of the IC and the y-axis shows the number of transistor inside the IC. Each dot on the

figure represents a particular IC. Figure 1.1 shows how the number of transistors in the

manufactured ICs between 1971 to 2011 has tracked Moore’s law prediction. Moore’s law

not only predicted the rate of growth of integrated circuits (ICs), but also, and perhaps

more importantly, has set expectations that the IC industry has striven to meet every 18

months. As technology advances, the demand for higher performance and lower power

ICs has increased. Hence, chip manufacturers aggressively work on improving the speed,

power dissipation, energy consumption and area characteristics of their ICs, while at the

same time, maintaining high yields. In the past, the combined outcome of research in ma-

terials, device physics, interconnect and lithography has allowed the IC industry to meet

expectations of Moore’s Law, with each new technology node. However, as we approach

material dimensions of a few atomic layers, shrinking device features becomes extremely

challenging, especially given the processing variations. Hence, making the transition into

a new technology node, in recent times, is a longer and expensive process. To address

the longer turnaround times for adopting a new technology node, the VLSI industry has

continually sought new fabrication technologies and new circuit design styles. The goals

2

in this quest are improved design performance metrics (delay, power, energy and area),

while supporting massive manufacturing scales that are immune to process variations. To

appreciate this challenge, we must first look into the important digital design metrics and

study some of the tradeoffs involved in improving these metrics.

I.2 Design Performance Metrics

some of the key design metrics of an IC includes its delay, power, energy and area.

Usually, the designer defines one or more of these aspects as the design target (e.g. high

performance design, low power design, small design footprint, etc.). Achieving an im-

provement in all of these aspects is extremely rare, and in most cases, improving one of

these metrics in a design results in a degradation of another metric. For example, achiev-

ing high performance comes at the expense of high power dissipation and vice versa. On

the other hand, moving to a newer (smaller feature size) technology node, or a different

fabrication technology, can achieve improvements in all of these metrics.

I.2.1 Delay

There are different types of delays in a digital circuit [3]. In a combination circuit,

transition delay (or slew rate) is the time it takes for a signal to rise from 10% to 90% at the

output of a logic gate (called risetime or tr), or fall from 90% to 10% at the output of a logic

gate (called falltime or t f). Propagation delay is the time it takes a transition at the input of

a logic gate to appear at the output of that logic gate (i.e. propagate through a logic gate).

The rising propagation delay tpr is the time it takes a transition at the input of a logic gate

3

0.0

0.0

1.0

0.5

0.1

1.0

0.5

0.9

tp f

Vout

Vin

tpr

t f tr

time

time

Figure 1.2: Transition and Propagation Delays

to cause a rising transition at the output of the logic gate. The falling propagation delay tp f

is the time it takes a transition at the input to cause a falling transition at the output of the

logic gate. Figure 1.2 shows the transition and propagation delays for a logic gate. The x-

axis in the figure shows the time and the y-axis shows the voltage level. In Figure 1.2, the

top curve is the voltage signal waveform seen at the input of the logic gate, and the bottom

curve is the voltage signal waveform seen at the output of the logic gate. The delays tr, t f ,

tpr and tp f are illustrated on Figure 1.2. In sequential circuits, we pay attention to other

types of delays as well. Setup time (tsu) is the time the data needs to be valid at the input

4

of the flip-flop before the rising edge of the clock, in order to guarantee that the flip-flop

captures the data and avoids meta-stability. The hold time (th) is the time that the data at

the input of the flip-flop needs to stay valid after the rising edge of the clock to guarantee

that the flip-flop captures the data and avoids meta-stability. Finally, the clock-to-q delay

(tcq) is the time it takes the data to propagate through the flip-flop after the rising edge of

the clock.

The delay of a design is typically measured using a static timing analyzing (STA)

tool. A good STA tool uses dynamic programming to recursively calculate the maximum

delay of all the outputs in the design and report the maximum delay (the critical path

delay). The critical path is the slowest path in the design, and is used to set the maximum

clock frequency of the design. Delay optimization is the process of reducing the delay of

the paths that violate a specified timing requirement. A last resort to reducing delay (at the

expense of extra power dissipation) is to increase the supply voltage [4, 5, 6, 7].

I.2.2 Power Dissipation

There are two components to power dissipation in a digital circuit [3]. The first

component is dynamic power (Pdynamic or Pdyn). The term ”dynamic” refers to the nature of

the dynamic power. Dynamic power is the power dissipated while the circuit is switching.

Examples of dynamic power sources are:

• Charging and discharging load capacitances in the circuit during a transition.

• Short-circuit current between VDD and GND, produced when both the NMOS and

PMOS transistors in the circuit are partially ON, during a transition.

5

The second component of power dissipation is static power (Pstatic). Static power is

the power dissipated while the circuit is static (no transitions are taking part). Examples

of static power sources are:

• Subthreshold leakage.

• Gate leakage (through the gate dielectric).

• Junction leakage (source/drain diffusions).

The total power dissipation is the sum of both these two components.

P = Pdynamic +PStatic (I.1)

There are various ways of performing power optimization on a circuit. One way is to

perform power gating, which is shutting the power source of the inactive modules in a

design (which drastically reduces leakage power [3, 8]). Reducing power is important,

because it eases the thermal design of the IC.

I.2.3 Energy Consumption

As discussed earlier, design delay reduction is generally achieved on the expense of

higher power. Similarly, design power reduction can be achieved on the expense of longer

delay. Hence, we use the power-delay product to generally find the delay and power

tradeoff for the design. Since

Energy = Power×Delay (I.2)

therefore, energy is often used as a metric to judge the quality of a design [9]. Reducing

the energy is important, especially for mobile devices, since the battery size is directly

6

proportional to the energy requirement of a system.

The pareto-optimal realizations of any design are those that minimize Eq. I.2. The

only way to further reduce the energy is to choose a different fabrication process.

I.2.4 Area

Area is an important design metric due to the limitation in the chip die area. Larger

chips are more susceptible to failure due to process variations, and are therefore more

expensive. Hence, area is a crucial design metric in VLSI circuit design. In early design

stages, active area (the total area occupied by the channels of all transistors) can be used

for area comparisons and area estimates. However, active area is not a representation of

the physical area of the design (the actual area occupied by the design). This is because the

active area ignores structural information and important physical details such as number

of contacts in the design and their locations, well and substrate connections, etc. A more

accurate area metric is cell area, which is the area occupied by the entire cell, including

the transistors and the local interconnects with respect to the cell.

Some of the factors that play a role in reducing the area are:

• Regularity of the circuit structures.

• Pitch matching.

• Sharing of diffusion nodes.

Each new technology node has an approximately 30% smaller feature size compared

to the previous technology node. In general, this allows the designers to pack twice the

number of transistors in the new technology node [3].

7

I.3 Digital Design Challenges

In this section, we will discuss two important issues faced in IC manufacturing. The

first issue is process variations which is the main issue affecting yield, and translates di-

rectly to profit margins [10]. The second issue we will discuss in this section is design

regularity. Design regularity reduces complexity during the lithography stages of the de-

sign [11, 12, 13, 14].

I.3.1 Process Variations

The performance of different instances of digital ICs varies tremendously in prac-

tice. Designers model these variations using different ”process corners” (statistical mod-

els). The designs are simulated against all process corners to guarantee operation across

different process variations. They also use worst case performance models to guarantee

minimum performance targets. However, when ICs are fabricated, their performance can

vary from their target (in some cases up to 70% faster than worst case [15]). The goal of

fabrication plants is to obtain high yields in terms of functional ICs and not necessarily

faster ICs. Therefore, to guarantee improved speeds, we must rely on the fabrication plant

to enhance the process and make it more predictable [15] or use structures that reduce the

effect of process variations.

I.3.2 Design Regularity

Design rules for sub-90nm technology nodes have become much more compli-

cated [16]. This is due to the fact that new lithography techniques are needed [17]. As

8

we move to new technology nodes with a smaller feature size, process variations become

more challenging. As we shrink dimensions, the generation of patterns on silicon has

become more challenging, resulting in many manufacturing issues that can affect yield

and time-to-market, which are two very important economical aspects in IC design. One

of the best ways to alleviate pattern generation problems is to increase the regularity of

the design. Design regularity reduces the number of unique patterns in the design, im-

proving the reliability of the fabricated design [16]. In standard cell-based designs, the

large variation of cells in the standard cell library reduces the regularity of the design.

In addition to that, in order to meet certain delay constraints, cell placement tools might

place cells in a way that minimizes delay and not necessarily achieve high design regular-

ity [11, 12, 13, 14, 18, 19, 20, 21, 22, 23, 24, 25].

I.4 Digital Design Approaches

Digital circuits can be designed using different approaches that that range from full-

custom, fully automated or a mixture of these design styles. The tradeoff in choosing a

certain design style is quality of design versus turnaround time. Also, digital circuits can

be static (e.g. standard cell-based design) or dynamic logic based (e.g. domino logic).

I.4.1 Full-custom Designs

In full-custom designs, the designer hand-crafts all the transistors and the layout

polygons representing the design. This is a very expensive and time-consuming process

since it involves heavy manual work. However, it produces the best results since the timing

9

paths are custom-tuned and design area is minimized, since the designer who has full

control over the design.

I.4.2 Fully Automated Designs

In this design style, tools are used to convert register-transfer level (RTL) designs

into layout. The process goes through synthesis, mapping, place and route. It uses the

least amount of customization. However, a design can be customized by using full-custom

components in the design or by hand crafting parts of the design at the final stages to

improve performance. This is the most common approach to designing logic circuits and

rely heavily on the use of standard cell libraries and a chain of computer aided design

(CAD) tools.

I.5 Static CMOS Versus Dynamic Logic Designs

Digital circuits can either be static or dynamic. In static CMOS designs [26], there

is always a low impedance path from the output to either VDD or GND. Figure 1.3 shows

a NAND gate implemented in static CMOS. In Figure 1.3, the output is always driven to

VDD (through one of the transistors M2 and M3, or both), or to GND (through both of

the transistors M0 and M1). The output will never float in a static CMOS NAND gate.

However in dynamic logic, the output is precharged first (in the precharge cycle) and then

evaluated (in the evaluate cycle). Figure 1.4 shows a NAND gate implemented in dynamic

logic. Dynamic designs use a clock (φ in Figure 1.4) to regulate the precharge and evaluate

cycles. Since dynamic circuits precharge their output to VDD during each precharge cycle

10

X

VDD

M0

M1

M3

M2

Z

Y

Figure 1.3: Static CMOS NAND Gate

regardless of their input state, a single PMOS transistor can be used as the pullup structure

(M3 in Figure 1.4). This M3 is driven by the clock signal (φ). The pulldown structure of

the dynamic circuit has all the NMOS transistors necessary to implement the logic (M1

and M2 in Figure 1.4), in addition to one evaluate transistor in series (M0 in Figure 1.4).

The evaluate transistor (M0) is used to turn off the pulldown path during a precharge cycle,

and hence to prevent a short circuit path between VDD and GND.

In general, dynamic circuits [26] are known to be faster, have smaller footprint (since

they only implement the pulldown structure) and have higher power dissipation than static

CMOS circuits [15, 27]. Therefore, dynamic circuits are sometimes used to implement

speed-critical portions of the design to improve performance without significantly increas-

ing the overall power dissipation of the design.

11

VDD

X

φ
M3

M0

M1

M2

Z

Y

Figure 1.4: Dynamic Logic NAND Gate

Unlike static CMOS designs, which are supported by CAD tools and standard cell

libraries, dynamic logic designs are usually manually designed and require careful design

to avoid errors and glitches.

12

VDD VDD

M0 M4

M6

M5

M7

X0

φ
Zi Zi+1

M1

M2

M3

1Xn

Figure 1.5: Premature Discharge in Dynamic Logic

One important issue in dynamic logic design is premature discharge. Consider Fig-

ure 1.5. In a cascaded design, when the outputs of the ith level of logic in the design (Zi)

are precharged and drive the NMOS transistors of the (i+1)th level of logic (M6), a race

condition can occur. This can force the output of the gate at level (i+1) (Zi+1) to discharge

before previous levels of logic have evaluated their results. This is also called premature

discharge. One of the ways to prevent premature discharge in dynamic logic circuits is

to add an inverter at the output of each stage of the dynamic logic circuit, as shown in

Figure 1.6. Since the premature discharge issue arises due to the fact that outputs are

precharged, adding an inverter at the output prevents turning on the NMOS transistors of

the next stage of logic until the previous stage of logic have fully evaluated. This approach

is called domino logic.

13

VDD VDD

M0 M4

M6

Zi+1Zi

X0

M3 M7

M5M1

M2

φ

Z

Xn 1

Figure 1.6: Domino Logic Circuit

I.6 Application Specific Integrated Circuits

Application Specific Integrated Circuits (ASIC) [3] are ICs designed to serve a par-

ticular purpose rather than being generic and customizable. Since the manufacture of an

ASIC requires a full set of lithographic masks for fabrication, ASICs are known to have a

high non-recurring engineering (NRE) cost. However, when produced in high volume, the

high NRE cost is amortized over the number of ASICs manufactured, making the design

cost-effective. Figure 1.7 shows the ASIC design flow. ASIC designs go through two ma-

jor stages – a) front-end design and b) back-end design. In the front-end design stage, the

design behavioral and functional specifications are generated based on the product require-

ments. After this, register transfer level (RTL) design describing the product is written,

in a behavioral language. Afterwards, the front-end designers hand the behavioral RTL to

14

the back-end designers. During the back-end design stage, the structural specifications is

generated, and then the physical synthesis is performed, which in turn generates a set of

physical specifications (including chip layout, which used to fabricate the chip). At the

end of the back-end stage, the chip layout is sent to the factory to fabricate the chip.

Specification
Behavioral / Functional

Synthesis
Behavioral (RTL)

Structural
Specification

Physical
Synthesis

Physical
Specification

B
ack E

nd
F

ront E
nd

Product Requirement

CMOS Fab.

Figure 1.7: ASIC Design Flow

15

ASICs can be either full-custom, structured or fully automated. Full-custom ASICs

are hand-crafted and optimized by hand. They also have the highest NRE cost. Structured

ASICs [20, 28] use pre-defined and pre-manufactured layers of diffusion and polysilicon,

leaving the metalization to be defined by the user to form the final IC design. The user

maps their design to the target structured ASIC platform and the tools generate the required

metal masks to be used with the structured ASIC platform. This design style reduces

turnaround time and cost, since only metal layer masks need to be generated [28]. Fully

automated ASICs are designed using CAD tools and have minimal customization, except

for what the tools allow.

I.7 Programmable Logic Arrays

A programmable logic array (PLA) is a circuit structure that implements combina-

tional circuits. PLAs implement a logic function represented in a sum of product format

directly. PLAs implement any m-input, n-output logic function Fm,n. A PLA that imple-

ments the logic function Fm,n, has an AND-plane with 2 × m vertical wires representing

the m inputs and their complements, and an OR-plane of n wires representing the n outputs

of the function Fm,n. The AND plane implements the minterms (or cubes) of the function

Fm,n. Hence, the PLA can have up to 2m AND ”gates”. The OR-plane performs a logical

OR of the minterms (or cubes) that implement each output. Hence, the PLA has n OR

”gates”. PLAs natively allow cube sharing, which results in reduction of the overall size

of the circuit.

16

AND−plane

OR−plane

CBA

YX

Figure 1.8: Generic PLA Structure

When implementing a function Fm,n using a PLA, we first run Espresso-MV [29, 30]

to minimize the function. Espresso-MV is a multi-valued version of Espresso [29], which

is a PLA logic minimization tool that uses heuristic algorithms to minimize the number

of cubes of a logic function. Table 1.1 shows an example of a function G3,2 after being

minimized using Espresso.

Figure 1.9 shows a PLA that implements the logic function G3,2 shown in Table 1.1.

Notice that the number of AND ”gates” in Figure 1.9 equals the number of input cubes

17

Inputs Outputs

A B C X Y

0 - 1 1 -

1 1 1 1 1

- 0 - - 1

0 1 - 1 -

Table 1.1: Espresso-MV Minimization Output of the Function G3,2

shown in Table 1.1. Also the number of OR ”gates” in Figure 1.9 equals the number of

outputs in Table 1.1.

I.8 Field Programmable Gate Arrays

The popularity of field programmable gate arrays (FPGAs) [31, 32, 33, 4, 6, 34, 35,

36] as a means to implement digital designs has been growing rapidly. The main reason

for this is the effectiveness of the FPGA based design approach for low and mid volume

designs. Compared to ASIC and custom designs, FPGAs exhibit a faster design turnaround

time and lower NRE cost. It is conjectured that the recent reduction in the number of ASIC

designs [37] (due to the increasing cost of generating IC fabrication masks), has added to

the growing popularity of FPGAs.

FPGAs consist of a number of logic islands. Each island implements a small part

of the entire logic programmed on the FPGA. Logic islands are made up of one or more

look-up tables (LUTs). Each LUT can implement any logic function of up to n inputs

(where n varies from 4 to 6 depending on the FPGA device).

However, due to their reconfigurable nature, FPGAs are usually not the best imple-

18

OR−plane

AND−plane

X Y

CBA

Figure 1.9: Example PLA Structure That Implements the Function G3,2

mentation platform from a speed or energy perspective. This is because of the redundant

logic and wiring that is present in the FPGA. Hence, FPGAs cannot be used in the proto-

typing of extreme low power designs. It was reported in [38] that FPGAs when compared

to ASICs have 4.5× larger delay, 54× larger area, 14× more dynamic power and 87×

more static power. However, the simplified CAD flow, faster turnaround time and lower

NRE cost drive designers to use FPGA as their implementation platform of choice.

19

N+N+

Drain Source
Gate

Dielectric

P Substrate

(a) Cross Section of an NMOS Transistor

e eee
e

N+N+

Control
Gate

Drain Source

Floating
Gate

Dielectric

P Substrate

(b) Cross Section of a Flash Transistor

Figure 1.10: NMOS and Flash Device Structures

I.9 Floating Gate (Flash) Transistors

I.9.1 Device Structure

Figure 1.10a shows the cross section of an NMOS transistor. The NMOS transistor

is a field effect transistor (FET). It has four terminals. Three of these terminals (drain,

gate and source) are shown in Figure 1.10a, while the body terminal is not shown in the

figure. When the voltage difference between the gate and source terminals is high enough

(higher than the threshold voltage of the NMOS transistor), an inversion layer is formed in

the P-type substrate between the N-type source and drain of the NMOS transistors. This

inversion layer allows the electrons to flow between the source and drain. Figure 1.10b

shows the cross section of a flash transistor. Flash transistors are field effect transistors

(FET) devices with two gates. In addition to a control gate which is similar to a regular

transistor’s gate both physically and functionally, a flash transistor has an additional float-

20

ing gate. The floating gate is buried within the device’s structure (between the substrate

and the control gate). As the name suggests, the floating gate is not contacted, prevent-

ing it from being driven directly. Since the floating gate is placed between two dielectric

layers, current cannot flow into or out of the floating gate, unless electrons are forced to

enter (leave) the floating gate from (to) the substrate. The phenomenon by which electrons

tunnel through a barrier is called Fowler-Nordheim (FN) tunneling [39].

I.9.2 Programming the Flash Transistor

Fowler-Nordheim tunneling is used to program and erase a flash transistor. When

a flash transistor is ”erased”, electrons are forced to tunnel from the floating gate into the

substrate, resulting in a drop in the threshold voltage (VT) of the transistor. The threshold

voltage of an erased flash transistor is typically below zero. When a flash transistor is

”programmed”, electrons are forced to tunnel from the substrate into the floating gate. This

increases the transistor’s threshold voltage. The threshold voltage of a flash transistor can

be adjusted with a fine granularity, allowing the designer to program the flash transistor’s

threshold voltage with high accuracy. This fine granularity threshold voltage control is

accomplished by controlling the duration of the programming pulse used to program the

flash transistor. The ability to control the threshold voltage of a flash transistor allows us

to control the transistor behavior when a signal is applied to the control gate. For example,

if a flash transistor is programmed with a threshold voltage V1, the transistor will turn on

only if the signal driving the control gate is higher than V1, otherwise the transistor will

turn off. In flash-based memory applications, two, four or eight threshold voltages are

21

used (resulting in the storage of one, two or three bits per flash transistor respectively).

Programming a flash transistor is performed by holding the bulk, source and drain

terminals at ground and applying a high voltage (10-20 Volts) to the control gate terminal

of the flash transistor. This creates an electric field that forces electrons to tunnel from the

substrate into the floating gate, hence increasing the threshold voltage of the flash tran-

sistor. The value of the threshold voltage is modified by controlling the duration of the

programming pulse. Once electrons are trapped in the floating gate, they remain trapped

for several years [40, 41], or until removed by an erase operation. Erasing a flash tran-

sistor is performed by holding the control gate voltage at ground, floating the drain and

source terminals, and applying a high voltage at the bulk of the transistor. This results in

an electric field that forces the electrons to tunnel from the floating gate back to the sub-

strate. Unlike programming, when erasing is performed, all the flash transistors that share

the same bulk are erased at once, provided their drain, source and gate are connected as

mentioned above.

I.9.3 Flash Transistors in Memory

The ability to electrically control the threshold voltage of the floating gate transistor

has traditionally been used to build flash memory. Flash memory is used to build secure

digital (SD) memory cards, universal serial bus (USB) flash drives and solid state drives

(SSDs), which are compact and fast non-volatile block storage devices (compared to tra-

ditional non-volatile block storage devices such as hard disk drives (HDDs)). These flash

memories are used to store a block of data, where each block consists of N flash transis-

22

tors connected in series (in a NAND configuration), and M such series stacks, where M

is greater than the page size of the memory. Although M can be equal to the page size

of the memory, it is usually chosen to be larger than the page size, so as to have redun-

dant columns that can be switched in when cells in the flash block wear out. This NAND

configuration results in a dense memory array, because the shared diffusions in the NAND

stack are not contacted. The memory is accessed a page at a time (i.e. the ith flash tran-

sistor of each of the M stacks is accessed, resulting in a page of data being read). A NOR

flash arrangement can also be envisioned, for random access memory, but finds limited use

in practice, due to it’s lower layout density compared to a NAND flash memory.

Due to advancements in flash technology, it is projected that SSDs will completely

replace HDDs in the near future. Current flash memory devices are implemented using

single-level cell (SLC), multi-level cell (MLC) or triple-level cell (TLC) flash devices.

SLC flash devices store only 1-bit per cell (transistor) by programming the transistor to

one of two threshold voltages, typically a high threshold (program) voltage to represent

a logic ’1’ and a low threshold (erase) voltage to represent a logic ’0’. Since we can

program the threshold voltage of a flash transistor at a fine granularity, we can store 2-bits

per cell in MLC flash devices or 3-bits per cell in TLC flash devices. This requires four

and eight threshold voltages respectively. MLC and TLC technologies enable more dense

flash memory devices.

23

I.9.4 Read and Write Disturb

The issue of read and write disturb is an important issue in NAND flash memories,

especially in MLC flash and TLC flash since multiple VT levels are used to store data,

versus two VT levels for SLC flash. The structure of NAND flash memory consists of

many adjacent, long series stacks of flash transistors, increasing the effect of write disturbs.

Write disturb in NAND flash memories (also known as program disturb) occurs during

the programming of a flash transistor (i, j), due to applying a high passing voltage to all

other flash transistors in column j. These transistors are called victims, and we want to

leave their VT ’s unchanged. Although the pass voltages are not high enough to program

the victim transistors, they can cause a slight shift in the VT of the victim flash transistors.

Write disturbs can also affect victim flash transistors in the same row i as the flash transistor

(i, j) we intend to program, due to the program pulse that is applied to the entire row [42].

Unlike a write disturb, a read disturb occurs during regular operation (i.e. while reading

a NAND flash memory), which arguably makes it a more important issue to address, due

to the higher number of reads (compared to the number of writes) of a flash transistor in

a flash-based FPGA. A read disturb is the change of the VT of the victim flash transistors

in the same column of flash transistor that we intend to read, due to the application of a

passing voltage to all of the victim flash transistors. This pass voltage (although is lower

in magnitude than the program pulse) causes slight shifts in the VT of the victim flash

transistors over time, leading to a potential bit flip [42, 43].

24

I.9.5 Write Endurance

One limitation of flash memory is that flash transistors have a finite number of write

cycles (which ranges from 10K-100K cycles [40, 41]), limiting the durability of flash

memory unless architectural techniques are deployed to mitigate this problem. This lim-

itation on the number of write cycles in flash transistors is called write endurance. Write

endurance of flash transistors depends on the number of VT levels. SLC flash has the

highest write endurance, while TLC flash has the lowest write endurance.

25

CHAPTER II

THESIS OUTLINE

Binary Flash
Clusters (FCs)

Multi−valued
Flash Clusters

(MVFCs)

using
Don’t Cares

Optimization Design Flow
(block−level)

Flash−based
FPGA

Ternary Logic
Clusters (TLCs)

Binary PLA−like
Flash Clusters

(PFCs)

Flash−based Cells

FPGAsCAD Flow

Figure 2.1: Thesis Outline Diagram

This thesis describes the use of flash transistors to implement digital designs. Both

ASIC-style designs as well as FPGA designs are covered.

For ASIC designs, at the lowest level of detail, this thesis addresses the implemen-

tation of the cell, each of which implements a logic function Fm,n. We also refer to these

cells as clusters. Here m is the number of inputs and n is the number of outputs of the

function Fm,n. Various implementations of the flash cells are explored in this thesis, such

as ternary logic clusters (TLCs), flash clusters (FCs), PLA-like flash clusters (PFCs) and

26

multi-valued flash clusters (MVFCs). These flash cells are discussed in the implementa-

tion chapters described in the next section, and are illustrated in the top part of Figure 2.1.

A flash-based cell only implements a small portion of the logic in a system. This

thesis also discusses the implementation of flash-based digital designs at the block level.

Current industry CAD flows do not support flash-based design, and hence, this thesis also

develops a flash-based block-level CAD flow. The CAD flow described in this thesis maps

a logic netlist into an interconnected network of flash-based logic cells. We have applied

the CAD flow on the FC, however the same tool-chain can be applied to all the flash-based

logic cells (TLCs, PFCs and MVFCs as well) with minor customizations. Also, in order

to be able to measure the circuit characteristics (delay, power, energy and area) of the

block-level implementation, we have also developed a tool-chain to perform delay, power,

energy and area characterization of the final block-level design. Another contribution of

this thesis is a SAT-based optimization engine using don’t-cares, to improve the circuit

characteristics of the flash-based block-level design. We also show how our flash-based

design methodology can be applied to FPGAs as well. FPGAs implemented using our

design approach achieve better delay, power and area results. This is illustrated on the

bottom portion of Figure 2.1.

We conclude this thesis with a discussion of possible future extensions to this re-

search.

The remainder of this chapter will describe the major sections of the thesis in more

detail.

27

II.1 Implementation of Flash-based Cells

In this section, we will briefly describe the different flash-based cell types – TLCs,

FCs, PFCs and MVFCs.

II.1.1 Ternary-valued, Flash-based Digital Logic Cell Implementation

In Chapter III, we describe the implementation of ternary-valued digital circuit cells

using flash transistors. We show the details of how to map a binary logic function Fm,n

with m inputs and n outputs into a ternary-valued logic function Gp,q with p inputs and

q outputs, and implement Gp,q as a ternary logic cluster (TLC). We also show the circuit

details of the TLC, and also show how the TLC is programmed. We evaluate the delay,

power, energy and physical area metrics of flash-based digital designs implemented using

the TLC, and compare these metrics to a CMOS standard cell based implementation of the

same digital design. We also show a representative layout of the TLC, and quantify the

effect of shifting the device threshold voltage (VT) on the delay, power and energy of the

TLC.

II.1.2 Binary-valued, Flash-based Digital Logic Cell Implementation

In Chapter IV, we describe the implementation of binary flash-based digital circuit

cells using a flash cluster (FC). The FC is a cell that can implement any binary-valued

logic function Fm,n (where m is the number of inputs, and n is the number of outputs of the

logic function Fm,n). We present the circuit details of the FC as well as the FC program-

ming details. Note that in the FC, the input minterms are grouped based on which output

28

minterm they generate. Afterwards, the input minterms in each group are minimized us-

ing the Espresso [29] logic minimization tool. We evaluate the delay, power, energy and

physical area metrics of flash-based digital designs implemented using the FC, and com-

pare these metrics to a CMOS standard cell based implementation. We present the layout

of such an FC. We also demonstrate the ability to control binning, and mitigate aging by

shifting the VT of the flash transistor in the FC after fabrication. Finally, we quantify the

delay, power and energy of flash-based digital circuits at different process corners.

II.1.3 PLA-like, Flash-based Digital Logic Cell Implementation

In Chapter VII, we explore the implementation of flash-based digital circuits using a

variation of the approach of Chapter IV. The main difference between the implementation

in Chapter VII and Chapter IV is the way the output is generated. In Chapter VII the input

minterms of Fm,n are minimized together, using Espresso-MV [29], and then the output is

generated in a manner similar to a PLA (as shown in Section I.7). This implementation

results in a reduction in the area of the design, on the account of cube sharing. We call this

flash-based cell a PLA-like flash cluster (PFC). A PFC can implement any logic function

Fm,n, where m is the number of inputs, and n is the number of outputs.

II.1.4 Multi-valued, Flash-based Digital Logic Cell Implementation

In Chapter VIII, we generalize the binary flash-based digital circuit implementa-

tion to any multi-valued function. The cell that implements multi-valued flash-based logic

designs is called multi-valued flash cluster (MVFC). An MVFC can implement any multi-

value logic function Hr,s, where r is the number of inputs and s is the number of out-

29

puts. In this chapter, we implement ternary-valued digital circuits using this technique,

in order to compare it with the ternary implementation in Chapter III. We show that the

ternary-valued flash-based cells implemented using the approach in Chapter VIII achieves

improved delay results compared to the ternary-valued, flash-based designs implemented

using the approach in Chapter III. This improvement is mainly due the increased Vgs values

in the multi-valued implementation of Chapter VIII. We also compare the results obtained

from implementing flash-based designs using the approach in Chapter VIII to their CMOS

standard cell counterparts.

II.2 CAD Flow

Section II.1 described our approaches to implement digital logic at the cell level,

using flash transistors. In this section, we describe our design flows to implement digital

designs at the block level, using a flash-based approach.

II.2.1 Block-level Implementation of Binary-valued, Flash-based Digital Designs

Since the flash-based design technique is not supported by currently available CAD

tools, we present, in Chapter V, a CAD flow targeting the implementation of digital circuit

blocks using binary flash-based design approach. This CAD flow performs the synthesis

and mapping of the design to flash-based circuit clusters (FCs). We present, through circuit

simulations, the delay, power, energy and physical area results obtained by the flow, and

compare these results against a traditional CMOS standard cell-based design approach.

We also show the delay, power and energy curves of the flash-based designs implemented

30

using this flow, as a function of VT shift.

II.2.2 SAT-based Optimization for Flash-based Digital Designs

The flash-based design approach discussed in Chapter V uses a greedy algorithm in

the clustering step. In order to optimize the design, we present, in Chapter VI, a SAT-based

optimization engine. This SAT-based engine uses don’t-cares to reduce the size of the FCs

of the design. Our optimization approach has many advantages over traditional optimiza-

tion techniques that use don’t-cares. These advantages include a) we target a flash-based

design flow, b) we optimize clusters of logic nodes at once instead of one node at a time,

c) we attempt to reduce the number of cubes instead of reducing the number of literals in

each cube and d) we perform optimization on the post-technology mapped netlist, which

results in a direct improvement in result quality, as compared to pre-technology mapping

optimization that is typically done in the literature. We compare the delay, power and area

results over several benchmark designs, implemented using the flash-based implementa-

tion with SAT-based optimization, to flash-based designs implemented using the flow pre-

sented in Chapter V. We also compare the results to a CMOS standard cell implementation

of the same benchmarking designs.

II.3 Field Programmable Gate Array (FPGA)

This thesis also presents an efficient way to realize an FPGA using flash transistors.

In this section, we describe our flash-based FPGA implementation.

31

II.3.1 Flash-based Field Programmable Gate Array (FPGA)

In current flash-based FPGAs, flash-based configuration cells are used to replace

the SRAM-based configuration cells which are used in traditional SRAM-based FPGAs.

In Chapter IX, we embed the configuration flash transistors in the path of the logic and

interconnect, reducing the delay and area of the design. We also show both a static and a

dynamic implementation of the FPGA LUT. Furthermore, we compare the delay, power

and energy of the logic and interconnect in the our static and dynamic flash-based FPGA

to traditional CMOS-based FPGAs as well as existing flash-based FPGAs.

32

CHAPTER III

TERNARY-VALUED, FLASH-BASED DIGITAL LOGIC CELL

IMPLEMENTATION1

In this chapter, we present a method to use floating gate (flash) transistors to imple-

ment low power ternary-valued digital logic cells targeting handheld and IoT devices. We

exploit the ability to fine tune the VT of flash transistors to implement ternary-valued digi-

tal circuits. The circuit topology we utilize is a cluster of unprogrammed flash transistors

arranged in a NAND flash-like configuration (we call these ternary logic clusters (TLCs)),

which are programmed in the factory to implement the desired logic function.

In the proposed ternary logic cluster (TLC) structure, as the name suggests, we use

three-valued logic to implement digital circuits. Since flash transistors can have multiple

VT values, we can in principle build a circuit that implements any Multi-Valued (MV) logic

function. However, to avoid circuit complexity and to maintain a healthy noise margin, we

limit our implementation to three-valued logic. In our design, we use three threshold

voltage levels to create a device that can distinguish between three input voltage levels

(GND, V DD
2

and VDD) without the use of sense amplifiers.

1Part of the data reported in this chapter is reprinted with permission from ”A Ternary-valued, Floating

Gate Transistor-based Circuit Design Approach” by Monther Abusultan and Sunil P. Khatri, IEEE Computer

Society Annual Symposium on VLSI (ISVLSI) 2016, pp. 1-6, Copyright 2016 by IEEE.

33

III.1 Background

In our design approach, the flash devices are programmed after fabrication (in the

factory), and then again to possibly adjust for aging effects (in the field). The ability to

perform fine adjustments to the device VT will also allow the manufacturer to perform fine

grained speed binning at the factory. Additionally, when transistors slow down as a result

of aging, another round of fine grained threshold voltage adjustment can be performed,

to bring the IC performance back within specifications. In addition, by leaving a portion

of flash devices unprogrammed, our circuit has the ability to support post-manufacturing

engineering change orders (ECOs). This is not possible in present-day CMOS technology,

since ECOs in CMOS technology require metal mask changes, which can be expensive.

Also, in present-day CMOS, speed binning is completely dependent on process variations,

since device VT ’s cannot be changed after fabrication. Finally, in-field performance ad-

justment (to counteract aging problems) is not possible in present-day CMOS designs.

Although flash transistors have a finite number of write cycles (10K to 100K [40,

41]), which is an issue for flash memory devices, this will not be an issue when using flash

transistors to implement digital circuits. This is because the number of write cycles needed

to realize the desired digital circuit will be very limited (a handful at most).

It is very important to note that our proposed structure is not an FPGA-like repro-

grammable structure. Our structure is not fully programmable like in an FPGA, because

the metalization of the design is fixed (i.e. interconnects are hardwired and not reconfig-

urable after fabrication like in an FPGA). Also, we note that the flash fabrication process

34

is inherently compatible with the CMOS fabrication process. In fact, flash memories use

both flash and CMOS transistors simultaneously on the same die [44]. In flash memories,

the CMOS devices are used for the controller, addressing logic, driver logic, and analog

functions such as programming voltage pulse generation. Our work assumes that both

flash and CMOS devices are present on the same die.

III.2 Previous Work

There have been several research efforts which study flash devices and their use

in memory [45, 46, 47, 48, 49, 50, 51, 52]. These papers report details of flash devices

and their characterization. However, they do not describe the use of flash transistors for

implementing logic circuits. To the best of our knowledge, there has been no prior work

that uses flash devices to realize digital circuit structures.

A good deal of work has been reported in the area of architectural techniques to

increase flash endurance. Some representative works include those on wear leveling tech-

niques, which are used in flash-based memory blocks [53], to compensate for the fact that

flash transistors typically have a finite (10k - 100k) number of times they can be writ-

ten [40, 41]. In traditional flash memory, wear leveling is performed at the architectural

level to spread the wear of the cells.

None of these research efforts describes an approach to design ternary-valued digital

circuits using flash transistors. To the best of our knowledge, this is the first work to report

the use of ternary-valued flash transistors to realize digital circuits.

35

III.3 Approach

III.3.1 Overview

In this section, we first discuss the details of the approach to convert a CMOS stan-

dard cell based digital circuit design into an equivalent (dynamic) ternary-valued flash-

based digital circuit design (in Section III.3.2). The ternary-valued flash-based design

consists of several Ternary Logic Clusters (TLCs). Each ternary logic cluster implements

an q-output (ternary) function with up to p ternary-valued inputs. The circuit details of

a TLC are described in Section III.3.3. In our implementation, we choose the number of

outputs q = 2, and the number of inputs p = 4. This choice is explained in Section III.3.2.

Each TLC consists of several Ternary Logic Arrays (TLAs), which in turn are made up of

several Ternary Logic Bundles (TLBs). Details of these components will be discussed in

Section III.3.3. In Section III.3.4, we discuss the programmability of the TLCs. Results

are discussed in Section III.4.

III.3.2 Ternary Logic Flash-based Design Conversion

The conversion process from a regular CMOS standard cell based digital circuit

design into a ternary-valued flash-based design comprises of two parts – a) the handling of

binary-valued I/O interfaces and b) the conversion of a CMOS standard cell-based design

into a TLC-based design.

