
CALIBRATION OF LINEAR IMAGER CAMERA FOR RELATIVE POSE ESTIMATION

A Thesis

by

ROSHAN SURESH KUMAR

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Co-Chairs of Committee, John Junkins
Manoranjan Majji

Committee Members, Srikanth Saripalli
Head of Department, Rodney Bowersox

May 2019

Major Subject: Aerospace Engineering

Copyright 2019 Roshan Suresh Kumar



ABSTRACT

The process of camera calibration is of paramount importance in order to employ any vision

based sensor for relative navigation purposes. Understanding and quantifying the physical pro-

cess that converts the external electromagnetic stimulus into an image inside a camera is key to

relating the position of a body in an image to its pose in the real world. Both camera calibration

and relative navigation are extensively explored topics. In the topic of camera calibration, various

algorithms have been proposed that model the image formation process in different ways. This

research utilizes the Homography approach proposed by Zhang [1] along with two distortion mod-

els: Brown’s nonlinear Distortion Model and the Geometric Distortion Model in order to model

the intrinsic distortion and discrete image formation process. The idea of this research is to utilize

the intrinsic parameters estimated using the homography optimization approach for the estimation

of the relative pose of an object in the camera’s field of view. A nonlinear optimization based

approach is presented for this purpose. The camera used here is the Phasespace Motion Capture

camera [2] which utilizes linear imagers to form a fictitious image plane. Hence, the applicabil-

ity of the two distortion models is tested through multiple datasets. Through testing with three

datasets, it is found that neither distortion model is adequate to describe the distortion and image

formation process in the Phasespace camera. A further test is conducted in order to validate the

efficacy of the optimization based approach for relative pose estimation.
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NOMENCLATURE

s Scaling factor in pinhole projection model

m̃ Beacon Image Plane coordinates (=
[
u v 1

]T )

M̃ Beacon Inertial Frame coordinates (=
[
X Y 1

]T )

A Camera Intrinsic Parameter matrix

R Rotation matrix from Camera frame to Inertial frame

t Translation vector from Camera frame to Inertial frame

α Focal length in the û direction of the image plane

β Focal length in the v̂ direction of the image plane

c skewness factor

u0 Principal Offset in the û direction of the image plane

v0 Principal Offset in the v̂ direction of the image plane

H Homography matrix

J Scalar cost function for nonlinear least squares algorithm

Q Skew symmetric matrix associated with the Classical Ro-
drigues Parameters (CRP)

q CRP vector

U Matrix of left singular vectors of R

V Matrix of right singular vectors of R

S Diagonal singular values matrix of R

d̂0 Unit vector along detector 0

d̂1 Unit vector along detector 1

û Unit vector along image plane x-axis
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v̂ Unit vector along image plane y-axis

k Vector of distortion coefficients for Brown’s Distortion
Model (=

[
k1 k2 k3 p1 p2

]T )

kx Vector of distortion coefficients in the û direction of the im-
age plane (=

[
kx1 kx2 kx3

]T )

ky Vector of distortion coefficients in the v̂ direction of the im-
age plane (=

[
ky1 ky2 ky3

]T )

σa Uncertainty bound magnitude of the quantity a
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1. INTRODUCTION AND LITERATURE REVIEW

The advent of practical semiconductor technology in the early 1970’s has ushered in the age

of sensor technology that is inexpensive and can be mass produced. As a result electronic in-

strumentation for niche fields of research, which otherwise would have been restricted to orga-

nizations and individuals with exceptional financial backing, has been made easier to obtain and

inexpensive to use. This has led to a boon in research within disciplines involving heavy use of

application-specific electronic equipment. A good example of such a discipline is Machine Vision.

The introduction of CMOS integrated vision sensors has resulted in a brighter spotlight on research

involving Vision based guidance and navigation.

1.1 Camera Calibration

The first step in the utilization of any sensor is its calibration. Once the inherent biases of

the sensor are known, additional corrections can be applied either physically to the experiment or

digitally in order to obtain accurate measurements. For vision based sensors, the calibration proce-

dure is conducted in order to quantify the parameters that model the formation of the image from

an external electromagnetic stimulus, whether it be part of the visible or invisible electromagnetic

spectrum. Camera calibration has been extensively researched since the early 1960s under the

name of “Photogrammetry”. The early photogrammetry algorithms were developed assuming the

idealised pinhole model with the focal length and principa point offsets being the only parameters

of the image plane to estimate. However, the idealised pinhole model was not sufficiently precise

so distortion models were developed in order to capture the additional nonlinear effects in the im-

age capturing process. Seminal work in the field of photogrammetry by Magill [5], Cox [6] and

many others led to the nascent formulations that would lay the groundwork for many researches

like Brown [7] and Kenefick [8] to come up with some of the first camera distortion estimation al-

gorithms. Although Brown’s camera calibration algorithm was created to be used on images stored

in photographic plates, the same distortion formulation is applicable to CCD/CMOS cameras.
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With the introduction of CCD/CMOS cameras, various algorithms were developed by Zhang

[1], Heikkila et al [9] and Tsai [10] that sought to combine the image distortion concepts developed

by Brown with a nonlinear optimization based approach to estimate the intrinsic parameters of the

camera and the relative pose of the object being viewed. The standard calibration procedure for a

digital off-the-shelf camera is to employ Zhang’s Homography algorithm and Brown’s distortion

algorithm to optimize over the intrinsic parameters and the relative pose of the body. However,

the image distortion process can be modelled in various ways. Ma et al [4] proposed a set of

geometric distortion models where the distortion function has various nonlinear forms that can

be used for a wide range of cameras depending on the degree of distortion that manifests on the

image. This research utilizes Zhang’s Homography algorithm to generate the starting guesses for

the nonlinear optimization algorithm. The image distortion is modelled using both Brown’s model

and the Geometric distortion model to see if the constant intrinsic camera parameters and distortion

coefficients can be computed across different datasets.

1.2 Vision based GNC

With the semiconductor-based sensors being made cheap and ubiquitous, many off-the-shelf

consumer products employ the use of inexpensive vision sensing technologies. Microsoft’s

Kinect[11] and Nintendo’s Wii[12] are examples of vision based sensors that detect invisible elec-

tromagnetic radiation for relative pose estimation purposes. The Kinect uses an Infrared camera

to capture a set of infrared features in the scene projected onto its sensor array. Triangulation is

then utilized to obtain the coordinates of these features in the object space. As the ball is pushed

further in terms of increasing computational ability with decreasing size, wearable technology has

also been on the rise, both in the commercial market and among researchers. Vision Tape[13],

for example, utilizes eight photodiodes for fast image acquisition and dense optical flow detec-

tion at great speeds. Research on similar devices developed by Placer and Kovacic[14], Hung and

Suh[15], Do and Suh[16] and many more prove that the interest in developing systems for machine

learning with the vision sensors playing a pivotal role in data acquisition will only rise in the future.

All vision based guidance and navigation applications can be divided into two categories. The
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first category can employ the use of reference points at known locations in the object space to

facilitate relative navigation in a cooperative manner. Autonomous aerial refueling[17], aircraft

and spacecraft relative navigation[18], [19] and autonomous aircraft landing on ships and aircraft

carriers are instances of the first category. The second category requires the development of navi-

gation systems in an uncooperative manner (i.e. non reliance on the presence of reference points in

the workspace). Examples of this category include, but are not limited to, path planning for robots

[20], planetary exploration[21], planetary reentry navigation [22] and proximity operations [23].

Vision based navigation systems provide robust 6 degree-of-freedom (DOF) relative navigation

solutions driven by the geometry of the problem.

Proximity based operations use high speed, high resolution cameras along with a slew of other

sensors to monitor various parameters pertaining to the relative pose and pose rates between the

target and the manipulator. Recently, some systems have been developed as alternatives to the

CCD/CMOS camera-incorporated sensor suites being used to provide 6 DOF relative pose esti-

mates of a target. An example of this is the VISNAV system developed by Gunnam et al[24] and

Junkins et al[25]. VISNAV is an analog system that uses a position sensitive diode (PSD) to mea-

sure camera space positions of active beacons in the scene; with four or more imagd beacons, least

squares “resection” permits accurate estimates of the VISNAV sensor relative to an object space

reference frame. In this case the PSD behaves like a high speed CCD/CMOS array, providing

fictitious image plane coordinates with respect to a coordinate system, defined by the normalized

imbalance of four voltage values. The analog nature of the VISNAV system means high effective

frame rates but a significant amount of expertise in analog electro-optical systems is required to

operate and troubleshoot the system. An alternative to the analog VISNAV system is the develop-

ment of a digital counterpart to it, as done in Wong et al[3]. This all digital system is much eaier

to design, engineer and acquire data from, and harnesses the capability of recent advances in data

transfer solutions and high processing power of embedded computer systems to provide robust 6

DOF relative pose estimates relatively at high rates. Although this system uses a conventional CCD

camera as its optical sensor, the novel approach is the utilization of a set of LED beacons which are
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programmed to strobe at different frequencies (motivated by the original analog VISNAV patent).

This allows for the isolation and identification of each beacon independently. Commercial motion

capture technologies like Vicon[26] and Phasespace[2] employ similar arrangements of beacons in

the workspace with multiple cameras to identify and track them to provide 6 DOF relative pose es-

timates. The beacons are passive in the case of Vicon and active in the case of Phasespace and are

attached to a target body to estimate its relative pose in respect to their internal coordinate system.

Vicon leverages the known positions of its infrared beacons to estimate the relative pose of a target

body. Phasespace harnesses the fact that each of its LED beacons strobe with a different frequency

to isolate and group four or more specific beacons together in order to estimate the relative pose of

a body.

The Phasespace camera uses optical elements to focus the light emanating from the active

LED beacons to two orthogonal linear detectors. One vertical linear detector images the collapsed

left-right field of view (thus capturing the x-coordinates of the beacons) and the other horizontal

linear detector images the collapsed up-down field of view (thus capturing the y-coordinates of the

beacons). The frame rate of the camera is 960 Hz. This allows for a high rate of beacon coordinate

computation (around 200 Hz). The faster frame rate is used to capture the unique beacon frequency

of modulation to uniquely associate the measured coordinates with the corresponding beacon. The

Phasespace system is conventionally designed to operate o thebeacon coordinates and compute and

output the three dimensional line of sight vector for each beacon with respect to its internal pre-

calibrated coordinate system using the linear detector positions from each camera. In this research,

a single Phasespace camera is employed as the optical sensor. The linear detector values are used

to compute uncalibrated coordinates of the beacons in the fictitious image plane whose bases are

taken to be the two linear detectors.

This research presents, in addition to the calibration results of the Phasespace camera, a non-

linear optimization algorithm that can be implemented online to estimate the relative pose of an

uncooperative target equipped with the compatible beacons. The first chapter discusses Zhang’s

homography algorithm. A key contribution is the alternate formulation of the matrix B dependent
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on the intrinsic parameter matrix which mitigates the effects of data noise on the intrinsics estima-

tion process. The second chapter provides details of the Phasespace motion capture camera used

in this research along with some tests that provide some insight about its parameters. The third

chapter discusses in depth the two distortion models tried in this work, with some more algorith-

mic description in the Appendices. The fourth chapter presents the nonlinear optimization based

approach that can be implemented once the constant intrinsic camera parameters and distortion

coefficients are estimated to estimate the relative pose of an uncooperative target equipped with

the requisite number of compatible LED beacons. Experimental results are then presented that de-

termine the applicability of the two distortion models to the Phasespace camera and the efficacy of

the algorithm presented in the previous chapter in estimation of the relative pose. The final chapter

details the conclusions and possible avenues for future research in this area.
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2. HOMOGRAPHY EXPLANATION

A detailed dicussion of the utilization of Homography for the calibration of a CCD/CMOS

camera is presented in Zhang[1].

According to Zhang, the pinhole projection model is represented by 2.1.

sm̃ = A

[
R t

]
M̃ (2.1)

where s is a scaling factor, M̃ is a beacon coordinate in the target frame, m̃ is the corresponding

image plane projection of M̃ , R and t are the Rotation matrix and translation vector pertaining

to the transformation from the target frame to the camera frame and A is the intrinsic parameter

matrix is given by A =


α c u0

0 β v0

0 0 1

, the scaling parameters in the x and y directions in the image

plane are given by α and β respectively, the skewness metric is given by c and the principal point

offset is given by
[
u0 v0

]T
.

Figure 2.1: The Homography Problem as shown in the paper[3]

The figure 2.1 illustrates the geometry of the perspective problem that Zhang’s paper serves to
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find a computational solution for.

4.2 can be further expanded as 2.2 since without any loss of generality, we can set Z=0.


u

v

1

 = A

[
r1 r2 r3 t

]


X

Y

0

1


= A

[
r1 r2 t

]
X

Y

1

 (2.2)

For notational conciseness, let us define

H = A

[
r1 r2 t

]

The first step is the estimation of the homography matrix H . 2.2 is rewritten as

M̃T
0T −uM̃T

0T M̃
T −vM̃T

x = 0 (2.3)

where x is the columns of H arranged into a column vector.

For n points in the image there will be n such equations that can be stacked.

This sequence of steps is carried out for multiple frames. In each case, if

L =

M̃T
0T −uM̃T

0T M̃
T −vM̃T

, the solution x is the singular vector of L corresponding to the

smallest singular value of L.

This result can now be used as an initial guess to solve the nonlinear least squares problem given

by 2.4.

J =
∑
i

||mi − m̂i||2 (2.4)

where m̂i = 1

h̃3
T
Mi

h̃1
T
Mi

h̃2
T
Mi


With H estimated for all frames, the next step is to calculate intrinsic and extrinsic parameters.
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Zhang’s paper defines a matrix B as given in 2.5.

B = A−TA−1 (2.5)

The motivation behind the definition of B stems from the following development. The estimation

of the homography matrix calculated earlier can be written as the following.

[
h1 h2 h3

]
= λA

[
r1 r2 t

]
(2.6)

Now, using two known fundamental properties of the rotation matrix, i.e. orthonormality of the

basis vectors with respect to each other and the equality of magnitude for each direction, the next

two equations can be developed.

h1
TA−TA−1h2 = 0

h1
TA−TA−1h1 = h2

TA−TA−1h2

(2.7)

The occurence of A−TA−1 in both equations suggests its analysis.

Substitution of the A matrix enables the determination of B in terms of the intrinsic camera

parameters.

B =


1
α2 − c

α2β
cv0−u0β
α2β

− c
α2β

c2

α2β2 + 1
β2 − c(cv0−u0β)

α2β2 − v0
β2

cv0−u0β
α2β

− c(cv0−u0β)
α2β2 − v0

β2

(cv0−u0β)2
α2β2 +

v20
β2 + 1

 (2.8)

Now,sinceB is a symmetric matrix, it can be represented as a vector of its six distinct elements.

b =

[
B11 B12 B22 B13 B23 B33

]T
(2.9)

The vector b describes the image of the absolute conic, which is a concept innate to the process

of self calibration.

8



The definition of B, defined in either 2.8 or 2.13, allows for the representation of 2.7 in the follow-

ing manner.  v12
T

(v11 − v22)
T

 b = 0 (2.10)

where vij =

[
hi1hj1 hi1hj2 + hi2hj1 hi2hj2 hi3hj1 + hi1hj3 hi3hj2 + hi2hj3 hi3hj3

]T
So,

if we have n images, they can be stacked in order to have a 2nx6 matrix V , which gives the

following equation.

V b = 0 (2.11)

The solution to the above equation is the singular vector of V associated with the smallest singular

value of V .

Once, b is estimated, we can compute the intrinsic parameters of the A matrix using the following

formulas.

v0 =
B12B13 −B11B23

B11B22 −B2
12

λ = B33 −
B2

13 + v0(B12B13 −B11B23)

B11

α =

√
λ

B11

β =

√
λB11

B11B22 −B2
12

c = −B12α
2β

λ

u0 =
cv0
α
− B13α

2

λ

(2.12)

A novel contribution by this research is the reformulation of B as follows.

B = A−1A−T (2.13)
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As a result, B has the following form.

BT = A−1A−T =


1
α2 + c2

α2β2 + ( cv0−βu0
αβ

)2 − c
αβ2 − cv0−βu0

αβ
v0
β

cv0−βu0
αβ

− c
αβ2 − cv0−βu0

αβ
v0
β

1
β2 +

v20
β2 −v0

β

cv0−βu0
αβ

−v0
β

1

 (2.14)

It is noteworthy that since B33 is one as opposed to (cv0−u0β)2
α2β2 +

v20
β2 + 1 in 2.8, there in no need

for normalization with respect to B33 in the case of 2.13. This allows for less contribution of the

formulation of B towards the errors in the estimation of the intrinsic camera parameters.

If BT is used, the intrinsic parameters are computed as so.

β =
1

B22 −B2
23

v0 = −B23β

α =

(
B11 −B2

31 −
B21 −B31B32

B22 −B2
23

)− 1
2

c = −(B12 −B13B23)αβ
2

u0 =
cv0 − αβB31

β

(2.15)

OnceA is known, the definition of the homography matrix can be used to compute the extrinsic

parameters for each image. From 2.6, we have.

r1 = λA−1h1

r2 = λA−1h2

r3 = r1 × r2

t = λA−1h3

(2.16)

where λ = 1
‖A−1h1‖ = 1

‖A−1h2‖ . Because of noise in the data, h1 never equals h2, as a result

using h1 and h2 will result in different extrinsic parameters. A key clue to this fact is the observa-

tion that the smallest singular value associated with L, defined in 2.3, is never zero, irrespective of
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frame. Another adverse effect of noise in the data is that rotation matrix thus computed from the

Homography matrix and intrinsic parameters does not in general satisfy the properties of a rotation

matrix. There are many ways to estimate the best rotation matrix from the given rotation matrix.

Zhang provides a solution S such that the R − S has the least Frobenius norm. This research

utilizes a solution to the Orthogonal Procrustes Problem to compute the best rotation matrix.

The normalisation variable λ (refer Equation 2.16) will be different depending on the choice

of either r1 or r2, due to some noise in the calculations as introduced by the SVD analysis for the

estimation of the Homography matrix and measurement noise. As a result, the estimated rotation

matrix will not satisfy the orthogonality constraint or the unit determinant constraint. Out of the

many possible algorithms that could be harnessed to estimate the best possible rotation matrix, the

solution to the Orthogonal Procrustes problem is utilized.

If R is the estimated rotation matrix for a frame, let us say that the Singular Value Decompo-

sition of R gives us matrix of left singular vectors U , matrix of right singular vectors V and the

diagonal singular values matrix S. (i.e. svd(R) = USV T ,assuming R has real entries). In that

case the best possible rotation matrix is given by R̂best = UV T .

The Classical Rodrigues Parameters (CRPs) are obtained from the rotation matrix using the

Cayley Transform.

Q = (I − R̂−1best)(I + R̂best) (2.17)

where Q is the skew-symmetric matrix associated with the CRP vector
[
q1 q2 q3

]T
.
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3. PHASESPACE MOTION CAPTURE CAMERA

3.1 Overview

This research uses the camera from the Phasespace Impulse X2E Motion Capture System as

the structured light sensor. The uniqueness of the camera lies in the fact that instead of using a

CCD/CMOS array, it utilizes two linear detectors to capture light information from the scene. The

orientation of the detectors is shown in Figure 3.1. It is to be noted that both linear detectors are

aligned perpendicular to each other. The camera frame rate is 960 Hz but the data display rate is

about 200 Hz.

Figure 3.1: The orientation of the two linear detectors in the Phasespace camera is shown. The
orange line represents detector 0 and blue line represents detector 1. Original image taken from [2]

The detectors are assigned values 0 and 1 according to their manner of reference in the Phas-

espace SDK package. Facing the front face of the camera, Detector 0 starts from the centre on the

top edge and ends at the bottom right corner whereas Detector 1 starts from the centre of the top

edge and ends at the bottom left corner. The actual physical position of the detectors is somewhere
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away from the front face of the camera, at a distance which is not known to the author at the time

of writing.

Each LED beacon that falls within the field of view of the camera is identified using a propri-

etary algorithm which isolates beacons based on their strobing frequency. The light rays emanating

from each beacon are directed onto each detector using optical instruments such as lenses. The

footprint left by the light rays from each beacon is treated as a Gaussian and an internal algorithm

computes its width, normalized position and amplitude on each detector. These values can be ac-

cessed through the Phasespace SDK and the structure associated with the footprint of the light rays

from each beacon on each detector is called "Peaks".

The mutually perpendicular orientation of the linear detectors in the camera make them viable

candidates as basis vectors for the fictitious 2D image plane. A number of tests were conducted

in order to determine the ideal direction for the chosen basis vectors, the standard deviation for

the position of a stationary beacon and the range of both detector positions before a definitive

coordinate system was assigned to the fictitious image plane.

3.2 Coordinate System Determination

3.2.1 Basis Vectors Test

This test was conducted in order to determine the direction of increase in position for each

detector. For this purpose, 8 beacons are affixed to a checkerboard pattern at known positions

(corners of certain squares on the checkerboard) in the shape of an "F". This arrangement is shown

in Figure 3.2.
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Figure 3.2: The beacon arrangement on the checkerboard pattern is shown. The number next to
each beacon denotes its assigned reference number in the Phasespace SDK

The camera was mounted on a Manfrotto table top tripod, tilted so as to align Detector 0

with the vertical lines of the checkerboard pattern and Detector 1 with the horizontal lines of the

checkerboard pattern and positioned at a distance from the board. The camera and board are kept

stationary, the system is turned on and the positions of the beacons are acquired. Three alignment

categories are defined.

1. Horizontal alignment: There are 3 groups each beacon can be sorted under.

• Horizontal line 1(Lh1): Consisting of beacons 4,7,6 and 0

• Horizontal line 2(Lh2): Consisting of beacons 5,1 and 2

• Horizontal line 3(Lh3): Consisting of beacon 3

2. Vertical alignment: There are 4 groups each beacon can be sorted under.

• Vertical line 1(Lv1): Consisting of beacons 4,5 and 3

• Vertical line 2(Lv2): Consisting of beacons 7 and 1

• Vertical line 3(Lv3): Consisting of beacons 6 and 2
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• Vertical line 4(Lv4): Consisting of beacon 0

3. Individual: The light from each beacon is captured individually by blocking out the radiation

from the other beacons.

Data is acquired by allowing light from a certain category of beacons to be captured by obscuring

the other beacons. For example, the Lh1 data is acquired by only allowing light from beacons 4,7,6

and 0 to be captured by the camera. The recorded normalized positions are shown in Table 3.1.

Beacon No. Detector 0 normalized position Detector 1 normalized position

0
Lh1 = 0.525
Individual = 0.527

Lh1 = 0.348
Individual = 0.354

1
Lh2 = 0.572
Lv2 = 0.572
Individual = 0.572

Lh2 = 0.458
Lv2 = 0.458
Individual = 0.458

2
Lh2 = 0.575
Lv3 = 0.575
Individual = 0.575

Lh2 = 0.408
Lv3 = 0.408
Individual = 0.408

3
Lv1 = 0.619
Individual = 0.619

Lv1 = 0.512
Individual = 0.512

4
Lh1 = 0.514
Lv1 = 0.517
Individual = 0.517

Lh1 = 0.499
Lv1 = 0.506
Individual = 0.506

5
Lh2 = 0.568
Lv1 = 0.568
Individual = 0.568

Lh2 = 0.509
Lv1 = 0.509
Individual = 0.509

6
Lh1 = 0.522
Lv3 = 0.524
Individual = 0.524

Lh1 = 0.398
Lv3 = 0.404
Individual = 0.404

7
Lh1 = 0.519
Lv2 = 0.521
Individual = 0.521

Lh1 = 0.448
Lv2 = 0.455
Individual = 0.455

Table 3.1: The recorded positions of each beacon in both detectors and for all alignment groups
they lie in are shown.

For beacons 0,4,6 and 7 there is a slight difference between the detector normalized positions

for different alignment categories. This can be attributed to the fact that the values in the Table 3.1
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pertain to one timestep chosen for which position values for all beacons and detectors are available.

When the detector position values of each beacon are compared to the beacon’s corresponding

position on the board, it can be inferred that the direction of increase of normalized position for

both detectors would be as shown in Figure 3.3.

