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ABSTRACT

In the case of many fatal automobile accidents, the victims were found to have not

been wearing a seatbelt. This occurs in spite of the numerous safety sensors and warning

indicators embedded within modern vehicles. Indeed, there is yet room for improvement

in terms of seatbelt adoption. This work aims to lay the foundation for a novel method of

encouraging seatbelt use: the utilization of wearable technology.

Wearable technology has enabled considerable advances in health and wellness. Specif-

ically, fitness trackers have achieved widespread popularity for their ability to quantify

and analyze patterns of physical activity. Thanks to wearable technology’s ease of use

and convenient integration with mobile phones, users are quick to adopt. Of course, the

practicality of wearable technology depends on activity recognition—the models and al-

gorithms which are used to identify a pattern of sensor data as a particular physical activity

(e.g. running, sitting, sleeping). Activity recognition is the basis of this research.

In order to utilize wearable trackers toward the cause of seatbelt usage, there must exist

a system for identifying whether a user has buckled their seatbelt. This was our primary

goal. To develop such a system, we collected motion data from 20 different users. From

this data, we identified trends which inspired the development of novel features. With these

features, machine learning was used to train models to identify the motion of fastening a

seatbelt in real time. This model serves as the basis for future work in systems which may

provide more intelligent feedback as well as methods for interventions in dangerous user

behavior.
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1. INTRODUCTION

Automobile accidents remain one of the leading causes of death in the United States,

especially for Americans under 60 [1, 2]. Nearly half of Americans who died in car crashes

in 2014 were not wearing a seatbelt at the time of the crash [3]. For Americans under

45, more than half were not wearing a seatbelt. This is in spite of widespread detection

and warning systems designed specifically to enforce seatbelt use in cars. According to

statistics published by the Centers for Disease Control and Prevention (CDC), young adults

are the least likely age group to wear a seatbelt [4, 5], and men are less likely to wear

their seatbelt than women [5]. Clearly, existing seatbelt warning systems leave room for

improvement in their encouragement of safe user behavior.

Commonly, automotive safety systems vie for the driver’s attention using an audible

tone or visual indicator on the dashboard [6]. These warnings are triggered by sensors

integrated within the vehicle [7], often the buckle [8] itself. It is fairly standard for these

systems to be centered around the driver. Even if the vehicle includes sensors for the pas-

senger, the warning indicators are often visible only to the driver. Rarely do vehicles have

seatbelt sensors in any of the back seats. Furthermore, these systems can be circumvented

fairly easily. For example, drivers or passengers may leave their seatbelts always buck-

led across their seats, sitting on top of the belt while riding in the car. It is important to

note that this is a vehicle-centric paradigm. That is, the vehicle’s safety systems attempt

to intervene when the vehicle’s sensors indicate danger. These interventions are broad

and static, operating with a standard procedure regardless of the identity of the passen-

ger. There is no precedent for altering interventions based on the behavior of individual

passengers.

This work explores a human-centered paradigm for seatbelt monitoring. That is, a
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seatbelt safety system built around specific users, independent of individual vehicles. With

data specific to individual users, intervention tactics can be personalized. For instance,

knowledge of a user’s tendencies could inform a plan for improvement, and the system

could intervene in ways that the user has historically been more receptive to. Notably, such

a system would always remain in effect, regardless of what vehicle that user may be riding

in or what seat they may be sitting in. Plus, a user’s record would not be contaminated by

other people driving their vehicle.

Of course, in order for this type of system to exist, there must be a human-centric way

of detecting whether a user has buckled their seatbelt. Such is the motivation for research.

This work seeks to use machine learning to recognize physical activities—specifically, the

action of buckling a seatbelt. In recent years, activity recognition has achieved consider-

able success in promoting healthy user behavior. For example, many health-related appli-

cations which monitor self-care activities (such as eating habits) [9–11] and intervene to

correct undesirable behaviors [12–14] depend on activity recognition. These studies, along

with many others, are discussed further in chapter 2. Human-centric activity recognition is

achieved most often with wearable sensors, most commonly using including accelerome-

ters [13]. After processing this sensor data according to standard techniques [15], machine

learning classifiers can be trained on the data to recognize the activities being performed.

As such, activity recognition is central to achieving context-aware computing, in which

the behavior of systems changes based on what the user is doing at the time of use [13].

A personalized system could take many forms, as there are many different methods

for motivation. At a basic level, the watch or phone could alert the user if they neglected

to buckle their seatbelt. However, as the system is tied to the individual user, it could

maintain a record of seatbelt history, rather than just notifying in the moment. With his-

torical data on the user’s behavior, this system could offer motivation by way of rewards,

encouraging long-term improvement. For example, many insurance companies today pro-
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vide monitoring systems that customers may install in their vehicles [16–18]. Based on

the customer’s driving behavior, risk is determined and insurance premiums are adjusted

accordingly [19]. Since the companies reward better drivers with lower rates, this en-

courages long-term behavioral improvement [20]. A seatbelt monitoring system could fit

nicely into the calculation of insurance rates, rewarding users who always buckle their

seatbelts. This could be especially beneficial for teenage drivers: parents would be able

to monitor the behavior of their children and encourage safe decision making when nec-

essary. Health wearables also encourage desirable behavior (e.g. exercising) by offering a

sense of personal accomplishment when goals are met. Many corporate offices have also

taken advantage of this phenomenon, offering rewards for healthy behavior in hopes of

bolstering employee well-being [21]. Similarly, tracking seatbelt behavior to meet goals

and feel accomplished provides positive reinforcement for good habits, and encourages

long-term well being.

This work aims to provide the foundation for personalized, context-aware seatbelt

monitoring systems: the activity recognition algorithm. First, the feasibility of recogni-

tion using machine learning is investigated. Using features commonly found in literature,

the motion of buckling a seatbelt should be distinguishable from other similar motions.

Recognition accuracy can then be improved with the incorporation of more novel features

based specifically on seatbelt patterns. Finally, the model is trained and tested on more

naturalistic data, verifying that the approach is effective in real-world scenarios.

In chapter 2, we conduct a review of activity recognition literature. In chapter 3, we

describe the hardware and software systems which we use to collect, process, and evaluate

data. In chapter 4, we conduct our first user study and analyze the results. In chapter 5, we

conduct our second user study and analyze the results. In chapter 6, we recommend future

research which builds on this work. In chapter 7, we draw our final conclusions.
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2. PRIOR WORK

2.1 Introduction to Activity Recognition

Activity recognition is an exciting area of research that is experiencing widespread

popularity across multiple disciplines. Motivated by both the push of technological ad-

vancement and the pull of potential application areas, conferences and journals now fre-

quently enjoy the coverage of novel, state-of-the-art research developments in not only

electronic sensor technology, but now also in intelligent processing of that data using var-

ious learning techniques [13].

These developments in activity recognition and sensor technology are stimulated largely

by the loftier endeavor of ubiquitous computing. In the words of Óscar D. Lara and Miguel

A. Labrador, “Providing accurate and opportune information on people’s activities and be-

haviors is one of the most important tasks in pervasive computing” [10]. It is not difficult

to imagine the potential benefits of such systems. To name a few, Chen et al. present

“pervasive and mobile computing, surveillance-based security, context-aware computing,

and ambient assistive living” [13], and Lara and Labrador reiterate “medical, military, and

security applications” [10]. There is a particularly large focus on health-related activity

recognition, motivated by the growing concerns surrounding sedentary lifestyles. For in-

stance, sensor technology allows users to keep track of their levels of physical activity,

thereby motivating said users to reach certain goals. This is an example of an instance

where an activity recognition system can provide feedback with the intent of motivating a

change in the users’ behavioral patterns.

Recently, the research focus has shifted from the development of the sensors them-

selves to the intelligent analysis of sensor data to extract the information necessary to

address real-world contexts. According to Chen et al., this process can be broken down
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into four primary steps [13]:

1. Setup: select appropriate sensors and deploy them where necessary (to both objects

and the environment) to adequately track a user’s behavior as well as changes in the

user’s environment

2. Collect: capture data from the sensors, store it appropriately, and process the data to

extract useful information (through data analytics and suitably abstracted knowledge

representation formalisms)

3. Model: based on the collected data, generate computational activity models such

that agents can conduct reasoning and manipulation

4. Develop: using the computational models, construct a final reasoning algorithm

which recognizes activities amidst sensor data

As one might expect, the potential for novelty increases as the list progresses.

Already, state-of-the-art systems are able to recognize such activities as shown in Ta-

ble 2.1. Presumably, this is only the beginning. As pervasive computing continues to

trend toward the mainstream, activity recognition will move from being awkward and un-

wieldy to being convenient and unnoticed. With the integration into smart phones and

smart watches, this progression is already well on its way.

If it was not already clear, activity recognition is an expansive topic. Here, we will

focus specifically on two different approaches to sensor-based activity recognition, dubbed

photic tracking and kinetic tracking, then on the more technical implementations of such

systems, followed by popular areas of application.

2.2 Approaches to Sensor-Based Activity Recognition

The designation of “sensor-based” is a broad, encompassing qualifier. That is, sensor-

based activity recognition can be achieved with a wide swath of technological equipment.
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Regarding their four steps of activity recognition (enumerated in section 2.1), Chen et al.

acknowledge the “raft of methods, technologies, and tools available for use” [13]. With

this in mind, the authors break activity recognition into two classifications: vision-based

activity recognition and sensor-based activity recognition. By vision-based, the authors

refer to “visual sensing facilities”, e.g., optical cameras using computer vision software.

By sensor-based, the authors refer to “emerging sensor network technologies”, e.g., (often

wearable) sensors tracking state change with respect to time. For the purpose of this paper,

we found these terms to be misleading. For instance, the distinction between vision-based

and sensor-based implies that vision-based recognition does not employ sensor technology,

which is incorrect. Rather, vision-based recognition makes use of vision-based sensors. To

reduce confusion, we establish different terminology. The data collection hardware which

Chen et al. refer to in vision-based activity recognition will be dubbed photic tracking

technology, in reference to the sensors’ ability to collect light (visual, infrared, etc.) data.

The data collection hardware which Chen et al. refer to in sensor-based activity recognition

will be dubbed kinetic tracking technology, in reference to the sensors’ ability to collect

position/motion (acceleration, GPS location, etc.).

2.2.1 Photic Tracking

Photic1 tracking refers to data collection from sensors which interpret signals from

light wavelengths. Most commonly, this could be thought of as an optical camera; how-

ever, such sensors are not limited to the visual spectrum alone. Non-visual wavelengths,

such as those obtained by infrared sensors, are also of great utility.

Consider “A Surfaceless Pen-Based Interface” [23], wherein the researchers attempted

to design a system which, when using a special pen, could track drawing movements on

any given surface. The implementation worked using infrared light: the pen was equipped

1Photic: of, relating to, or involving light especially in relation to organisms [22]
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with an infrared emitter, and the environment was fitted with an infrared camera. In this

way, the tip of the pen was trackable. Their research found that while the system worked

and was easy to get the hang of, it wasn’t as well suited for more complex drawing tasks.

In the vein of consumer well-being, systems such as the “Driver tracking and posture

detection using low-resolution infrared sensing” system [24] have much to offer. This re-

search also uses infrared, this time to track a driver of a vehicle and identify movements

and postures. Rather than using a discrete emitter and receiver, this system employs a

more common low resolution infrared camera imaging system, like that of security cam-

eras designed to operate at night. Neural networks were used to classify 16x16 images,

identifying 18 different driver positions. This is the same process as is used in computer-

vision/image-classification algorithms, only using an infrared camera for better low-light

performance. Their research was preliminary, conducted on a small set of users, but ap-

pears promising. Consumer well-being is generating a significant amount of interest.

Another popular area of research is the study of eye-tracking systems. The eye-

tracking trend is often thought of as the ability to control computers without use of the

keyboard or mouse. However, eye-tracking technology can be much more sophisticated.

For example, Purnendu et al. explore a system which uses eye-tracking data to perceive

which activities users may be performing [25]. In this case, users were engaged in an

educational problem-solving task, and the system was correctly able to identify whether

users were “reading”, “gazing at an image”, or “problem solving”. In another example,

researchers attempted to use multiple eye-tracking techniques to predict the presence of

certain breast-related health problems, experiencing varied results [26, 27].

A more commonly-known photic tracking device is the Leap Motion, a small periph-

eral that used infrared tracking to recognize hand movements and gestures. This opens

many new interaction possibilities. For example, research has been conducted on the abil-

ity to “draw” three-dimensional shapes, which software could recognize with reasonable
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accuracy [28].

Other commonly known examples of photic tracking include Microsoft’s Kinect, which

uses infrared technology to track body positioning and virtual/augmented reality headsets,

which are often positioned using infrared sensors. It is worth pointing out that most of

these examples make use of the infrared light wavelength. Infrared is often favored pri-

marily due to its ability to function under any level of light, but also due to other factors,

such as reduced intrusiveness [24].

Some of the difficulties associated with photic tracking are found in visual signal noise,

plus limitations due to tracking resolution/framerate. Additionally, infrared sensors are

presently less ubiquitous and may require more complex computer vision algorithms to

recognize and track certain points of interest.

2.2.2 Kinetic Tracking

Kinetic2 tracking refers to data collection from sensors which interpret signals from

physical data like position, rotation velocity, acceleration, etc. Kinetic tracking is es-

pecially noteworthy due to the accessibility and availability of such sensors in everyday

technology, such as a smartphone or smartwatch.

Within the context of kinetic tracking, Chen et al. draw a distinction between dense

sensing-based activity monitoring, referring to sensors placed in the user’s external envi-

ronment, and wearable sensor-based activity monitoring, referring to sensors placed di-

rectly on the user [13].

2.2.2.1 Dense Sensing

Dense sensing gets its name from the density of environmental sensors required for

complete user tracking. For example, cars contain sensors that detect whether the driver

2Kinetic: of or relating to the motion of material bodies and the forces and energy associated therewith
[29]
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has fastened their seatbelt [6–8]. Most cars also contain a passenger weight sensor that

determines whether the passenger airbag should deploy in the case of an accident.

Another example is that of kinetic-sensor-enabled gaming controllers, like those of

the Nintendo Wii game console. The Wii remote served as a convenient tool for motion-

enabled game interaction, and it has also served as a basis for fun research projects, like

that of the “Wiiolin” [30]. The Wiiolin made use of the Wii remote and the complementary

sensor bar to mimic playing a violin or a cello.

While appropriate for simple, specific recognition tasks, dense sensing is less useful for

more general, ubiquitous sensing tasks. A system designed to recognize a user’s activity

throughout the day would warrant a plethora of sensors placed throughout the user’s path

of interaction. Dense sensing does not scale well, hence the greater interest directed toward

wearable sensing.

2.2.2.2 Wearable Sensing

With wearable sensing, in contrast to dense sensing, the sensors are placed on the users

themselves, rather than on the objects the users are expected to interact with. Wearable

sensing is attractive due to its potential for greater efficiency at the expense of less sensor

hardware. Presumably, a relatively small set of sensors (e.g. on wrists, ankles, chest, etc.)

can track a wide range of user activities. The challenge is now that the activity data is more

obfuscated—the system doesn’t inherently know what objects the user may be interacting

with. Only data about the user’s body and is known. Hence, with greater challenge but

greater potential for reward, wearable sensing is a popular topic of research, and is the

primary focus of this paper.