Figure 3.1 shows the basic idea behind our approach to handling binary-valued I/O

interfaces. We use solid lines to represent binary signals and dashed lines to represent

ternary-valued signals. While direct MV synthesis can be performed to produce a native

36

Binary
Ternary

P
3 34

4

2

2

6

Q

S

R

6

Figure 3.1: Types of Ternary Logic Nodes in Our Implementation.

three-valued logic function, this approach requires implementing the entire system (includ-

ing all its subcomponents and I/O interface logic using ternary-valued logic). We avoid

this approach since current technology exclusively supports binary logic I/O interfaces.

Instead, we implement our system to interface with the outside world using binary logic,

while internally using ternary-valued logic to implement the required logic functions. This

can be realized by having three types of logic nodes, as shown in Figure 3.1. Any binary

logic node P can be converted into a ternary-valued logic node Q, R or S. Node Q has

binary inputs and ternary-valued outputs. It serves as the conversion node from binary

to ternary-valued in our system, and would be used at the input interface. Node R has

ternary-valued inputs and binary outputs in order to convert ternary-valued logic back into

binary logic. It would be used at the output interface. Node S represents a logic node

that has ternary-valued inputs and outputs. We use node S for the internal nodes of the

ternary-valued flash-based logic block. In order to eliminate the design overhead, we use

the same ternary circuit (the TLC) to implement nodes of type Q, R and S. The TLC in

general implements a node of type S.

37

Converting a u-bit binary function into a v-bit ternary-valued function requires map-

ping 2u binary minterms into 3v ternary-valued minterms, such that 2u < 3v. We found that

choosing (u = 3), and (v = 2) yields the least number of ”unused” ternary-valued minterms.

This means that when converting a binary-valued design into a ternary-valued design, we

choose binary clusters with numbers of inputs and outputs that are of multiples of 3. This

yields a ternary-valued function with numbers of inputs and outputs that are of multiples

of 2.

Primary
Inputs
(Binary)

Primary
Outputs
(Binary)B E

C

A D

(a) Logic Netlist

A

B

C

D

E

Inputs
Primary

Outputs

Ternary

(Binary) (Binary)

Binary

Primary

(b) Flash-based Digital Circuit

Figure 3.2: Converting a Logic Netlist into a Flash-based Design

Figure 3.2 illustrates the conversion of a CMOS standard cell based digital circuit

into a ternary-valued digital circuit from the circuit block perspective. Starting with a

CMOS-based design (Figure 3.2(a)) which can be technology mapped or technology inde-

pendent, we cluster the circuit nodes (shown in the dotted circles of Figure 3.2(a)). These

clusters are multi-input, multi-output structures (with up to m inputs and n outputs), where

both m and n are multiples of 3. The solid circles in Figure 3.2(b) are referred to as ternary

logic clusters (TLCs). Each TLC implements the logic function of the corresponding clus-

38

ters (dotted circles in Figure 3.2(a)). In other words, each TLC implements an q-output

ternary-valued logic function of up to p ternary-valued inputs. We refer to this function

as Gp,q. Note that p = 2
3
m and q = 2

3
n. The solid circles labeled A, B, C, D and E in the

ternary-valued digital circuit of Figure 3.2(b) have the same functionality and connectivity

as the dashed ovals A, B, C, D and E in the CMOS-based binary-valued digital circuit of

Figure 3.2(a). TLCs A and B are nodes of type Q (see Figure 3.1), while D and E are of

type R. TLC C is of type S.

Each of the TLCs is implemented using our ternary-valued design approach. Fig-

ure 3.2 (b) shows a high-level representation of the final ternary-valued design (with binary

valued I/O interfaces) after converting all the clusters of logic in the CMOS-based binary-

valued design into their ternary-valued TLCs (with binary I/O interfaces). The design

details of the TLC are discussed in the next section.

Note that the focus of this chapter is on the ternary-valued TLC design, and its elec-

trical characteristics. Therefore, we will not discuss the algorithmic details of converting

a CMOS-based binary-valued design into a ternary-valued design in the remainder of this

chapter.

III.3.3 Ternary Logic Cluster (TLC) Circuit Design

We construct the ternary-valued digital circuit by identifying clusters of nodes in the

CMOS-based circuit that implement a n-output binary logic function of up to m binary

inputs (Fm,n). These clusters of logic will then be implemented using TLCs whose logic

function Gp,q is equivalent to Fm,n, where p = 2
3
m and q= 2

3
n. A TLC is a reprogrammable

39

circuit structure that is capable of implementing any logic function with p ternary-valued

inputs and q ternary-valued outputs (Gp,q). TLCs are equipped with the required logic

for programming the threshold voltages of their floating gate devices, in addition to the

circuitry needed to implement the logic of Gp,q. Figure 3.3 shows the block diagram of

a TLC. As shown in this figure, the TLC is driven by ternary-valued Primary Inputs (left

side of Figure 3.3) and ternary-valued Primary Outputs (right side of Figure 3.3) as well as

additional signals which are used to program the function of the TLC. The programming

signals of the TLC (mode, row_select, col_select, prog_ctrl and prog_pulse), will be dis-

cussed in Section III.3.4. The remaining signal is the clock (clk), which is used for driving

the precharge and evaluate transistors in the dynamic ternary-valued digital circuit. The

clk signal is also used during programming, as we will discuss in Section III.3.4.

Primary

Primary
Inputs

(Ternary)

(Ternary)
Outputs

mode

col_select prog_pulse

clk

T LC programming signals

Output Generation Circuit

prog_ctrl row_select

TLA7

TLBout2,0

TLBout2,n

TLA0 TLA1

Figure 3.3: Ternary Logic Cluster (TLC)

40

The TLC internally consists of multiple ternary-valued logic arrays (TLAs) and an

output generation circuit as shown in Figure 3.3. A TLA is a group of NAND flash-

like pulldown stack structures. Each stack implements a ternary-valued logic cube of

Gp,q. Each TLA implements a group of ternary-valued input cubes that correspond to a

ternary-valued output minterm of Gp,q. For example, if the ternary-valued output < 02 >

(alternatively represented by < 001|100>) has 2 ternary input cubes < 001|010|010|011>

and < 001|010|100|111 >, then T LA2 implements these two ternary-valued input cubes.

In other words, only one TLA output pulls low when a ternary-valued input is applied to

the TLC. For the ith TLA, we refer to the number of cubes that this TLA implements as

its cubes per array or CPAi. In the example of this paragraph, (CPA2 = 2). The outputs

of the TLAs are connected to the output generation circuit in the TLC such that when the

output of T LAi pulls down, the output generation circuit produces the q-bit ternary-valued

output vector i. For example, if q = 2 and if T LA5 pulls down during evaluation, then

the output generation circuit produces the 2-bit ternary output < 12 > (or < 010|100 >).

Note that outputs 2n through 3q −1 are never generated (as explained in Section III.3.2).

Hence, we do not need to implement T LA(2n) through T LA(3q−1). Therefore, we only need

to implement 2n TLAs (shown as T LA0, T LA1, · · · , T LA7 in Figure 3.3, for n = 3 and q =

2).

Next, we will discuss the structural details of a TLA, and then the details of the

output generation circuit.

41

i

Inputs

Primary

(Ternary)

T LAi

T LB0 T LB1 T LBn

T LBouti,0 TLBouti,nT LBouti,1

Figure 3.4: ith Ternary Logic Array (TLAi) Structure.

III.3.3.1 Ternary Logic Array

Figure 3.4 shows a block diagram of the structure of T LAi. As shown in this figure,

each TLA consists of multiple TLBs. The number of TLBs that exist in T LAi is ⌈CPAi

CPB
⌉,

where CPAi is the number of cubes implemented in T LAi, and CPB is the maximum num-

ber of cubes that can be implemented in a TLB. Note that while CPAi is determined by the

logic function Gp,q, CPB is a design parameter that can be optimized to improve circuit

delay, power, energy and physical area. The number of outputs of T LAi is equal to the

number of TLBs in T LAi, (namely ⌈CPAi

CPB
⌉). At most one of the TLB outputs (T LBouti,k)

is pulled down when a ternary-valued input is applied to the TLA inputs.

III.3.3.2 Ternary Logic Bundles

Figure 3.5 shows the circuit details of a TLB. A TLB consists of a number of NAND

flash-like pulldown stacks that share the same output. Each pulldown stack implements

42

X0

a

a f

b

b f

c

c f

d

d f

Y0

Mx,0

My,0

Fa,0 (V T1)

Fa f ,0 (V T1)

Fb,0 (V T0)

FbF ,0 (V T2)

Fc,0 (V T0)

Fc f ,0 (V T1)

Fd,0 (V T0)

Fd f ,0 (V T0)

X1 Xq

clk

Y1 Yq

Mx,1 Mx,q

Fa,q (VT1)

Fa f ,q (V T1)

Fb,q (VT0)

Fb f ,q (V T1)

Fc,q (V T2)

Fc f ,q (VT0)

Fd,q (VT1)

Fd f ,q (V T1)

My,q

Mpch

My,1

T LBouti,k

Fa,1 (V T2)

Fa f ,1 (V T0)

Fb,1 (V T1)

Fb f ,1 (V T1)

Fc,1 (VT0)

Fc f ,1 (V T2)

Fd,1 (V T1)

Fd f ,1 (V T0)

Figure 3.5: kth Ternary Logic Bundle in TLAi (TLBi,k)

one cube of Gp,q. The maximum number of NAND flash like pulldown stacks in each TLB

is CPB, where CPB is the maximum number of cubes that can be efficiently implemented

in a TLB. Since the number of cubes implemented by T LAi is not necessarily a multiple

of CPB, the last TLB in T LAi may have a smaller number of pulldown stacks than CPB.

Each pulldown stack has 2 · p flash transistors and 2 regular NMOS transistors (as

shown in Figure 3.5), where p is the number of ternary-valued inputs of the function

Gp,q. The reason we need two flash transistors for each input is discussed next. The flash

43

transistors are programmed to implement cubes, while the regular transistors have a dual

purpose. Since the ternary-valued implementation proposed in this chapter is dynamic,

both precharge and evaluate transistors are required. The shared regular PMOS transistor

shown at the top of Figure 3.5 (Mpch), serves as the precharge transistor for all pulldown

structures of the TLB. When it turns on, it pulls up T LBouti,k during the precharge (low)

phase of the clock signal (clk). The regular NMOS transistors (My,i) shown at the bottom

of each stack in Figure 3.5 are the evaluate transistors which are off during the precharge

(low) phase of clk and only turn on during the evaluate (high) phase of clk, to allow the

pulldown stack to evaluate the output T LBouti,k. Both the top and bottom regular NMOS

transistors in each pulldown stack (Mx,i and My,i respectively) are also utilized during

the programming operation of the NAND flash stack. Programming will be discussed in

detail in Section III.3.4. The transistors Mx,i are always ’ON’ during regular operation of

the ternary-valued design.

VDD

GND

V T0

V T2

V T1

VI0 (VIL)

VI2 (VIH)

V DD
2

VI1 (VIM)

Figure 3.6: Flash Transistor Threshold Voltages

Since we are implementing a ternary-valued logic circuit, we need three threshold

44

voltages to distinguish between the three states of each input. Figure 3.6 shows the input

voltages and the threshold voltage levels used in our design. Flash transistors are driven

with either a VDD (representing the ternary-valued literal < 100 >), V DD
2

(representing

< 010 >) or GND (representing < 001 >), and can be programmed to VT2, VT1 or V T0 as

shown in Figure 3.6. Since a flash transistor will turn on when driven by an input voltage

higher than its programmed VT , we have to design the pulldown stack in a way that allows

us to distinguish between an input of VDD, V DD
2

or GND applied at the gate of a flash

transistor. For example, we cannot program a flash transistor such that it will only turn on

when the gate input is V DD
2

, because both VDD and V DD
2

will turn on this flash transistor

which is programmed at V T1. This problem is averted in multi-level flash memory by

reading each transistor’s response multiple times, each time with a different input voltage.

This solution is infeasible for implementing logic circuits, due to the increased delay it

would entail. We overcome this issue by using two flash transistors for each input. One

transistor is driven by the input x and the other is driven by x f . The input x f is a flipped

version of x as discussed in Table 3.1. The two transistors are then programmed based on

the value of the ternary-valued literal x as shown in Table 3.2. In Figure 3.5, the left-most

stack is programmed to implement the cube < abcd > = < 010|001|011|111 >, based

on Table 3.2. This is the ternary-valued cube a1b0c0,1. Similarly, the second stack of

Figure 3.5 implements the cube < 100|010|001|110 >. The rightmost stack of Figure 3.5

implements the cube < 010|011|100|010 >.

45

Input Voltage Level Flipped Input Voltage Level

VDD GND

V DD/2 V DD/2

GND VDD

Table 3.1: The ’Flip’ Function.

Literal VT of Fx VT of Fx f
Function

001 VT0 VT2 ON when x = GND

010 VT1 VT1 ON when x = V DD/2

100 VT2 VT0 ON when x = VDD

011 VT0 VT1 ON when x = GND or V DD/2

110 VT1 VT0 ON when x = VDD/2 or VDD

111 VT0 VT0 Always ON

101 – – Split cube into 001 and 100

000 – – Null literal, invalid

Table 3.2: Programming States of Each Transistor Pair Fx and Fx f
for Each Literal.

III.3.3.3 Output Logic

As discussed earlier in Section III.3.2, each TLA in the TLC drives an output gener-

ation circuit that generates the final outputs of the TLC as shown in Figure 3.3. Figure 3.7

shows the circuit details of the output generation circuit. Each output of the function

Gp,q is represented using a horizontal line which is pre-discharged by an NMOS transistor

(shown at the left side of the output line). This NMOS transistor is driven by the clock

signal (clk). Each of the output lines is selectively pulled up based on which T LA output

is pulled down. For example, for q = 2, if T LBout7,k pulls down for any k, then the outputs

need to drive to < 2,1 >. This means that the MSB output (f in Figure 3.7) needs to be

46

outputs

clk

f

g

g f

f f

T LBout7,0

vdd vdd

vdd
2

vdd

vdd
2

TLA0 TLA7

T LBout0,0 TLBout0,n

vddvdd

Figure 3.7: Flash Output Generation Circuit

driven to VDD, and the other output (g in Figure 3.7) needs to be driven to V DD
2

. Note

that exactly one T LBouti,k pulls down for any applied input to the TLC. All the transistors

driving the outputs of the function Gp,q shown in Figure 3.7 are sized appropriately to

drive a fan-out of 3 TLC input loads.

III.3.4 Programming the Flash Ternary Logic Cluster

Consider Figure 3.5. In any TLC, all the flash transistors share a common bulk. As

a result, the erase operation of all flash transistors of the TLC is performed by applying a

high voltage to the bulk node of the TLC, and floating the source and drain terminals of

each flash transistor (by turning off My,i and Mx,i). The gates of all transistors are driven

to GND. This results in the erasure of all the flash transistors in the TLC, and their new

47

threshold voltage is the erase threshold (V T0), as shown in Figure 3.6.

For programming, assume that Fc,0 and Fc,1 need to be programmed. In this case,

the c line is driven to a programming voltage for a sufficiently long duration. The gates of

transistors My,0 and Mx,0, as well as My,1 and Mx,1 are driven high. All other My,i and Mx,i

are driven low. This disables programming of all but the first and second NAND stacks of

the TLB. All inputs other than c (i.e. a, a f , b, b f , c f , d and d f) are driven high to a pass

voltage, and the common bulk is held to GND. The duration of the programming pulse is

determined based on the final desired VT . This results in a programming of Fc,0 and Fc,1,

to the desired VT (VT1 or V T2), while the thresholds of all other transistors in the TLB are

unaltered and stay at the erase threshold voltage (VT0).

The mode signal of Figure 3.3 switches between regular operation and program-

ming. The prog_ctrl signal switches between the erase and program operations. The

signals row_select and col_select determine which row and column of the TLB is to be

programmed, while the prog_pulse signal is the programming voltage pulse that is applied

to accomplish programming.

III.3.5 Logic Minimization of the TLC

Given a binary cluster with m = 6 and n = 3, we take all the input minterms {M j}

of each output minterms j (there are 8 output minterms in all) and map them to the jth

ternary-valued output minterm. We now use Espresso-MV [29] to minimize the TLC. The

resulting multi-valued cover is used to realize the ternary-valued circuit.

48

III.4 Experiments

In this section, we first present the simulation environment used in evaluating our

ternary-valued digital circuit design approach. Then we discuss the ternary-valued digital

circuit implementation details. Finally, we present the details of our experiments and a

discussion of the results.

III.4.1 Simulation Environment

The designs presented in this chapter are implemented in a 45nm process tech-

nology. The CMOS-based digital circuits were synthesized and mapped to 45nm Nan-

gate FreePDK45 Open Cell Library [54, 55] using Synopsys Design Compiler [56]. The

mapped designs were simulated using Synopsys HSPICE [56] circuit simulation tool and

the 45nm PTM [57] card. The nominal supply voltage for the 45nm PTM card is 1V. We

used custom scripts to generate the TLC (the ternary-valued digital circuit). We back anno-

tate the TLC circuit with layout parasitics. For CMOS devices in the TLC, we used a 45nm

PTM process [57], while for flash devices, we derived our model card from the device-

level measurements presented in [46, 45] and validated our models using [58, 45]. We

describe our model card construction in Section III.4.2. We simulated the ternary-valued

digital circuit in HSPICE and verified the correct logical operation of the ternary-valued

digital circuit through exhaustive simulation. Custom layouts for the ternary-valued digital

circuit were generated using Cadence Virtuoso to compare the physical area of the ternary-

valued digital circuits to their CMOS-based counterparts. We generated 20 random circuit

designs to evaluate our ternary-valued digital circuit design approach. The layout of our

49

TLCs used design rules for flash devices that were obtained from the ITRS [59].

III.4.2 Flash Model Card Regression

We derived our flash model card from the device-level measurements presented

in [46, 45]. The basic idea is to emulate the states of a floating-gate device with three

separate PTM model cards, one that models the flash FET in the low VT state (we call

this value V T0), and another for the flash FET in the medium VT state (we call this value

V T1), and a third for the flash transistor in the high VT state (we call this value V T2). We

used the gate and oxide thicknesses, and doping levels from [46, 45]. We then took a base

45nm PTM CMOS model card and modified it so that the threshold voltages of the three

derived model cards would be VT2, V T1 and V T0, respectively, and the Ids-Vgs curve slopes

match that in [46] to model circuit delay and power accurately. We verified that the elec-

trical characteristics of our derived model cards substantially agree with measured device

characteristics of industrial flash devices reported in [58].

We also modeled the gate capacitance of the flash transistors. Flash transistors have

a lower gate capacitance due to the difference in their gate structure compared to a regular

NMOS transistor. The dielectric insulator separating the floating gate from the substrate

is Silicon Dioxide (SiO2) which what is used in regular NMOS transistors, to separate the

gate from the substrate. However, the thickness of this insulating layer in a flash transistor

is 7nm compared to 1nm in the corresponding 45nm regular NMOS transistor [45, 57, 59].

The other insulating layer in a flash device separates the control gate from the floating gate,

and is not found in regular NMOS transistors. This layer consists of a stack of three layers

50

of insulators. The layers from top to bottom are 4nm SiO2, 4nm Silicon Nitride (Si3N4)

and another 6nm SiO2 [45]. These two differences in the gate structure between the flash

transistor and the regular NMOS transistor contribute to lowering the gate capacitance of

the flash transistor. We calculated the gate capacitance of the flash transistor and found it

20× smaller than the gate capacitance of the corresponding regular NMOS transistor, and

validated this reduction with existing literature which reported reduction of ∼25-30× for

a 45nm technology node [45]. The lower gate capacitance of the flash transistors results

in a reduced input capacitance of the TLC.

III.4.3 Ternary-valued, Flash-based Implementation Details

In this section, we present the implementation details of the ternary-valued digital

circuits. The logic function implemented in the CMOS-based binary-valued digital circuit

had m = 6 binary inputs and n = 3 binary outputs, which was converted into a 4 input (p=4)

and 2 outputs (q=2) ternary-valued function to be implemented as a ternary-valued digital

circuit. We found that these values of m, n, p and q provide the best tradeoff of delay,

power, energy and physical area. The results we present are a comparative study over

20 random functions implemented in both a CMOS standard cell based approach and our

ternary-valued digital circuit. We verified the logic correctness of both implementations

though exhaustive simulations. The TLC used to implement the logic functions was con-

figured to have TLBs with 3 stacks (CPB = 3). The target programmed threshold voltages

used in our designs are (V T0 = -0.5 V), (VT1 = 0.225 V) and (VT2 = 0.725 V).

51

III.4.4 Results and Analysis

Design Dmax Ratio Pavg Ratio Eng Ratio Cell Area Ratio

des00 2.28× 0.12× 0.27× 0.92×
des01 2.25× 0.09× 0.21× 0.89×
des02 2.69× 0.10× 0.27× 0.95×
des03 1.75× 0.17× 0.29× 0.88×
des04 2.50× 0.22× 0.54× 1.04×
des05 2.34× 0.09× 0.22× 1.04×
des06 2.02× 0.19× 0.37× 0.94×
des07 2.63× 0.09× 0.24× 0.94×
des08 2.29× 0.15× 0.34× 0.84×
des09 2.43× 0.09× 0.22× 0.85×
des10 2.96× 0.11× 0.32× 0.86×
des11 2.76× 0.10× 0.27× 0.88×
des12 2.63× 0.09× 0.24× 0.92×
des13 2.18× 0.15× 0.32× 0.96×
des14 2.58× 0.10× 0.25× 1.03×
des15 2.71× 0.18× 0.49× 0.94×
des16 2.78× 0.10× 0.26× 1.10×
des17 2.27× 0.10× 0.23× 0.96×
des18 2.28× 0.14× 0.31× 1.02×
des19 2.35× 0.10× 0.24× 0.97×

Average 2.43× 0.12× 0.30× 0.95×
Stdev 0.29× 0.04× 0.09× 0.07×

Table 3.3: Delay, Power, Energy and Area Ratios of Ternary-valued Logic Circuits Rela-

tive to CMOS Standard Cell Based Circuits

Table 3.3 shows the delay, power, energy and physical area ratios of 20 randomly

generated logic functions implemented using our TLC compared to a CMOS standard cell

based implementation. The delay reported in the table (Dmax Ratio) is the ratio of the maxi-

mum delay of any transition seen at any primary output of the circuit of the TLC versus the

52

Figure 3.8: Layout View of a TLC (des00)

standard cell design. Since the ternary-valued implementation is dynamic, we accounted

for the precharge delay in all the results presented in this chapter. Table 3.3 shows power

dissipation (of 0.12×) when implementing the digital circuits using our ternary-valued

logic compared to CMOS standard cell based implementation. We also show the energy

utilization of our ternary-valued implementation compared to the CMOS standard cell

based implementation. On average, the energy utilization of ternary-valued digital circuits

is about 0.3× of the CMOS standard cell based implementation. As shown in the table,

the delay of the ternary-valued digital circuits ranges from 1.75× to 2.96× of the CMOS

standard cell based digital circuit delay, with an average of 2.43×. In other words, the

ternary-valued flash-based digital circuit will run at 0.41× the clock rate that an equiva-

lent CMOS-based digital circuit while consuming 0.3× the energy from the battery, which

makes it an ideal candidate for applications that run at lower clock rates to conserve the

battery life. Table 3.3 also reports the standard deviation of the delay (0.29×), power

(0.04×), energy (0.09×) and area (0.07×) ratios. The standard deviation numbers shows

that the power, energy and area of the flash-based designs are predictable, while the delay

tends to vary based on the design.

53

We also report the area ratio of both implementations. The area reported for the

CMOS standard cell based implementation is the sum of physical cell areas, while the

area of our ternary-valued flash-based approach is the layout area obtained from layout

generation experiments. Design rules for flash were obtained from the ITRS 45nm flash

technology node [59]. Digital circuits implemented in a TLC use 0.95× the physical area

of a CMOS-based design, on average. Figure 3.8, shows the representative layout of a

TLC for the design des00.

It is well known that dynamic designs consume more power than static CMOS de-

signs. Our TLC based design consumes less power for several reasons. Despite being

dynamic, the number of nodes being precharged is smaller than a CMOS (domino or other

dynamic) approach. Further, the long transistor stacks (since we choose m = 4) result in

smaller evaluation currents, reducing power. Also, in our design, exactly one TLB pulls

down during every evaluation, reducing switching activity and power consumption. Fi-

nally, the Ids of a flash FET is lower than that of a MOSFET, which results in a lower

power consumption.

III.5 Chapter Summary

Flash transistors are the workhorse technology for non-volatile data storage applica-

tions today. However, there has been no previous research in the use of flash technology

to implement ternary-valued digital logic. This chapter presented the first approach, to the

best of the authors’ knowledge, to use ternary-valued flash transistors to implement digital

54

circuits. The threshold voltage of flash devices can be modified with a fine granularity dur-

ing programming, which results in several advantages. First, speed binning at the factory

can be done with precision. Secondly, an IC can be re-programmed in the field, to dimin-

ish or eradicate effects such as aging. We present the details of the circuit topology that we

use in our ternary-valued, flash-based digital circuit approach. Our HSPICE simulations

show that our approach yields improved power (∼88%) lower, energy (∼70%) lower and

area (∼5%) lower characteristics while operating at (∼59%) lower clock rate compared

to a traditional CMOS standard cell based approach, when averaged over 20 designs. Our

flash-based design approach to implement ternary-valued digital circuits is intended to

target extreme low power/energy applications with modest speed requirements.

55

CHAPTER IV

BINARY-VALUED, FLASH-BASED DIGITAL LOGIC CELL

IMPLEMENTATION1

In this chapter, we present the cell-level circuit implementation details for a binary-

valued, flash-based digital logic cell. We compare the proposed design to a CMOS stan-

dard cell based design approach. Our focus is on the design of the flash-based cell at the

combinational cell level. Our design style is fully compatible with conventional sequential

elements used in digital circuits.

In this work, we use the ability to fine tune the threshold voltage of flash transistors,

to implement arbitrary logic functions. The circuit structure we employ is a multitude of

flash transistors in a NAND-like configuration. We call these flash clusters (FCs). FCs

are programmed in the factory to implement the desired logic function, and can be repro-

grammed in the field to perform minor performance adjustments.

IV.1 Background

Flash transistors have a finite number of write cycles (10K to 100K [40, 41]), which

is an issue for flash memory devices. This is not an issue when using flash transistors to

implement digital circuits. Our flash-based circuit requires a limited number of write cy-

cles to implement the desired digital design. The flash devices in the flash-based designs

1Part of the data reported in this chapter is reprinted with permission from ”Implementing Low Power

Digital Circuits using Flash Devices” by Monther Abusultan and Sunil P. Khatri, 34nd IEEE International

Conference on Computer Design (ICCD) 2016, pp. 109-116, Copyright 2016 by IEEE.

56

will be programmed at the factory after fabrication. However, the flash-based designs can

also be programmed in the field to perform performance tuning or to compensate for aging

effects. As the transistors slow down due to chip aging, the performance of the ICs can

be brought back within specifications by programming the flash transistors and adjusting

their threshold voltage. Adjusting the IC’s performance in the field, to counteract aging

problems is not currently feasible in CMOS designs. The ability to perform fine adjust-

ments to the device VT enables the manufacturer to perform precise speed binning at the

factory. Process variations in present day CMOS control the speed binning. Finally, our

flash-based design approach facilitate performing post-manufacturing engineering change

orders (ECOs). This is done by adding redundant flash devices. ECOs in CMOS de-

signs are expensive since they require metal mask changes and are limited to interconnect

adjustments.

The market need for dense and compact flash memory has fueled the advancement

in flash technology. The technology node of flash devices has recently been able to track

the CMOS technology node. Currently memory devices are being fabricated at sub-20nm

minimum feature dimensions similar to CMOS technology node [60, 61, 62, 63]. In this

work, we only develop our design approach with a 45nm technology because electrical

characteristics of fewer technology nodes are not easily available. Also, commercial grade

standard-cell libraries for 45nm are easily available, making our comparison realistic.

57

IV.2 Previous Work

As mentioned in Section III.2, previous research efforts have focused only on the

use of flash transistors to implement non-volatile memory [45, 46, 47, 48, 49, 50, 51,

52]. The use of ternary-valued logic described in Chapter III and [64] is aimed towards

increasing the logical ”expressiveness” of each NAND flash stack. However, the use of

multiple threshold voltages results in reduced Vgs values, which results in increased worst-

case delays. Another factor that contributes to the increased delays in the ternary-valued

approach is the large number of transistors connected in series in each of the NAND stacks,

since each variable needs 2 series transistors. In contrast, the binary-valued approach of

this chapter uses fewer flash transistors in series (only one per input variable) compared to

the ternary-valued approach. We use single-level cells (SLC) cells instead of multi-level

cells (MLC) cells which were used in the ternary-valued approach, to implement our flash-

based digital circuits. This results in higher Vgs values and improved delays, and makes

our design more immune to read and write disturbs as well. To the best of our knowledge,

there has been no prior work that uses flash devices to realize binary-valued digital circuit

structures.

IV.3 Approach

A flash-based design consists of several binary flash clusters (FCs). Each FC imple-

ments an n-output Boolean function with up to m inputs. In Section IV.3.1, we present the

general flow of implementing digital design using an interconnected network of FCs. In

58

Section IV.3.2, we present the circuit details of an FC. Each FC consists of several flash

logic arrays (FLAs), which consist of several flash logic bundles (FLBs). Details of these

components will also be discussed in Section IV.3.2. In Section IV.3.3, we discuss the

programmability of the FCs, while the immunity to read and write disturbs is discussed in

Section IV.3.4.

Inputs
Primary Primary

Outputs

A

B E

D

C

(a) Logic Netlist

A

B

C

D

E

Inputs
Primary Primary

Outputs

(b) Flash-based Digital Circuit

Figure 4.1: Converting a Logic Netlist into a Flash-based Design

IV.3.1 Flash-based Design Conversion

Figure 4.1 illustrates the conversion of a logic netlist into a binary flash-based digital

circuit. The process is similar to the conversion of a logic netlist into a TLC-based netlist

discussed in Section III.3.2, except that we use FCs to implement the logic functionality.

Starting with a logic netlist (Figure 4.1(a)), we first cluster the circuit nodes (in the dotted

circles of Figure 4.1(a)). The initial netlist can be technology mapped, or technology

independent. These clusters are multi-input, multi-output structures (with up to m inputs

and n outputs). The clusters are shown as solid circles in Figure 4.1(b). The solid circles in

Figure 4.1(b) are referred to as FCs, and are implemented monolithically. The flash-based

59

digital circuit implements the logic function of each cluster (dotted circles in Figure 4.1(a))

as an FC (solid circle in Figure 4.1(b)). In other words, each FC implements a logic

function Fm,n, where m is the number of inputs and n is the number of outputs of the logic

The solid circles (A, B, C, D and E) in the flash-based digital circuit of Figure 4.1(b) have

the same functionality and connectivity as the corresponding dashed ovals (A, B, C, D and

E) in the logic netlist of Figure 4.1(a). We discuss the design details of the FC in the next

section.

Note that the focus of this chapter is the flash-based FC cell, and its electrical char-

acteristics. We defer the discussion on algorithmic details of converting a logic netlist into

a flash-based netlist to the next chapter.

Primary

Inputs

Outputs

Primary

out put_generation_circuit

FLBout1,n

FLBout1,0

FLA1 FLA6FLA0

mode

col_selectrow_selectprog_control prog_pulse

clk

FC_programming_signals

Figure 4.2: Flash Cluster

60

IV.3.2 Flash Cluster Circuit Design

As mentioned earlier, we construct the flash-based digital block by identifying clus-

ters of nodes in the logic netlist that implement an n-output logic function with up to m

inputs (Fm,n). These clusters of logic will then be implemented using FCs. An FC is a

generic circuit structure that can implement any logic function Fm,n (with m inputs and n

outputs). FCs are also equipped with the required logic for programming the threshold

voltages of their constituent floating gate devices. Figure 4.2 shows the block diagram of

the FC. As shown in the figure, the FC is driven with a group of signals (for programming

purposes) in addition to signals that are used during normal operation. The FC signals used

during normal operation are Primary Inputs (left side of Figure 4.2) and Primary Outputs

(right side of Figure 4.2). The additional programming signals are required to program the

functionality of the FC. The programming signals of the FC (mode, row_select, col_select,

prog_control and prog_pulse), will be discussed in Section IV.3.3. Since the FC is a dy-

namic circuit, a clock signal (clk) is used for gating the precharge and evaluate transistors

in the FC. The clk signal is also used during programming, as we will expound in Sec-

tion IV.3.3.

Figure 4.2 shows the internal components of the FC. The FC is composed of a group

of flash logic arrays (FLAs) and an output generation circuit. An FLA is an array of

NAND flash-like pulldown stack structures. Each stack implements a logic cube of Fm,n.

There are 2n−1 FLAs in every FC. Each FLA implements the input cubes that correspond

to an output minterm of Fm,n. For example, if the FC output < 010 > has 2 input cubes

61

< 011011 > and < 110−11 >, then FLA2 implements these two input cubes. The cubes

implemented in each FLA do not share minterms with cubes implemented in a different

FLA, and hence, exactly one FLA pulls down when any input combination is applied to the

FC. We refer to the number of cubes implemented in FLAi as its cubes per array (CPAi).

In the example discussed earlier in this paragraph, CPA2 = 2. The output generation circuit

in the FC is driven by the outputs of the FLAs. When the output of FLAi pulls down, the

corresponding output vector (i) is generated at the final output of the FC. For example, if n

= 3 and if FLA3 pulls down during evaluation, then the output generation circuit produces

the 3-bit output < 011>. Since the FC is a dynamic circuit, its default (precharged) output

state is 2n −1 (or < 111 > for n = 3). Therefore, we do not need to implement FLA(2n−1),

and hence we only need to implement 2n −1 FLAs (FLA0, FLA1, · · · , FLA6, for n = 3, as

shown in Figure 4.2).

The circuit details of the FLAs are discussed next.

i

Inputs

Primary

FLAi

FLB1FLB0

FLBouti,0 FLBouti,n

FLBn

FLBouti,1

Figure 4.3: Flash Logic Array i (FLAi) Structure

62

IV.3.2.1 Flash Logic Array

As mentioned earlier, an FLA comprises of an array of NAND flash-like pulldown

stacks, where each one of these stacks implements a cube. The delay, power, and energy of

an FLA are degraded as the number of cubes implemented in an FLA increases. Therefore,

to maintain healthy delay, power and energy characteristics of the FLA, we split the FLA

into a group of flash logic bundles (FLBs). Each one of these FLBs can implement a

limited number of cubes. We call this number CPB and it represents the maximum number

of cubes that can be implemented in an FLB. We also refer to the total number of cubes

in the ith FLA (FLAi) as cubes per array (CPAi). Hence, the number of FLBs that exist

in FLAi is ⌈CPAi

CPB
⌉, which is also the number of outputs of FLAi. Note that while CPAi is

determined by the logic function Fm,n, CPB is a design parameter that can be optimized to

improve circuit delay, power, energy and physical area.

IV.3.2.2 Flash Logic Bundles

As mentioned earlier, we limit the number of NAND flash-like pulldown stacks im-

plemented in an FLB to CPB, to maintain healthy delay, power and energy characteristics

of the FC. Since FLAs can have an arbitrary number of cubes, the actual number of pull-

down stacks (cubes) implemented in an FLB is sometimes less than CPB. Figure 4.4 shows

the circuit details of an FLB.

Each one of the pulldown stacks implemented in an FLB has m flash transistors and

1 regular NMOS transistor (as shown in Figure 4.4), where m is the number of inputs

of the function Fm,n. The flash transistors are programmed to implement cubes, and the

63

X1 Xq

FLBouti,k

Mx,1

Fa,1(V T1)

Fb,1(V T1)

Fc,1(VT1)

Fd,1(V T1)

Fe,1(VT0)

Ff ,1(VT0)

Mx,q

Fa,q(VT1)

Fb,q(VT1)

Fc,q(VT1)

Fd,q(VT1)

Fe,q(V T1)

Ff ,q(V T1)

Mpchclk

a

ā

b

b̄

c

c̄

d

d̄

e

ē

f

f̄

X0

Mx,0

Fa,0(VT1)

Fb,0(VT1)

Fc,0(VT0)

Fd,0(VT0)

Fe,0(V T1)

Ff ,0(V T1)

VSP0 V SP1 VSPq

Figure 4.4: Flash Logic Bundle i, k (FLBi,k)

regular transistors are used for programming as well as operation purposes. The flash-

based implementation proposed in this work is based on dynamic logic, and hence, both a

precharge and an evaluate transistor are needed. To precharge the FLB, a PMOS transistor

(called Mpch) is used. Mpch is driven by the clock signal (clk), and hence, is turned on

during the precharge (low) cycle of clk. This precharges the output of the kth FLB of FLAi

(FLBouti,k) to VDD. The lines V SP0 to V SPq are connected to ground during operation to

allow the NAND stacks to pull down when they evaluate, but also have a special purpose

during programming, which will be discussed in Section IV.3.3. The regular NMOS tran-

64

sistors (Mx,i) shown at the top of each stack in Figure 4.4 are used during chip operation as

the evaluate transistors which are off during the precharge (low) phase of clk. They only

turn on during the evaluate (high) phase of clk, to allow the pulldown stack to evaluate the

output FLBouti,k. The NMOS transistors (Mx,i) are also used for programming purposes.

Programming will be discussed in detail in Section IV.3.3.

GND

VDD
(1V)

VT1

VT0

VIL

VIH

Figure 4.5: Flash Transistor Threshold Voltages Used in an FC

Cubes are implemented in an FLB by programming the flash transistors of each

of the NAND flash-like pulldown stacks to implement a cube. Figure 4.5 shows the input

voltages applied at the gate of a flash transistor in an FC (VIH and VIL, which are set to VDD

and GND respectively). Figure 4.5 also shows the VT levels that the flash transistors are

programmed to. These VT levels are the erase threshold (V T0) and the program threshold

(V T1). Each NAND flash-like stack is configured to implement a cube by programming

each of the flash transistor in that stack to V T0 or V T1. For example, the left-most stack of

65

Figure 4.4 implements the cube abe f . Note that transistors Fc,0 and Fd,0 are programmed

to a threshold voltage V T0 which is below GND (see Figure 4.5). Therefore, these two

transistors are on irrespective of the values of the signals c and d. Now, transistors Fa,0,

Fb,0, Fe,0 and Ff ,0 are programmed to a threshold voltage VT1, which is between V DD and

GND (see Figure 4.5). This means that these devices turn on only when their gate signal

(respectively a, b, e and f) are greater than VT1. As a consequence, the left-most stack of

Figure 4.4 implements the cube abe f .