Figure 3.3: The direction of increasing position values for both detectors is shown, as inferred
from Table 3.1. The orange arrow shows the direction of increasing position values for Detector 0
and the blue line shows the direction of increasing position values for Detector 1

Figure 3.3 forces a change in the perception of the coordinate system of the image plane from

the conventional
[
d0 d1

]
to
[
d1max − d1 d0

]
. Where d0 is the normalized position for detector

0, d1 is the normalized position for detector 1 and d1max is the maximum normalized position

physically observed for detector 1. So, the x axis of the fictitious image plane is in the opposite

direction of the blue arrow in Figure 3.3, the y axis is in the direction of the orange arrow and the

z axis comes out of the front face on the camera.

A calibration test was conducted ,with the camera in the tilted alignment, with the goal to

ascertain the choice of coordinates from the detector position values so as to obtain a near-parallel

image plane alignment with the inertial plane. The same beacon arrangement as shown in Figure

3.1 is used. The position of the origin, in addition to the beacon positions, is shown in Figure 3.4.
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Figure 3.4: The inertial coordinate system with beacon positions. "O" is the origin and "OX" and
"OY" represent the inertial planar axes.

The inertial frame coordinates of each beacon are shown in Table 3.2.

Beacon No. Inertial Position
0 [7s,s]
1 [3s,3s]
2 [5s,3s]
3 [s,5s]
4 [s,s]
5 [s,3s]
6 [5s,s]
7 [3s,s]

Table 3.2: Inertial coordinates of each beacon given as [X-coordinate,Y-coordinate], s=49/16
inches
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The image plane projections for each pose of the board as seen from the Phasespace Viewer

are shown in 3.10 and their corresponding physical setup images can be seen in Figure 3.11.

The extrinsic projections of each frame as computed from Zhang’s[1] homography algorithm is

shown in Figure 3.12. The projections have been shown from the board’s perspective. For aesthetic

purposes, the figures have been moved to the end of the Chapter.

For the purpose of simple verification, consider the first figure and the last two figures. These

three figures are fronto-parallel board orientations at different distances from the camera. The in-

creasing order of frames by distance is Frame 1, Frame 23 and Frame 24. The extrinsic projections

of these frames as seen in Figure 3.12 provide two conclusions:

• The inter-planar distance between the inertial and the frame coordinate system also increases

from Frame 1 to Frame 24 through Frame 23.

• The planar axes are nearly aligned to each other, as is expected for the fronto-parallel orien-

tation.

The translation and CRP plots against frame number are given in Figures 3.5 and 3.6 respec-

tively.
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Figure 3.5: Plots of translation vector elements in inches against frame number

Figure 3.6: Plots of CRP vector elements against frame number
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The z-coordinate of the translation vectors for all frames are positive, which lends credibility

to the solution. All CRPs for all the frames are below 1. The extrinsic projections of all frames

with respect to the inertial frame are shown in Figure 3.7.

Figure 3.7: Extrinsic Projections of all frames combined and shown with respect to the inertial
frame

20



The choice of image plane coordinates, as related to the position values from the two linear

detectors, to obtain nearly aligned planar axes of the image plane and the inertial plane was deter-

mined by undergoing cases for assignment of the detectors as the two axes of the image plane and

finding the right assignment. If û and v̂ are the two fictitious image plane axes and d̂0 and d̂1 are

the unit vectors associated with detectors 0 and 1 respectively, the following cases were tested.

• Case 1: -d̂0 ‖ û and d̂1 ‖ v̂

• Case 2: d̂1 ‖ û and d̂0 ‖ v̂

• Case 3: -d̂1 ‖ û and d̂0 ‖ v̂

The negative detector axes coordinates were represented as dnmax−dn, where n ∈ [0, 1]. dnmax

was calculated using the range test, discussed in the next subsection.

The image plane projections plotted by Matlab, were compared with the inertial frame projec-

tions plotted by Matlab. These are shown in Figure 3.8.

21



Figure 3.8: Comparison between the inertial frame projections (shown on the left) and the image
plane projections (shown on the right) for each case. The top two images are for Case 1, the middle
two images are for Case 2 and the bottom two images are for Case 3

It can be seen from Figure 3.8 that for Case 3, the two plot match nearly perfectly. This implies

that the sense of the image plane for the Phasespace Camera is indeed as seen in Figure 3.3.
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3.2.2 Range Test

The next test was to determine the range of normalized position values for both detectors.

The main reason for this test was to determine the value of d1max. This test was performed by

keeping the board stationary and moving the camera around so as to capture various positions of

the beacons covering as much of the workspace of the camera’s field of view as possible. There

were beacon registration errors when the camera was brought too close to the board so data was

acquired in three stages with the camera being set at three different pitch angles. These three levels

are named upper, centre and lower. Figure 3.9 shows the various positions each beacon occupied

at all timesteps and for all three camera pitch angle configurations.

(a) Normalized positions of all bea-
cons for the upper pitch angle cam-
era configuration

(b) Normalized positions of all bea-
cons for the centre pitch angle cam-
era configuration

(c) Normalized positions of all bea-
cons for the lower pitch angle cam-
era configuration

Figure 3.9: Normalized beacon positions from the Range Test

From the position data obtained, the maximum and minimum normalized position values for

both detectors across all three pitch angle camera configurations were determined. Table 3.3 shows

the same.

Out of the values shown in Table 3.3, the one of most importance is d1max since it will be used

to determine the y coordinate of a beacon in the fictitious image plane, as discussed in the previous

subsection.
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Detector max/min Value
Detector 0 max 0.991708
Detector 0 min 0
Detector 1 max 0.99814
Detector 1 min 0

Table 3.3: Maximum and minimum recorded normalized position values for both detectors

3.2.3 Standard Deviation Test

In order to be aware of the deviation in position that can be expected from the camera’s sensor,

the standard deviation test was conducted. The main inspiration for this test came from the results

of the basis vectors test for beacons 0,4,6 and 7 shown in Table 3.1.

The test was conducted by keeping the board and the camera stationary with a certain distance

between them and acquiring data for about 20 seconds. Two iterations of this test were conducted.

The results of the first iteration are provided in Table 3.4 and the results of the second iteration

are provide in Table 3.5. The results are tabulated beacon-wise to shine light on the influence of

specific beacons on the uncertainty of their positions.

Beacon No. Standard Deviation for d0 Standard Deviation for d1
0 0.0059247 0.0000019
1 0.0064068 0.0000015
2 0.0000019 0.0000064
3 0.0000053 0.0075424
4 0.0000021 0.0000020
5 0.0000037 0.0000017
6 0.0000015 0.0000085
7 0.0000019 0.0046924

Table 3.4: Standard Deviation values sorted beacon-wise for the first iteration of the Standard
Deviation Test. d0 and d1 pertain to positions in detectors 0 and 1 respectively.

Out of all the standard deviation values observed in both tables, the maximum standard devia-

tion value observed is 0.0075424. Looking at the variation in position values for beacons 0,4,6 and
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Beacon No. Standard Deviation for d0 Standard Deviation for d1
0 0.0000119 0.0000025
1 0.0000037 0.0073923
2 0.0000020 0.0065174
3 0.0000052 0.0000142
4 0.0000021 0.0000018
5 0.0000037 0.0058451
6 0.0000014 0.0045665
7 0.0000019 0.0051810

Table 3.5: Standard Deviation values sorted beacon-wise for the second iteration of the Standard
Deviation Test. d0 and d1 pertain to positions in detectors 0 and 1 respectively.

7 in Table 3.1, all variations lie within 0.0075424. So those measurements are acceptable. Also, the

fact that both iterations show different standard deviations for both detectors for different beacons

shows that the standard deviation for any beacon at any day cannot be certainly determined.
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Figure 3.10: Image plane projections of each pose of the board as seen through the Phasespace
Viewer. The frames are ordered from the top left to the bottom right.
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Figure 3.11: The physical alignment of the board with respect to the camera corresponding to
each image plane projection shown in Figure 3.10. The frames are ordered from the top left to the
bottom right.
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Figure 3.12: Extrinsic Projections as computed using Zhang’s Homography algorithm correspond-
ing to each image plane projection shown in Figure 3.10. The distances are provided in inches.
The frames are ordered from the top left to the bottom right.
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4. ESTIMATION OF THE EXTRINSICS USING NONLINEAR LEAST SQUARES1

As stated before, Wong et al[3] presents an batch algorithm to estimate the relative pose of

the camera with respect to the target given the intrinsic parameters and the distortion coefficients.

The estimation of the pose rates is not performed and instantaneous beacon positions in the image

plane are used to estimate instantaneous relative pose of the camera. It is noteworthy that the planar

assumption for the beacons in the target centred frame is not required for this algorithm, but the

camera must be calibrated.

The objective is to obtain expressions relating the image coordinates of the beacons to their

inertial coordinates using the notions of homography and rigid body motion. 4.1 represents rigid

body motion and 4.2 represents the pinhole camera model without distortion.

pCi = RpWi + t (4.1)

ui = u0 + fx
xCi
zCi

vi = v0 + fy
yCi
zCi

(4.2)

where pWi is the inertial frame coordinate of the ith beacon, pCi =

[
xCi yCi zCi

]T
is the 3D

camera frame coordinate of pWi and
[
ui vi

]T
is the image plane projection associated with pWi .

Principal offset vector
[
ui vi

]T
and focal length vector

[
fx fy

]T
are the camera intrinsic pa-

rameters along with the skewness factor c, not shown here. If the rotation matrix and translation

vector are written as R =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 and t =


t1

t2

t3

 respectively and substituted into 4.2, 4.3

1Rewritten with permission from "A Structured Light System for Relative Navigation Applications" by Wong and
Majji in IEEE Sensors Journal 16.17 (2016): 6662-6679 ©2011 IEEE
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would be obtained.

ui = u0 + fx
r11x

W
i + r12y

W
i + r13z

W
i + t1

r31xWi + r32yWi + r33zWi + t3

vi = v0 + fy
r21x

W
i + r22y

W
i + r23z

W
i + t2

r31xWi + r32yWi + r33zWi + t3

(4.3)

If auxilliary variables u′i and v′i are defined as in 4.4, 4.3 would reduce to 4.5. u′i and v′i are the

normalised camera space coordinates.


u′i

v′i

1

 = A−1


ui

vi

1

 (4.4)

ui‘(r31x
W
i + r32y

W
i + r33z

W
i + t3) = r11x

W
i + r12y

W
i + r13z

W
i + t1

vi‘(r31x
W
i + r32y

W
i + r33z

W
i + t3) = r21x

W
i + r22y

W
i + r23z

W
i + t2

(4.5)

Here, A is the intrinsic parameter matrix. 4.5 pertains to each beacon in each frame. If there are n

beacons in each frames, the 2n condition equations can be stacked and rearranged in order to form

4.6. [
A1 A2

]r
t

 = 0 (4.6)

where

A1 =



xW1 0 −u′1xWi yW1 0 −u′1yW1 zW1 0 −u′1zW1

0 xW1 −v′1xWi 0 yW1 −v′1yWi 0 zW1 −v′1zW1
...

...
...

...
...

...
...

...
...

xWn 0 −u′nxWn yWn 0 −u′nyWn zWn 0 −u′nzWn

0 xWn −v′nxWi 0 yWn −v′nyWn 0 zWn −v′nzWn



30



,

A2 =



1 0 −u′1

0 1 −v′1
...

...
...

1 0 −u′n

0 1 −v′n


, r =

[
r11 r21 r31 r12 r22 r32 r13 r23 r33

]T
and t is defined earlier. In this research, the

A1 matrix has been modified to accommodate the fact that all beacons lie on a plane in the target

centred frame.

A1 =



xW1 0 −u′1xWi yW1 0 −u′1yW1 0 0 0

0 xW1 −v′1xWi 0 yW1 −v′1yWi 0 0 0

...
...

...
...

...
...

...
...

...

xWn 0 −u′nxWn yWn 0 −u′nyWn 0 0 0

0 xWn −v′nxWi 0 yWn −v′nyWn 0 0 0


(4.7)

The last three columns in 4.7 can be truncated during computation. On substitution into 4.6, it is

clear that the last column of the rotation matrix gets eliminated from the computational process.

This highlights the similarity of this configuration with the homography algorithm discussed in

Zhang[1].

r and t can be found by solving the linear algebra problem outlined by 4.6.

Now, t can be computed in terms of r in accordance with 4.8.

t̂ = −(AT2A2)
−1AT2A1r (4.8)

Since A2 is column rank deficient, the pseudo-inverse of A2 is used to compute the translation

vector. Also, due to the errors associated with the pseudo-inverse process 4.8 does not determinis-

tically obtain t but only estimates it, therefore the notation of t̂ is used to represent the translation

vector.
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On resubstituting 4.8 into 4.6, the null space problem to solve for r is obtained.

(A1 − A2(A
T
2A2)

−1AT2A1)r = Kr = 0 (4.9)

Noting the modified definition of A1 as shown in 4.7, the projection matrix K will have a distinct

form wherein the last three columns will be zeros, owing to the fact that K = SA1 where S =

I − A2(A
T
2A2)

−1AT2 . This again reinforces the fact that only r1 and r2 are begin estimated,

thus reaffirming the similarity with the homography algorithm in Zhang[1]. Two challenges are

associated with the null space solution.

• There is scale ambiguity in the solution, thus precluding the direct estimation of the orthog-

onal matrix.

• In the presence of noise, small changes in parameters of K can cause large variations in the

null space vector.

To alleviate some of these challenges, the rotation matrix is parameterized in terms of CRPs. The

use of CRPs has the following advantages.

• Reduction of dimensionality of the pose estimation problem to 6.

• Each row of the Kr = 0 equation is a quadratic in the CRPs, assuring global convergence

and facilitating the formulation of the problem into a nonlinear least squares problem.

If we define, Kr as f(u, v,P T , q̂), then we have the following.

y = f(u, v,P T , q) = 0 (4.10)

Here, P T is the beacon coordinates in the target centred frame stacked on top of each other. The

actual measurements will have some errors, therefore

ỹ = f(u, v,P T , q̂) + e (4.11)
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The cost function to be minimized is 4.12

J =
1

2
eTWe =

1

2
[f(q̂)]TW [f(q̂)] (4.12)

After linearizing about the current estimate of CRPs, the closed form optimal corrections are given

by 4.13

∆q = −(HTWH)−1HTWf((̂q)) (4.13)

Where H = ∂f
∂q q̂

is the Jacobian Matrix. The linearization process is carried out iteratively by

updating the current estimate q̂ = q̂+∆q. The derivation and form ofH are discussed in Appendix

B.

For the purpose of linear covariance analysis, it is assumed that the image space measurements

are corrupted by zero mean Gaussian white noise. This is represented by 4.14.

ũ = u+ εu

ṽ = v + εv

(4.14)

where εu and εv represent the independent identically distributed zero mean white noise vectors

with covariances Σu and Σv respectively. Σu and Σv are diagonal matrices whose iith element is

given by σ2
ui and σ2

vi respectively. Similarly beacon location uncertainty in the inertial coordinate

system is captured using a similar assumption.

P̃ = P + εP (4.15)

with εP =

[
εp1 εp2 . . . εpn

]T
and ΣP is a 3n×3n diagonal matrix whose ith diagonal element

corresponds to position uncertainty in the corresponding beacon coordinate.
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The Taylor Series expansion of f(u, v,P T , q̂) is given by 4.16.

f(u,v,P , q) = f(ũ, ṽ, P̃ , q̂) +

[
∂f

∂q

]
ũ,ṽ,P̃ ,q̂

δq +

[
∂f

∂u

]
ũ,ṽ,P̃ ,q̂

εu +

[
∂f

∂v

]
ũ,ṽ,P̃ ,q̂

εv

+

[
∂f

∂P

]
ũ,ṽ,P̃ ,q̂

εP +H.O.T (4.16)

On ignoring the higher order terms and combining the error contributions by u, v and P into

a single vector ν, 4.16 reduces to 4.17.

f(u,v,P , q) = f(ũ, ṽ, P̃ , q̂) +Hδq +G(ũ, ṽ, P̃ , q̂)ν (4.17)

where G is the nonlinear influence matrix that captures the influence of the sensitivities of the

function with respect to the image space and inertial space coordinates of the beacons on the errors

in the estimation process. The Jacobian Matrix H is evaluated at the converged CRP estimate q̂. It

can be inferred that the random vector ν is Gaussian with statistics (0, S). The covariance matrix

S is given by 4.18.

S =


Σu 0 0

0 Σv 0

0 0 ΣP

 (4.18)

The CRP estimation error is given by δq = q̂ − q. Keeping in mind that f(u,v,P , q) = 0

and utilizing the linear error theory of least squares estimation[27], the CRP error covariance can

be computed.

Pq = E(δqδqT ) = (HT (GSGT )−1H)−1 (4.19)

A key assumption in the error quantification in 4.19 is that the least squares estimate q̃ is

obtained by using a weighted least squares approach with the weight matrix W = (GSGT )−1.

For linear convariance analysis of the translation error, the relationship between the translation

vector and the rotation vector, represented by 4.8, is revisited albeit in a modified form wherein the
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weight matrix W has been added. The translation error is given by the following.

δt = −((AT2WA2)
−1AT2WA1)(r(q)− r(q̂) = C(r(q)− r(q̂)) (4.20)

The nonlinear relationship between the translation error and rotation error shown in 4.20 can be

linearized by linearizing r(q) about the current CRP estimate q̂.

r(q) = r(q̂) +

[
∂r

∂q

]
q̂

δq

On substituting the linearized rotation vector into 4.20, an approximate expression for transla-

tion error convariance can be obtained.

Pt = E(δtδtT ) ≈ C

[
∂r

∂q

]
q̂

E(δqδqT )

[
∂r

∂q

]T
q̂

CT (4.21)

The Jacobian Matrix
[
∂r
∂q

]
q̂

is a linear function in the current CRP estimate.

The incorporation of different sources of uncertainty in the image space and inertial space

beacon coordinates makes the above outlined process robust to real world sources of error. For

example, in the case of occlusion or oblique viewpoints, i.e. where the geometry of observation

is poor, the related uncertainty in the acquired data will introduce large errors in the estimation

process which will manifest in the large value of error covariance.
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5. DISTORTION INCORPORATED ESTIMATION

The Homography algorithm described in Chapter 2 does not assume any distortion in the im-

age plane of the camera. Hence, to estimate the distortion coefficients in addition to the intrinsic

and extrinsic parameters, a nonlinear optimization strategy is employed. The nonlinear optimiza-

tion algorithm of choice is the Levenberg Marquardt [28] algorithm and is carried out using the

lsqnonlin function in MatLab. In literature, the most common function used to model the image

plane distortions is the Brown’s Distortion model[7]. This is because Brown’s distortion model

was created with Photogrammetric plates in mind and the same model was found to be applica-

ble to modern CCD/CMOS array cameras with rectangular pixels. But to the best knowledge of

the author, no distortion model has been implemented on a Phasespace camera or a similar linear

imager based camera. So, this section discusses two distortion models:

• Brown’s Distortion Model

• Geometric Distortion Model presented by Ma et al[4]

To validate the two distortion models, two known CCD camera datasets are used and the non-

linear optimization algorithm is implemented on both and compared with their known results.

Bouguet Toolbox dataset consists of 20 frames capturing a checkerboard pattern with 156 inner

corners whereas Zhang’s dataset consists of 5 frames capturing a grid of squares pattern with 256

features.

5.1 Brown’s Distortion Model

The conventional formulation of distortion most commonly used to undistort CCD/CMOS

cameras is given by Brown[7] in Equation 5.1.

xd = xu + xu(k1r
2 + k2r

4 + ...) + (p1(r
2 + 2x2d) + 2p2xuyu)(1 + p3r

2 + p4r
4 + ...)

yd = yu + yu(k1r
2 + k2r

4 + ...) + (2p1xuyu + p2(r
2 + 2y2d))(1 + p3r

2 + p4r
4 + ...)

(5.1)
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where
[
xu yu

]T
is the undistorted normalised camera plane coordinate,

[
xd yd

]T
is the

corresponding distorted normalised camera plane coordinate, r =
√
x2u + y2u is the radial distance,

ki is the ith radial distortion coefficient and pi is the ith tangential distortion coefficient.

An alternate realization of the relationship between the undistorted and distorted normalised

camera plane coordinates, shown in Equation 5.2, can also be employed.

xu = xd + xd(k1r
2 + k2r

4 + ...) + (p1(r
2 + 2x2d) + 2p2xdyd)(1 + p3r

2 + p4r
4 + ...)

yu = yd + yd(k1r
2 + k2r

4 + ...) + (2p1xuyd + p2(r
2 + 2y2d))(1 + p3r

2 + p4r
4 + ...)

(5.2)

Here, r =
√
x2d + y2d.

Since both the distortion models use infinite radial and tangential distortion coefficients, choice

of the number of coefficients to use is left to the user.

Zhang[1] utilizes a simplified version of Brown’s distortion model wherein only the first two

radial distortion parameters are considered and develops a linear least squares solution to obtain

their estimates.

Since a linear imager is being discussed, both radial and tangential distortion must be taken

into consideration. For the purposes of this research, three radial and two tangential distortion co-

efficients are considered. Thus the simplified Brown’s distortion model corresponding to Equation

5.1 is given below. This is the model used in this research.

xd = xu + xu(k1r
2 + k2r

4 + k3r
6) + p1(r

2 + 2x2u) + 2p2xuyu

yd = yu + yu(k1r
2 + k2r

4 + k3r
6) + 2p1xuyu + p2(r

2 + 2y2u)

(5.3)

With the lens distortion taken into consideration, Brown’s model is utilized to estimate the

distorted image plane coordinates for comparison with the measured image plane coordinates. It

must be noted that Equations 5.1 and 5.2 represent the relationship between the undistorted and
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distorted beacon coordinates in the normalised camera frame.

Brown’s distortion model represented by Equation 5.3 is tested with the Bouguet’s Camera

Calibration Toolbox[29] dataset and Zhang’s [1] dataset.

Henceforth, the process of optimizing over the intrinsics, extrinsics and the distortion coef-

ficients will be referred to as the "Combined Estimation Approach". The Combined Estimation

Approach can employ either the Brown’s distortion model or the Geometric distortion model.

5.1.1 Bouguet Toolbox Dataset

The results of applying the combined estimation approach to the Bouguet Toolbox[29] Dataset

are compared to the results of application of the Toolbox itself. Below is the comparitive study of

the same.

The initialization values from Homography are optimized using the combined estimation ap-

proach, whereas the initialization values in Bouguet’s Toolbox are optimized using the Steepest

Gradient Descent algorithm. After optimization, the comparison of results are shown in the Tables

that follow.

Table 5.1 shows the optimized intrinsics as computed by both the combined estimation ap-

proach and Steepest Gradient Descent side by side. The initial value shown in the Table are com-

puted using Homgraphy.

