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ABSTRACT 

 

 

Endogenous fluorescence lifetime imaging microscopy (FLIM) provides a 

nondestructive means to interrogate the biochemical composition of biological tissues. 

Therefore, it has the potential to identify tissue pre-malignant and malignant 

transformation. In this study, we evaluate the potential of endogenous FLIM for 

detecting benign oral lesions from pre-malignant and malignant oral lesions. Using a 

database of FLIM images (n=20) obtained in vivo from the oral cavity of patients 

undergoing tissue biopsy, we were able to identify specific features from the 

characteristic FLIM signal of benign, mild dysplastic, and cancerous oral lesions. These 

features were used to train statistical classification rules aimed to detect benign lesions 

from either dysplastic and cancerous lesions. Our results indicated that dysplastic and 

cancerous lesions could be detected from benign lesions with sensitivity of ~89% and 

specificity of ~95%. Our future efforts are focused on further developing our 

classification algorithms with additional FLIM in vivo data. 
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1. INTRODUCTION  

 

The autofluorescence imaging and spectroscopy can probe alternations noninvasively 

that occur during malignant process [1]. Fluorescence that comes from epithelial tissue is 

resulted from multiple fluorophores and affected by scattering and absorption as light 

propagates through the stroma and epithelium [2-4]. Reduced form of nicotinamide 

adenine dinucleotide (NADH) and mitochondrial metabolic coenzymes flavin adenine 

dinucleotide (FAD) have been known as the major sources of fluorescence in the 

epithelial layer. Collagen cross-links are the main source of autofluorescence in the 

underlying stroma. In normal oral epithelial tissue, stromal collagen is the major source 

of fluorescence, although there is also epithelial fluorescence. As dysplasia and 

malignancy developing, epithelial NADH/FAD fluorescence increases, while collagen 

fluorescence decreases. On the other hand, benign inflammation appears a decrease in 

both stromal collagen and epithelial NADH/FAD fluorescence. Bright fluorescence can 

also be found from the keratinized, superficial epithelial layer, which is often shown in 

normal oral tissue from specific anatomic sites such as the palate and the gingiva, as well 

as in clinically apparent leukoplakia. Furthermore, endogenous porphyrin fluorescence 

has been related to oral epithelial malignancy, although its accumulation is considered to 

be the result of microbial synthesis [5, 6].  

 

Steady-state wide-field imaging and fluorescence point-spectroscopy have been 

researched for the clinical diagnosis of oral epithelial cancer. In point-spectroscopy, a 
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localized area of the tissue is explained with a single or multiple excitation wavelengths 

and the fluorescence emission is resolved over a broad spectral range. Novel fiber-probe 

designs have been developed for depth-sensitive fluorescence spectroscopy. Although it 

has a relatively rich signal, detection of benign from (pre)malignant oral lesions through 

fluorescence spectroscopy was not fully researched. Moreover, because of its 

interrogation area and limited spatial resolution, it is impractical for screening large 

areas of the oral mucosa. In wide-field imaging, the tissue is explained with a single 

excitation wavelength and the fluorescence emission is pictured over a single broad 

emission band. Thanks to its capability for real-time screening large areas, wide-field 

fluorescence imaging is already being applied on commercially and clinically available. 

Unfortunately, several studies have contradicted its utility as an adjunct tool for early 

diagnosis and screening because of its reported low specificity. There are some key 

factors that explain its lack of specificity: Subjectivity in its interpretation and limited 

characterization of the fluorescence. Objective interpretation based on image processing 

and multispectral imaging has been recently argued to address these problems, although 

we need to assess its utility [7, 8]. Many other reasons may explain why various steady-

state fluorescence imaging/spectroscopy studies have been so far inconclusive. For 

example, since steady-state fluorescence imaging/spectroscopy are based on relative or 

absolute fluorescence intensity measurements, they are sensitive to experimental 

artifacts which are hard to control during clinical interventions, and other factors not 

associated with dysplastic process (i.e. hyperplasia, keratinization, and blood optical 

interference) [9-11]. 
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On the other hand, fluorescence lifetime measurements are less sensitive to such artifacts 

which means more robust for clinical applications [12]. In addition, since most 

endogenous fluorophores have broad emission bands, tissue characterization based on 