Similarly, the second stack of Figure 4.4 implements the cube abcd. The rightmost

stack of Figure 4.4 implements the cube abcde f . Note that all of its transistors are pro-

grammed to the VT1 threshold, which is why it implements a minterm in the m-input space

of Fm,n.

In other words, the design of the FLB resembles the input plane of a NOR-NOR

PLA. Unlike a traditional NOR-NOR PLA, the FLB is different because the cubes that it

implements are not shared between other FLBs or FLAs. This results in the FC needing to

implement more cubes in general than in a NOR-NOR PLA. However, based on our initial

experiments, the NOR-NOR PLA is less efficient from a delay, power and energy point of

view, since the output logic may have a larger loading (diffusion capacitance) caused by

cubes being shared across outputs.

IV.3.2.3 Output Logic

When an input value is applied to the FC, exactly one of the outputs of the FLAs pulls

down. After this, the corresponding output state are generated using the output generation

66

circuit. Figure 4.6 shows the circuit details of the output generation circuit. Each output of

the function Fm,n is driven by an output buffer (sized to drive a fan-out of 3 FC input loads).

The unbuffered outputs of the output logic are represented using a horizontal line which is

precharged by a PMOS transistor (shown at the left side of the output line). The precharge

PMOS transistor is driven by the clock signal (clk). Each of the unbuffered output lines

is pulled down based on which FLAi output (FLBouti,k) is pulled down. Note that exactly

one FLBouti,k pulls down for any input to the FC. For each output minterm in the function

Fm,n, if the output j is 0, an NMOS transistor is inserted for that output line in the output

logic. Otherwise, the output line will by default stay high after the precharge cycle. Since

the outputs of the FLAs are active low, we insert an inverter for each FLBouti,k before

driving the gate of the pulldown NMOS devices in the output logic.

For example, if any of FLBout0,i pull down, then all three f , g and h will pull down.

If any of FLBout3,i pull down, on the other hand, then the output will be < f ,g,h >

= < 011 >, assuming that f is the most significant output bit. In this case, there will

be NMOS devices pulling down the output of f in the output logic, and no NMOS de-

vices connected to g and h, which will stay precharged, resulting in the output minterm

< f ,g,h> = < 011 > being produced. Finally, the output minterm < 111 > does not need

to be produced, and therefore all input cubes mapping to the output minterm < 111 > are

never implemented.

67

outputsclk

vdd

vdd

vdd minterm0 mintermP

FLBout0,0 FLBout0,n

g

h

f

FLBoutp,0

Figure 4.6: Flash Output Generation Circuit

IV.3.3 Programming the Flash Cluster

The programming (and erasure) of the flash transistor in the FC is similar to the

programming of the flash transistors in the TLC, which was discussed earlier in Sec-

tion III.3.4. The main difference in the programming of the FC is that we are using dual

purpose signals V SPi (shown in Figure 4.4), instead of adding an extra NMOS transistor

at the bottom of the flash stack (as discussed in Section III.3.4). We will go over the erase

and programming of the FC only to show how the V SPi signal is used in the erasure (and

programming) of the FC, however, all the remaining steps of the erasure and programming

of the FC is similar to that of the TLC (covered in Section III.3.4).

The flash transistors in an FC share a common bulk, and hence, all the flash transis-

tors are erased at once. Consider Figure 4.4. The erase operation is performed by applying

a high voltage (10V-20V) to the bulk node of the FC, and floating the source and drain

68

terminals of each flash transistor (by turning off the Mx,i transistor and floating the signal

V SPi). The gates of all transistors are driven to GND. These conditions are applied long

enough to guarantee that the VT levels of all the flash transistors in the FC have reached

V T0 (the erase VT level), as shown in Figure 4.5.

Before starting the programming of an FC, we always perform an erase operation,

in order to reset the VT ’s of the flash devices to V T0, and then only program the the flash

transistors to VT1 according to the configuration procedure described in the FLB part of

Section IV.3.2.2. For example, assume that Fc,1 and Fc,q in Figure 4.4 need to be pro-

grammed to VT1. In this case, the c and c lines are driven to a programming voltage.

The transistors and Mx,1 and Mx,q are turned on by driving X1 and Xq high), while leaving

the other Xi low. Also, the lines VSP1 and VSPq are driven low and the remaining V SPi

lines are floated. This disables programming of all but the 2nd and qth NAND stacks of

the FLB. All inputs other than c and c (i.e. a, b, d, e and f and their complements) are

driven to a pass voltage. After applying the programming pulses for a sufficient duration,

the threshold voltages of Fc,1 and Fc,q are programmed to the V T1 threshold voltage, while

all other transistors in the FLB are unaltered and stay at the erase threshold voltage (VT0).

Programming of an FLB requires the application of a maximum of 6 programming pulses

(since m = 6 in our design). Note that by controlling the duration of the programming

pulse, the value of the threshold voltage V T1 can be adjusted with a fine granularity.

The mode, prog_control, row_select, col_select and prog_pulse signals in an FC

(shown in Figure 4.2) have the same functionality as those used in a TLC and are described

69

in Section III.3.4.

It is important to note that although high voltages are required for programming the

flash transistors, we restrict operating voltages to 1V, which is the nominal supply voltage

for 45nm CMOS technology node.

IV.3.4 Read and Write Disturb

One of the issues of using flash transistors in NAND flash memories is read and write

disturb. Read and write disturbs were described earlier in Section I.9.4. In our flash-based

design approach, we suppress the issue of read and write disturbs by:

• Using SLC cells only, which have exponentially higher immunity to read and write

disturbs [43].

• Limiting the number of flash transistors in series in our structure to 6 flash transistors

(compared to 100s of flash transistors in NAND flash memories).

• Limit the operating supply voltage in our implementation to 1V, which results in

reduced electric fields, thus drastically reducing read disturbs to adjacent flash tran-

sistors.

• Unlike NAND flash memories, our flash-based design approach does not require

the use of a passing voltage (which is higher than the read voltage) during regular

operation (i.e. we are always reading all the flash transistors in the same series

stack).

70

Output minterms 0 1 2 3 4 5 6 7 Total

No. input minterms 11 6 8 9 9 6 3 12 64

No. input cubes 8 3 5 4 6 6 3 N/A 35

Table 4.1: Example of Input Minterm and Cube Distribution of an m-input and n-output

Logic Function

IV.3.5 Mapping a CMOS-based Design into a Flash-based Design

We start the conversion of each FC (A, B, C, D and E of Figure 4.1) from CMOS

into flash by constructing a table of all the 2n output minterms and their corresponding

input minterms. Now each of the input minterms for each output minterm are minimized

separately using Espresso [29]. The total number of input minterms for the n-output func-

tion represented by the FC of interest (we call this function Fm,n) is 2m. This enumeration

is inexpensive since m and n are small (6 and 3 respectively in our work).

Table 4.1 lists the output minterms (in row 1) for a representative function Fm,n (with

m=6 and n=3). The number of input minterms for each output minterm are shown in row 2.

The resulting number of cubes for each output minterm (after running Espresso) are shown

in row 3. The output minterms corresponding to the ’7’ output are not implemented, since

the FC is a precharged circuit.

IV.4 Experiments

In this section, we first present the simulation environment used in evaluating our

flash-based digital circuit design approach. Then we discuss the flash-based digital cir-

71

cuit implementation details. Finally, we present the details of our experiments and the

discussion of the results.

IV.4.1 Simulation Environment

Our FC-based design approach (presented in this chapter) is compared to a CMOS

standard cell based design approach. We used a 45nm process technology to implement

both the designs. For the CMOS standard cell based implementation, the digital designs

were synthesized and mapped to the industry grade 45nm Nangate FreePDK45 Open Cell

Library [54, 55] using Synopsys Design Compiler [56]. The mapped designs were simu-

lated at the circuit level using the Synopsys HSPICE [56] circuit simulation tool and the

45nm PTM [57] card (nominal VDD is 1V). For the FC-based designs, we used our in-

house tool-chain to generate the FCs representing the same digital designs as those imple-

mented using CMOS. The flash-based circuits were back annotated with layout parasitics,

and then simulated using HSPICE [56]. Both of the CMOS-based and the flash-based

designs operate at VDD of 1V. However, the flash-based designs use 10V-20V for pro-

gramming purposes only.

For the flash devices, we follow the same technique found in [64] to model the gate

capacitance of the flash devices and derive our flash model card, which was also described

in Section III.4.2. The only difference is that FCs only use two VT levels while the TLC

(in Section III.4.2) used three VT levels. We verified the correct logical operation of the

flash-based digital circuit through exhaustive simulations, and generated custom layouts

for the flash-based digital circuits using Cadence Virtuoso [65]. We used the generated

72

Figure 4.7: Layout View of an FC (des00)

layouts of the flash-based designs to compare the physical area of the flash-based digital

circuits to their CMOS-based counterparts. We generated 20 randomly generated circuit

designs to evaluate our flash-based digital circuit design approach. The layout of our FCs

used design rules for flash devices that were obtained from the ITRS reports [59].

IV.4.2 Flash-based Implementation Details

We implemented logic functions with 6 inputs (m = 6) and 3 outputs (n = 3) using

both of the flash-based approach described in this chapter as well as the CMOS standard

cell based approach. For the flash-based designs, the FCs are implemented using FLBs of

size 3 (CPB = 3), and the target threshold voltages used are V T0 = -0.5 V and VT1 = 0.5 V.

IV.4.3 Results and Analysis

Table 4.2 reports the delay, power, energy and physical area results ratios of our

flash-based designs compared to CMOS standard cell based implementation. The delay

reported in the table (Dmax Ratio) is maximum delay of any transition seen at any primary

output of the circuit. Since the flash-based implementation is dynamic, we accounted for

the precharge delay in the reported delay shown in the table. The precharge delay is about

73

Circuit Dmax Ratio Pavg Ratio Eng Ratio Cell Area Ratio

des00 0.81× 0.34× 0.28× 0.50×
des01 0.75× 0.31× 0.24× 0.50×
des02 0.81× 0.35× 0.28× 0.59×
des03 0.74× 0.39× 0.28× 0.51×
des04 0.89× 0.38× 0.34× 0.62×
des05 0.71× 0.33× 0.23× 0.48×
des06 1.04× 0.34× 0.35× 0.58×
des07 0.83× 0.36× 0.30× 0.58×
des08 0.80× 0.35× 0.28× 0.56×
des09 0.87× 0.31× 0.27× 0.49×
des10 0.93× 0.38× 0.35× 0.54×
des11 0.87× 0.40× 0.35× 0.50×
des12 0.92× 0.38× 0.35× 0.53×
des13 0.89× 0.38× 0.34× 0.58×
des14 0.80× 0.33× 0.26× 0.51×
des15 1.01× 0.40× 0.40× 0.53×
des16 0.88× 0.34× 0.30× 0.59×
des17 0.77× 0.34× 0.27× 0.56×
des18 0.83× 0.34× 0.28× 0.55×
des19 0.69× 0.36× 0.24× 0.52×

Average 0.84× 0.35× 0.30× 0.54×
Stdev 0.09× 0.03× 0.05× 0.04×

Table 4.2: Delay, Power, Energy and Cell Area Ratios of Flash-based Digital Circuits

Relative to Their CMOS Standard-cell Based Counterparts

25% of the total delay. In most digital circuits, the delay path consists of multiple levels

of logic (about 5 levels of logic in recent designs). Since we only need to precharge once

then evaluate the 5 logic levels, the total delay of the logic path becomes (5× evaluate

delay + 1× precharge delay). This will result in further reducing the Dmax ratio (by about

20%) compared to the numbers reported in the table. As shown in the table, the delay of

the flash-based digital circuits ranges from 0.69× to 1.04× of the CMOS standard cell-

74

based digital circuit delay, with an average of 0.84×. The standard deviation of the relative

flash-based design results is shown in Table 4.2. The standard deviation of the the delay

(0.09× of CMOS), power (0.03× of CMOS), energy (0.05× of CMOS) and cell area ratios

(0.04× of CMOS) indicate that the FC has predictable characteristics and in general will

outperform CMOS designs in all the design metrics.

The key reasons for the reduced delay are:

• Lowered gate capacitance of the flash FET (20× lower than a MOSFET), as ex-

plained in Section III.4.2.

• The increased parasitics of the standard cells (due to the use of NMOS as well as

PMOS devices which are both driven by the inputs) causes higher delays for the

CMOS standard-cell implementation.

• The use of shared (un-contacted) diffusions in the NAND stack reduces parasitics

significantly, thus reducing delays in the flash-based circuits.

• Our design is dynamic while the CMOS standard cell-based design is static. This

typically yields a 15-20% lower delay.

We also report the power dissipation (average of 0.35× of CMOS) when implement-

ing the digital circuits using our flash-based logic compared to CMOS standard cell-based

implementation. We also show the energy utilization of our flash-based implementation

compared to the CMOS standard cell-based implementation. On average, the energy uti-

lization of flash-based digital circuits is about 0.3× of the CMOS standard cell-based

implementation.

75

It is well known that dynamic designs consume more power than static CMOS de-

signs. Our FC based design consumes less power for several reasons. Despite being

dynamic, the number of nodes being precharged is smaller than a CMOS (domino or other

dynamic) approach. Further, the long transistor stacks (since we choose m = 6) result in

smaller evaluation currents, reducing power. Also, in our design, exactly one FLB pulls

down during every evaluation, reducing switching activity and hence power consumption.

Finally, the Ids of a flash FET is lower than that of a MOSFET, which results in a lower

power consumption.

We also report the area ratio of both implementations. The area reported for the

CMOS standard cell-based implementation is the sum of physical cell areas, while the

area of our flash-based approach is the layout area obtained from layout generation exper-

iments. We expect the area ratio to be more favorable in practice, when CMOS wiring

areas are taken into account. Design rules for flash were obtained from the ITRS 45nm

flash technology node [59]. Digital circuits implemented in an FC use 0.54× the physical

area of a CMOS-based design, on average. In Figure 4.7, we show the representative lay-

out of a cluster of the FC for the design des00. Note that the FC shown in Figure 4.7 does

not implement FLA7, since FLA7 is implemented by the precharge state.

The ability to change threshold voltages after fabrication in flash-based designs en-

ables adjusting the design’s speed to compensate for circuit aging. To show the benefits of

this, we performed a 10000 point Monte Carlo simulation to model process variation (W

and L) with a 1-sigma of 5% of the nominal parameter value. Figure 4.8 shows histograms

76

of the maximum delay (Dmax) of a CMOS design (labeled as ”CMOS”), a flash-based

design programmed with nominal VT (labeled as ”flash (nominal)”), and the same flash-

based design subsequently programmed with a lower VT (labeled as ”flash (fast)”). The

lower VT value was 50 mV lower than the nominal value of VT1. The figure shows that

the delay of the flash-based design programmed with lower VT (labeled as ”flash (fast)”)

is shifted to the left. This indicates that in flash-based designs, in-field compensation of

aging effects can be achieved by programming the flash-based design to a lower VT to

decrease the delays as desired.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 20 40 60 80 100 120 140 160

F
re

qu
en

cy

Maximum Delay (ps)

CMOS
flash (fast)

flash (nominal)

Figure 4.8: Histograms of CMOS and Flash-based Designs (Before and After Aging Com-

pensation)

77

Flash-based digital circuits have the ability of tuning their delay, power and energy

characteristics. This is done through shifting the VT of the flash transistors in the circuit.

The ability to shift VT offers the flash-based digital circuits huge advantages over the tra-

ditional CMOS standard-cell based circuits when it comes to speed binning at the factory,

mitigation of circuit aging and performing post-manufacturing ECOs.

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

200
180

160
140

120
100

80 60 40 20 Nom
inal

-20
-40

-60
-80

-100
-120

-140
-160

-180
-200

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.40

D
el

ay
 R

at
io

 (
P

re
ch

ar
ge

 +
 E

va
lu

at
e)

P
av

g/
E

ne
rg

y
R

at
io

VT Shift (mV)

Delay Ratio
Pavg Ratio

Energy Ratio

Figure 4.9: Delay, Power and Energy of the Flash-based Designs as VT is Shifted.

Figure 4.9 demonstrates the ability of tuning the delay, power and energy of the

flash-based circuits by shifting the threshold voltage of the flash transistors in the flash-

78

based circuits. The x-axis in the figure shows the VT shift in mV, where the nominal VT

is chosen at the VT values described in Section IV.4.1. The left y-axis shows the delay

ratio of the flash-based design compared to the CMOS standard-cell based design as the

VT of the flash transistors is shifted. The delay of the flash-based design is the sum of the

precharge and the evaluate delays. The right y-axis shows the average power and energy

ratios of the flash-based designs compared to the standard-cell based designs as the VT

of the flash transistors is shifted. The delay, power and energy shown in Figure 4.9 are

averaged across all the benchmark designs shown in Table 4.2. Figure 4.9 shows that by

shifting the VT of the flash transistors to a lower value than its nominal value, the delay of

the design decreases and the power dissipated increases, while the energy consumption is

decreased. Conversely, when the VT is shifted to a higher value than the nominal VT value,

the delay increases and the power dissipated decreases, while the energy consumption is

increased. These results confirm our ability to control the circuit delay, power and energy

characteristics by fine tuning the threshold voltage of the flash-based design. This allows

the manufacturer to do precise speed/power binning of parts in the factory.

The delay, power and energy of fabricated digital ICs vary broadly due to process

variations. We study this effect by simulating our flash-based designs at different process

corners. The process corners that are modeled in our work are shown in Table 4.3. We also

show the effect of shifting the VT of the flash devices by +/- 50 mV. The delay ratios of our

flash-based designs are shown in Figure 4.10, the power ratios are shown in Figure 4.11

and the energy ratios are shown in Figure 4.12. The x-axis of in these figures show the

79

0.60

0.65

0.70

0.75

0.80

0.85

s,s s,t s,f t,s t,t t,f f,s f,t f,f

D
el

ay
 R

at
io

 (
P

re
ch

ar
ge

 +
 E

va
lu

at
e)

Process Corner (PMOS,NMOS)

Nominal VT + 50mV
Nominal VT

Nominal VT - 50mV

Figure 4.10: Delay of Flash-based Designs at Different Process Corners and VT Levels.

process corner and the y-axis shows the average delay ratio (in Figure 4.10), average power

ratio (in Figure 4.11) and average energy ratio (in Figure 4.12) of the flash-based designs

compared to their CMOS standard cell counterparts. As shown in the figures, shifting

the VT of the flash devices after fabrication reduces the effect of process variations on the

delay, power and energy of the flash-based designs.

IV.5 Chapter Summary

The device structure of flash transistors has made them the technology of choice

for implementing non-volatile memory. This chapter presented an approach to use flash

80

Process corner PMOS NMOS

s,s Slow Slow

s,t Slow Typical

s,f Slow Fast

t,s Typical Slow

t,t Typical Typical

t,f Typical Fast

f,s Fast Slow

f,t Fast Typical

f,f Fast Fast

Table 4.3: Process Corners

transistors to implement digital logic circuits. The threshold voltage of flash devices can

be modified at a fine granularity during programming, which results in several advantages

such as controlling the speed/power binning of integrated circuits, aging mitigation as ICs

slow down over the years and performing ECOs. We present the details of the circuit

topology that we use in our flash-based digital circuit approach. Our HSPICE simulations

show that, averaged over 20 designs, our approach yields 0.84× the delay, 0.35× the

power, 0.3× the energy utilization and 0.54× the physical area of the equivalent circuit

implemented using CMOS standard cell-based design.

81

0.38

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

s,s s,t s,f t,s t,t t,f f,s f,t f,f

P
ow

er
 R

at
io

Process Corner (PMOS,NMOS)

Nominal VT + 50mV
Nominal VT

Nominal VT - 50mV

Figure 4.11: Power of Flash-based Designs at Different Process Corners and VT Levels.

0.20

0.22

0.24

0.26

0.28

0.30

0.32

s,s s,t s,f t,s t,t t,f f,s f,t f,f

E
ne

rg
y

R
at

io

Process Corner (PMOS,NMOS)

Nominal VT + 50mV
Nominal VT

Nominal VT - 50mV

Figure 4.12: Energy of Flash-based Designs at Different Process Corners and VT Levels.

82

CHAPTER V

BLOCK-LEVEL IMPLEMENTATION OF BINARY-VALUED,

FLASH-BASED DIGITAL DESIGNS1

In this chapter, we present the details on the realization of the block-level flash-

based digital design. The current chapter describes and characterizes the CAD flow to

decompose a circuit block into a network of interconnected FCs.

V.1 Background

In Chapter IV, we described the use of flash transistors to implement binary-valued

digital circuits. In Chapter IV, we exploit the ability to control the threshold voltage of

flash transistors, to implement digital circuits. The circuit topology utilized was a cluster

of unprogrammed flash transistors arranged in a NAND configuration (we call these Flash

Clusters (FCs)), which are programmed in the factory to implement the desired logic

function. There are several ways in which the current work differs from Chapter IV:

• The work of Chapter IV only describes the design, electrical details and circuit-

level characterization results for an FC. An FC implements a logic function of a

small number of inputs (up to 6 inputs in Chapter IV) and outputs (up to 3 outputs

in Chapter IV). In contrast, the current work focuses on the design of large circuit

blocks which are comprised of 1000s of interconnected FCs.

1Part of the data reported in this chapter is reprinted with permission from ”A Flash-based Digital Circuit

Design Flow” by Monther Abusultan and Sunil P. Khatri, International Conference On Computer Aided

Design (ICCAD) 2016, pp. 1-6, Copyright 2016 by ACM.

83

• The work of Chapter IV does not cover the decomposition of a large circuit block

into a network of FCs, and the electrical characterization of the resulting block. The

current work focuses its attention on this aspect, covering the synthesis, mapping

and electrical characterization of a large circuit block which is implemented using

an interconnected network of FCs.

• The work of Chapter IV compared the electrical characteristics of several randomly

generated FCs (up to 6-input, up to 3-output functions) with a standard-cell based

implementation of the same function. This work, in contrast, compares the electrical

characteristics of several large designs implemented using (1000s of) FCs, with a

standard-cell based implementation (realized using commercial tools) of the same

design.

• The relationship between Chapter IV and the current work is similar to the rela-

tionship between standard-cells and a standard-cell based design flow. One can say

that Chapter IV describes the design of ”the flash standard-cell” in detail, while this

work describes the entire design flow involved in synthesizing, mapping and char-

acterizing an entire circuit block using an interconnected network of ”flash standard

cells”.

• This work, in a sense ”closes the loop” and describes how the FCs of Chapter IV

perform when they are used to implement a large digital circuit block.

84

V.2 Previous Work

To the best of our knowledge, there has been no work prior to this work, which

describes the synthesis, mapping and electrical characterization of digital circuits imple-

mented as a network of flash-based circuit elements (FCs).

V.3 Approach

In this section, we present a design flow that implements digital circuits using flash

transistors. However, unlike Chapter III and Chapter IV, which deal with approaches to

realize flash-based designs at the cell-level, this Chapter shows how to implement flash-

based designs at the block-level. In this Chapter, we use the flash cell presented in Chap-

ter IV, called the FC, as the cell structure used to implement the entire block-level design.

This choice is mainly due to the superior delay, power, energy and area results that the FC

has demonstrated at the cell-level.

V.3.1 Overview

Inputs
Primary Primary

Outputs

A

B E

D

C

(a) Logic Netlist

A

B

C

D

E

Inputs
Primary Primary

Outputs

(b) Flash-based Digital Circuit

Figure 5.1: Converting a Logic Netlist into a Flash-based Design

85

The flash-based design flow entails the conversion of a technology-independent dig-

ital circuit into a flash-based digital design. Since the flow presented in this chapter uses

the FC (from Chapter IV), we will only cover the algorithmic details of implementing

digital design using an interconnected network of FCs. Nonetheless, familiarity with the

circuit structure of the FC is very important to understand the design flow of the flash-

based designs. the reader is referred to Section IV.3.2 to read about the circuit details of

the FC.

V.3.2 Flash-based Design Conversion

We have conceptually discussed the top level flow that we use to convert a

technology-independent digital circuit into a flash-based design (using the FC) in Chap-

ter IV. In this section, we will briefly cover the top-level conversion process to familiarize

the readers with the conversion process and give them the necessary background to under-

stand the flash-based design flow presented in this chapter.

We illustrate the conversion process in Figure 5.1. Figure 5.1(a) shows a technology-

independent logic netlist. The first step in our flow is to group the nodes in the logic netlist

to form multi-input (m inputs) and multi-output (n outputs) clusters (illustrated by the

dotted ovals in Figure 5.1(a)). These clusters are then implemented using FCs which are

shown as solid circles in Figure 5.1(b). In other words, each FC implements an up to n-

output logic function of up to m inputs. We refer to this function as Fm,n. Note that the

solid circles labeled A, B, C, D and E in the flash-based digital circuit of Figure 5.1(b)

have the same functionality and connectivity as the dashed ovals A, B, C, D and E in the

86

technology independent digital circuit of Figure 5.1(a).

This chapter focuses on flash-based implementation of a digital design using an in-

terconnected network of FCs. We describe the synthesis, mapping and electrical char-

acterization of the resulting design, and compare the delay, area, power and energy with

a CMOS standard-cell based realization of the same design (obtained using commercial

tools). It is very important to understand the structure of the FC in order to fully un-

derstand our CAD flow. The reader is encouraged to read Chapter IV, more specifically

Section IV.3.2, Section IV.3.5 and Section IV.4, towards this goal.

V.3.3 FC-based CAD Flow Overview

The CAD flow to convert an input logic netlist is described next. The input logic

netlist is technology independent in our experiments, but it could be technology dependent

as well. There are several steps in the flow, which are briefly described next, and then

explained in detail.

First, the input netlist is clustered into FCs (where FCi implements F i
m,n), with a goal

of minimizing the wiring between FC’s. In our experiments, m ≤ 6 and n ≤ 3. After this,

we obtain a multi-level netlist of interconnected FCs.

Next, the layout of each FC is generated. The FCs, FLAs and FLBs are extremely

regular in their physical characteristics, making them amenable to the on-the-fly physical

synthesis flow that we use. Based on the fanout load of the ith output of FC j, additional

buffers are added for that output.

To quantify the utility of our flash-based circuit design flow, the same input netlist is

87

synthesized and mapped using commercial standard-cell based CAD tools. The resulting

designs (flash-based and standard-cell based) are compared in terms of their delay, area,

power and energy, over a number of designs.

V.3.3.1 FC-based Clustering

Problem Definition: Given an arbitrary logic netlist η, cluster η into a multi-level

network η∗ of FCs, subject to the following constraints:

• The network η∗ is acyclic.

• Each FCi ∈ η∗ has a logic function F i
s,t where s ≤ m and t ≤ n.

Algorithm 1 Clustering a Logic Netlist into a Multi-level Network of FCs

η = decompose_network(η, p)

L = dfs_and_levelize_nodes(η)

FC∗ = 0

η∗ = 0

while get_next_element(L) != NIL do

FC∗ = FC∗ ∪ get_next_element(L)

if (num_input(FC∗) ≤ m) && (num_output(FC∗) ≤ n) then

continue

else

Q = remove_last_element(FC∗)

η∗ = η∗ ∪ FC∗

FC∗ = Q

end if

end while

η∗ = wiring_recovery(η∗)

Algorithm 1 outlines our clustering strategy. We first decompose η into an equiva-

lent network of nodes, with at most p inputs. If this were not done, we could encounter

a situation where the number of inputs to some node in η is greater than m, making it

88

impossible to create the multi-level FC-based netlist. We choose p < m, and in particular

we found that p = 3 yielded good results. Now η is sorted in a depth-first manner. The

resulting array of nodes is sorted in topological2 order, and placed into an array L.

Now we greedily construct the logic in each FC, by successively grouping nodes

from L such that the resulting implementation of the grouped nodes FC∗ does not violate

the input or output cardinality constraints for the FCs. If so, we attempt to include another

node into FC∗, otherwise we append the last FC satisfying the height and width constraints

to the result η∗.

In order to reduce the wiring between FCs, the get_next_element routine preferen-

tially returns nodes in the fanout of the nodes of FC∗, provided that the inclusion of such

a node into FC∗ would not result in a cyclic dependency between the FCs of η∗. If such

nodes are not available, the first un-mapped node from L is returned. At every step of the

construction of η∗, we verify that the graph induced by the multi-level network of FCs is

acyclic.

After the clustering step is completed, we invoke a procedure called

wiring_recovery. This is a final effort in reducing the wiring between FCs. This proce-

dure attempts to move individual nodes in L to a different FC than their currently assigned

FC. If a wiring gain is realized by such a move, the move is made. If no more nodes can

be gainfully moved, or if a specified number of iterations have been made through L, the

procedure returns. On average, the wiring_recovery procedure is able to reduce wiring by

2Primary inputs are assigned a level 0, and other nodes are assigned a level which is one larger than the

maximum level of all their fanins

89

about 9.6%. We note the following about this procedure:

• It is possible that a node n in L is the only node in some FC X , and if n can be

moved to another FC, then FC X can be eliminated from η∗. We came across a few

instances where a FC was removed in this manner.

• wiring_recovery returns when no node can be moved without increasing the wiring

cost of the multi-level network of FCs. At this point, it is still possible that more

than one node can simultaneously be moved to realize a gain in wiring. However,

this condition is not checked.

The functional correctness of the resulting multi-level network of FCs was verified

at the end of the clustering step.

V.3.3.2 On-the-fly Layout Synthesis

Once the multi-level netlist of FCs is generated in the previous step, we next gen-

erate the layout for each FCi ∈ η∗. First, for each FCi, we construct a table of all the 2n

output minterms op and their corresponding input cubes Cp = Σcp,q. This construction is

inexpensive in practice, since m and n are small (6 and 3 respectively in our experiments).

The set of cubes {Cp} form a partition of the points in Bm, where B = {0,1}. This table

is constructed from the truth table of F i
m,n, simply by grouping all the input minterms for

each output minterm. Now the input minterms for each output minterm are minimized

using Espresso [29]. The output minterm which has the largest number of cubes is not

implemented, and is mapped to the default output of the FC when it is precharged, as

discussed in Section IV.3.5.

90

Table 5.1, shows the number of input minterms (and cubes) that correspond to each

output minterm for a representative function Fm,n with m = 6 and n = 3. The cubes corre-

sponding to the ’7’ output are not implemented, since the number of cubes for this output

is the largest, and can be mapped to the default output of the FC, since it is a precharged

circuit.

Output minterm 0 1 2 3 4 5 6 7 Total

Input minterms 8 5 8 11 6 7 7 12 64

Input cubes 8 3 5 4 6 6 3 9 44

Table 5.1: Example of Minterm Distribution of an n-output Logic Function with m Inputs

For each FCi ∈ η∗, our layout synthesis algorithm adds larger output buffers for

output x whenever the fanout load (measured in terms of the total number of pulldown

stack devices that x drives) exceeds a particular value. We chose this threshold to be 96.

V.4 Experiments

V.4.1 Simulation Environment

In this section we will discuss the methodology we used in reporting the results

obtained through our flash-based design flow compared to the results obtained from an

equivalent CMOS standard cell based design flow. The designs presented in this thesis

are implemented in a 45nm process technology. This is because an industry grade CMOS

standard cell library in 45nm technology is easily obtained and serves as a realistic candi-

91

date to compare our flash-based design flow with. The CMOS standard cell based digital

circuits are synthesized and mapped using a 45nm Nangate FreePDK45 Open Cell Li-

brary [54, 55] using Synopsys Design Compiler [56]. The delay, power and area of the

CMOS standard cell based digital circuits are extracted using Design Compiler. The flash-

based digital circuits were generated using custom scripts. For CMOS devices, we used a

45nm PTM process [57]. For the flash devices, we derived the 45nm flash device models

from the measurements results presented in [46] and validated our models using [58, 45].

The details regarding our model card regression was discussed earlier in Section III.4.2.

However, we only use two VT ’s for the flash transistors (as described in Section IV.4, since

the design flow described in this chapter uses the FC as the building cell of the flash-based

design. The target programmed threshold voltages used in our designs are (VT0 = -0.5

V) and (VT1 = 0.5 V). We simulated the flash-based FCs in HSPICE and also verified the

correct logical operation of the flash-based digital circuit, which is realized as a network

of interconnected FCs. Custom layouts for the FCs were generated using Cadence Virtu-

oso [65] to compare the physical area of the flash-based digital circuits to their standard

cell based counterparts. We obtained the layout of our FCs using design rules for flash

devices that were obtained from the ITRS reports [59].

V.4.2 Flash-based Analysis Details

In this section, we describe the methodology we used to extract the delay, power and

area of our multi-level flash-based design.

We first characterized a generalized FC, and generated delay, power and area models

92

for the FC in terms of m, n, and several other parameters of the FC. We use these models

to estimate the delay, power and area of the mapped multi-level network of FCs. The

parameters that determine the delay, power and area of FCi are:

• The total number of cubes Ci
tot implemented in the FC (i.e. total number of pulldown

stacks over all the FLAs in FCi).

• The maximum number of cubes Ci
FLB in any FLB of FCi (this number is bounded

by CPB).

• The number of outputs Ni of the FCi.

The delay of FCi is proportional to both the total number of cubes in the FC (Ci
tot)

and the maximum number of cubes over the FLBs of FCi (Ci
FLB). The power of FCi is

proportional to the total number of cubes (Ci
tot) and the number of output of FCi (Ni). The

area of the layout of FCi depends on all the three factors. We fix the number of inputs of

the FC (m) to 6, in order to preserve the regularity of the FC and make it easier to place

and route.

To characterize the delay, area and power of an FC, we constructed a library of

FCs with number of outputs (Ni) varying from 1 to 3, and number of cubes per FC (Ci
tot)

ranging from 1 up to 56 (this is the maximum number of cubes for a 6 input function,

assuming that we perform the on-the-fly layout synthesis which maps the output minterm

with the largest number of cubes to the default output minterm (< 111 >)), and the Ci
FLB

varying from 1 to CPB (which is 3 in our work)

93

V.4.2.1 Delay Characterization and Estimation

For delay characterization, we run HSPICE simulations to measure the delays of

FCs with Ci
tot ranging from 1 up to 56, and for Ci

FLB varying between 1 and CPB (which

is 3). The latter condition corresponds to the case when the output of the FCi is dis-

charged through an FLB with 1, 2 or 3 cubes respectively. We also measure the maximum

precharge delay DPch across all the FCi configurations. The following equation explain

how the delay of the flash-based design is computed.

Delay = Dmax
Pch + ∑

FCi∈Π

[

DFC

(

Ci
tot ,C

i
FLB

)

+(DOB)×αi

]

(V.1)

Equation V.1 summarizes the critical path delay calculation methodology. Dmax
Pch is

the pre-characterized maximum precharge delay for all the FCs. For all the FCi on the

critical path Π, we look up the delay DFC of the FC itself, and the delay DOB of the output

driver (if the FC drives a load greater than a threshold). Ci
tot is the total number of cubes

(pulldown stacks) in FCi and Ci
FLB is the maximum number of cubes among all the FLBs

in FCi. DOB is the delay of the output buffer, which is only added if the fanout of FCi

exceeds a certain threshold. The binary variable αi is set to 1 when the fanout of FCi

exceeds the threshold, and αi = 0 otherwise. In any FC, the output generation circuit is

capable of driving an equivalent load of a 4×-5× buffer (which is equivalent to driving

up to 100 gates of flash transistors in pulldown stacks). Recall that the flash transistor

has 20× smaller input capacitance than a regular MOSFET, as discussed earlier. During

layout synthesis, our CAD tool inserts an output buffer for each FC that has one or more

outputs with a load higher than 96 flash transistor gates. This output buffer is a 4× buffer,

94

which is capable of driving a load equivalent to the input load of a CMOS buffer of size

16×-20×, effectively guaranteeing that our output buffer is strong enough to drive about

400 flash transistor gates, which is larger than any load encountered in our experiments.

The total delay is equal to the summation of the delays of the FCs in the critical path Π, the

maximum precharge delay, and the sum of the delays of the inserted output buffers. The

critical path delay is found by running a static timing analysis tool which we implemented,

using a dynamic programming model.

V.4.2.2 Power Characterization and Estimation

We first characterize the power of any FC by measuring the power (precharge as

well as evaluation) for general FC configurations using HSPICE simulations. The config-

urations varied Ci
tot from 1 to 56 and Ni from 1 to 3. The results of these characterization

runs are stored.

Equation V.2 shows the details of how power estimation is performed. Here, AF

is the logic activity factor, which is taken to be 15%, a representative number for logic

designs [3]. Ni is the number of outputs in FCi. The total power is computed as the sum

of the power of all the FCs in the design.