It can be seen from the Table 5.1 that the converged intrinsics in both cases are extremely close

to each other. Tables 5.2, 5.3 and 5.4 show the rotation matrices as computed from the converged

parameters of rotation (CRPs in the case of the combined estimation approach and principal ro-

tation vector in the case of the Bouguet Toolbox) next to each other for comparison. Tables 5.5

and 5.6 shows the translation vectors. The initial values shown in the tables are computed using

homography.
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Parameter Initial Values Optimized Values Bouguet Toolbox Values
α 652.0965121 657.5199781 657.5199789
β 660.1095416 657.8880139 657.8880141
c 0.708048876 0.330929654 0.330929792
u0 279.780234 302.6640633 302.6640606
v0 225.9629734 242.434325 242.4343209
k1 0 -0.261286314 -0.261286377
k2 0 0.176867237 0.176867826
k3 0 -0.122710594 -0.122712115
p1 0 0.0000623 0.0000623
p2 0 -0.000226054 -0.000226055

Table 5.1: Intrinsic parameters and distortion coefficients for the Bouguet Toolbox dataset are
shown. The initial values, computed using Homography, are used for Nonlinear Optimization. The
corresponding parameter values from the Bouguet Toolbox are shown for comparison. Brown’s
Distortion Model is used in the optimization process
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Rotation Matrix
Frame Initial Values Optimized Values Bouguet Toolbox Values

1

 0.044 0.991 0.120
0.638 0.064 −0.767
−0.768 0.111 −0.630

  0.054 0.992 0.112
0.633 0.052 −0.772
−0.772 0.113 −0.625

  0.054 0.992 0.112
0.633 0.052 −0.772
−0.772 0.113 −0.625


2

−0.0004 0.991 0.137
0.861 0.069 −0.503
−0.508 0.117 −0.853

  0.005 0.992 0.120
0.860 0.056 −0.505
−0.508 0.106 −0.854

  0.005 0.992 0.120
0.860 0.056 −0.505
−0.508 0.106 −0.854


3

−0.162 0.983 0.077
0.847 0.179 −0.499
−0.505 −0.015 −0.862

 −0.158 0.985 0.057
0.848 0.166 −0.502
−0.504 −0.030 −0.862

 −0.158 0.985 0.057
0.848 0.166 −0.502
−0.504 −0.030 −0.862


4

−0.252 0.917 −0.307
0.782 0.006 −0.622
−0.568 −0.397 −0.720

 −0.255 0.901 −0.349
0.802 −0.004 −0.596
−0.539 −0.433 −0.722

 −0.255 0.901 −0.349
0.802 −0.004 −0.596
−0.539 −0.433 −0.722


5

−0.246 0.768 0.590
0.575 0.605 −0.548
−0.779 0.204 −0.592

 −0.225 0.766 0.601
0.584 0.600 −0.545
−0.779 0.228 −0.583

 −0.225 0.766 0.601
0.584 0.600 −0.545
−0.779 0.228 −0.583


6

−0.130 0.990 0.043
0.734 0.067 0.675
0.666 0.119 −0.735

 −0.140 0.989 0.041
0.733 0.076 0.675
0.664 0.125 −0.736

 −0.140 0.989 0.041
0.733 0.076 0.675
0.664 0.125 −0.736


7

−0.145 0.798 0.584
0.851 −0.199 0.484
0.503 0.568 −0.650

 −0.153 0.786 0.597
0.846 −0.207 0.490
0.510 0.581 −0.634

 −0.153 0.786 0.597
0.846 −0.207 0.490
0.510 0.581 −0.634


Table 5.2: The rotation matrices for the first 7 frames of the Bouguet Toolbox dataset are shown. The initial values, computed by
Homography, are used for nonlinear optimization. The results from Bouguet Toolbox are shown for comparison. Brown’s Distortion
function is used in the optimization process
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Rotation Matrix
Frame Initial Values Optimized Values Bouguet Toolbox Values

8

−0.113 0.768 0.629
0.866 −0.232 0.441
0.485 0.595 −0.639

 −0.132 0.729 0.671
0.863 −0.247 0.439
0.486 0.638 −0.597

 −0.132 0.729 0.671
0.863 −0.247 0.439
0.486 0.638 −0.597


9

−0.206 0.750 −0.627
0.895 0.403 0.188
0.394 −0.523 −0.755

 −0.200 0.718 −0.666
0.892 0.414 0.178
0.404 −0.558 −0.723

 −0.200 0.718 −0.666
0.892 0.414 0.178
0.404 −0.558 −0.723


10

−0.231 0.854 −0.465
0.930 0.334 0.152
0.285 −0.397 −0.871

 −0.215 0.835 −0.505
0.912 0.356 0.199
0.347 −0.418 −0.839

 −0.215 0.835 −0.505
0.912 0.356 0.199
0.347 −0.418 −0.839


11

−0.122 0.991 −0.045
0.893 0.129 0.430
0.432 0.012 −0.901

 −0.127 0.990 −0.049
0.867 0.135 0.478
0.481 0.018 −0.876

 −0.127 0.990 −0.049
0.867 0.135 0.478
0.481 0.018 −0.876


12

−0.124 0.991 0.023
0.891 0.101 0.440
0.434 0.076 −0.897

 −0.127 0.991 0.004
0.880 0.110 0.461
0.457 0.062 −0.886

 −0.127 0.991 0.004
0.880 0.110 0.461
0.457 0.062 −0.886


13

−0.118 0.985 0.119
0.901 0.056 0.431
0.418 0.158 −0.894

 −0.121 0.987 0.103
0.897 0.064 0.437
0.425 0.146 −0.893

 −0.121 0.987 0.103
0.897 0.064 0.437
0.425 0.146 −0.893


14

−0.109 0.983 0.144
0.911 0.041 0.408
0.396 0.176 −0.901

 −0.108 0.986 0.120
0.909 0.050 0.412
0.401 0.154 −0.902

 −0.108 0.986 0.120
0.909 0.050 0.412
0.401 0.154 −0.902


Table 5.3: The rotation matrices for the frames 8 through 14 of the Bouguet Toolbox dataset are shown. The initial values, computed
by Homography, are used for nonlinear optimization. The results from Bouguet Toolbox are shown for comparison.Brown’s Distortion
function is used in the optimization process
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Rotation Matrix
Frame Initial Values Optimized Values Bouguet Toolbox Values

15

−0.081 0.985 0.149
0.966 0.041 0.254
0.244 0.165 −0.955

 −0.089 0.975 0.203
0.970 0.039 0.237
0.223 0.218 −0.949

 −0.089 0.975 0.203
0.970 0.039 0.237
0.223 0.218 −0.949


16

−0.203 0.970 0.133
0.964 0.221 −0.140
−0.166 0.100 −0.981

 −0.207 0.977 0.030
0.962 0.210 −0.172
−0.174 −0.006 −0.984

 −0.207 0.977 0.030
0.962 0.210 −0.172
−0.174 −0.006 −0.984


17

−0.102 0.966 −0.235
0.807 0.218 0.547
0.581 −0.134 −0.802

 −0.104 0.958 −0.264
0.809 0.236 0.538
0.578 −0.157 −0.800

 −0.104 0.958 −0.264
0.809 0.236 0.538
0.578 −0.157 −0.800


18

0.045 0.856 −0.513
0.657 0.361 0.660
0.752 −0.367 −0.547

 0.023 0.862 −0.505
0.639 0.375 0.670
0.768 −0.338 −0.543

 0.023 0.862 −0.505
0.639 0.375 0.670
0.768 −0.338 −0.543


19

−0.170 0.834 0.523
0.739 −0.243 0.628
0.651 0.493 −0.575

 −0.186 0.824 0.533
0.715 −0.258 0.648
0.673 0.503 −0.542

 −0.186 0.824 0.533
0.715 −0.258 0.648
0.673 0.503 −0.542


20

−0.095 0.625 0.774
0.852 −0.349 0.387
0.513 0.697 −0.499

 −0.114 0.584 0.803
0.847 −0.364 0.386
0.518 0.724 −0.453

 −0.114 0.584 0.803
0.847 −0.364 0.386
0.518 0.724 −0.453


Table 5.4: The rotation matrices for the frames 15 through 20 of the Bouguet Toolbox dataset are shown. The initial values, computed
by Homography, are used for nonlinear optimization. The results from Bouguet Toolbox are shown for comparison.Brown’s Distortion
function is used in the optimization process
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Translation Vector in meters
Frame Initial Values Optimized Values Bouguet Toolbox Values

1

−512.529
−213.933
2957.725

 −590.490
−278.347
2844.169

 −590.490
−278.347
2844.169


2

−435.655
−472.869
2588.268

 −515.180
−530.558
2526.353

 −515.180
−530.558
2526.353


3

−330.695
−520.868
2636.163

 −416.035
−581.429
2585.814

 −416.035
−581.429
2585.814


4

−121.676
−448.102
2598.821

 −213.229
−515.445
2597.414

 −213.229
−515.445
2597.414


5

−220.317
−701.434
2506.850

 −306.0125
−763.341
2456.339

 −306.0125
−763.341
2456.339


6

−437.360
−222.515
1483.488

 −495.461
−265.076
1483.323

 −495.461
−265.076
1483.323


7

−224.688
−219.971
1477.794

 −275.520
−258.636
1466.863

 −275.520
−258.636
1466.863


8

−514.237
−302.501
1594.624

 −565.929
−344.657
1539.911

 −565.929
−344.657
1539.911


9

 83.415
−688.332
2455.271

  −4.652
−749.999
2429.836

  −4.652
−749.999
2429.836


10

 7.971
−944.286
2991.082

  −96.757
−1000.853
2868.444

  −96.757
−1000.853
2868.444


11

−428.546
−737.311
2466.929

 −501.981
−783.902
2349.344

 −501.981
−783.902
2349.344


12

−375.588
−540.580
2064.899

 −443.646
−590.187
2016.517

 −443.646
−590.187
2016.517


Table 5.5: The translation vectors for the first 12 frames of the Bouguet Toolbox dataset are shown.
The initial values, computed by Homography, are used for nonlinear optimization. The results
from Bouguet Toolbox are shown for comparison. Brown’s Distortion function is used in the
optimization process
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Translation Vector in meters
Frame Initial Values Optimized Values Bouguet Toolbox Values

13

−377.325
−429.319
1836.644

 −441.138
−477.987
1815.721

 −441.138
−477.987
1815.721


14

−352.664
−412.441
1653.253

 −410.927
−456.646
1636.024

 −410.927
−456.646
1636.024


15

−607.843
−401.109
1640.103

 −662.720
−447.929
1583.183

 −662.720
−447.929
1583.183


16

 29.911
−510.901
2322.697

  −51.881
−567.232
2318.755

  −51.881
−567.232
2318.755


17

−387.156
−413.882
1630.930

 −449.816
−462.815
1634.470

 −449.816
−462.815
1634.470


18

−566.599
−484.396
1540.649

 −617.070
−525.711
1471.745

 −617.070
−525.711
1471.745


19

−321.373
−240.456
1169.700

 −354.435
−264.843
1113.610

 −354.435
−264.843
1113.610


20

−435.696
−257.575
1374.484

 −478.522
−292.999
1320.395

 −478.522
−292.999
1320.395


Table 5.6: The translation vectors for the frames 13 through 20 of the Bouguet Toolbox dataset are
shown. The initial values, computed by Homography, are used for nonlinear optimization. The
results from Bouguet Toolbox are shown for comparison. Brown’s Distortion function is used in
the optimization process
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The similarity in the values of the converged intrinsics and extrinsics lends credibility to the

current implementation of the combined estimation approach using Brown’s distortion model as

developed in this research.

5.1.2 Zhang’s Dataset

Zhang’s[1] dataset was also used to verify the credibility of the combined estimation approach

with Brown’s distortion model. The results of the combined estimation approach are compared

with the corresponding results from Bouguet’s Toolbox.

After optimization of the initialization values using the homography optimization algorithm

and the Steepest Gradient Descent algorithm in Bouguet’s Toolbox, the results are compared in the

subsequent tables. Table 5.7 compares the converged intrinsics from both algorithms. The initial

values shown in the Table are computed using Homography.

Parameter Initial Values Optimized Values Bouguet Toolbox Values
α 871.3640761 833.0034588 833.0034437
β 871.071365 832.9376039 832.9375887
c 0.216330799 0.211020284 0.21101857
u0 300.7357847 304.0043788 304.0044236
v0 220.9411681 208.8753372 208.8753452
k1 0 -0.222263498 -0.222264505
k2 0 0.086958529 0.086971646
k3 0 0.364852766 0.364804933
p1 0 0.0000566 0.0000566
p2 0 0.001058611 0.00105861

Table 5.7: Intrinsic parameters and distortion coefficients for the Zhang dataset are shown. The ini-
tial values, computed using Homography, are used for Nonlinear Optimization. The corresponding
parameter values from the Bouguet Toolbox are shown for comparison. Brown’s Distortion func-
tion is used in the optimization process

The intrinsics and distortion parameters computed using the homography optimization algo-

rithm are in good agreement with the intrinsics and distortion parameters as computed using

Bouguet’s Toolbox. Table 5.8 shows the rotation matrices as computed from the converged pa-
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rameters of rotation (CRPs in the case of the combined estimation approach and principal rotation

vector in the case of the Bouguet Toolbox) next to each other for comparison. Table 5.9 shows the

translation vectors. The initial values shown in the tables are computed using homography.
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Rotation Matrix
Frame Initial Values Optimized Values Bouguet Toolbox Values

1

 0.990 −0.027 0.135
0.015 0.995 0.092
−0.137 −0.089 0.986

  0.992 −0.026 0.117
0.014 0.994 0.101
−0.119 −0.099 0.987

  0.992 −0.026 0.117
0.014 0.994 0.101
−0.119 −0.099 0.987


2

 0.996 −0.002 0.087
0.020 0.979 −0.201
−0.085 0.202 0.975

  0.997 −0.004 0.071
0.017 0.983 −0.181
−0.069 0.181 0.980

  0.997 −0.004 0.071
0.017 0.983 −0.181
−0.069 0.181 0.980


3

 0.914 −0.036 0.402
−0.002 0.995 0.095
−0.404 −0.087 0.910

  0.915 −0.035 0.401
−0.007 0.994 0.104
−0.403 −0.098 0.909

  0.915 −0.035 0.401
−0.007 0.994 0.104
−0.403 −0.098 0.909


4

0.986 −0.017 −0.164
0.031 0.996 0.084
0.162 −0.088 0.982

 0.986 −0.017 −0.162
0.033 0.995 0.094
0.159 −0.098 0.982

 0.986 −0.017 −0.162
0.033 0.995 0.094
0.159 −0.098 0.982


5

0.967 −0.197 −0.155
0.188 0.979 −0.069
0.166 0.037 0.985

 0.967 −0.197 −0.158
0.191 0.980 −0.052
0.165 0.020 0.986

 0.967 −0.197 −0.158
0.191 0.980 −0.052
0.165 0.020 0.986


Table 5.8: The rotation matrices for the frames of the Zhang dataset are shown. The initial values, computed by Homography, are used
for nonlinear optimization. The results from Bouguet Toolbox are shown for comparison. Brown’s Distortion function is used in the
optimization process
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Translation Vector in meters
Frame Initial Values Optimized Values Bouguet Toolbox Values

1

−3.784
3.423
13.676

 −3.840
3.615
12.812

 −3.840
3.615
12.812


2

−3.663
3.538
14.111

 −3.717
3.731
13.217

 −3.717
3.731
13.217


3

−2.886
3.531
15.108

 −2.944
3.736
14.265

 −2.944
3.736
14.265


4

−3.355
3.418
13.302

 −3.407
3.601
12.475

 −3.407
3.601
12.475


5

−4.016
2.962
15.280

 −4.073
3.170
14.364

 −4.073
3.170
14.364


Table 5.9: The translation vectors for the frames of the Zhang dataset are shown. The initial values,
computed by Homography, are used for nonlinear optimization. The results from Bouguet Toolbox
are shown for comparison. Brown’s Distortion function is used in the optimization process

The comparison of the converged rotation matrices and translation vectors from both algo-

rithms proves that the combined estimation approach with Brown’s distortion model has verified

credibility for estimation of the intrinsics, extrinsics and distortion coefficients. However, it must

be noted that the two datasets used to test the combined estimation approach are obtained using

conventional CMOS cameras. It remains to be seen whether this approach can be extended to the

linear imagers. The subsequent chapter presents and discusses the results from the employment

of the combined estimation approach with Brown’s distortion model to the Phasespace camera

datasets.

Now the Geometric Distortion Model is introduced, discussed and tested with the Bouguet

Toolbox dataset and Zhang dataset in the subsequent section.
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5.2 Geometric Distortion Model

Ma et al[4] discusses a family of polynomial and rational distortion functions as viable sub-

stitutes to Brown’s distortion model. These distortion functions are lumped models that take into

account all nonlinear distortion effects. The family of functions presented in the paper are given in

Table 5.10.

No. Function
1 1 + k1r
2 1 + k1r

2

3 1 + k1r + k2r
2

4 1 + k1r
2 + k2r

4

5 1
1+k1r

6 1
1+k1r2

7 1+k1r
1+k2r2

8 1
1+k1r+k2r2

9 1+k1r
1+k2r+k3r2

10 1+k1r2

1+k2r+k3r2

Table 5.10: Family of Polynomial and Rational Distortion Functions as presented in Ma et [4]

Function 4 is the same form as the purely radial distortion function in Brown’s distortion model

with two coefficients. Out of the ten distortion functions defined, the function chosen for this

research is presented in Equation 5.4.

xd = xu

(
1 + kx1r

2

1 + kx2r + kx3r2

)
yd = yu

(
1 + ky1r

2

1 + ky2r + ky3r2

) (5.4)

It is worth mentioning that the above equation is a slightly modified version of the expression

10 in Table 5.10 presented in Ma et al. Different distortion coefficients are defined for the two

camera plane basis directions. Equation 5.4 represents the geometric distortion function that has
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the most modularity in choice of distortion coefficients and the rational nature of the function

means that both radial and tangential distortion effects can be captured.

The geometric distortion process using nonlinear optimization is discussed in detail in Ap-

pendix C.

The distortion function defined above is tested on the two datasets used for Brown’s distortion

function, namely the Bouguet Toolbox dataset and the Zhang’s dataset. The intrinsic parameters,

distortion coefficients and the extrinsic parameters are compared with the known results as was

done in the previous subsection.

5.2.1 Bouguet Toolbox Dataset

Table 5.11 compares the intrinsic parameters for the Bouguet Toolbox dataset as found using

the nonlinear optimization with the results from Bouguet’s Toolbox. Bouguet’s Toolbox does not

accomodate different distortion models, so only the intrinsic parameters are compared.

Parameter Initial Value Optimized Value Bouguet Toolbox Value
α 652.0965121 657.7444023 657.5199789
β 660.1095416 657.5920104 657.8880141
c 0.708048876 0.310112494 0.330929792
u0 279.780234 302.5256425 302.6640606
v0 225.9629734 242.8550007 242.4343209

Table 5.11: The intrinsic parameters for the Bouguet Toolbox dataset are shown. The optimized
values are shown in the second column in comparison with the values obtained from Bouguet’s
Toolbox. Geometric Distortion function is used in the optimization process

The intrinsics as computed using the Combined Estimation procedure are in reasonable agree-

ment with the corresponding values from Bouguet’s Toolbox. Slightly different values are to be

expected since a different funtion is being minimised by the combined estimation procedure as

compared to Bouguet’s Toolbox.
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The optimized distortion parameters came out to be

kx =

[
0.278948587 0.004673147 0.526391265

]

and

ky =

[
0.456400351 −0.003967398 0.726773159

]
.

The extrinsic parameters for each frame, as computed using the homography optimization al-

gorithm and Bouguet’s Toolbox, are presented below. Tables 5.12, 5.13 and 5.14 show the rotation

matrices whereas Tables 5.15 and 5.16 shows the translation vectors.
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Rotation Matrix
Frame Initial Values Optimized Values Bouguet Toolbox Values

1

 0.044 0.991 0.120
0.638 0.064 −0.767
−0.768 0.111 −0.630

  0.054 0.992 0.112
0.633 0.052 −0.771
−0.771 0.113 −0.625

  0.054 0.992 0.112
0.633 0.052 −0.772
−0.772 0.113 −0.625


2

−0.0004 0.990 0.136
0.861 0.069 −0.503
−0.507 0.117 −0.853

  0.005 0.992 0.120
0.861 0.056 −0.505
−0.508 0.106 −0.854

  0.005 0.992 0.120
0.860 0.056 −0.505
−0.508 0.106 −0.854


3

−0.162 0.983 0.077
0.847 0.179 −0.499
−0.505 −0.015 −0.862

 −0.158 0.985 0.057
0.848 0.166 −0.501
−0.504 −0.030 −0.863

 −0.158 0.985 0.057
0.848 0.166 −0.502
−0.504 −0.030 −0.862


4

−0.252 0.917 −0.307
0.782 0.006 −0.622
−0.568 −0.397 −0.720

 −0.255 0.901 −0.350
0.802 −0.003 −0.596
−0.538 −0.433 −0.722

 −0.255 0.901 −0.349
0.802 −0.004 −0.596
−0.539 −0.433 −0.722


5

−0.246 0.768 0.590
0.575 0.605 −0.548
−0.779 0.204 −0.592

 −0.225 0.766 0.601
0.585 0.600 −0.545
−0.778 0.229 −0.583

 −0.225 0.766 0.601
0.584 0.600 −0.545
−0.779 0.228 −0.583


6

−0.130 0.990 0.043
0.734 0.067 0.675
0.666 0.119 −0.735

 −0.140 0.989 0.041
0.733 0.075 0.675
0.665 0.125 −0.735

 −0.140 0.989 0.041
0.733 0.076 0.675
0.664 0.125 −0.736


7

−0.145 0.798 0.584
0.851 −0.199 0.484
0.503 0.568 −0.650

 −0.153 0.787 0.597
0.845 −0.207 0.491
0.510 0.580 −0.633

 −0.153 0.786 0.597
0.846 −0.207 0.490
0.510 0.581 −0.634


Table 5.12: The rotation matrices for the first 7 frames of the Bouguet Toolbox dataset are shown. The initial values, computed by
Homography, are used for nonlinear optimization. The results from Bouguet Toolbox are shown for comparison. Geometric Distortion
function is used in the optimization process
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Rotation Matrix
Frame Initial Values Optimized Values Bouguet Toolbox Values

8

−0.113 0.768 0.629
0.866 −0.232 0.441
0.485 0.595 −0.639

 −0.132 0.729 0.671
0.863 −0.247 0.439
0.486 0.637 −0.597

 −0.132 0.729 0.671
0.863 −0.247 0.439
0.486 0.638 −0.597


9

−0.206 0.750 −0.627
0.895 0.403 0.188
0.394 −0.523 −0.755

 −0.201 0.718 −0.666
0.892 0.415 0.178
0.405 −0.558 −0.723

 −0.201 0.718 −0.666
0.892 0.414 0.178
0.404 −0.558 −0.723


10

−0.231 0.854 −0.465
0.930 0.334 0.152
0.285 −0.397 −0.871

 −0.215 0.835 −0.506
0.912 0.356 0.200
0.347 −0.418 −0.838

 −0.215 0.835 −0.505
0.912 0.356 0.199
0.347 −0.418 −0.839


11

−0.122 0.991 −0.045
0.893 0.129 0.430
0.432 0.012 −0.901

 −0.127 0.990 −0.049
0.867 0.135 0.479
0.481 0.018 −0.876

 −0.127 0.990 −0.049
0.867 0.135 0.478
0.481 0.018 −0.876


12

−0.124 0.991 0.023
0.891 0.101 0.440
0.434 0.076 −0.897

 −0.127 0.991 0.004
0.879 0.110 0.462
0.458 0.062 −0.886

 −0.127 0.991 0.004
0.880 0.110 0.461
0.457 0.062 −0.886


13

−0.118 0.985 0.119
0.900 0.056 0.431
0.418 0.158 −0.894

 −0.121 0.987 0.103
0.896 0.063 0.438
0.425 0.146 −0.892

 −0.121 0.987 0.103
0.897 0.064 0.437
0.425 0.146 −0.893


14

−0.109 0.983 0.144
0.911 0.041 0.408
0.396 0.176 −0.901

 −0.108 0.986 0.120
0.909 0.049 0.413
0.402 0.154 −0.902

 −0.108 0.986 0.120
0.909 0.050 0.412
0.401 0.154 −0.902


Table 5.13: The rotation matrices for the frames 8 through 14 of the Bouguet Toolbox dataset are shown. The initial values, computed by
Homography, are used for nonlinear optimization. The results from Bouguet Toolbox are shown for comparison. Geometric Distortion
function is used in the optimization process

