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Abstract 

We report a new class of textiles with electrochemical functions which, when moistened 

by a conductive liquid (saline solution, sweat, wound fluid, etc.), generate DC voltage 

and current levels capable of powering wearable electronics on the go. Contrary to 

previously reported power generation techniques, the proposed fabrics are fully flexible, 

feel and behave like regular clothing, do not include any rigid components, and provide 

DC power via moistening by readily available liquids. Our approach is inspired by the 

commercially available Procellera® wound dressing, and entails printed battery cells that 

are composed of silver and zinc electrodes deposited onto a fabric to generate power in 

the microwatt range. Proof-of-concept results using the Procellera® dressing show 

feasibility and reproducibility. Scalable DC power may also be achieved by connecting 

multiple battery cells in series via flexible and conductive E-threads. Indeed, a series 

connection of two Procellera® dressings was demonstrated to boost the generated voltage 

from 0.9 V to 1.2 V. Notably, this in-series printed battery arrangement was further 

shown to successfully power a digital thermometer using 0.5 M NaCl solution 

(mimicking human sweat) as the electrolyte. Furthermore, customized fabric creation, 

which optimizes the Procellera® dressing for power generation, is discussed. Overall, the 

proposed technology is expected to be of utmost significance for healthcare, sports, 

military, and consumer applications, among others.  
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Chapter 1. Introduction 

Wearable electronics are becoming increasingly popular for consumer, sports, and 

healthcare applications [1]-[3]. In fact, the International Data Corporation (IDC) predicts 

shipment of over 240 million wearable devices (smart watches, bracelets, socks, shirts, 

etc.) by 2021 [4]. As is well known, one of the biggest challenges associated with these 

wearable devices relates to the way of powering them [5]-[6]. Conventional batteries are 

typically employed, but they are bulky and rigid, and, thus, obtrusive for wearable 

applications.  

 

Alternate power-generating technologies are recently being explored, but they 

exhibit several drawbacks. For example, solar energy harvesters occupy large surfaces, 

require bulky/rigid energy-collecting panels, and only collect energy at certain times of 

the day [7]. Another popular method, namely Radio-Frequency (RF) power harvesting, 

requires an RF source within close proximity of the wearer, exhibits low efficiency, and 

requires bulky/rigid circuitry to perform the AC-to-DC conversion [8]. Wearable 

biomechanical energy harvesting technologies have also been reported [9]-[10]. These 

harvesters capture energy from human motion (foot strike, limb motion, or joint motion) 

and typically rely on nano-triboelectric [11] or piezoelectric [12] actuation, converting 

naturally available mechanical energy to electrical energy directly.  Nevertheless, these 
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solutions still require bulky components that inhibit the flexibility of the wearables they 

power. Finally, a commercial product known as BrightVolt has been recently been 

reported as being the thinnest  battery pack to target medical and wearable applications 

[28]. However, the BrightVolt battery still uses Lithium, which is an inherently reactive, 

toxic element not ideal for on-body wear. In addition, the battery is not fully flexible for 

seamless integration with wearables. 

 

In this work, we introduce a new path to unobtrusively powering wearable 

electronics by integrating electrochemical functions onto textiles [13]. This proposed 

method involves printing silver- and zinc-based electrodes (cathodes and anodes) on 

fabrics to generate DC power when moistened by a conductive liquid (saline solution, 

sweat, wound fluid, etc.), see Fig. 1.1 [14]-[16]. The conductive liquid serves as an 

electrolyte, enabling ion flow between the anode and cathode. Flexible inter-connections 

between several of the printed battery cells allow one to connect them in series or parallel 

to achieve desired voltages and current, per the application requirements. Such inter-

connections may be ubiquitously realized on the fabric via conductive E-threads [17], 

[18].  To our knowledge, this is the first time that fully-flexible batteries are implemented 

directly on fabric and activated via readily available bodily fluids (saline solution, sweat, 

wound fluid, etc.). Example applications include T-shirts and leggings that power up 

sensors while the wearer is exercising and sweating (accelerometers, gyroscopes, heart 

rate sensors, etc.) [19], epidermal pads that trigger an alarm when the underlying wound 
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opens up [20]-[21], or smart diapers that assist in toilet training for kids with autism [22]-

[23]. 