only spectral/intensity changes may be hard to get sufficient accuracy for clinical 

detection. However, fluorescence lifetime can resolve fluorophores with heavily 

overlapping spectra [13]. In particular, fluorescence from NADH and collagen has 

overlapping emission spectra and same excitation maximum, but very distinct 

fluorescence lifetimes. Furthermore, fluorescence lifetime is sensitive to alternations in 

cellular physiology [13]. In particular, the relative concentration of the free and bound 

forms of both FAD and NADH are associated with the metabolic state of the tissue; thus, 

providing additional means for detecting highly active precancerous tissue. While the 

free and bound forms of NADH have virtually the same absorption and emission spectra 

(the same applies for FAD), they show very distinct fluorescence lifetimes [14]. Thus, 

differences in tissue fluorescence resulting from compositional, morphological and 

functional transformations related to (pre)malignancy would be more accurately 

quantified based on fluorescence lifetime measurements. 

 

In spite of its significant advantages, fluorescence lifetimes measurements have not been 

extensively evaluated for the detection of oral (pre)malignancy. Wang et al. performed 

in vivo autofluorescence TRFS measurements at ~630 nm upon 408 nm excitation in 

patients with suspicious (pre)malignant lesions and reported that dysplastic lesions could 

be found from benign lesions (both epithelial hyperplasia and verrucous) with 75% 
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specificity and 93% sensitivity on a small database of 38 lesions [15]. Marcu et al. 

performed in vivo fluorescence TRFS measurements in the spectral range of 360-650 nm 

upon 337 nm excitation in the hamster cheek-pouch model and found three fluorescence 

emission peaks with distinct lifetimes at ~390 nm, 460 nm and 635 nm, which were 

related to collagen, NADH and porphryrin. In addition, they reported that normal 

epithelium could be identified from (pre)malignant lesions with 100% specificity and 

sensitivity, though their database did not include benign lesions. Even if these two pilot 

studies have been encouraging, point-spectroscopy is impractical for screening large 

areas of the oral mucosa. Skala et al. experimented endogenous multiphoton FLIM in a 

hamster model of oral cancer [16]. Their results showed a decrease in bound NADH 

lifetimes with dysplasia consistent with neoplastic metabolism. In a subsequent study, 

they reported an increase in bound FAD lifetime with dysplasia, reflecting a reduction in 

intracellular NAD+ expected with malignancy [17]. Though multiphoton FLIM 

microscopy gives extremely high spatial resolution both axially and laterally, it has very 

limited field of view and intrinsically slow acquisition speed. Marcu et al. reported a 

flexible endoscope that was used to collect 26 endogenous FLIM images from tumors 

and surrounding normal tissue in 10 patients undergoing head and neck surgery [18]. 

They observed that tumor areas appeared significantly shorter fluorescence lifetime 

values and weaker fluorescence intensity, compared to normal areas; however, 

histopathology was not used as the gold standard and the acquisition time of their 

instrument was too long.  
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The ultimate goal of this research is to validate and develop a novel imaging clinical tool 

that acquires and processes multispectral FLIM images of the oral mucosa in vivo and in 

real time for noninvasive real-time detection of precancerous and cancerous lesions. One 

key specific aim of this research is to develop algorithms for automated in vivo detection 

of oral precancer and cancer based on FLIM imaging, which was the focus of this thesis. 

This work represents the first demonstration of endogenous FLIM endoscopic imaging 

for automated detection of a wide range of oral benign lesions (including inflammation) 

from oral pre-cancerous (mild-dysplasia) and cancerous (squamous cell carcinoma, SCC) 

lesions. 
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2. METHOD 

 

2.1 Multispectral FLIM endoscope [19]  

The system consisted of a handheld box fitted with a custom-designed rigid endoscope, 

as shown in Figure 1 (a). The schematic of the FLIM endoscopy system is shown in 

Figure 1 (b). A frequency-tripled Q-switched Nd:YAG laser is applied as the excitation 

source. The excitation fiber core diameter and the objective lens focal length determine 

the lateral resolution (~100 um) and the field of view (FOV=11 mm diameter) of the 

system. The fluorescence emission is separated by a dichroic mirror (DM1) and then 

collected by a multimode fiber (200 µm core diameter), which delivers the emission to a 

multispectral detection unit outside of the handheld box. In this unit, a set of filters (F1-