Lester et al. echo this sentiment in their research “A Practical Approach to Recognizing

Physical Activities” [9]. Their foremost goal is to establish a system that is appealing, use-

ful, practical, reliable, and easy to incorporate. With this purpose in mind, the researchers
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established the following restraints:

1. Data should be required only from a single point on the user’s body, and not neces-

sarily the same point for everyone

2. System should be universally applicable, working “out of the box” for any given

user, where system tuning and personalization may be used to improve a user’s

experience, but is not required

3. Recognition should be achievable with only a small, affordable set of sensors, re-

maining sensitive to hardware costs

Clearly, universal applicability is paramount. In order for the benefits of wearable

technology to be fully realized, the system should work (intuitively) for any user, and the

system should be affordable for any user. A wealth of wearable sensor research follows this

general pattern. Frequently, papers are published which investigate varying placements of

sensors toward the end of detecting certain types of activities.

In the same year, Pärkkä et al. published “Activity Classification Using Realistic Data

From Wearable Sensors” [31], which explores sensor types and placements in even greater

detail. This study, like many, focuses on health data, namely walking, running, biking, etc.,

which are often described together as ambulation (as seen in Table 2.1). With 35 chan-

nels of data spread across various measurement sites, the researchers concluded that the

wrist and thigh locations were most ideal, and that “accelerometers proved to be the most

information-rich and most accurate sensors for activity recognition” for their purposes

[31]. Fortunately, accelerometers are some of the most affordable, most pervasive sensors

amongst technology today.

Interestingly, in a study two years prior, Bao and Intille came to a similar conclusion.

In their study, Bao and Intille requested that participants perform everyday activities (20
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Group Activities
Ambulation Walking, running, sitting, standing still, lying, climbing stairs,

descending stairs, riding escalator, and riding elevator
Transportation Riding a bus, cycling, and driving
Phone usage Text messaging, making a call
Daily activities Eating, drinking, working at the PC, watching TV, reading, brush-

ing teeth, stretching, scrubbing, and vacuuming
Exercise/fitness Rowing, lifting weights, spinning, Nordic walking, and doing

push ups
Military Crawling, kneeling, situation assessment, and opening a door
Upper body Chewing, speaking, swallowing, sighing, and moving the head

Table 2.1: Some examples of activities recognizable by state-of-the art sensor-driven ac-
tivity recognition systems [10]. c⃝ 2013 IEEE.

types, in total) with 5 sensor placements: wrist, upper arm, hip, thigh, and ankle. In this

study as well, the researchers favored thigh and wrist placement [32].

These ideas are not new. A German paper, “Detection of posture and motion by ac-

celerometry: a validation study in ambulatory monitoring” was published in 1999 [33].

The researchers concluded that “suitable placement of a small number of calibrated piezore-

sistive accelerometer devices” was sufficient to recognize everyday ambulation, with high

reliability at that.

Noticeably, the basis of wearable sensor research focuses fairly consistently on carefully-

placed sensors that detect a common set of ambulatory activities. More recently, this re-

search is expanding into more novel territory. For example, Tapia et al. built upon basic

ambulatory recognition to detect not only the type of activity being performed, but also the

level of intensity (with mixed results) [34]. More novel expansions to the baseline model

of activity recognition technology is explored in the next section. Of course, a critical part

of activity recognition is the actual analysis of the sensor data. Sizable portions of the

aforementioned research studies are dedicated to the algorithmic techniques of recogniz-

ing data. This is also further discussed in the next section.
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2.3 Implementations and Applications of Activity Recognition

The early, foundational studies enumerated in section 2.2 set the stage for feasible

activity recognition using wearable sensor technology. With this idea on the minds of

academic researchers, the next challenge was the facilitation of more widespread adoption.

For this to occur, Lara and Labrador lay out several factors that must be considered [10]:

1. Selection of attributes and sensors: the system need only observe those features

which are most effective in distinguishing activities, and cost should be minimized

through limiting the system to sensors which are absolutely necessary

2. Obtrusiveness: if everyday use is a goal, the system must be convenient and stay out

of the user’s way

3. Data collection protocol: the system should be trained on naturalistic data which

more closely resembles real-world activity

4. Recognition performance: the system should accurately recognize activities (mini-

mizing false positives and false negatives), and should work “out of the box” on new

users

5. Energy consumption: if the system is expected to run on energy-constrained mobile

devices, energy consumption must be a consideration

6. Processing: with the previous factors in mind, consider where the system’s heavy-

lifting should occur

7. Flexibility: consider the appropriateness of subject-dependent evaluations versus

subject-independent evaluations for the given application

Increasingly, research is oriented toward vehicles that could facilitate more widespread

adoption of activity recognition into everyday life.
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2.3.1 Sensory Devices

One of the most recognizable factors in wearable sensor adoption is the “wearability”

of the sensors. As such, considerable effort has gone into conducting recognition tasks via

more common, everyday items, such as mobile devices or articles of clothing.

2.3.1.1 Mobile Devices

Examples of this were seen as early as 2006, when Maurer et al. investigated the ac-

curacy of activity classification using only the sensors onboard an early smartwatch [35].

A common example of a mobile device is the smart watch: a mobile piece of technol-

ogy which often already contains the necessary sensors (accelerometers) combined with

ideal placement (wrist). Examples of this were seen as early as 2006, when Maurer et

al. investigated the accuracy of activity classification using only the sensors onboard the

eWatch shown in Figure 2.1 [35]. In this paper, Maurer et al. acknowledge the successes

of even earlier studies which already verified that wrist-based recognition was viable [32].

With this in mind, Maurer et al. also placed the watch in other locations around the body,

experiencing comparable results.

Another common example of activity recognition via everyday technology is the smart-

phone [36]. Regarding the processing factor of system design, the system’s heavy lifting

can be easily offloaded to the user’s cell phone [10]. The researchers assert that com-

plex algorithms previously better suited for desktop workstations are now manageable by

mobile devices, thereby making an activity recognition less obtrusive and more flexible.

Brezmes et al. extend this notion to not only use the mobile phone for data process-

ing, but also for accelerometer data. This approach allowed a user to place the phone

in their preferred location, and it was found that after user-dependent training, the sys-

tem performed adequately [37]. Kwapisz et al. reach the same conclusion, finding that

cell phones’ built-in accelerometers allow easy collection of “useful knowledge about the
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Figure 2.1: The eWatch sensing platform, an early “smartwatch” [35]. c⃝ 2006 IEEE.

habits of millions of users passively—just by having them carry cell phones in their pock-

ets” [38].

That said, research seems to support that smartwatch-based recognition is often more

effective than smartphone-based recognition. Weiss et al. studied recognition accuracy of

both hand-oriented and non-hand-oriented activities with both a smartphone and a smart-

watch. They found that, unsurprisingly, smartwatches were significantly better at recog-

nizing hand-oriented activities; however, they also found that smartwatches were more

effective at recognizing the non-hand-oriented activities as well [39]. This suggests that

smartwatches are better suited for recognition scenarios involving more diverse activities.

A practical application of the conclusions of Weiss et al. is found in the research of

Thomaz et al., wherein the recognition of “eating moments” (i.e., different methods of

eating different types of foods) is accomplished using inertial data from a wrist-mounted

sensor [11].
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2.3.1.2 Clothing

Perhaps a more experimental realm of pervasive sensor technology is that of clothing-

embedded sensors. While arguably less scalable, such systems have the potential to offer

data of much higher fidelity. Take Laerhoven and Cakmakci, who attempted to use sensor-

laced pants to recognize ambulation activities with minimal user attention [40].

Consider also a more specific application of such technology: user interaction with ob-

jects in an office environment. In multiple publications, Paulson et al. explore the viability

of recognizing and distinguishing 12 different office activities using “CyberGlove”, which

contained 22 sensors [41, 42]. The researchers discuss that, while the recognition perfor-

mance could benefit from user-dependent training, the sensor-based activity recognition

was more practical than RFID labeling (dense sensing, kinetic tracking) or large camera

scopes (photic tracking).

Sensors worn as clothing also benefit from being more comfortable as well as discreet,

enabling everyday usage without arousing suspicion or attracting too much attention. This

can be particularly helpful in cases where sensor technology is used to assist men and

women with disabilities. For instance, Brhlik et al. created and studied a system of sen-

sors and feedback mechanisms to assist the visually impaired with navigation [43]. Such

technology has great potential to enable greater freedom for those in situations of disabil-

ity.

2.3.2 Data Analysis

As mentioned previously, a crucial piece of sensor-based activity recognition is the

handling of the sensor data itself. Examples of raw sensor data are shown in Figure 2.2.

At the most basic level, raw data is abstracted to a collection of features. Usually, a window

of the data is isolated—say, the past 1 second—and some data points are extracted from

the window (e.g. the average value of the sensor, the standard deviation of the sensor,
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etc.). These extracted values are those features upon which the classification algorithms

are built. The algorithms then learn to recognize activities based on the patterns deduced

from the values of the features.

2.3.2.1 Features

Much research is based on fairly simple sensor data with rudimentary features. An

early activity recognition study by Randell and Muller attempted to distinguish 6 differ-

ent ambulation activities with only a two-axis (X and Y) accelerometer. The researchers

considered only 2 features: “the RMS and integrated values of both sensors over the last 2

seconds” for each sensor, yielding only 4 features in total [44]. Even such basic data points

were found to be sufficient for distinguishing the activities. A few years later, a similar

study by Ravi et al. used a three-axis accelerometer to identify 8 different activities. In this

study, four features were extracted from each axis (mean, standard deviation, energy, and

correlation), yielding 12 features in total [45]. Even when selecting from a larger set of

activities, Ravi et al. presented accuracies even higher than those of Randell and Muller,

suggesting that the amount and quality of features has a large bearing on the effectiveness

of the algorithm.

Unsurprisingly, a considerable amount of research has gone into the methods of ex-

tracting useful information from raw sensor data using features. Figo et al. discuss in

great detail some of the differing approaches of feature extraction. They establish three

categories of preprocessing techniques [15]:

1. Time Domain, i.e., time-based numerical operations

2. Frequency Domain, i.e., wave-based transformations

3. Discrete Domain, i.e., symbolic string functions

16



Figure 2.2: Example plots of accelerometer data for six different ambulation activities
[38].
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Figure 2.3: Categorization of common feature-extraction techniques applied to sensor sig-
nals for activity recognition [15]∗.

The full tree of preprocessing techniques evaluated by Figo et al. can be found in Fig-

ure 2.3. The researchers then evaluate the different calculations according to computation

cost, storage requirements, precision, and mobile compatibility, then tests the features in

different activity contexts. In general, the frequency domain features did not perform as

well as hoped, especially considering that frequency calculations are more intensive. For

this reason, we focus on time domain features.

For example, Garcia-Ceja et al. built upon some of the basic data processing princi-

ples and extended them to the long-term domain [46]. That is, rather than attempting to

recognize an immediate activity like ascending a flight of stairs, the researchers attempt

to recognize broader activities like commuting, exercise, working, etc. In the case of this

research, a user’s long-term activities were segmented using “Hidden Markov Models and

∗Reprinted by permission from Springer Nature: Springer-Verlag, Personal and Ubiquitous Computing,
“Preprocessing techniques for context recognition from accelerometer data”, Davide Figo, Pedro C. Diniz,
Diogo R. Ferreira, João M. P. Cardoso, c⃝ 2010.
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Conditional Random Fields” [46], neither of which were addressed in the Figo et al. sur-

vey [15]. Clearly, the field is still under rapid development, and there is always room for

improvement.

2.3.2.2 User-Independent vs. User-Dependent

Knowing these data processing techniques, there are two main ways to go about im-

plementing said techniques into actual systems. This has already been mentioned briefly

within the flexibility factor of activity recognition system design [10]. In the most basic

approach, data is collected through test instances, and the data is aggregated to create a

single, universal model which is intended to apply to any user that wishes the utilize the

system. This is usually referred to as user-independent or impersonal evaluation. While

this approach is convenient and desirable, allowing the system to work “out-of-the-box”,

it has its limitations in contexts where users perform activities in unique ways.

To address such situations, researchers often train their models on a user-by-user ba-

sis. This is usually referred to as user-dependent or personal evaluation. This approach

frequently enjoys higher classification accuracies and better performance for individual

users; however, this adds complexity to the system, and there are drawbacks. While user-

independent systems may employ pre-built classification models that were generated of-

fline, a user-dependent system must have the capability to re-generate classification models

online, effectively “learning” as the subject continues to use the system.

However, a completely user-dependent system lacks the confidence to work “out-of-

the-box”, as it must be trained on the individual user before it becomes useful. One ap-

proach to mitigating this disadvantage is to combine aspects of user-independent algo-

rithms and user-dependent algorithms, i.e., the system works well enough “out-of-the-box”

to be usable, but also continues to improve with prolonged used. In essence, personalized

algorithms have the potential to offer much better recognition performance, but require
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a more complex system design. Prior works show many examples of impersonal versus

personal approaches to evaluation [24, 32, 37, 39].

2.3.3 Health and Wellness

If it was not already apparent from the plethora of examples already cited in this paper,

a significant portion of activity recognition research falls into the domain of health and

wellness. Without rehashing the previous references, we would like to briefly comment

on this trend. Both the research community as well as industry have elected to focus on

such applications. Perhaps this was kick-started by the fact that walking is one of the

most rudimentary everyday activities, serving as a baseline test for new systems. Consider

the widespread success of personal fitness trackers from Pebble and Fitbit, or the recent

wave of smartwatches like the Apple Watch, or even simple smartphone health apps—

users enjoy keeping track of their daily step counts. As our society becomes increasingly

sedentary, personal fitness trackers are beginning to take hold among the health-conscious.

Information from activity recognition systems has the potential to promote behavioral

modification through intelligent feedback and interventions. Take applications like Step

Up Life [47], which monitors a user’s level of inactivity, providing physical activity re-

minders when necessary, or World of Workout [12], a role-playing game in which the

user’s character “evolves based on the exercises the user performs in reality”. Both appli-

cations were found to motivate users to engage in some sort of exercise.

Building upon the general idea of encouraging physical activity, activity recognition

can be used to build systems that promote higher-level wellness. Let Me Relax [14] mon-

itors user activity, prompting stress-relieving mental relaxation techniques when neces-

sary. Systems may also monitor general self-maintenance activities such as the brushing

of teeth, combing of hair, taking of medicine, etc. Cherian et al. propose a system which

is able to recognize whether a user has brushed their teeth [48]. Such systems are useful in
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scenarios involving elderly care or patients with some form of dementia, wherein the user

may not have the capacity to keep track of their own activities.

Many health-related recognition systems are in their more experimental stages, but

have the potential to contribute greatly to the field of medicine and to the general well-

being of society.

2.4 Summary

As our world trends toward the realization of ubiquitous computing, activity recogni-

tion plays a critical role in establishing a link between human action and the appropriate

computational response. The challenge becomes recognizing higher-level activity when

provided with only data from rudimentary sensors. Nevertheless, the projected benefits of

dependable human activity identification are so tantalizing that a wealth of novel research

on the subject is beginning to emerge.

Over the past 10-20 years, activity recognition has grown and developed from simple

accelerometers with a handful of features to a range of sensors with a much more diverse

repertoire of feature algorithms. Activity recognition has its roots in the health industry,

largely due to the social push for heathier, more active lifestyles. There are also potential

applications toward general wellness, e.g., posture or mental health. Additionally, systems

are proposed for the care of the elderly or those with dementia, to help keep track of

mundane, but important, daily activities like brushing teeth and taking medicine.