53



Rotation Matrix
Frame Initial Values Optimized Values Bouguet Toolbox Values

15

−0.081 0.985 0.149
0.966 0.041 0.254
0.244 0.165 −0.955

 −0.089 0.975 0.203
0.970 0.038 0.238
0.224 0.218 −0.949

 −0.089 0.975 0.203
0.970 0.039 0.237
0.223 0.218 −0.949


16

−0.203 0.970 0.133
0.964 0.221 −0.140
−0.166 0.100 −0.981

 −0.207 0.977 0.030
0.962 0.209 −0.171
−0.173 −0.006 −0.984

 −0.207 0.977 0.030
0.962 0.210 −0.172
−0.174 −0.006 −0.984


17

−0.102 0.966 −0.235
0.807 0.218 0.547
0.581 −0.134 −0.802

 −0.104 0.958 −0.264
0.808 0.236 0.538
0.579 −0.157 −0.799

 −0.104 0.958 −0.264
0.809 0.236 0.538
0.578 −0.157 −0.800


18

0.045 0.856 −0.513
0.657 0.361 0.660
0.752 −0.367 −0.547

 0.023 0.862 −0.505
0.639 0.375 0.671
0.768 −0.338 −0.542

 0.023 0.862 −0.505
0.639 0.375 0.670
0.768 −0.338 −0.543


19

−0.170 0.834 0.523
0.739 −0.243 0.628
0.651 0.493 −0.575

 −0.186 0.825 0.533
0.715 −0.258 0.649
0.673 0.502 −0.541

 −0.186 0.824 0.533
0.715 −0.258 0.648
0.673 0.503 −0.542


20

−0.095 0.625 0.774
0.852 −0.349 0.387
0.513 0.697 −0.499

 −0.114 0.584 0.803
0.846 −0.365 0.386
0.519 0.724 −0.453

 −0.114 0.584 0.803
0.847 −0.364 0.386
0.518 0.724 −0.453


Table 5.14: The rotation matrices for the frames 15 through 20 of the Bouguet Toolbox dataset are shown. The initial values, computed by
Homography, are used for nonlinear optimization. The results from Bouguet Toolbox are shown for comparison. Geometric Distortion
function is used in the optimization process
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The rotation matrices as computed by both the combined estimation procedure and Bouguet’s

Toolbox are in good agreement with each other. The values do not match to the extent that they did

when Brown’s Distortion Model was used since the optimized values, as computed using the Geo-

metric Distortion Model, are compared with the optimized values from Bouguet’s Toolbox which

uses Brown’s Distortion Model. But the compared Rotation Matrices are very close to each other

nonetheless. Similar observations can be made for the translation vectors, shown subsequently.
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Translation Vector in meters
Frame Initial Values Optimized Values Bouguet Toolbox Values

1

−512.529
−213.933
2957.725

 −589.890
−280.170
2843.999

 −590.490
−278.347
2844.169


2

−435.655
−472.869
2588.268

 −514.648
−532.192
2526.029

 −515.180
−530.558
2526.353


3

−330.695
−520.868
2636.163

 −415.489
−583.102
2585.442

 −416.035
−581.429
2585.814


4

−121.676
−448.102
2598.821

 −212.652
−517.105
2596.969

 −213.229
−515.445
2597.414


5

−220.317
−701.434
2506.850

 −305.506
−764.944
2455.771

 −306.012
−763.341
2456.339


6

−437.360
−222.515
1483.488

 −495.155
−266.034
1483.129

  −495.461
−265.0765
1483.323


7

−224.688
−219.971
1477.794

 −275.234
−259.586
1466.721

 −275.520
−258.636
1466.863


8

−514.237
−302.500
1594.624

 −565.663
−345.745
1539.913

 −565.929
−344.657
1539.911


9

 83.415
−688.332
2455.271

  −4.151
−751.594
2429.302

  −4.652
−749.999
2429.836


10

 7.971
−944.286
2991.082

  −96.153
−1002.728
2867.556

  −96.757
−1000.853
2868.444


11

−428.546
−737.311
2466.929

 −501.487
−785.450
2348.703

 −501.981
−783.902
2349.344


12

−375.588
−540.580
2064.899

 −443.226
−591.477
2015.965

 −443.646
−590.187
2016.517


Table 5.15: The translation vectors for the first 12 frames of the Bouguet Toolbox dataset are
shown. The initial values, computed by Homography, are used for nonlinear optimization. The
results from Bouguet Toolbox are shown for comparison. Geometric Distortion function is used in
the optimization process
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Translation Vector in meters
Frame Initial Values Optimized Values Bouguet Toolbox Values

13

−377.325
−429.319
1836.644

 −440.766
−479.143
1815.288

 −441.138
−477.987
1815.721


14

−352.664
−412.441
1653.253

 −410.594
−457.678
1635.589

 −410.927
−456.646
1636.024


15

−607.843
−401.109
1640.103

 −662.425
−448.987
1583.056

  −662.720
−447.9298
1583.183


16

 29.911
−510.901
2322.697

  −51.414
−568.745
2318.415

  −51.881
−567.232
2318.755


17

−387.156
−413.882
1630.930

 −449.482
−463.849
1634.037

 −449.816
−462.815
1634.470


18

−566.599
−484.396
1540.649

 −616.767
−526.667
1471.393

 −617.070
−525.711
1471.745


19

−321.373
−240.456
1169.700

 −354.210
−265.588
1113.423

 −354.435
−264.843
1113.610


20

−435.696
−257.575
1374.484

 −478.283
−293.929
1320.355

 −478.522
−292.999
1320.395


Table 5.16: The translation vectors for the frames 13 through 20 of the Bouguet Toolbox dataset
are shown. The initial values, computed by Homography, are used for nonlinear optimization. The
results from Bouguet Toolbox are shown for comparison. Geometric Distortion function is used in
the optimization process
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The translation vectors as computed by both the combined estimation procedure and Bouguet’s

Toolbox are in good agreement with each other.

Now Zhang’s dataset is used to further verify the credibility of the combined estimation proce-

dure with Geometric Distortion. The results are presented in the following subsection.

5.2.2 Zhang’s Dataset

The intrinsics computed using the combined estimation algorithm are compared with the values

from Bouguet’s Toolbox and shown in Table 5.17

Parameter Initial Values Optimized Values Bouguet Toolbox Values
α 871.3640761 831.2620159 833.0034437
β 871.071365 832.1551532 832.9375887
c 0.216330799 0.204244578 0.21101857
u0 300.7357847 303.9740639 304.0044236
v0 220.9411681 206.6143399 208.8753452

Table 5.17: The intrinsic parameters for the Zhang dataset are shown. The optimized values are
shown in the second column in comparison with the values obtained from Bouguet’s Toolbox.
Geometric Distortion function is used in the optimization process

The two sets of intrinsics show greater deviation as compared to the Bouguet Toolbox dataset,

but the deviation is still within acceptable levels. Slightly different values are to be expected

since a different funtion is being minimised by the combined estimation procedure as compared to

Bouguet’s Toolbox.

The optimized distortion parameters came out to be

kx =

[
1.31669588 −0.015991552 1.593088424

]

and

ky =

[
1.223246055 −0.007448986 1.483151141

]
.
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The extrinsic parameters for each frame, as computed using the homography optimization al-

gorithm and Bouguet’s Toolbox, are presented below. Tables 5.18 and 5.19 show the rotation

matrices and the translation vectors as computed using the combined estimation approach in com-

parison with the results from Bouguet’s Toolbox.
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Rotation Matrix
Frame Initial Values Optimized Values Bouguet Toolbox Values

1

 0.990 −0.027 0.135
0.015 0.995 0.092
−0.137 −0.089 0.986

  0.992 −0.026 0.117
0.013 0.994 0.105
−0.119 −0.102 0.987

  0.992 −0.026 0.117
0.014 0.994 0.101
−0.119 −0.099 0.987


2

 0.996 −0.002 0.087
0.020 0.979 −0.201
−0.085 0.202 0.975

  0.997 −0.004 0.071
0.017 0.984 −0.177
−0.069 0.178 0.981

  0.997 −0.004 0.071
0.017 0.983 −0.181
−0.069 0.181 0.980


3

 0.914 −0.036 0.402
−0.002 0.995 0.095
−0.404 −0.087 0.910

  0.915 −0.035 0.401
−0.008 0.994 0.106
−0.402 −0.100 0.909

  0.915 −0.035 0.401
−0.007 0.994 0.104
−0.403 −0.098 0.909


4

0.986 −0.017 −0.164
0.031 0.996 0.084
0.162 −0.088 0.982

 0.986 −0.017 −0.162
0.033 0.994 0.097
0.159 −0.102 0.981

 0.986 −0.017 −0.162
0.033 0.995 0.094
0.159 −0.098 0.982


5

0.967 −0.197 −0.155
0.188 0.979 −0.069
0.166 0.037 0.985

 0.967 −0.196 −0.158
0.191 0.980 −0.048
0.164 0.016 0.986

 0.967 −0.197 −0.158
0.191 0.980 −0.052
0.165 0.020 0.986


Table 5.18: The rotation matrices for the frames of the Zhang dataset are shown. The initial values, computed by Homography, are used
for nonlinear optimization. The results from Bouguet Toolbox are shown for comparison. Geometric Distortion function is used in the
optimization process
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The rotation matrices as computed using both the combined estimation procedure and Bouguet’s

Toolbox are in good agreement with each other.

Translation Vector in meters
Frame Initial Values Optimized Values Bouguet Toolbox Values

1

−3.784
3.423
13.676

 −3.840
3.651
12.790

 −3.840
3.615
12.812


2

−3.663
3.538
14.111

 −3.717
3.768
13.196

 −3.717
3.731
13.217


3

−2.886
3.531
15.108

 −2.944
3.776
14.244

 −2.944
3.736
14.265


4

−3.355
3.418
13.302

 −3.407
3.635
12.454

 −3.407
3.601
12.475


5

−4.016
2.962
15.280

 −4.072
3.209
14.343

 −4.073
3.170
14.364


Table 5.19: The translation vectors for the frames of the Zhang dataset are shown. The initial
values, computed by Homography, are used for nonlinear optimization. The results from Bouguet
Toolbox are shown for comparison. Geometric Distortion function is used in the optimization
process

The translation vectors as computed using both the combined estimation procedure and Bouguet’s

Toolbox are in good agreement with each other.

The comparison of the converged rotation matrices and translation vectors from both algo-

rithms proves that the combined estimation approach with Geometric distortion model has verified

credibility for estimation of the intrinsics, extrinsics and distortion coefficients. However, it must

be noted that the two datasets used to test the combined estimation approach are obtained using

conventional CMOS cameras. It remains to be seen whether this approach can be extended to the

linear imagers. The subsequent chapter presents and discusses the results from the employment of

the combined estimation approach with Geometric distortion model to the Phasespace datasets.
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6. EXPERIMENTAL RESULTS

A total of 4 experiments were conducted with different goals for 4 of them. The various exper-

iments and the goals for each are outlined below. In each experiment, the image plane coordinates

found using the coordinate system determination procedure discussed in the previous Chapter. The

distortion incorporated estimation is carried out using the two distortion models defined in the pre-

vious Chapter. In the end, the intrinsics as computed using the distortion incorporated estimation

are collected into a table for comparison and further inferences.

• Dataset 1 - This experiment used an arrangement of 8 beacons arranged on a checkerboard.

A total of 29 frames were captured, out of which 22 frames were deemed viable. This was

the first experiment conducted with the Phasespace camera.

• Dataset 2 - This experiment used an arrangement of 14 beacons arranged on a checkerboard.

A total of 20 frames were captured and all frames were deemed viable. The goal of this

experiment was to ascertain whether the addition of extra beacons improved the estimation

of the intrinsics and extrinsics.

• Dataset 3 - This experiment is similar to the one in Dataset 2, the only difference is that the

board was placed farther away from the camera as compared to Dataset 2. For this case, 19

frames were captured and all frames were deemed viable.

• Dataset 4 - This experiment used an arrangement of 8 beacons on a checkerboard. 16 frames

were captured out of which 15 were deemed viable. The goal of this test was to compare the

algorithm developed in Wong et al[3] with the Combined Estimation approach.

6.1 Dataset 1

The arrangement of the 8 beacons on the checkerboard pattern is shown in Figure 6.1.

The inertial coordinates of the beacons are given in Table 6.1.
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Figure 6.1: Beacon Arrangement on the checkerboard pattern is shown. The numbers next to the
beacons indicate their number assignment in the Phasespace system. The origin O, the inertial
x-axis X and inertial y-axis Y are also shown.

During the estimation of the rows of the Homography matrix, discussed in Chapter 2 after the

Equation 2.3, a condition used to eliminate certain noisy frames was the difference in order of

the last two singular values of the L matrix. If this difference was less than 2, that frame was

eliminated. Using this criterion, frame numbers 1,2,8,9,13,14 and 18 were eliminated out of the

total of 30 frames.

63



Beacon No. Inertial Position
0 [s,3s]
1 [5s,3s]
2 [3s,5s]
3 [5s,s]
4 [5s,5s]
5 [3s,s]
6 [s,s]
7 [s,5s]

Table 6.1: Inertial coordinates of each beacon given as [X-coordinate,Y-coordinate], s=2.95 inches

The image plane projections of the 30 frames as seen from the Phasespace Viewer are shown

in Figure 6.2.

The checkerboard was hand held at various poses in order to leverage the full extent of all

three available rotational degrees of freedom. The physical alignment images are omitted here for

aesthetic purposes.

After the noisy frames are eliminated, the remaining 22 frames are inputted to Zhang’s Ho-

mography algorithm to generate the starting guess values for nonlinear optimization. Optimization

over the entire set of intrinsics, distortion coefficients and extrinsics is carried out using both the

Brown’s and Geometric distortion models and compared. The next subsection discusses the results

of the Combined Estimation Approach using Brown’s Distortion model.
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Figure 6.2: Image plane projections of each pose of the board as seen through the Phasespace
Viewer. The frames are ordered from the top left to the bottom right.

6.1.1 Brown’s Distortion Model

The combined estimation approach was employed using Brown’s distortion model to compute

the modified intrinsics and extrinsics, along with the distortion coefficients. The initialization

values for the nonlinear optimization algorithm, as computed by the Homography algorithm, are

shown in the subsequent tables. Table 6.2 shows the values of the intrinsics and the distortion
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coefficients used to initialize the optimization along with the optimized values.

Parameter Initial Values Optimized Values
α 0.841908008 0.866387157
β 0.829096978 0.862603651
c -0.0070489 -0.005218412
u0 0.485247568 0.490403937
v0 0.519056646 0.525072226
k1 0 0.26381864
k2 0 -2.017524534
k3 0 4.043408479
p1 0 -0.000291855
p2 0 -0.004889833

Table 6.2: The intrinsic parameters and distortion coefficients for Dataset 1, as computed by the
Homography algorithm and the optimization scheme are shown. Brown’s Distortion Model is
employed in the optimization process

Tables 6.3 and 6.4 show the values of the CRPs for each of the viable frames, used to initialize

the optimization algorithm along with the optimized values. Tables 6.5 and 6.6 show the values of

the translation vectors for each of the viable frames, used to initialize the optimization algorithm

along with the optimized values. It must be noted that due to the relatively high values of the op-

timized distortion coefficients (k2 and k3 are greater than 1), the optimization process has resulted

in some considerable shift in the CRPs from the initialization values.
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CRP Vector
Frame Number Initial Values Optimized Values

3

 0.02991096
0.043638853
0.028073138

 0.035937617
0.036847763
0.027532273


4

 0.105988989
−0.015933864
0.071895756

  0.124213864
−0.016919857
0.071489333


5

 0.185184762
−0.028428785

0.32020879

  0.19344956
−0.055296271
0.319258323


6

0.050246534
0.025129132
0.082927686

 0.061964251
0.025598324
0.082731903


7

0.002072254
0.1099547

0.068403649

 −0.000271134
0.105667424
0.067819018


10

 0.177189158
0.119815081
−0.051259389

  0.194802537
0.120261913
−0.050306007


11

 0.139948791
0.059635804
−0.123214466

  0.144150784
0.053355134
−0.123618903


12

0.094516439
0.087920611
0.079243484

  0.10323508
0.083811965
0.079590542


15

0.049147363
0.1979902

1.130415568

 0.037173343
0.237608894
1.125967843


16

0.388164132
0.436643359
1.206453323

 0.386020046
0.452019204
1.209135731


17

0.045857046
0.075203812
1.846815069

 0.053900234
0.119728093
1.839080158


19

−0.003279004
0.172057085
1.317186304

 −0.016959774
0.188321965
1.316199775


Table 6.3: The CRPs for the first 12 well-conditioned frames for Dataset 1 is presented. The initial-
ization values computed by Homography are juxtaposed with the optimized values for comparison.
Brown’s distortion model is employed in the optimization process.
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CRP Vector
Frame Number Initial Values Optimized Values

20

 0.40476222
0.203149278
2.084352626

 0.382720489
0.219342128
2.079250607


21

−0.388103136
0.620951344
5.000170263

 −0.42392612
0.689722208
5.008010035


22

−4.840497133
8.427993488
47.76243114

 −5.720055552
9.660896344
51.38153013


23

 0.264498193
0.280761042
−3.094710111

  0.251500185
0.257636873
−3.107211331


24

 0.264303944
0.033691856
−2.082786826

  0.27005813
0.043110116
−2.083548451


25

 0.093672494
−0.064410833
−1.865584561

  0.100142867
−0.079133069
−1.867101825


26

−0.01976325
0.313837849
−1.94368138

 −0.01546419
0.315655754
−1.94890649


27

 0.739213029
1.723353966
−9.496175852

  0.747529513
1.841881907
−9.592860698


28

 0.780647426
−0.661721708
−4.598393165

  0.729751143
−0.782096151
−4.622532882


29

 0.019295929
0.018930625
−2.204920811

  0.025363381
0.002657687
−2.209155417


Table 6.4: The CRPs for the remaining well-conditioned frames for Dataset 1 is presented. The
initialization values computed by Homography are juxtaposed with the optimized values for com-
parison. Brown’s distortion model is employed in the optimization process.
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Translation Vector in inches
Frame Number Initial Values Optimized Values

3

−7.762311787
−8.500610405
18.22250514

 −7.912057505
−8.654166474
19.24266878


4

−9.953222873
−5.682780367
20.00738712

 −10.08826911
−5.849024098

21.069837


5

 −10.8393115
−2.705561396
22.63006525

  −11.2328536
−2.896955591
24.37896734


6

−10.64087904
−5.518017708
18.81037454

 −10.78294979
−5.694744

19.77615673


7

−9.959092178
−9.052910818
16.73048544

 −10.17281902
−9.235966416
17.62883334


10

−9.032348263
−8.836486597

22.3150677

 −9.191426042
−8.9379167
23.48053051


11

−5.119518061
−12.96189442

21.8860909

  −5.27975731
−13.02340957
22.86631775


12

−7.549475282
−5.274623827
18.87942188

 −7.690737799
−5.460972255
20.01444074


15

−3.382881326
12.18971112
17.86126769

 −3.631727771
11.98448534
18.11440752


16

−7.3302737
6.756214675
15.29382849

 −7.447396732
6.598375373
15.90838632


17

0.144211512
13.60224588
18.07307045

 −0.165868617
13.53480562
18.57435661


19

−6.906484812
11.83491822
15.17360283

 −7.325085676
11.85288227
15.99467435


Table 6.5: The Translation vectors (in inches) corresponding to the firt 12 well-conditioned frames
for Dataset 1 is presented. The initialization values computed by Homography are shown along
with the optimized values for comparison,Brown’s distortion model is employed in the optimiza-
tion process.
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Translation Vector in inches
Frame Number Initial Values Optimized Values

20

−2.94547048
12.0932697
16.93234077

 −3.182598713
12.08953487
17.89852945


21

5.893452865
9.508393454
18.77061919

 5.763470099
9.305069226
19.48738318


22

7.920619454
4.213062962
19.99184029

 7.766142757
3.977737465
20.81951134


23

16.01782847
2.715592203
23.23644919

 15.82001518
2.513381805
23.79821164


24

 12.79967916
−1.677976743
22.76452623

  12.80924474
−1.741408896
23.85050575


25

 12.37279547
−1.374218359
19.73510863

  12.41828913
−1.428800484
20.64446824


26

 13.29555651
−1.566020162
20.22382799

  13.30124863
−1.699990753
21.14585008


27

11.60742707
6.902934209
24.40542288

 11.44540926
6.711236881
25.36077472


28

15.10883122
3.694289173
21.96332176

 15.03698046
3.607362283
22.44841037


29

13.17579131
0.0814697

18.85063227

 13.23649347
0.012017178
19.69547226


Table 6.6: The Translation vectors (in inches) corresponding to the remaining well-conditioned
frame for Dataset 1 is presented. The initialization values computed by Homography are shown
along with the optimized values for comparison.Brown’s distortion model is employed in the opti-
mization process.
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The converged intrinsics and extrinsics are slightly different as compared to the corresponding

values computed using Homography. However, the converged extrinsics remain close enough to

the extrinsics as computed using Homography to be just as justifiable.

The extrinsic projections of the 22 frames are shown in order from frame 3 through frame 30

after the removal of the noisy frames in Figure D.1 in Appendix D for aesthetic purposes.

The combined extrinsic projections of all viable frames is shown in Figure 6.3.

Figure 6.3: Extrinsic projections of all well-conditioned frames for Dataset 1 are shown together
with respect to the inertial frame. Brown’s distortion model is employed in the optimization pro-
cess.

An observation of the translation and CRP vector plots, shown in Figures 6.4 and 6.5 respec-

tively, reveal that the CRPs for most frames are well behaved, i.e. below 1 and the translation in the

inertial z-direction are positive for all frames. This adds to the trust in the Homography algorithm.
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Figure 6.4: Plots of translation vector elements in inches against frame number for Dataset 1.
These frame numbers are for the "non-noisy" frames where the noisy frame numbers are replaced
by the next successive frame. Brown’s distortion model is employed in the optimization process.
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Figure 6.5: Plots of CRP vector elements against frame number for Dataset 1. These frame num-
bers are for the "non-noisy" frames where the noisy frame numbers are replaced by the next suc-
cessive frame. Brown’s distortion model is employed in the optimization process.
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6.1.2 Geometric Distortion Model

The combined estimation approach was employed using the Geometric distortion model to

compute the modified intrinsics and extrinsics, along with the distortion coefficients. The initial-

ization values for the nonlinear optimization algorithm, as computed by the Homography algo-

rithm, are shown in the subsequent tables. Table 6.7 shows the initialized (by Homography) and

optimized values of the intrinsics and the distortion coefficients.

Parameter Initial Values Optimized Values
α 0.841908008 1.096397663
β 0.829096978 0.910222153
c -0.0070489 -0.004898774
u0 0.485247568 0.499829903
v0 0.519056646 0.525091343
kx1 0 140.4243102
kx2 0 1.652147076
kx3 0 170.0546221
ky1 0 -3.062907908
ky2 0 0.117087602
ky3 0 -3.26737133

Table 6.7: The intrinsic parameters and distortion coefficients for Dataset 1, as computed by the
Homography algorithm and the optimization scheme are shown. Geometric Distortion Model is
employed in the optimization process

Tables 6.8 and 6.9 show the values of the CRPs for each of the viable frames, used to initial-

ize the optimization algorithm along with the optimized values. Tables 6.10 and 6.11 show the

initialized (by Homography) and optimized values of the translation vectors for each of the viable

frames.