F3) and dichroic mirrors (DM2, DM3) separate the emission into multiple spectral bands, 

each one coupled into separate multimode fibers of different lengths that give an optical 

delay between each spectral band. Therefore, for a single excitation pulse, a single 

detector can be used for recording multiple decays corresponding to different spectral 

bands. The spectral bands can be divided based on the targeted fluorophores. We chose 

the 390±20 nm, 452±22.5 nm, and >500 nm bands to distinguish emission from three 

tissue endogenous fluorophores: collagen, NADH, and FAD, respectively. The 

multispectral fluorescence signal is observed by a multichannel plate photomultiplier 

tube (MCP-PMT, 25 ps TTS), followed by a preamplifier before being digitized at 6.25 

GS/s. The multispectral FLIM data is composed of three fluorescence decays per pixel 

(one per emission band). After temporal deconvolution of the instrument response from 
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the measured fluorescence decay, nine images were made to quantify the fluorescence 

emission of the samples (Figure 2): absolute integrated fluorescence intensity (I1, I2 and 

I3), normalized integrated fluorescence intensity  (
I1

(I1+I2+I3)
, 

I2

(I1+I2+I3)
, 

I3

(I1+I2+I3)
)  and 

average lifetime maps for each of the three emission bands. The average lifetime was 

calculated via 𝜏𝑎𝑣𝑒 =
∑th(t)

∑h(t)
, where h(t) is the deconvolved fluorescence temporal decay 

at a given pixel, and t is the time vector.  

 

 

 

 

Figure 1   Photograph and schematic of the FLIM endoscopy system. (a) Photograph of 

the handheld rigid endoscope; (b) Schematic of the multispectral FLIM rigid 

endoscope system. DM: Dichroic mirror, L: Lens, F: Filter. 

 

 

 



 

8 

 

   

Figure 2 In vivo imaging of a dysplasia lesion. (a) Absolute fluorescence intensity maps; 

(b) Normalized fluorescence intensity maps; (c) Fluorescence lifetime maps. 

 

 

 

2.2 In vivo imaging  

A total of 20 patients undergoing tissue biopsy of suspicious lesions were recruited. The 

imaging protocol was approved by the Institutional Review Board at Texas A&M 

University and Baylor College of Dentistry. Prior to biopsy sample resection, the 

physician took a multispectral FLIM image from the clinical oral lesion with our 

endoscope. An additional multispectral FLIM image was acquired from a normal area on 

the contralateral side. The acquisition time was less than 2 seconds per image. The 

biopsy samples were then resected following standard procedures. 
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2.3 FLIM data processing 

 

 

 

 

Figure 3 Composition of FLIM data. (a) Actual FLIM data; (b) Actual signals of a 

pixel. 

 

 

 

In a FLIM image, the fluorescence intensity generated at each pixel (x,y) is measured as 

a function of different emission wavelengths or spectral bands (λ) and a function of time 

(t), as depicted in Figure 3. The spectral bands can be divided based on the targeted 

fluorophores. We chose the 390±20 nm, 452±22.5 nm, and >500 nm bands to distinguish 

emission from three tissue endogenous fluorophores: collagen, NADH, and FAD, 

respectively. The signals of the three channels in a pixel are visualized in Figure 3 (b). 

I(x, y, λ, t) indicates that each intensity is determined by the pixel’s location (x, y), 

wavelength (λ), and time (t). Figure 4 is an enlarged figure that is similar to Figure 3 (b) 

with real measured data. 

 

(b) 

(a) 
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Figure 4 Enlarged actual signals of a pixel in FLIM data. 