There are many approaches to recognizing a user’s activities. At a high level, regard-

ing the sensors themselves there are two main approaches: photic tracking and kinetic

tracking. Photic tracking makes use of technology which senses based on light, whether

visual, infrared, or otherwise. Kinetic tracking makes use of technology which senses

based on physical properties like position, velocity, or acceleration. Both approaches are

appropriate for different applications, but kinetic tracking often enjoys a higher degree of
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information granularity. This survey focuses on kinetic tracking. Within kinetic track-

ing itself, there is a distinction between sensor placement approaches: dense sensing and

wearable sensing. Dense sensing entails placing sensors on items in the environment that

the user is expected to interact with. Wearable sensing, instead, places the sensors on the

user’s body itself. Due to issues of scalability and feasibility, dense sensing is usually only

appropriate for small, specific problems. For larger, more open-ended problems, wearable

tracking is more universal viable. However, having more universal data unattached to any

specific object means that the challenge is to accurately recognize what the user is doing,

based only on their movements. This research looks specifically on wearable sensing.

Results from activity recognition studies are largely encouraging, reinforcing that the

field is worth pursuing. There is great potential for activity recognition technology to

play a beneficial role in daily life, especially as pervasive computing becomes more of a

widely-adopted reality.
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3. SYSTEM IMPLEMENTATION

3.1 Data Collection

When conducting this research, it was important that we use a system configuration

that is easy and affordable. That is, we be using instruments no more advanced than what

is readily available—and common—for an average user. With this in mind, we chose to

use a combination of a Pebble smart watch [49] and an Android smart phone. The Android

phone was selected not only for being the most common mobile platform, but also for its

convenient application development tools. The Pebble watch was selected as it is a good

representative of the caliber of wearable sensors on the market today. Specifically, the

Pebble contains a 3-axis accelerometer (see Figure 3.1) capable of registering up to ±4 G.

The 3-axis accelerometer is all we need to effectively recognize directional motion. Fur-

thermore, as the arm is the primary actor in a seatbelt-fastening motion, a wrist-mounded

sensor is desirable. For upper body and arm activity recognition, wrist-mounted sensors

are recommended by literature [11, 32, 33, 46].

To facilitate data collection and real-time testing, we developed two applications: a

lightweight Pebble application and a heavyweight Android application. These applications

communicate using Bluetooth. The Pebble application is very simple—its only purpose is

to read the current value of the accelerometers and broadcast that data. The app broadcasts

5 packets per second, wherein each packet contains 5 samples. This results in a 25 Hz

accelerometer sample rate.

When the Pebble application broadcasts a data packet, the Android application collects

it and must decide what to do with it. The application has two modes: “collect” mode and

“test” mode. These modes are explained in the following two paragraphs, and the high-

level process diagram of this application is shown in Figure 3.2.
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Figure 3.1: Diagram showing the conventional orientation [50, 51] of the three axes of
wearable accelerometers.

The “collect” mode was developed first. The purpose of this mode is simply to collect

raw accelerometer data during user studies. This motion data is stored locally on the An-

droid device, which can then easily be offloaded to a computer to allow for researchers to

manipulate and analyze the data. One of the biggest upfront costs when preparing data to

train machine learning models is labeling. The training data must be labeled according to

the ground truth. In our case, the data should be labeled according to whichever activity

the user was performing at the time of collection. In the first iteration of the application

used for Phase I (see chapter 4) and of our research, the application recorded only the sen-

sor data of the Pebble watch along with a timestamp for each sample. The user id and the

activity needed to be labeled by manually. To improve this process in Phase II (see chap-

ter 5) of our work, a text field and a button were added to the application. The text field

allowed the researchers to type notes describing the sample, which would be appended to

every sample. The button allowed the user to mark precisely the timespan in which the
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Figure 3.2: The process diagram of the Android application used for both data collection
and real-time activity recognition.
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Figure 3.3: The Android application in “collect” mode, used for collecting training data.
The text box at the top of the screen allows the researcher to make notes. The button at
the bottom of the screen allows the researcher to indicate that the user is currently in the
process of buckling their seatbelt. The application collects data so long as the “Use Pebble
app” box is checked.

user was buckling their seatbelt. Whenever the button was held down, the corresponding

samples would be automatically labeled as “Buckling”. These improvements greatly in-

creased the efficiency of data handling. A screenshot of the application in “collect” mode

is shown in Figure 3.3.

The “test” mode was developed later in the research process as a way to test the real-

time performance of our model, specifically during the real-time portion of Phase I (see

chapter 4) and all of Phase II (see chapter 5) of our work. In “test” mode, our classifier

is loaded onto the Android device itself. Now, not only does the application collect the
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raw data points, but it can also runs our recognition algorithm: processing the data points,

generating features, and classifying the activity (this algorithm is discussed in more detail

in the three following methodology chapters: Phases I & II). In this case, when the Android

application receives a data sample, it is automatically labeled as “testing”—a placeholder

indicating that we are not actually recording the user’s activity, since this is a real-time

test. Here, the goal is to make sure our recognition algorithm is performing properly,

making note of successful classifications and failed classifications as they arise. As such,

when the application is in test mode, we record not only the raw data points, but also the

processed features (more on this later) and the performance in terms of true positives, false

positives, and false negatives, as explained in the next section. Just as with the “collect”

mode, there is a text field allowing for notes and a button; however, the button now exists

for the user to manually notify the application that they buckled their seatbelt, in case the

recognition failed to recognize it. Screenshots of the application in “test” mode are shown

in Figure 3.4. Although “test” mode is primarily intended for trying out the recognition

algorithm in real time, it can still serve to provide data useful for training the model further.

As mentioned prior, data in this mode is not explicitly labeled. However, since the time

windows of true positives and false negatives are recorded, these windows can be cross-

referenced with the raw data to deduce when the user was buckling.

3.2 Machine Learning

With adequate data, we must focus on the machine learning process itself. That being:

if we feed our “machine” a lot of examples of both “buckling” and “not buckling” data,

would it be able to identify whether a new, unknown piece of data represents buckling?

Here, we introduce the notion of “features”. When we have a chunk of accelerometer

data, we must reduce it to some notable attributes which describe that chunk of data.

For example, we could calculate the average value and standard deviation of each axis.
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(a) The text box at the top of the screen al-
lows the user to make notes. The button at
the bottom of the screen allows the user to
indicate a false negative (they buckled their
seatbelt but the application failed to recog-
nize the motion).

(b) A pop-up is shown when the classifi-
cation algorithm detects a buckling motion.
The user has the option to mark the recogni-
tion as a true positive (they did buckle) or a
false positive (they did not buckle).

Figure 3.4: The Android application in “test” mode, used for testing real-time recognition.
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These attributes serve as the identifying features for that chunk of data, and these are the

values on which machine learning models are trained. The features used in classification

play a tremendous role in the effectiveness of the algorithm, and much of our work goes

toward creating and identifying the most useful features. This is discussed in detail in the

methodology chapters: Phase I and Phase II.

To easily test and compare different models and parameters, we use the Waikato En-

vironment for Knowledge Analysis, often abbreviated as WEKA [52–54]. WEKA is a

very powerful open-source tool developed at the University of Waikato in New Zealand,

containing pre-built foundations for many popular machine learning models, such as k-

Nearest Neighbors, Bayesian Classification, Decision Trees, and even some basic Neural

Networks. WEKA allows us to load our training data, visualize trends, and pick which

features we want to use. To run a classifier, we can choose a model from an extensive

list, customize the parameters of the model, pick an evaluation technique (including the

train/test split method), and run it. This process provides rapid results as to the effective-

ness of different model.

3.2.1 Classifiers

The model is the heart of machine learning. Most commonly, machine learning is used

to generate classification models or regression models. Regression models act as contin-

uous functions, where multiple input values (features) are condensed to a single numeric

output. Classification models also take in multiple input values (features), but outputs a

specific class, chosen from a pre-defined list. As our goal is to classify a motion as “buck-

ling” or “not buckling”, we concern ourselves with classification models. While we elect

not to go into great detail on the inner workings of WEKA, but this section provides some

high-level explanations of the classifiers which we used in our experimentation. We fo-

cused primarily on seven classification algorithms, based on trends in prior literature [10].
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Unless otherwise stated, the classifiers were run according to their default configurations

[52].

3.2.1.1 k-Nearest Neighbors

The k-Nearest Neighbors (k-NN) classifier, when presented with a test sample, will

classify it according to the train samples which are “closest” to it [10, 40]. Conventionally,

the distance between samples is calculated using Euclidean distance. k-NN relies on the

intuition that similar samples will be of the same class, i.e., that classes can be expected

to form clusters. k is significant in that it defines how many neighbors a test sample is

compared with. In 1-NN, the test sample is assigned the class of the closest train sample.

In 5-NN, the test sample is assigned whichever class appears the most among the 5 closest

train samples. The choice of k can have a large impact on the effectiveness of k-NN. In

WEKA, the implementation of k-NN is called IBk, short for Instance-based k-NN [55, 56].

The default setting is 1-NN, but can be easily changed. WEKA also provides a “cross

validate” option which uses hold-one-out cross validation to determine the best k.

With k-NN especially, normalizing data is important. For instance, if the domain of

feature a was significantly larger than the domain of feature b, then feature a would play

a disproportionate role when the distance between samples was calculated, and feature

b would become effectively meaningless. Fortunately, WEKA provides a lot of control

over how distance is calculated. By default, features are automatically normalized, and

Euclidean distance is used. We keep these settings.

3.2.1.2 C4.5 Decision Tree

The C4.5 classifier constructs a decision tree, where each “split” represents a threshold

for a particular feature [10, 38]. The leaf nodes of this tree represent the final classification.

This classifier can be especially useful, as it can be easily modeled in code using nested

if-else statements. This makes C4.5 a good, lightweight option for mobile devices with
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limited computational resources. In WEKA, the implementation of C4.5 is called J48

[57, 58]. WEKA allows for configuration of the tree pruning process, but we choose to

use the default configuration.

3.2.1.3 Multilayer Perceptron

A Multilayer Perceptron classifier is a classic type of neural network with an input

layer, an output layer, and hidden layers in-between [38, 59]. In our case, there is an input

node for every feature, and a single binary output node indicating the class. Like many

neural networks, Multilayer Perceptron uses backpropagation to optimize the network.

While Neural Networks can often yield higher accuracies, but require a lot of computation

to train. WEKA allows researchers to define the structure of the network’s hidden layers.

Researchers may add as many layers as they see fit, with however many nodes they see fit.

WEKA also provides four wild-card values for specifying layer size: a, i, o, and t.

• a = 1
2
(num. features + num. classes)

that is, the average of the size of the input layer and the size of the output layer

• i = num. features

that is, the size of the input layer

• o = num. classes

that is, the size of the output layer

• t = num. features + num. classes

that is, the total of the size of the input layer and the size of the output layer

The default configuration for Multilayer Perceptron in WEKA contains a single hidden

layer of size a, but there is no limit as to the possible width or depth of the network.

WEKA also normalizes the training data, by default, though this can be disabled.

31



3.2.1.4 Naive Bayes

The Naive Bayes classifier is built upon Bayes rule. Using conditional probabilities

calculated from the features of the training samples, the class of a test sample is decided

according to which is most likely. This process assumes that every feature is independent,

even though they almost certainly are not (hence the descriptor naive). As such, this could

lead to errors when dealing with highly-correlated features [10, 45].

3.2.1.5 Random Forest

The Random Forest classifier works by constructing a series of decision trees, with

each tree based on a random subset of the training data [11, 60–63]. Each of these trees is

based on WEKA’s REPTree classifier. When classifying a new sample, each tree generates

a prediction. The trees vote, and the sample is assigned the data point with the most votes.

3.2.1.6 Support Vector Machine

A Support Vector Machine (SVM) attempts to find an optimal hyperplane which sepa-

rates the training samples in multi-dimensional space [10, 11]. Then, classification can be

performed according to those features which are most helpful in separating the two sides

of the plane—corresponding to the “support vectors” which appear along the hyperplane.

In WEKA, the implementation of SVM is called SMO, based on John Platt’s sequential

minimal optimization (SMO) algorithm [64–67]. WEKA allows the specification of the

underlying calibrator. By default, this is logistic regression. We keep this, as it aligns with

convention.

3.2.1.7 ZeroR

The ZeroR classifier is a rudimentary classifier which classifies every new point as the

class most common among the training data [38, 68]. ZeroR is most commonly used as a

type of “straw man” classification. That is, ZeroR provides a baseline accuracy measure-
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ment against which we can compare the accuracy of other classifiers. A classifier could

not reasonably be considered useful unless the accuracy at least exceeds that of ZeroR.

The name of ZeroR arises from the fact that zero features are used in the classification. In

comparison, there exists a OneR classifier which classifies samples based on the value one

feature alone.

3.2.2 Testing

Once we’ve chosen a classifier, we can feed it our data. Each entry of this data is

labeled either “buckling” or “not buckling”. WEKA will use this data to train the classifi-

cation model to identify buckling. That is, WEKA will automatically tune the parameters

of these models such that they align with the data as much as possible.

However, we need a method of testing these models. Specifically, we need data that

we can use to test the effectiveness of our newly-trained classifiers. Enter the concept of

a “train-test split”. We have a finite amount of data from our user studies. Obviously, we

want to use this data to train our models—the more data, the better. However, we must

withhold some of this data so that we can use it to test our models. This withheld data is

called “test” data, and the rest of it is called “train” data.

Remember, a classifier is a function which will output a class when given a data sample

(which contains a bunch of features). Each of our data samples is labeled with the ground

truth—either buckling or not—based on the data collected by the researchers during user

studies, and this is what our classifiers are trying to predict. When we train a classifier,

WEKA tunes it such that it gets as many of these predictions right as possible. However,

this alone is not enough to judge how good the model is. Often, a model can be tuned so

well that it gets every prediction right. We must test our model on unseen data, i.e., data

that wasn’t used during the process of training the model. Testing on unseen data ensures

that our models generalized well, meaning that they recognize the underlying patterns of
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seatbelt buckling in general, not just learning the specific details of the test samples that

were provided. This train-test split is central to machine learning. Comparing the predicted

test classes with the actual test classes is how we evaluate the quality of our models.

WEKA provides four different options for testing:

• “Use training set”: This option evaluates the model on the train set alone. There

is no test set in this mode. As already mentioned, this is a poor method of model

evaluation. The model is tuned on train data, so its performance on that data will be

very high, often 100% perfect. This option is useful only for judging how well the

model is fitting the training data before testing occurs.

• “Supplied test set”: This option allows us to upload a train data set separately from

the test data set. Here, the model is trained on our train data, and tested on our test

data. This is the classic method of machine learning model evaluation. However, we

must manually split our data set into train and test data before uploading to WEKA.

• “Cross-validation”: This option uses a technique known as k-fold cross validation.

In k-fold cross validation, the data set is split into k equal parts, or folds. The model

is then trained k times, where the test data will be one of the folds, and the train data

will be the rest of the folds. Each of these iterations generates a result, and all of

these results are aggregated into the final result. Figure 3.5 provides a visualization

of 5-fold cross validation. A value of k = 10 is fairly common, and this is what we

use. The name “cross validation” may be confusing in this sense, as we are testing,

not validating. Perhaps a better way to think about it would be “cross testing”.

These points which go into these folds are selected randomly. That is, the data set

is shuffled, and the test fold is selected using stratified sampling, meaning that the

test fold will share the same distribution as the rest of the data. Cross validation is

beneficial because it equalizes the variation in performance across the folds, giving
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a better understanding of how the model performs across the data in general, rather

than on just a single subset of the data.

• “Percentage split”: This option is similar to the “supplied test set” option in that the

data is split into a train set and a test set. However, instead of manually splitting the

data and uploading two files, this option allows us to upload a single file containing

our data set and specify a percent at which to split our data into train and test data.