Power = AF ∗

[

∑
∀FCi

P(Ci
tot ,N

i)+(POB)×αi

]

(V.2)

95

Benchmark
CMOS Flash CMOS Flash CMOS Flash CMOS FLASH

Stdcells # FCs mAvg nAvg Avg # Cubes Delay (ns) Delay Ratio Power (mW) Power Ratio Cell Area (µm)2 Cell Area Ratio

b17 47500 6658 5.61 2.32 5.49 7.67 0.90× 25.97 0.49× 56964.97 0.67×
b20 22983 2901 5.60 2.32 6.02 6.11 0.50× 30.80 0.18× 27114.98 0.60×
b21 23324 2963 5.62 2.32 6.03 6.11 0.49× 30.93 0.18× 27521.69 0.61×
b22 34693 4362 5.61 2.33 5.97 6.16 0.47× 43.67 0.19× 40926.49 0.60×

s13207 2828 460 5.60 2.38 4.83 1.88 0.43× 0.98 0.91× 3365.70 0.67×
s15850 3735 594 5.50 2.30 4.90 2.63 0.67× 1.82 0.62× 4357.35 0.65×
s35932 10661 1290 5.24 2.60 6.62 0.74 0.29× 12.06 0.22× 12964.31 0.51×
s38417 10771 1593 5.68 2.22 5.04 1.48 0.89× 6.82 0.43× 12256.22 0.60×
s38584 13895 2077 5.59 2.16 4.93 2.03 0.90× 6.19 0.61× 16048.05 0.60×

multiplier 46363 5821 5.67 2.48 6.56 18.80 0.47× 105.41 0.11× 56460.10 0.57×
voter 22453 2708 5.38 2.53 6.10 5.91 0.58× 37.93 0.14× 26738.59 0.56×

square 38009 5109 5.63 2.49 5.61 18.26 0.49× 63.05 0.16× 46558.78 0.58×

Average 23101 3045 5.56 2.37 5.68 6.48 0.59× 30.47 0.35× 27606.43 0.60×
Stdev 15582.94 2038.51 0.13 0.13 0.64 6.08 0.20× 30.31 0.26× 18934.88 0.05×

Table 5.2: Delay, Power, Energy and Cell Area Ratios of Flash-based Digital Circuits Relative to Their CMOS Standard-cell

Based Counterparts

9
6

V.4.3 Results and Analysis

We evaluated our flash-based digital circuit design approach by implementing a set

of 12 of the largest benchmarks from ISCAS89 [66], ITC99 [67] and EPFL [68] bench-

mark suites. We compare the delay, power and area results of the flash-based implementa-

tion to a CMOS standard-cell based implementation of the benchmarks. Table 5.2 shows

the benchmark name (column 1), the number of cells used to implement the design using

a traditional CMOS standard-cell based approach (column 2), the number of FCs used to

implement the design using the flash-based approach (column 3), the average number of

inputs over all the FCs (column 4), the average number of outputs of the FCs (column 5),

the average number of cubes in the FCs (column 6), the CMOS delay and the flash-based

design delay ratio (columns 7 and 8), the CMOS power and the flash-based design power

ratio (columns 9 and 10), the CMOS area and the flash-based design area ratio (columns

11 and 12). The delay, power and area ratios of the flash-based designs are relative to their

CMOS standard-cell based counterparts. The average and the standard deviation of the

results are shown in Table 5.2.

Comparing the average number of standard cells to the average number of FCs across

all the benchmarks we observe that on average, each FC is equivalent to ∼7.6× standard

cells. These FCs have an average of 5.56 inputs and 2.37 outputs, which are close to

the maximum number of inputs (6) and outputs (3) in our design. The average number of

cubes implemented in each FC, however, is low (5.68) compared to the maximum possible

number of cubes for a 6-input logic function.

97

Table 5.2 shows that the flash-based design approach is ∼41% faster operation and

consumes ∼65% lower power on average, compared to a traditional CMOS standard-

cell based design approach. This is a significant improvement, and results in an energy

improvement of ∼5× over the standard-cell based approach.

The key reasons for the reduced delay are:

• Lowered gate capacitance of the flash FET (20× lower than a MOSFET), as de-

scribed in Chapter IV.

• The increased parasitics of the standard cells (due to the use of NMOS as well as

PMOS devices, and the need for inputs to drive the gates of both types of devices).

• The use of shared (un-contacted) diffusions in the NAND stack reduces area as well

as parasitics significantly, thus reducing delays.

• The FCs used to implement the benchmarks have relatively small sizes (the average

number of cubes implemented in each FC is 5.68) which reduces the input capacitive

loads.

The work shown in Chapter IV and [69] showed that the FCs had an improved delay

(by ∼16%), power (by ∼65%) and area (by ∼46%) than the same logic implemented with

standard-cells. The delay improvement for the flash-based design reported in Table 5.2 is

lower than the results reported in Chapter IV and [69]. The lower delay is due the much

smaller number of cubes per FC (average of 5.68 cubes per FC) in this work compared

to the FCs (which had ∼ 35 cubes per FC on average). Further, due to the lower number

of cubes per FC in the current work, output buffers are rarely needed, reducing the delay

98

further.

It is well known that dynamic designs consume greater power than static CMOS

designs. Our FC based design consumes less power for several reasons. Despite being

dynamic, the number of nodes being precharged is smaller than in a CMOS (domino or

other dynamic) approach. Further, the long transistor stacks (since we choose m = 6)

result in smaller evaluation currents, reducing power further. Also, in our design, exactly

one FLB pulls down during every evaluation, reducing switching activity and hence power

consumption. Finally, the Ids of a 45nm flash FET is lower than that of our 45nm MOS-

FET, which results in a lower power consumption. The power improvements reported in

Chapter IV and [69] match the power improvement reported in this work.

Figure 5.2: Layout View of an FC

We also report the area ratio of both implementations. The area reported for the

CMOS standard cell based implementation is the sum of cell layout areas, while the area

of our flash-based approach is the sum of the layout areas of all the FCs in the design.

Design rules for flash were obtained from the ITRS 45nm flash technology node [59].

99

Digital circuits implemented in an FC use 0.6× the physical area of a CMOS-based design,

on average (compared to 0.54× in Chapter IV and [69]). The slight increase in area in the

current work arrives from the fact that there are fewer cubes per FC, making it harder

to pack the FLAs. The area reported in Table 5.2 does not include the area overhead of

the circuitry used to generate the high voltages for programming. We estimate that the

circuitry used to generate high voltages will incur ∼2% area overhead. In Figure 5.2, we

show the representative layout of a cluster of the FC which has 35 pulldown stacks.

We note that the standard deviation of the flash-based designs show more predictable

delay (0.20× of CMOS), power (0.26× of CMOS) and area (0.05× of CMOS) compared

to the standard deviation reported for CMOS, which is (6.08ns or 0.94× CMOS average)

for delay, (30.31mW or 0.99× CMOS average) for power and (18934.88µm2 or 0.69×

CMOS average) for area.

V.4.4 FC Statistics

Figure 5.3 shows 4 histograms showing the distribution of some key FC design pa-

rameters for design b17. Studying the distribution of these parameters for a design enables

us to optimize the CAD flow, since they allow us to determine the design impact of any

CAD optimization that is performed.

Figure 5.3 reports the number of cubes per FC (Ci
tot). This parameter contributes

significantly to the delay, power and area characteristics of the design. The number of

cubes per FC histogram shows that, for benchmark b17, almost all of the FCs have less

than 10 cubes in total, which suggests that in most cases, the output buffer will not be

100

Flash-based Design - b17

 0

 1000

 2000

 3000

-10 0 10 20 30 40 50 60 70

C
ub

es
 p

er
 F

C

 0

 1000

 2000

 3000

-10 0 10 20 30 40 50 60 70

M
ax

 F
LA

 s
iz

e

 0

 1000

 2000

 3000

 4000

-1 0 1 2 3 4

M
ax

 F
LB

 s
iz

e

 0
 1000
 2000
 3000
 4000
 5000

-1 0 1 2 3 4

F
LB

 s
iz

e

Cubes (Pulldown Stacks)

Figure 5.3: Histograms of FCs for the b17 Benchmark

101

inserted to the FCs in the design (except for high-fanout nodes). On the other hand, the

”Max FLA size” histogram shows that most FLAs have 1 to 4 cubes. Since about 50% of

the FLAs have 1, 2 or 4 cubes, there would be small FLBs in the design (since the optimal

size of an FLB is 3 cubes). Hence an increased area overhead can result, as shown in the

layout view of a representative FC (Figure 5.2). In this figure, note the wasted area in

implementing FLA3 (which has 4 cubes, 2 in each of its FLBs).

The ”Max FLB size” is a histogram of the largest FLB of each FC. We note that max

FLB sizes of 2 and 3 occur more frequently.

The ”FLB size” histogram shows the distribution of all the FLBs in the design. A

majority of FLBs have 2 cubes, as the histogram shows.

V.4.5 Shifting the Threshold Voltage

Flash-based digital circuits have the ability of tuning its delay and power character-

istics, which is done through shifting the threshold voltage of the flash transistors in the

circuit. This ability offers the flash-based digital circuits huge advantages over the tradi-

tional CMOS standard-cell based circuits when it comes to speed binning at the factory,

aging mitigation and performing post-manufacturing ECOs. Figure 5.4 demonstrates the

ability to tune the delay and power of flash-based circuit blocks by shifting the threshold

voltage of the flash transistors in the flash-based circuits. The x-axis in the figure shows

the VT shift in mV, where the nominal VT is chosen at the VT values described in Sec-

tion V.4.1. The left y-axis shows the delay ratio of the flash-based design compared to the

CMOS standard-cell based design as the VT of the flash transistors is shifted. The delay

102

0.50

0.55

0.60

0.65

0.70

0.75

-90
-80

-70
-60

-50
-40

-30
-20

-10
Nom

inal

10 20 30 40 50 60 70 80 90 100
0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

0.36

0.38

D
el

ay
 R

at
io

 (
P

re
ch

ar
ge

 +
 E

va
lu

at
e)

P
ow

er
/E

ne
rg

y
R

at
io

s
Threshold Voltage Shift (mV)

Delay Ratio
Power Ratio

Energy Ratio

Figure 5.4: Delay, Power and Energy Characteristics of Flash-based Blocks as VT is

Shifted

103

of the flash-based design is the sum of the precharge and the evaluate delays. The right y-

axis shows the average power and energy ratios of the flash-based designs compared to the

standard-cell based designs as the VT of the flash transistors is shifted. The delay, power

and energy shown in Figure 5.4 are averaged across all the benchmark designs shown

in Table 5.2. Figure 5.4 shows that by shifting the VT of the flash transistors to a lower

value than its nominal value, the delay of the design decreases and the power dissipated

increases, while the energy consumption is decreased. Conversely, when the VT is shifting

to a higher value than the nominal VT value, the delay increases and the power dissipated

decreases, while the energy consumption is increased. These results confirm our ability

to control the circuit delay, power and energy characteristics by fine tuning the threshold

voltage of the flash-based design.

V.5 Chapter Summary

It was shown in Chapter IV how flash transistors can be used to implement digital

circuits in an ASIC-like manner. However, the focus was on a single flash cluster (FC)

which implements a function with a small number of inputs and outputs.

Work presented in this chapter, is the first, to the best of the authors’ knowledge,

to use flash transistors to implement complete digital circuit blocks, in the form of an

interconnected network of FCs. The focus of this chapter is on logic clustering, on-the-fly

physical synthesis of all the FCs of a design, and the automatic characterization of the

delay, power and area of the resulting circuit.

104

Our characterization results show that, averaged over 12 large designs, our approach

yields 0.59× the delay, 0.35× the power, and 0.60× the area of the equivalent circuit

implemented using CMOS standard cell-based design. It is generally rare that a circuit

methodology yields results that are better than existing commercial standard-cell based

flows in terms of delay, area, power and energy, and in this sense, we submit that our

results are significant.

105

CHAPTER VI

SAT-BASED OPTIMIZATION FOR FLASH-BASED DIGITAL

DESIGNS

In this chapter, we present a SAT-based optimization engine that improves the cur-

rent flash-based CAD flow. This engine uses don’t-cares to perform multi-node, multi-

level logic optimization of the flash-based design.

VI.1 Background

Although the optimization technique presented in this chapter does not explicitly

compute the don’t-care set of the design, it uses concepts from multi-level don’t-care the-

ory to perform optimization. Therefore, we will begin with a brief background about

multi-level don’t-cares.

A logic function can be either a completely specified function (CSF) or an incom-

pletely specified function (ISF). A CSF f is a function f : Bn → B, where B = {0,1}. In

other words, for any input minterm, the output is specified to be 1 or 0 (i.e. all minterms

are care minterms). Conversely, an ISF g is a function g : Bn →{0,1,∗}, such that at least

one input minterm m ∈ Bn is mapped to the ∗ (don’t care) value. In other words, a subset

of the input minterms do not map the output of the function to 1 or 0. These minterms

are called the don’t-care minterms. The complete set of don’t-care minterms in an ISF

is referred to as the complete don’t-care (CDC) set. When a function is implemented in

106

hardware, these don’t-care minterms are mapped to {0,1}. This mapping process plays

an essential role in multi-level logic optimization. Careful assignment of the don’t-care

minterms of a logic function to logic 1 or 0 can lead to significant improvement in the

implementation characteristics of the function.

Any combinational Boolean logic network η forms a directed acyclic graph (DAG),

in which each node i of the graph represents a logic function fi. The node i also has an

output variable yi associated with it such that yi = fi. There is an edge in the DAG from

node i to node j, if f j is a function of the variable yi (i.e. f j depends on yi). In this case,

we call the node i a fanin (FI) of node j. Also, we call the node j a fanout (FO) of node

i. In general, a node i falls in the transitive fanin (TFI) of a node j in a logic network η,

if there is a path from node i to node j in the DAG representing the network η. Also, a

node k falls in the transitive fanout (TFO) of node j, if there is a path from node j to node

k in the DAG representing the network η. The set of internal nodes {yi} is referred to as

Y . The set of primary inputs {xi} is referred to as X , and the set of primary outputs {zi} is

referred to as Z.

In a multi-level logic netlist, the don’t-cares can take the form of satisfiability don’t-

care (SDC), observability don’t-care (ODC) or external don’t-care (XDC).

The SDC of a network is SDC = ∑m
j=1(y j ⊕ f j), where |Y | = m. An SDC minterm

mSDC
i ∈ B|Y |+|X |. In other words, if we apply all the possible combination of inputs at the

primary inputs of the logic netlist, the minterm mSDC
i can never be observed.

An ODC minterm mODC
j,k with respect to a logic node j and an output k, is a primary

107

input minterm such that if we change the value of the node yi corresponding to mODC
j,k ,

the change will not be observed at the primary output k of the network. In other words,

ODC j,k = {x ∈ B|X | s.t. zk(x)|y j=0 = zk(x)|y j=1}. For any node j, ODC j = ∏k(ODC j,k).

When a logic node is minimized against its ODCs, the change in the node may require

the recomputation of the ODCs of the other nodes in the same network. A subset of

the ODCs are called compatibility observability don’t-cares (CODCs). CODCs have a

”compatibility” property that allows them to be easily used in logic minimization. In other

words, optimizing a logic node using CODCs is compatible with any previous CODC-

based optimizations done on other nodes.

For each primary output, XDCs are a set of minterms of the primary input for which

the value of the primary output is disregarded.

Multi-level logic optimization using don’t-cares has been done in the past for tra-

ditional logic networks aiming towards reducing the number of literals of a logic node.

The SIS package [70] has a full_simplify command that builds a reduced ordered binary

decision diagram (ROBDD) [71]. Also, the work in [72] uses approximate compatible ob-

servability don’t-cares (CODC), while the work in [73] uses complete don’t-cares (CDC)

to minimize a logic node. These approaches are technology-independent, and their im-

provement are often erased during technology mapping [74].

108

VI.2 Previous Work

The work presented in Chapter IV and [69], as well as the work presented in Chap-

ter III and [64] only report flash-based implementations at the cell level. Chapter V

and [75] present a design flow to implement flash-based digital circuits at the block level.

The flow reads a logic netlist and performs synthesis and mapping to a network of intercon-

nected FCs. Although the work achieves impressive delay, power and area results, it uses a

greedy algorithm to perform the mapping of the design. In this work, we add an additional

layer of optimization, using don’t-cares in a multi-level logic network setting, to improve

the design characteristics. The flash-based designs implemented with our optimization

engine achieve an additional 10% lower delay, 5% lower power, 15% lower energy and

8% lower physical area when compared to their counterparts that are implemented using

the approach in [75]. Note that these are post technology mapping improvements, making

them more significant, since logic optimizations for standard cell-based designs are often

erased during technology mapping.

Work in the area of logic optimization includes [70, 72, 73]. The SIS package [70]

performs logic simplification of a logic netlist. SIS optimizes one node at a time, on

a technology independent netlist, unlike our approach. In the simplification process

(full_simplify command), SIS builds an ROBDD [71] for the entire design. This often

causes memory issues, since ROBDDs require high and unpredictable memory utilization,

limiting the command to designs which are much smaller than those we evaluate in our

work. In contrast, our work scales elegantly since it performs the optimization over a

109

small cut in the circuit, and uses a SAT-based algorithm, which is much faster than build-

ing ROBDDs. Another key advantage to our approach is that we perform post-technology

mapping optimization, which results in guaranteed improvements in the design character-

istics. Technology independent optimization can be lost after technology mapping [74].

Finally, our approach optimizes a cluster of nodes at once, unlike the optimization com-

mands in SIS.

In [72], the authors present a solution to ROBDD-based don’t-care optimization

by using approximation. They make a cut in the circuit around a particular node, thus

creating a sub-network that is tractable in size. The optimization of that particular node

is done by constructing an ROBDD representing the sub-network. Since they only build

ROBDDs of small sub-networks, the solution can scale to industry size designs. Their

approximation technique achieves a result quality that is very close to that obtained by

building an ROBDD for the entire design, with a fraction of the memory requirement. Our

approach presented in this chapter has several advantages over the work in [72] such as,

i) our approach performs post technology mapping optimization which is more effective

than technology independent optimization, ii) we perform the optimization over a cluster

of logic nodes at once, thereby exploiting greater optimization flexibility and iii) we use

a SAT-based engine instead of ROBDDs to perform the optimization. SAT-based engines

are generally faster and have lower and predictable memory requirements compared to

ROBDDs.

The work in [73] uses a SAT-based algorithm to perform the logic optimization for a

110

node. Similar to [72] they start by making a cut around a node N and build a SAT instance

that represents the sub-network inside the cut. Then they create a duplicate sub-network

with an altered node N∗. Node N∗ is annotated with CDCs that are computed through

random simulations. Finally, they use miters to check the equivalence of the two sub-

networks using a SAT-based checker. Our work distinguish itself from [73] by performing

post technology mapping optimization and perform the optimization considering a cluster

of nodes, rather than one node at a time. Finally, [73] calculates the don’t care set by doing

an all-SAT computation, while the goal of our approach is to simply check if a cube in a

cluster can be reassigned to a different output. This requires a simple SAT computation.

VI.3 Approach

Inputs
Primary Primary

Outputs

A

B E

D

C

(a) Logic Netlist

A

B

C

D

E

Inputs
Primary Primary

Outputs

(b) Flash-based Digital Circuit

Figure 6.1: Converting a Logic Netlist into a Flash-based Design

VI.3.1 Overview

The optimization technique presented in this chapter builds upon the flash-based

design flow presented in Chapter V. The top-level flash-based design flow to convert a

111

technology-independent logic netlist into a network of interconnected FCs was covered

in Section V.3.2. The main difference between the work presented in this chapter and

the work presented earlier in Chapter V is that we apply an additional step in the design

flow to optimize the final design. The flash-based netlist conversion performs the mapping

from the clusters of nodes as illustrated by the dotted ovals in Figure 6.1(a) into the FCs

depicted by the solid circles in Figure 6.1(b). The work of this chapter further optimizes

the FCs shown in Figure 6.1(b).

After each cluster R is formed during the clustering process, we invoke our opti-

mization engine which first creates a list of candidate optimizations for cluster R. This

is done by examining the structure of the cluster R. This step will be discussed further in

Section VI.3.3.1. If the cluster R meets the criteria for optimization, our engine will form a

cluster cut around the cluster R in the logic netlist, as shown in Figure 6.2. Afterwords, the

optimization engine will perform cluster cut-based (CCB) optimization on the cluster R.

The details of how the cluster cut is formed as well as the CCB optimization are described

in detail in Section VI.3.3.2.

This chapter targets the optimization of the FCs generated by our flash-based design

flow presented in Chapter V. In this chapter we will only cover our SAT-based optimiza-

tion approach. However, it is very important to understand the structure of the FC as

well as our flash-based CAD flow in order to fully understand our SAT-based optimiza-

tion approach. The reader is encouraged to read Chapter IV (specifically, Section IV.3.2,

Section IV.3.5 and Section IV.4) as well as Chapter V (specifically, Section VI.3.3 and

112

OutputsInputs
Primary

1

1

1

2

2

3

3

2

R
Primary

qp

LFC

Figure 6.2: Cluster Cut Based (CCB) Optimization

Section V.4).

VI.3.2 Flash Cluster Circuit Design

The work presented in this chapter is based on the FC presented in Chapter IV. It

uses the same FC structure presented in Section IV.3.2. The reader is encouraged to read

about the structure of the FC in Section IV.3.2. The key point that we want to reiterate

is that the FC is a dynamic circuit, so its default (precharged) output state is 2n − 1 (or

< 111 > for n = 3), where n is the number of outputs of the function implemented in the

FC. Hence we do not need to implement FLA(2n−1) (or FLA7 in our example), and only

need to implement 2n − 1 FLAs (shown as FLA0, FLA1, · · · , FLA6 in Figure 4.2, for n

= 3). From an optimization standpoint, it would benefit us if a cube assigned to FLAi

(i 6= 2n − 1), is reassigned to FLA2n−1, since it will not need to be implemented. This

is one of the optimizations we explore. A different optimization step that we perform is

113

based on the structure of the FLA (described earlier in Section IV.3.2.1). The FLA consists

of multiple FLBs, each of which implements a maximum number of cubes defined by the

variable CPB (which was determined to be 3, and covered in Section IV.3.2.2). If FLAi

has (say) 3x+1 cubes and FLA j has (say) 3y+2 cubes (where x, j ≥ 0) then if we move a

cube from FLAi to FLA j, we can reduce the area of the FC. We will further describe this

optimization step in Section VI.3.2.1 and Section VI.3.3.1.

VI.3.2.1 Layout Analysis

As discussed earlier in Section IV.3.2.2, each FLB can implement up to 3 cubes in

order to maintain healthy delays. Figure 6.3 shows the layout view of the three types of

FLB (based on the number of cubes implemented in an FLB). FLB-A implements three

cubes, FLB-B implements two cubes and FLB-C implements one cube. As shown in

Figure 6.3, the physical areas of the three FLB types do not scale linearly with the number

of cubes implemented in each FLB. This is due to the fixed area of the output generation

circuit (shown on top of the FLB) For example, FLB-A implements 3 cubes and has an

area of 2.48 (µm)2, FLB-B implements 2 cubes and has an area of 1.94 (µm)2 and FLB-C

implements 1 cube and has an area of 1.94 (µm)2. Note that while FLB-C implements

half the number of cubes that FLB-B implements, it occupies the same area. We clearly

see a great opportunity for optimization by eliminating FLBs of type FLB-C, and moving

the cubes they implement into another FLB-C to form an FLB-B, thereby reducing the

area by 1.94 (µm)2. Note that from an optimization standpoint, all cubes in FLBi,x are

candidates for being moved in case there exists a k such that FLBi,k is of type FLB-C. We

114

can also move a cube from FLB-C to an FLB-B to form an FLB-A which will result in

area reduction of 1.4 (µm)2. Finally, all cubes in any implemented FLB can be reassigned

to the precharged (< 111...1 >) output, thus eliminating the FLB completely, since the

precharged output is never implemented.

VI.3.3 FC-based CAD Flow

The SAT-based optimization presented in this chapter is performed on the output of

the flash-based CAD flow described earlier in Section V.3.3. In the original CAD flow

(described Section V.3.3), the input netlist is clustered into FCs (where FCi implements

F i
m,n), with a goal of minimizing the wiring between FC’s. We choose m≤ 6 and n≤ 3. The

CAD flow uses a greedy algorithm that successively groups the nodes from the technology-

independent logic netlist to form clusters. After this, we obtain a multi-level netlist of

interconnected FCs. We run our optimization engine (described in this chapter) at the end

of the clustering step, after we have generated the multi-level netlist of FCs.

The FCs, FLAs and FLBs are extremely regular in their physical characteristics,

making them amenable to our cluster cut-based (CCB) optimization engine. After per-

forming CCB optimization, we inspect the fanout load of the ith output of FC j, and addi-

tional buffers are added for that output, as necessary.

To quantify the utility of the flash-based circuit design flow, the same input netlist is

synthesized and mapped using commercial standard-cell based CAD tools. The resulting

designs (flash-based and standard-cell based) are compared in terms of their delay, area,

power and energy, over a number of designs.

115

Figure 6.3: Layout View of Possible FLB Structures

VI.3.3.1 Optimization Candidate List

Our optimization is applied to every mapped FC produced by the clustering CAD

flow of Section VI.3.3. We first create a list of ways that the current FC can be optimized in

decreasing order of benefit. Our optimization algorithm is focused on reducing the number

of cubes implemented in an FC, with a goal of reducing physical area. These possible

changes explored for any FC are based on the fact that an FLB-C (which implements

1 cube) occupies the same area of an FLB-B (which implements 2 cubes) as discussed

earlier in Section VI.3.2.1. Therefore, if we move a cube from an FLB-C to another FLB-C

(which then becomes an FLB-B), we reduce the FC’s size by 1 FLB-C. We can also reclaim

some area back by moving a cube from an FLB-C to an FLB-B (which then becomes

an FLB-A). Also, in Section VI.3.2, we have shown that since the FC is a precharged

structure, FLA7 (that correspond to the precharge state < 111 >) is not implemented.

116

Therefore any cube that is mapped to the < 111...1> output (or FLA7, since we use n = 3)

is essentially removed from the FC (since it will not be implemented). In our approach,

the candidate list is populated with candidate optimizations in the following order.

A Optimizations where a cube of FLB-C is moved to another cube of FLB-C.

B Optimization in which a cube of type FLB-C is moved to a cube of type FLB-B.

C Optimization where a cube of type FLB-C is moved to FLA7.

D Optimization in which all cubes of type FLB-B are moved to FLA7.

Note that if FLBi,k is a move candidate type A, B, C or D, then all cubes in FLBi,x

are tested for moving (for all x). This step analyzes each FC for potential optimization

opportunities. It records all these possible opportunities in an ordered list C. The items

in the list C represent a possible optimized FC (we call it FC∗). This list is ordered based

on the amount of area reduction that each optimization opportunity would yield. In this

step, if the list C is empty, the optimization algorithm skips the current FC, and iteratively

checks the next FC. Otherwise, if the list C is not empty, the algorithm performs cluster

cut-based optimization on the current FC.

VI.3.3.2 Cluster Cut-based (CCB) Optimization

The CCB optimization algorithm is described in Algorithm 2. We start with a cluster

R that has a list of nodes LFC, as shown in Figure 6.2. After optimization candidate list

(C) is computed for R, and assuming that C is non-empty, the algorithm forms the p and

q cuts shown in Figure 6.2. The algorithm forms the cut p towards the primary outputs

of the network η. The cut p is formed by collecting all the nodes in the TFI cone of each

117

Miters

Duplicate Node

New Node

Original Node

p

R′

R

f (p)

Figure 6.4: Example Miter Circuit

node in LFC, up to K levels. We call this set of nodes LT FI (represented by the nodes

marked ”1” in Figure 6.2). Here K is a design parameter. A large value of K results in

bigger subnetworks and at the cost of runtime, better result quality. In our implementation,

we find that K = 2 provides a good balance between runtime and result quality. Next, our

CCB algorithm forms the cut q towards the primary outputs of the network η. The cut q

is formed by collecting two sets of nodes. The first set of nodes (LT FO) are the nodes that

fall in the TFO cone of the nodes in LFC (the nodes in cluster R), up to K levels. These are

represented by the nodes marked ”2” in Figure 6.2. The second set of nodes (LT FO_T FI)

are the recursive fanin nodes of the nodes in the set LT FO up to depth K (represented by

118

the nodes marked ”3” in Figure 6.2).

These sets of nodes LT FI , LT FO, LT FO_T FI and LFC are collected for every cluster R

and form a network ηFC (shown at the top of Figure 6.4), which will be used to test every

optimization possibility R∗ in C. Another network, ηR∗ (shown at the bottom of Figure 6.4

) is formed by replacing the nodes of cluster R (LFC) in ηFC with the nodes of R∗ (LFC∗),

represented by the solid black circles in Figure 6.4. We also replace the nodes LT FO, with

a duplicate copy LT FO∗ (represented by the solid grey circles in Figure 6.4), since they

fanout from the nodes LFC∗ . We keep the nodes LT FI and LT FO_T FI as is (they are the

same as the corresponding nodes in ηFC), since they are not affected by the change in the

function represented by the nodes LFC∗ .

Assume that the cluster size |LFC| is 3. The generation of the nodes LFC∗ from the

nodes LFC is straightforward. Consider a candidate optimization R∗ which moves minterm

m ∈ 2|P| from output minterm < 000 > to < 011 >.

In each of the 3 nodes of LFC, m is in the offset, since the output for m in LFC is

< 000 >. To construct LFC∗ , we simply take m and move it to the onset of the second

and third nodes (since the desired output minterm has a 1 value for the second and third

cluster nodes). A similar transformation from LFC to LFC∗ can be made for any candidate

optimization R∗. This discussion can be generalized to a cube c, as well.

Our CCB optimization algorithm uses a SAT-based check to test if cluster R∗ (nodes

LFC∗) represents a valid replacement of the cluster R (nodes LFC). Our SAT-based check

will test if the network ηFC∗ with the optimized cluster R∗, is equivalent to the original net-

119

work ηFC. This is done by constructing a SAT instance SC representing both the networks

ηFC and ηFC∗ . We add to the SAT instance SC, miter clauses that represent the XOR of

the outputs of ηFC and ηFC∗ , (i.e. as the XOR gates shown in Figure 6.4), then we add

a clause that represents the OR of all the miter outputs. The output of the OR gate is a

function (f (p)) of the primary inputs (p) to the networks ηFC and ηFC∗ . Finally, we add a

clause to SC that forces the the function f (p) to be ”true”.

We use a SAT checker (in this work, we use MiniSat [76]) to check the SAT instance

SC. If SC is satisfiable, it means that there exist an input combination on p that makes the

output of cluster R and R∗ different. This means that the networks ηFC and ηFC∗ are not

equivalent. In this case, the CCB optimization algorithm continues to check a different

R∗. However, if the result of the SAT checker is unsatisfiable, it means that the networks

ηFC and ηFC∗ are equivalent. Hence, R∗ (the nodes LFC∗) represents a valid optimization

of cluster R (the nodes LFC). In this case, the nodes LFC are replaced with the new nodes

LFC∗ and the algorithm repeats the process on another cluster R.

Proof of Correctness: Consider a cluster LFC which is replaced by cluster LFC∗

under optimization R∗. Then,

Theorem VI.3.1 If LFC∗ is a valid replacement for LFC in ηFC, then LFC∗ is a valid re-

placement for LFC in η.

Let LFC∗ be a valid replacement for LFC in ηFC. In other words, the SAT instance

SC returns UNSAT, and hence the |q| outputs of ηFC∗ are logically equivalent to the |q|

outputs of ηFC, for all input minterms m ∈ 2|p|. Now consider the |X | primary inputs of

120

η. Let them enumerate all 2|X | values, and let the resulting values observed on the p space

be P. This is also called the forward image of X on the p cut. Since P ⊆ 2|p|, the values

of the output nodes of ηFC∗ and ηFC would be identical in η, and hence the values of the

output nodes of η would also be identical after the optimization.

Algorithm 2 Optimize a Cluster of Nodes

C = opt_choices(LFC)

if (C is not empty) then

LT FI = get_tfi(LFC, K)

LT FO = get_tfo(LFC, K)

LT FO_T FI = get_tfi(LT FO, 1)

for each Ci in C do

LFC∗ = get_optimized_cluster(Ci)

SC = construct_sat_inst(LFC,LFC∗ ,LT FI , LT FO, LT FO_T FI)

add_miters(SC)

SR = MiniSat(SC)

if SR == UNSAT then

Replace LFC by LFC∗

break

end if

end for

end if

VI.4 Experiments

VI.4.1 Simulation Environment

Similar to Chapter V, the designs presented in this work are implemented in a 45nm

process technology. In our experimental framework, the CMOS standard cell based dig-

ital circuits are synthesized and mapped using a 45nm Nangate FreePDK45 Open Cell

Library [54, 55] using Synopsys Design Compiler [56]. The delay, power and area of the

121

Benchmark

CMOS Flash CMOS Flash CMOS Flash CMOS Flash Runtime

No. Stdcells No. FCs Delay (ns)
Delay Ratio

Power (mW)
Power Ratio

Cell Area (µm)2 Cell Area Ratio Flow [75] CCB

Flow [75] CCB Flow [75] CCB Flow [75] CCB Seconds Ratio

b14 9892 1435 5.95 0.44× 0.38× 11.18 0.25× 0.24× 11523.65 0.67× 0.60× 17.75 1.17×
b15 13117 1943 4.91 0.80× 0.75× 7.43 0.51× 0.49× 15513.65 0.73× 0.63× 38.10 1.21×
b17 43848 6658 7.65 0.56× 0.88× 23.38 0.54× 0.53× 52188.14 0.72× 0.63× 675.38 1.42×
b20 20040 2901 6.15 0.53× 0.50× 26.05 0.21× 0.21× 23316.76 0.68× 0.63× 102.29 1.32×
b21 20511 2963 6.09 0.49× 0.50× 26.67 0.21× 0.21× 23884.41 0.69× 0.63× 109.85 1.59×
b22 30510 4362 6.80 0.50× 0.42× 37.58 0.22× 0.22× 35509.40 0.68× 0.63× 229.66 1.46×

s5378 1750 279 1.07 0.67× 0.67× 1.02 0.54× 0.54× 2090.23 0.65× 0.65× 1.19 1.08×
s6669 2693 329 4.90 0.43× 0.44× 2.63 0.26× 0.24× 3276.85 0.55× 0.52× 0.99 1.46×
s9234 2052 330 1.61 0.62× 0.55× 0.99 0.67× 0.60× 2373.78 0.69× 0.60× 0.97 1.47×

s13207 2646 460 1.84 0.47× 0.40× 0.89 0.99× 0.91× 3122.31 0.70× 0.64× 2.28 1.37×
s15850 3423 594 2.76 0.50× 0.43× 1.66 0.66× 0.63× 3945.05 0.70× 0.65× 5.47 1.14×
s35932 10371 1290 0.73 1.04× 0.30× 11.35 0.23× 0.22× 12579.67 0.51× 0.48× 15681.14 1.35×
s38417 10199 1593 1.50 0.89× 0.69× 6.36 0.43× 0.44× 11474.18 0.59× 0.59× 21.2 1.30×
s38584 12584 2077 2.14 0.53× 0.52× 5.63 0.66× 0.64× 14302.02 0.64× 0.63× 4558.66 1.23×

multiplier 44038 5821 19.35 0.46× 0.42× 98.49 0.11× 0.11× 53150.26 0.59× 0.56× 715.39 1.21×
voter 21166 2708 6.16 0.61× 0.55× 35.10 0.14× 0.15× 24943.35 0.57× 0.55× 38.88 1.05×

square 34052 5109 18.48 0.45× 0.41× 56.48 0.17× 0.17× 41201.01 0.64× 0.58× 1200.49 1.11×
arbiter 12674 1742 4.29 0.38× 0.40× 9.16 0.32× 0.31× 16514.88 0.55× 0.43× 27.84 1.30×

bar 5422 812 1.32 1.10× 1.07× 5.00 0.31× 0.29× 6640.16 0.58× 0.52× 17.90 1.23×
sin 9655 1549 17.84 0.49× 0.44× 16.41 0.17× 0.16× 11922.65 0.64× 0.56× 159.36 1.01×

Average 15532 2248 6.08 0.59× 0.53× 19.17 0.38× 0.36× 18473.62 0.63× 0.58× 1180.24 1.27×
Stdev 13286.46 1893.56 5.80 0.20× 0.19× 23.94 0.23× 0.22× 15879.09 0.06× 0.06× 3563.96 0.16×

Table 6.1: Delay, Power and Cell Area Ratios of Flash-based Digital Circuits (with and without Optimization) Relative to Their

CMOS Counterparts (K = 2)

1
2

2

CMOS standard cell based digital circuits are extracted using Design Compiler. Custom

scripts were created to generate the flash-based digital circuit. The model cards obtained

from the model card regression procedure described in Section III.4.2 were used to model

the flash transistors in the flash-based circuits. For CMOS devices, we used a 45nm PTM

process [57]. The target programmed threshold voltages used in our designs are (V T0 =

-0.5 V) and (V T1 = 0.5 V). The flash-based FCs were simulated in HSPICE and the correct

logical operation of the flash-based digital circuit, realized as a network of interconnected

FCs, was verified. The delay, power, energy and area of the flash-based designs were

characterized using the tool-chain presented in Section V.4.2.

VI.4.2 Results and Analysis

We evaluated the flash-based digital circuit design approach by implementing a set of

20 of the largest benchmarks from ISCAS89 [66], ITC99 [67] and EPFL [68] benchmark

suites, with and without our SAT-based optimization engine. We compare the delay, power

and area results of the flash-based implementations to a CMOS standard-cell based imple-

mentation of the benchmarks. All the benchmarks are too large to run SIS full_simplify

command on them. However, we run the command simplify on each of the designs before

running them through the flash-based design flow or the CMOS standard-cell implemen-

tation flow.

Table 6.1 shows the benchmark name (Column 1), the number of standard cells

used in the traditional CMOS standard-cell based approach (Column 2), the number of

FCs used in the flash-based design approach (Column 3), the CMOS delay (Columns

123

4), the delay ratio of the flash-based design without optimization (Column 5) and with

optimization (Column 6), the CMOS power (Column 7), the flash-based design power

ratio without optimization (Columns 8) and with optimization (Column 9), the CMOS

area (Column 10), and the flash-based design area ratio without optimization (Columns

11) and with optimization (Column 12). We also report the runtime for flash-based design

flow without optimization (Column 13) and with optimization (Column 14). The delay,

power and area ratios of the flash-based designs are relative to their CMOS standard-cell

based counterparts. Table 6.1 shows the average and the standard deviation of the results

of the benchmarks.