 

 

 

In the time-domain FLIM acquisition, the measured decay at a given pixel of the FLIM 

image represents the convolution of the instrument response with the fluorescence 

Impulse Response Function (IRF) of the sample at that pixel. Therefore, we need to 

implement a deconvolution procedure to estimate the real fluorescence decay. We use 

the previously reported Laguerre FLIM deconvolution algorithm [20] to estimate the 

intrinsic fluorescence decays at each pixel. Typically, the fluorescence decay y(n) is 

given by the convolution of the IRF h(n) with the instrument response x(n): 𝑦(𝑛) = 𝑇 ∙

∑ ℎ(𝑚)𝑥(𝑛 − 𝑚),   𝑛 = 0,1, … , 𝑁 − 1 𝐾−1
𝑚=0 , where T is the sampling interval, N is the 

number of measured samples, and K determines the time length of the IRF [21]. The 

Laguerre deconvolution technique uses a set of discrete Laguerre functions (DLF) as an 

orthonormal basis to represent IRF: ℎ(𝑛) = 𝑇 ∙ ∑ 𝑐𝑗
𝛼𝑏𝑗

𝛼(𝑛)𝐿−1
𝑗=0 , where 𝑐𝑗

𝛼  are the 

Laguerre Coefficients (LC), which are to be estimated from the input-output data, 𝑏𝑗
𝛼 
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denotes the j-th order orthonormal DLF, and L is the number DLFs used to model the 

IRF[21]. The Laguerre parameter α determines the rate of asymptotic decline of the 

DLFs. The larger the α, the longer a DLF is spread over time. For a given pixel, the 

measured fluorescence decay y(n) can thus be written as: 𝑦(𝑛) = ∑ 𝑐𝑗
𝛼𝑣𝑗

𝛼(𝑛)𝐿−1
𝑗=0 , where: 

𝑣𝑗
𝛼(𝑛) = ∑ 𝑏𝑗

𝛼(𝑚)𝑥(𝑛 − 𝑚)𝐾−1
𝑚=0 . After applying the Laguerre FLIM deconvolution 

algorithm, three deconvolved decays (ℎ1(𝑡), ℎ2(𝑡), ℎ3(𝑡)) are acquired per pixel, each 

corresponding to the three emission bands described above. Figure 5 shows the 

deconvolved decays of a sample pixel. The decay profiles (h(t)) at each pixel are 

integrated to generate absolute fluorescence intensity maps corresponding to each 

wavelength band (I1, I2 and I3). The normalized intensities (In) are calculated at each 

pixel as: In1 =
𝐼1

𝐼1+𝐼2+𝐼3
, In2 =

𝐼2

𝐼1+𝐼2+𝐼3
 and In3 =

𝐼3

𝐼1+𝐼2+𝐼3
. The average fluorescence 

lifetime (dlifetime) and 
1

𝑒
 lifetime (dtau) for each pixel are calculated using their general 

mathematical definitions [22]. Thus, the FLIM processing results in a set normalized 

intensity, average lifetime and 1/e lifetime maps, as shown in Figure 6 for a sample 

FLIM data set. 
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Figure 5 Deconvolved fluorescence decays. 

 

 

 

 

Figure 6  Final results of FLIM data processing. “In” means normalized intensity map, 

“dlifetime” means average lifetime map, and “dtau” means 
𝟏

𝒆
 lifetime map. The 

number after In, dlifetime, and dtau indicates the channel number. 

 

 

 

2.4 Feature pre-selection  

The nine FLIM parameters estimated at each pixel of the image (as shown in Figure 6), 

represents FLIM features that can potentially be used for classifying the different types 
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of oral lesions, in particular: benign lesions (B), from pre-cancerous or dysplastic lesions 

(D) and squamous cell carcinomas (S). As a first approach, we used the pixel median 

value of each of these FLIM parameters as classification features. In order to identify 

those features useful for classification, we plotted the median FLIM parameter value of 

each lesion (Disease red markers) and its contralateral imaged side (Normal blue 

markers), as in Figure 7.  

 

The data from the gingiva lesions are shown in Figure 7(a). It can be observed that the 

median value for In1 is virtually the same for the benign lesions and its corresponding 

contralateral normal area, while the cancerous lesions showed smaller median In1 values 

with respect to its corresponding contralateral normal area. It can also be observed that 

the median value for In3 is virtually the same for the benign lesions and its 

corresponding contralateral normal area, while the cancerous lesions showed larger 

median In3 values with respect to its corresponding contralateral normal area. Thus, two 

features were selected for classifying benign from cancerous gingival lesions: 1) 

difference in In1 between lesion and contralateral normal side, 2) difference in In3 

between lesion and contralateral normal side. 