For example, a percentage split of 66% indicates that 66% of the data set will be-

come train data, and the remaining 34% will become test data. The data that does

into each of these set is shuffled and selected using stratified sampling, meaning

that the train and test sets will maintain the distribution of the original data. How-

ever, there is an option to preserve the order of the data, in which case the first 66%

becomes test and the last 34% becomes train.

Cross validation with k = 10 is the default option in WEKA, and we use it for all of

our evaluations unless specified otherwise.

3.2.3 Metrics

Of course, this work ultimately comes down to the effectiveness of our classification

algorithm, which uses a model generated by machine learning techniques. To measure

the performance of our model, we must compare the predicted activities with the actual

activities (the ground truth). When comparing a predicted value with an actual value, there

are four possible outcomes: a true positive, a true negative, a false positive, and a false

negative. These terms are relative to whatever activity we consider to be “positive”. In our

case, we care the most about how well our model recognizes “buckling”, so “buckling”

is considered positive, and “not buckling” is considered negative. If the model correctly

predicts an instance of “buckling”, this is a true positive. If the model correctly predicts

an instance of “not buckling”, this is a true negative. If the model incorrectly predicts
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Figure 3.5: A demonstration of 5-fold cross validation. As there ate 5 folds, there are in
turn 5 iterations. The results from each of these iterations are aggregated into the final
result.

Prediction Ground Truth Result
Buckling Buckling TP True Positive
Not Buckling Not Buckling TN True Negative
Buckling Not Buckling FP False Positive
Not Buckling Buckling FN False Negative

Table 3.1: Terms used when evaluating a model’s performance on “buckling” recognition.

“buckling” when the instance was actually “not buckling”, this is a false positive (also

known as a type I error). If the model incorrectly predicts “not buckling” when the instance

was actually “buckling”, this is a false negative (also known as a type II error). These

outcomes are detailed in Table 3.1.

When testing our model, it is very important to choose an appropriate evaluation met-

ric. A classic metric is accuracy. Accuracy is often the default metric due to its simplicity

and comprehensibility. Accuracy represents the percentage of correct predictions among

the test data (see Equation 3.1).
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Accuracy =
TP + TN

TP + TN + FP + FN
(3.1)

While accuracy is helpful, it often fails to give an satisfactory depiction of perfor-

mance. To build a more complete representation of performance, consider the notions of

precision and recall. Precision represents how many of the positive classifications were

actually positive (see Equation 3.2). Recall represents how many of the positive test sam-

ples were correctly classified as such (see Equation 3.3). Both precision and recall fall

within the range [0, 1], where 1 is the best possible value.

Precision =
TP

TP + FP
(3.2)

Recall =
TP

TP + FN
(3.3)

Calculating the harmonic mean of precision and recall results in the F-measure, also

known as F-score or F1 score (see Equation 3.4). As such, the range of F-measure is

[0, 1], where 1 is the best possible outcome. F-measure is especially useful in areas where

accuracy falls short. For example, an accuracy measure is biased toward data categories

with greater representation. This is important to recognize in our problem: the majority

of data collected will be “not buckling” data, whereas only a small portion of data will be

“buckling” data. If a model were to simply classify everything as “not buckling”, it would

benefit from a very high accuracy, though it failed to recognize any instances of buckling.

For this reason, F-measure is much more useful. The F-measure for “buckling” will be

indicative of how well the model classified “buckling”, independent of the “not buckling”

performance. In our research, the “buckling” F-measure will be our primary metric of

evaluation.
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F-measure =

(
Precision−1 + Recall−1

2

)−1

= 2

(
Precision · Recall
Precision + Recall

)

=
2 TP

2 TP + FP + FN

(3.4)
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4. STUDY PHASE I∗

This chapter details the research surrounding our first user study. In section 4.1, we

describe the study itself. In section 4.2, we conduct feasibility testing to see whether

seatbelt motions are unique enough to be classified. In section 4.3, we conduct advanced

testing to try and get better results by using observations from the data. In section 4.4,

we conduct real-time testing to assess our algorithm’s ability to perform in real-world

environments.

4.1 User Data

When we began studying seatbelt activity, we first wanted to ensure that a seatbelt-

buckling motion could be feasibly distinguished from other similar patterns of motion.

With this in mind, we developed our first study. A seatbelt-buckling motion generally con-

sists of an arm-raising motion (wherein the user reaches up and grab the seatbelt) followed

by an arm-lowering motion (wherein the user brings the seatbelt back down and buckles

it in). Naturally, our study would request participants to buckle their seatbelts; however,

participants were also requested to perform a number of “control motions”. Specifically,

users were requested to perform the following actions:

• Buckling a seatbelt.

• Removing something from a shirt pocket.

• Putting a phone in a pants pocket after sending a text.

• Putting a phone in a pants pocket after ending a phone call.

• Putting on a backpack.
∗Part of the data reported in this chapter is adapted with permission from “Recognizing Seatbelt-

Fastening Activity Using Wearable Sensor Technology” by Jake Leland and Ellen Stanfill, 2017 [69].
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• Taking off glasses/sunglasses.

• Putting on a jacket.

• Reaching up and touching one’s face or adjusting hair.

These control motions were carefully chosen to mimic the arm-raising/arm-lowering

pattern of seatbelt motion. Presumably, if a seatbelt motion is distinguishable from the

other control actions, the recognition is worth pursuing further.

This stage of the study collected data from twelve mixed-age research participants

(five female, seven male). Users buckled their seatbelt 10 times, then performed each of

the seven control actions 5 times. Here, data was collected in a discrete fashion, meaning

that data was collected only for the duration of the action itself—the researcher started

data collection, directed the participant to perform the action, then stopped data collection.

Although this is not truly representative of natural motion patterns, but it provided a good

baseline to start comparing isolated instances of actions and making distinctions.

Once we began conducting user studies, it became apparent that that users fasten their

seatbelts in primarily three different ways:

1. Reaching up with their left hand, then bringing the seatbelt all the way down to

buckle it.

2. Reaching up with their right hand, then bringing the seatbelt all the way down to

buckle it.

3. Reaching up with their left hand, transferring the seatbelt from their left hand to

their right hand, then fastening the buckle with their right hand.

This realization added a degree of complexity to our study, especially considering that

only one wrist is being monitored by sensors. To provide data samples as uniform as
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possible, the user was directed to wear the Pebble watch on whichever arm they used to

perform the initial upward reach, as this arm is most important in performing the charac-

teristic arm-raising/arm-lowering motion.

At the end of collection, we had sampled a total of 120 examples of buckling, plus 60

examples of each additional activity, for a total of 540 distinct samples.

4.2 Feasibility Testing

Before diving too deep into creating the “perfect” model for our classification, we

opted to first conduct a sort-of feasibility test. Here, we take the most basic approach

to classifying our data, using only a few arbitrary and conventional configurations. This

bare-bones approach was not expected to perform remarkably, but was at least expected to

give a basic sense of whether the problem was worth pursuing further, before we devoted

too much time toward investigating the data.

4.2.1 Data Processing

With the Pebble watch’s accelerometers providing data at a rate of 25 Hz, our user

study provided a large amount of raw data. In its raw form, this data is not immediately

useful. To use machine learning, we must extract features from the data. However, before

we can extract features, we must clean it up. This step is often referred to as “preprocess-

ing” [15], or simply “processing”. Note that feature generation may also be considered

part of the processing step, but we make a distinction.

4.2.1.1 Sorting

Due to the nature of Bluetooth transmission from the Pebble watch to the Android

phone, the data packets often arrive out-of-order. When the Android application receives

the raw data packets from the Pebble application, it immediately appends them to a list,

which is subsequently written to a CSV file. As such, the samples in this list are ordered
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according to when the Android received the sample, rather than when the Pebble recorded

the sample. Fortunately, the Pebble watch records a timestamp along with every data

sample. Whenever the CSV file is extracted from the Android phone, we must sort the

data according to this timestamp before proceeding with anything else.

4.2.1.2 Uniquification

Also due to the nature of Bluetooth transmission, there is a high level of redundancy

when sending data. This is to guard against data loss. Again, the Android application

writes all of this information directly to a CSV file. As such, duplicate samples appear

often in this list. These duplicate entries are not only unnecessary, but can actually interfere

with later processing and feature extraction. For this reason, we must “uniquify” the data,

i.e., remove duplicate entries from the list of samples.

4.2.2 Extracting Features

Once our data has been processed, we can begin to extract features from the data.

Briefly introduced in chapter 3, features are the identifying characteristics of a chunk of

data. Machine learning models learn to classify chunks of data according to their fea-

tures, so feature selection is very important. Herein lies the creativity of machine learning:

researchers suggest features which they believe may provide useful information for their

particular classification problem. These features may come from classic, well-established

statistical features, or they may be invented from scratch to better capture unique patterns

in the data.

4.2.2.1 Feature Window

The notion of a “chunk”—or “window”—of data is also important to establish. Con-

ventional machine learning models view only one small window of data at a time, pre-

dicting a class for that particular window before moving on to the next. Depending on the
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classification problem, it may make sense for a model to classify a particular activity for

multiple windows in a row. For example, a few-second window of data may be enough to

recognize if a user is running, but there could be many consecutive “running” windows.

Conversely, for an action that occurs in a discrete moment, like buckling a seatbelt, the en-

tire action may fall within the timeframe of one window. Clearly, the size of the window

can have a large impact on recognition, as the window size becomes the fundamental unit

of time, with each of these units being classified—in our case, being identified as either

“buckling” or as “not buckling”.

At this stage of our research, we pick a 0.5-second window. This window size is

completely arbitrary, as we are only performing feasibility testing. Later, during advanced

testing (see section section 4.3), we select a window size that is founded in the data.

4.2.2.2 Feature Set

Once a window size has been established, we can extract features from the window.

As mentioned prior, these features can be very simple (such as basic statistical properties)

or very complex (such as custom properties based on the appearance of the data). The

creation and selection of features is a core part of machine learning, and is one of the

primary aims of this research. Based on the work of Figo et al., we direct our efforts

toward time-domain features [15].

Again, as we are performing only feasibility testing thus far, we choose a handful of

basic statistical features. These features are detailed by Equation 4.1–Equation 4.12 below.

Table 4.1 also gives a concrete example of how a 0.5-second window of data (Table 4.1a)

is converted to a feature vector (Table 4.1b).

µX , µY , µZ : This is the average value of the points on each axis.

µX =
1

n

n∑
i=1

xi (4.1)
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µY =
1

n

n∑
i=1

yi (4.2)

µZ =
1

n

n∑
i=1

zi (4.3)

xmin, ymin, zmin: This is the minimum value found on each axis.

xmin = min
x1...xn

X (4.4)

ymin = min
y1...yn

Y (4.5)

zmin = min
z1...zn

Z (4.6)

xmax, ymax, zmax: This is the maximum value found on each axis.

xmax = max
x1...xn

X (4.7)

ymax = max
y1...yn

Y (4.8)

zmax = max
z1...zn

Z (4.9)

X × Y , X × Z, Y × Z: These “multiplication” operations were performed by pairwise

multiplying the axes together, which resulted in a product axis, then taking the average of

that axis. This operation approximates a crude representation of correlation.
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X × Y =
1

n

n∑
i=1

xiyi (4.10)

X × Z =
1

n

n∑
i=1

xizi (4.11)

Y × Z =
1

n

n∑
i=1

yizi (4.12)

4.2.3 Evaluation

Using the 12 features outlined above, we ran the seven classifiers described in sec-

tion 3.2. The accuracy results are shown in Table 4.2.

While these results seem nice, it is important to remember that accuracy is often not a

very good metric to use for evaluating performance in the case of unbalanced data. Also

note that ZeroR yields a 79.0% accuracy, so this is our baseline. As already described

in section 3.2, we elect to use F-measure as our primary means of evaluation. Table 4.3

shows the F-measures of each of the seven classifiers. Remember that there is a different

F-measure for each class, effectively telling us how well the model performs for that case

specifically.

It is also useful to investigate the confusion matrix of each classifier, as this provides

insight into the types of errors that are occurring. Table 4.4 demonstrates the general

format of a confusion matrix. For the sake of readability, we do not include the confusion

matrices within the body of this text; however, they are all included in the appendices. The

confusion matrices for each of the seven classifiers are shown in Table A.1–Table A.7.

Based on these results, Random Forest performed the best. However, no classifier

performed particularly well. The confusion matrices revealed a lot of errors, both false
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Time Epoch (ms) X (mG) Y (mG) Z (mG) Activity
1479433861850 173 93 -1064 Buckling
1479433861900 33 163 -734 Buckling
1479433861940 -125 221 -393 Buckling
1479433861980 -221 204 -307 Buckling
1479433862020 -385 326 -91 Buckling
1479433862060 -809 245 419 Buckling
1479433862100 -554 -168 464 Buckling
1479433862140 -707 3 512 Buckling
1479433862180 -715 25 618 Buckling
1479433862220 -736 484 591 Buckling
1479433862260 -327 844 2522 Buckling
1479433862300 -673 -413 996 Buckling
1479433862340 -684 -1 838 Buckling

(a) A 0.5-second window of raw Pebble sensor data, including a timestamp (measured in millisec-
onds), the accelerometer values for each axis (measured in milli-Gs, where G is standard gravity),
and the class.

Feature Value
Average X -440.769230769
Average Y 155.846153846
Average Z 336.230769231
Minimum X -809.00
Minimum Y -413.00
Minimum Z -1064.00
Maximum X 173.00
Maximum Y 844.00
Maximum Z 2522.00
X × Y -68692.1893491
X × Z -148200.177515
Y × Z 52400.2721893
Activity Buckling

(b) The features generated from the 0.5-second window of data.

Table 4.1: An example of a window of raw data points being converted to a feature vector.
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Classifier Accuracy
IBk 88.4%
J48 86.7%
Multilayer Perceptron 87.8%
Naive Bayes 84.7%
Random Forest 90.1%
SMO 85.0%
ZeroR 79.0%

Table 4.2: Classifier accuracies for Phase I feasibility testing.

Classifier Activity F-measure

IBk
Buckling 0.727
Not Buckling 0.926

J48
Buckling 0.702
Not Buckling 0.914

Multilayer Perceptron
Buckling 0.716
Not Buckling 0.922

Naive Bayes
Buckling 0.685
Not Buckling 0.899

Random Forest Buckling 0.760
Not Buckling 0.938

SMO
Buckling 0.604
Not Buckling 0.907

ZeroR
Buckling 0.000
Not Buckling 0.883

Table 4.3: Classifier F-measures for Phase I feasibility testing.

Positive Negative ← classified as
TP FN Positive
FP TN Negataive

Table 4.4: General format of a confusion matrix.
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negatives and false positives.

That said, great results were not the goal of this stage of testing. We were testing

whether this classification task was feasible at all. Though our results are not great, they

are promising. There is potential for future models to recognize seatbelt motion.

4.3 Advanced Testing

Feasibility testing confirmed that seatbelt motion was recognizable. The next step was

to study the data more closely, make more intelligent parameter decisions, and extract

more useful (and novel) features.

4.3.1 Data Processing

4.3.1.1 Smoothing

When observing graphs of our raw accelerometer data (see Figure 4.2a), it became

apparent that the data was very noisy. Moving forward, we choose to “smooth” the data

as part of our processing step.

At a rate of 25 Hz, the Pebble watch sensors provide a high level of data granularity.

While this is not inherently bad, it can result in data that is too noisy for our application.

That is, while sensitive motion data may be useful for more detailed observations, it is less

useful in our case. The motions involved when buckling a seatbelt are large, sweeping

gestures, so we are much more concerned with the broad, high-level view of the data.