74



CRP Vector
Frame Number Initial Values Optimized Values

3

 0.02991096
0.043638853
0.028073138

 0.030372832
0.041078138
0.027732892


4

 0.105988989
−0.015933864
0.071895756

  0.118937648
−0.014564567
0.071872566


5

 0.185184762
−0.028428785

0.32020879

  0.19201199
−0.052779531
0.320257321


6

0.050246534
0.025129132
0.082927686

 0.055845543
0.029029486
0.082756555


7

0.002072254
0.1099547

0.068403649

 −0.002521789
0.11023421
0.067523504


10

 0.177189158
0.119815081
−0.051259389

  0.194532732
0.125683487
−0.049542569


11

 0.139948791
0.059635804
−0.123214466

  0.14481668
0.057143008
−0.122824127


12

0.094516439
0.087920611
0.079243484

 0.103395313
0.08257183
0.079740954


15

0.049147363
0.1979902

1.130415568

 0.042490871
0.238102581
1.133127634


16

0.388164132
0.436643359
1.206453323

 0.384799084
0.461803211
1.213568878


17

0.045857046
0.075203812
1.846815069

  0.04755963
0.107275001
1.840308703


19

−0.003279004
0.172057085
1.317186304

 −0.019773133
0.192325351
1.315658519


Table 6.8: The CRPs for the first 12 well-conditioned frames for Dataset 1 is presented. The initial-
ization values computed by Homography are juxtaposed with the optimized values for comparison.
Geometric distortion model is employed in the optimization process.
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CRP Vector
Frame Number Initial Values Optimized Values

20

 0.40476222
0.203149278
2.084352626

 0.376076345
0.220556625
2.082422256


21

−0.388103136
0.620951344
5.000170263

 −0.446161384
0.693090664
5.023639444


22

−4.840497133
8.427993488
47.76243114

 −6.810105399
10.36108328
55.53339153


23

 0.264498193
0.280761042
−3.094710111

  0.262870511
0.281124981
−3.108223285


24

 0.264303944
0.033691856
−2.082786826

 0.271380287
0.052803094
−2.08342371


25

 0.093672494
−0.064410833
−1.865584561

  0.094646537
−0.070115938
−1.86644062


26

−0.01976325
0.313837849
−1.94368138

 −0.010882594
0.331883557
−1.952505487


27

 0.739213029
1.723353966
−9.496175852

  0.788166419
1.905802188
−9.678618501


28

 0.780647426
−0.661721708
−4.598393165

  0.750822372
−0.756656356
−4.589069561


29

 0.019295929
0.018930625
−2.204920811

  0.026142407
0.019066381
−2.210154153


Table 6.9: The CRPs for the remaining well-conditioned frames for Dataset 1 is presented. The
initialization values computed by Homography are juxtaposed with the optimized values for com-
parison. Geometric distortion model is employed in the optimization process.
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Translation Vector in inches
Frame Number Initial Values Optimized Values

3

−7.762311787
−8.500610405
18.22250514

 −8.116477698
−8.666778405
19.48400817


4

−9.953222873
−5.682780367
20.00738712

 −10.30073856
−5.865329077
21.35813238


5

 −10.8393115
−2.705561396
22.63006525

 −11.47681053
−2.904477855
24.72192571


6

−10.64087904
−5.518017708
18.81037454

 −10.98122836
−5.705158587
20.04567117


7

−9.959092178
−9.052910818
16.73048544

 −10.34573234
−9.265556718

17.8914225


10

−9.032348263
−8.836486597

22.3150677

 −9.434023559
−8.951054191
23.87492361


11

−5.119518061
−12.96189442

21.8860909

 −5.523816131
−13.04193459
23.21784796


12

−7.549475282
−5.274623827
18.87942188

 −7.915639508
−5.459420237
20.49816093


15

−3.382881326
12.18971112
17.86126769

 −3.808946724
11.99077339
18.71323313


16

−7.3302737
6.756214675
15.29382849

 −7.61802486
6.553424076
16.19163929


17

0.144211512
13.60224588
18.07307045

 −0.385090011
13.55623817
19.19740522


19

−6.906484812
11.83491822
15.17360283

 −7.515267668
11.83076441
16.3571757


Table 6.10: The translations for the first 12 well-conditioned frames for Dataset 1 is presented.
The initialization values computed by Homography are juxtaposed with the optimized values for
comparison. Geometric distortion model is employed in the optimization process.
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Translation Vector in inches
Frame Number Initial Values Optimized Values

20

−2.94547048
12.0932697
16.93234077

 −3.373170824
12.08316236
18.34971011


21

5.893452865
9.508393454
18.77061919

 5.556473215
9.284499528
19.94873446


22

7.920619454
4.213062962
19.99184029

 7.579975067
3.980387587
21.40262387


23

16.01782847
2.715592203
23.23644919

 15.55708523
2.477667812
24.42218181


24

 12.79967916
−1.677976743
22.76452623

  12.57131327
−1.766681916
24.33227454


25

 12.37279547
−1.374218359
19.73510863

  12.20100225
−1.444749019
21.05937225


26

 13.29555651
−1.566020162
20.22382799

  13.07955302
−1.720058268
21.64084475


27

11.60742707
6.902934209
24.40542288

 11.17627488
6.663292779
25.89225683


28

15.10883122
3.694289173
21.96332176

 14.80507735
3.592964601
23.10739558


29

13.17579131
0.0814697

18.85063227

 13.02605915
0.005608303
20.18740126


Table 6.11: The translations for the remaining well-conditioned frames for Dataset 1 is presented.
The initialization values computed by Homography are juxtaposed with the optimized values for
comparison. Geometric distortion model is employed in the optimization process.
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The converged intrinsics and extrinsics are slightly different as compared to the corresponding

values computed using Homography. However, the converged extrinsics remain close enough to

the extrinsics as computed using Homography to be just as justifiable.

The extrinsic projections of the 22 frames are shown in order from frame 3 through frame 30

after the removal of the noisy frames in Figure D.2 in Appendix D for aesthetic purposes.

The combined extrinsic projections of all viable frames is shown in Figure 6.6.

Figure 6.6: Extrinsic projections of all frames for Dataset 1 are shown together with respect to the
inertial frame. Geometric distortion model is employed in the optimization process.

An observation of the translation and CRP vector plots, shown in Figures 6.7 and 6.8 respec-

tively, reveal that the CRPs for most frames are well behaved, i.e. below 1 and the translation in the

inertial z-direction are positive for all frames. This adds to the trust in the Homography algorithm.
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Figure 6.7: Plots of translation vector elements in inches against frame number for Dataset 1. These
frame numbers are for the "non-noisy" frames where the noisy frame numbers are replaced by the
next successive frame. Geometric distortion function is employed in the optimization process
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Figure 6.8: Plots of CRP vector elements against frame number for Dataset 1. These frame num-
bers are for the "non-noisy" frames where the noisy frame numbers are replaced by the next suc-
cessive frame. Geometric distortion function is employed in the optimization process

81



6.2 Dataset 2

The arrangement of the 14 beacons on the checkerboard pattern is shown in Figure 6.9. The

number of beacons was supposed to be 16 but two beacons failed to initialize after they were glued

to the board.

Figure 6.9: Beacon Arrangement on the checkerboard pattern is shown. The numbers next to the
beacons indicate their number assignment in the Phasespace system. The origin O, the inertial
x-axis X and inertial y-axis Y are also shown.

The inertial coordinates of the beacons are given in Table 6.12.

All 20 frames satisfied the criterion of the difference in order to last two singular values of the

L matrix being two or greater. So no frames were eliminated as noisy.

The image plane projections of the 20 frames as seen from the Phasespace Viewer are shown

in Figure 6.10.

The checkerboard was hand held at various poses in order to leverage the full extent of all three

available rotational degrees of freedom. The physical alignment images are omitted here.
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Beacon No. Inertial Position
1 [6s,5s]
2 [6s,3s]
3 [6s,s]
4 [4s,s]
5 [2s,s]
6 [2s,3s]
7 [2s,5s]
8 [4s,5s]
9 [5s,2s]

10 [4s,2s]
11 [3s,2s]
12 [3s,3s]
13 [3s,4s]
14 [4s,4s]

Table 6.12: Inertial coordinates of each beacon given as [X-coordinate,Y-coordinate], s=2.95
inches

The intrinsic parameters and distortion coefficients will be shown at a later section to highlight

a different noteworthy point.

6.2.1 Brown’s Distortion model

The combined estimation approach was employed using Brown’s distortion model to compute

the modified intrinsics and extrinsics, along with the distortion coefficients. The initialization

values for the nonlinear optimization algorithm, as computed by the Homography algorithm, are

shown in the subsequent tables. Table 6.13 shows the values of the intrinsics and the distortion

coefficients used to initialize the optimization along with the optimized values.

Tables 6.14 and 6.15 show the values of the CRPs for each of the viable frames, used to ini-

tialize the optimization algorithm along with the optimized values. Tables 6.16 and 6.17 show the

values of the translation vectors for each of the viable frames, used to initialize the optimization

algorithm along with the optimized values.

The extrinsic projections of the 20 frames are shown in Figure D.3 in Appendix D for aesthetic

purposes.
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Figure 6.10: Image plane projections of each pose of the board as seen through the Phasespace
Viewer. The frames are ordered from the top left to the bottom right.

Parameter Initial Values Optimized Values
α 1.157687557 1.033197839
β 1.228225441 1.049048926
c 0.038390921 -0.013443215
u0 0.74216295 0.580530016
v0 0.372623487 0.486606025
k1 0 -0.26838847
k2 0 0.407314863
k3 0 -0.30403853
p1 0 0.0000723
p2 0 -0.012106003

Table 6.13: The intrinsic parameters and the distortion coefficients for Dataset 2, as computed
by the Homography algorithm and optimized using nonlinear optimization are shown. Brown’s
distortion model is employed in the optimization process.

84



CRP Vector
Frame Number Initial Values Optimized Values

1

0.023347867
0.134875443
0.469764129

 0.052713346
0.142780599
0.483414932


2

0.058589106
0.064839454
0.471290649

  0.037216304
−0.027530658
0.478948538


3

0.157898381
0.164745831
0.548605368

  0.20745862
0.206261602
0.563730476


4

0.273106239
0.377291341
0.512009173

 0.218649137
0.315739625
0.503145699


5

−0.192482166
0.239400098
0.437794263

 −0.058815892
0.204189534
0.466437356


6

−0.0128827
0.11925558
0.327708288

 −0.03013514
0.166359345
0.348797707


7

0.110680406
0.503884266
0.613505727

 0.089655715
0.429787476
0.618042983


8

−0.177197626
0.403946394
0.458456281

 −0.162594184
0.288534156
0.49653559


9

−0.288518115
0.041790808
0.49816919

 −0.145303816
0.019195996
0.543016375


10

0.198215044
0.249230304
0.730838029

 0.093314805
0.296432213
0.738973504


11

−0.006468417
0.2479848

0.478072393

 −0.011035147
0.179899884
0.498391952


12

−0.109884211
0.127610427
−0.115487142

 −0.066307091
0.12689688
−0.091311798


Table 6.14: The CRPs for the first 12 well-conditioned frames for Dataset 2 are presented. The
initialization values computed by Homography are juxtaposed with the optimized values for com-
parison. Brown’s distortion model is employed in the optimization process.
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CRP Vector
Frame Number Initial Values Optimized Values

13

−0.053582332
0.514803771
0.600251658

 −0.03311101
0.414189807
0.62336618


14

0.176968006
0.675453608
0.650675591

 0.134747726
0.544924675
0.647264577


15

−0.12278011
0.233038911
0.500634354

 −0.155163736
0.123486213
0.533846145


16

−0.37415309
0.239915419
0.663019815

 −0.330574461
0.30375158
0.72649196


17

−0.140803108
0.269869612
1.37446713

 −0.226694821
0.290536665
1.426889678


18

−2.389296895
1.122891705
10.07276728

 −1.92389689
2.042616973
11.17832054


19

−0.916000444
−0.537866052
5.855210757

 −1.321795693
−0.141367841
6.727622842


20

 2.155307255
1.543846229
−5.983510756

  1.218184582
1.138483038
−4.728791547


Table 6.15: The CRPs for the remaining well-conditioned frames for Dataset 2 are presented.
The initialization values computed by Homography are juxtaposed with the optimized values for
comparison.Brown’s distortion model is employed in the optimization process.
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Translation Vector in inches
Frame Number Initial Values Optimized Values

1

−22.91213256
10.13699501
50.95590504

 −14.60062355
5.377916916
42.33123481


2

−13.76017336
1.862474092
46.8322836

 −7.133416182
−2.861381054
43.74299226


3

−34.84511547
19.48051736
47.88078406

 −24.59079438
14.33024014
35.25689021


4

−19.35607239
7.417978234
38.99625166

 −13.01873448
3.785808448
32.64917864


5

−11.79251225
12.50048442
39.05398083

 −5.504787716
8.72760568
32.61413295


6

−28.66816462
−0.413190441
37.49291084

 −22.24107244
−3.629367014
29.36982385


7

−19.78021146
9.156074279
32.71146966

 −13.99630461
6.074798399
26.56143254


8

−11.4836863
3.25105537
31.6456562

 −6.915629087
0.216694655
29.60781105


9

−16.07468759
17.14336632
48.01391502

 −8.806835552
13.81241485
43.95680161


10

−29.06942799
3.067385513
47.59662329

 −20.16925345
−0.881799101
36.02169892


11

−9.732224091
6.521310406
46.80621636

 −3.001938366
2.186421724
40.88879264


12

−21.94303433
5.931324118
46.25400783

 −14.59124978
1.417172533
38.5417268


Table 6.16: The Translation vectors (in inches) corresponding to the first 12 well-conditioned
frames for Dataset 2 is presented. The initialization values computed by Homography are shown
along with the optimized values for comparison. Brown’s distortion model is employed in the
optimization process.
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Translation Vector in inches
Frame Number Initial Values Optimized Values

13

−7.279594303
11.15538191
51.17166444

 0.250291932
6.412338138
43.62932422


14

−16.36206795
7.538784817
34.34940734

  −11.31453
4.585013908
30.46824505


15

−11.26995873
1.732523249
42.33063579

 −5.303713232
−2.516820249
39.72653371


16

−26.87498887
12.48631918
35.39855055

 −20.74000226
9.576731271
27.76402814


17

−19.06327875
11.51153051
33.70168147

 −13.18208824
8.487059576
27.50446632


18

 9.31088737
24.40987856
47.2477564

 16.61723659
20.57868484
37.77418241


19

−11.15330922
28.75480968
52.18094678

 −2.619017473
23.95295717
42.07785777


20

 14.07458808
−1.447254709
57.92300964

  22.4161842
−7.058758014
50.62701069


Table 6.17: The Translation vectors (in inches) corresponding to the remaining well-conditioned
frame for Dataset 2 is presented. The initialization values computed by Homography are shown
along with the optimized values for comparison. Brown’s distortion model is employed in the
optimization process.
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The converged intrinsics and extrinsics are slightly different as compared to the corresponding

values computed using Homography. However, the converged extrinsics remain close enough to

the extrinsics as computed using Homography to be just as justifiable.

The combined extrinsic projections of all frames is shown in Figure 6.11.

Figure 6.11: Extrinsic projections of all frames for Dataset 2 are shown together with respect to
the inertial frame. Brown’s distortion model is employed in the optimization process.

The camera is held in the upright position for this experiment as well, so the nearly π/4 angle

shift between both the planar axes of the inertial and image plane will bean additive affect on the

final CRPs. There is no noticeable difference in the calculation of intrinsics or extrinsics, although

it is believed that there is an improvement in the accuracy of the extrinsics on addition of more

beacons.
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The plots of the translation vector elements and CRP vector elements against frame number

are shown in Figures 6.12 and 6.13.

Figure 6.12: Plots of translation vector elements in inches against frame number for Dataset 2.
Brown’s distortion model is employed in the optimization process.

6.2.2 Geometric Distortion model

The combined estimation approach was employed using the Geometric distortion model to

compute the modified intrinsics and extrinsics, along with the distortion coefficients. Table 6.18

shows the values of the intrinsics and the distortion coefficients used to initialize the optimization

(computed by the Homography algorithm) along with the optimized values.

Tables 6.19 and 6.20 show the values of the CRPs for each of the viable frames, used to ini-
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Figure 6.13: Plots of CRP vector elements against frame number for Dataset 2. Brown’s distortion
model is employed in the optimization process.

tialize the optimization algorithm along with the optimized values. Tables 6.21 and 6.22 show the

values of the translation vectors for each of the viable frames, used to initialize the optimization

algorithm along with the optimized values.

The extrinsic projections of the 20 frames are shown in Figure D.4 in Appendix D for aesthetic

purposes.

91



Parameter Initial Values Optimized Values
α 1.157687557 1.102711539
β 1.228225441 1.207412578
c 0.038390921 0.001792144
u0 0.74216295 0.805518249
v0 0.372623487 0.524512571
kx1 0 0.598824241
kx2 0 -0.140608444
kx3 0 0.912536353
ky1 0 3.132509035
ky2 0 -0.009073492
ky3 0 3.641362372

Table 6.18: The intrinsic parameters and the distortion coefficients for Dataset 2, as computed by
the Homography algorithm and optimized are shown. Geometric distortion model is employed in
the optimization process.
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CRP Vector
Frame Number Initial Values Optimized Values

1

0.023347867
0.134875443
0.469764129

 0.022509811
0.187493521
0.492346957


2

0.058589106
0.064839454
0.471290649

 0.048942135
0.021197516
0.480009984


3

0.157898381
0.164745831
0.548605368

 0.146626167
0.289017271
0.572680143


4

0.273106239
0.377291341
0.512009173

 0.173598315
0.402313711
0.54013001


5

−0.192482166
0.239400098
0.437794263

 −0.141084963
0.249380807
0.467309496


6

−0.0128827
0.11925558
0.327708288

 −0.084830102
0.211267883
0.343767638


7

0.110680406
0.503884266
0.613505727

 0.018809304
0.520697692
0.650062084


8

−0.177197626
0.403946394
0.458456281

 −0.238628256
0.369377816
0.495277975


9

−0.288518115
0.041790808
0.49816919

 −0.26317117
0.070512326
0.517414286


10

0.198215044
0.249230304
0.730838029

 0.028820257
0.363811712
0.765328171


11

−0.006468417
0.2479848

0.478072393

 −0.060738505
0.224981472
0.507694416


12

−0.109884211
0.127610427
−0.115487142

 −0.108510971
0.214768342
−0.111305497


Table 6.19: The CRPs corresponding to the first 12 well-conditioned frames for Dataset 2 is pre-
sented. The initialization values computed by Homography are shown along with the optimized
values for comparison. Geometric distortion model is employed in the optimization process.
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CRP Vector
Frame Number Initial Values Optimized Values

13

−0.053582332
0.514803771
0.600251658

 −0.100515237
0.496452113
0.653110194


14

0.176968006
0.675453608
0.650675591

  0.06447531
0.651408456
0.697320569


15

−0.12278011
0.233038911
0.500634354

 −0.241552024
0.190660546
0.528003283


16

−0.37415309
0.239915419
0.663019815

 −0.418099447
0.379806059
0.715189515


17

−0.140803108
0.269869612
1.37446713

 −0.33749925
0.327208424
1.441512183


18

−2.389296895
1.122891705
10.07276728

 −3.296954558
2.098295467
13.48125977


19

−0.916000444
−0.537866052
5.855210757

 −1.590631214
−0.359257966
5.876606185


20

 2.155307255
1.543846229
−5.983510756

  1.848173634
1.505457715
−5.027503483


Table 6.20: The CRPs corresponding to the remaining well-conditioned frame for Dataset 2 is
presented. The initialization values computed by Homography are shown along with the optimized
values for comparison. Geometric distortion model is employed in the optimization process.
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Translation Vector in inches
Frame Number Initial Values Optimized Values

1

−22.91213256
10.13699501
50.95590504

 −24.61640316
3.81277377
46.92329184


2

−13.76017336
1.862474092
46.8322836

 −16.53582712
−4.245012048
47.08847725


3

−34.84511547
19.48051736
47.88078406

 −33.28912911
12.5173524
37.97063787


4

−19.35607239
7.417978234
38.99625166

 −20.59874098
2.573863361
35.44361172


5

−11.79251225
12.50048442
39.05398083

 −13.37893901
7.624698992
37.46858568


6

−28.66816462
−0.413190441
37.49291084

 −29.50340936
−4.872369302
31.61387198


7

−19.78021146
9.156074279
32.71146966

 −20.57223376
5.048047039
29.52569094


8

−11.4836863
3.25105537
31.6456562

 −13.77268792
−0.856644522
32.91302967


9

−16.07468759
17.14336632
48.01391502

 −18.77215784
11.76217629
47.56348402


10

−29.06942799
3.067385513
47.59662329

 −28.90624583
−2.324040768
39.44627971


11

−9.732224091
6.521310406
46.80621636

 −12.45825899
0.733707186
46.88459575


12

−21.94303433
5.931324118
46.25400783

 −23.35915417
−0.103650251
41.68137299


Table 6.21: The Translation vectors (in inches) corresponding to the first 12 well-conditioned
frame for Dataset 2 is presented. The initialization values computed by Homography are shown
along with the optimized values for comparison. Geometric distortion model is employed in the
optimization process.
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Translation Vector in inches
Frame Number Initial Values Optimized Values

13

−7.279594303
11.15538191
51.17166444

 −9.970071203
4.852246307
50.94954898


14

−16.36206795
7.538784817
34.34940734

 −18.72289667
3.4367047
34.2905939


15

−11.26995873
1.732523249
42.33063579

 −14.07218231
−3.760724253
43.30017397


16

−26.87498887
12.48631918
35.39855055

 −27.78160665
8.330539858
30.26297185


17

−19.06327875
11.51153051
33.70168147

 −20.07781989
7.395110119
30.87484063


18

 9.31088737
24.40987856
47.2477564

 7.721441318
19.12084373
46.01582899


19

−11.15330922
28.75480968
52.18094678

 −13.08262226
22.34071203
48.78772959


20

 14.07458808
−1.447254709
57.92300964

 11.17801027
−8.84486584
57.58015521


Table 6.22: The Translation vectors (in inches) corresponding to the remaining well-conditioned
frame for Dataset 2 is presented. The initialization values computed by Homography are shown
along with the optimized values for comparison. Geometric distortion model is employed in the
optimization process.
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The converged intrinsics and extrinsics are slightly different as compared to the corresponding

values computed using Homography. However, the converged extrinsics remain close enough to

the extrinsics as computed using Homography to be just as justifiable.

The combined extrinsic projections of all frames is shown in Figure 6.14.

Figure 6.14: Extrinsic projections of all frames for Dataset 2 are shown together with respect to
the inertial frame. Geometric Distortion Model is employed to obtain these results

The camera is held in the upright position for this experiment as well, so the nearly π/4 angle

shift between both the planar axes of the inertial and image plane will be an additive effect in the

final CRPs. There is no noticeable difference in the calculation of intrinsics or extrinsics, although

it is believed that there is an improvement in the accuracy of the extrinsics on addition of more

beacons.
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The plots of the translation vector elements and CRP vector elements against frame number

are shown in Figures 6.15 and 6.16.

Figure 6.15: Plots of translation vector elements in inches against frame number for Dataset 2.
Geometric distortion model is employed in the optimization process.
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Figure 6.16: Plots of CRP vector elements against frame number for Dataset 2. Geometric distor-
tion model is employed in the optimization process.

6.3 Dataset 3

The setup used was the same as Dataset 2, so the same beacon positions and inertial coordinates

apply as shown in Figure 6.9 and Table 6.12 respectively.

All 19 frames satisfied the criterion of the difference in order to last two singular values of the

L matrix being two or greater. So no frames were eliminated as noisy.

The image plane projections of the 19 frames as seen from the Phasespace Viewer are shown

in Figure 6.17.

The checkerboard was hand held at various poses in order to leverage the full extent of all three

available rotational degrees of freedom. The physical alignment images are omitted here.

The intrinsic parameters and distortion coefficients will be shown at a later section to highlight
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Figure 6.17: Image plane projections of each pose of the board as seen through the Phasespace
Viewer. The frames are ordered from the top left to the bottom right.

a different noteworthy point.

6.3.1 Brown’s Distortion Model

The combined estimation approach was employed using Brown’s distortion model to compute

the modified intrinsics and extrinsics, along with the distortion coefficients. The initialization

values for the nonlinear optimization algorithm, as computed by the Homography algorithm, are

shown in the subsequent tables. Table 6.23 shows the values of the intrinsics and the distortion

coefficients used to initialize the optimization along with the optimized values.

Tables 6.24 and 6.25 show the values of the CRPs for each of the viable frames, used to ini-

tialize the optimization algorithm along with the optimized values. Tables 6.26 and 6.27 show the

values of the translation vectors for each of the viable frames, used to initialize the optimization

algorithm along with the optimized values.
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Parameter Initial Values Optimized Values
α 1.136176911 0.933614725
β 1.240234279 0.940498616
c 0.047646686 -0.000748829
u0 0.791416878 0.536693111
v0 0.418736274 0.473476283
k1 0 -0.183942693
k2 0 0.164119565
k3 0 -0.060467711
p1 0 0.005690797
p2 0 -0.009347019

Table 6.23: The intrinsic parameters and the distortion coefficients for Dataset 3, as computed by
the Homography algorithm and optimized are shown. Brown’s distortion model is employed in the
optimization process.