 

The data from the tongue lesions are shown in Figure 7(b). It can be observed that the 

median value for In3 for the cancerous lesions was higher than for most benign and 

dysplastic lesions. It can also be observed that the median value for In3 is virtually the 

same for the benign lesions and its corresponding contralateral normal area, while most 
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dysplastic and cancerous lesions showed larger median In3 values with respect to its 

corresponding contralateral normal area. It can also be observed that the median value 

for dlifetime1, dlifetime2 and dtau2 is virtually the same for the benign lesions and its 

corresponding contralateral normal area, while most dysplastic and cancerous lesions 

showed smaller median values with respect to its corresponding contralateral normal 

area. Thus, five features were selected for classifying benign from cancerous tongue 

lesions: 1) In3, 2) difference in In3 between lesion and contralateral normal side, 3) 

difference in dlifetime1 between lesion and contralateral normal side, 4) difference in 

dlifetime2 between lesion and contralateral normal side, and 5) difference in dtau2 

between lesion and contralateral normal side. 

 

 

 

 

Figure 7 Median plots from gingiva and tongue. (a) Median plot of gingiva datasets. B 

indicates benign and S indicates SCC; (b) Median plot of tongue datasets. B 

indicates benign, D indicates dysplasia, and S means SCC. 

(a) 



 

15 

 

 

Figure 7 Continued. 

 

 

 

In summary, based on these observations, a total of six FLIM parameters were pre-

selected as potential discriminatory features for classifying benign from pre-cancerous 

and cancerous lesions. 

 

2.5 Classification problems  

The main objective of this work was to develop classification algorithms aiming to 

discriminate benign lesions from either pre-cancerous or cancerous lesions, based on 

FLIM derived features. For this purpose, we defined three classification problems: 1) 

benign vs. cancerous gingiva lesions; 2) benign vs. dysplastic/cancerous tongue lesions; 

and 3) benign vs. dysplastic/cancerous gingiva and tongue lesions. 

 

(b) 
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2.6 Feature selection  

Starting from the six pre-selected FLIM based features, exhaustive searching [23] was 

applied to find an optimal subset of features for each classification problem. Exhaustive 

searching is a feature selection method that explores the entire search space by testing all 

possible candidate solution. If we have n candidates and want to find the best set with 

size k, the number of subsets to be evaluated is (𝑛
𝑘

). This shows that the number of 

iterations can be huge even for modest n and k. In our case, however, there were only six 

candidates to be considered; thus, the cost of exhaustive searching is low.  

 

2.7 Classification algorithms  

For evaluating each feature subset, we need classification rules to estimate the error. In 

this study, three different classification rules were considered: Linear Discriminant 

Analysis (LDA), 3-Nearest-Neighbor (3NN), and Support Vector Machines (SVM). 

They are described below.  

 

2.7.1 Linear Discriminant Analysis (LDA) [23]  

LDA is a method for finding a linear combination of features that separates data into a 

number of classes (two classes for our classification problems). The designed classifier 

is derived as 

φ𝑛(𝑥) = {
1,    𝑎𝑛

𝑇𝑥 + 𝑏𝑛 >  0 
0,     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒         
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where 𝑎𝑛 = ∑̂−1  ∙ (𝑢1 − 𝑢0),  𝑏𝑛 = −
1

2
(𝑢1 − 𝑢0)𝑇 ∙ ∑̂ −1 ∙ (𝑢1 + 𝑢0)  and x is the 

training feature vectors. In detail, ∑̂  denotes the single covariance matrix, which is 

estimated by the pooled sample covariance matrix and 𝑢1,  𝑢0 are the mean feature 

vectors in each group.  