Table 6.1 shows that the flash-based design approach with optimization is ∼47%

faster and consumes ∼64% lower power on average, compared to a traditional CMOS

standard-cell based design approach. This is a significant improvement, and results in an

energy improvement of ∼5× over the standard-cell based approach. The CCB optimiza-

tion obtained an improvement of ∼10% in speed and ∼5% in power dissipation compared

to the unoptimized results. We also report the area ratio of the flash-based and CMOS

standard cell implementations. The area reported for the CMOS standard cell based im-

plementation is the sum of cell layout areas, while the area of our flash-based approach is

the sum of FC layout areas. Design rules for flash were obtained from the ITRS 45nm flash

technology node [59]. Digital circuits implemented using the flash-based implementation

with our optimization engine use ∼0.58× the physical area of a CMOS-based design, on

average. This an improvement of ∼8% over the flash-based implementation without op-

124

timization. The results of the flash-based implementation with optimization are reported

for K = 2 (refer to Section VI.3.3.2).

On average, enabling the optimization engine in the flash-based design flow in-

creases the runtime by ∼27% compared to the flash-based design flow without optimiza-

tion.

We also report the standard deviation of the results of the flash-based designs (in

Table 6.1). As shown in the table, the standard deviation of the optimized flash-based

designs, similar to the unoptimized flash-based designs, indicate that the delay, power and

area results of the optimized flash-based designs can be predicted with small error.

We ran our optimization engine with K = 3, to show the effect of varying the param-

eter K on the quality of the results and the total runtime. As shown in Table 6.2, for K = 3,

the flash-based designs implemented using our optimization approach show an improve-

ment of 8% (delay), 7% (power), and 11% (area) over the approach shown in Chapter V

(also [75]). In other words, using a value of K = 3, the results quality improved by 2%

(power) and 3% (area) and a degradation by 2% (delay) compared to using a value of K =

2. Note that the optimization is area driven, which explains why the delay metric was not

improved when the value K was increased. The runtime for K = 2 (from Table 6.1) was

shown to be 1.29× compared to the unoptimized case. The corresponding runtime ratio

for K = 3 is 1.87× (as shown in Table 6.2). The standard deviation of the results is shown

in the bottom row of Table 6.2, and shows the same behavior as seen in Table 6.1.

We have shown in Section VI.3.3.1 how the candidate optimizations are selected.

125

Benchmark

CMOS Flash CMOS Flash CMOS Flash CMOS Flash Runtime

No. Stdcells No. FCs Delay (ns)
Delay Ratio

Power (mW)
Power Ratio

Cell Area (µm)2 Cell Area Ratio Flow [75] CCB

Flow [75] CCB Flow [75] CCB Flow [75] CCB Seconds Ratio

b14 9892 1435 5.95 0.44× 0.36× 11.18 0.25× 0.24× 11523.65 0.67× 0.59× 17.75 2.49×
b15 13117 1943 4.91 0.80× 0.57× 7.43 0.51× 0.48× 15513.65 0.73× 0.61× 38.10 2.27×
b17 43848 6658 7.65 0.56× 0.49× 23.38 0.54× 0.52× 52188.14 0.72× 0.61× 675.38 1.84×
b20 20040 2901 6.15 0.53× 0.45× 26.05 0.21× 0.20× 23316.76 0.68× 0.59× 102.29 1.70×
b21 20511 2963 6.09 0.49× 0.47× 26.67 0.21× 0.20× 23884.41 0.69× 0.60× 109.85 2.55×
b22 30510 4362 6.80 0.50× 0.41× 37.58 0.22× 0.21× 35509.40 0.68× 0.59× 229.66 2.62×

s5378 1750 279 1.07 0.67× 0.67× 1.02 0.54× 0.54× 2090.23 0.65× 0.65× 1.19 1.15×
s6669 2693 329 4.90 0.43× 0.41× 2.63 0.26× 0.24× 3276.85 0.55× 0.51× 0.99 2.07×
s9234 2052 330 1.61 0.62× 0.59× 0.99 0.67× 0.59× 2373.78 0.69× 0.59× 0.97 1.74×

s13207 2646 460 1.84 0.47× 0.44× 0.89 0.99× 0.87× 3122.31 0.70× 0.60× 2.28 2.61×
s15850 3423 594 2.76 0.50× 0.46× 1.66 0.66× 0.60× 3945.05 0.70× 0.61× 5.47 1.15×
s35932 10371 1290 0.73 1.04× 1.04× 11.35 0.23× 0.21× 12579.67 0.51× 0.46× 15681.14 1.75×
s38417 10199 1593 1.50 0.89× 0.68× 6.36 0.43× 0.41× 11474.18 0.59× 0.54× 21.2 1.45×
s38584 12584 2077 2.14 0.53× 0.56× 5.63 0.66× 0.61× 14302.02 0.64× 0.59× 4558.66 1.60×

multiplier 44038 5821 19.35 0.46× 0.43× 98.49 0.11× 0.11× 53150.26 0.59× 0.53× 715.39 1.28×
voter 21166 2708 6.16 0.61× 0.56× 35.10 0.14× 0.13× 24943.35 0.57× 0.50× 38.88 1.77×

square 34052 5109 18.48 0.45× 0.36× 56.48 0.17× 0.16× 41201.01 0.64× 0.53× 1200.49 1.22×
arbiter 12674 1742 4.29 0.38× 0.39× 9.16 0.32× 0.31× 16514.88 0.55× 0.43× 27.84 2.28×

bar 5422 812 1.32 1.10× 1.09× 5.00 0.31× 0.29× 6640.16 0.58× 0.52× 17.90 2.69×
sin 9655 1549 17.84 0.49× 0.42× 16.41 0.17× 0.15× 11922.65 0.64× 0.53× 159.36 1.19×

Average 15532 2248 6.08 0.59× 0.54× 19.17 0.38× 0.35× 18473.62 0.63× 0.56× 1180.24 1.87×
Average 13286.46 1893.56 5.80 0.20× 0.20× 23.94 0.23× 0.21× 15879.09 0.06× 0.06× 3563.96 0.54×

Table 6.2: Delay, Power and Cell Area Ratios of Flash-based Digital Circuits (with and without Optimization) Relative to Their

CMOS Counterparts (K = 3)

1
2

6

Figure 6.5: Optimization Opportunities Histogram for Benchmark ”b17”

For benchmark ”b17”, we tracked the number of candidate optimizations generated by our

algorithm as well as the number of optimizations that have been applied to the design.

Figure 6.5 shows the histogram of the optimization opportunities for benchmark ”b17”.

The number of candidate optimizations generated for benchmark ”b17” were, 19605 of

type A, 7243 of type B, 11378 of type C and 3216 of type D. Out of these candidate

optimizations, our CCB algorithm applied 2302 of type A, 778 of type B, 461 of type

C and 69 of type D. Figure 6.6 shows the histogram of the optimization opportunities

for benchmark ”b14”. The number of candidate optimizations generated for benchmark

”b14” were, 3393 of type A, 1518 of type B, 2399 of type C and 768 of type D. Out of

these candidate optimizations, our CCB algorithm applied 379 of type A, 216 of type B,

120 of type C and 25 of type D.

127

Figure 6.6: Optimization Opportunities Histogram for Benchmark ”b14”

From both these benchmarks, we note that type A and B optimizations are successful

more often than type C or D optimizations. This is reasonable since type C and D have

exactly one FLA (FLA7 in particular) to which the cubes may be moved. On the other

hand, type A and B optimization potentially have a larger number of FLAs to which the

cube may be moved.

VI.5 Chapter Summary

The flash-based implementation of Chapter V did not consider don’t-care optimiza-

tion. In this chapter, we presented a SAT-based optimization technique that implicitly

uses the CODC of a multi-level logic network. Unlike other don’t-care optimization tech-

niques presented in the past, our technique performs post-technology mapping optimiza-

128

tion which yields direct improvements in result quality as compared to pre-technology

mapping optimization. Also, we optimize a cluster of nodes at once, instead of optimizing

nodes one at a time. We characterized our implementation using 20 standard benchmarks,

and shown that our optimization yields ∼47% lower delay, ∼64% lower power and ∼42%

lower cell area compared to a CMOS standard cell implementation. This is a reduction of

∼10% in delay, ∼5% in power, ∼15% in energy and ∼8% in cell area compared to the

flash-based design implemented without our optimization engine. We also reported that

optimization engine incur a modest 27% runtime increase over the flash-based CAD flow,

without optimization.

129

CHAPTER VII

PLA-LIKE, FLASH-BASED DIGITAL LOGIC CELL

IMPLEMENTATION

This chapter focuses on the implementation of flash-based digital circuit at the cell-

level using a variation of the flash cluster (FC) presented in Chapter IV. This chapter

presents a cell structure that implements flash-based digital circuits in a manner that is

similar to programmable logic arrays (PLAs). We call the flash-based cell presented in

this chapter, a PLA-like flash cluster (PFC). Unlike the FC design approach, PFC design

approach takes advantage of cube sharing (similar to a PLA), and is able to further reduce

the physical area of the flash-based designs over the previously proposed approach. Sim-

ilar to the FC, the PFC uses the ability to modify the threshold voltage of flash devices

in order to implement combinational logic circuits. The PFC is fully compatible with the

conventional sequential elements used in digital design. In this chapter, we compare the

PFC design approach to both the CMOS standard cell design approach as well as the FC

design approach.

VII.1 Background

Programmable logic arrays (PLAs) [3] are simple circuit structures that are used to

implement digital circuits. A PLA can implement a combinational logic function Fm,n,

where m is the number of inputs and n is the number of outputs. PLAs can be very

130

compact in area and are regular in structure, making them very appealing for digital circuit

applications. A PLA consists of an AND-plane and an OR-plane as shown in Figure 7.1.

The AND-plane implements the cubes of the function Fm,n. The input to the AND-plane

is all the inputs of the PLA as well as their complements. Hence, the AND-plane has 2

× m vertical lines. The OR-plane combines the cubes constructed in the AND-plane to

generate the outputs of the PLA. Hence, the OR-plane has n vertical lines. This structure

allows the PLA to share cubes between outputs, which reduces the overall circuit area as

well as its power dissipation.

Inputs Outputs

A B C X Y

0 - 1 1 0

1 1 1 1 1

- 0 - 0 1

0 1 - 1 0

Table 7.1: Espresso-MV Minimization Output of the Function G3,2

Consider a logic function G3,2, which has 2 outputs X and Y as described in Equa-

tions VII.1 and VII.2. Since G3,2 is a function with multiple outputs, it can be minimized

using Espresso-MV [29, 30] (which performs multi-valued logic minimization). Table 7.1

shows the output after performing multi-valued minimization on the function G3,2. Note

that the input literals in Table 7.1 are represented using ”0”, ”1” or ”-”, where a ”0” or a

”1” represent the input literal polarity, and a ”-” represents a don’t care literal. Also the

output literals are represented using a ”1” or ”0”. A ”1” in the output of Espresso-MV

131

means that the corresponding input cube is in the on-set of that output. A ”0” in the output

of Espresso-MV means that the minterm (or cube) does not control that output.

X = AC+AB+ABC (VII.1)

Y = ABC+B (VII.2)

The minimized function G3,2 shown in Table 7.1 can be written as shown in Equa-

tion VII.1 (for the first output ”X”) and Equation VII.2 (for the second output ”Y”).

Figure 7.1 shows the PLA that implements the function G3,2 shown in Table 7.1.

VII.2 Previous Work

There has been no work in the past, in the area of PLA-like structures to implement

digital circuits using flash transistors.

The work presented in Chapter IV (and also in [69]), implemented flash-based

binary-valued, digital circuits using structures called flash clusters (FCs). The FC imple-

ments a logic function Fm,n, which has m inputs and n output minterms. The FC consists of

an array of NAND flash-like pulldown stacks, each implementing a cube. The FC outputs

are generated separately, without sharing input cubes across output minterms. This is done

by separately running Espresso on the input minterms that map to each output minterm of

Fm,n. This results in potential duplication of minterms or cubes in the FC, since minterms

and cubes are not shared across output minterms. This generally yields a faster design, but

132

OR−plane

AND−plane

X Y

CBA

Figure 7.1: Example PLA Structure That Implements the Function G3,2

at the cost of increased power and circuit area.

The key difference between the work in Chapter IV (also [69]) and the work pre-

sented in this chapter is in the way the function Fm,n is minimized. In the FC, the input

minterms of each output minterm of Fm,n are grouped and minimized separately. An n out-

put logic function Fm,n thus requires 2n such Espresso runs. The FC thus eliminates cube

sharing between different output minterms, resulting in degraded area, and better power.

In contrast, in the approach presented in this chapter, we perform the logic minimization

on the entire function Fm,n monolithically (using Espresso-MV). This causes a reduction

in the number of cubes that represent the logic function Fm,n (due to cube/minterm shar-

133

ing). This translates into reducing the area of the design, with a power and energy penalty.

Thus our approach provides the designer another tool to explore the delay, power and area

tradeoff along with the FC (in Chapter IV and in [69]).

VII.3 Approach

VII.3.1 Overview

The conversion process used to implement flash-based digital circuits for PFC-based

designs is similar to that used to construct FC-based designs described in Chapter IV. To

understand the top-level flow, the reader can refer to Section IV.3.1. For additional details

about the entire CAD flow used to build and optimize flash-based digital circuits, the reader

can refer to Chapter V and Chapter VI. This chapter focuses only on the flash-based PFC

design, at the cell-level.

Each PFC implements an m input, n-output logic function (Fm,n). The circuit details

of a PFC are described in Section VII.3.2. Based on experimental results, we choose the

number of outputs (n = 3), and the number of inputs (m = 6) for our implementation of the

PFC. Similar to the FC described in Chapter IV, the PFC consists of several PLA-like flash

output groups (PFOGs), which in turn are made up of several PLA-like flash logic bundles

(PFLBs). Details of the PFC structure will be discussed in Section VII.3.2.

VII.3.2 PLA-like Flash Cluster (PFC) Circuit Design

The PFC (Figure 7.2) is a dynamic structure that implements any Boolean logic

function Fm,n, where m is the number of inputs and n is the number of outputs. The

134

Primary

Inputs

Outputs

Primary

out put_generation_circuitclk

PFLBout2,k

PFLBout2,0

PFOG1 PFOG7PFOG2

Figure 7.2: PLA-like Flash Cluster

function Fm,n is realized using a PFC after programming the flash transistors in the PFC

to implement the cubes representing Fm,n. The PFC is also equipped with the required

logic for programming the threshold voltages of their floating gate devices (not shown in

Figure 7.2).

Similar to PLAs, to implement a PFC, the function Fm,n is first minimized using

Espresso-MV [29]. Since the PFC is a precharged circuit, the outputs are precharged

to VDD (logic ”1”) during the precharge cycle, and they get discharged to GND (logic

”0”) based on which input is applied to the circuit. Therefore, the cubes that should be

implemented in the circuit, are the off-set cubes. Hence we use Espresso-MV to minimize

the function Fm,n against its off-set.

Internally, the PFC consists of multiple PLA-like flash output groups (PFOGs) and an

output generation circuit as shown in Figure 7.2. Consider the minimized logic function

of a PFC, Fm,n. After minimization, it consists of several cubes, each of which has an

output label or state (Column 2, Table 7.2). In order to reduce the number of transistors in

135

the output generation circuitry, we group the cubes of Fm,n by their output state or label as

shown in Column 1 of Table 7.2. Each group is called a PLA-like flash-based output group

(PFOG). If the cubes of Fm,n were not grouped by PFOGs, each cube would need separate

output generation transistors, thereby increasing area and power. As shown in Table 7.2,

each PFOG controls one or more of the outputs of the function Fm,n. In particular, since

the PFC is a dynamic circuit, each PFOG discharges one of more of the outputs of the

function Fm,n. For example, as shown in Table 7.2, for a function with 3 outputs (n = 3),

PFOG5 causes the first and last outputs to discharge. However, PFOG5 does nothing to

the second output (i.e. it does not discharge the second output), similar to a PLA. Also

PFOG0 does not affect any of the outputs. Therefore, there are 2n −1 PFOGs in total, in

every PFC. We will show how the PFOGs (PFOG1, PFOG2, · · · , PFOG7) are constructed

next.

PFOGi Output State
Effect on Fm,3 Outputs

First Second Third

PFOG0 000 N/A N/A N/A

PFOG1 001 N/A N/A Discharged

PFOG2 010 N/A Discharged N/A

PFOG3 011 N/A Discharged Discharged

PFOG4 100 Discharged N/A N/A

PFOG5 101 Discharged N/A Discharged

PFOG6 110 Discharged Discharged N/A

PFOG7 111 Discharged Discharged Discharged

Table 7.2: Association of PFOGi to Output State and Effect on Fm,3 Output When Mini-

mizing Against Off-sets

136

Suppose that we are implementing the function Fm,n where m = 6 and n = 3. Also

assume that the outputs of the function Fm,n are (f , g and h). After running Espresso-MV

on the function Fm,n we collect all the input cubes that correspond to each output states.

Table 7.2 shows a list of output states. These states simply indicate which outputs are

controlled by the corresponding input cubes Now, if the output state < 010 > has 2 input

cubes < 011011 > and < 110− 11 >, then PFOG2 implements these two input cubes.

Note that since we minimize a function Fm,n against its off-set in Espresso-MV, the output

state < 010 > means that the corresponding input cubes discharge the second output of

the function Fm,n and does not affect the rest of the outputs (first and third) as illustrated

in Table 7.2. Similarly, the output state < 111 > (PFOG7) means that the corresponding

input cubes discharge all the outputs. The output state < 000 > does not affect any of the

outputs, and is never produced by Espresso-MV. It is listed in Table 7.2 completeness of

the discussion.

We note that the output states only specify which output is pulled down, and not

necessarily the final state of all the outputs of Fm,n. To illustrate this, assume that a function

G6,3 after minimization using Espresso-MV has two output states which are implemented

in a PFC. The output state < 001 > (which is implemented in PFOG1) has one input cube

< 0− 011− > and the output state < 100 > (which is implemented in PFOG4) has one

input cube < 00011− >. Now assume that the input < 000111 > is applied to the PFC

that implements the function G6,3. The final output of the PFC is < 010 >, since PFOG1

pulls down the 1st output and PFOG4 pulls down the 3rd output.

137

Next, we will discuss the structural details of an PFOG, and then the details of the

output generation circuit.

i

Inputs

Primary

PFLBouti,0 PFLBouti,1 PFLBouti,n

PFLBnPFLB1PFLB0

PFOGi

Figure 7.3: PLA-like Flash Output Group i (PFOGi) Structure

VII.3.2.1 PLA-like Flash Output Group (PFOG)

The structure of the PFOG used in the PFC is similar to that used in the FC (refer to

Section IV.3.2.1). Figure 7.3 shows a block diagram of the structure of PFOGi. As shown

in this figure, each PFOG consists of multiple PLA-like flash logic bundles (PFLBs). For

the ith PFOG, we refer to the number of cubes that this PFOG implements as its cubes per

output group or CPGi. The number of PFLBs that exist in PFOGi is ⌈CPGi

CPB
⌉, where CPGi

is the number of cubes in PFOGi, and CPB is the maximum number of cubes that can

be implemented in any single PFLB. We swept the value of CPB, and found that CPB=3

yielded the best electrical characteristics. Notice that while CPGi is determined by the

logic function Fm,n, CPB is a design parameter that can be optimized to improve circuit

delay, power, energy and physical area. The number of outputs of PFOGi is equal to the

138

number of PFLBs in PFOGi, namely ⌈CPGi

CPB
⌉. Unlike the FLA used in Chapter IV and

in [69], more than one PFLB output (PFLBouti,k) can pull down when an input is applied

to the PFOG inputs, due to cube sharing.

VII.3.2.2 PLA-like Flash Logic Bundles (PFLB)

The structure of the PFLB used in the PFC is similar to that used in the FC shown

in Section IV.3.2.2. Figure 7.4 shows the circuit details of an PFLB. An PFLB consists of

a number of NAND flash-like pulldown stacks that share the same output. Each pulldown

stack implements one cube of Fm,n. The maximum number of NAND flash-like pulldown

stacks in each PFLB is CPB, where CPB is the maximum number of cubes that can be

efficiently implemented in an PFLB. Since the number of cubes implemented by PFOGi

is not necessarily a multiple of CPB, the last PFLB in PFOGi may have a smaller number

of pulldown stacks than CPB.

Each one of the pulldown stacks has m flash transistors and 1 regular NMOS tran-

sistor (as shown in Figure 7.4), where m is the number of inputs of the function Fm,n. The

flash transistors are programmed to implement cubes, while the regular transistors have

a dual purpose. Since the flash-based implementation proposed in this work is based on

dynamic logic, both a precharge and an evaluate transistor are needed. The shared regular

PMOS transistor shown at the top of Figure 7.4 (Mpch), serves as the precharge transistor

for all pulldown structures of the PFLB. When it turns on, it pulls up PFLBouti,k during the

precharge (low) phase of the clock signal (clk). The lines V SP0 to VSPq are connected to

ground during normal operation, to allow the NAND stacks to pull down when they eval-

139

X1 Xq

Fa,1(VT1)

Fb,1(VT1)

Fc,1(VT1)

Fd,1(VT1)

Fe,1(VT0)

Ff ,1(VT0)

Fa,q(VT1)

Fb,q(VT1)

Fc,q(V T1)

Fd,q(VT1)

Fe,q(VT1)

Ff ,q(VT1)

Mpchclk

a

ā

b

b̄

c

c̄

d

d̄

e

ē

f

f̄

X0

M0
x

Fa,0(VT1)

Fb,0(VT1)

Fc,0(V T0)

Fd,0(VT0)

Fe,0(VT1)

Ff ,0(VT1)

V SP0 V SP1 V SPq

M1
x M

q
x

PFLBouti,k

Figure 7.4: PLA-like Flash Logic Bundle i, k (PFLBi,k)

uate. They also have a special purpose during programming, which will be discussed in

Section VII.3.3. The regular NMOS transistors (Mi
x) shown at the top of each stack in Fig-

ure 7.4 serve a dual purpose. During chip operation they are used as the evaluate transistors

which are off during the precharge (low) phase of clk and only turn on during the evaluate

(high) phase of clk, to allow the pulldown stack to evaluate the output PFLBouti,k. The

NMOS transistors (Mi
x) are also utilized during the programming operation of the NAND

flash stack. Programming will be discussed in detail in Section VII.3.3.

The flash transistors in each of the NAND flash-like stacks are programmed to real-

ize a cube. Figure 7.5 shows a diagram of the VT levels used in our PFC implementation.

140

On the left side of the figure, we show the voltage levels used to drive the flash transistors

(namely VIH = VDD and VIL = GND). On the right side, we show the VT levels. The

erase threshold voltage (VT0) is used for a flash transistor when it is intended to be always

on (i.e. when the corresponding literal in the cube is not present). The program threshold

voltage (V T1) is used when the corresponding literal is present in the cube. For example,

the left-most stack of Figure 7.4 implements the cube abe f . Note that the transistors Fc,0

and Fd,0 are programmed to a threshold voltage V T0 which is below GND (see Figure 7.5).

The threshold voltage V T0 is also referred to as the erase threshold. Therefore, these two

transistors are on irrespective of the values of the signals c and d. Now, transistors Fa,0,

Fb,0, Fe,0 and Ff ,0 are programmed to a threshold voltage VT1, which is between V DD and

GND (see Figure 7.5). This means that these devices turn on only when their gate signal

(respectively a, b, e and f are greater than V T1. As a consequence, the left-most stack of

Figure 7.4 implements the cube abe f .

GND

VDD
(1V)

VT1

VT0

VIL

VIH

Figure 7.5: Flash Transistor Threshold Voltages Used in a PFC

141

Similarly, the second stack of Figure 7.4 implements the cube abcd. The rightmost

stack of Figure 7.4 implements the cube abcde f . Note that all of its transistors are pro-

grammed to the VT1 threshold, which is why it implements a minterm in the m-input space

of Fm,n.

outputsclk

vdd

vdd

vdd

g

h

f

PFLBout1,0 PFLBout1,n PFLBout7,0

Figure 7.6: Flash Output Generation Circuit

VII.3.2.3 Output Logic

The output generation circuit in a PFC is different from the output generation circuit

in an FC (Chapter IV and [69]) due to the fact that cube sharing is allowed between outputs

in the PFC, and not allowed in the FC. This means that in the PFC, for some input minterm

Mi, two or more PFOGs can pull down, which is a condition that was impossible in the FC

design.

The output generation circuit used in the PFC is a dynamic structure. It consists

of PMOS transistors precharging each of the output lines (depicted in Figure 7.6 by the

142

horizontal lines drawn across the figure). These output lines are then buffered in order to

drive a load equivalent to 3 PFC input loads. For each output state in Fm,n (see Table 7.2),

if the value of the jth output is 1, an NMOS transistor is inserted for the jth output line.

Otherwise, the output line will not be affected. Since the outputs of the PFOGs are active

low, we insert an inverter for each PFLBouti,k before driving the gates of the pulldown

NMOS devices in the output logic.

The inverted output of each one of the PFOGs in the PFC drives a group of NMOS

transistors that evaluate the output lines of the output generation circuit. Note that due to

cube sharing, some outputs may be discharged by multiple PFOGs. In other words, at the

beginning of the evaluate cycle, all the output lines are precharged to VDD, then depending

on the applied input minterm (Mi), these output lines may discharge due to more than one

PFOGs pulling down.

As discussed at the end of Section VII.3.2, different outputs may be pulled down by

different PFLBs, when an input minterm Mi is applied to the PFC.

VII.3.3 Programming the PFC

The programming of a PFC can be done in the same fashion as the programming of

the FC (shown in Section IV.3.3).

VII.4 Experiments

In this section, we start by presenting the simulation environment used to evaluate

our PFC-based digital design approach. We follow with a discussion about the imple-

143

mentation details of the PFC design. Finally, we present a discussion of the results of the

FPC-based design.

VII.4.1 Simulation Environment

In this section, we compare the PFC design approach to both a CMOS standard

cell-based design approach as well as the FC-based design approach presented in Chap-

ter IV and [69]. All of the designs are implemented in a 45nm process technology. We

use Synopsys Design Compiler [56] to synthesize and map the CMOS designs to the in-

dustry grade 45nm Nangate FreePDK45 Open Cell Library [54, 55]. The mapped designs

were simulated using the Synopsys HSPICE [56] circuit simulation tool. We use the 45nm

PTM [57] model card to model the CMOS transistors. We implemented the FC based ap-

proach for comparison purposes. The PFC-based designs are generated using our in-house

tool chain. The flash transistors in the PFC-based designs are modeled using flash model

cards generated using the same model card regression approach as described in Chapter IV

and [69]. The FC and PFC-based designs are simulated in HSPICE and the correctness

of their logical operation is verified through exhaustive simulations. The operating supply

voltage for both the flash-based and CMOS standard cell-based designs is 1V. Flash-based

designs use higher programming voltages (10V-20V) only during programming. Custom

layouts for the PFC-based designs were fashioned using Cadence Virtuoso [65] using de-

sign rules obtained from the ITRS reports [59]. The physical area of flash-based designs

are compared to the cell area of the CMOS-based designs. The PFC-based design ap-

proach is evaluated through 20 randomly generated circuit designs and compared to a

144

Figure 7.7: Example Layout View of a PFC (des00)

CMOS-based implementation of the same designs, and an FC-based approach as well.

VII.4.2 Flash-based Implementation Details

The logic functions implemented in the CMOS-based, FC-based and the PFC-based

digital circuits have 6 inputs (m = 6) and 3 outputs (n = 3). These values were found

to achieve the best delay, power, energy and physical area for the flash designs. The

results we present are a comparative study over 20 randomly generated functions (des00

to des19) implemented in the CMOS standard cell-based approach, FC-based approach

and our PFC-based approach. We used CPB = 3 for the FC and the PFC designs. Also, the

threshold voltages used in our flash-based designs are (VT0 = -0.5 V) and (V T1 = 0.5 V).

VII.4.3 Results and Analysis

We report the delay (including precharge delay), power, energy and physical area

ratios in Table 7.3. These results are obtained from implementing the 20 randomly gen-

erated logic functions using the PFC-based design approach and compared to the CMOS

standard cell based approach. For the PFC-based results, the precharge delay is 39% of

the total delay, on average. The delay reported in the table (Dmax Ratio) is ratio of the

maximum delay of any transition seen at any primary output of the circuit. Since the flash-

145

Circuit Dmax Ratio Pavg Ratio Eng Ratio Cell Area Ratio

des00 0.81× 0.37× 0.30× 0.47×
des01 0.81× 0.35× 0.29× 0.46×
des02 0.87× 0.37× 0.32× 0.49×
des03 0.74× 0.40× 0.30× 0.44×
des04 0.89× 0.42× 0.38× 0.49×
des05 0.76× 0.36× 0.27× 0.44×
des06 0.96× 0.38× 0.36× 0.49×
des07 0.81× 0.39× 0.32× 0.46×
des08 0.87× 0.38× 0.33× 0.42×
des09 0.87× 0.36× 0.31× 0.43×
des10 0.93× 0.43× 0.40× 0.44×
des11 0.87× 0.42× 0.37× 0.42×
des12 0.85× 0.41× 0.35× 0.39×
des13 0.89× 0.43× 0.38× 0.49×
des14 0.80× 0.35× 0.28× 0.43×
des15 1.01× 0.40× 0.40× 0.51×
des16 0.88× 0.38× 0.33× 0.51×
des17 0.77× 0.40× 0.31× 0.49×
des18 0.77× 0.37× 0.29× 0.44×
des19 0.74× 0.41× 0.31× 0.44×

Average 0.85× 0.39× 0.33× 0.46×
Stdev 0.07× 0.03× 0.04× 0.03×

Table 7.3: Delay, Power, Energy and Cell Area Ratios of PFC-based Digital Circuits Rel-

ative to Their CMOS Standard Cell-based Counterparts

based implementation is dynamic, we accounted for the precharge delay in the reported

delay shown in the table. As shown in the table, the delay of the flash-based digital cir-

cuits ranges from 0.74× to 1.01× of the CMOS standard cell-based digital circuit delay,

with an average of 0.85×. The delay of the PFC is substantially similar to that of the

FC presented in Chapter IV and [69]. The standard deviation of the results is shown in

the bottom row of Table 7.3. The standard deviation in delay (8%), power (2%), energy

146

(3%) and physical area (3%) are relatively low, and demonstrate that the characteristics of

digital design implemented using a PFC-based approach are quite predictable over a large

number of designs.

Table 7.3 also reports the average power dissipation (0.39× of CMOS) and energy

utilization (0.33× of CMOS) when implementing the digital circuits using our flash-based

logic compared to CMOS standard cell-based implementation. The PFC has ∼11% higher

power dissipation and energy consumption than those of the FC. This is because the FC

does not allow cube sharing across outputs, unlike the PFC. Cube sharing also results in the

evaluation of multiple pulldown stacks in the PFC, which increases the power dissipated in

the evaluate and the precharge cycles of the clock, and hence, increases the average power

dissipation and energy consumption.

We also report the area ratio of both implementations. The area reported for the

CMOS standard cell-based implementation is the sum of physical cell areas, while the

area of our flash-based approach is the layout area obtained from layout generation exper-

iments. In this sense, the CMOS standard cell area is a lower bound of the physical area,

while the PFC area is the true physical area. Design rules for flash were obtained from the

ITRS 45nm flash technology node [59]. Digital circuits implemented in a PFC use 0.46×

the physical area of a CMOS-based design, on average. This is ∼18% lower than the area

ratio of the FC (in Chapter IV and [69]). This is expected because unlike the FC, our PFC

design exploits cube sharing between outputs. In Figure 7.7, we show the representative

layout of a cluster of the PFC for the design des00. Note that the layout of the PFC shown

147

in Figure 7.7 does not include neither of PFOG0 nor PFOG7. PFOG0 is not implemented

in the PFC of the design des00 since PFOG0 is implemented by the precharge state. How-

ever, PFOG7 is not implemented only because the design des00 does not contain any input

cubes that control all the outputs (which are implemented in PFOG7).

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

-200
-180

-160
-140

-120
-100

-80
-60

-40
-20

 0 20
 40

 60
 80

 100
 120

 140
 160

 180
 200

0.20

0.25

0.30

0.35

0.40

0.45

D
el

ay
 R

at
io

 (
20

%
 P

re
ch

ar
ge

 +
 E

va
lu

at
e)

P
av

g/
E

ne
rg

y
R

at
io

VT Shift (mV)

Delay Ratio
Pavg Ratio

Energy Ratio

Figure 7.8: Delay, Power and Energy of the Flash-based Designs as VT is Shifted.

Flash-based digital circuits have the ability of tuning their delay, power and energy

characteristics. This is done by shifting the VT of the flash transistors in the circuit. The

ability to shift VT offers the flash-based digital circuits huge advantages over the tradi-

tional CMOS standard-cell based circuits when it comes to speed binning at the factory,

148

aging mitigation and performing post-manufacturing ECOs. Figure 7.8 shows the average

delay, power and energy of the flash-based digital designs as their VT is modified around

the nominal VT value (which is indicated by a ”VT shift” value of 0 mV). The delay in Fig-

ure 7.8 is the sum of the evaluate and the precharge delays. Figure 7.8 shows that the PFC

delay improves with a negative VT shift, allowing the manufacturer to do speed adjustment

in the factory, or aging mitigation in the field. The speed improvement is accomplished by

an increase in power as expected.

VII.5 Chapter Summary

Flash transistors have some important properties that distinguish them from CMOS

transistors, such as the ability to shift the threshold voltage of the flash devices, as well

as their small input capacitance and compact area. In the past, these properties have been

exploited to implement non-volatile memory. This chapter presented an approach to use

flash transistors to implement digital circuits using a PLA-like circuit structure. We present

the details of the circuit topology that we use in our PFC-based digital circuit approach.

Our HSPICE simulations show that, averaged over 20 designs, our approach yields 0.85×

the delay, 0.39× the power, 0.33× the energy utilization and 0.46× the physical area of

the equivalent circuit implemented using CMOS standard cell-based design. The PFC

design exhibits improved area (∼18% smaller) than the FC design approach in Chapter IV

and [69], at the cost of ∼11% increased power and energy consumption. The improvement

in area is due to the fact that unlike the FC, the PFC design can share input cubes across

149

outputs, in a PLA-like fashion.

150

CHAPTER VIII

MULTI-VALUED, FLASH-BASED DIGITAL LOGIC CELL

IMPLEMENTATION

In this chapter, we present a circuit implementation that uses flash transistors to

implement multi-valued digital circuits. The flash transistors used in our implementation

only need two threshold voltages. As a result they have high Vgs values which improves

delays significantly, and have higher write endurance as well. We evaluate our design

methodology through circuit simulations, and compare our results to a CMOS standard

cell based approach as well as to the implementation of ternary-valued logic using flash

transistors presented in Chapter III and [64]. Also, the proposed approach scales elegantly

to multi-valued logic using more than three values as well. The circuit topology we utilize

is a cluster of unprogrammed flash transistors arranged in a NAND flash-like configuration

(we call these MVFCs), which are programmed in the factory to implement the desired

logic function.

VIII.1 Background

There are two approaches to implement multi-valued digital circuits. The first ap-

proach, which was introduced in Chapter III and [64], uses flash transistors with three VT

levels to implement ternary-valued logic functions. In Chapter III, the structure that imple-

ments ternary-valued logic is called a ternary logic cluster (TLC). One could implement

151

four-valued (or more) flash-based digital circuits by using four (or more) VT levels. How-

ever, increasing the number of VT levels would result in a very expensive delay penalty,

due to the fact that the Vgs values of the flash devices would be lowered.

The second approach, which is presented in this chapter, is based on the idea of

implementing multi-valued logic using a one-hot implementation. In this implementation,

instead of using multiple VT levels to implement multi-valued logic, flash transistors will

only be programmed to one of two VT levels, the erase VT level (we call it V T0) and the

program VT level (we call it V T1). This has many benefits, such as – a) using two VT

levels instead of three (or more) results in higher Vgs values, which improves the design

speed, b) using single-level cells (SLCs) results in improved write endurance as well as

tolerance to read and write disturbs, compared to the multi-level cells (MLCs) used in [64]

and c) the scheme of this chapter generalizes to multi-valued logic with 4 or more values

elegantly, with no Vgs reduction and speed penalties as exhibited by the TLCs (presented

in Chapter III and [64]).

VIII.2 Previous Work

In Chapter III and [64], we used a structure called ternary logic clusters (TLCs),

which use multiple threshold voltage levels to implement ternary-valued logic functions.

Although this approach has benefits, the use of using multiple threshold voltages has some

drawbacks. One of the issues that arise from using multiple threshold voltages is de-

creased write endurance, since programming a flash transistor becomes harder and requires

152

a longer process of VT adjustment, thus degrading the write endurance of the device. An-

other issue is read and write disturbs, since the threshold voltage levels are closer to each

other and hence a read or write disturb could change the threshold voltage of a victim

cell sufficiently, thereby altering the proper operation of the circuit. Finally, using multi-

ple threshold voltages between VDD and GND reduces the Vgs values applied to the flash

transistors which lowers the currents flowing through the flash device when its on, result-

ing in increased delays. Also, the TLC structure used in Chapter III and [64] consists of

NAND flash-like pulldown stacks. These stacks require 2 flash transistors in series per

ternary-valued variable. So a 4-variable TLC would require 8 series transistors. The use

of long series stack results in an additional increase in the delay of the design. In our

work, we address these issues by using two threshold voltage levels only (one for pro-

gram and one for erase), and by using pulldown stacks that only have 1 flash transistor

per input variable. These changes in the design result in an increase in the speed of the

multi-valued flash-based designs by more than 3× compared to the speeds reported in

Chapter III and [64]. However, this improvement in speed is accomplished by an increase

in power and energy. Compared to CMOS standard cells, however, the MVFCs are faster

(by 23%) and consume less energy (by 26%) and power (by 5%) as well.