 

Figure 1.1: Overview of proposed flexible power generation system. 

 
 

Influence and Inspiration from Procellera Wound Dressing 
 

 To provide some background to the project, the team developed the idea of power 

generation on fabrics while studying the electrical nature of the Procellera® wound 

healing dressing (shown in Fig. 1.2) , sold by Vomaris Innovations Incorporated [14], 

[27].  Professor Asimina Kiourti’s electrical engineering team was contacted in order to 

study and classify the electrical nature of the wound healing dressing—attempting to 

further understand its wound healing abilities. The electrical engineering team was able 

to successfully characterize the power generated by the Procellera dressing as a DC 

power, leading to discussions whether the dressing could not only improve wound 

healing but also power wearable sensors. However, the Procellera® fabric was designed 

and optimized as a wound healing dressing; therefore, it was extremely difficult to 
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experimentally connect the fabric to low-power sensors. As a result of the Procellera® 

findings, the team set out to design a custom made electrically active fabric—optimized 

for power generation. The majority of this Thesis will outline the pioneering work 

conducted with the Procellera® to explore the feasibility of implementing a flexible power 

source, with a section at the end detailing continuing, collaborative work being done to 

create a custom fabric to replace Procellera®. 

 

 

Figure 1.2: Procellera® wound healing dressing. 

 
The rest of the Thesis is organized as follows. Chapter 2 describes the operating 

principle. Chapter 3 presents the results and lessons-learned from the Procellera® dressing 

proof-of-concept study. Chapter 4 discusses fabrication of these electrochemical-storage-

integrated fabrics. Chapter 5 details current results from customized printed battery cells. 

Chapter 6 details research thrusts to be focused on in the future. The Thesis concludes in 

Chapter 7.  
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Chapter 2.  Operation Principle 

 
  The operation principle of the proposed fabric with integrated 

electrochemical functions is summarized in Fig. 2.1. The main element of this approach 

is a printed battery cell (see Fig. 2.1(a)) that is composed of two electrodes deposited 

onto a fabric. Inspired by our previous work [14]-[16], the electrode materials used to 

realize the anode and cathode are selected as zinc (Zn) and silver oxide (Ag2O), 

respectively. When the electrochemical fabric comes into contact with an ionic 

conducting liquid, the latter acts as an electrolyte. This means that the Ag2O cathode will 

undergo a reduction process, while the Zn anode will be oxidized. In turn, ionic current 

will flow through the electrolyte to balance the charges at the anode and cathode. The 

circuit will close when flexible conductive E-threads [17], [18] (marked as “electrical 

connections” in Fig. 2.1) are used to connect a sensor or other device to the battery’s 

electrodes. In this particular case, electrons will flow through the E-threads, serving as 

current collectors for the DC power to be utilized. The aforementioned oxidation-

reduction process is outlined in (1) and (2) for an example case where NaOH is used as 

the electrolyte. That is, DC voltage and current can be generated just by getting the 

electrochemical fabric moistened via an ionically conducting liquid (saline solution, 

sweat, wound fluid, etc.). 
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𝐴𝑔#𝑂 +	𝐻#𝑂 + 2𝑒* 	→ 2	𝐴𝑔 + 2	𝑂𝐻*                            (1) 

 

𝑍𝑛 + 	2	𝑂𝐻* 	→ 𝑍𝑛𝑂 + 𝐻#𝑂 + 	2𝑒*                                      (2) 

 

Incorporating engineering concepts into the design of the printed battery cells can 

boost/scale the generated DC power levels depending on the application. For example, a 

voltage boost can be achieved by connecting two or more of the printed battery cells in 

series. An illustration of this principle is shown in Fig. 2.1(b). Such connections among 

different battery cells may be implemented via flexible and conductive inter-connects, 

such as conductive E-threads [17], [18] and/or inks [24].  