Concretely, we care more about the gross motion of the arm than we do the fine tremors

of the hand. In this case, such fine detail manifests itself mostly as noise. To ensure that

our models focused more on the broad motions and avoided over-fitting on tremors, we

ran our data through a smoothing function before extracting features (see Figure 4.2b), as

recommended by literature [15]. This served two purposes:

1. The smoothing function filtered out fine movements and other anomalies, leaving
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only the broad motions that we were most concerned with.

2. The smoothing function made it easier for us to visually analyze graphs of the data,

identifying motion patterns as well as potential features.

We used a rolling average (also called a moving average) function to implement smooth-

ing. At a high level, a rolling average function works by averaging each point with some

of its neighboring points. The number of points included in each averaging is defined as

the window size w. Note that this window is distinct from the window used in feature

generation. This means that each data point p will be replaced with the average of itself

and the w− 1 surrounding points (with p centered in the window). This process is defined

by Equation 4.13 and is visually demonstrated in Figure 4.1.

To smooth point pi (the ith data point of axis p) using window size w:

p′i =
1

w

i+⌊w−1
2

⌋∑
j=i−⌈w−1

2
⌉

pj (4.13)

The rolling average window size w determines the balance of a trade-off between noise

and information. If w is too small, the function will fail to remove noise. Conversely, if w

is too large, the function will crudely remove important information. In the earlier stages

of our research, we arbitrarily set w = 10. This was selected with the initial intent of as-

sisting with visual examination. A window size of 10 appeared to reduce noise sufficiently

without masking important information. The effect of w = 10 data smoothing on three

different buckling instances is shown in Figure 4.2. Later, we will select w more carefully.
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Figure 4.1: Demonstration of how a rolling average function works to smooth data. This
graphic shows a window size w = 3. The colors exist for visual clarity and bear no
significance.

4.3.2 Extracting Features

During feasibility testing, the traditional features that we used were very generic, and

not very specific to the seatbelt motion itself. To better model features for this data, we

plotted individual instances of buckling and began to look for patterns which might inspire

custom features.

One of the first things that we identified in the data plots was the distinctive arm-raising

and arm-lowering motion. This effectively forms two "halves" to the motion: raising

followed by lowering. Note that because the user wore the watch on the arm that they

use to grab the seatbelt, this general structure holds regardless of how the user buckles

their seatbelt. An example of a seatbelt buckling motion is shown in Figure 4.3, with the

arm-raising period and arm-lowering periods highlighted.

4.3.2.1 Feature Window

Also, when investigating seatbelt motion, it became clear that the arbitrarily-picked

feature window size of 0.5 seconds was not very appropriate for recognizing a seatbelt

motion. Given the nature of seatbelt buckling, the activity is more of a distinct, contained

motion that occurs once. As such, it would be more beneficial if the entire motion could fit
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(a) Raw accelerometer data, as recorded by
the Pebble watch.

(b) Smoothed accelerometer data, using a
rolling average with window size 10 points.

Figure 4.2: The 3-axis accelerometer data corresponding to three separate instances of
seatbelt buckling, before and after the smoothing function.
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Figure 4.3: A plot of smoothed accelerometer data for one instance of buckling. The
first “half” of the data corresponds to the period where the user lifts their arm to grab the
buckle. The second “half” corresponds to the period where the user lowers their arm to
fasten the buckle. The data shown in this graph was smoothed by rolling average with
window size 10.

52



within a single window. With this in mind, we expanded the window size from 0.5 seconds

to 5 seconds. The choice of 5 seconds was somewhat arbitrary, but based roughly on the

average duration of the seatbelt motions observed.

Additionally, we identified the need for sliding windows. With such a large window

size of 5 seconds, if we were to split our data evenly into 5-second chunks, there would be

a high level of variation as to the position of seatbelt motions within that 5-second window.

Put more simply, a seatbelt motion would likely not be centered in the window, and there is

a chance of a seatbelt motion “straddling” two windows. Using sliding windows mitigates

this risk by allowing windows to overlap. In our case, we chose a 3-second window

overlap, meaning that each new window will overlap the previous by 3 seconds, i.e., a new

window will be created every 2 seconds. This is illustrated in Figure 4.4. With this, there

is a greater level of uniformity between each occurrence of seatbelt buckling, in relation to

where the motion falls within the range of the window. For now, the overlap amount was

selected arbitrarily. Later in our research, we select the window size and window overlap

more analytically.

4.3.2.2 Window Splitting

Our window now fit to the entire seatbelt gesture more appropriately. However, if the

entire gesture fits within a single window, we lose the ability to differentiate between the

first half of the window and the second half of the window. To better capture the arm-

raising and arm-lowering stages of the gesture, we needed to isolate the first and second

half of the data. To accomplish this, we calculated all of our features twice more: once

over the first half of the window, and once over the second half of the window. We call this

“feature splitting”—in this case, the window is split in half. Combined with the original

feature calculations performed over the entire window, this leaves us with triple the initial

feature count.
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Figure 4.4: An illustration of the sliding window used when extracting features from the
accelerometer data. The sliding window shown has a window size of 5 seconds and a
window overlap of 3 seconds. In this example, the buckling instance falls within the fifth
window, and is highlighted accordingly.
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4.3.2.3 Feature Set

Plotting the gestures helped to reveal where the initial features fell short, and it helped

to generate ideas for new features. We needed novel features which corresponded more

directly with the seatbelt activity. Consider Figure 4.3. While the arm is being raised,

the Y and Z axes appear similar in value. While the arm is being lowered, the X and Y

axes appear similar and value. Throughout the gesture, the X and Y axes appear directly

related, while the Z axis appears inversely related.

With this in mind, we created 8 novel features, shown in Equation 4.14–Equation 4.21

below. In each case, the formulas are applied pairwise, effectively generating a new axis.

The average value of this axis is taken as the feature value. As with the previous features,

these were calculated three times each: once over the first half of the window, once over

the second half of the window, and once over the entirety of the window.

X − Y , X −Z, Y −Z: This is the average difference between each pair of axes. Based

on the observation that certain axes appear very close in value during certain parts of the

window, we added features representing the differences between the axes, effectively mea-

suring how close they were. Note that this value may be positive or negative, depending

on which axis is “on top”.

X − Y =
1

n

n∑
i=1

xi − yi (4.14)

X − Z =
1

n

n∑
i=1

xi − zi (4.15)

Y − Z =
1

n

n∑
i=1

yi − zi (4.16)
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|X − Y |, |X − Z|, |Y − Z|: This is the average of the absolute difference between

each pair of axes. This is almost identical to the previous features, except that we take an

absolute value. This truly measures how close the axes were, without regard for which

axis was “on top”.

|X − Y | = 1

n

n∑
i=1

|xi − yi| (4.17)

|X − Z| = 1

n

n∑
i=1

|xi − zi| (4.18)

|Y − Z| = 1

n

n∑
i=1

|yi − zi| (4.19)

|X − Y | − |Y − Z|: This is the difference between the X-Y absolute difference and the

Y-Z absolute difference. This feature was based on the following observations:

• During the first half of the window, there exists a large difference between the X

and Y axes (large |X − Y | value) and a small difference between the Y and Z axes

(small |Y − Z| value).

• During the second half of the window, there exists a small difference between the X

and Y axes (small |X − Y | value) and a large difference between the Y and Z axes

(large |Y − Z| value).

Because these comparisons “flip” between the first half and the second half of the

window, observing the difference between the values could be an interesting feature.

|X − Y | − |Y − Z| = 1

n

n∑
i=1

|xi − yi| − |yi − zi| (4.20)
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Classifier Accuracy
IBk 99.8%
J48 97.9%
Multilayer Perceptron 100.0%
Naive Bayes 99.4%
Random Forest 99.4%
SMO 99.8%
ZeroR 89.2%

Table 4.5: Classifier accuracies for Phase I advanced testing.

||X−Y |−|Y −Z||: This is the absolute difference between the X-Y absolute difference

and the Y-Z absolute difference. This is closely related to the previous feature, but is now

the absolute difference, without respect to the order of the calculation. Theoretically, this

value should remain somewhat consistent between both halves of the window.

||X − Y | − |Y − Z|| = 1

n

n∑
i=1

||xi − yi| − |yi − zi|| (4.21)

4.3.3 Evaluation

With our new processing techniques and new features, we ran the same classifiers

again.

Looking at the accuracy results (see Table 4.5), we can already see that the models per-

form much better than before. All seem nearly perfect. However, we should be suspicious

of 100% accuracy.

Observing the reported F-measures (see Table 4.6) confirms that the models are per-

forming much better than before, with all Buckling F-measures at least 0.9. Again, how-

ever, we should be suspicious of the 1.0 F-measure.

Based on the confusion matrices (see Table A.8–Table A.14), we can see that our

models generally have very little error. False negatives occur slightly more frequently
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Classifier Activity F-measure

IBk
Buckling 0.990
Not Buckling 0.999

J48
Buckling 0.902
Not Buckling 0.988

Multilayer Perceptron Buckling 1.000
Not Buckling 1.000

Naive Bayes
Buckling 0.970
Not Buckling 0.996

Random Forest
Buckling 0.970
Not Buckling 0.996

SMO
Buckling 0.990
Not Buckling 0.999

ZeroR
Buckling 0.000
Not Buckling 0.943

Table 4.6: Classifier F-measures for Phase I advanced testing.

than false positives, presumably because our data set is more heavily weighted toward

“not buckling” data.

The confusion matrices also help to reveal why we are seeing “perfect” results. In

significantly expanding the size of the feature window (from 0.5 seconds to 5 seconds),

we in turn significantly reduced the number of training data points (from 3,459 samples to

472 samples). Given the complexity of our feature set, this is not enough data to generalize

well.

In spite of this, it is at least clear that our improved approach to data processing com-

bined with our novel features made a tremendous difference in classification performance.

We had realized the goal of the Phase I user study: to ensure that seatbelt motions were

distinguishable from other similar motions.
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4.4 Real-Time Testing

Before moving on, we paused to test the real-time validity of our approach. It was at

this time that we began developing the “test” mode of our Android application, referenced

in section 3.1. Up to this point, most of our data analysis was performed using Python

scripting. To integrate this into a real-time Android application, we translated our algo-

rithm into Java. This enabled the Android phone to extract features from data windows

in real time, as the data flowed from the sensor. While translating the basic algorithm is

simple, we must select a classifier that can be statically loaded onto the device itself. This

presents two challenges:

• The model should be capable of running in a reasonable amount of time given lim-

ited computational resources.

• The model itself should require minimal storage space.

With these two restrictions, we elected to use the J48 decision tree classifier for the

Android application. Though the J48 classifier did not perform the best, it is well-suited

for conversion into static code. When generating a J48 model, WEKA provides the actual

branching structure of the decision tree. This makes it easy to convert the model into a

series of if-else statements, which are very lightweight compared to importing a WEKA

model in its entirety.

With a classifier embedded in the application code, features can be processed as soon

as they are extracted from the data, and the application can classify the current activity as

either “buckling” or “not buckling”. Refer back to Figure 3.2 for a diagram of this process.

When the application detects buckling, it will notify the user. This provides an easy way

to check whether the recognition is working.
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4.4.1 Supplementary Data

When we first ran the application, it became immediately apparent that our models

were insufficient. Without moving at all, the application was continuously recognizing

seatbelt activity—it was completely unusable. In hindsight, this result should not have

been surprising. Recall the user study section 4.1: we collected discrete samples of seatbelt

buckling, plus a few other distinct activities. We had not collected any sort of data toward

the everyday, average patterns of motions that the Pebble watch would most frequently

experience. In our case, we had not collected any data of users standing still, so our

models had nothing to train against. It just so happened that our decision tree classified

stillness as “buckling”.

Given the lack of naturalistic training data, we could not expect our model to perform

in real time with any degree of feasibility. To correct this, we recorded a few minutes’

worth of naturalistic data ourselves: standing, walking around, climbing stairs, getting in

and out of a vehicle, etc. During this time we also buckled our seatbelts a few times, to test

real-time recognition. Note that this was not a formal user study. We, as the researchers,

simply supplemented the initial data set with some additional data to train against. This

type of data collection will be formalized in the next chapter.

4.4.2 Evaluation

As the application is always collecting data, even if it is in testing mode, we can offload

the data and test it offline alongside our initial training data. This allowed us to run all

seven classifiers again, this time with the supplemental data.

With the inclusion of this new data, accuracy metrics (see Table 4.7) dropped slightly.

While still in the 90% range, there is more variation, and there are no “perfect” classi-

fiers. Based on accuracy alone, Multilayer Perceptron still performs the best, though only

slightly. Again, accuracy measurements should not be the focus of our analysis.
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Classifier Activity
IBk 97.0%
J48 96.5%
Multilayer Perceptron 97.6%
Naive Bayes 90.4%
Random Forest 97.5%
SMO 97.3%
ZeroR 93.6%

Table 4.7: Classifier accuracies for Phase I real-time testing.

Classifier Activity F-measure

IBk
Buckling 0.775
Not Buckling 0.984

J48
Buckling 0.734
Not Buckling 0.981

Multilayer Perceptron Buckling 0.825
Not Buckling 0.987

Naive Bayes
Buckling 0.550
Not Buckling 0.946

Random Forest
Buckling 0.772
Not Buckling 0.987

SMO
Buckling 0.769
Not Buckling 0.986

ZeroR
Buckling 0.000
Not Buckling 0.967

Table 4.8: Classifier F-measures for Phase I real-time testing.
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Investigating the F-measures (see Table 4.8) and confusion matrices (see Table A.15–

Table A.21) reveals a better picture of the effects of adding some naturalistic data. There

is, across the board, a notable drop in the buckling F-measures. Now, we have values that

are more expected for real-world recognition scenarios. With an F-measure in the 0.80s,

Multilayer Perceptron again performed the best. However, all other classifiers are in the

0.70s or below. Clearly, there is great potential for naturalistic recognition, but more data

is needed to train the models effectively and to trust the results.
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5. STUDY PHASE II

This chapter details the research surrounding our second user study. In section 5.1, we

describe the study itself. In section 5.2, we conduct baseline testing to see how our existing

algorithm from Phase I performs on the new data. In section 5.3, we conduct advanced

testing to try and be smarter about how we choose model parameters. In section 5.4, we

conduct leave-one-out testing to assess how well our algorithm would perform on new

users. In section 5.5, we conduct dimensionality testing to investigate the size of our

feature set.

5.1 User Data

In Phase I of our study, we learned that seatbelt-buckling motions are distinguishable

from other similar motions. We also learned that lab-collected data is often not representa-

tive of real-world data. Supplementing our initial dataset with some semi-naturalistic data

revealed two things:

1. Our initial results were overly optimistic and didn’t translate to real-time perfor-

mance.

2. We would need a lot more naturalistic data if we wanted to build a reliable classifier.

With these findings, we set out to design a second user study. It was very important

that this study was naturalistic, i.e., more representative of the type of data that would be

collected by a smart watch in everyday scenarios. So, rather than giving the users a specific

course of action and starting and stopping collection for every instance of an activity, we

let the application run continuously. As such, the study consisted of the following:

• A lot of “ambient” data, such as walking, standing, opening doors, getting in and

out of the vehicle, etc.
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• At least 10 instances of the user buckling their seatbelt.

As the data was collected continuously, it was important that the researcher made note

of the times when the user was actually buckling their seatbelt. It was at this time we

redesigned our Android application to allow the researcher to hold down a button while

the user was buckling, thereby annotating the data in real time and making naturalistic data

analysis much more manageable section 3.1.