The extrinsic projections of the 19 frames are shown in Figure D.5 in Appendix D for aesthetic

purposes.
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CRP Vector
Frame Number Initial Values Optimized Values

1

 0.758547534
0.094100396
−1.333076525

  0.587140881
0.048661986
−1.353395839


2

 0.96314922
0.375388791
−2.359973574

  0.633686539
0.220753093
−2.244775879


3

 0.711417294
0.078850934
−2.285252821

  0.664270734
−0.006480545
−2.248905688


4

 0.037660009
0.227939966
−1.506908042

  0.093368047
0.24369272
−1.432611863


5

 0.309028655
0.224796215
−0.969381606

  0.316585173
0.081259621
−0.964679794


6

 0.789126453
−0.128721835
−1.750009631

  0.539059276
−0.069761675
−1.777279076


7

0.203457955
0.087375023
0.245928901

 0.090781584
0.140002693
0.236381182


8

−0.280284624
0.320660536
0.674658857

 −0.214134745
0.338459116
0.701529419


9

 0.15118898
0.289710785
0.681328005

 0.088023195
0.223243671
0.664789101


10

−0.179611547
0.63131627
2.966108078

 0.006068842
0.228165478
2.88106427


11

−0.50194005
0.127488768
0.659966444

 −0.357282028
0.097631812
0.731076327


12

0.205875134
0.357345698
0.080292483

 0.145722086
0.250765873
0.068896081


Table 6.24: The CRPs corresponding to the first 12 well-conditioned frame for Dataset 3 is pre-
sented. The initialization values computed by Homography are shown along with the optimized
values for comparison. Brown’s distortion model is employed in the optimization process.
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CRP Vector
Frame Number Initial Values Optimized Values

13

−0.538461481
0.233773301
0.848744048

 −0.336933688
0.237133184
0.911610646


14

0.158867822
0.371436232
0.898188113

 0.057227542
0.343853612
0.869206866


15

−0.128278076
0.179402721
1.222455949

 −0.047232287
0.141631375
1.238143841


16

 0.0929669
0.222673614
−1.729404845

  0.031646155
0.218287488
−1.630618635


17

 0.498263553
0.197490781
−0.716999306

 0.423967126
0.117580942
−0.72887371


18

 0.513597284
0.100111325
−1.407198456

  0.484250008
0.121313501
−1.401287771


19

 0.500583177
−0.189774666
−1.497960464

  0.325848726
−0.103901706
−1.543819743


Table 6.25: The CRPs corresponding to the remaining well-conditioned frame for Dataset 3 is
presented. The initialization values computed by Homography are shown along with the optimized
values for comparison. Brown’s distortion model is employed in the optimization process.
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Translation Vector in inches
Frame Number Initial Values Optimized Values

1

−6.205458809
−1.586128991
72.25987044

  9.322264308
−4.858886131
56.05038541


2

7.450754495
0.726922386
67.46792526

 21.55064032
−2.25475939
51.92833128


3

−17.67785724
15.59139825
79.49812657

 0.705326689
11.57937835
57.59245551


4

−9.518870641
−10.52179483
48.93490264

  1.041024352
−13.22742004
38.74005001


5

0.405829738
5.410229951
79.37401584

 17.03832158
2.173214102
60.47337617


6

 9.053839434
−2.765982395
76.36623225

  26.07221085
−6.531078101
61.61247516


7

−43.95329837
−11.08117544
59.71962914

 −28.70634864
−13.36060602
41.79031817


8

−37.55054397
22.05526897
50.12388385

 −22.89606141
19.50844877
33.28668836


9

−23.84598366
−3.610008807
51.82073386

 −11.61580954
−5.833889532
39.23650173


10

2.393589601
5.500250228
51.21574812

 13.56708478
3.213954849
40.46461603


11

−16.84175948
13.07570972
53.89670374

 −4.208453701
11.60591278
44.19883791


12

−24.44874148
−18.90325306
58.54380367

 −11.82326804
−22.80298791
46.31345947


Table 6.26: The Translation vectors (in inches) corresponding to the first 12 well-conditioned
frame for Dataset 3 is presented. The initialization values computed by Homography are shown
along with the optimized values for comparison. Brown’s distortion model is employed in the
optimization process.
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Translation Vector in inches
Frame Number Initial Values Optimized Values

13

−15.18856609
25.46510009
60.78919229

 −0.619125755
24.35123813
46.93726878


14

−35.71578218
11.0943303
52.23092979

 −22.26529174
9.128599626
38.2132221


15

−19.56423501
5.020779307
56.59213804

 −5.863605806
2.677733405
40.72107367


16

 14.30873772
−7.321424438
72.93111453

  29.52392697
−10.93669959
56.91359197


17

−29.06231785
11.8281216
92.62288731

 −7.113886152
7.626050867
69.40483095


18

 −14.8955691
−2.044728032
65.95063732

 −0.233052545
−4.879727627
50.33975413


19

 2.579369054
−15.04801757
68.68800025

 17.01688283
−19.1207319
54.27518228


Table 6.27: The Translation vectors (in inches) corresponding to the remaining well-conditioned
frame for Dataset 3 is presented. The initialization values computed by Homography are shown
along with the optimized values for comparison. Brown’s distortion model is employed in the
optimization process.
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The converged intrinsics and extrinsics are slightly different as compared to the corresponding

values computed using Homography. However, the converged extrinsics remain close enough to

the extrinsics as computed using Homography to be just as justifiable.

The combined extrinsic projections of the frames is shown in Figure 6.18.

Figure 6.18: Extrinsic projections of all frames for Dataset 3 are shown together with respect to
the inertial frame. Brown’s Distortion Model is employed to obtain these results

The CRPs for each frame were computed from the Rotation Matrix by first converting to quater-

nions using Sheppard’s Algorithm and then converting the quaternions to CRPs. The plots of the

translation vector elements and CRP vector elements against frame number are shown in Figures

6.19 and 6.20.
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Figure 6.19: Plots of translation vector elements in inches against frame number for Dataset 3.
Brown’s distortion model is employed in the optimization process.

6.3.2 Geometric Distortion model

The combined estimation approach was employed using the Geometric distortion model to

compute the modified intrinsics and extrinsics, along with the distortion coefficients. Table 6.28

shows the values of the intrinsics and the distortion coefficients used to initialize the optimization

along with the optimized values.

Tables 6.29 and 6.30 show the values of the CRPs for each of the viable frames, used to ini-

tialize the optimization algorithm along with the optimized values. Tables 6.31 and 6.32 show the

values of the translation vectors for each of the viable frames, used to initialize the optimization

algorithm along with the optimized values. The extrinsic projections of the 19 frames are shown

in Figure D.6 in Appendix D for aesthetic purposes.
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Figure 6.20: Plots of CRP vector elements against frame number for Dataset 3. Brown’s distortion
model is employed in the optimization process.

Parameter Initial Values Optimized Values
α 1.136176911 1.05811654
β 1.240234279 1.14663427
c 0.047646686 0.002806537
u0 0.791416878 0.771806514
v0 0.418736274 0.488215565
kx1 0 0.267086201
kx2 0 -0.090530433
kx3 0 0.512177244
ky1 0 3.609937896
ky2 0 -0.043344237
ky3 0 4.201661839

Table 6.28: The intrinsic parameters and the distortion coefficients for Dataset 3, as computed by
the Homography algorithm and optimized are shown. Geometric distortion model is employed in
the optimization process.
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CRP Vector
Frame Number Initial Values Optimized Values

1

 0.758547534
0.094100396
−1.333076525

  0.707553348
0.139502697
−1.289304693


2

 0.96314922
0.375388791
−2.359973574

  0.804852924
0.329939233
−2.222269588


3

 0.711417294
0.078850934
−2.285252821

  0.848655212
0.064670193
−2.189180769


4

 0.037660009
0.227939966
−1.506908042

  0.142519088
0.322355327
−1.463738442


5

 0.309028655
0.224796215
−0.969381606

  0.383115048
0.173975288
−0.936937372


6

 0.789126453
−0.128721835
−1.750009631

  0.678459275
−0.020210944
−1.681736426


7

0.203457955
0.087375023
0.245928901

 0.078112204
0.215776086
0.254012885


8

−0.280284624
0.320660536
0.674658857

 −0.279908963
0.394840073
0.699094976


9

 0.15118898
0.289710785
0.681328005

  0.03734198
0.330024873
0.699089407


10

−0.179611547
0.63131627
2.966108078

 −0.168571455
0.355893487
3.021477653


11

−0.50194005
0.127488768
0.659966444

 −0.467645929
0.159095259
0.692389414


12

0.205875134
0.357345698
0.080292483

 0.151443086
0.358777151
0.091171695


Table 6.29: The CRPs corresponding to the first 12 well-conditioned frame for Dataset 3 is pre-
sented. The initialization values computed by Homography are shown along with the optimized
values for comparison. Geometric distortion model is employed in the optimization process.
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CRP Vector
Frame Number Initial Values Optimized Values

13

−0.538461481
0.233773301
0.848744048

 −0.469231459
0.306281381
0.894510163


14

0.158867822
0.371436232
0.898188113

 −0.027121014
0.441687787
0.897360845


15

−0.128278076
0.179402721
1.222455949

 −0.140098859
0.229326592
1.26004091


16

 0.0929669
0.222673614
−1.729404845

  0.063047551
0.3902326
−1.664095795


17

 0.498263553
0.197490781
−0.716999306

  0.487070564
0.23013117
−0.701703117


18

 0.513597284
0.100111325
−1.407198456

  0.622961124
0.221390404
−1.372574435


19

 0.500583177
−0.189774666
−1.497960464

  0.468310064
−0.031100019
−1.47185497


Table 6.30: The CRPs corresponding to the remaining well-conditioned frame for Dataset 3 is
presented. The initialization values computed by Homography are shown along with the optimized
values for comparison. Geometric distortion model is employed in the optimization process.
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Translation Vector in inches
Frame Number Initial Values Optimized Values

1

−6.205458809
−1.586128991
72.25987044

 −4.896331504
−5.720964602
66.55064966


2

7.450754495
0.726922386
67.46792526

  8.851030757
−3.148060975
63.69222041


3

−17.67785724
15.59139825
79.49812657

 −14.45215635
10.75851981
68.96489082


4

−9.518870641
−10.52179483
48.93490264

 −8.923824184
−13.70849318
45.49350864


5

0.405829738
5.410229951
79.37401584

 1.791293655
0.948024741
72.77369385


6

 9.053839434
−2.765982395
76.36623225

  10.83895408
−7.477305709
74.95299518


7

−43.95329837
−11.08117544
59.71962914

 −40.20444574
−13.89153874
46.91381401


8

−37.55054397
22.05526897
50.12388385

 −33.58607921
18.94603789
40.16800796


9

−23.84598366
−3.610008807
51.82073386

 −21.72584366
−6.258587768
44.47005733


10

2.393589601
5.500250228
51.21574812

 3.357547866
2.704499728
47.73891811


11

−16.84175948
13.07570972
53.89670374

 −15.86296827
10.64470546
51.57203219


12

−24.44874148
−18.90325306
58.54380367

 −23.86460287
−23.32440981

52.5909421


Table 6.31: The Translation vectors (in inches) corresponding to the first 12 well-conditioned
frame for Dataset 3 is presented. The initialization values computed by Homography are shown
along with the optimized values for comparison. Geometric distortion model is employed in the
optimization process.
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Translation Vector in inches
Frame Number Initial Values Optimized Values

13

−15.18856609
25.46510009
60.78919229

 −13.33121674
23.42533036
56.61067769


14

−35.71578218
11.0943303
52.23092979

 −33.2095772
8.39910302
44.59179245


15

−19.56423501
5.020779307
56.59213804

 −16.35914788
2.166119856
46.9990632


16

 14.30873772
−7.321424438
72.93111453

  15.31368889
−11.63984514
68.53506817


17

−29.06231785
11.8281216
92.62288731

 −24.98145436
6.289468909
80.6983535


18

 −14.8955691
−2.044728032
65.95063732

 −13.30762509
−5.600090395
59.46352495


19

 2.579369054
−15.04801757
68.68800025

 3.188794374
−19.7234355
64.9716381


Table 6.32: The Translation vectors (in inches) corresponding to the remaining well-conditioned
frame for Dataset 3 is presented. The initialization values computed by Homography are shown
along with the optimized values for comparison. Geometric distortion model is employed in the
optimization process.

112



The converged intrinsics and extrinsics are slightly different as compared to the corresponding

values computed using Homography. However, the converged extrinsics remain close enough to

the extrinsics as computed using Homography to be just as justifiable.

The combined extrinsic projections of the frames is shown in Figure 6.21.

Figure 6.21: Extrinsic projections of all frames are shown together with respect to the inertial
frame for Dataset 3. Geometric distortion model is employed in the optimization process.

The plots of the translation vector elements and CRP vector elements against frame number

are shown in Figures 6.22 and 6.23.
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Figure 6.22: Plots of translation vector elements in inches against frame number for Dataset 3.
Geometric distortion model is employed in the optimization process.
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Figure 6.23: Plots of CRP vector elements against frame number for Dataset 3. Geometric distor-
tion model is employed in the optimization process.
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6.4 Dataset 4

The main purpose of this experiment is to verify the ability of the algorithm by Wong et al

[3] dicussed in Chapter 4 to estimate the relative pose of a body equipped with the LED beacons,

assuming a calibrated camera according to a particular distortion model. Here, a dataset is cho-

sen and the intrinsics, distortion coefficients and the extrinsics are estimated using the Combined

Estimation approach with Brown’s Distortion model. Then, the converged intrinsics and distor-

tion coefficients are fed to Wong’s algorithm and the resulting extrinsics are compared with the

extrinsics from the Combined Estimation approach.

The arrangement of the 8 beacons on the checkerboard pattern is shown in Figure 6.24.

Figure 6.24: Beacon Arrangement on the checkerboard pattern is shown. The numbers next to
the beacons indicate their number assignment in the Phasespace system. The origin O, the inertial
x-axis X and inertial y-axis Y are also shown.

The inertial coordinates of the beacons are given in Table 6.33.

The image plane projections of the 16 frames as seen from the Phasespace Viewer are shown

in Figure 6.25.
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Beacon No. Inertial Position
0 [7s,s]
1 [4s,5s]
2 [7s,3s]
3 [7s,5s]
4 [s,s]
5 [s,3s]
6 [4s,s]
7 [s,5s]

Table 6.33: Inertial coordinates of each beacon given as [X-coordinate,Y-coordinate], s=49/16
inches

This time a frame was fabricated out of aluminium 80-20 channels in order to support the

checkerboard. This frame was mounted onto a rolling table to enable quick translations. The

frame has a negligible rotational degree of freedom about the inertial x-axis and z-axis but could

achieve significant rotational freedom in the inertial y-axis due to the moving table.

The physical alignment of the board with the camera for each frame (pose) is shown in Figure

6.26.

Using the difference in order of the last two singular values of the L matrix criterion, Frame 13

was eliminated as being noisy.

The CRPs as computed using the Combined Estimation algorithm using Brown’s distortion

model are shown in Tables 6.34 and 6.35. The corresponding CRPs estimated using the Wong [3]

algorithm are presented side-by-side for comparison.

The translations as computed using the Combined Estimation algorithm using Brown’s distor-

tion model are shown in Tables 6.36 and 6.37. The corresponding translations estimated using the

Wong [3] algorithm are presented side-by-side for comparison.
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Figure 6.25: Image plane projections of each pose of the board as seen through the Phasespace
Viewer. The frames are ordered from the top left to the bottom right.
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Figure 6.26: Physical alignment of the board with respect to the camera corresponding to each
frame in Figure 6.25. The frames are numbered successively starting from the top left frame being
numbered as zero.
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CRP Vector
Frame Number Nonlinear Optimization Values Wong’s Optimization Values

1

0.033359314
0.030623055
0.439167102

 0.033376798
0.031250795
0.439254485


2

−0.129586341
−0.33100283
0.448308512

 −0.129760678
−0.332531783
0.448065431


3

0.190927207
0.304283395
0.436713101

 0.191853845
0.306120499
0.436562647


4

0.019914092
0.021830796
0.440923613

 0.018491696
0.02097715
0.441352708


5

0.141211557
0.316286425
0.422454032

 0.143136108
0.317456364
0.422492507


6

0.083032971
0.067534775
0.434984971

 0.082102162
0.06823347
0.434701419


7

−0.006134483
−0.192336612
0.435345539

 −0.006629743
−0.192633167
0.435323133


8

0.095637129
0.200216239
0.428417084

 0.095040001
0.200213324
0.428381982


9

−0.099944555
−0.26118559
0.449568092

  −0.09978487
−0.261609976
0.449506747


10

0.117475901
0.218435049
0.424917738

  0.11300051
0.217150759
0.424542694


11

−0.079313182
−0.063869603
0.445981023

 −0.08056309
−0.06242113
0.445402204


12

0.022796146
0.152887307
0.436399133

 0.021964069
0.151579455
0.436808985


Table 6.34: The CRPs corresponding to the first 12 well-conditioned frames for Dataset 4 is pre-
sented. The optimized values are shown along with the values from Wong’s algorithm for compar-
ison. Brown’s distortion model is used here.
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CRP Vector
Frame Number Nonlinear Optimization Values Wong’s Optimization Values

14

0.032022859
0.179180497
0.43518826

 0.031968669
0.178028717
0.435458152


15

0.128422292
0.36601367
0.408803928

 0.130502712
0.367551211
0.409104262


16

−0.221209751
−0.419195734

0.48566403

 −0.220897028
−0.421539677
0.485192994


Table 6.35: The CRPs corresponding to the remaining well-conditioned frames for Dataset 4 is
presented. The optimized values are shown along with the values from Wong’s algorithm for
comparison. Brown’s distortion model is used here.
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Translation Vector in inches
Frame Number Nonlinear Optimization Values Wong’s Optimization Values

1

−10.99786072
0.403353682
35.66646035

 −10.99677713
0.404245837
35.63909587


2

−11.87379323
1.614739633
39.86347337

 −11.86311416
1.597673766
39.86327773


3

−17.31223252
6.748851412
28.0181802

 −17.2908489
6.721404865
27.98294982


4

−7.66362449
−2.84923245
39.36956872

  −7.65553003
−2.836260225

39.4208431


5

−15.96321435
5.517845396
29.42188065

 −15.9551982
5.500277643
29.3993202


6

−20.42295585
11.02824689
43.0596597

 −20.41911324
11.02135568
43.04748637


7

−11.29286787
1.381955751
42.69603972

 −11.29249785
1.379405033
42.69596436


8

−17.40147332
6.745094455
26.97406904

 −17.40117485
6.747586621
27.00773029


9

−11.81672734
2.191294174
49.27022371

 −11.81142537
2.190245874
49.27707577


10

−22.04873174
12.13661277
36.59301094

 −22.05620254
12.16218982
36.73773421


11

−20.31339757
11.1833679
40.52428869

 −20.31402129
11.1769473
40.50245086


12

−7.341620153
−2.565477139
41.27122477

 −7.341720524
−2.548400613
41.33868661


Table 6.36: The Translation elements (in inches) corresponding to the first 12 well-conditioned
frames for Dataset 4 is presented. The optimized values are shown along with the values from
Wong’s algorithm for comparison. Brown’s distortion model is used here.
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Translation Vector in inches
Frame Number Nonlinear Optimization Values Wong’s Optimization Values

14

−5.072169309
−5.135343787
39.03350354

 −5.073582124
−5.130562914
39.11159264


15

−21.96685025
12.78855735
39.51243335

 −21.95876699
12.77293626
39.56517031


16

−6.173046371
−3.235477819
51.24032763

  −6.15542398
−3.260943219

51.2514248


Table 6.37: The Translation elements (in inches) corresponding to the remaining well-conditioned
frames for Dataset 4 is presented. The optimized values are shown along with the values from
Wong’s algorithm for comparison. Brown’s distortion model is used here.
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As can be seen from the above tables, the extrinsics are very well estimated by Wong’s algo-

rithm. This reflects on the translations and CRPS of each frame relative to the first frame. This is

calculated using Equation 6.1.

Rb1b2 = Rcb1Rcb2

tb1b2 = Rcb1(tcb2 − tcb1)
(6.1)

where Rb1b2 and tb1b2 are the rotation matrix and translation vector from frame b1 to b2, tb1b2 is

expressed in the b1 frame, Rcb1 and tcb1 are the rotation matrix and translation vector from the

camera frame to frame b1, tcb1 is expressed in the camera frame and Rcb2 and tcb2 are the rotation

matrix and translation vector from the camera frame to frame b2, tcb2 is expressed in the camera

frame.

Using Equation 6.1, the first frame relative projections are computed using the extrinsic pro-

jections from both the Homography optimization algorithm and Wong’s algorithm. The combined

first frame projections corresponding to the Homography optimization algorithm are shown in Fig-

ure 6.27 and that corresponding to Wong’s algorithm is shown in Figure 6.28.

The differences between the elements of the translation and CRP vectors of each frame with

respect to the first frame as computed using the nonlinear least squares algorithm by Wong et al

and Phasespace data are shown in Figures 6.29 and 6.30.
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Figure 6.27: Combined Extrinsic Projections with respect to the first frame as computed from the
Homography optimization algorithm for Dataset 4
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Figure 6.28: Combined Extrinsic Projections with respect to the first frame as computed from
Wong’s algorithm for Dataset 4

126



Figure 6.29: Difference between the translation elements of each frame with respect to the first
frame, expressed in the first frame, as computed using Wong’s algorithm and Homography opti-
mization algorithm for Dataset 4

127



Figure 6.30: Difference between the CRP elements of each frame with respect to the first frame,
expressed in the first frame, as computed using Wong’s algorithm and Homography optimization
algorithm for Dataset 4
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The above results prove that Wong’s algorithm can reliably estimate the extrinsics. Since the

algorithm solves a nonlinear optimization problem for each frame separately to estimate the CRPs

using a quadratic function in the CRPs, global optimization is guaranteed. This makes it suitable

for real time relative navigation applications.

6.5 Intrinsic Parameter analysis

The various intrinsic parameter matrices computed from the above datasets are shown below.

Tables 6.38 and 6.40 show the intrinsics and distortion coefficients as computed from the three

datasets. Tables 6.39 and 6.41 show the uncertainty bounds in the intrinsics and distortion coeffi-

cients as computed from the three datasets.

Appendix A discusses the computation of the uncertainty bounds for the Combined Estimation

approach with Brown’s distortion model whereas Appendix C discussed the computation of the

uncertainty bounds for the Combined Estimation approach with Geometric distortion model. It

must be mentioned that since the standard deviation for the measurements in the each dataset was

not available, the average of the standard deviations as discussed in Tables 3.4 and 3.5 in Chapter

3 are utilized. This may have contributed to some errors in the computation.

Similarly for the geometric distortion incorporated estimation.

It is generally expected that, for an ideal imager, the intrinsics and distortion coefficients would

not vary significantly across multiple datasets since the intrinsics and distortion coefficients are

properties of the imager. However, there is quite some variation in the intrinsic values. This points

to the conclusion that both Brown’s distortion model and Geometric distortion model (as defined

here) are inadequate for modelling the distortions in the linear imager based camera and that a

different distortion model is required in order to fully characterize and model this camera made of

two linear imagers.
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Dataset No. Intrinsic Parameter Matrix A Distortion Vector k

1

0.866387157 −0.005218412 0.490403937
0 0.862603651 0.525072226
0 0 1.0000




0.26381864
−2.017524534
4.043408479
−0.000291855
−0.004889833



2

1.033197839 −0.013443215 0.580530016
0 1.049048926 0.486606025
0 0 1.0000



−0.26838847
0.407314863
−0.30403853

0.0000723
−0.012106003



3

0.933614725 −0.000748829 0.536693111
0 0.940498616 0.473476283
0 0 1.0000



−0.183942693
0.164119565
−0.060467711
0.005690797
−0.009347019


Table 6.38: Intrinsic parameter matrices and Distortion Coefficient Vectors computed from datasets
1 to 3 using the combined estimation approach with Brown’s Distortion Model

Dataset No. Intrinsics Parameter Uncertainty Distortion Coefficient Uncertainty

1


0.060687847
0.061242848
0.005525372
0.028292439
0.02716402




0.418047257
2.697456412
5.264047693
0.013981611
0.00956818



2


0.074166612
0.08240079
0.018045583
0.091293218
0.069922164




0.220330454
1.170368469
1.916351421
0.018345758
0.012122195



3


0.168289227
0.190832277
0.026920961
0.160988539
0.121934432




0.301480745
1.51767908
2.313373459
0.035025965
0.020629391


Table 6.39: Intrinsic parameter matrices and Distortion Coefficient Vectors computed from datasets
1 to 3 using the combined estimation approach with Brown’s Distortion model

130



Dataset No. Intrinsic Parameter Matrix A Distortion Vector kx Distortion Vector ky

1

1.0963 −0.0048 0.4998
0 0.9102 0.5250
0 0 1.0000

 140.4243
1.6521

170.0546

 −3.0629
0.1170
−3.2673


2

1.1027 0.0017 0.8055
0 1.207 0.5250
0 0 1.0000

  0.5988
−0.1406
0.9125

  3.1325
−0.0091
3.6413


3

1.0581 0.0028 0.7718
0 1.1466 0.4882
0 0 1.0000

  0.2670
−0.0905
0.5121

  3.6099
−0.0433
4.2016


Table 6.40: Intrinsic parameter matrices and Distortion Coefficient Vectors computed from datasets
1 to 3 using the combined estimation approach with Geometric Distortion Model

Dataset No. Intrinsics Parameter Uncertainty Uncertainty in kx Uncertainty in ky

1


2.020131878
0.04794347
0.005723225
0.022404945
0.025610263


1636.928306

16.96154426
2293.286971

 2293.286971
12.83852394
0.252974375



2


0.128345809
0.151502376
0.02181624
0.081149127
0.077461218


1.681538998

0.252611835
1.983449448

 1.983449448
6.781770652
0.371800737



3


0.212716701
0.286222168
0.040492438
0.160116505
0.087860199


1.793141866

0.29600319
2.164310509

 2.164310509
10.01248092
0.482133905



Table 6.41: Intrinsic parameter matrices and Distortion Coefficient Vectors computed from datasets
1 to 3 using the combined estimation approach with Geometric Distortion Model
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7. CONCLUSIONS AND FUTURE WORK

The Phasespace Motion Capture camera was considered for investigating the viability of two

existing distortion models, namely Brown’s distortion model and the Geometric distortion model,

on linear imager cameras. To establish the credibility of the author’s implementation of the non-

linear Homography optimization algorithm two reference datasets were considered, the Bouguet

Toolbox dataset and Zhang’s dataset. The Homography optimization was carried out using both

distortion models and the results were verified with the known results of the reference datasets. The

Homography optimization algorithm was then tested on three datasets acquired from the Phases-

pace camera with the two distortion models employed one after the other. Although justifiable

extrinsics were obtained for all three datasets, the intrinsics and the distortion parameters were

found to vary across the datasets. This is contrary to the expectation that the intrinsics and distor-

tion coefficients must remain the same throughout multiple datasets acquired by the same camera.