 

 

Figure 2.1: Operation principle of the proposed electrochemical fabrics with power 
generation capabilities: (a) Realization of a single printed battery cell. (b) Example series 

connection of two printed battery cells aiming to boost the generated voltage.
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Chapter 3.   Procellera® Proof-of-Concept Results 

3.1. Initial Electrical Characterization 

As discussed in Chapter 1, preliminary experimentation and analysis of the 

electrical behavior of the Procellera® wound dressing served as inspiration for the work 

presented in this Thesis. The Procellera® dressing consists of micro metallic deposits of 

silver and zinc on a fabric, which generate micro-currents in the presence of a conductive 

fluid (shown in Fig. 3.1). This generated micro-current is then shown to significantly 

improve the rate of wound healing, specifically improving the rate of cell migration and 

re-epithelization in a uniform manner underneath the fabric [14],[15].  

 

 

Figure 3.1: Working principle of Procellera® wound dressing [27]. 

 

Initially, the team was tasked with determining how much power is produced by 

the electrically-active wound dressing and whether that produced power was AC power 
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or DC power. In order to determine the type of power produced by the Procellera® 

dressing, a Fast Fourier Transform (FFT) was taken, as shown in Fig. 3.2. The steady-

state FFT results show that the dominant frequency component of an active Procellera® 

wound dressing (moistened by a saline solution) arise at 0 Hz, with random noise at 

higher frequencies. Therefore, the Procellera® wound dressing was experimentally shown 

to produce DC power. Next, voltage and current measurements were taken to measure the 

DC power from a single Procellera® dressing.  Voltage measurements recorded when the 

positive (silver) and negative (zinc) dots of the moistened Procellera® pad were connected 

to a voltmeter are shown in Fig. 3.3. The observed DC voltage measured from the 

Procellera® electrochemical dressing was approximately 0.9V. A peak current of ~40 µΑ, 

as shown in Fig. 3.4, was observed when the moistened pad was connected in series to a 

current meter. Remarkably, even these voltage/current levels measured from a proof-of-

concept pad are high enough to produce several microwatts of power, enough to power a 

wide range of low-power electronic sensors. 

 

Figure 3.2: Steady-state FFT response of Procellera® wound dressing. 

 



9 
  

 

Figure 3.3: Generated open DC voltage across one pair of zinc and silver electrodes on 
the Procellera® dressing. 

 

 

Figure 3.4: Generated closed circuit current across one pair of zinc and silver electrodes 
on the Procellera® dressing. 
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3.2. Using Procellera® for Sensing Applications 

 
The data presented up to this point was primarily taken to electrically characterize 

the Procellera® wound dressing in an attempt to better understand its wound healing 

behavior [14]. However, after realization that the fabric is capable of producing 

microwatts of power in a completely unobtrusive, flexible fashion, Dr. Kiourti’s WIT lab 

started to explore using the Procellera® fabric as a power source for low-power, wearable 

electronics. Fig. 3.5 outlines the initial proposed concept of using electrochemically 

active fabrics such as Procellera® in wearable sensing applications. 

 

 

Figure 3.5: Proposed concept of power generation from an epidermal electrochemical 
dressing (2) dampened by a bodily exudate (1). Generated DC power levels in the order 

of a few microwatts can be used to power on-body electronics (3). 

 

To experiment with the concept presented in Fig. 3.5, a batteryless ‘wound 

sensor’ was subsequently demonstrated that was powered via fabric electrochemistry to 

detect the presence of an underlying open wound. As shown in Fig. 3.5, for this particular 

‘wound sensor’, the Procellera® electrochemical dressing (2) was used to actively 
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‘monitor’ the skin surface (1). In case an underlying wound opens, the resulting exudate 

acts as an electrolyte for the electrochemical fabric, causing it to generate static voltage. 