In Chapter IV and in [69], we presented a flash-based design approach to implement

binary logic circuits. In this implementation, we used a flash cluster (FC). The FC consists

of an array of NAND flash-like pulldown stacks. Each stack has 6 flash transistors (one

transistors per variable). The work of this chapter achieves lowered delays compared to

153

the FC-based designs approach, since we use only 4 flash transistors in series. The use of

a shorter pulldown stack also increases the power of the MVFC design by 42%, compared

to the FC.

VIII.3 Approach

VIII.3.1 Overview

The focus of this chapter is on the circuit details of the multi-valued flash cluster

(MVFC). However, before describing the circuit details of the MVFC, we will briefly out-

line how a digital circuit block can be mapped into a flash-based block using a network of

MVFCs. Our MVFC structure is capable of implementing multi-valued logic with an ar-

bitrary number of logic values. However, in this chapter, we focus on ternary-valued logic

in order to compare the performance of our approach to that of the TLCs in Chapter III

and [64]. In this chapter, each MVFC implements a ternary logic function Hr,s, where r

is the number of inputs and s is the number of outputs. Our simulations have shown that

choosing r = 4 and s = 2 yields the best results. After describing the mapping procedure,

we describe the MVFC structure, the configuration of the MVFC cell and the procedure

used for MVFC programming.

VIII.3.2 Flash-based Design Conversion

The flash-based design conversion of multi-valued flash clusters is similar to that

of the TLC described in Chapter III and [64]. However, the MVFC approach supports

k-valued logic in general. Multi-valued flash clusters implement s-output (multi-valued)

154

functions with up to r multi-valued inputs (Hr,s). Therefore, to implement an entire digital

circuit block using MVFC cells, we need to represent the digital circuit block using func-

tions of the type Hr,s. This is done starting with a technology-independent logic netlist,

and grouping the logic nodes into clusters. These clusters of logic are constructed so as to

meet the criteria of the number of inputs and number of outputs that can be implemented

by an MVFC. Note that the technology-independent logic netlist represents binary logic,

and hence, we convert the binary logic functions into multi-valued logic functions as de-

scribed above. The process of converting binary logic functions into ternary-valued logic

functions is described next (since we focus on ternary-valued MVFCs in this chapter) and

is followed by a discussion on mapping of a technology-independent logic netlist into an

MVFC-based design.

VIII.3.3 Multi-valued Logic Flash-based Design Conversion

In this section, we show how we convert a binary logic function into a multi-valued

logic function (ternary-valued in our implementation). We perform this conversion in two

steps. The first step is to implement the entire design using an interconnected network of

MVFCs, and the second step is to identify the MVFC cells that implement the logic at the

I/O interfaces of the digital design and appropriately configure them as shown later in this

section.

In this chapter we need to convert the binary functions in the logic cluster into

ternary-valued logic functions to be implemented using our MVFC cell. In our im-

plementation, we convert each binary logic function with u binary inputs (which has

155

2u binary minterms) into a v-input ternary-valued logic function (which has 3v ternary-

valued minterms). This is done by mapping the 2u binary minterms into 3v ternary-valued

minterms. Since, there is no value of u > 0 and v > 0 that results in a solution for the

equation 2u = 3v, we have to choose u and v such that 2u < 3v (to be able to map all the

binary minterms). However, this choice will result in unused ternary minterms. It was

found that choosing u = 3 and v = 2 results in the least number of unused ternary-valued

minterms. As a result, when implementing a digital design using MVFC cells, we cluster

binary logic nodes such that the numbers of inputs and outputs that are multiples of 3. This

yields a ternary-valued function with inputs and outputs that are multiples of 2. This issue

of unused minterms can be entirely avoided if we implement multi-valued logic with k val-

ues, where k = 2w. In such a case, mapping a binary function into a multi-valued function

is straightforward and can be done by encoding w binary bits in each 2w-valued multi-

valued digit. As mentioned earlier, the reason we are implementing ternary-valued logic

is to compare the multi-valued implementation approach of this chapter to that presented

in Chapter III and in [64], which also discusses a ternary-valued logic design approach.

From a block-level perspective, the mapping of a binary logic design into a ternary-

valued logic design has been discussed earlier in Section III.3.2. Each MVFC implements

a ternary-valued logic function Hr,s, where r = 2
3
m and s = 2

3
n. Our simulations have

shown that choosing m = 6, n = 3 (which results in r = 4 and s = 2) yields the best results.

Similar to TLC-based designs (presented in Chapter III), our MVFC-based design

approach can natively interface with binary logic without the need for specialized circuits

156

RQ

S
Binary Signals

Signals
Multi−valued

p nm q

p q

Figure 8.1: MVFC Types in Our Implementation.

dedicated to encode the binary signals into multi-valued signals. This reduces design

overhead, complexity and area utilization. Figure 8.1 shows the types of MVFCs used in

our implementation. In the figure, we represent binary signals with a solid line, and multi-

valued (ternary-valued in our implementation) with dashed lines. The MVFCs used at the

input interfaces of a logic block have binary input and multi-valued output (type Q) as

shown in Figure 8.1. We use MVFCs that have ternary-valued inputs and binary outputs

(type R) at the output interfaces of our multi-valued flash-based blocks. The remaining

MVFCs used in our design approach have ternary-valued inputs and outputs (type S) and

are used internally. Note that an MVFC can have a mix of binary and ternary-valued inputs

(or outputs) in order to implement clusters that have some of their inputs (or outputs) being

binary and the remaining inputs (or outputs) being ternary-valued.

VIII.3.4 Multi-valued Flash Cluster Circuit Design

The flash-based design approach presented in this chapter maps multi-valued

logic functions (ternary-valued in our implementation) into multi-valued flash clusters

(MVFCs). Figure 8.2 shows the structure of an MVFC. MVFCs are dynamic circuit struc-

157

Primary
Outputs

Inputs
Primary

MVLA1MVLA0 MVLA7

OPch

clk

Figure 8.2: Multi-valued Flash Cluster (MVFC)

tures that implement the cubes of a multi-valued logic function Hr,s, where r is the number

of inputs and s is the number of outputs. Recall that the multi-valued logic function Hr,s

is equivalent to the binary logic function Fm,n, where r = 2
3
m and s = 2

3
n. Each MVFC

consists of an array of NAND flash-like pulldown stacks (each stack implements a cube

of the multi-valued logic function Hr,s). These pulldown stacks are grouped based on their

output. We call these groups multi-valued logic arrays (MVLAs). Since the MVFC is

a dynamic circuit, the outputs of the MVFC are pre-discharged to GND using the oPch

circuit. The oPch circuit block consists of pulldown NMOS transistors driven by the clock

signal (clk). The primary inputs of the MVFC drive all the MVLAs. Also, the clock signal

(clk) also drives precharge and evaluate transistors in the MVLAs. In our implementation,

the number of primary outputs of the MVFC is 2 (i.e. s = 2), and the number of primary

inputs is 4 (i.e. r = 4). The MVFCs also include the programming logic that is required to

program the flash transistors to implement the desired function Hr,s.

As mentioned earlier, each MVFC consists of a group of MVLAs, where MV LAk

generates the kth output minterm of the function Hr,s. For example, let the 3 ternary-valued

158

input cubes (represented using the multi-valued positional notation)< 010|111|100|001>,

< 001|100|010|001> and < 100|010|010|100> generate the output < 010|100 >, which

is the 5th output in decimal notation. In this case, MVLA5 consists of 3 pulldown stacks,

where each stack implements one of the input cubes mentioned above. The number of

cubes implemented in any MV LAk is called cubes per array (CPAk). The values of CPAk

are determined by the logic function Hr,s. In our MVFC-based design approach, only

one of the MVLAs pulls down when an input minterm is applied to the MVFC, since

input minterms are not shared among different MVLAs. Finally, the outputs 2s through

3n −1 are not used, and hence, we do not implement MV LA(2s) through MVLA(3n−1). In

our MVFC-based design approach, we only implement 2s MVLAs (shown as MVLA0,

MV LA1, · · · , MV LA7 in Figure 8.2, for s = 2. Note that the MVLC implements MV LA0

(the pre-discharge state) unlike the FC and the PFC (which do not implement the precharge

state). This is because the output generated by MV LA0 is < 001|001 > (for a 2-output

ternary-valued logic function). Since, in the pre-discharge state, we discharge all the out-

puts (which represent the illegal output state of < 000|000 >), we need to pull up the least

significant digits of the outputs to represent the correct output state of < 001|001 >.

VIII.3.5 Multi-valued Logic Array

The delay of the MVLA increases as the number of cubes in the MVLA increases.

This is a result of the increase in output diffusion capacitance incurred from using a wire-

OR evaluation style of the MVLA. The delay of the MVLA is improved by splitting the

pulldown stacks implemented in each MVLA into bundles of pulldown stacks, where each

159

Primary
Outputs

Inputs
Primary

MVLBi,1MVLBi,0 MVLBi,n

MV LAi

clk

Figure 8.3: ith Multi-valued Logic Array (MVLAi) Structure.

bundle has a limited number of pulldown stacks (shown in Figure 8.3). These bundles are

called multi-valued logic bundles (MVLBs). The circuit details of MVLBs are covered in

Section VIII.3.6. The maximum number of pulldown stacks per MVLB is called cubes per

bundle (CPB). In our implementation, it was found through parametric sweeps that CPB

= 3 yields the best results. CPB is a global parameter that is fixed for all MVFC-based

designs. If MVLAi has CPAi cubes in total, then the total number of MVLBs in MVLAi is

⌈CPAi

CPB
⌉. Note that all the MVLBs in each MVLA generate the same output, however, each

one of them has its own output generation logic.

160

Outputs

V SP0 V SP1 V SPq

Fa,1(V T1) Fa,q(VT1)Fa,0(VT1)

Fb,1(V T1) Fb,q(VT0)Fb,0(VT1)

Fc,1(VT1) Fc,q(V T1)Fc,0(V T1)

Fd,1(V T1) Fd,q(VT1)Fd,0(VT0)

a0

a2

a1

b0

b2

b1

c0

c2

c1

d0

d2

d1

g0

g1

g2

f0

f1

f2

X1 Xq

Mx,1 Mx,q

Mpchclk
X0

Mx,0

R

S

In
p
u
t

L
o
g
ic

vdd

vdd

MV LBouti,k

O
u
tp

u
t

L
o
g
ic

Figure 8.4: kth Multi-valued Logic Bundle in MVLAi (MVLBi,k)

161

VIII.3.6 Multi-valued Logic Bundles

In Figure 8.4 we show the circuit details of an MVLB. The MVLB can be split into

two portions – a) the input logic, and b) the output logic.

The input logic (shown inside the bottom dashed area in Figure 8.4) consists of

the NAND flash-like pulldown stacks. These stacks share the same output in a wire-OR

configuration. Each one of the pulldown stacks implements a cube of the function Hr,s.

The maximum number of cubes any MVLB can implement is CPB, which is an electrically

determined parameter that is used to improve the characteristics (power, delay and area)

of the MVFC-based designs. As shown in Figure 8.4, each pulldown stack in the MVLB

has r flash transistors and 1 regular NMOS transistor (as shown in Figure 8.4). The multi-

valued inputs of the function Hr,s are implemented using one-hot literal representation. For

example, since we are implementing ternary-valued logic, we represent the inputs a, b, c

and d using their literals a0, a1 and a2 for the input a, b0, b1 and b2 for the input b, and

similarly for the inputs c and d. For each input, only one of its literals will be high based on

the input value. We will explain the configuration of the pull down stack using an example

in Section VIII.3.7. The flash transistors are programmed to implement cubes, while the

regular NMOS transistor is used for evaluate and program purposes. The shared regular

PMOS transistor shown at the top of the input logic block of Figure 8.4 (Mpch) serves as

the precharge transistor for all pulldown structures of the MVLB. When it turns on, it pulls

up MV LBouti,k during the precharge (low) phase of the clock signal (clk). The lines V SP0

to VSPq are connected to ground during operation to allow the NAND stacks to pull down

162

when they evaluate, but also have a special purpose during programming, which will be

discussed in Section VIII.3.8. The regular NMOS transistors (Mx,i) shown at the top of

each stack in Figure 8.4 serve two purposes. In regular operation they are used as evaluate

transistors, and are off during the precharge (low) phase of clk and only turn on during

the evaluate (high) phase of clk. In this way, they allow the pulldown stack to evaluate the

output MV LBouti,k. The NMOS transistors (Mx,i) are also used during the programming

of the NAND flash stack. Programming will be discussed in Section VIII.3.8.

The output logic (shown inside the top dashed area in Figure 8.4) generates the fi-

nal output of the MVFC. Each MVLB has a dedicated output logic that activates when

one of the pulldown stacks of the MVLB pulls down (when the applied input minterm

is contained in one of the cubes implemented by this MVLB). When the output logic is

activated, it pulls up the corresponding pre-discharged output lines, generating the final

output. The horizontal lines shown in the top part of Figure 8.4 represent one of the fi-

nal one-hot output lines in the MVFC. These output lines run across the entire MVFC, as

shown in Figure 8.2. As mentioned in Section VIII.3.4, the output lines are pre-discharged

using NMOS transistors in the oPch circuit shown in Figure 8.2. The output logic cir-

cuit has PMOS transistors that charge the output lines based on which output this MVLB

drives. For example, if the current MVLB is part of MV LA5, then the ternary-valued out-

put generated by this MVLB is < f ,g > = < 010|100 >. As a result, the output logic will

connect the drains of two PMOS transistors to the lines f1 and g2, respectively (given that

f is the most significant output digit). This is illustrated in Figure 8.4. The gates of these

163

two PMOS transistors are driven by the buffered output of the NAND flash-like pulldown

stacks, as shown in Figure 8.4. These PMOS transistors are sized to drive a load equal to

3 MVFC inputs.

GND

VDD
(1V)

VT1

VT0

VIL

VIH

Figure 8.5: Threshold Voltages Used in Multi-valued Flash-based Designs

VIII.3.7 MVLB Configuration

Unlike the TLC-based approach (presented in Chapter III and in [64]) which uses 3

VT levels, the MVLC-based design approach uses two VT levels only. Figure 8.5 shows

(on the left side), the input voltages applied to the gate of the flash devices in the MVLC.

On the right side, the figure shows the VT levels used to configure the flash transistors

in the MVLC. The MVLC is configured by first determining which input cubes of the

function Hr,s are implemented by each MVLA. MVLAk implements all cubes that produce

the output vector whose decimal encoding is k. Then each MVLA is split into a group

of MVLBs based on the number of cubes implemented by this MVLA. Each input cube

of the function Hr,s is configured in the MVLB (shown in Figure 8.4) by choosing the VT

164

of the flash transistors in the stack corresponding to the input cube. Table 8.1 shows the

configuration of each flash transistor for each literal. The flash transistors in the MVLC can

only be configured to implement the literals < 001 >, < 010 >, < 100 > and < 111 >.

The remaining literals shown in Table 8.1 cannot be represented by the MVFC design

approach. For example, the left-most stack of Figure 8.4 implements the ternary-valued

cube < abcd > = < 010|001|010|111>. Note that the transistor Fd,0 is driven by the literal

d0 and is programmed to a threshold voltage V T0 which is below GND (see Figure 8.5).

The threshold voltage V T0 is also referred to as the erase threshold voltage. Therefore,

this transistor is on irrespective of the value of the literal d0. In other words, this transistor

is on irrespective of the value of the input d, and hence implements the multi-valued literal

of < 111 > for d. In fact, the flash transistors that are programmed to VT0 are always

driven by the 0th literal of their input, only because they cannot be left floating. Now, the

transistors Fa,0, Fb,0 and Fc,0 are programmed to a threshold voltage V T1, which is between

V DD and GND (see Figure 8.5). This means that these devices turn on only when their

gate signal is high. The transistors Fa,0, Fb,0 and Fc,0 are driven by the signals a1, b0 and

c1 respectively. As a consequence, the left-most stack of Figure 8.4 implements the cube

< abcd > = < 010|001|010|111 >.

The second stack of Figure 8.4 implements the cube < 100|010|001|100>. Note that

all of its transistors are programmed to the V T1 threshold, which is why it implements a

minterm in the r-input space of Hr,s. Finally, the rightmost stack of Figure 8.4 implements

the cube < 010|111|100|010 >.

165

Literal VT of Fx Gate Input

001 V T1 x0

010 V T1 x1

100 V T1 x2

011 Not supported N/A

110 Not supported N/A

101 Not supported N/A

111 V T1 x0

000 Invalid N/A

Table 8.1: Flash Transistor Configuration Fx for Each Minterm/Cube Literal.

VIII.3.8 Programming the Multi-valued Flash Cluster

Figure 8.4 shows the MVLB circuit structure, including both the input logic and the

output logic parts. The input logic is the only part that has flash transistors and requires

programming. The output logic part does not contain flash transistors, and hence, does not

require programming.

In an MVFC, all the flash transistors share a common bulk. As a result, the flash

transistors in the MVFC are all erased together. This is performed by driving the bulk

node of the MVFC to a high voltage, and floating the source and drain terminals of each

flash transistor. The source and drain terminals of the flash transistors in each stack are

floated by turning off all the Mx,i transistors and floating all the V SPi signals. The gates of

all transistors are driven to GND. This results in the erasure of all the flash transistors in

the MVFC, and resets their threshold voltage to V T0.

For programming, assume that Fb,0 and Fb,1 need to be programmed. In this case,

166

the b0 and b1 lines are driven to a programming voltage for a sufficiently long duration.

The transistors Mx,0 and Mx,1 are turned on by driving X0 and X1 high. All other Xi are

driven low. Also, the lines V SP0 and VSP1 are driven low and the remaining VSPi lines are

floated. This disables programming of all but the 1st and 2nd NAND stacks of the MVLB.

All other inputs (i.e. a0, a1, a2, b2, c0, c1, c2, d0, d1 and d2) are driven high to a pass

voltage, and the common bulk is held to GND. The duration of the programming pulse is

determined based on the final desired VT . This results in a programming of Fb,0 and Fb,1

to the desired VT (V T1), while the threshold voltage levels of all other transistors in the

MVLB are unaltered from the erase threshold voltage (VT0).

VIII.3.9 Logic Minimization of the MVFC

We use Espresso-MV [29] to minimize the logic function (Hr,s) before implementing

it in the MVFC (recall Hr,s has r inputs and s outputs). The input minterms {m j} of each

output minterm j are minimized separately using Espresso-MV. This guarantees that the

outputs produced from Espresso-MV are one hot and are compatible with our MVFC

output circuit (which only generates one hot outputs). We also ensure that Espresso-MV

does not generate any unsupported input literal as shown in Table 8.1. If unsupported

literals are produced, they are split. For example a literal < 101> will be split into 2 cubes,

one with literal < 100> and the other with literal < 001>. The resulting minimized cover

is used to configure the MVFC.

167

VIII.4 Experiments

In this chapter, we compare our MVLC-based design approach to the CMOS stan-

dard cell-based and the TLC-based [64] design approaches. In this section, we first present

the simulation environment used in evaluating our proposed design approach. Then, we

present the details of our experiments and discuss the results.

VIII.4.1 Simulation Environment

In our experiments, we evaluate the flash-based designs using flash design flows

(MVFC and TLC), and CMOS-based designs using a CMOS standard cell design flow. In

all three design flows, we implement the same benchmark circuits using the flash-based

and the CMOS-based design approaches and compare the results obtained by each design

approach. We implement all design approaches in 45nm process technology.

For the CMOS-based design approach, we use Synopsys Design Compiler [56] to

synthesize and map the benchmark circuits. We use the 45nm Nangate FreePDK45 Open

Cell Library [54, 55] to implement the CMOS-based designs. The mapped designs are

then simulated using HSPICE circuit simulator from Synopsys [56] using a 45nm PTM

model card [57]. Layout areas were computed as the sum of cell areas.

For the flash-based design approach, we used custom scripts to generate the circuits.

We also used HSPICE to simulate the flash-based circuits. The CMOS devices in the flash-

based designs were modeled using a 45nm PTM model card, and the flash devices used

a model card that we generated using model card regression from device measurements

obtained for a fabricated 45nm flash device as described in Chapter III and [64]. For

168

Figure 8.6: Layout View of an MVFC Implementing Benchmark ”des00”

flash-based design approaches, we verified the correct logical operation through exhaustive

simulation. We generated custom layouts for the multi-valued digital circuit using Cadence

Virtuoso. The layout of our MVFCs used design rules for flash devices that were compiled

from the ITRS [59]. The layout area for the flash-based designs are more accurate than

those for the CMOS standard cell-based designs (which are lower bounds of the true area).

We generated 20 random designs to evaluate our multi-valued digital circuit design

approach. These designs implement binary logic functions of 6 inputs and 3 outputs, and

were converted into multi-valued designs (ternary-valued in this chapter) as described pre-

viously in Section VIII.3.2. The logic functions implemented in the MVFCs in this chapter

have 4 inputs (p = 4) and 2 outputs (q = 2). The maximum number of cubes per bundle

(CPB) we used in this chapter is 3. The threshold voltages used for the flash transistors in

our MVLC design approach were VT0 = -0.5V and VT1 = 0.5V. The flash-based designs

were each verified to be correct by conducting exhaustive circuit simulations.

169

Design Dmax Ratio Pavg Ratio Eng Ratio Cell Area Ratio

des00 0.73× 0.92× 0.68× 0.99×
des01 0.71× 0.87× 0.62× 0.86×
des02 0.77× 0.95× 0.74× 0.93×
des03 0.69× 1.01× 0.70× 0.89×
des04 0.79× 1.03× 0.82× 0.97×
des05 0.71× 0.89× 0.64× 0.94×
des06 0.88× 0.89× 0.79× 0.96×
des07 0.77× 0.98× 0.76× 0.97×
des08 0.78× 0.93× 0.73× 0.96×
des09 0.80× 0.84× 0.68× 0.93×
des10 0.83× 1.05× 0.88× 0.92×
des11 0.77× 1.04× 0.80× 0.90×
des12 0.79× 0.97× 0.77× 0.90×
des13 0.83× 1.04× 0.87× 1.02×
des14 0.73× 0.90× 0.66× 0.93×
des15 0.91× 1.05× 0.96× 1.02×
des16 0.80× 0.90× 0.72× 1.02×
des17 0.69× 0.95× 0.66× 1.02×
des18 0.75× 0.91× 0.69× 1.02×
des19 0.70× 0.97× 0.68× 1.01×

Average 0.77× 0.95× 0.74× 0.96×
Stdev 0.06× 0.07× 0.09× 0.05×

Table 8.2: Delay, Power, Energy and Area Ratios of Multi-valued (Ternary) Logic Circuits

Relative to CMOS Standard Cell-based Circuits

VIII.4.2 Results and Analysis

Table 8.2 shows the delay (including precharge delay), power, energy and physical

area ratios of 20 randomly generated logic functions implemented using our MVFC-based

approach compared to the CMOS-based based implementation. The delay reported in the

table (Dmax Ratio) is maximum delay of any transition seen at any primary output of the

circuit. Since the flash-based implementation is dynamic, we accounted for the precharge

170

delay in the reported delay shown in the table. As shown in the table, the delay of the

flash-based digital circuits ranges from 0.69× to 0.91× of the CMOS standard cell-based

digital circuit delay, with an average of 0.77×. Table 8.2 also shows power dissipation (of

0.95×) when implementing the digital circuits using our multi-valued logic compared to

CMOS standard cell based implementation. We also show the energy utilization of our

multi-valued implementation compared to the CMOS standard cell based implementation.

On average, the energy utilization of the MVFC-based ternary-valued digital circuits is

about 0.74× of the CMOS standard cell based implementation. Also, on average, digital

circuits implemented using an MVFC-based design approach use 0.96× the physical area

of a CMOS-based design. Figure 8.6, shows the representative layout of an MVFC im-

plementing the benchmark ”des00”. Note that the MVFC implementing the benchmark

”des00” implements MV LA0 (the pre-discharge state). As mentioned in Section VIII.3.4,

the pre-discharge state must be implemented by MVLA0 in order to generate a legal output

state during the evaluate phase of the clock. In general, it is rare for a new circuit design

approach to beat the established standard cell-based approach on all metrics (delay, area,

power and energy), and so these results are significant.

The MVFC shows tremendous improvements in the delay compared the TLC (pre-

sented in Chapter III and [64]). The delay of the MVFC is ∼0.32× the delay of the TLC.

This delay improvements in the MVFC comes with an increase in its power dissipation and

energy. In average, the MVFC has ∼7.9× the power dissipation and ∼2.5× the energy

consumption of a TLC. The MVFC has slightly larger physical area (1% larger) compared

171

to the TLC. The TLC can be used for power or energy constrained designs which can toler-

ate much larger delays. The MVFC can be used for delay sensitive designs, and improves

on standard cell designs in terms of delay, area, power and energy.

Table 8.2 also shows the standard deviation of the results. The standard deviation

indicates that the relative results of the flash-based designs vary by 6% in delay, 7% in

power, 9% in energy and 5% in physical area. The noise in these metrics is smaller than

the improvements, specially for delay and energy.

Flash-based digital circuits have the ability of tuning their delay, power and energy

characteristics. This is done through shifting the VT of the flash transistors in the circuit.

The ability to shift VT with precision offers the flash-based digital circuits huge advantages

over the traditional CMOS standard cell-based circuits when it comes to speed binning at

the factory, aging mitigation and performing post-manufacturing ECOs. Figure 8.7 shows

the average delay, power and energy of the flash-based digital designs as their VT is swept.

The delay in Figure 8.7 is the sum of the evaluate and the precharge delays.

We note that by reducing the VT from the nominal values (indicated by a ”VT shift”

of 0 mV in Figure 8.7), the current delay can be reduced, at the cost of power. The converse

is true as well. This can be used to do aging mitigation in the field, or speed/power binning

in the factory.

172

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

-140
-120

-100
-80

-60
-40

-20
 0 20

 40
 60

 80
 100

 120
 140

0.50

0.60

0.70

0.80

0.90

1.00

1.10

D
el

ay
 R

at
io

 (
P

re
ch

ar
ge

 +
 E

va
lu

at
e)

P
av

g/
E

ne
rg

y
R

at
io

VT Shift (mV)

Delay Ratio
Pavg Ratio

Energy Ratio

Figure 8.7: Delay, Power and Energy of the MVFC-based Designs as the VT is Shifted.

VIII.5 Chapter Summary

This chapter presented the use of flash transistors to implement multi-valued digital

circuits. We presented the details of the circuit topology that we use in our multi-valued,

flash-based digital circuit approach. Our HSPICE simulations show that, averaged over

20 designs, our approach yields improved delay (∼23% lower), power (∼5% lower), en-

ergy (∼26% lower) and area (∼4% lower) characteristics compared to a traditional CMOS

standard cell based approach, when averaged over 20 designs. Also we reported that the

MVFC has ∼0.32× the delay of the TLC. The delay improvement is accompanied by an

increase in power (∼7.9×) and energy (∼2.5×). Our approach targets high performance

multi-valued, flash-based applications, while the TLC may be used for power/energy crit-

173

ical applications that can tolerate higher delays.

174

CHAPTER IX

FLASH-BASED FIELD PROGRAMMABLE GATE ARRAY (FPGA)1

In this chapter, we present a study of flash-based FPGA designs (both static and

dynamic), and present the tradeoff of delay, power dissipation and energy consumption for

the various designs. Our work differs from previously proposed flash-based FPGAs, since

we embed the flash transistors (which store the configuration bits) directly within the logic

and interconnect fabrics. We also present a detailed description of how the programming

of the configuration bits is accomplished. Our proposed static flash-based LUT structure

yields a faster operation, lower dynamic power dissipation, lower energy consumption and

lower static power dissipation compared to a traditional SRAM-based LUT. We also show

that, for high performance applications, a dynamic flash-based LUT can achieve further

performance improvements with higher energy consumption compared to an SRAM-based

LUT. We also show that the flash-based interconnect structure, implemented using our

approach, provides lower delay and lower overall power consumption compared to the

traditional interconnect structure used in SRAM-based FPGAs.

IX.1 Background

FPGAs consist of a number of configurable logic block (CLBs). Each CLB imple-

ments a small portion of the entire logic programmed on the FPGA. Each CLB is com-

1Part of the data reported in this chapter is reprinted with permission from ”Exploring Static and Dynamic

Flash-based FPGA Design Topologies” by Monther Abusultan and Sunil P. Khatri, IEEE 34th International

Conference on Computer Design (ICCD) 2016, pp. 416-419, Copyright 2016 by IEEE.

175

prised of one or more look-up tables (LUTs). Each LUT can implement any logic function

of up to n inputs (where n varies from 4 to 6 depending on the FPGA device). The design

of the LUT is a key determinant of the speed, area and power of the FPGA. Therefore,

efficient design of the LUT is a critically important issue. In addition, the FPGA uses a

network of programmable switches to connect the signals between the LUTs, as well as

to connect the LUT I/O signals to the FPGA I/O signals. This dense interconnect fabric

occupies a large portion of the FPGA’s real state due to the large number of programmable

switches.

Most FPGAs use 5 transistors (5T) static random access memory (SRAM) cells to

hold the configuration bits to implement the LUT logic function as well as the interconnect

configuration. SRAM cells are volatile, however, and so there is a significant interest in the

use of non-volatile memory devices to store the FPGA logic and interconnect configuration

bits. One of the most popular non-volatile memory technologies used in industry is flash

memory.

Figure 9.1, Figure 9.2 and Figure 9.3 show three styles of non-volatile FPGA designs

that can retain the configuration bits after a power cycle event. Figure 9.1 shows a CMOS

SRAM-based FPGA that has an off-chip programmable read-only memory (PROM) chip

to store the configuration bits and load them into the SRAM cells after the chip is pow-

ered on (similar to conventional FPGAs manufactured by Xilinx [77]). This results in

prolonged boot up delays. Figure 9.2 uses on-chip flash memory to store the configuration

bits [78, 79]. Once the chip is powered on, the configuration bits are transferred from the

176

flash memory to the CMOS SRAM cells that hold the FPGA configuration during opera-

tion. Although the design in Figure 9.2 has both CMOS and flash transistors on the same

chip, it only uses the flash memory to hold the configuration bits while the chip is powered

off. This type of FPGAs also has a prolonged boot up delay similar to that in Figure 9.1.

Figure 9.3 shows an FPGA that uses flash memory to hold the configuration bits. The

CMOS SRAM cells are replaced with flash memory cells which store the FPGA config-

uration bits, both during operation as well as while the FPGA is powered down. This is

the approach used in [80, 81] and the work presented in this chapter. Our work differs

from [80, 81] since we embed the flash transistors in the interconnect and logic fabrics

directly.

Configuration CMOS SRAMs

CMOS CLBs

C2C1

C4C3

FPGA Die

PROM

Figure 9.1: SRAM-based FPGA with Off-chip PROM

177

Configuration CMOS SRAMs

CMOS CLBs

C2C1

C4C3

FPGA Die

Flash

Figure 9.2: SRAM-based FPGA with On-chip PROM

The use of flash transistors to hold the configuration bits in our approach results in

a smaller FPGA die area due to the absence of 5T-SRAM cells. The use of both CMOS

SRAM cells and flash memory to hold the configuration bits (as shown in Figure 9.2) re-

sults in a larger FPGA die to hold the same amount of programmable fabric compared to

the designs shown in Figures 9.1 and 9.3. The FPGA in Figure 9.1 uses more die area than

the FPGA in Figure 9.3, and in addition, it requires additional off-chip PROM memory to

hold the configuration bits during the power off condition. Additionally, in our approach,

the use of flash transistors as the FPGA’s main configuration memory allows for temporar-

ily power gating of parts of the FPGA (which are not being used by the application) and

also enables the application to instantly power up and power down any portions of the

FPGA.

178

CMOS CLBs

C2C1

C4C3

FPGA Die

Flash−based configuration

Figure 9.3: Flash-based FPGA

Loading the configuration bits into flash-based FPGAs is similar to that of SRAM-

based FPGAs. In SRAM-based FPGAs, configuration bits are grouped in k-bit words

which are loaded serially into a configuration register using a JTAG boundary scan inter-

face [82]. A representative value of k is 32. In SRAM-based FPGAs, configuration cells

(logic and interconnect) are grouped in frames laid vertically in the FPGA. Each frame

consists of a number of words (101 words in the 7 Series Xilinx FPGAs). Each frame is

programmed by loading the configuration bits in parallel from the configuration register

into each word of the frame. In the flash-based FPGA, configuration data is loaded serially

into a configuration register similar to SRAM-based FPGAs. Programming the flash tran-

sistors in parallel can be achieved for both the LUTs and the interconnect configuration

bits. For LUT configuration, we program one flash transistor from each LUT at a time

179

(the details are described in Section IX.3). We use a 32-bit configuration register to pro-

gram 32 flash transistors in parallel for 32 different LUTs. For interconnect configuration,

we program the flash transistors in each row in parallel. Flash-based FPGA (LUT and

interconnect) programming is discussed in details in Section IX.3.

In this chapter, we explore the use of flash transistors to implement non-volatile

FPGAs. We remove all the CMOS SRAM cells in a traditional FPGA structure and re-

design the FPGA to only use flash transistors to store the configuration bits as shown in

Figure 9.3. We present and compare different LUT and interconnect structures that can be

implemented in a non-volatile FPGA. We also present the tradeoff between the delay, dy-

namic power dissipation, energy consumption and static power dissipation characteristics

(obtained from the circuit level simulations) for each of the proposed structures. We also

present a flash-based interconnect fabric, and compare its electrical characteristics with

traditional CMOS SRAM-based FPGA interconnect.

In general, the differences between an SRAM-based FPGA and our proposed flash-

based FPGA are:

• Area– since the flash-based FPGA only uses 1 flash transistor per configuration bit

versus 5 transistors in the SRAM-based FPGA (5T SRAM cells) per configuration

bit.

• Power– flash transistors in general have low on-currents compared to regular NMOS

transistors. Also, flash transistors have lower input capacitance (discussed in Sec-

tion IX.4).

180

• Delay– embedding the flash transistors in the logic and interconnect fabrics shortens

the signal path from the configuration cells to the output of the LUT (or the input of

the interconnect switch), resulting in improved speeds.

• Programming time– programming flash transistors is a much slower process than

programming CMOS SRAM cells. This could become an issue during the appli-

cation development phase, during which the FPGA will be loaded frequently with

configuration bits. However, once the FPGA is deployed, flash-based FPGAs are at

an advantage, since they do not require reloading of the configuration bits whenever

the FPGA is booted up after a power cycle (compared to the ∼1.8 seconds delay

in SRAM-based FPGAs in the example discussed earlier). This makes flash-based

FPGAs the preferred option for the production and deployment phase of an appli-

cation. Also, using flash-based FPGAs in production keeps the FPGA safe from

reaching the limit on the number of program cycles of the flash-based configuration

bits (which is in the order of 10K-100K [40, 41]).

IX.2 Previous Work

Work in the area of flash-based FPGA implementation has been reported in [81, 80].

The authors of [81] present a flash-based FPGA implementation that uses a 2T composite

flash device similar to [83], which is a flash device that consists of two floating gate tran-

sistors that share their floating and control gates. One transistor is used for programming

and the other is used for operation. The work in [81] eliminates the need for conven-

181

tional SRAM cells and only use flash devices to store the configuration bits, resulting in a

low-cost, low-power FPGA design. Unlike the work presented in [81], our work uses 1T

flash devices which leads to further area reduction. Also we propose multiple flash-based

FPGA designs and compare them amongst each other as well as with SRAM-based FPGA

designs (unlike [81] which only presents their flash-based FPGA design with no perfor-

mance and power comparisons with current CMOS SRAM-based FPGAs). Unlike [81],

we show the circuit level details of the LUT and interconnect implementation used in our

flash-based FPGA.

The authors of [80] show the implementation details of a non-volatile programmable

switch for use in flash-based FPGAs. The work in [80] is implemented using a 2T flash

transistor similar to [81, 83] and they show area improvement when using flash-based ver-

sus SRAM-based configuration memory. They also demonstrate a static power reduction

due to the fact that they employ a power gating scheme which is mostly effective when

the FPGA has low utilization. In contrast to [80] we use 1T flash devices and present a

complete implementation of the flash-based FPGA, including the logic and interconnect

fabrics. We also use an NMOS-only MUX implementation (instead of the CMOS MUX

implementation used in [80]) because the NMOS-only MUX implementation has been

proven to be faster, with a lower power consumption in the literature due to its reduced

diffusion area [4, 34, 84, 6]. Furthermore, in contrast to both [81, 80], our proposed flash-

based FPGA designs use flash transistors that are embedded in the logic and interconnect

circuitry (instead of placing the configuration bits in a separate flash-based memory cell

182

as in [81, 80]) which leads to improvements in delay, power and area. Unlike [81, 80],

we present a detailed description of how the programming of the flash configuration bits

is accomplished.

IX.3 Approach

IX.3.1 Overview

In this section, we discuss the design details of our candidate flash-based FPGA

structures. We will first discuss the general FPGA topology used in the different designs.

Then we will present our proposed flash-based lookup table (LUT) structures. Finally, we

will discuss the details of the interconnect switch boxes used in our proposed flash-based

FPGA. For each candidate design that we present in this chapter, we will describe the cir-

cuit level details of the design as well as a detailed walk-through of how it is programmed.

Figure 9.4 shows the basic representation of a logic island in an FPGA with the sur-

rounding interconnect elements used to transfer signals to/from the LUTs. Each group of

LUTs in our FPGA architecture is grouped into a larger logic unit called a configurable

logic block (CLB). CLBs contain flip-flops at the output of each LUT as well as the re-

quired circuitry to select the registered or the non-registered output of the LUTs. Figure 9.4

also shows a connection box (CB) which is a matrix of switches that connects each I/O in

the CLB with the switch box (SB), also shown in Figure 9.4. The SB is used to connect

signals from the CB to the FPGA interconnect fabric. In this chapter, the SB will be used

to evaluate the proposed flash-based interconnect structures. The SB structure used in

183

Switch Box

Horizontal Wires

Box
Connection

Logic Island CLB
LUT Connection

Vertical
Wires

Box

Regenerative

Circuit

Switch Box

Routes"
"Possible

Figure 9.4: FPGA Logic and Interconnect Fabric Elements

this chapter can implement any of the commonly used interconnect topologies described

in [85, 86, 87], and can be used to implement the CB as well.