 

2.7.2 3-Nearest-Neighbor (3NN) [23]  

3NN is a nonparametric method that estimates class-conditional densities without 

making any distributional densities. This algorithm uses the majority vote of its 

neighbors. In other words, the class of an object is assigned to the most common class 

among its K-Nearest-Neighbor (KNN). It is a great way to assign weight to the 

contributions of the neighbors because nearer neighbors contribute more than distant 

ones. The parameter k must be changed according to the data. Larger k can reduce the 

effect of noise on the classification [24], while it produces less distinct boundaries 

between classes. In binary classification, it is helpful to choose k to be an odd number 

because of the case of tied votes. We considered k=1, 3, 5 and finally, 3-Nearest-

Neighbor shows the best result because of its good speed and accuracy. The designed 

classifier is derived as  

φ𝑛(𝑥) = {
1, ∑ 𝐼{𝑌𝑖=1}

3

𝑖=1

>  ∑ 𝐼{𝑌𝑖=0}

3

𝑖=1

 

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                               

 

Here, x is the training feature vectors and y is the labels of that training feature vectors. 

φ𝑛(𝑥) is the designed classifier and 𝐼{𝑌𝑖=1} or 𝐼{𝑌𝑖=0} is the i-th nearest data point to x 
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that has the label 1 or label 0. Thus, the designed classifier will be 0 if the nearest 

neighbors of x have more 0 than 1 labels.  

 

2.7.3 Support Vector Machines (SVM) [23]  

SVM is a supervised learning model that analyzes data and recognizes patterns that is 

used for classification. This model separates two categories with a clear gap by making 

the gap as wide as possible. After that, data is mapped into that same space and predicted 

to belong to a category based on which side of the gap they fall into. The main reason 

why we employ this method is that SVM can perform non-linear classification using the 

kernel approach. In our study, we use linear and Gaussian kernels. The designed 

classifier by SVM with linear kernel is given by: 

φ𝑛(𝑥) = {
1, 𝑖𝑓 ∑ 𝜆𝑖

∗𝑦𝑖𝑥𝑖
𝑇𝑥 −

1

𝑛𝑠 
∑ ∑ 𝜆𝑖

∗𝑦𝑖𝑥𝑖
𝑇𝑥𝑗 +

1

𝑛𝑠
∑ 𝑦𝑖 > 0

𝑖∈𝑆𝑗∈𝑆𝑖∈𝑆𝑖∈𝑆

 

0,               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                         

 

Here, φ𝑛(𝑥) is the designed classifier and 𝜆𝑖
∗  is the optimal Lagrange multiplier, which 

can be achieved from maximizing the dual Lagrange functional [23]. The set {(𝑥𝑖,

𝑦𝑖); 𝑖 ∈ 𝑆} is the set of support vector points, x is the training feature vectors, y is the 

labels of that training feature vectors (±1, instead of 0 and 1), and 𝑛𝑠 is the number of 

support vectors. The designed classifier by SVM with Gaussian kernel is given by: 

φ𝑛(𝑥) = {
1, 𝑖𝑓 ∑ 𝜆𝑖

∗𝑦𝑖𝑘(𝑥𝑖, 𝑥) −
1

𝑛𝑠 
∑ ∑ 𝜆𝑖

∗𝑦𝑖𝑘(𝑥𝑖, 𝑥𝑗) +
1

𝑛𝑠
∑ 𝑦𝑖 > 0

𝑖∈𝑆𝑗∈𝑆𝑖∈𝑆𝑖∈𝑆

0,               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                      
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where 𝑘(𝑥𝑖 , 𝑥𝑗) is a kernel function, and we only employ the Gaussian kernel, which is 

𝑘(𝑥𝑖 , 𝑥𝑗) = exp (
−|x𝑖−𝑥𝑗|

2

𝜎2
).  

 

2.8 Performance quantification  

To estimate the error at the feature selection stage, the Leave-One-Out Cross Validation 

(LOO) method [23] was used. LOO is a model evaluation method for measuring how 

results of the classification analysis are generalized to an independent dataset. To 

achieve this, one of the datasets is removed before training. After training, the removed 

dataset is used to test the performance of the learned classifier. The main goal of LOO is 

to achieve unbiased estimation results and also, explain the model generalization in an 

independent dataset. 

 

For each classification problem, the training data consisted on the pixel median values of 

the FLIM features. Thus, for each lesion, we only have one training data. For LOO 

validation, we followed two approaches. For the first approach, denoted ‘sample 

classification’, the leave-out lesion was classified as a single sample based on the pixel 

median FLIM feature values. For the second approach, denoted ‘pixel classification’, 

each pixel of the leave-out lesion was classified based on each pixel FLIM feature values. 