In turn, this voltage is used to activate an indicator/alarm unit (3), and/or wirelessly 

transmit this information to a remote monitoring/control device. For this proof-of-concept 

experiment, a diode was used in place of the alarm unit, and a saline solution (100 mL 

water and 5 mL salt) was use to emulate the wound exudate. When the electrochemical 

dressing came in contact with the saline solution, a static voltage was detected across the 

diode terminals; therefore, this ‘high’ voltage represented the ‘open wound state’ (see 

Fig. 3.6). 

 

 

Figure 3.6: Demonstration of powering a sensor that detects open wounds underneath its 
surface. 
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3.3. Scaling the Power Generated from Procellera® 

 
Despite the success of the wound detection sensor, it was observed that the 

Procellera® dressing did not produce enough voltage to consistently supply enough power 

to a high resistance load. This drop in voltage can be seen in Fig. 3.6 where the addition 

of a simple diode dropped the open-circuit voltage of the Procellera® dressing from 0.9 V 

to an observed 0.5 V across the diode. For practical sensing applications, the Procellera® 

power source will be put in systems with much larger load resistances than that of a 

simple diode; therefore, the team was tasked with finding a way to boost the voltage 

produced by the Procellera® dressing to make it a feasible power source. After 

experimentation, it was determined that a simple series connection of multiple 

Procellera® dressings resulted in the desired voltage boost.  

 

To serve our purposes, individual 𝐴𝑔#𝑂 and 𝑍𝑛 dot pairs on the Procellera® 

dressing, which correlated to the proposed ‘printed’ battery cells (outlined in Chapter 2), 

were electrically isolated from each other using insulating tape adhered to each of the two 

dressings. Series connection between the two ‘printed’ battery cells was achieved via 

conductive E-threads threads [17]. These threads consisted of 332 silver-coated polymer 

filaments that were twisted into a single thread having an overall diameter of ~0.5 mm 

and a DC resistance of ~0.5 Ω/ft.  Fig. 3.7 demonstrates how a voltage boost can be 

achieved by connecting two Procellera ‘printed’ battery cells in series. As illustrated, 

~0.9 V generated via a single cell was boosted to ~1.2 V when two cells were connected 

in series. The reason why the voltage was not linearly boosted (doubled in this case) is 
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due to the high impedance of the Procellera® ‘printed’ battery cell (measured to be 1.2 

MΩ), which was comparable to the internal impedance of the voltmeter. The steady-state 

open current flowing through an ammeter connected in series to the Procellera dressings 

was in the range of ~10-11 µΑ. 

 

Figure 3.7: Demonstration of a voltage boost when connecting two electrically isolated 
‘printed’ battery cells on the Procellera® dressing in series.  

 

3.4. Powering a Digital Thermometer with Procellera® 

 

With the advancements in voltage scalability from the Procellera® 

electrochemical dressing discussed in Chapter 3.3, the power boost enabled integration of 

additional low-power sensors. As shown in Fig. 3.8, a digital thermometer’s display was 

shown to turn ‘on’ (flickering) when attached to a series connection of two silver/zinc-

based ‘printed’ battery cells moistened by a saline solution. To our knowledge, this was 
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the first time that electrochemically active fabrics were used as a power source for low-

power electronics.  

 

 

Figure 3.8: Procellera® results: Series connection of two 'printed' battery cells causing a 
digital thermometer screen to flicker. 