Fourteen users participated in this study. As before, this group was of mixed age

and gender. Six of these participants had participated in the Phase I study. This study

provided roughly an hour and a half worth of naturalistic data, during which there were

184 instances of buckling.

This study, combined with the Phase I study (plus the supplementary real-time data)

gave us 276 “buckling” instances from 20 different users. The number of “not buckling”

instances depended greatly on the feature window size and overlap.

5.2 Baseline Testing

Before we jumped into improving our model to better handle naturalistic environ-

ments, we elected to build the classifier just as in Phase I of our research, but this time

with our new data.

5.2.1 Evaluation

The accuracy results (see Table 5.1) show a notable drop in performance. Only the top

three classifiers remained in the 90% range: Multilayer Perceptron, Random Forest, and

IBk, respectively.

The F-measure results (see Table 5.2) are less straightforward. Compared to the pre-

vious results from Phase I, the “buckling” results were split. Some of the classifiers (IBk,

Naive Bayes, and Random Forest) performed better, while others (J48, Multilayer Percep-
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Classifier Accuracy
IBk 91.2%
J48 87.7%
Multilayer Perceptron 92.7%
Naive Bayes 76.8%
Random Forest 92.6%
SMO 88.8%
ZeroR 80.0%

Table 5.1: Classifier accuracies for Phase II baseline testing.

tron, and SMO) performed worse. Though we don’t normally concern ourselves with the

“not buckling” F-measures, it is worth pointing out that they had all dropped.

Examining the confusion matrices (see Table B.1–Table B.7) confirms what the F-

measures were revealing. Overall, the results are less consistent. While some of the

“buckling” classifications improved, just as many worsened. Plus, all of the “not buckling”

classifications worsened. This evidence suggests that our models are no longer fitting the

data as well as we would need. Since the Phase II study added a lot more data variety than

was captured by the Phase I study, it has become more difficult to differentiate between

“buckling” and “not buckling”. This imposes the need to improve and tweak our models

more carefully as we continue.

5.3 Advanced Testing

During this Phase I of our study, many of our data handling techniques and parameters

were arbitrary chosen. While this was sufficient for classifying our lab-collected data, it

was not sufficient for scaling up to naturalistic data collection. During Phase II, we wanted

to give more care to the tuning of our models.

5.3.1 Data Processing

As with Phase I, our data processing consisted of three consecutive steps:
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Classifier Activity F-measure

IBk
Buckling 0.792
Not Buckling 0.944

J48
Buckling 0.698
Not Buckling 0.923

Multilayer Perceptron Buckling 0.815
Not Buckling 0.954

Naive Bayes
Buckling 0.603
Not Buckling 0.836

Random Forest
Buckling 0.798
Not Buckling 0.955

SMO
Buckling 0.678
Not Buckling 0.933

ZeroR
Buckling 0.000
Not Buckling 0.889

Table 5.2: Classifier F-measures for Phase II baseline testing.

1. Sorting the data

2. Uniquifying the data

3. Smoothing the data

Sorting and uniquifying are fairly straightforward, so here we focus on smoothing.

5.3.1.1 Smoothing

Recall section 4.2, where we first began smoothing our data. The data was smoothing

using a rolling average function with window size w (remember, this window size should

not be confused with the window size for extracting features). We arbitrarily chose w = 10

based mostly on the visual appearance of the data plots. Here, we choose to investigate

this value more closely.

We already had processed data with a rolling average window size w = 10. For

this test, we processed our data 14 more times, with rolling average window sizes w =
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1 . . . 9, 11 . . . 15. Note that smoothing with w = 1 means that there is no smoothing what-

soever, as each point becomes the average of only itself. We then trained three classifiers—

IBk, Multilayer Perceptron, and Random Forest—15 times, each with a different amount

of smoothing. We chose to conduct our test with these three classifiers because they were

consistently the top performers. The results of these 45 tests are shown in the form of

a line graph in Figure 5.1a. As classifier performance often experiences some variance

due to randomness, this graph also includes quadratic trend lines for each classifier. To

aid in visualization, we also take the average performance of all three classifiers for each

window size and generate a second plot of the line graph and quadratic trendline, shown

in Figure 5.1b.

The results shown in Figure 5.1 are quite surprising. According to the trends of the

graph, greater amounts of smoothing correspond with worse performance. We did not

expect this. However, the graphs do at least show that the minimal amount of smoothing

(w = 2) is still better than no smoothing at all (w = 1).

From this experiment, we learned the following:

• While human analysis of a graph is often impaired by highly varied, noisy data, the

machine learning analysis is not. That is, machine learning is capable of identifying

trends and patterns where humans are not.

• The highly varied data likely contained useful information where where we initially

assumed noise. In our effort to smooth the data and identify larger trends, we were

unknowingly throwing out data that was useful to the machine learning models.

Perhaps these conclusions should not have been surprising. Indeed, machine learning

models excel where humans fall short. We should trust them. Moving forward, our data

should be smoothed using a rolling average window w = 2.
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5.3.2 Extracting Features

5.3.2.1 Feature Window

In section 4.3, we defined the feature window size to be 5 seconds, and the sliding

window overlap to be 3 seconds. Both of these parameters were arbitrarily chosen, though

the window size was based roughly on the average length of a seatbelt-buckling motion

when viewing plots of the data. The implementation of these parameters clearly helped

improve the performance of Phase I testing. However, we choose now to examine these

parameters more closely.

To more accurately determine the optimal window configuration, we tested and com-

pared classifiers trained on data with feature window sizes in 1-second increments ranging

from 1 second to 7 seconds. For each of these sizes, we tested overlap amounts in 1-second

increments ranging from 0 seconds to 1 second less than the window size (e.g. with a win-

dow size of 5 seconds, we tested overlaps of size 0–4 seconds). In total, this resulted in

28 different combinations of window size and window overlap. To best compare these

28 window configurations, we used the IBk and Random Forest classifiers. Consistently,

the IBk, Multilayer Perceptron, and Random Forest classifiers yield the best results, so we

often choose to focus on them specifically. In cases such as this where a many tests must

be run, we often omit Multilayer Perceptron testing due to the amount of time required to

train the models.

It would be excessive to report the full accuracies, F-measures, and confusion matrices

for each of these tests, so we judge our comparison on the buckling F-measures specifi-

cally. The results of these 28 tests were compiled into the heatmaps shown in Figure 5.2.

The results of the 28 IBk tests specifically are visible in Figure 5.2a, and the results of

the 28 Random Forest tests specifically are visible in Figure 5.2b. These heatmaps are

averaged to form the heatmap shown in Figure 5.2c, which we use for our analysis.
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As a side note, these tests were performed before optimal smoothing was determined,

so the data used for these tests was smoothing with a rolling average window w = 10.

Furthermore, these tests were conducted using additional features which will not be intro-

duced until later in this section.

From this heatmap, we can identify some trends. First, it appears that the classi-

fiers perform worst at the extremes, or the corners of the triangle formed by the heatmap.

Specifically, it is apparent that the values closest to the diagonal tend to perform the best.

This makes sense, as the values on the diagonal represent the highest amount of window

overlap. In general, more window overlap means there is less chance for a seatbelt action

being “caught” between two windows. Put another way, the more windows there are, the

more likely a seatbelt action will be centered in a window. If there is less overlap, there

will be more variation in the location of the seatbelt action within the window. We also

notice the trend that a larger window size generally leads to a higher F-measure. Of course,

this also has its limit, as the 6- and 7-second window sizes displayed a drop-off in perfor-

mance. This serves to confirm that our 5-second window size estimate was actually fairly

well supported, as was our 3-second window overlap estimate. Too small of a window size

means not enough of the buckling motion is present in the window. Too large of a window

size means the window contains more than the buckling action. This heatmap informs us

that the best choice for a window is a width of 5 seconds with an overlap of 3 seconds.

5.3.2.2 Window Splitting

Earlier in our research, we made the decision to “split” the window in half, based on

the observation that a seatbelt buckling motion had two distinct motions: arm raising and

arm lowering (see section 4.3 and Figure 4.3). Each of our figures was calculated on the

window as normal, but then calculated again for the first half and then for the second half.

After further data observation, we began to consider the possibility of dividing the
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(a) The results of IBk classifiers. (b) The results of Random Forest classifiers.

(c) The average of IBk and Random Forest results.

Figure 5.2: This heatmap displays the buckling F-measures of many combinations of win-
dow size and window overlap. The number in each cell is the buckling F-measure, with
the color of the cell corresponds with the cell’s value. These tests were conducted using a
feature set with the window split in halves.
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Figure 5.3: A plot of smoothed accelerometer data for one instance of buckling. The first
“third” of the data corresponds to the period where the user lifts their arm to grab the
buckle. The second “third” corresponds to the period where the user struggles to grab
the buckle. The third “third” corresponds to the period where the user lowers their arm
to fasten the buckle. The data shown in this graph was smoothed by rolling average with
window size 10.

window into thirds instead. This is motivated by the period in the middle of the seatbelt

motion wherein the user grabs the buckle. This period is marked by frantic movement,

when compared with the periods of raising and lowering. See Figure 5.3 for a depiction of

this.

With this idea, we modified our feature extraction algorithms to split windows into

thirds. Now, each feature was calculated four times: once over the first third, once over
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the second third, once over the third third, and once over the entire window. We then re-ran

the 28 tests from the prior section, generating another heatmap shown in Figure 5.4. Just

as before, we used the IBk and Random Forest classifiers. The results of the IBk tests are

visible in Figure 5.4a, the results of the Random Forest tests are visible in Figure 5.4b, and

the average results are shown in Figure 5.2c. Again, these tests were performed using data

smoothed with a rolling average window w = 10 and with the additional features which

will be introduced soon.

We now compare the “halves” heatmap (see Figure 5.2) and the new “thirds” heatmap

(see Figure 5.4). This new heatmap displays trends similar to the previous heatmap.

Namely, the classifiers perform worst at the extremes/corners, and the tests near the diag-

onal perform better. Small window sizes perform poorly, as do overly large window sizes.

One interesting difference with the new heatmap is that the upper performance limit on

window sizes expanded from 5 seconds to 6 seconds. That is, where the performance pre-

viously began to degrade above 5 seconds, the performance now begins to degrade above

6 seconds. This makes sense. As we increased the number of window “portions” from

two to three, the optimal window size also increased slightly. According to this heatmap,

the best window configuration for when the window is split into thirds is a window size of

6 seconds with an overlap of 4 seconds.

It is interesting to note that while configurations closer to the diagonal tend to perform

better, the best results are often one away from the diagonal. Put another way, the optimal

window overlap is 2 seconds less than the optimal window size, rather than 1 second less.

This is seen in both cases: Figure 5.2 and Figure 5.4. We hypothesize two factors which

may contribute to this:

• As the window gets larger and larger, an overlap of 1 second less than the window

size represents a greater and greater portion of the window being overlapped. For
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(a) The results of IBk classifiers. (b) The results of Random Forest classifiers.

(c) The average of IBk and Random Forest results.

Figure 5.4: This heatmap displays the buckling F-measures of many combinations of win-
dow size and window overlap. The number in each cell is the buckling F-measure, with
the color of the cell corresponds with the cell’s value. These tests were conducted using a
feature set with the window split in thirds.
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instance, in the case of a 5-second window with 4-second overlap, 80% of any given

window will be overlapped with the following window. In the case of a 6-second

window with 5-second overlap, 83% of the window is overlapped. As the percentage

of the window overlapped increases, it will become more difficult to distinguish

neighboring windows, as they will be mostly overlapped. This could lead to two

neighboring windows both being classified as buckling.

• As the window size increases, the window is more likely to contain all of the seat-

belt motion in its entirety, plus some of the ambient data surrounding the buckling

motion. If the window size is larger than the size of the buckling motion, then the

buckling motion could be entirely contained in two neighboring windows. This

could also lead to two neighboring windows both being classified as buckling.

All this considered, the most important thing to note is that this entire heatmap, in

general, displays better F-measures than the heatmap from the previous section. This

suggests that a window split into thirds serves us better than a window split in half.

5.3.2.3 Feature Set

Using information gathered throughout all of our testing processes, we reconsidered

our feature set. While we were still satisfied with our features, we identified the opportu-

nity for a few more. As we are now recognizing the buckle-grabbing part of the seatbelt

motion, we could make use of knowing how “calm” or “chaotic” the movement was. For

this, we look at variance and standard deviation. Also, we wished to re-address our mea-

sure of correlation. Up to this point, the product of axes was used as a rough approximation

of correlation. We now implement a more appropriate metric for correlation.

Here, we implemented 12 additional features (see Equation 5.1–Equation 5.12). As

previously discussed, each of these features is now calculated four times each: once over
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the first third of the window, once over the second third of the window, once over the third

third of the window, and once over the whole window.

σ2
X , σ2

Y , σ2
Z : This is the variance of each axis.

σ2
X =

1

n

N∑
i=1

(xi − µX)
2 (5.1)

σ2
Y =

1

n

N∑
i=1

(yi − µY )
2 (5.2)

σ2
Z =

1

n

N∑
i=1

(zi − µZ)
2 (5.3)

σX , σY , σZ : This is the standard deviation of each axis.

σX =
√

σ2
X (5.4)

σY =
√

σ2
Y (5.5)

σZ =
√

σ2
Z (5.6)

σXY , σXZ , σY Z : This is the covariance between axes. Covariance models the strength of

correlation between two axes, and is used in the calculation of statistical correlation.

σXY =
1

n

N∑
i=1

(xi − µX)(yi − µY ) (5.7)

σXZ =
1

n

N∑
i=1

(xi − µX)(zi − µZ) (5.8)
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σY Z =
1

n

N∑
i=1

(yi − µY )(zi − µZ) (5.9)

ρXY , ρXZ , ρY Z : This is the statistical correlation between axes. Specifically, this is

modeled by Pearson’s correlation coefficient. This is a true model of correlation, and is

expected to perform much better than multiplying axes, as was introduced in section 4.2.

ρXY =
σXY

σXσY

(5.10)

ρXZ =
σXZ

σXσZ

(5.11)

ρY Z =
σY Z

σY σZ

(5.12)

5.3.3 Evaluation

Based on our analysis of smoothing and feature window configuration, our best bet at

recognition comes with a rolling average window size w = 2, a feature window size of 6

seconds, and a feature window overlap of 4 seconds. With this new information, plus our

new features, we run all seven classifiers again, and report the results.

As seen in Table 5.3 all accuracy measurements improved, with the exception of IBk

and Multilayer Perceptron, which both remained roughly the same (within 0.3%). Sim-

ilarly, as seen in Table 5.4, all F-measures improved, again with the exception of IBk,

which remained steady. The confusion matrices are displayed in Table B.8–Table B.14.

Something noteworthy in this round of testing is that the Random Forest classifier

surpassed the Multilayer Perceptron classifier in terms of performance. In all tests leading

up this point, with the exception of the very first, MultilayerPerceptron has performed the
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Classifier Accuracy
IBk 90.9%
J48 89.1%
Multilayer Perceptron 92.5%
Naive Bayes 83.8%
Random Forest 94.0%
SMO 91.3%
ZeroR 80.0%

Table 5.3: Classifier accuracies for Phase II advanced testing.

best.

At this point, we seem to be encountering the law of diminishing returns. While there

was undoubtedly some improvement, it was not very substantial as compared to previous

tests. This is a common phenomenon in machine learning, and indicates that we are likely

overloading our models with more features than our data set can make use of. This is

known as over-fitting, and will be explored later in this chapter.