As a result, both distortion models were deemed inadequate to represent the distortion effects in

the Phasespace camera’s imager. In addition, a nonlinear optimization algorithm for relative pose

estimation proposed by Wong et al [3] was presented with the motive of employing this algorithm

for real time relative navigation using the Phasespace camera. It was tested with a dataset acquired

from the Phasespace camera. The results were then compared with the results of the Homography

optimization algorithm and were found to be verified.

As per the results of this research, the obvious direction to proceed in the future is the formu-

lation of a dedicated distortion model for linear imager cameras that leverages the knowledge of

cylindrical lens optics. The relaxation of some of the assumptions in the existing image distortion

models can also lead to an acceptable distortion function. Once the distortion function is found

and verified with test datasets, the Wong algorithm presented here can be employed for efficient

real time relative pose estimation.

132



REFERENCES

[1] Z. Zhang, “A flexible new technique for camera calibration,” IEEE Transactions on pattern

analysis and machine intelligence, vol. 22, no. 11, pp. 1330–1334, 2000.

[2] “Phasespace vision camera.” http://phasespace.com/vision-cameras.html. Accessed: 2018-

04-13.

[3] X. I. Wong and M. Majji, “A structured light system for relative navigation applications,”

IEEE Sensors Journal, vol. 16, no. 17, pp. 6662–6679, 2016.

[4] L. Ma, Y. Chen, and K. L. Moore, “A family of simplified geometric distortion models for

camera calibration,” arXiv preprint cs/0308003, 2003.

[5] A. A. Magill, “Variation in distortion with magnification,” JOSA, vol. 45, no. 3, pp. 148–152,

1955.

[6] A. Cox, Optics, the technique of definition. Focal Press, 1945.

[7] C. B. Duane, “Close-range camera calibration,” Photogramm. Eng, vol. 37, no. 8, pp. 855–

866, 1971.

[8] J. Kenefick, “Ultra-precise analytical stereotriangulation for structural measurements,” in

Presented paper on Symposium on Close-Range Photogrammetry, Illinois, 1971.

[9] J. Heikkila and O. Silven, “A four-step camera calibration procedure with implicit image

correction,” in cvpr, p. 1106, IEEE, 1997.

[10] R. Tsai, “A versatile camera calibration technique for high-accuracy 3d machine vision

metrology using off-the-shelf tv cameras and lenses,” IEEE Journal on Robotics and Au-

tomation, vol. 3, no. 4, pp. 323–344, 1987.

[11] Z. Zhang, “Microsoft kinect sensor and its effect,” IEEE multimedia, vol. 19, no. 2, pp. 4–10,

2012.

133



[12] S. Olufs and M. Vincze, “A simple inexpensive interface for robots using the nintendo wii

controller,” in Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International

Conference on, pp. 473–479, IEEE, 2009.

[13] M. K. Dobrzynski, R. Pericet-Camara, and D. Floreano, “Vision tapeâĂŤa flexible compound
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APPENDIX A

COMBINED DISTORTION INCORPORATED ESTIMATION PROCEDURE

This section describes the development of the combined estimation approach for the estimation

of the intrinsics and extrinsics, along with the distortion coefficients.

We know that

pCi = Rjp
W
i + tj (A.1)

where pWi =

[
xWi yWi zWi

]T
is the inertial frame coordinate of the ith beacon, pCi =[

xCi yCi zCi

]T
is the 3D camera frame coordinate of pWi , the rotation matrix and translation

vector for the jth frame are written as Rj =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 and tj =


t1

t2

t3


The undistorted normalised camera frame coordinates

[
xu yu

]T
are obtained by normalising

pCi by zCi . We thus obtain the relations

xu =
xCi
zci

yu =
yCi
zCi

(A.2)

In terms of the elements of the rotation matrix and translation vector, xu and yu can be described

as follows.

xu =
r11x

W
i + r12y

W
i + t1

r31xWi + r32yWi + t3

yu =
r21x

W
i + r22y

W
i + t2

r31xWi + r32yWi + t3

(A.3)

136



Using Brown’s distortion model, the distorted normalised camera space coordinates can be

computed based on the estimate of the distortion coefficients k̂ =

[
k1 k2 k3 p1 p2

]T
.

xd = xu + xu(k1r
2 + k2r

4 + ...) + (p1(r
2 + 2x2u) + 2p2xuyu)(1 + p3r

2 + p4r
4 + ...)

yd = yu + yu(k1r
2 + k2r

4 + ...) + (2p1xuyd + u2(r
2 + 2y2u))(1 + p3r

2 + p4r
4 + ...)

(A.4)

Here, r2 = x2u + y2u.

The distorted image plane coordinates
[
xd yd

]T
are then obtained using the intrinsic camera

matrix A =


α c u0

0 β v0

0 0 1

.

Here, α and β are the focal lengths in the directions of the two basis vectors of the image plane,

c is the skew coefficient and
[
u0 v0

]T
is the principal offset.

The distorted image plane coordinates are computed as follows.


ud

vd

1

 = A


xd

yd

1

 (A.5)

The estimated distorted image plane coordinates of the ith beacon coordinate in the jth frame

m̂ij =

[
ud vd

]
are computed and the 2mn equations are then stacked to create a vector m̂,

where m is the number of beacons and n is the number of frames.

Then, a nonlinear least squares formulation is employed to estimate the 6n + 10 parameters

(10 intrinsic parameters, including the distortion coefficients and 6n extrinsic parameters must be

estimated, given that the rotation matrix is parameterized in terms of the CRPs).

The nonlinear least squares is implemented as the Levenberg Marquardt [28] algorithm and is

carried out using the lsqnonlin function in MatLab. The formal problem statement is written as

follows.

137



minxe
TWe+ λ∆xTWy∆x (A.6)

where e = m̃ − m̂, W is a weight matrix taken as I2mn×2mn, Wy is a weight matrix taken

as I6n+10×6n+10, m̃ is the vector of the measured image plane coordinates, stacked in a sim-

ilar manner to m̂ and x =

[
xint xext

]T
is the vector of parameters to estimate, xint =[

α β c u0 v0 k1 k2 k3 p1 p2

]T
and xext =

[
q1i q2i q3i t1i t2i t3i

]T
i = 1, 2, 3, 4.....n

The initial guess for the parameters is taken to be the estimated intrinsics and extrinsics from

the Homography algorithm in Zhang[1], with the distortion coefficients initialized as zeros. The

differential correction for the parameters is given by

∆x = (HTWH + λWy)
−1HTWe (A.7)

where H = ∂f
∂xxc

is the Jacobian matrix evaluated at the current estimate of the parameters

H ∈ IR2mn×(6n+10)

Convergence is said to be achieved when the change in the cost function J for successive

iterations is less than 10−6. This statement can be written mathematically as

∣∣∣∣Jk+1 − Jk
Jk+1

∣∣∣∣ < 10−6 (A.8)

where Jk = ek
TWek + λ∆xk

TWy∆xk

Given the standard deviation of the measured image plane coordinates, the covariance matrix

for the measurement error vector Ry can be constructed. This covariance matrix can be utilized

to compute the parameter error covariance. Starting from Equation A.7, the steps outlined by

Equation A.9 can be employed to compute the state error covariance.
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δxδxT = (HTWH + λWy)
−1HTWδyδyTW TH(HTWH + λWy)

−T

E[δxδxT ] = E[(HTWH + λWy)
−1HTWδyδyTW TH(HTWH + λWy)

−T ]

E[δxδxT ] = (HTWH + λWy)
−1HTWE[δyδyT ]W TH(HTWH + λWy)

−T

E[δxδxT ] = (HTWH + λWy)
−1HTWRyW

TH(HTWH + λWy)
−T

(A.9)

Here, H is the Jacoban Matrix computed at the converged states, W is the weighting matrix

which is taken as I2mn×2mn, m being the number of beacons and n being the number of well

conditioned frames.

However, since λ is not readily available, the Gauss-Newton equivalent of the expression for

E[δxδxT ] is used which is

E[δxδxT ] = (HTWH)−1HTWRyW
TH(HTWH)−T

No significant error will be incurred with the above assumption assuming that λ is sufficiently

small. Using E[δxδxT ] the uncertainty bounds on each parameter can be estimated as σx,i =

3
√
Rii. In the first 3 experimental datasets, the uncertainty bounds on the intrinsic parameters are

computed using the average of the measured standard deviations for each beacon from Tables 3.4

and 3.5.

The various partials involved in the computation of the Jacobian Matrix at an estimate of the

parameters are shown below.

We first look at the computation of the Jacobian with respect to the intrinsics and distortion

coefficients.
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∂ud
∂α

= xd

∂ud
∂β

= 0

∂ud
∂c

= yd

∂ud
∂u0

= 1

∂ud
∂v0

= 0

(A.10)

∂vd
∂α

= 0

∂vd
∂β

= yd

∂vd
∂c

= 0

∂vd
∂u0

= 0

∂vd
∂v0

= 1

(A.11)

∂ud
∂k1

= α
∂xd
∂k1

+ c
∂yd
∂k1

∂ud
∂k2

= α
∂xd
∂k2

+ c
∂yd
∂k2

∂ud
∂k3

= α
∂xd
∂k3

+ c
∂yd
∂k3

∂ud
∂p1

= α
∂xd
∂p1

+ c
∂yd
∂p1

∂ud
∂p2

= α
∂xd
∂p2

+ c
∂yd
∂p2

(A.12)
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∂vd
∂k1

= β
∂yd
∂k1

∂vd
∂k2

= β
∂yd
∂k2

∂vd
∂k3

= β
∂yd
∂k3

∂vd
∂p1

= β
∂yd
∂p1

∂vd
∂p2

= β
∂yd
∂p2

(A.13)

The partials of xd and yd with respect to the distortion coefficients can be computed using

Equation A.4.

∂xd
∂k1

= xur
2

∂xd
∂k2

= xur
4

∂xd
∂k3

= xur
6

∂xd
∂p1

= r2 + 2x2u

∂xd
∂p2

= 2xuyu

(A.14)

∂yd
∂k1

= yur
2

∂yd
∂k2

= yur
4

∂yd
∂k3

= yur
6

∂yd
∂p1

= 2xuyu

∂yd
∂p2

= r2 + 2y2u

(A.15)
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These can be plugged back in to the Equations A.12 and A.13.

∂ud
∂k1

= αxur
2 + cyur

2

∂ud
∂k2

= αxur
4 + cyur

4

∂ud
∂k3

= αxur
6 + cyur

6

∂ud
∂p1

= α(r2 + 2x2u) + c(2xuyu)

∂ud
∂p2

= α(2xuyu) + c(r2 + 2y2u)

(A.16)

∂vd
∂k1

= βyur
2

∂vd
∂k2

= βyur
4

∂vd
∂k3

= βyur
6

∂vd
∂p1

= β(2xuyu)

∂vd
∂p1

= β(r2 + 2y2u)

(A.17)

Now, we look at the computation of the Jacobian with respect to the extrinsics which is slightly

more involved.

∂ud
∂q1

= α
∂xd
∂q1

+ c
∂yd
∂q1

∂ud
∂q2

= α
∂xd
∂q2

+ c
∂yd
∂q2

∂ud
∂q3

= α
∂xd
∂q3

+ c
∂yd
∂q3

(A.18)
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∂vd
∂q1

= β
∂yd
∂q1

∂vd
∂q2

= β
∂yd
∂q2

∂vd
∂q3

= β
∂yd
∂q3

(A.19)

Similarly the partials with respect to the translation vector elements can also be computed.

∂ud
∂t1

= α
∂xd
∂t1

+ c
∂yd
∂t1

∂ud
∂t2

= α
∂xd
∂t2

+ c
∂yd
∂t2

∂ud
∂t3

= α
∂xd
∂t3

+ c
∂yd
∂t3

(A.20)

∂vd
∂t1

= β
∂yd
∂t1

∂vd
∂t2

= β
∂yd
∂t2

∂vd
∂t3

= β
∂yd
∂t3

(A.21)

Since, xd and yd are implicit functions of q and t through xu and yu, first the partials with

respect to xu and yu must be computed. This can be done using the Equation A.4.
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∂xd
∂xu

= 1 + k1r
2 + k2r

4 + k3r
6 + xu(2k1r + 4k2r

3 + 6k3r
5)
∂r

∂xu
+ p1(2r

∂r

∂xu
+ 4xu) + 2p2yu

∂xd
∂yu

= xu(2k1r + 4k2r
3 + 6k3r

5)
∂r

∂yu
+ p1(2r

∂r

∂yu
+ 2p2xu)

∂yd
∂xu

= yu(2k1r + 4k2r
3 + 6k3r

5)
∂r

∂xu
+ p2(2r

∂r

∂xu
+ 2p1yu)

∂yd
∂yu

= 1 + k1r
2 + k2r

4 + k3r
6 + yu(2k1r + 4k2r

3 + 6k3r
5)
∂r

∂yu
+ p2(2r

∂r

∂yu
+ 4yu) + 2p1xu

(A.22)

The partials of r with respect to xu and yu can be computed using the relation r2 = x2u + y2u.

∂r

∂xu
=
xu
r

∂r

∂yu
=
yu
r

(A.23)

We now use the product rule for partial derivatives to compute the partials of xd and yd with

respect to q and t.

∂xd
∂q1

=
∂xd
∂xu

∂xu
∂q1

+
∂xd
∂yu

∂yu
∂q1

∂xd
∂q2

=
∂xd
∂xu

∂xu
∂q2

+
∂xd
∂yu

∂yu
∂q2

∂xd
∂q3

=
∂xd
∂xu

∂xu
∂q3

+
∂xd
∂yu

∂yu
∂q3

∂yd
∂q1

=
∂yd
∂xu

∂xu
∂q1

+
∂yd
∂yu

∂yu
∂q1

∂yd
∂q2

=
∂yd
∂xu

∂xu
∂q2

+
∂yd
∂yu

∂yu
∂q2

∂yd
∂q3

=
∂yd
∂xu

∂xu
∂q3

+
∂yd
∂yu

∂yu
∂q3

(A.24)
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∂xd
∂t1

=
∂xd
∂xu

∂xu
∂t1

+
∂xd
∂yu

∂yu
∂t1

∂xd
∂t2

=
∂xd
∂xu

∂xu
∂t2

+
∂xd
∂yu

∂yu
∂t2

∂xd
∂t3

=
∂xd
∂xu

∂xu
∂q3

+
∂xd
∂yu

∂yu
∂t3

∂yd
∂t1

=
∂yd
∂xu

∂xu
∂t1

+
∂yd
∂yu

∂yu
∂t1

∂yd
∂t2

=
∂yd
∂xu

∂xu
∂t2

+
∂yd
∂yu

∂yu
∂t2

∂yd
∂t3

=
∂yd
∂xu

∂xu
∂t3

+
∂yd
∂yu

∂yu
∂t3

(A.25)

As per the Equation A.3, it can be seen that xu and yu are both implicit functions of the CRPs

but explicit functions of the translations.

As a result, the explicit partial derivatives of xu and yu can be computed readily using the

Equation A.3.

∂xu
∂t1

=
1

r31xW + r32yW + t3
∂xu
∂t2

= 0

∂xu
∂t3

= − r11xW + r12yW + t1
(r31xW + r32yW + t3)2

(A.26)

∂yu
∂t1

= 0

∂yu
∂t2

=
1

r31xW + r32yW + t3
∂yu
∂t3

= − r21xW + r22yW + t2
(r31xW + r32yW + t3)2

(A.27)

The computation of the partials of xu and yu with respect to the CRPs requires the parame-

terization of the rotation matrix R in terms of the CRPs. Keeping with the same variables as in
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Equation A.3, the partials with respect to the CRPs are computed as follows.

∂xu
∂q1

= − r11xW + r12yW + t1
(r31xW + r32yW + t3)2

(
∂r31
∂q1

xw +
∂r32
∂q1

yw

)
+

1

r31xW + r32yW + t3

(
∂r11
∂q1

xw +
∂r12
∂q1

yw

)
(A.28)

∂xu
∂q2

= − r11xW + r12yW + t1
(r31xW + r32yW + t3)2

(
∂r31
∂q2

xw +
∂r32
∂q2

yw

)
+

1

r31xW + r32yW + t3

(
∂r11
∂q2

xw +
∂r12
∂q2

yw

)
(A.29)

∂xu
∂q3

= − r11xW + r12yW + t1
(r31xW + r32yW + t3)2

(
∂r31
∂q3

xw +
∂r32
∂q3

yw

)
+

1

r31xW + r32yW + t3

(
∂r11
∂q3

xw +
∂r12
∂q3

yw

)
(A.30)

∂yu
∂q1

= − r21xW + r22yW + t2
(r31xW + r32yW + t3)2

(
∂r31
∂q1

xw +
∂r32
∂q1

yw

)
+

1

r31xW + r32yW + t3

(
∂r21
∂q1

xw +
∂r22
∂q1

yw

)
(A.31)

∂yu
∂q2

= − r21xW + r22yW + t2
(r31xW + r32yW + t3)2

(
∂r31
∂q2

xw +
∂r32
∂q2

yw

)
+

1

r31xW + r32yW + t3

(
∂r21
∂q2

xw +
∂r22
∂q2

yw

)
(A.32)
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∂yu
∂q3

= − r21xW + r22yW + t2
(r31xW + r32yW + t3)2

(
∂r31
∂q3

xw +
∂r32
∂q3

yw

)
+

1

r31xW + r32yW + t3

(
∂r21
∂q3

xw +
∂r22
∂q3

yw

)
(A.33)

The rotation matrix in terms of the CRPs is given below.

R =
1

1 + q21 + q22 + q23


1 + q21 − q22 − q23 2(q1q2 + q3) 2(q1q3 − q2)

2(q2q1 − q3) 1− q21 + q22 − q23 2(q2q3 + q1)

2(q3q1 + q2) 2(q2q3 − q1) 1− q21 − q22 + q23

 (A.34)

Now, the partials of the requisite rotation matrix elements with respect to the CRPs can be

computed.

∂r11
∂q1

=
4q1(q

2
2 + q23)

(1 + q21 + q22 + q23)2

∂r12
∂q1

=
2q2(1− q21 + q22 + q23)− 4q1q3

(1 + q21 + q22 + q23)2

∂r21
∂q1

=
2q2(1− q21 + q22 + q23) + 4q1q3

(1 + q21 + q22 + q23)2

∂r22
∂q1

= − 4q1(1 + q22)

(1 + q21 + q22 + q23)2

∂r31
∂q1

=
2q3(1− q21 + q22 + q23)− 4q1q2

(1 + q21 + q22 + q23)2

∂r32
∂q1

=
−2(1− q21 + q22 + q23)− 4q1q2q3

(1 + q21 + q22 + q23)2

(A.35)
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∂r11
∂q2

= − 4q2(1 + q21)

(1 + q21 + q22 + q23)2

∂r12
∂q2

=
2q1(1 + q21 − q22 + q23)− 4q2q3

(1 + q21 + q22 + q23)2

∂r21
∂q2

=
2q1(1 + q21 − q22 + q23) + 4q2q3

(1 + q21 + q22 + q23)2

∂r22
∂q2

=
4q2(q

2
1 + q23)

(1 + q21 + q22 + q23)2

∂r31
∂q2

=
2(1 + q21 − q22 + q23)− 4q1q2q3

(1 + q21 + q22 + q23)2

∂r32
∂q2

=
2q3(1 + q21 − q22 + q23) + 4q1q2

(1 + q21 + q22 + q23)2

(A.36)

∂r11
∂q3

= − 4q3(1 + q21)

(1 + q21 + q22 + q23)2

∂r12
∂q3

=
2(1 + q21 + q22 − q23)− 4q1q2q3

(1 + q21 + q22 + q23)2

∂r21
∂q3

=
−2(1 + q21 + q22 − q23)− 4q1q2q3

(1 + q21 + q22 + q23)2

∂r22
∂q3

= − 4q3(1 + q22)

(1 + q21 + q22 + q23)2

∂r31
∂q3

=
2q1(1 + q21 + q22 − q23)− 4q2q3

(1 + q21 + q22 + q23)2

∂r32
∂q3

=
2q2(1 + q21 + q22 − q23) + 4q1q3

(1 + q21 + q22 + q23)2

(A.37)

We now have all the ingredients required to compute the full Jacobian MatrixH of the distorted

image frame coordinates with respect to the intrinsics, distortion coefficients and the extrinsics.

The form of the H matrix can be described in the following manner.

H =

[
Hint Hext

]
(A.38)

where Hint is the portion of the Jacobian matrix strictly associated with the differential correc-

tions in the intrinsics and the distortion coefficients, whereas Hext is the portion of the Jacobian
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matrix strictly associated with the differential corrections in the extrinsics.

As a result, Hint ∈ IR2mn×10 and Hext ∈ IR2mn×6n.

Hint =



∂u11d
∂α

∂u11d
∂β

∂u11d
∂c

∂u11d
∂u0

∂u11d
∂v0

∂u11d
∂k1

∂u11d
∂k2

∂u11d
∂k3

∂u11d
∂p1

∂u11d
∂p2

∂v11d
∂α

∂v11d
∂β

∂v11d
∂c

∂v11d
∂u0

∂v11d
∂v0

∂v11d
∂k1

∂v11d
∂k2

∂v11d
∂k3

∂v11d
∂p1

∂v11d
∂p2

∂u12d
∂α

∂u12d
∂β

∂u12d
∂c

∂u12d
∂u0

∂u12d
∂v0

∂u12d
∂k1

∂u12d
∂k2

∂u12d
∂k3

∂u12d
∂p1

∂u12d
∂p2

∂v12d
∂α

∂v12d
∂β

∂v12d
∂c

∂v12d
∂u0

∂v12d
∂v0

∂v12d
∂k1

∂v12d
∂k2

∂v12d
∂k3

∂v12d
∂p1

∂v12d
∂p2

...
...

...
...

...
...

...
...

...
...