The exhaustive feature search was performed based on the sample classification 

accuracy. In addition, the pixel classification performance was quantified in the LOO 

overall classification accuracy, and sensitive and specificity for classifying dysplastic or 

cancerous pixels. 
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3. RESULT  

 

3.1 Histopathology evaluation  

A total of 20 lesions were imaged, six from the gingiva, and the other 14 from the tongue. 

Table 1 shows a summary of histopathology distribution. To be specific, dysplasia 

means mild epithelial dysplasia and SCC means squamous cell carcinoma. All other 

pathological diagnoses are benign.  

 

 

 

 

Table 1 Summary of histopathology distribution. 
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3.2 Classification – Gingiva 

A total of six gingiva lesions were imaged, from which three were benign and three were 

cancerous. Starting from the six FLIM based featured pre-selected before, the exhaustive 

searching was applied to find the best feature set among all the combinations that would 

classify the benign from the cancerous lesions. Based on the exhaustive searching, an 

LDA classification rule with the following two features was identified as optimal: 1) 

difference in In1 between lesion and contralateral normal side, 2) difference in In3 

between lesion and contralateral normal side.  

 

Figure 8 is a scatter plot with the best features and classification rule for the gingiva 

classification. It shows that all datasets were correctly classified. Table 2 shows the LOO 

sample-level confusion matrix of the gingiva area, indicating that all samples were 

classified correctly. 
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Figure 8 Scatter plot based on gingiva training datasets. Blue dots are benign, and red 

dots are SCC. The X-axis is the first feature, and the Y-axis is the second 

feature used in the gingiva. The black line is a decision boundary from LDA 

that distinguishes benign from SCC. In this figure, LDA was trained with all 

samples for better visualization, even if we actually apply LOO at the feature 

selection stage. 

 

 

 

 

Table 2 LOO sample-level confusion matrix of gingiva area. 
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Next, we performed a pixel classification with the same features and classification rule 

as the sample classification. To achieve this, pixel median values of the FLIM features 

were used for training and each pixel value of FLIM feature from the leaved-out FLIM 

image was used for testing the trained classification rule. Figure 9 shows the 

classification maps derived from two selected features using the LDA classification rule. 

Table 3 shows the LOO pixel-level confusion matrix of the gingiva, indicating high 

sensitivity and very high specificity for cancer detection.  

 

 

 

 

Figure 9 Classification maps of gingiva. The green color means benign, the red color 

means SCC, and the blue color (mask) represents the portion excluded from 

the classification process. Benign should be mostly green, while SCC is 

mainly red. 
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Table 3 LOO pixel-level confusion matrix of gingiva area. It shows that sensitivity for 

SCC is 86.7%, while specificity for SCC is 98.7%. 

 

 

 

3.3 Classification – Tongue 

In tongue, 14 lesions were imaged, from which six were benign, four were precancerous, 

and four were cancerous. As in the gingiva, the exhaustive searching was used to find 

the best feature set among all the combinations of candidates that would distinguish 

benign from the precancerous and cancerous lesions. From the exhaustive searching, 

SVM Gaussian kernel with the following three features was determined as optimal: 1) 

difference in In3 between lesion and contralateral normal side, 2) In3, and 3) difference 

in dlifetime2 between lesion and contralateral normal side. 

 

Figure 10 is a scatter plot with the best features and classification rule of the tongue 

classification. It shows that all datasets were correctly distinguished. Table 4 shows the 

LOO sample-level confusion matrix of the tongue area, representing that all samples are 

classified perfectly. 
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Figure 10 Scatter plot based on tongue training datasets. Blue dots are benign, green 

dots are dysplasia, and red dots are SCC. Additionally, the black circles that 

surround the dots are support vectors. The X-axis is the first feature, the Y-

axis is the second feature, and the Z-axis is the third feature used in the 

tongue area. The black hyperplane is a decision boundary from SVM 

Gaussian kernel that distinguishes benign from dysplasia and SCC. In this 

figure, the classification rule was trained with all samples for better 

visualization, even if we actually apply LOO at the feature selection stage. 