Next, we will briefly discuss the conventional LUT structures which we have used

to evaluate our proposed LUT structures against.

IX.3.2 Conventional SRAM-based LUT Structure

Figure 9.5 shows the circuit details of the conventional LUT used in SRAM-based

FPGAs (SReg-LUT). In this chapter, we evaluate 6-input LUTs since they are the most

184

S0

S3

S4

S5

S6

S7

S1

S2

Inverter
Switchpoint

Low

a

b c

b c

Stage 3

Stage 2
Stage 1

Output

a

Keeper

Figure 9.5: Conventional 3-input LUT Structure

commonly used in current FPGAs, however we only show a 3-input LUT in Figure 9.5,

for simplicity. The blocks marked S0-S7 represent the logic configuration memory. They

are realized using 5T SRAM cells in the SRAM-based LUT. When the input (a, b and c) is

applied to the LUT circuit, one of the values of the SRAM cells S0-S7 propagates through

the NMOS MUX tree and drives the output. We use a low switch-point inverter and a

long channel PMOS keeper to regenerate the signal at the output, since it is degraded after

passing through the NMOS MUX stages. Figure 9.6 shows the circuit details of four 5T

SRAM cells used in an example 2-input LUT. The top SRAM cell in Figure 9.6 consists

of two cross-coupled inverters, P0 (minimum size inverter) and Q0 (long channel inverter),

and an NMOS pass gate (M0) which is used to load the new configuration bit into the

185

SRAM cell. This SReg-LUT structure is used as a reference in the evaluation of our flash-

based candidate LUT structures.

2−Input
LUT

Lower Strength
Inverter

S0
In0

M0 P0

Q0

load

S1
In1

M1 P1

Q1

S2
In2

M2 P2

Q2

S3
In3

M3
P3

Q3

Figure 9.6: 5T SRAM Cells

IX.3.3 Conventional Flash-based LUT Structure

IX.3.3.1 LUT Structure

The conventional flash-based LUT structure (FReg-LUT) is very similar to the

SReg-LUT structure shown in Figure 9.5. The main difference is in the implementa-

tion of the memory cells S0-S7. Figure 9.7 shows the flash memory cells (FMCs) used

to hold the configuration bits of an example 2-input LUT. Each cell consists of two flash

transistors Fpi and Fqi. Fpi and Fqi are driven by VAP and VBP respectively. During

186

2−Input
LUT

Bulk Island

S0Fp0

Fq0

X0

V SP0

V DP0

Fp1 S1

V DP1

Fq1

V SP1

X1

Fp2 S2

V DP2

Fq2

V SP2

X2

Fp3 S3

V SP3

V DP3

Fq3

X3

VAP

V BP

Figure 9.7: Flash Memory Cells (FMCs)

operation, the lines VAP and VBP are driven high (VDD) to turn on the FMCs, and the

lines VDPi and VSPi are driven to VDD and GND respectively. The transistors Fpi and

Fqi are programmed such that only one of them turns on when the corresponding VAPi

and VBPi are driven high, thereby passing either the VDPi (VDD) or the VSPi (GND)

voltage to the inverter Xi which generates the configuration signal Si. The inverter Xi is

required to regenerate the degraded signals due to the use of only N-type flash transistors.

Note that the configuration bits have to be logically flipped to account for the inversion

caused by the inverter Xi. In this chapter, the FReg-LUT is used as a reference design in

the comparative analysis with our flash-based LUTs.

187

GND

VDD
(1V)

VT0

VIL

VIH

VT2

VT1

Figure 9.8: Threshold Voltages Levels Used in Flash-based Designs

IX.3.3.2 Programming the FReg-LUT

Programming flash memory in general involves two steps – a) erasing an entire block

of cells, and b) programming individual transistors to a desired threshold voltage value as

shown in Figure 9.8. Figure 9.8 shows the voltage levels used to drive the flash transistors

(VDD and GND) in our implementation of flash-based FPGAs. The VT levels used to

program the flash transistors are shown to the right side of Figure 9.8. In all of the flash-

based implementations, we use 3 VT levels. The low (erase) threshold voltage (V T0) is

below GND, the medium threshold voltage (V T1) is between VDD and GND, and the high

threshold voltage VT2 is above VDD. All the flash transistors in the flash memory cells

shown in Figure 9.7 are erased by driving the lines VAP and VBP to GND, floating all the

VDPi and VSPi lines, and driving the shared bulk island with a high voltage (10V-20V).

The erase process will result in reseting all the threshold voltages of the flash transistors

188

shown in Figure 9.7 to the erase threshold VT0 in Figure 9.8. In other words, all the flash

transistors will be in an ”always passing” state. After erasing the flash transistors, we only

need to program one flash transistor in each FMC based on the value of the corresponding

configuration bit. If we want to store a 1 in the FMC, we have to program Fqi to V T2

and leave Fpi in the erase state (V T0). If we want to store a 0 in the FMC, we have to

program Fpi to V T2, and leave Fqi in the erase state. Notice that due to the inversion at

the output of the FMC, the final output of the FMC (Si) will be inverted, which has to be

taken into consideration when generating the logic configuration bit string of the LUT. Fqi

is programmed by driving VBP to a high voltage (10V-20V), VAP to a passing voltage

(2V), VDPi and VSPi to GND and holding the bulk at GND. The programming duration

determines the final VT value of Fqi (V T2 in our case). Note that the lines VAP and VBP

are shared between LUTs in the same column of the FPGA, and the lines VDP and VSP

are shared between LUTs in the same row of the FPGA (as shown in Figure 9.9). This

allows us to address all FMCs in the FPGA. We float the VDP and VSP signals of the flash

transistors in the same column which do not need to be programmed. We drive the VAP

and VBP signals of flash transistors in the same row to GND, if these transistors do not

need to be programmed. In this way, at most 2k flash transistors can be programmed at a

time, where k is the number of LUTs per column.

189

LUT

...

...

... ...

VAPi V BPiVAP1 VBP1

V SPi

V DPi

V DP1

V SP1

Figure 9.9: Programming the Configuration Flash Memory Cells

IX.3.4 Proposed Static Flash-based LUT (SF-LUT)

IX.3.4.1 LUT Structure

Figure 9.11 shows our proposed static flash-based LUT structure. The LUT consists

of a modified MUX tree, a low switch point inverter (P) and a long channel keeper PMOS

similar to Figure 9.5. The main difference between the proposed LUT structure and the

conventional LUT structure of Figure 9.5 is the configuration scheme. The memory cells

used to hold the configuration bits of our proposed LUT are merged in the LUT’s MUX

tree, which results in reduced area, delay and power. We will explain how the SF-LUT

is configured in Section IX.3.4.2. During operation, the lines VSP and V DP are driven

to GND and VDD respectively, the lines A/VAP1 and A/VAP2 are driven to A and A

respectively, and the lines B/V BP0 and B/VBP1:4 are driven to B and B respectively. Note

that each of the four lines B/V BP1:4 drive Fqi, Fsi, Fui and Fwi respectively. We separate

190

the inputs of these flash transistors for programmability purposes (see Section IX.3.4.3).

The pull-down NMOS (Mprg) is also used for programming the SF-LUT, which will also

be discussed in Section IX.3.4.3. The notation X/Y is used throughout this chapter for a

signal that is driven by X in normal operation, and by Y during programming.

IX.3.4.2 SF-LUT Configuration

Figure 9.10 shows how the function F(A,B) is constructed in an SRAM-based FPGA

(left) and how we construct the same function using SF-LUT (right). Constructing the

LUT using a 4-input MUX that selects between GND, A, A and V DD (Figure 9.10, right)

instead of using a regular 2 stage 2-input MUX (Figure 9.10, left) allows the design to

save area by omitting the need for separate programmable memory cells to store the con-

figuration bits [81]. In the SRAM-based LUT, we program the SRAM cells S0-S3 using

the truth table of the function F(A,B). In the SF-LUT structure, we program the threshold

voltages of the flash transistors (Fp, Fq, Fr, Fs, Ft , Fu, Fv and Fw) by following the program-

ming VT ’s shown in Table 9.1. For example, if want to program the circuit in Figure 9.10

to implement the function F(A,B) = A (corresponds to line 11 in Table 9.1), then we will

program Fp, Fq, Ft , Fu, Fv and Fw to VT2 (always off) and program Fr and Fs to VT0 (al-

ways on). As a consequence, regardless of the value of B, the output F(A,B) will always

be A. Similarly, if we desire to program the SF-LUT with the function F(A,B) = A⊕B

(corresponds to line 15 in Table 9.1), then we program Fp, Fq, Fv and Fw to VT2 (always

off), program Fr and Fs to V T0 and VT1 respectively (this path will pass A only when B =

0), and program Ft and Fu to V T1 and VT0 respectively to pass A only when B = 1. Ta-

191

ble 9.1 is used after the place and route step in the design flow to generate the SF-LUT’s

configuration bitstream.

S0

S1

S2

S3

BAA

F(A,B)

B

V DD

A

GND

B B

Fp

Fr

FvV DD

A

GND

Ft

B B

Fq

F(A,B)

Fw

Fu

Fs

AA

Figure 9.10: MUX Tree Implementation in SF-LUT

Table 9.1 is generalized by performing the cofactor of F(A,B) against B and B. If

FB = A and FB 6= A, then Fr is programmed to VT1 and Fs is programmed to VT0, in order

to drive the output with A, when the input is B. All other flash devices are programmed

to VT2, to block the GND, A and VDD signals from reaching the output. If FB = FB = A,

then Fr and Fs are programmed to VT0, and all other transistors are programmed to V T2, to

block GND, A or VDD from reaching the output. The entries of the other rows in Table 9.1

can be determined in a similar manner.

IX.3.4.3 Programming the SF-LUT

The SF-LUT is programmed by first erasing its flash transistors, then programming

their VT ’s to desired levels. The erasing process (see Figure 9.11) is accomplished by

192

No.
F(A,B) Threshold Voltage (VT)

B = 1 B = 0 Fp Fq Fr Fs Ft Fu Fv Fw

1 0 0 VT0 VT0 VT2 VT2 V T2 V T2 V T2 V T2

2 0 1 VT1 VT0 VT2 VT2 V T2 V T2 V T0 V T1

3 0 A VT1 VT0 VT0 VT1 V T2 V T2 V T2 V T2

4 0 A VT1 VT0 VT2 VT2 V T0 V T1 V T2 V T2

5 1 0 VT0 VT1 VT2 VT2 V T2 V T2 V T1 V T0

6 1 1 VT2 VT2 VT2 VT2 V T2 V T2 V T0 V T0

7 1 A VT2 VT2 VT0 VT1 V T2 V T2 V T1 V T0

8 1 A VT2 VT2 VT2 VT2 V T0 V T1 V T1 V T0

9 A 0 VT0 VT1 VT1 VT0 V T2 V T2 V T2 V T2

10 A 1 VT2 VT2 VT1 VT0 V T2 V T2 V T0 V T1

11 A A VT2 VT2 VT0 VT0 V T2 V T2 V T2 V T2

12 A A VT2 VT2 VT1 VT0 V T0 V T1 V T2 V T2

13 A 0 VT0 VT1 VT2 VT2 V T1 V T0 V T2 V T2

14 A 1 VT2 VT2 VT2 VT2 V T1 V T0 V T0 V T1

15 A A VT2 VT2 VT0 VT1 V T1 V T0 V T2 V T2

16 A A VT2 VT2 VT2 VT2 V T0 V T0 V T2 V T2

Table 9.1: SF-LUT Programming VT ’s Configuration

floating each of V SP, A/VAP1, A/VAP2 and V DP, drive prg to GND, drive B/V BP0 and

B/VBP1:4 to GND, and apply a high voltage (10V-20V) to the bulk. After the erasing

process is complete, the VT ’s of the flash transistors will be reset to VT0. Unlike the erase

process, the flash transistors in an SF-LUT are programmed individually. Assume that

we want to program Fp1 and Fq1 in Figure 9.11, both to V T2. We activate the path from

Fp1 and Fq1 to Mprg (near the output of the LUT), in order to GND the source and drain

terminals of Fp1 and Fq1. We do this by driving prg to VDD (to turn Mprg on), C to GND

(which turns MC1 on, and turns MC2 off). Note that this step may require programming

the FPGA interconnect before programming the LUTs. To program Fp1, we float V SP,

193

A/VAP1, A/VAP2, V DP and B/VBP2:4, drive B/VBP1 to a passing voltage (2V), drive

B/VBP0 to a programming voltage (10V-20V), drive the corresponding bulk to GND, and

floating all other bulk islands. We can program Fq1 by repeating the previous steps, except

that we drive B/VBP1 to the program voltage and driving B/VBP0 to GND.

4

Bulk Islands

MC1

MC2

P

Mprg

Output

Mpch

Fq1

Fs1

Fu1

Fw1

Fq2

Fs2

Fu2

Fw2

Fp1

Fr1

Ft1

Fv1

Fp2

Fr2

Ft2

Fv2

B/VBP0 C

C

B/VBP1:4

V DP

A/VAP2

VSP

A/VAP1

VDP

A/VAP2

VSP

A/VAP1

prg

VDD

Figure 9.11: Proposed Static Flash-based LUT Structure (SF-LUT)

IX.3.5 Proposed Dynamic Flash-based LUT (DF-LUT)

IX.3.5.1 LUT Structure

As the name suggests, the DF-LUT is implemented using dynamic logic. There are a

few advantages to implementing a flash-based LUT using dynamic logic. Our design uses

194

Bulk Island

MB1

MB2

MB3

MB4

A/VP1 A/V P2

Q

en

Mclk1

Mclk2

Mclk3

Mclk4

Mclk5

Mclk6

Mclk7

Mclk8

FA1

FA2

FA3

FA4

FA5

FA6

FA7

FA8

C

C
SR

B

B

P

Mprg

Output

Mpch

VSP

clk/Pg

MC2

MC1

prg

clk/Pg

Figure 9.12: LUT Structure Used in DF-LUT

NMOS passgates (following common FPGA design practice [4, 34, 84, 6]), which are best

at passing a logic 0. However, when they are used to pass a logic 1, they result in a drop

in the output voltage by VT , which slows down the LUT operation and requires the use of

leaky lower switch point inverters to regenerate the output signals. Hence, an advantage

to precharging the output to VDD (logic 1) is that we no longer have to pass a logic

1 through the NMOS passgates. Also, in FPGAs, we already have a clock distribution

network, which can be utilized to implement the dynamic LUT structure. Figure 9.12

shows our proposed dynamic flash-based LUT (DF-LUT). We use a conventional MUX

tree structure (similar to Figure 9.5). We replace the output low switch-point inverter and

195

PMOS keeper in Figure 9.5 with a regular minimum size inverter (P) and a precharge

PMOS device (Mpch) driven by the clock signal (clk/Pg). Also, to prevent creating a

short-circuit between VDD and GND during the precharge cycle, we add evaluate NMOS

transistors to each branch of the MUX tree driven by clk/Pg (these are shown on the left

of Figure 9.12). This is done in order to pass the signal V SP (which is driven to GND

during operation) during the evaluation phase (i.e. clk/Pg = 1) of normal operation. Note

that while it is possible to only use one evaluate NMOS transistor at the output of the

tree to prevent a short current between VDD and GND, the evaluate NMOS devices of

Figure 9.12 additionally allow us to float the source nodes of the flash transistors during

programming. Also, as shown in Figure 9.12 we use an NMOS pull-down (Mprg) at the

output for programming purposes and a tri-state inverter (Q) to generate A from A during

normal operation (Pg = 0) and to control the lines A/VP1 and A/VP2 independently during

programming (Pg = 1).

IX.3.5.2 DF-LUT Configuration

Configuring the DF-LUT is simpler than configuring the SF-LUT. For example, as-

sume that the output of the LUT is logic 0 when the inputs A, B and C are all 0’s, and the

output is logic 1 for all other input combinations. Then we want program FA2 through FA8

to V T1 (to turn on when they are driven to VDD) and program FA1 to V T2 (to never turn

on during operation, and hence cause the output to stay at logic 0 when the inputs A = 0,

B = 0 and C = 0 are applied to the LUT). In general, we can reduce flash programming

time (which is a slow process), by leaving FAi and FA(i+1) (assuming i is odd) at their erase

196

threshold voltage (VT0) whenever the above configuration requires them both to be at V T1.

The reason behind this is that when a pair of branches (FAi and FA(i+1), for odd i) in the

first stage of the DF-LUT both cause the output to be logic 1, then allowing these two

branches to stay on at all the time (by leaving them at VT0) will produce the same effect

as well.

IX.3.5.3 Programming the DF-LUT

The flash transistors in the DF-LUT can be erased by driving the bulk to a high volt-

age (10V-20V), clk/Pg low, clk/Pg high, prg low and en low. This (respectively) turns off

the evaluate transistors (Mclk1-Mclk8), the precharge transistor (Mpch), the program transis-

tor Mprg and the inverter (Q). Then we drive the lines A/VP1 and A/VP2 to GND. This

resets all the VT ’s of the flash devices FA1 through FA8 to V T0. To program any of the flash

transistors’ threshold voltage to V T1 or VT2, we first select the path from the flash tran-

sistor (that we want to program) to Mprg (near the output) by applying the corresponding

input combination (B and C in a 3-input LUT). Then, we drive prg to VDD (to turn on

Mprg) and ground the selected path. We also drive clk/Pg and clk/Pg to GND and VDD

respectively, to turn off the evaluate transistors (Mclk1-Mclk8) and the precharge transistor

(Mpch). We finally, turn off the inverter (Q) by driving en low and drive A/VP1 to a pro-

gram voltage and A/VP2 to a passing voltage (2V) (or vice versa, depending on which of

the two flash transistors in the selected pair we want to program). We repeat this process

for each flash transistor we want to program in the DF-LUT.

197

IX.3.6 Configuration Time

One major aspect of difference between SRAM-based and flash-based FPGAs is

the configuration time. Flash transistors erase and write delays are much higher than

SRAM-cell write delays. Xilinx reports that the configuration time for a Kintex 7 SRAM-

based FPGA is 1.83s (for an uncompressed bitstream file size of 91,584,896 bits), which

is about 6.4µs per 32-bit word [82, 88]. To estimate the configuration time of a flash-

based FPGA, we use the block erase and page program times for an SLC NAND flash

memory manufactured by Micron [89]. Micron reports that for the MT29F2G08A SLC

NAND flash memory, the block erase time is 700µs and the page write time is 200µs [89].

Therefore, we need 57s to configure a flash-based FPGA of the same size as the Kintex 7

FPGA. Our configuration time estimation for flash-based FPGAs aligns with Microsemi

IGLOO2 flash-based FPGA programming times [90]. Note that the erase process will

be done initially in parallel for the entire FPGA, thereby resulting in a minimal block

erase time overhead (the number of blocks erased in parallel is limited only by the current

required to perform the block erase process).

Since flash-based FPGA programming is slower, we propose that flash-based FPGAs

be used in late stages of a project. This would allow the design to benefit from the rapid

power-up of the flash-based FPGA, while ensuring that the number of program cycles

for the flash transistors remains low (the maximum number of program cycles is in the

10K-100K range [40, 41]).

198

IX.3.7 Conventional SRAM-based Programmable Switch Structure

The interconnect fabric in the FPGA consists of variable length wires and pro-

grammable switches (in the SBs and CBs) that connect these wires together to form a path

from a source to a destination in the FPGA, as shown in Figure 9.4. The source/destination

can be either FPGA I/O port, LUT output or any other embedded processing elements in

the FPGA. In SRAM-based FPGAs, these programmable switches are NMOS passgate

transistors driven by a 5T SRAM cell similar to those in Figure 9.6. Due to the large area

of 5T SRAM cells, each source in an SB can connect to one of three destinations based on

the implemented topology, as discussed in Section IX.3.1.

IX.3.8 Conventional Flash-based Programmable Switch Structure

One way to implement (non-volatile) flash-based programmable switches is by re-

placing each SRAM cell with an FMC similar to that shown in Figure 9.7. The drawback

in using such FMCs to implement the programmable switches is that the FMC will cause

additional leakage when the programmable switches are programmed to turn be on. The

leakage in this type of flash-based programmable switch is due to the VT drop when the

pullup transistor Fpi (shown in Figure 9.7) is passing VDD, which will cause the inverter

Xi to be driven by a non-rail value, hence resulting in a high leakage current.

199

IX.3.9 Proposed Flash-in-path (FIP) Programmable Switch

IX.3.9.1 FIP Structure and Configuration

Our proposed Flash-in-path (FIP) programmable switch replaces the NMOS pass-

gates (in an SB or CB) with flash transistors, eliminating the need for additional memory

elements. This results in substantial area reduction, allowing additional interconnect con-

figurability in the FPGA. Figure 9.13 shows an array of 4×4 FIP programmable switches

connecting the wires X1, X2, X3 and X4 to the wires Y 1, Y 2, Y 3 and Y 4 respectively and

driven by the lines Z1 through Z4 (which are driven to VDD during normal operation).

Note that the programmable switches are grouped in vertical bulk islands (as shown in

Figure 9.13) for programming purposes. Since the FIP switches are directly embedded

in the path of signals, configuring the interconnect is simply done by programming their

threshold voltage to V T0 (to connect the path) or to V T2 (to disconnect the path).

IX.3.9.2 Programming the FIP Array

The array of FIP programmable switches are erased by driving the bulk islands (B1

through B4) to a high voltage (10V-20V), floating the lines X1 through X4 and Y 1 through

Y 4, and driving the lines Z1 through Z4 to GND. The erase process will reset the threshold

voltages of all the flash transistors to VT0 (erase threshold). While the erase process erases

all the flash transistors in the FIP array, we program FIP array one column at a time.

Assume that we want to program the top-most flash transistor inside the bulk island B1.

This can be accomplished by driving the bulk island B1 to GND and floating the other bulk

islands (B2, B3 and B4), driving the lines X1 through X4 and Y 1 through Y 4 to GND, and

200

Bulk Island B1
Bulk Island B2

Bulk Island B3

Bulk Island B4

Z2

Y 2

Y 3

Z3

Y 4

Z4

X1 X2 X3 X4

Y 1

Z1

Figure 9.13: Array of Flash-in-path (FIP) Switches

driving the line Z1 to a programming voltage (10-20V) to program the threshold voltage

for the top-most transistor of bulk island B1 to V T2 (disconnected). The other lines (Z2

through Z4) are driven at a passing voltage (2V) to leave their threshold voltage at V T0

(connected). As a consequence of this, signal X1 will be connected to signals Y 2, Y 3 and

Y 4.

In the next section, we will discuss our experimental results for each of the structures

discussed earlier.

201

IX.4 Experiments

In this section, we first present the simulation environment used in evaluating our

proposed flash-based FPGA LUT and interconnect switch design approaches. Then we

discuss their circuit implementation details. Finally, we present the results of our experi-

ments followed by a discussion of these results.

IX.4.1 Simulation Environment

The designs presented in this chapter are implemented in a 45nm process technology.

The designs were simulated using the Synopsys HSPICE [56] circuit simulation tool and

the 45nm PTM [57] card. The nominal supply voltage for the 45nm PTM card is 1V. We

used custom scripts to generate the flash-based LUT and interconnect switch designs. For

CMOS devices, we used the 45nm PTM model cards [57], while for flash devices, we used

the same model cards described in Section III.4.2.

IX.4.2 LUT Implementation Details

In this section, we present the implementation details of the SRAM-based and flash-

based LUT designs. The MUX tree in all of our candidate LUTs are constructed using

minimum size NMOS transistors (W = 90nm and L = 45nm). The flash transistors in all

of our flash-based LUTs also have W = 90nm and L = 45nm. The input drivers to our

candidate LUT structures are appropriately sized to achieve optimal driving strength using

the concept of logical effort [3]. For the SReg-LUT, FReg-LUT and SF-LUT, the output

inverter is designed to have a low switch point, to regenerate the degraded signal coming

202

through the NMOS passgates. We found that a lower switch point inverter with the sizes

Wn = 240nm, Ln = 45nm, Wp = 90nm and Lp = 45nm provides the best delay results

for the SReg-LUT and FReg-LUT. For the SF-LUT, the optimal sizes of the low switch

point inverter are Wn = 100nm, Ln = 45nm, Wp = 90nm and Lp = 45nm. The keeper

device sizes are Wp = 90nm and Lp = 115nm for the SReg-LUT and FReg-LUT, and Wp

= 90nm and Lp = 135nm for the SF-LUT. The DF-LUT uses a minimum size inverter at

the output (Wn = 90nm, Ln = 45nm, Wp = 140nm and Lp = 45nm). For the interconnect

programmable switch experiments, we used minimum size NMOS devices and minimum

size flash transistors to implement the designs. The threshold voltages used in all of our

flash-based designs are (V T0 = -0.5 V), (V T1 = 0.5 V) and (V T2 = 1.5V).

IX.4.3 Results and Analysis

LUT Type Delay (ps) PDyn (uW) EDyn (fJ) PStatic (uW)

SReg-LUT 132.10 33.22 4.39 9.30

FReg-LUT 1.00× 1.01× 1.01× 0.99×
SF-LUT 0.90× 0.88× 0.79× 0.71×
DF-LUT 0.68× 2.02× 1.37× 0.22×

Table 9.2: Delay, Dynamic Power (PDyn), Dynamic Energy (EDyn) and Static Power

(PStatic) Ratios of the LUTs

Table 9.2 shows the delay, dynamic power dissipation (PDyn), energy consumption

(EDyn) and static power dissipation (PStatic) of each of the proposed flash-based LUT de-

signs compared to a conventional SRAM-based LUT (SReg-LUT) implementation, whose

203

values are presented as absolute numbers, while other LUTs’ values are shown relative to

the values of the SReg-LUT. The FReg-LUT has a similar delay, dynamic power, dynamic

energy and static power compared to the SReg-LUT design. Our proposed static flash-

based LUT structure shows improvements over both the SReg-LUT and the FReg-LUT

in terms of performance, power and energy. The SF-LUT shows 10% faster performance,

12% lower dynamic power dissipation, 21% lower dynamic energy and 29% lower static

power dissipation compared to the SReg-LUT. The DF-LUT exhibits 32% faster opera-

tion and 78% lower static power dissipation, with a penalty of 37% in dynamic energy

consumption compared to the SReg-LUT. For high performance applications, a dynamic

flash-based implementation is the optimal choice.

The key reason for these improvements is that in the SF-LUT and DF-LUT, the

programming devices are embedded in the logic of the LUT itself.

Programmable Switch Type Delay (ps) PDyn (nW) PStatic (nW) PTotal (nW)

SRAM-based 13.39 53.82 7.99 13.95

FMC-based 0.89× 0.58× 0.43× 0.51×
FIP-based 0.11× 0.71× 0.02× 0.29×

Table 9.3: Delay, Dynamic Power (PDyn), Static Power (PStatic) and Total Power (PTotal)

Ratios of the Programmable Switches

Table 9.3 shows the delay, dynamic power dissipation (PDyn), static power dissi-

pation (PStatic) and total power dissipation (PTotal) of each of the proposed flash-based

programmable switch designs compared to a conventional SRAM-based programmable

204

switch implementation. The FMC-based programmable switch shows 11% faster opera-

tion, 42% lower dynamic power, 57% lower static power and 49% lower total power dissi-

pation compared to the SRAM-based programmable switch. The FIP-based programmable

switch, however, shows very promising results. It has 89% lower delay, 29% lower dy-

namic power dissipation, 98% lower static power dissipation and 71% lower overall power

dissipation compared to the SRAM-based programmable switch.

The reason for these improvements is that the FIP-based switch, when turned on, has

a high gate drive (of VDD + VT0). The power dissipation is lower in both the flash-based

programmable switch designs compared to the SRAM-based programmable switch due to

their reduced number of devices.

Since the VT levels of the flash transistors are adjustable with a fine granularity, we

can adjust the performance characteristics of the flash-based LUTs by adjusting their VT

values. We performed a sweep of the VT values for the flash-based LUT designs, to show

the effect of varying VT on the delay, power dissipation and energy consumption of the

flash-based LUT. Figure 9.14 shows the normalized delay, dynamic power dissipation, dy-

namic energy consumption and static power dissipation of the SF-LUT as the VT values of

V T0, VT1 and V T2 are varied around their nominal values. The delay curve in Figure 9.14

suggests that up to ∼14% faster operation can be achieved by lowering the VT values of

the flash transistors. This improved performance comes with a penalty of about ∼18%

higher dynamic power dissipation and about ∼11% higher static power dissipation. The

energy stays substantially flat, which is a desired feature for battery powered as well as

205

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

50 40 30 20 10 Nom
inal

-10
-20

-30
-40

-50
-60

-70
-80

-90
-100

N
or

m
al

iz
ed

VT Shift (mV)

Delay
PDyn
EDyn

PStatic

Figure 9.14: Normalized Delay, Dynamic Power, Dynamic Energy and Static Power of

SF-LUT as the VT is Shifted.

tethered computing platforms.

One of the issues of using flash transistors is the issue read and write disturbs. In our

flash-based FPGA, we suppress the issue of read and write disturbs by:

• We use three threshold voltage levels (V T0, VT1 and V T2), such that the difference

between any two adjacent threshold voltage levels is the same as that of an SLC cell,

which has exponentially more immunity to read and write disturbs [43].

• Our structures are limited to 1 or 2 flash transistors in series, reducing the suscepti-

bility to disturbs.

• In our implementation, we limit the operating supply voltage to 1V, resulting in

206

reduced electric fields, which in turn reduces read disturbs effects on the flash tran-

sistors..

• In our flash-based FPGA, we do not use passing voltages (which are higher than

regular read voltages), since we read all the flash devices in series at once.

IX.5 Chapter Summary

FPGAs serve as the platform of choice for low and medium volume digital designs,

as well as designs that require in-field modifications. However, the prolonged boot time

for SRAM-based FPGAs (due to the need to load the configuration bits into the SRAM

cells) has motivated the design and manufacturing of (non-volatile) flash-based FPGAs. In

this chapter, we presented the design and implementation of flash-based FPGA LUT and

interconnect fabrics. Our proposed static flash-based LUT structure provides 10% faster

operation, 12% lower dynamic power dissipation, 21% lower energy consumption and

29% lower static power dissipation compared to a traditional SRAM-based LUT. Our dy-

namic flash-based LUT can achieve further performance improvements (32% lower delay)

with a higher energy consumption (37% higher) compared to an SRAM-based LUT. We

have also shown that our flash-based interconnect structure yields 89% lower delay and

71% lower overall power consumption compared to the traditional interconnect structure

used in SRAM-based FPGAs.

207

CHAPTER X

THESIS SUMMARY AND CONCLUSIONS

Flash transistors are the workhorse technology for non-volatile data storage applica-

tions today. However, there has been no previous research in the use of flash technology

to implement digital logic. In this thesis, we presented four different design approaches

to implement flash-based designs at the cell-level. These different designs approaches

are ternary-valued design approach using a TLC, a binary design approach using an FC,

a PLA-like design approach using a PFC, and a multi-valued design approach using an

MVFC. We summarize and compare the results obtained from these flash-based design

approaches in Section X.1.

Additionally, we have presented a design flow, with optimization, to implement a

flash-based design at the block-level. We adapted this design flow to use FCs to implement

flash-based designs at the block level. This flow can be modified to use TLCs, PFCs or

MVFCs as well. We presented the algorithmic details to implement complete flash-based

digital circuit blocks, in the form of an interconnected network of FCs. We presented

techniques to perform logic clustering, on-the-fly physical synthesis of all the FCs of a

design, and the automatic characterization of the delay, power and area of the resulting

circuit. We also presented a method to perform SAT-based optimization of the flash-based

digital block. This optimization technique uses the CODC of a multi-level logic network.

Unlike other don’t-care optimization techniques presented in the past, our technique per-

208

forms post-technology mapped optimization, which yields direct improvements in result

quality as compared to pre-technology mapped optimization. Also, we optimize a cluster

of nodes at once, instead of optimizing nodes one at a time.

We also presented novel flash-based FPGA designs to implement FPGAs. FPGAs

serve as the platform of choice for low and medium volume digital designs, as well as

designs that require in-field modifications. However, the prolonged boot time for SRAM-

based FPGAs (due to the need to load the configuration bits into the SRAM cells) has

motivated the design and manufacturing of (non-volatile) flash-based FPGAs. In this the-

sis, we presented the design and implementation of both dynamic and static flash-based

FPGA LUT structures as well as an ultra low power flash-based interconnect fabric.

X.1 Choosing the Right Flash-based Design Approach

Approach Chapter Delay Ratio Power Ratio Energy Ratio Cell Area Ratio

TLC III 2.43× 0.12× 0.30× 0.95×
FC IV 0.84× 0.35× 0.30× 0.54×

PFC VII 0.85× 0.39× 0.33× 0.46×
MVFC VIII 0.77× 0.95× 0.74× 0.96×

Table 10.1: A Comparison Between Flash-based Design Approaches to Implement Digital

Circuits

Table 10.1 shows a list of the different flash-based design approaches presented in

this thesis. The table also shows the delay, power and cell area ratios of these design

approaches compared to a CMOS standard cell design approach. The delay, power and

209

area results shown in the table are the average results obtained from characterizing 20

randomly generated designs which were implemented using a CMOS standard cell design

approach (reference), as well as the ternary-valued flash-based (Chapter III), binary flash-

based (Chapter IV), PLA-like flash-based (Chapter VII)) and multi-valued flash-based

(Chapter VIII) design approaches. The set of 20 designs used to perform our comparison

of flash-based designs to a CMOS standard cell counterpart is the same set used for all

the various flash-based design approaches presented in this thesis (TLC-based, FC-based,

PFC-based and MVFC-based flash-based designs).

Table 10.1 shows that TLC-based designs have the lowest power dissipation across

the board (0.12×), which comes at the expense of increased delays (2.43×). Therefore,

TLC-based designs target extreme low power applications that have relaxed delay require-

ments. Also, TLC-based designs have similar area footprint compared to CMOS. FC-

based designs show lower delays (0.84×) and lower power (0.35×) compared with CMOS

as shown in Table 10.1. This makes the FC-based designs appealing candidates for power-

aware, high performance applications due to their superior delays and low power. We also

note that the delay of FC-based designs is much lower than the delay of the TLC-based

designs, while the power dissipation in FC-based designs is higher than TLC-based de-

signs. However, the energy consumption in both designs are similar. Additionally, the cell

area of the FC-based designs is much lower than that of the TLC-based designs, which

makes the FC-based designs, in general, more appealing than the TLC-based designs to

implement digital circuits. Table 10.1 also shows that the delay of PFC-based designs is

210

0.85× the delay of CMOS, while the power dissipation in PFC-based designs is 0.39×

the power dissipation in CMOS, which results in the energy of PFC-based designs being

0.33× the energy in CMOS. The delay of the PFC is substantially similar to the delay of

the FC. However, the power and energy are ∼11% higher in the PFC compared to the FC.

The main advantage for PFC-based designs is in the small cell area (0.46× the cell area

of CMOS), which is the smallest cell area across all the flash-based designs (18% smaller

than the FC). PFC-designs are appealing for high performance applications that have tight

area constraints. Finally, Table 10.1 shows the delay, power and area of the MVFC-based.

MVFC-based designs show superior delay results (0.77× the delay of CMOS), which is

the lowest across the board. However, the power dissipation and energy consumption of

MVFC-based designs are the highest compared to the other flash-based designs. This

makes the MVFC-based designs a viable candidate for high performance applications that

have very tight delay constraints with more relaxed power and energy constraints. The

area of MVFC-based designs is higher than FC-based and PFC-based designs, which adds

an additional metric to consider when choosing the candidate flash-based design approach

for high performance applications.

In general, TLC-based design approach is appealing for extreme low power appli-

cations. FC-based design approach is appealing for high performance application which

have balanced delay and power requirements. PFC-based design approach is appealing for

high performance applications which have tight area constraints. MVFC-based design ap-

proach is appealing for high performance applications with very tight delay requirements.

211

CHAPTER XI

FUTURE WORK

The work presented in this thesis is the first work to discuss the use of floating gate

transistors to implement digital circuits. We addressed the circuit structure as well as

the CAD flow to implement flash-based digital circuits. In this section, we discuss some

open ideas that can be implemented in the future to further improve the flash-based digital

design approach presented in this thesis.

XI.1 Flash Technology Scaling

In this thesis, we explored the flash-based design approach at the 45nm technol-

ogy node for both of the CMOS standard cell and the flash-based implementations. The

main reason for our choice of technology node was the availability of an industry CMOS

standard cell library (Nangate standard cell library [55]) and the corresponding process

design kit (FreePDK [54]) as well as the electrical characteristics for 45nm flash fabri-

cation process [46, 45, 58]. Although this work is done at the 45nm technology node,

flash-based designs have been and can be implemented using technology nodes with finer

feature sizes. Floating transistor technology has substantially been following CMOS tech-

nology node scaling trends. Currently, memory devices are being fabricated at sub-20nm

minimum feature dimensions, similar to CMOS technology nodes [60, 61, 62, 63, 91].

The need for smaller and more compact non-volatile memory has been the main driving

212

factor to the advancement of floating gate transistors technology.