∂u1md
∂α

∂u1md
∂β

∂u1md
∂c

∂u1md
∂u0

∂u1md
∂v0

∂u1md
∂k1

∂u1md
∂k2

∂u1md
∂k3

∂u1md
∂p1

∂u1md
∂p2

∂v1md
∂α

∂v1md
∂β

∂v1md
∂c

∂v1md
∂u0

∂v1md
∂v0

∂v1md
∂k1

∂v1md
∂k2

∂v1md
∂k3

∂v1md
∂p1

∂v1md
∂p2

∂u21d
∂α

∂u21d
∂β

∂u21d
∂c

∂u21d
∂u0

∂u21d
∂v0

∂u21d
∂k1

∂u21d
∂k2

∂u21d
∂k3

∂u21d
∂p1

∂u21d
∂p2

∂v21d
∂α

∂v21d
∂β

∂v21d
∂c

∂v21d
∂u0

∂v21d
∂v0

∂v21d
∂k1

∂v21d
∂k2

∂v21d
∂k3

∂v21d
∂p1

∂v21d
∂p2

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

∂unm
d

∂α

∂unm
d

∂β

∂unm
d

∂c

∂unm
d

∂u0

∂unm
d

∂v0

∂unm
d

∂k1

∂unm
d

∂k2

∂unm
d

∂k3

∂unm
d

∂p1

∂unm
d

∂p2

∂vnm
d

∂α

∂vnm
d

∂β

∂vnm
d

∂c

∂vnm
d

∂u0

∂vnm
d

∂v0

∂vnm
d

∂k1

∂vnm
d

∂k2

∂vnm
d

∂k3

∂vnm
d

∂p1

∂vnm
d

∂p2



(A.39)

Here, n is the number of frames and m is the number of beacons.

Hext ∈ IR2mn×6n

Hext has the following form.
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Hext =



∂u11d
∂q1

T ∂u11d
∂t1

T

0 · · · · · · · · · · · · · · · · · · 0

∂v11d
∂q1

T ∂v11d
∂t1

T

0 · · · · · · · · · · · · · · · · · · 0

∂u12d
∂q1

T ∂u12d
∂t1

T

0 · · · · · · · · · · · · · · · · · · 0

∂v12d
∂q1

T ∂v12d
∂t1

T

0 · · · · · · · · · · · · · · · · · · 0

...
...

...
...

...
...

...
...

...
...

∂u1md
∂q1

T ∂u1md
∂t1

T

0 · · · · · · · · · · · · · · · · · · 0

∂v1md
∂q1

T ∂v1md
∂t1

T

0 · · · · · · · · · · · · · · · · · · 0

0 · · · 0
∂u21d
∂q2

T ∂u21d
∂t2

T

0 · · · · · · · · · 0

0 · · · 0
∂v21d
∂q2

T ∂v21d
∂t2

T

0 · · · · · · · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 · · · · · · · · · · · · · · · · · · 0
∂unm

d

∂qn

T ∂unm
d

∂tn

T

0 · · · · · · · · · · · · · · · · · · 0
∂vnm

d

∂qn

T ∂vnm
d

∂tn

T



(A.40)

Since all 6n + 10 parameters are being estimated together, the high dimensionality of the

nonlinear estimation process may often result in longer iterations for convergence. For this reason,

and also for ease of troubleshooting, the uncoupled estimation procedure discussed in Appendix B

is usually preferred for the estimation of the intrinsics, distortion coefficients and the extrinsics.
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APPENDIX B

EXTRINSICS ESTIMATION USING NONLINEAR LEAST SQUARES - JACOBIAN

This section describes the derivation and form of the Jacobian Matrix for nonlinear optimiza-

tion algorithm for the estimation of the extrinsics, described in Chapter 5. The extrinsics are esti-

mation process continues iteratively till the relative change in the cost function between successive

iterations is less than 10−6.


xijd

yijd

1

 = A−1


uijd

vijd

1

 (B.1)

The variables u′i and v′i, as defined in Chapter 5, are the undistorted normalised camera frame

coordinates. They are computed from the measured image plane coordinates using the Equations

B.1 and Brown’s distortion model Equation 5.2.

The rotation matrix, parameterised in terms of the CRPs, is shown below.

R =
1

1 + q21 + q22 + q23


1 + q21 − q22 − q23 2(q1q2 + q3) 2(q1q3 − q2)

2(q2q1 − q3) 1− q21 + q22 − q23 2(q2q3 + q1)

2(q3q1 + q2) 2(q2q3 − q1) 1− q21 − q22 + q23

 (B.2)

The vector r(q), which is the columns of R stacked to form a column vector will have the
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following form.

r(q) =
1

1 + q21 + q22 + q23



1 + q21 − q22 − q23

2(q2q1 − q3)

2(q3q1 + q2)

2(q1q2 + q3)

1− q21 + q22 − q23

2(q2q3 − q1)

2(q1q3 − q2)

2(q2q3 + q1)

1− q21 − q22 + q23



(B.3)

The CRP estimate q̂ must be found so as to satisfy the function expression Kr(q̂) = 0 as

closely as possible.

Let us denote Kr(q) as f(q). K ∈ IR2mn×9 and f(q) ∈ IR2mn×1 where m is the number of

beacons and n is the number of frames.

If fi(q) denotes the ith row of f(q) and Ki,j denotes the element of K in the ith row and jth

column, we obtain.

fi(q) = (Ki,1−Ki,5−Ki,9)q
2
1+(Ki,5−Ki,1−Ki,9)q

2
2+(Ki,9−Ki,5−Ki,1)q

2
3+2(Ki,2+Ki,4)q1q2

+ 2(Ki,3 +Ki,7)q1q3 + 2(Ki,6 +Ki,8)q2q3 + 2(Ki,8−Ki,6)q1 + 2(Ki,3−Ki,7)q2 + 2(Ki,4−Ki,2)q3

+Ki,1 +Ki,5 +Ki,9 (B.4)

We also know, from the development in Chapter 4, that fi(q) = 0.

The Jacobian Matrix (lets call it Hq) can be computed by individually evaluating the columns

in the following manner.

∂f(q)

∂q
=

[
∂f
∂q1

∂f
∂q2

∂f
∂q3

]
(B.5)
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∂f

∂q1
= 2(Ki,1 −Ki,5 −Ki,9)q1 + 2(Ki,2 +Ki,4)q2 + 2(Ki,3 +Ki,7)q3 + 2(Ki,8 −Ki,6)

∂f

∂q2
= 2(Ki,5 −Ki,1 −Ki,9)q2 + 2(Ki,2 +Ki,4)q1 + 2(Ki,6 +Ki,8)q3 + 2(Ki,3 −Ki,7)

∂f

∂q3
= 2(Ki,9 −Ki,5 −Ki,1)q3 + 2(Ki,3 +Ki,7)q1 + 2(Ki,6 +Ki,8)q2 + 2(Ki,4 −Ki,2)

(B.6)

Hq is evaluated at the current estimates of the CRPs and the process continues iteratively till

convergence is reached.

The translation vectors for each frame are then computed using the linear algebra problem

shown in Chapter 4.

t = −(AT2A2)
−1AT2A1r(q) (B.7)

Here, A1 and A2 depend on the inertial frame coordinates and the undistorted normalised camera

frame coordinates.
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APPENDIX C

GEOMETRIC DISTORTION INCORPORATED ESTIMATION

This section discusses the derivation and form of the Jacobian Matrix for the Geometric Dis-

tortion Incorporated Estimation algorithm. The algorithm itself is discussed in Chapter 4.

The Geometric Distortion Incorporated Estimation procedure follows the Combined Estima-

tion algorithm for the complete optimization of the intrinsic parameters, distortion coefficients

and the extrinsic parameters. The key difference is the incorporation of the requisite expressions

pertinent to the geometric distortion model.

The rigid body motion and pinhole projection model equations remain the same as in the Com-

bined Estimation procedure with Brown’s Distortion Model.

pCi = Rjp
W
i + tj (C.1)

where pWi =

[
xWi yWi zWi

]T
is the inertial frame coordinate of the ith beacon, pCi =[

xCi yCi zCi

]T
is the 3D camera frame coordinate of pWi , the rotation matrix and translation

vector for the jth frame are written as Rj =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 and tj =


t1

t2

t3


The undistorted normalised camera frame coordinates

[
xu yu

]T
are obtained by normalising

pCi by zCi . We thus obtain the relations

xu =
xCi
zci

yu =
yCi
zCi

(C.2)

In terms of the elements of the rotation matrix and translation vector, xu and yu can be described
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as follows.

xu =
r11x

W
i + r12y

W
i + t1

r31xWi + r32yWi + t3

yu =
r21x

W
i + r22y

W
i + t2

r31xWi + r32yWi + t3

(C.3)

Using the Geometric distortion model, the distorted normalised camera space coordinates can

be computed based on the estimate of the distortion coefficients k̂x =

[
kx1 kx2 kx3

]T
and

k̂y =

[
ky1 ky2 ky3

]T
Recall that the distortion functions were defined in Chapter 4 in the following manner.

xd = xuf(r,kx)

yd = yuf(r,ky)

(C.4)

where

f(r,k) =
1 + k1r

2

1 + k2r + k3r2

and r2 = x2u + y2u.

Note that two different sets of distortion coefficients have been defined for the two basis direc-

tions in the image plane.

Here, r2 = x2u + y2u.

The distorted image plane coordinates
[
xd yd

]T
are then obtained using the intrinsic camera

matrix A =


α c u0

0 β v0

0 0 1

.

Here, α and β are the focal lengths in the directions of the two basis vectors of the image plane,

c is the skew coefficient and
[
u0 v0

]T
is the principal offset.
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The distorted image plane coordinates are computed as follows.


ud

vd

1

 = A


xd

yd

1

 (C.5)

The estimated distorted image plane coordinates of the ith beacon coordinate in the jth frame

m̂ij =

[
ud vd

]
are computed and the 2mn equations are then stacked to create a vector m̂,

where m is the number of beacons and n is the number of frames.

Then, a nonlinear least squares formulation is employed to estimate the 6n + 11 parameters

(11 intrinsic parameters, including the distortion coefficients and 6n extrinsic parameters must be

estimated, given that the rotation matrix is parameterized in terms of the CRPs).

The nonlinear least squares is implemented as the Levenberg Marquardt [28] algorithm and is

carried out using the lsqnonlin function in MatLab. The formal problem statement is written as

follows.

minxe
TWe+ λ∆xTWy∆x (C.6)

where e = m̃ − m̂, W is a weight matrix taken as I2mnx2mn, Wy is a weight matrix taken

as I6n+11×6n+11, m̃ is the vector of the measured image plane coordinates, stacked in a sim-

ilar manner to m̂ and x =

[
xint xext

]T
is the vector of parameters to estimate, xint =[

α β c u0 v0 k1 k2 k3 p1 p2

]T
and xext =

[
q1i q2i q3i t1i t2i t3i

]T
i = 1, 2, 3, 4.....n

The nonlinear least squares is implemented in accordance with the Gaussian Least Squares

Differential Correction (GLSDC) approach outlined in the Crassidis and Junkins[27].

The initial guess for the parameters is taken to be the estimated intrinsics and extrinsics from

the Homography algorithm in Zhang[1], with the distortion coefficients initialized as zeros. As per
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the GLSDC algorithm, the differential correction for the parameters is given by

∆x = (HTWH)−1HTWe (C.7)

where H = ∂f
∂xxc

is the Jacobian matrix evaluated at the current estimate of the parameters.

H ∈ IR2mn×(6n+10)

Convergence is said to be achieved when the change in the cost function J for successive

iterations is less than 10−6. This statement can be written mathematically as

∣∣∣∣Jk+1 − Jk
Jk+1

∣∣∣∣ < 10−6 (C.8)

where Jk = ek
TWek + λ∆xk

TWy∆xk

Given the standard deviation of the measured image plane coordinates, the covariance matrix

for the measurement error vector Ry can be constructed. This covariance matrix can be utilized

to compute the parameter error covariance. Starting from Equation C.7, the steps outlined by

Equation C.9 can be employed to compute the state error covariance.

δxδxT = (HTWH + λWy)
−1HTWδyδyTW TH(HTWH + λWy)

−T

E[δxδxT ] = E[(HTWH + λWy)
−1HTWδyδyTW TH(HTWH + λWy)

−T ]

E[δxδxT ] = (HTWH + λWy)
−1HTWE[δyδyT ]W TH(HTWH + λWy)

−T

E[δxδxT ] = (HTWH + λWy)
−1HTWRyW

TH(HTWH + λWy)
−T

(C.9)

Here, H is the Jacoban Matrix computed at the converged states, W is the weighting matrix

which is taken as I2mn×2mn, m being the number of beacons and n being the number of well

conditioned frames.

However, since λ is not readily available, the Gauss-Newton equivalent of the expression for
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E[δxδxT ] is used which is

E[δxδxT ] = (HTWH)−1HTWRyW
TH(HTWH)−T

No significant error will be incurred with the above assumption assuming that λ is sufficiently

small. Using E[δxδxT ] the uncertainty bounds on each parameter can be estimated as σx,i =

3
√
Rii. In the first 3 experimental datasets, the uncertainty bounds on the intrinsic parameters are

computed using the average of the measured standard deviations for each beacon from Tables 3.4

and 3.5.

The various partials involved in the computation of the Jacobian Matrix at an estimate of the

parameters are shown below.

We first look at the computation of the Jacobian with respect to the intrinsics and distortion

coefficients.

The partials with respect to the intrinsic parameters remain the same as in the Combined Esti-

mation procedure, shown in Equations A.10 and A.11.

We know that the distorted image plane coordinates are related to the distorted normalised

camera coordinates according to Equations C.10 andC.11.

∂ud
∂kx1

= α
∂xd
∂kx1

+ c
∂yd
∂kx1

∂ud
∂kx2

= α
∂xd
∂kx2

+ c
∂yd
∂kx2

∂ud
∂kx3

= α
∂xd
∂kx3

+ c
∂yd
∂kx3

∂ud
∂ky1

= α
∂xd
∂ky1

+ c
∂yd
∂ky1

∂ud
∂ky2

= α
∂xd
∂ky2

+ c
∂yd
∂ky2

∂ud
∂ky3

= α
∂xd
∂ky3

+ c
∂yd
∂ky3

(C.10)
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∂vd
∂kx1

= β
∂yd
∂kx1

∂vd
∂kx2

= β
∂yd
∂kx2

∂vd
∂kx3

= β
∂yd
∂kx3

∂vd
∂ky1

= β
∂yd
∂ky1

∂vd
∂ky2

= β
∂yd
∂ky2

∂vd
∂ky3

= β
∂yd
∂ky3

(C.11)

The partials of xd and yd with respect to the distortion coefficients can be computed using

Equation C.4.

∂xd
∂kx1

= xu

(
r2

1 + kx2r + kx3r2

)
∂xd
∂kx2

= −xu
(

(1 + kx1r
2)r

(1 + kx2r + kx3r2)2

)
∂xd
∂kx3

= −xu
(

(1 + kx1r
2)r2

(1 + kx2r + kx3r2)2

)
∂xd
∂ky1

= 0

∂xd
∂ky2

= 0

∂xd
∂ky3

= 0

(C.12)
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∂yd
∂ky1

= yu

(
r2

1 + ky2r + ky3r2

)
∂yd
∂ky2

= −yu
(

(1 + ky1r
2)r

(1 + ky2r + ky3r2)2

)
∂yd
∂ky3

= −yu
(

(1 + ky1r
2)r2

(1 + ky2r + ky3r2)2

)
∂yd
∂kx1

= 0

∂yd
∂kx2

= 0

∂yd
∂kx3

= 0

(C.13)

These can be plugged back in to the Equations C.10 and C.11.

The computation of the Jacobian with respect to the extrinsics follows the same procedure

as that outlined in Appendix A. The only difference is the partial differential expressions of the

distorted normalised camera coordinates with respect to the undistorted normalised camera coor-

dinates, provided in Equation C.14.

∂xd
∂xu

=
1 + kx1r

2

1 + kx2r + kx3r2
+ xu

(
1 + 2kx1r

∂r
∂xu

1 + kx2r + kx3r2
−

(1 + kx1r
2)(kx2

∂r
∂xu

+ 2kx3r
∂r
∂xu

)

(1 + kx2r + kx3r2)2

)
∂xd
∂yu

= xu

(
1 + 2kx1r

∂r
∂yu

1 + kx2r + kx3r2
−

(1 + kx1r
2)(kx2

∂r
∂yu

+ 2kx3r
∂r
∂yu

)

(1 + kx2r + kx3r2)2

)
∂yd
∂xu

= yu

(
1 + 2ky1r

∂r
∂xu

1 + ky2r + ky3r2
−

(1 + ky1r
2)(ky2

∂r
∂xu

+ 2ky3r
∂r
∂xu

)

(1 + ky2r + ky3r2)2

)
∂yd
∂yu

=
1 + ky1r

2

1 + ky2r + ky3r2
+ yu

(
1 + 2ky1r

∂r
∂yu

1 + ky2r + ky3r2
−

(1 + ky1r
2)(ky2

∂r
∂yu

+ 2ky3r
∂r
∂yu

)

(1 + ky2r + ky3r2)2

)
(C.14)

The partials of r with respect to xu and yu can be computed using the relation r2 = x2u + y2u.
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∂r

∂xu
=
xu
r

∂r

∂yu
=
yu
r

(C.15)

We now have all the ingredients required to compute the full Jacobian MatrixH of the distorted

image frame coordinates with respect to the intrinsics, distortion coefficients and the extrinsics.

The form of the H matrix can be described in the following manner.

H =

[
Hint Hext

]
(C.16)

where Hint is the portion of the Jacobian matrix strictly associated with the differential correc-

tions in the intrinsics and the distortion coefficients, whereas Hext is the portion of the Jacobian

matrix strictly associated with the differential corrections in the extrinsics.

As a result, Hint ∈ IR2mn×11 and Hext ∈ IR2mn×6n.
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Hint =



∂u11d
∂α

∂u11d
∂β

∂u11d
∂c

∂u11d
∂u0

∂u11d
∂v0

∂u11d
∂kx1

∂u11d
∂kx2

∂u11d
∂kx3

∂u11d
∂ky1

∂u11d
∂ky2

∂u11d
∂ky3

∂v11d
∂α

∂v11d
∂β

∂v11d
∂c

∂v11d
∂u0

∂v11d
∂v0

∂v11d
∂kx1

∂v11d
∂kx2

∂v11d
∂kx3

∂v11d
∂ky1

∂v11d
∂ky2

∂v11d
∂ky3

∂u12d
∂α

∂u12d
∂β

∂u12d
∂c

∂u12d
∂u0

∂u12d
∂v0

∂u12d
∂kx1

∂u12d
∂kx2

∂u12d
∂kx3

∂u12d
∂ky1

∂u12d
∂ky2

∂u12d
∂ky3

∂v12d
∂α

∂v12d
∂β

∂v12d
∂c

∂v12d
∂u0

∂v12d
∂v0

∂v12d
∂kx1

∂v12d
∂kx2

∂v12d
∂kx3

∂v12d
∂ky1

∂v12d
∂ky2

∂v12d
∂ky3

...
...

...
...

...
...

...
...

...
...

...
∂u1md
∂α

∂u1md
∂β

∂u1md
∂c

∂u1md
∂u0

∂u1md
∂v0

∂u1md
∂kx1

∂u1md
∂kx2

∂u1md
∂kx3

∂u1md
∂ky1

∂u1md
∂ky2

∂u1md
∂ky3

∂v1md
∂α

∂v1md
∂β

∂v1md
∂c

∂v1md
∂u0

∂v1md
∂v0

∂v1md
∂kx1

∂v1md
∂kx2

∂v1md
∂kx3

∂v1md
∂ky1

∂v1md
∂ky2

∂v1md
∂ky3

∂u21d
∂α

∂u21d
∂β

∂u21d
∂c

∂u21d
∂u0

∂u21d
∂v0

∂u21d
∂kx1

∂u21d
∂kx2

∂u21d
∂kx3

∂u21d
∂ky1

∂u21d
∂ky2

∂u21d
∂ky3

∂v21d
∂α

∂v21d
∂β

∂v21d
∂c

∂v21d
∂u0

∂v21d
∂v0

∂v21d
∂kx1

∂v21d
∂kx2

∂v21d
∂kx3

∂v21d
∂ky1

∂v21d
∂ky2

∂v21d
∂ky3

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

∂unm
d

∂α

∂unm
d

∂β

∂unm
d

∂c

∂unm
d

∂u0

∂unm
d

∂v0

∂unm
d

∂kx1

∂unm
d

∂kx2

∂unm
d

∂kx3

∂unm
d

∂ky1

∂unm
d

∂ky2

∂unm
d

∂ky3

∂vnm
d

∂α

∂vnm
d

∂β

∂vnm
d

∂c

∂vnm
d

∂u0

∂vnm
d

∂v0

∂vnm
d

∂kx1

∂vnm
d

∂kx2

∂vnm
d

∂kx3

∂vnm
d

∂ky1

∂vnm
d

∂ky2

∂vnm
d

∂ky3



(C.17)

Here, n is the number of frames and m is the number of beacons.

Hext ∈ IR2mn×6n

Hext has the same form as that in Appendix A.
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Hext =



∂u11d
∂q1

T ∂u11d
∂t1

T

0 · · · · · · · · · · · · · · · · · · 0

∂v11d
∂q1

T ∂v11d
∂t1

T

0 · · · · · · · · · · · · · · · · · · 0

∂u12d
∂q1

T ∂u12d
∂t1

T

0 · · · · · · · · · · · · · · · · · · 0

∂v12d
∂q1

T ∂v12d
∂t1

T

0 · · · · · · · · · · · · · · · · · · 0

...
...

...
...

...
...

...
...

...
...

∂u1md
∂q1

T ∂u1md
∂t1

T

0 · · · · · · · · · · · · · · · · · · 0

∂v1md
∂q1

T ∂v1md
∂t1

T

0 · · · · · · · · · · · · · · · · · · 0

0 · · · 0
∂u21d
∂q2

T ∂u21d
∂t2

T

0 · · · · · · · · · 0

0 · · · 0
∂v21d
∂q2

T ∂v21d
∂t2

T

0 · · · · · · · · · 0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

0 · · · · · · · · · · · · · · · · · · 0
∂unm

d

∂qn

T ∂unm
d

∂tn

T

0 · · · · · · · · · · · · · · · · · · 0
∂vnm

d

∂qn

T ∂vnm
d

∂tn

T



(C.18)

Since all 6n + 11 parameters are being estimated together, the high dimensionality of the

nonlinear estimation process may often result in longer iterations for convergence.
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APPENDIX D

EXTRINSIC PROJECTIONS FOR ALL DATASETS

The extrinsic projections of all the well-conditioned frames for all four datasets are provided

in this section. They were separated from the main text to focus on the results and for aesthetic

purposes. For each dataset, the frames progress sequentially from the top left and end at the bottom

right. For reference the inertial frame is shown at the bottom of each projection.
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Figure D.1: Extrinsic Projections as computed using the Homography optimization algorithm cor-
responding to each image plane projection shown in Figure 6.2 for Dataset 1. The distances are
provided in inches. Brown’s distortion is employed in the optimization process. The frames are
ordered from the top left to the bottom right.
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Figure D.2: Extrinsic Projections as computed using the Homography optimization algorithm cor-
responding to each image plane projection shown in Figure 6.2 for Dataset 1. The distances are
provided in inches. Geometric distortion is employed in the optimization process. The frames are
ordered from the top left to the bottom right.
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Figure D.3: Extrinsic Projections as computed using the Homography optimization algorithm cor-
responding to each image plane projection shown in Figure 6.10 for Dataset 2. The distances are
provided in inches. Brown distortion is employed in the optimization process. The frames are
ordered from the top left to the bottom right.
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Figure D.4: Extrinsic Projections as computed using the Homography optimization algorithm cor-
responding to each image plane projection shown in Figure 6.10 for Dataset 2. The distances are
provided in inches. Geometric distortion is employed in the optimization process. The frames are
ordered from the top left to the bottom right.
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Figure D.5: Extrinsic Projections as computed using the Homography optimization algorithm cor-
responding to each image plane projection shown in Figure 6.17 for Dataset 3. The distances are
provided in inches. Brown’s distortion is employed in the optimization process. The frames are
ordered from the top left to the bottom right.
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Figure D.6: Extrinsic Projections as computed using the Homography optimization algorithm cor-
responding to each image plane projection shown in Figure 6.17 for Dataset 3. The distances are
provided in inches. Geometric distortion is employed in the optimization process. The frames are
ordered from the top left to the bottom right.
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