 

 

 

 

Table 4 LOO sample-level confusion matrix of tongue area. 
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Next, we conducted a pixel classification with the same features and classification rule 

that were the best in the sample classification. As before, pixel median values of the 

FLIM features were applied for training and each pixel value of FLIM feature from the 

leaved-out FLIM image was applied for testing the trained classification rule. Figure 11 

shows the classification maps derived from three selected features using the SVM 

Gaussian kernel. Table 5 represents the LOO pixel-level confusion matrix of the tongue 

datasets, indicating high sensitivity and specificity for precancer and cancer detection. 

 

 

 

 

Figure 11 Classification maps of tongue. The green color means benign, the red color 

means Dysplasia/SCC, and the blue color (mask) shows the portion 

excluded from the classification procedure. Benign should be mainly green, 

while Dysplasia/SCC must be mostly red. 
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Table 5 LOO pixel-level confusion matrix of tongue area. It shows that sensitivity for 

Dysplasia/SCC is 93.2%, while specificity for Dysplasia/SCC is 90%. 

 

 

 

3.4 Classification – Gingiva and Tongue 

In the entire area, a total of 20 lesions were collected, from which nine were benign, four 

were precancerous, and seven were cancerous. Beginning from the six FLIM based 

featured pre-selected before, the exhaustive searching was applied to discover the best 

feature combination among all the combinations that would be helpful to classify the 

benign from the precancerous and cancerous lesions. Based on the exhaustive searching, 

SVM Gaussian kernel with the following three features were identified as optimal: 1) 

difference in In3 between lesion and contralateral normal side, 2) In3, and 3) difference 

in dlifetime2 between lesion and contralateral normal side. 

 

Figure 12 is a scatter plot with the best features and classification rule for the entire 

classification. It indicates that all datasets were well classified, except for one dysplasia. 
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Table 6 represents the LOO sample-level confusion matrix of the entire area, indicating 

that all samples were classified correctly, except for one dysplasia. 

 

 

 

 

Figure 12 Scatter plot based on total training datasets. Blue dots are benign, green dots 

are dysplasia, and red dots are SCC. In addition, the black circles that 

surround the dots are support vectors. The black hyperplane is a decision 

boundary from SVM Gaussian kernel that separates benign from dysplasia 

and SCC. In this figure, SVM Gaussian kernel was trained with all samples 

for better visualization, even if we actually apply LOO at the feature selection 

stage. 

 

 

 

 

Table 6 LOO sample-level confusion matrix of entire area. 
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As before, we performed a pixel classification with the same features and classification 

rule as the sample classification. To achieve this, pixel median values were used for 

training and each pixel value from the leaved-out FLIM image was applied for testing 

the trained classification rule. Figure 13 shows the classification maps resulted from 

three selected features using the SVM Gaussian kernel. Table 7 represents the LOO 

pixel-level confusion matrix of the entire datasets, showing high sensitivity and very 

high specificity for precancer and cancer detection. 

 

 

 

 

Figure 13 Classification maps of gingiva and tongue. The green color means benign, the 

red color means Dysplasia/SCC, and the blue color (mask) shows the portion 

excluded from the classification process. Benign should be mostly green, 

while Dysplasia/SCC is mainly red. 
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Table 7 LOO pixel-level confusion matrix of entire area. It shows sensitivity for 

Dysplasia/SCC is 85.7%, while specificity for Dysplasia/SCC is 97.1%. 
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4. CONCLUSIONS  

 

To the best of our knowledge, this is the first demonstration of endogenous FLIM 

endoscopic imaging for automated detection of a wide range of oral benign lesions 

(including inflammation) from oral pre-cancerous (mild-dysplasia) and cancerous (SCC) 

lesions. Our results indicate that both fluorescence intensity and fluorescence lifetime 

derived features are important in order to achieve decent lesion classification 

performance. Fluorescence lifetime was in particular relevant to distinguish pre-

cancerous lesions from benign lesions.  

 

We should recognize, however, that our current database is limited to a few lesions in 

the gingiva and tongue areas of the oral cavity, including the vestibule, palate and 

mucosa. However, our preliminary results are encouraging and our ongoing efforts are 

focused on further validating on a larger database this promising technology for early 

detection of oral epithelial cancer. 
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