As the flash technology is scaled, endurance and data retention issues have been on

the rise [92]. As flash technology nodes are advancing and the feature size of floating gate

transistors are shrinking, the number of program and erase (P/E) cycles (i.e. endurance)

have been dropping. The issue of endurance limits the number of times the cell can be

erased and programmed. This issue is very challenging for the implementation of flash

memories that use triple-level cell (TLC) and multi-level cell (MLC) memories. This

issue of endurance is more amplified in MLC and TLC flash cells, since these types of

flash cells use large number of VT levels (4 VT levels in MLC and 8 VT levels in TLC)

compared to only 2 VT levels in SLC cells (used in our work). The larger the number of

VT levels in a cell makes the programming of the cell harder (i.e. requires more program

cycles) to accurately set the VT level of that cell. The accuracy of the VT level value

is important since error margins become smaller as more VT levels are packed between

VDD and GND. However, in our flash-based design approach (more specifically in FC,

PFC and MVFC) we use SLC cells which use 2 VT levels (program VT which is between

VDD and GND and erase VT below GND). This makes our error margins substantially

high and the programming of the VT levels in our work faster. Additionally, unlike in

memory, which is continuously erased and programmed to store new data, our flash-based

design only requires a few programming cycles at the factory for configuring the circuit

and for binning purposes, and possibly in the field for aging mitigation and performance

customization. This makes are flash-based design approach immune to endurance issues

213

arising due to the scaling of floating gate transistors. The other issue that appears due to

the technology scaling of flash transistors is data retention, which can be addressed in a

similar fashion as aging of ICs is handled. As the VT levels of the flash-based design drift,

cause the circuit to slow down or consume higher power than the specifications, the flash

circuit is reprogrammed and the VT levels are refreshed to their specified values to achieve

the desired performance specifications. This way, we overcome both data retention as well

as aging issues.

XI.2 3D NAND Technology

Recently, a new 3D NAND flash technology has been developed [93, 94, 95, 96,

97, 98]. This technology allows the fabrication of vertically stacked flash transistors in a

die to build an ultra-dense NAND flash memory. Samsung has also produced non-volatile

memory using 3D NAND flash technology (called V-NAND [99]). This innovation in

NAND flash device technology can be exploited to enhance our flash-based digital circuit

design approaches, and enables the implementation of monolithic 3D digital circuits that

expand in the vertical direction. In the flash-based design implementations presented in

this thesis, we use NAND flash-like stacks for length 4, 6 and 8 flash transistors per stack.

Implementing these stacks using 3D NAND technology would achieve substantial area

reductions and allow the flash-based designs to deliver even better area improvements

over CMOS.

214

XI.3 Static Flash-based Implementation Using P-type Flash

In this thesis we presented dynamic flash-based digital circuits. The dynamic imple-

mentation has many advantages such as compact area, high performance and the absence

of P-type flash devices. In [100] the authors consider the use of P-type flash transistors

to implement NAND flash memory. They show that better endurance can be obtained for

non-volatile memory implemented using P-type flash memory, compared to non-volatile

memory implemented using N-type flash memory. However, as they mention, P-type flash

devices need careful doping concentration control. The work in [100] paves the path for

using P-type flash transistors in implementing flash-based designs, potentially enabling

static flash-based digital designs. Static implementations have several advantages over dy-

namic implementation since they do not require the use of a clock and typically have lower

power dissipation than dynamic implementations. Static flash-based implementations can

be obtained by implementing a circuit that uses a similar pulldown structure as presented

in this thesis. However, the pullup structure can be constructed as the dual of the pulldown

structure, using the P-type flash transistors. The circuit topology would resemble tradi-

tional static CMOS logic circuits. Also, careful design consideration is required to allow

the programming of both the pulldown (N-type) and pullup (P-type) structures indepen-

dently. The circuit structure would need to be evaluated to determine the number of inputs

and outputs of the flash-based logic cell. Also, the choice of standard cells versus generic

cells (that can implement any function) will need to be made.

215

XI.4 Preset VT Levels to Meet Application Needs

In this work, we demonstrated the ability to change the delay, power and energy

characteristics of the flash-based digital circuits by shifting the VT level values of the flash

transistors. Shifting the VT level to higher values results in a decrease of the power dissi-

pation and an increase of the delay of the flash-based digital circuit. Conversely, shifting

the VT level to lower values results in a decrease in the circuit delay and an increase in the

power dissipation of the flash-based digital circuit. This feature can be utilized to serve the

needs of the application implemented using the flash-based digital circuit. For example,

chip manufacturers reduce the cost of fabricating digital ICs by reusing the same design

for different applications. If the design is intended for high performance applications, the

fabricated chip can be configured to operate at a high frequency. However, if the design

is intended for low power applications, then the chip is configured to operate at a low fre-

quency to conserve power. In fact, different portions of the same IC can utilize different

VT values if their performance requirements differ.

Flash-based digital circuits add an additional layer of configuration to allow maxi-

mum flexibility in tuning the fabricated chip to meet the application requirements. This

additional layer of configuration can be achieved by tuning the VT levels of the flash tran-

sistors to meet certain application requirements. This layer of configuration can be used to

perform chip binning at the factory as well as to allow the manufacturer or the end-user to

tune the performance of the chip in the field.

The manufacturer can choose the VT levels of the flash transistors that places the

216

chip in a fast bin or in a low power bin. This can only be done at the factory and does

not require the chip to have any special firmware or memory to hold the configuration

since the flash transistors are non-volatile. However, if more flexibility is desired the chip

can be designed such that it stores multiple VT level settings on the chip and selectively

program the flash transistors of the chip to a VT level that matches the application needs.

This capability is easily achieved by developing a firmware that chooses which VT level to

program the flash transistors with, potentially at boot time. Since programming the chip

is a slow process, this programming process is typically done at the factory. However,

if further flexibility is desired, the end-user can be allowed access to the firmware (with

limitations) in order to take advantage of this configuration capability. The user access to

the firmware may be limited for reliability reasons. For example, the firmware should only

allow the user to program the VT levels of the flash transistors in the chip to tested values

that are known to be safe and meet system constraints such as thermal and electrical limits.

This can be done by preloading tested VT levels onto an on-chip PROM (or fuse array).

These VT levels need to be tested at the factory, and have to be known to operate the chip

without any issues.

XI.5 Replacing Always-on Flash Transistors with Metal Wires

The TLC, FLB and MVLB designs shown in Sections III.3.3.2, IV.3.2.2 and VIII.3.6

respectively, consist of NAND flash-like pulldown stacks each consist of 8, 6 and 4 flash

transistors respectively. As mentioned earlier, the flash transistors in these pulldown stacks

217

are programmed to V T0 when they are required to be always ”on”, since the VT0 level is

lower than GND. In other words, if the function of the pulldown stack does not depend on

a certain input, we program the flash transistor driven by this input to VT0. Figure 11.1

shows an example pulldown stack that has 4 flash transistors. In the figure, the flash

transistors Fa and Fc are programmed to VT1 indicating the inputs a1 and c1 control the

function of the pulldown stack. Conversely, the flash transistors Fb and Fd are programmed

to VT0 indicating that the inputs b0, b1, d0 or d1 do not affect the function of the pulldown

stack. In other words, the state of the flash transistors Fa and Fc depends on the value of

their inputs and the state of the flash transistors Fb and Fd are always ”on”. Although the

flash transistors Fb and Fd do not have any functional effect on the pulldown stack shown

in Figure 11.1, they have an electrical effect by limiting the current passing through the

stack. In effect, they increase the evaluation time of the pulldown stack.

Fb(V T0)

Fa(V T1)

Fc(VT1)

Fd(V T0)

a0

b0

a1

b1

c0

c1

d0

d1

Figure 11.1: NAND Flash-like Pulldown Stack Used in Our Flash-based Designs

218

Recall that the flash transistors that are programmed to V T0 are always turned ”on”.

Therefore, we can improve the evaluation time of the pulldown stacks that have flash tran-

sistors programmed to V T0 by removing these transistors and replacing them with metal

wires as shown in Figure 11.2. Since the flash transistors Fb and Fd in Figure 11.1 are pro-

grammed to V T0, we removed these two flash transistors and replaced them with a metal

wire as shown in Figure 11.1. Note that the flash transistors Fa and Fc are left unchanged in

Figure 11.1. This change results in making the pulldown stack in Figure 11.2 shorter than

the original pulldown stack in Figure 11.1, which results in improving the evaluation time

of the pulldown stack. Note that to keep the layout of flash-based design pitch-matched,

when we remove the flash transistors Fb and Fd , we leave the flash transistors Fa and Fc

in place, simply connecting the source of the flash transistor Fa and the drain of the flash

transistor Fc with a metal wire. This pitch-matching is very important since we route the

inputs of the flash transistors horizontally and need to place the flash transistors near their

inputs.

XI.6 Customized Espresso-MV for Multi-valued Flash-based Design

In Chapter VIII, we have shown how to implement multi-valued flash-based digital

circuits using the MVFC structure. In this implementation method, we use Espresso-MV

to minimize the implemented logic function as shown in Section VIII.3.7. The output

of Espresso-MV minimization is shown in Table 8.1. Note that out of all the possible

literals of the ternary-valued inputs or outputs (001, 010, 100, 011, 101, 110 and 111) the

219

Fa(V T1)

a0

a1

c0

c1

b0

b1

d0

d1

Fc(VT1)

Figure 11.2: Proposed NAND Flash-like Pulldown Stack

MVFC structure can only implement (001, 010, 100 and 111). If the literal was either

011, 101 or 110, then we have to split the literal into two outputs of type 001, 010 or

100. Therefore, it will be pointless to have Espresso-MV produce the literals (011, 101

and 110) since they cannot be implemented by the MVFC structure. Instead, we can

guide the minimization towards producing the output 111. This can be easily done by

reimplementing the Espresso-MV code so that it does not generate the illegal literals.

XI.7 Delay Driven Optimization

In Chapter VI we discussed a SAT-based optimization technique that aims towards

the reduction of the area utilization of the flash-based design (area-driven optimization).

We also reported the results of the optimization for K = 2 in Table 6.1 and for K = 3 in

Table 6.2. The optimization results show that when the parameter K is increased, the area

of the flash-based design decreased, however the delay of the flash-based design increased.

220

This is because the optimization we run on the flash-based design is area-driven. However,

for applications that have high performance requirements, a delay-driven optimization is

required. We can enhance our optimization technique discussed in Chapter VI by intro-

ducing delay-driven optimization, granting the user the choice optimization goal (delay or

area).

In Section VI.3.3.1 we showed how we initially create a list of candidate optimiza-

tions to perform on the flash-based design. We order the list based on the area reduction

achieved by each of the optimization candidates. Although these candidate optimizations

result in an area reduction of the design, some of them cause the delay of the design to

increase, especially if the optimization is performed on the critical path of the design. We

can perform delay-driven optimization by considering the effects of the optimization at the

cell-level and the block-level.

In Section VI.3.3.1, our optimization is done by moving cubes from FLBs that have

fewer cubes (1 or 2 cubes) to form FLBs that have a larger number of cubes (2 or 3

cubes). This results in an area improvement at the cell-level since FLBs that implement

a larger number of cubes have a lower area utilization per cube. This area-driven opti-

mization is performed at the cell-level, and the area reduction obtained by performing this

optimization directly translates into an area reduction at the block-level. We can perform

delay-driven optimization by constructing the list of optimization candidates in a different

manner, such that the delay of the flash-based design at the cell-level is minimized. The de-

lay of the cell increases monotonically with the total number of cubes implemented in each

221

cell as well as the size of the largest FLB in the cell. Therefore, to perform delay-driven

optimization, we prune the optimization candidate list to only perform cube elimination

(by moving cubes into the precharge state,since this decreases the total number of cubes

implemented in the cell). We guarantee that the size of the largest FLB is never increased,

by only selecting the optimization candidates that move cubes from one FLB to another

in a manner that does not increase the size of any FLB in the cell beyond the size of the

largest FLB in that cell. For example, if the largest FLB size in a cell is 2, then we will

only allow moving a cube from any FLB to another FLB of size 1, since this move would

result in the formation of an FLB of size 2 (which is the same size of the largest FLB in the

cell). We would forbid moving cubes into FLBs of size 2, since it would form an FLB of

size 3, thus increasing the delay of the cell (since an FLB of size 3 is larger than the largest

FLB in the original cell before the optimization). A proposed optimization candidate list

for delay-driven optimization would be as follows.

A Optimization in which cubes of type FLB-A are moved to FLA7.

B Optimization in which cubes of type FLB-B are moved to FLA7.

C Optimization where a cube of type FLB-C is moved to FLA7.

D Optimizations where a cube of FLB-C is moved to another cube of FLB-C if the

largest FLB is of type FLB-B or FLB-A.

E Optimization in which a cube of type FLB-C is moved to a cube of type FLB-B if

the largest FLB is of type FLB-A.

In addition to the optimization done at the cell-level as discussed in the previous

222

paragraph, we can perform delay-driven optimization at the block-level by extracting the

longest paths of the circuit (including the critical path) and performing delay-driven opti-

mization on the cells on these paths. For the rest of the design, we could perform area-

driven optimization, which will not affect the maximum delay of the design but will result

in more area reduction than performing delay-driven optimization on the entire design.

For these cells on the critical path, one can also target the largest FLBs in a cell, and try to

move its cubes so that the size of the largest FLB in the cell is reduced.

The approaches presented in this thesis for cell design (FC, PFC, TLC and MVFC)

and FPGA design (SF-LUT, DF-LUT and the FIP programmable switch) were all ac-

companied by a discussion on programming. Our goal was to demonstrate feasibility of

the programming task. Alternate circuit topologies and programming algorithms can be

conceived to reduce the total programming time. The simplest among techniques would

employ multiple programming hardware units, which program multiple sections of flash

transistors in parallel.

223

REFERENCES

[1] “Simon, W. G., Transistor Count and Moore’s Law 2011 (Accessed on 1 December

2016).” https://commons.wikimedia.org/wiki/User:Wgsimon.

[2] G. E. Moore, “Cramming more components onto integrated circuits,” Proceedings

of the IEEE, vol. 86, pp. 82–85, Jan 1998.

[3] N. Weste and D. Harris, CMOS VLSI Design: A Circuits and Systems Perspective.

USA: Addison-Wesley Publishing Company, 4th ed., 2010.

[4] M. Abusultan and S. Khatri, “Look-up table design for deep sub-threshold

through full-supply operation,” in Field-Programmable Custom Computing Ma-

chines (FCCM), 2014 IEEE 22nd Annual International Symposium on, May 2014.

[5] G. Semeraro, G. Magklis, R. Balasubramonian, D. H. Albonesi, S. Dwarkadas,

and M. L. Scott, “Energy-efficient processor design using multiple clock domains

with dynamic voltage and frequency scaling,” in Proceedings Eighth International

Symposium on High Performance Computer Architecture, pp. 29–40, Feb 2002.

[6] M. Abusultan and S. P. Khatri, “Delay, power and energy tradeoffs in deep voltage-

scaled FPGAs,” in Proc. of the 25th Great Lakes Symposium on VLSI, 2015.

[7] G. Patounakis, Y. W. Li, and K. L. Shepard, “A fully integrated on-chip DC-DC

conversion and power management system,” IEEE Journal of Solid-State Circuits,

vol. 39, pp. 443–451, March 2004.

224

[8] A. Elshennawy and S. P. Khatri, “An asynchronous network-on-chip router with low

standby power,” in 2014 IEEE 32nd International Conference on Computer Design

(ICCD), pp. 394–399, Oct 2014.

[9] R. Gonzalez, B. M. Gordon, and M. A. Horowitz, “Supply and threshold volt-

age scaling for low power CMOS,” IEEE Journal of Solid-State Circuits, vol. 32,

pp. 1210–1216, Aug 1997.

[10] M. Onabajo and J. Silva-Martinez, Analog Circuit Design for Process Variation-

Resilient Systems-on-a-Chip. Springer US, 2012.

[11] V. Kheterpal, V. Rovner, T. G. Hersan, D. Motiani, Y. Takegawa, A. J. Strojwas, and

L. Pileggi, “Design methodology for IC manufacturability based on regular logic-

bricks,” in Proceedings. 42nd Design Automation Conference, 2005., pp. 353–358,

June 2005.

[12] K. Y. Tong, V. Kheterpal, V. Rovner, L. Pileggi, and H. Schmit, “Regular logic

fabrics for a via patterned gate array (VPGA),” in Proceedings of the IEEE 2003

Custom Integrated Circuits Conference, 2003., pp. 53–56, Sept 2003.

[13] L. Pileggi, H. Schmit, A. J. Strojwas, P. Gopalakrishnan, V. Kheterpal, A. Koorap-

aty, C. Patel, V. Rovner, and K. Y. Tong, “Exploring regular fabrics to optimize the

performance-cost trade-off,” in Proceedings 2003. Design Automation Conference

(IEEE Cat. No.03CH37451), pp. 782–787, June 2003.

225

[14] Y. Ran and M. Marek-Sadowska, “On designing via-configurable cell blocks

for regular fabrics,” in Proceedings. 41st Design Automation Conference, 2004.,

pp. 198–203, July 2004.

[15] D. G. Chinnery and K. Keutzer, “Closing the gap between ASIC and custom: An

ASIC perspective,” in Proceedings of the 42nd Annual Design Automation Confer-

ence, DAC ’05, pp. 275–280, ACM, 2005.

[16] B. H. Calhoun, Y. Cao, X. Li, K. Mai, L. T. Pileggi, R. A. Rutenbar, and K. L.

Shepard, “Digital circuit design challenges and opportunities in the era of nanoscale

CMOS,” Proceedings of the IEEE, vol. 96, pp. 343–365, Feb 2008.

[17] L. V. den Hove, A. M. Goethals, K. Ronse, M. V. Bavel, and G. Vandenberghe,

“Lithography for sub-90nm applications,” in Digest. International Electron Devices

Meeting,, pp. 3–8, Dec 2002.

[18] W. Ye, B. Yu, D. Z. O. Pan, Y.-C. Ban, and L. Liebmann, “Standard cell layout

regularity and pin access optimization considering middle-of-line,” in Proceedings

of the 25th Edition on Great Lakes Symposium on VLSI, GLSVLSI ’15, pp. 289–

294, ACM, 2015.

[19] L. Capodlieci, P. Gulpta, A. B. Kahng, D. Sylvester, and J. Yang, “Toward a method-

ology for manufacturability-driven design rule exploration,” in Proceedings. 41st

Design Automation Conference, 2004., pp. 311–316, July 2004.

226

[20] K.-C. Wu and Y.-W. Tsai, “Structured ASIC, evolution or revolution?,” in Proceed-

ings of the 2004 International Symposium on Physical Design, ISPD ’04, pp. 103–

106, ACM, 2004.

[21] S. P. Khatri, R. K. Brayton, and A. Sangiovanni-Vincentelli, “Cross-talk immune

VLSI design using a network of PLAs embedded in a regular layout fabric,” in

Proceedings of the 2000 IEEE/ACM International Conference on Computer-aided

Design, ICCAD ’00, pp. 412–419, 2000.

[22] S. P. Khatri, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, Cross-talk Noise

Immune VLSI Design using Regular Layout Fabrics. Norwell, MA, USA: Kluwer

Academic Publishers, 1984.

[23] S. Gopalani, R. Garg, S. P. Khatri, and M. Cheng, “A lithography-friendly structured

ASIC design approach,” in Proceedings of the 18th ACM Great Lakes Symposium

on VLSI, GLSVLSI ’08, pp. 315–320, 2008.

[24] S. Gopalani, R. Garg, S. P. Khatri, and M. Cheng, “DFM-aware structured ASIC

design,” in Proceedings of the 2009 12th International Symposium on Integrated

Circuits, pp. 29–32, Dec 2009.

[25] K. Gulati, N. Jayakumar, and S. P. Khatri, “A ptl based highly testable structured

asic design approach,” in Proceedings of the 2009 12th International Symposium on

Integrated Circuits, pp. 33–36, Dec 2009.

227

[26] S.-M. S. Kang and Y. Leblebici, CMOS Digital Integrated Circuits Analysis and

Design. New York, NY, USA: McGraw-Hill, Inc., 3 ed., 2003.

[27] “Circuit design techniques for a gigahertz integer microprocessor,” in Proceedings

of the International Conference on Computer Design, ICCD ’98, (Washington, DC,

USA), pp. 11–, IEEE Computer Society, 1998.

[28] K. Gulati, N. Jayakumar, and S. P. Khatri, “A structured ASIC design approach

using pass transistor logic,” in 2007 IEEE International Symposium on Circuits and

Systems, pp. 1787–1790, May 2007.

[29] R. K. Brayton, A. L. Sangiovanni-Vincentelli, C. T. McMullen, and G. D. Hachtel,

Logic Minimization Algorithms for VLSI Synthesis. Norwell, MA, USA: Kluwer

Academic Publishers, 1984.

[30] R. L. Rudell and A. Sangiovanni-Vincentelli, “Multiple-valued minimization for

PLA optimization,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 6, pp. 727–750, September 1987.

[31] S. Trimberger, ed., Field-Programmable Gate Array Technology. Netherlands:

Kluwer Academic Publishers Group, 1994.

[32] S. D. Brown, R. J. Francis, J. Rose, and Z. G. Vranesic, Field-programmable gate

arrays. Norwell, MA, USA: Kluwer Academic Publishers, 1992.

228

[33] M. Abusultan and S. P. Khatri, “Exploring static and dynamic flash-based FPGA de-

sign topologies,” in 2016 IEEE 34th International Conference on Computer Design

(ICCD), pp. 416–419, Oct 2016.

[34] M. Abusultan and S. P. Khatri, “A comparison of FinFET based FPGA LUT de-

signs,” in Proceedings of the 24th Edition of the Great Lakes Symposium on VLSI,

2014.

[35] M. Abusultan, S. Harkness, B. J. LaMeres, and Y. Huang, “FPGA implementation

of a bartlett direction of arrival algorithm for a 5.8GHz circular antenna array,” in

2010 IEEE Aerospace Conference, pp. 1–10, March 2010.

[36] B. J. LaMeres, R. J. Weber, Y. Huang, M. Abusultan, and S. Harkness, “Design and

test of FPGA-based direction-of-arrival algorithms for adaptive array antennas,” in

2011 Aerospace Conference, pp. 1–8, March 2011.

[37] A. Sangiovanni-Vincentelli, “The tides of EDA.” Keynote Talk, Design Automation

Conference, June 2003.

[38] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,” in Pro-

ceedings of the 2006 ACM/SIGDA 14th International Symposium on Field Pro-

grammable Gate Arrays, FPGA ’06, pp. 21–30, ACM, 2006.

[39] R. Fowler and L. Nordheim, “Electron emission in intense electric fields,” Proceed-

ings of the Royal Society of London. Series A, Containing Papers of a Mathematical

and Physical Character, vol. 119, pp. 173–181, May 1928.

229

[40] D. Jung, Y.-H. Chae, H. Jo, J.-S. Kim, and J. Lee, “A group-based wear-leveling

algorithm for large-capacity flash memory storage systems,” in Proceedings of the

2007 International Conference on Compilers, Architecture, and Synthesis for Em-

bedded Systems, CASES ’07, pp. 160–164, ACM, 2007.

[41] S. Boboila and P. Desnoyers, “Write endurance in flash drives: Measurements and

analysis,” in Proceedings of the 8th USENIX Conference on File and Storage Tech-

nologies, FAST’10, (Berkeley, CA, USA), pp. 9–9, USENIX Association, 2010.

[42] S. Aritome, NAND Flash Memory Technologies. Wiley-IEEE Press, 2015.

[43] Y. Cai, Y. Luo, S. Ghose, and O. Mutlu, “Read disturb errors in MLC NAND flash

memory: Characterization, mitigation, and recovery,” in 2015 45th Annual IEEE/I-

FIP International Conference on Dependable Systems and Networks, pp. 438–449,

June 2015.

[44] K. Takeuchi, “Novel co-design of nand flash memory and NAND flash controller

circuits for sub-30nm low-power high-speed solid-state drives (SSD),” Solid-State

Circuits, IEEE Journal of, vol. 44, pp. 1227–1234, April 2009.

[45] S. G. Jung, K. W. Lee, K. S. Kim, S. W. Shin, S. S. Lee, J. C. Om, G. H. Bae,

and J. H. Lee, “Modeling of Vth shift in NAND flash-memory cell device consid-

ering crosstalk and short-channel effects,” IEEE Transactions on Electron Devices,

vol. 55, pp. 1020–1026, April 2008.

230

[46] H. An, K. Kim, S. Jung, H. Yang, K. Kim, and Y. Song, “The threshold voltage

fluctuation of one memory cell for the scaling-down NOR flash,” in 2nd IEEE In-

ternational Conference on Network Infrastructure and Digital Content, Sept 2010.

[47] B. Park, J. Song, E. Cho, S. Hong, J. Kim, Y. Choi, Y. Kim, S. Lee, C. Lee, D. Kang,

D. Lee, B. Kim, Y. Choi, W. Lee, J. Choi, K. Suh, and T. Jung, “32nm 3-bit 32Gb

NAND flash memory with DPT (double patterning technology) process for mass

production,” in IEEE Symposium on VLSI Technology, pp. 125–126, June 2010.

[48] E. Choi and S. Park, “Device considerations for high density and highly reliable 3D

NAND flash cell in near future,” in IEEE International Electron Devices Meeting

(IEDM), (San Francisco, CA), pp. 9.4.1 – 9.4.4, Dec 2012.

[49] H. Shim, S. Lee, B. Kim, N. Lee, D. Kim, H. Kim, B. Ahn, Y. Hwang, H. Lee,

J. Kim, Y. Lee, H. Lee, J. Lee, S. Chang, J. Yang, S. Paark, S. Aritome, S. Lee,

K. Ahn, G. Bae, and Y. Yang, “Highly reliable 26nm 64Gb MLC E2NAND

(embedded-ECC and enhanced-efficiency) flash memory with MSP (memory sig-

nal processing) controller,” in IEEE Symposium on VLSI Technology, pp. 216–217,

June 2011.

[50] K. Takeuchi, T. Tanaka, and H. Nakamura, “A double-level-Vth select gate array

architecture for multilevel NAND flash memories,” IEEE Journal of Solid-State

Circuits, vol. 31, pp. 602–609, Apr 1996.

231

[51] R. Huang, F. Zhou, Y. Li, Y. Cai, X. Shan, X. Zhang, and Y. Wang, “Novel silicon-

based flash cell structures for low power and high density memory applications,” in

2006 8th International Conference on Solid-State and Integrated Circuit Technol-

ogy Proceedings, pp. 709–712, Oct 2006.

[52] H. Nobukata, S. Takagi, K. Hiraga, T. Ohgishi, M. Miyashita, K. Kamimura, S. Hi-

ramatsu, K. Sakai, T. Ishida, H. Arakawa, M. Itoh, I. Naiki, and M. Noda, “A 144

mb 8-level nand flash memory with optimized pulse width programming,” in 1999

Symposium on VLSI Circuits. Digest of Papers (IEEE Cat. No.99CH36326), pp. 39–

40, June 1999.

[53] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras, and B. Abali,

“Enhancing lifetime and security of PCM-based main memory with start-gap wear

leveling,” in Proceedings of the 42nd Annual IEEE/ACM International Symposium

on Microarchitecture, MICRO 42, (New York, NY, USA), pp. 14–23, ACM, 2009.

[54] J. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, W. Davis, P. Franzon,

M. Bucher, S. Basavarajaiah, J. Oh, and R. Jenkal, “FreePDK: An open-source

variation-aware design kit,” in IEEE International Conference on Microelectronic

Systems Education (MSE), pp. 173–174, June 2007.

[55] “NanGate Library Optimization website.” http://www.nangate.com/.

[56] “Synopsys website.” http://www.synopsys.com/.

[57] “PTM website.” http://ptm.asu.edu/.

232

[58] K. Zaitsu, K. Tatsumura, M. Matsumoto, M. Oda, S. Fujita, and S. Yasuda, “Flash-

based nonvolatile programmable switch for low-power and high-speed FPGA by

adjacent integration of MONOS/logic and novel programming scheme,” in VLSI

Technology (VLSI-Technology): Digest of Technical Papers, 2014 Symposium on,

pp. 1–2, June 2014.

[59] “ITRS website.” http://www.itrs.net/.

[60] S. Lee et al., “A 128Gb 2b/cell NAND flash memory in 14nm technology with

tPROG=640us and 800MB/s I/O rate,” in 2016 IEEE International Solid-State Cir-

cuits Conference (ISSCC), pp. 138–139, Jan 2016.

[61] D. Lee et al., “A 64Gb 533Mb/s DDR interface MLC NAND flash in sub-

20nm technology,” in Solid-State Circuits Conference Digest of Technical Papers

(ISSCC), 2012 IEEE International, pp. 430–432, Feb 2012.

[62] K.-T. Park et al., “A 7MB/s 64Gb 3-bit/cell DDR NAND flash memory in 20nm-

node technology,” in Solid-State Circuits Conference Digest of Technical Papers

(ISSCC), 2011 IEEE International, pp. 212–213, Feb 2011.

[63] J.-R. Hwang et al., “20nm gate bulk-FinFET SONOS flash,” in Electron Devices

Meeting, 2005. IEDM Technical Digest. IEEE International, pp. 154–157, Dec

2005.

233

[64] M. Abusultan and S. P. Khatri, “A ternary-valued, floating gate transistor-based

circuit design approach,” in IEEE Computer Society Annual Symposium on VLSI

(ISVLSI), July 2016.

[65] “Cadence Design Systems website.” http://www.cadence.com/.

[66] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of sequential

benchmark circuits,” in Circuits and Systems, 1989., IEEE International Sympo-

sium on, pp. 1929–1934 vol.3, May 1989.

[67] F. Corno, M. S. Reorda, and G. Squillero, “RT-level ITC’99 benchmarks and first

ATPG results,” IEEE Design Test of Computers, vol. 17, pp. 44–53, Jul 2000.

[68] “The EPFL Combinational Benchmark Suite Webpage.”

http://lsi.epfl.ch/benchmarks.

[69] M. Abusultan and S. Khatri, “Implementing low power digital circuits using flash

devices,” in Computer Design (ICCD), 2016 34nd IEEE International Conference

on, October 2016.

[70] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj,

P. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, “SIS: A system for

sequential circuit synthesis,” tech. rep., EECS Department, University of California,

Berkeley, 1992.

234

[71] R. E. Bryant, “Graph-based algorithms for Boolean function manipulation,” IEEE

Trans. Comput., vol. 35, pp. 677–691, Aug. 1986.

[72] N. Saluja and S. P. Khatri, “A robust algorithm for approximate compatible observ-

ability don’t care (CODC) computation,” in Design Automation Conference, 2004.

Proceedings. 41st, pp. 422–427, July 2004.

[73] A. Mishchenko and R. K. Brayton, “SAT-based complete don’t-care computation

for network optimization,” in Design, Automation and Test in Europe, pp. 412–417

Vol. 1, March 2005.

[74] S. P. Khatri, S. Sinha, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, “SPFD-

based wire removal in standard-cell and network-of-PLA circuits,” IEEE Transac-

tions on Computer-Aided Design of Integrated Circuits and Systems, vol. 23, July

2004.

[75] M. Abusultan and S. P. Khatri, “A flash-based digital circuit design flow,” in Inter-

national Conference On Computer Aided Design (ICCAD), November 2016.

[76] N. Eén and N. Sörensson, “An extensible SAT-solver,” in International conference

on theory and applications of satisfiability testing, pp. 502–518, Springer, 2003.

[77] “Xilinx website.” http://www.xilinx.com/.

[78] H. Kojima, T. Ema, T. Anezaki, J. Ariyoshi, H. Ogawa, K. Yoshizawa, S. Mehta,

S. Fong, S. Logie, R. Smoak, and D. Rutledge, “Embedded flash on 90nm logic

235

technology & beyond for FPGAs,” in Electron Devices Meeting, 2007. IEDM 2007.

IEEE International, Dec 2007.

[79] S. Fong, J. Ariyoshi, and T. Ema, “Embedded flash on a low-power 65-nm logic

technology,” Electron Device Letters, IEEE, Sept 2012.

[80] K. Zaitsu et al., “Nonvolatile programmable switch with adjacently integrated flash

memory and CMOS logic for low-power and high-speed FPGA,” Electron Devices,

IEEE Transactions on, Dec 2015.

[81] J. Greene, S. Kaptanoglu, W. Feng, V. Hecht, J. Landry, F. Li, A. Krouglyanskiy,

M. Morosan, and V. Pevzner, “A 65nm flash-based FPGA fabric optimized for low

cost and power,” in Proceedings of the 19th ACM/SIGDA International Symposium

on Field Programmable Gate Arrays, 2011.

[82] “7 Series FPGAs Configuration User Guide (UG470).” Xilinx Corporation.

[83] J. Wang et al., “Total ionizing dose effects on flash-based field programmable gate

array,” Nuclear Science, IEEE Transactions on, Dec 2004.

[84] P. Chow, S. O. Seo, J. Rose, K. Chung, G. Paez-Monzon, and I. Rahardja, “The

design of a SRAM-based field-programmable gate array-Part II: Circuit design and

layout,” IEEE Trans. on Very Large Scale Integration (VLSI) Systems, pp. 321–330,

Sept. 1999.

236

[85] G. G. Lemieux and S. D. Brown, “A detailed routing algorithm for allocating wire

segments in field-programmable gate arrays,” in Proc. Physical Design Workshop,

Lake Arrowhead, CA, 1993.

[86] Y.-W. Chang, D. F. Wong, and C. K. Wong, “Universal switch modules for FPGA

design,” ACM Trans. Des. Autom. Electron. Syst., Jan. 1996.

[87] S. J. E. Wilton, Architectures and Algorithms for Field-programmable Gate Arrays

with Embedded Memory. PhD thesis, 1997.

[88] “Application Note, Using SPI Flash with 7 Series FPGAs.” Xilinx Corporation.

[89] “M69S SLC NAND flash memory datasheet.” Micron Corporation.

[90] “IGLOO2 FPGA and SmartFusion2 SoC FPGA datasheet.” Microsemi Corpora-

tion.

[91] K. W. Lee, S. K. Choi, S. J. Chung, H. L. Lee, S. M. Yi, B. I. Han, B. I. Lee, D. H.

Lee, J. H. Seo, N. Y. Park, H. S. Kim, H. S. Kim, T. U. Youn, K. H. Noh, M. K. Lee,

J. Y. Lee, K. H. Han, W. S. Woo, S. W. Cho, S. C. Lee, S. S. Kim, C. S. Hyun, W. J.

Suh, S. D. Kim, M. K. Ahn, H. S. Kim, K. S. Kim, G. S. Cho, S. K. Park, S. Arit-

ome, J. W. Kim, S. K. Lee, S. J. Hong, and S. W. Park, “A highly manufacturable

integration technology of 20nm generation 64Gb multi-level NAND flash memory,”

in 2011 Symposium on VLSI Technology - Digest of Technical Papers, pp. 70–71,

June 2011.

237

[92] Y. Koh, “NAND flash scaling beyond 20nm,” in 2009 IEEE International Memory

Workshop, pp. 1–3, May 2009.

[93] S. H. Chen, H. T. Lue, Y. H. Shih, C. F. Chen, T. H. Hsu, Y. R. Chen, Y. H. Hsiao,

S. C. Huang, K. P. Chang, C. C. Hsieh, G. R. Lee, A. T. H. Chuang, C. W. Hu,

C. J. Chiu, L. Y. Lin, H. J. Lee, F. N. Tsai, C. C. Yang, T. Yang, and C. Y. Lu,

“A highly scalable 8-layer vertical gate 3d nand with split-page bit line layout and

efficient binary-sum milc (minimal incremental layer cost) staircase contacts,” in

2012 International Electron Devices Meeting, pp. 2.3.1–2.3.4, Dec 2012.

[94] K. Parat and C. Dennison, “A floating gate based 3D NAND technology with

CMOS under array,” in 2015 IEEE International Electron Devices Meeting (IEDM),

pp. 3.3.1–3.3.4, Dec 2015.

[95] T. Y. Chen, Y. H. Chang, C. C. Ho, and S. H. Chen, “Enabling sub-blocks erase

management to boost the performance of 3D NAND flash memory,” in 2016 53nd

ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6, June 2016.

[96] S. C. Lai, H. T. Lue, T. H. Hsu, C. J. Wu, L. Y. Liang, P. Y. Du, C. J. Chiu, and

C. Y. Lu, “A bottom-source single-gate vertical channel (BS-SGVC) 3D NAND

flash architecture and studies of bottom source engineering,” in 2016 IEEE 8th In-

ternational Memory Workshop (IMW), pp. 1–4, May 2016.

[97] Y. A. Chung, Z. Yang, Y. C. Chiu, S. P. Hong, H. J. Lee, N. T. Lian, T. Yang, K. C.

Chen, and C. Y. Lu, “Novel hybrid 3D NAND flash memory containing vertical-

238

gate and gate-all-around structures,” in 2016 27th Annual SEMI Advanced Semi-

conductor Manufacturing Conference (ASMC), pp. 371–374, May 2016.

[98] Y. H. Hsiao, H. T. Lue, W. C. Chen, B. Y. Tsui, K. Y. Hsieh, and C. Y. Lu, “Ultra-

high bit density 3D NAND flash-featuring-assisted gate operation,” IEEE Electron

Device Letters, vol. 36, pp. 1015–1017, Oct 2015.

[99] D. Kang, W. Jeong, C. Kim, D. H. Kim, Y. S. Cho, K. T. Kang, J. Ryu, K. M. Kang,

S. Lee, W. Kim, H. Lee, J. Yu, N. Choi, D. S. Jang, C. A. Lee, Y. S. Min, M. S. Kim,

A. S. Park, J. I. Son, I. M. Kim, P. Kwak, B. K. Jung, D. S. Lee, H. Kim, J. D. Ihm,

D. S. Byeon, J. Y. Lee, K. T. Park, and K. H. Kyung, “256 gb 3 b/cell v-nand flash

memory with 48 stacked wl layers,” IEEE Journal of Solid-State Circuits, vol. PP,

no. 99, pp. 1–8, 2016.

[100] Y. Park and J. Lee, “Device considerations of planar NAND flash memory for ex-

tending towards sub-20nm regime,” in 2013 5th IEEE International Memory Work-

shop, pp. 1–4, May 2013.

239