5.4 Leave-One-Out Testing

For machine learning applications such as this, wherein the recognition algorithm is

expected to perform well for users which are brand new to the application, it is important

to conduct “leave-one-out” testing. Also called “leave-one-out cross validation”, leave-

one-out testing works by leaving one user out of the training set, and then using that user’s

data as the testing set. This simulates a situation where the model is already trained and

a brand new user tries to use it, giving us a better idea of how our model performs on

new users. This process is repeated for every user in our data set. So, in our case, this

is repeated 20 times. The results are then aggregated to yield an overall metric of our

model’s performance on new users. The accuracy values are aggregated via averaging, but

the F-measures are not. Instead of taking the average of all 20 F-measures, we sum all of
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Classifier Activity F-measure

IBk
Buckling 0.791
Not Buckling 0.942

J48
Buckling 0.740
Not Buckling 0.931

Multilayer Perceptron
Buckling 0.816
Not Buckling 0.953

Naive Bayes
Buckling 0.684
Not Buckling 0.891

Random Forest Buckling 0.844
Not Buckling 0.963

SMO
Buckling 0.779
Not Buckling 0.946

ZeroR
Buckling 0.000
Not Buckling 0.889

Table 5.4: Classifier F-measures for Phase II advanced testing.

the confusion matrices together, then calculate the F-measure of that confusion matrix.

5.4.1 Evaluation

As leave-one-out testing involves a significant amount of data handling overhead (20

times as many tests must be conducted), in the interest of time we choose to focus on IBk

and Random Forest, both for their prior performance record and for their training speed

(Multilayer Perceptron can be very slow in comparison).

The accuracies shown in Table 5.5 are not awful, but are notably lower than all previous

tests. Similarly, the F-measures shown in Table 5.6 are much worse than all previous tests.

As a reminder, these metrics are aggregate values of all 20 leave-one-out tests. Each of

the confusion matrices shown in Table B.15 and Table B.16 comprises the sum of all 20

individual confusion matrices.

Though we hoped for better results, we were not surprised by the lower performance

values we encountered during leave-one-out testing. We identified two factors that likely

79



Classifier Accuracy
IBk 77.5%
Random Forest 87.9%

Table 5.5: Classifier accuracies for Phase II leave-one-out testing.

Classifier Activity F-measure

IBk
Buckling 0.619
Not Buckling 0.897

Random Forest
Buckling 0.683
Not Buckling 0.932

Table 5.6: Classifier F-measures for Phase II leave-one-out testing.

contribute to this:

• As our data set is still relatively small, it is not fully representative of the general

population. That is, our training will be slightly biased towards the distribution of

our data set specifically.

• Unlike classic activity recognition tasks which involve a fairly standard, repetitive

motion like running, walking, or climbing stairs, seatbelt-buckling is a single, dis-

tinct motion that varies from user to user. This makes the activity difficult to gener-

alize. While we can train data on the motion patterns of prior users, a new user is

likely to have a slightly different style of buckling.

Because of these reasons, a previously unseen user will not be recognized as well by

the model. We discuss ways to address this later in this chapter, as well as in chapter 6.

5.5 Dimensionality Testing

Readers that have been paying close attention to our feature set will notice that it has

grown to be quite large. We now have 32 unique features:
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• Averages: µX , µY , µZ

• Minimums: xmin, ymin, zmin

• Maximums: xmax, ymax, zmax

• Products: X × Y , X × Z, Y × Z

• Differences: X − Y , X − Z, Y − Z

• Absolute Differences: |X − Y |, |X − Z|, |Y − Z|

• Difference in XY and YZ Absolute Differences: |X − Y | − |Y − Z|

• Absolute Difference in XY and YZ Absolute Differences: ||X − Y | − |Y − Z||

• Variances: σ2
X , σ2

Y , σ2
Z

• Standard Deviations: σX , σY , σZ

• Covariances: σXY , σXZ , σY Z

• Correlation Coefficients: ρXY , ρXZ , ρY Z

However, as we are also calculating these features again over each third of the window

independently, we are effectively quadrupling our feature count to 128. Realistically, this

feature count is likely too large for our data set. This can cause problems when training

our models.

One of these issues is known as the “curse of dimensionality”, which asserts that as the

number of dimensions increases, a larger and larger percentage of the data set is necessary

for training in order to cover the same percentage of the feature space. In other words, as

the number of features increases, it becomes more and more difficult for the classifier to

fully and accurately model the feature space. Furthermore, with a large number of features,
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there is greater risk for some features to be correlated with each other. High correlation

between features manifests itself as noise when training.

Another common issue that plagues machine learning models (especially deep learning

models) is that of overfitting. A model learns based on its provided training data. However,

the goal is not to learn exactly what that specific set of data looks like; the goal is to

generalize. Generalization refers to learning the underlying patterns present in all data—

in our case, learning how to recognize a general seatbelt motion, regardless of who is

doing it. This is a difficult balance to maintain. The more complex our models become,

the more likely it is to overfit the data, i.e., start learning the small artifacts of our data set

specifically. When overfitting starts to occur, it means that the model will start performing

worse on our test data data.

There are three primary ways to combat overfitting:

• Increase the amount of training data.

• Decrease the number of features (dimensionality).

• Use regularization.

Regularization applies to regression models, not classification models, so we ignore it.

With our limited data set, we should pursue a reduction in our feature set.

5.5.1 Attribute Reduction

Fortunately, WEKA provides convenient tools for attribute selection. We choose to

use the Correlation-based Feature Selection (CFS) subset evaluation tool [70]. This tool

evaluates each feature in our set on the basis of their ability to predict the class as well as

on the basis of redundancy with other features. This evaluation technique will generate

a small subset of our larger feature set, wherein the features will have a high correlation
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with the class but low intercorrelation [70]. Of our 128 features, CFS Subset Evaluation

selected 28. These features are shown in Table 5.7.

5.5.2 Evaluation

After using CFS Subset Evaluation to reduce our model’s dimensionality, we re-evaluated

the overall evaluation originally conducted in section 5.3 as well as the leave-one-out eval-

uation originally conducted in section 5.4.

Based on the accuracy results of our overall testing shown in Table 5.8, most classifiers

dropped in accuracy by roughly 1–3%. The only exception to this was the Naive Bayes

classifier, which actually improved by 3%.

The F-measures shown in Table 5.9 maintain this trend. The F-measures of most clas-

sifiers dropped by 0.030–0.090, again with the exception of Naive Bayes, which improved

by 0.040.

The confusion matrices in Table B.17–Table B.23 show nothing particularly notewor-

thy. In general, true classifications drop slightly and false classifications rise slightly.

These results were not surprising. The performance metrics of the models were ex-

pected to drop. When we remove features, we are withholding data from our model,

meaning that it will not have as much information to train on. Since the performance

dropped, it is possible that our model was overfitting. We look to the leave-one-out test

results for more information.

According to the accuracy results of our leave-one-out testing shown in Table 5.10,

IBk increased in accuracy by about 5%, while Random forest decreased in accuracy by

1%. Meanwhile, according to Table 5.11, the F-measure of IBk stayed exactly the same,

and the F-measure of Random Forest decreased by about 0.020.

The confusion matrices in Table B.24 and Table B.25 reveal an interesting trend. Over-

all, the models were now slightly more likely to classify results as positive. That is, in both
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Feature Full Window First Third Second Third Third Third
µX

µY

µZ

xmin X
ymin X
zmin X X
xmax X
ymax X
zmax

X × Y
X × Z
Y × Z X
X − Y X
X − Z
Y − Z
|X − Y | X
|X − Z|
|Y − Z| X X

|X − Y | − |Y − Z|
||X − Y | − |Y − Z||

σ2
X X X X

σ2
Y X X

σ2
Z X X

σX X
σY

σZ X
σXY X
σXZ

σY Z

ρXY X X
ρXZ X
ρY Z X X

Table 5.7: This table contains the full feature set. Features selected by CFS Subset Evalu-
ation are indicated with an X.
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Classifier Accuracy
IBk 89.3%
J48 87.1%
Multilayer Perceptron 91.5%
Naive Bayes 86.6%
Random Forest 92.0%
SMO 88.3%
ZeroR 80.0%

Table 5.8: Classifier accuracies for Phase II advanced testing with CFS feature reduction.

Classifier Activity F-measure

IBk
Buckling 0.755
Not Buckling 0.931

J48
Buckling 0.673
Not Buckling 0.920

Multilayer Perceptron
Buckling 0.789
Not Buckling 0.947

Naive Bayes
Buckling 0.725
Not Buckling 0.911

Random Forest Buckling 0.795
Not Buckling 0.950

SMO
Buckling 0.681
Not Buckling 0.928

ZeroR
Buckling 0.000
Not Buckling 0.889

Table 5.9: Classifier F-measures for Phase II advanced testing with CFS feature reduction.
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Classifier Accuracy
IBk 82.3%
Random Forest 87.0%

Table 5.10: Classifier accuracies for Phase II leave-one-out testing with CFS feature re-
duction.

Classifier Activity F-measure

IBk
Buckling 0.619
Not Buckling 0.886

Random Forest
Buckling 0.662
Not Buckling 0.919

Table 5.11: Classifier F-measures for Phase II leave-one-out testing with CFS feature
reduction.

cases, the number of true positives and false positives both increased, while the number of

true negatives and false negatives both decreased. While more true positives and less false

negatives are a good thing, more false positives and less true negatives are a bad thing.

Overall, these factors cancel each other out when calculating metrics like precision, recall,

and f-measure, so our results remain nearly unchanged.

So, when testing over the entire data set using stratified cross validation, trimming our

feature set down from 128 to 26 results in somewhat of a drop in performance. However,

when conducting leave-one-out testing, shrinking the size of our feature set made almost

no difference. Based on these observations, we conclude that while our larger set of fea-

tures may not have explicitly detracted from our model’s real-world performance, it has

the potential to cause our testing results to appear a little bit optimistic.
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5.6 Verification Testing

We performed a significant amount of experimentation to develop our models. We

tested different smoothing methods, feature window configurations, feature sets, machine

learning models, etc. This much experimentation could be considered high-level hyperpa-

rameter tuning. Because we used the test data set as our gauge when tuning our models,

we effectively used information from the test data set to develop our models. Of course,

when decisions are made based on information from the test data, we should be wary of

inflated results.

Throughout this work, we tested using a form of stratified cross validation rather than

a static train-test split (see section 3.2). This mitigates the risk of overfitting, so we were

not as worried about inaccurate results. That said, we still acknowledge this concern. For

this reason, we conducted a brief, supplemental user study and collected six additional

samples. As these new samples were completely unseen throughout our research, we used

them to verify the validity of our prior test results.

5.6.1 Evaluation

The accuracy results are shown in Table 5.12, the F-measure results are shown in

Table 5.13, and the confusion matrices are shown in Table B.26–Table B.32. These results

are in line with those of our advanced testing with feature reduction (see section 5.5). This

confirms much of what we have already claimed:

• Using the entire feature set leads to overfitting, yielding overly optimistic results.

• Reducing the feature set resulted in a more accurate portrayal of model performance.

• Though we tuned using test data information, cross validation prevented overfitting.

• Our models perform as expected on unseen data.
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Classifier Activity
IBk 85.1%
J48 84.7%
Multilayer Perceptron 88.8%
Naive Bayes 71.9%
Random Forest 87.5%
SMO 90.5%
ZeroR 80.0%

Table 5.12: Classifier accuracies for Phase II verification testing.

Classifier Activity F-measure

IBk
Buckling 0.707
Not Buckling 0.900

J48
Buckling 0.690
Not Buckling 0.899

Multilayer Perceptron
Buckling 0.756
Not Buckling 0.927

Naive Bayes
Buckling 0.583
Not Buckling 0.788

Random Forest
Buckling 0.722
Not Buckling 0.919

SMO Buckling 0.781
Not Buckling 0.939

ZeroR
Buckling 0.000
Not Buckling 0.889

Table 5.13: Classifier F-measures for Phase II verification testing.
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6. FUTURE WORK

6.1 Fully Naturalistic Studies

We acknowledge that our research studies were not fully representative of “real-life”

usage patterns. Clearly, the Phase I study was not naturalistic. That data was collected in

the form of discrete samples in a controlled environment. This study was no less important,

however, for that data served a purpose in guiding us in the right direction at the onset of

our research. Of course, before long, it was clear that a more naturalistic study needed to

be conducted to move forward. As such, the Phase II study was conducted. This study

was much more representative of real-time usage, as the data was collected non-stop from

the beginning to the end of each user’s data collection period.

Realistically, this Phase II data was only semi-naturalistic, not fully naturalistic. By

this, we mean that even though the data was well representative of what standard real-time

data would look like, the studies were still collected within a controlled period. Therefore,

the data distribution is not fully reflective of what an average user’s day would look like.

Specifically, the concentration of seatbelt buckling was higher in our semi-naturalistic data

than it would be in fully naturalistic data. This is not to say that our research is invalid.

We have provided a strong basis on which to further improve the recognition as more data

is collected. It is to say, however, that future work should begin with conducting more

user studies to collect not only more data, but also data that is more naturalistic. With

more user data, the seatbelt buckling motion will become easier to generalize, and it will

become more apparent which features are most beneficial toward classification.

6.2 Active Learning

Though our classifier performance was often not as great as we would have hoped,

this research was by no means unsuccessful. This process revealed a lot of insights toward
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unconventional recognition tasks, like that of seatbelt-buckling classification. Throughout

our analysis of results, we began to notice that seatbelt activity was in many cases more

difficult to recognize than traditional ambulation activities. the following reasons help to

explain why seatbelt buckling is a unique problem:

• Most classic recognition tasks involve the classification of sustained or repeated

activity. Recall Table 2.1. Running, ascending stairs, riding a bike, lifting weights,

typing at a computer, etc. are all activities which involve constant, repetitive motion.

For activities such as this, it is common to use a technique known as two-tier recog-

nition [48]. With this technique, a recognition algorithm divides the accelerometer

data into relatively small windows, classifying each one individually. However, the

overall activity determination is not made on these small windows themselves, but

on the “big picture”. If there are enough of these positive windows in succession,

then the algorithm becomes confident in the activity and makes its determination. In

our case, we cannot benefit from this technique, as the activity which we are trying

to recognize is quick and discrete. There is no sustained pattern of repetitive motion

which we can draw information from—we either correctly recognize the buckling

motion as it occurs, or we miss it. We have one chance. These stakes are much

higher than with traditional recognition applications, and our models must therefore

perform much more accurately in order to get similar results.

• We also found seatbelt buckling motions to be highly personalized. That is, there

was a high level variance in the patterns of motion which users exhibited while

putting on their seatbelts. It might be assumed that this is because some users used

their left hand and others used their right; however, we found this not to be the

reason. If we give our model the information as to which hand the user used, the

models performed no better. It is therefore assumed that buckling motions vary
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widely from person-to-person. While we did our best to recognize the general trends

in the buckling motion (reaching up, grabbing, bringing down), new users were often

fairly difficult to classify well.

The second point above suggests an alternative approach to this classification problem.

In the case of highly personalized motions such as this, attempting to generalize all of

the population’s patterns into one universal seatbelt motion may fail to attain the level

of effectiveness desired for a practical, real-world applications. In this case, it may be

beneficial to pursue active learning, also called adaptive recognition [40].

In active learning, we avoid making too many assumptions on the user ahead of time.

Instead, we learn directly from the target user. That is, we have a very basic model that

does an acceptable job of recognizing seatbelt buckling, but we build on this model as

more and more data is collected from the user. In this way, the model learns the patterns

of that specific user. This approach can be especially effective in applications like some

of the ones we have described. For example, in the case of a personally-owned fitness-

tracking smart watch, a user is most often tracking their personal health and performance.

Here, the models can be trained specifically to that user, as they are the only ones using

it. Prior work has demonstrated the effectiveness of this type of personalized approach

to recognition, often called “individual clasification” [37]. Models can easily adapt to

recognize the specific habits and patterns of the target user specifically.

In an attempt to briefly explore the feasibility of an active learning classifier, we looked

at the data for each user individually. For each user, we used the first 75% of their data

as training data, and then attempted to recognize the remaining 25%. We then aggregated

this data across all 20 users, just as we did during the leave-one-out testing in the previous

chapter.

The results are encouraging. IBk accuracy (see Table 6.1) improved by 9.1% compared
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Classifier Accuracy
IBk 91.4%
Random Forest 89.5%

Table 6.1: Classifier accuracies for active recognition exploratory testing.

Classifier Activity F-measure

IBk
Buckling 0.854
Not Buckling 0.951

Random Forest
Buckling 0.881
Not Buckling 0.964

Table 6.2: Classifier F-measures for active recognition exploratory testing.

to leave-one-out testing, and Random Forest improved by 2.5%. While this is nice, the

F-measures are more impressive (see Table 6.2). IBk’s F-measure increased by 0.235,

and Random Forest’s F-measure increased by 0.219. Confusion matrices are shown in

Table 6.3 and Table 6.4.

Granted, these tests are conducted on data sets too small for these results to be com-

pletely conclusive. However, these brief tests are enough to make a case for active learning.

After just a few examples of a particular user’s buckling style, these models can already

recognize that user’s motion patterns better than if the models had been trained on a larger

amount of data from other users. Future work should investigate active learning as a viable

possibility.

Buckling Not Buckling ← classified as
73 13 Buckling
12 275 Not Buckling

Table 6.3: IBk confusion matrix for active recognition exploratory testing.
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Buckling Not Buckling ← classified as
70 16 Buckling
3 254 Not Buckling

Table 6.4: Random Forest confusion matrix for active recognition exploratory testing.

6.3 Additional Sensors

Remember our original motivation for this work: to detect whether someone is driving

without wearing their seatbelt. Knowing this use case, there are many possibilities for

additional data which may be useful in recognizing this situation.

We chose to focus specifically on the seatbelt motion, as it is the most important piece

of this recognition. However, other data could prove useful in validating our seatbelt recog-

nition. For example, if sitting and standing are already recognizable by activity recognition

techniques, we could incorporate this into our overall algorithm to identify whether a user

appears to have just sat down into a vehicle, after which a seatbelt motion is likely to

follow.

Furthermore, if the application intends to detect when a user is driving without a seat-

belt, it is also important to know if the user is actually driving. Something like this could

easily be accomplished using the additional sensors on the phone or wearable device [71].

For example, a GPS sensor could indicate when the user is moving faster than a predefined

speed threshold.

There are many possibilities for additional recognition and sensor data that could easily

be incorporated into the application based on the data and sensors already available in a

Pebble watch and Android phone. This is just to say that our overall algorithm need not

be limited to the seatbelt recognition component alone.
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6.4 Feedback and Intervention

Finally, if the overall goal is to prevent a user from driving a vehicle without wearing

their seatbelt, then future work must pursue techniques of feedback and intervention. That

is, once our algorithm recognizes that a user has failed to fasten their seatbelt, what is our

application to do with this information?

With regard to feedback, the application must find a way to notify the user. In our case,

this notification should be clear. Classic examples of warnings include auditory signals or

visual cues [14]. With the rise of smart phone and smart watch adoption, haptic1 feedback

in the form of vibrations has also increased in usage [73–76].

Of course, the end goal is not just notification, but intervention. That is, we must in-

tervene in the user’s habits with the hope of altering behavior. This presents additional

challenges, as our techniques must not be so obnoxious that the user ops-out of the appli-

cation all together. To this end, haptic feedback is appealing. In the end, if we wish to

promote positive behavior modification, it must be a system which is not only helpful but

encourages the user to participate.

Future work should investigate and compare different methods of feedback and inter-

vention. When combined with effective feedback and intervention techniques, the algo-

rithm proposed by this work can be used in applications which monitor and promote user

safety.

1Haptic: relating to or based on the sense of touch [72]
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7. CONCLUSION

This work was primarily focused on creating a method to recognize the motion of

putting on a seatbelt using wearable technology such as a smart watch. Motivated by the

fatality rates in accidents where drivers neglected to wear their seatbelts, we considered

alternate forms of behavioral intervention and modification to encourage seatbelt use.

The use of wearable devices has grown increasingly popular in the rise of fitness track-

ing and other health-related applications [12, 14]. These approaches rely on activity recog-

nition to correctly identify the user’s motion data as specific activities. However, we found

no prior work toward an activity recognition algorithm for seatbelt fastening. As any sort

of real-time tracking and feedback application would require such an algorithm, we set out

to create one.

Using a pebble smart watch and an Android smart phone, we conducted two studies. In

our first study, we collected some discrete motion data of users buckling their seatbelts as

well as performing a specific set of control motions. From this initial study, we confirmed

that seatbelt-buckling was, in the very least, feasibly distinguishable from other actions

involving similar patterns of motion. Encouraged by these results, we conducted a second

study wherein we collected data which more closely resembled a real-world use case.

Throughout the both of these studies, we identified the data processing techniques, novel

features, and classification algorithms which were most appropriate to use in seatbelt-

identification applications.

We primarily used F-measure to judge the performance of our models. In the end,

our best performance achieved was with the Random Forest classifier at an F-measure of

0.844. In leave-one-out testing, this F-measure was 0.683. However, after reducing our

feature set using Correlation-based Feature Selection, these F-measures dropped to 0.795
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and 0.662, respectively.

The disparity in performance between the overall test results and the leave-one-out

test results suggest that seatbelt motions are very personal—they vary from user to user.

This motivates future work in active learning, wherein models can adapt specifically to

their target user. A brief exploratory analysis confirmed the potential for success in this

approach.

In general, our studies found that seatbelt motions are indeed recognizable, though

it can be difficult to do so due to the fleeting nature of the gesture and the high level of

individuality among users. Regardless, there are many possibilities for future work in

augmenting our recognition algorithm.

Indeed, we have provided a suitable foundation upon which future systems may be

built. This was our intent. We hope that this work motivates additional study toward

creating intelligent, context-aware systems for encouraging safe habits and general well-

being.
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APPENDIX A

CONFUSION MATRICES FOR PHASE I TESTING

A.1 Phase I Feasibility Testing

Buckling Not Buckling ← classified as

535 191 Buckling

211 2522 Not Buckling

Table A.1: IBk confusion matrix for Phase I feasibility testing.

Buckling Not Buckling ← classified as

541 185 Buckling

275 2458 Not Buckling

Table A.2: J48 confusion matrix for Phase I feasibility testing.

Buckling Not Buckling ← classified as

533 193 Buckling

299 2504 Not Buckling

Table A.3: Multilayer Perceptron confusion matrix for Phase I feasibility testing.
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Buckling Not Buckling ← classified as

575 151 Buckling

379 2354 Not Buckling

Table A.4: Naive Bayes confusion matrix for Phase I feasibility testing.

Buckling Not Buckling ← classified as

541 185 Buckling

156 2577 Not Buckling

Table A.5: Random Forest confusion matrix for Phase I feasibility testing.

Buckling Not Buckling ← classified as

396 330 Buckling

189 2544 Not Buckling

Table A.6: SMO confusion matrix for Phase I feasibility testing.

Buckling Not Buckling ← classified as

0 726 Buckling

0 2733 Not Buckling

Table A.7: ZeroR confusion matrix for Phase I feasibility testing.
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A.2 Phase I Advanced Testing

Buckling Not Buckling ← classified as

51 0 Buckling

1 420 Not Buckling

Table A.8: IBk confusion matrix for Phase I advanced testing.

Buckling Not Buckling ← classified as

46 5 Buckling

5 416 Not Buckling

Table A.9: J48 confusion matrix for Phase I advanced testing.

Buckling Not Buckling ← classified as

51 0 Buckling

0 421 Not Buckling

Table A.10: Multilayer Perceptron confusion matrix for Phase I advanced testing.
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Buckling Not Buckling ← classified as

48 3 Buckling

0 421 Not Buckling

Table A.11: Naive Bayes confusion matrix for Phase I advanced testing.

Buckling Not Buckling ← classified as

48 3 Buckling

0 421 Not Buckling

Table A.12: Random Forest confusion matrix for Phase I advanced testing.

Buckling Not Buckling ← classified as

50 1 Buckling

0 421 Not Buckling

Table A.13: SMO confusion matrix for Phase I advanced testing.

Buckling Not Buckling ← classified as

0 51 Buckling

0 421 Not Buckling

Table A.14: ZeroR confusion matrix for Phase I advanced testing.
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A.3 Phase I Real-Time Testing

Buckling Not Buckling ← classified as

74 18 Buckling

25 1325 Not Buckling

Table A.15: IBk confusion matrix for Phase I real-time testing.

Buckling Not Buckling ← classified as

69 23 Buckling

27 1323 Not Buckling

Table A.16: J48 confusion matrix for Phase I real-time testing.

Buckling Not Buckling ← classified as

80 12 Buckling

22 1328 Not Buckling

Table A.17: Multilayer Perceptron confusion matrix for Phase I real-time testing.
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Buckling Not Buckling ← classified as

85 7 Buckling

132 1218 Not Buckling

Table A.18: Naive Bayes confusion matrix for Phase I real-time testing.

Buckling Not Buckling ← classified as

61 31 Buckling

5 1345 Not Buckling

Table A.19: Random Forest confusion matrix for Phase I real-time testing.

Buckling Not Buckling ← classified as

65 27 Buckling

12 1338 Not Buckling

Table A.20: SMO confusion matrix for Phase I real-time testing.

Buckling Not Buckling ← classified as

0 92 Buckling

0 1350 Not Buckling

Table A.21: ZeroR confusion matrix for Phase I real-time testing.

111



APPENDIX B

CONFUSION MATRICES FOR PHASE II TESTING

B.1 Phase II Baseline Testing

Buckling Not Buckling ← classified as

234 44 Buckling

79 1033 Not Buckling

Table B.1: IBk confusion matrix for Phase II baseline testing.

Buckling Not Buckling ← classified as

198 80 Buckling

91 1021 Not Buckling

Table B.2: J48 confusion matrix for Phase II baseline testing.

Buckling Not Buckling ← classified as

225 53 Buckling

49 1063 Not Buckling

Table B.3: Multilayer Perceptron confusion matrix for Phase II baseline testing.
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Buckling Not Buckling ← classified as

245 33 Buckling

290 822 Not Buckling

Table B.4: Naive Bayes confusion matrix for Phase II baseline testing.

Buckling Not Buckling ← classified as

204 74 Buckling

29 1083 Not Buckling

Table B.5: Random Forest confusion matrix for Phase II baseline testing.

Buckling Not Buckling ← classified as

163 115 Buckling

40 1072 Not Buckling

Table B.6: SMO confusion matrix for Phase II baseline testing.

Buckling Not Buckling ← classified as

0 278 Buckling

0 1112 Not Buckling

Table B.7: ZeroR confusion matrix for Phase II baseline testing.
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B.2 Phase II Advanced Testing

Buckling Not Buckling ← classified as

230 37 Buckling

89 1015 Not Buckling

Table B.8: IBk confusion matrix for Phase II advanced testing.

Buckling Not Buckling ← classified as

213 63 Buckling

87 1017 Not Buckling

Table B.9: J48 confusion matrix for Phase II advanced testing.

Buckling Not Buckling ← classified as

229 47 Buckling

56 1048 Not Buckling

Table B.10: Multilayer Perceptron confusion matrix for Phase II advanced testing.
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Buckling Not Buckling ← classified as

242 34 Buckling

190 914 Not Buckling

Table B.11: Naive Bayes confusion matrix for Phase II advanced testing.

Buckling Not Buckling ← classified as

224 52 Buckling

31 1073 Not Buckling

Table B.12: Random Forest confusion matrix for Phase II advanced testing.

Buckling Not Buckling ← classified as

211 65 Buckling

55 1049 Not Buckling

Table B.13: SMO confusion matrix for Phase II advanced testing.

Buckling Not Buckling ← classified as

0 276 Buckling

0 1104 Not Buckling

Table B.14: ZeroR confusion matrix for Phase II advanced testing.
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B.3 Phase II Leave-One-Out Testing

Buckling Not Buckling ← classified as

181 85 Buckling

128 976 Not Buckling

Table B.15: IBk confusion matrix for Phase II leave-one-out testing.

Buckling Not Buckling ← classified as

166 110 Buckling

44 1060 Not Buckling

Table B.16: Random Forest confusion matrix for Phase II leave-one-out testing.

B.4 Phase II Dimensionality Testing

Buckling Not Buckling ← classified as

228 48 Buckling

100 1004 Not Buckling

Table B.17: IBk confusion matrix for Phase II advanced testing with CFS feature reduc-
tion.
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Buckling Not Buckling ← classified as

183 93 Buckling

85 1019 Not Buckling

Table B.18: J48 confusion matrix for Phase II advanced testing with CFS feature reduc-
tion.

Buckling Not Buckling ← classified as

219 57 Buckling

60 1044 Not Buckling

Table B.19: Multilayer Perceptron confusion matrix for Phase II advanced testing with
CFS feature reduction.

Buckling Not Buckling ← classified as

244 32 Buckling

153 951 Not Buckling

Table B.20: Naive Bayes confusion matrix for Phase II advanced testing with CFS feature
reduction.
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Buckling Not Buckling ← classified as

215 61 Buckling

50 1054 Not Buckling

Table B.21: Random Forest confusion matrix for Phase II advanced testing with CFS
feature reduction.

Buckling Not Buckling ← classified as

173 103 Buckling

59 1045 Not Buckling

Table B.22: SMO confusion matrix for Phase II advanced testing with CFS feature reduc-
tion.

Buckling Not Buckling ← classified as

0 276 Buckling

0 1104 Not Buckling

Table B.23: ZeroR confusion matrix for Phase II advanced testing with CFS feature re-
duction.
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Buckling Not Buckling ← classified as

197 79 Buckling

164 940 Not Buckling

Table B.24: IBk confusion matrix for Phase II leave-one-out testing with CFS feature
reduction.

Buckling Not Buckling ← classified as

177 99 Buckling

82 1022 Not Buckling

Table B.25: Random Forest confusion matrix for Phase II leave-one-out testing with CFS
feature reduction.

B.5 Phase II Verification Testing

Buckling Not Buckling ← classified as

53 6 Buckling

38 198 Not Buckling

Table B.26: IBk confusion matrix for Phase II verification testing.
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Buckling Not Buckling ← classified as

50 9 Buckling

36 200 Not Buckling

Table B.27: J48 confusion matrix for Phase II verification testing.

Buckling Not Buckling ← classified as

51 8 Buckling

25 211 Not Buckling

Table B.28: Multilayer Perceptron confusion matrix for Phase II verification testing.

Buckling Not Buckling ← classified as

58 1 Buckling

82 154 Not Buckling

Table B.29: Naive Bayes confusion matrix for Phase II verification testing.

Buckling Not Buckling ← classified as

48 11 Buckling

26 210 Not Buckling

Table B.30: Random Forest confusion matrix for Phase II verification testing.
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Buckling Not Buckling ← classified as

50 9 Buckling

19 217 Not Buckling

Table B.31: SMO confusion matrix for Phase II verification testing.

Buckling Not Buckling ← classified as

0 59 Buckling

0 236 Not Buckling

Table B.32: ZeroR confusion matrix for Phase II verification testing.
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