 

Overall, while these initial results from the Procellera® pad were critical in 

realizing the possibility of having a flexible power generation source, however, 

Procellera® was optimized to be a wound healing fabric—not a power source. Therefore, 

the team branched out from the Procellera® wound healing fabrics and started exploring 

creation of a custom designed Ag/Zn printed battery cell. This research into the design of 

a custom printed battery cell that can be deposited onto fabrics—optimized for power 

generation—is discussed throughout the rest of the Thesis.   
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Chapter 4.   Electrochemical Fabric Fabrication 

 
4.1. Fabrication of a Single Battery Cell 

 
In order to create a conductive paste that can adhere onto a polyester fabric, a 

standardized method for making battery electrode slurry is employed (outlined in 

Appendix A) [25]. First, the powdered form of the electrode (Zn or Ag2O) is crushed to 

fine powders using a mortar and pestle. Then, a binder such as polyvinylidene fluoride 

(PVDF) in an n-methyl-2-pyrrolidone (NMP) solvent is added to the powder to form an 

ink that can be screen-printed, hand-printed or printed using an inkjet printer. In this 

work, a typical ratio of 90 wt.% active materials and 10 wt.% PVDF is experimentally 

determined to provide maximum conductivity while still allowing the electrodes to 

adhere to the fabric. The desired ink viscosity is tuned by adding and removing the NMP 

solvent. For screen- or hand-printed electrodes, the ideal ink attains a paste-like viscosity.  

 

The Zn and Ag2O inks are deposited onto a medical-grade polyester fabric via 

hand-printing or screen-printing. Medical-grade polyester fabrics are used in order to 

provide maximum bio-absorbability (absorb on-body sweat), however most conventional 

clothing fabrics (cotton, silk, and linen) can be potentially used instead. Once the 

electrode inks are deposited, the cloth is dried at 100 oC for one hour. The dry weight of 
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the Zn electrode was standardized to 30 mg (90 wt.%) and up to 300 mg for Ag2O (90 

wt.%). The standardized dry mass of the metal slurries was chosen to provide sufficient 

battery capacity to power a sensor for several hours using Zn as the limiting reactant. 

This procedure creates circular deposits with a diameter of approximately 0.50 cm for the 

Zn (anode) and Ag2O (cathode) onto a 1.5 cm × 4.0 cm fabric cutout. This proof-of-

concept diameter of the anode and cathode was chosen so as to allow the battery cell to 

fit onto the defined fabric cutout while also enabling hand-stitching of E-threads across 

the deposits to serve as current collectors. In this particular case, flexible Cu/Ni E-threads 

of 0.075mm diameter [26] are selected for electrical probing. Fig. 4.1 shows a completed, 

flexible printed battery cell on a polyester fabric.  

 

 

Figure 4.1: Printed battery cell consisting of Silver Oxide (cathode) and Zinc (anode) 
deposited onto a flexible fabric. (Photo taken while collaborating with Wesley Thio) 
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4.2. Fabrication of Inter-Connected Battery Cells 

 
To allow for DC power scalability, multiple printed battery cells can be inter-

connected in series or parallel, or combinations thereof depending on the desired current 

and voltage output. For example, a voltage boost can be achieved by connecting two or 

more of the printed battery cells in series. To do so, flexible electrically conducting 

threads can be stitched into the polyester fabric in order to electrically measure and utilize 

the energy stored in these battery cells. As an example, Fig. 4.2 shows the physical 

representation of two printed battery cells in a series arrangement. In this particular case, 

two battery cells were printed on two separate pieces of polyester fabric, and flexible 

Cu/Ni E-thread was used to stitch/connect these cells for maximum electrical contact. 

Each of the cells were, eventually, moistened separately. Alternatively, instead of 

physically separating the two cells, hydrophobic sprays (or other means of physical 

separation) could be employed between adjacent battery cells to avoid detrimental short 

circuits. Expectedly, similar techniques can be pursued to wire the printed battery cells in 

a parallel arrangement, per the application requirements.  
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Figure 4.2: Two printed battery cells consisting of silver oxide (cathode) and zinc 
(anode) wired in series using Cu/Ni E-thread. (Photo taken while collaborating with 

Wesley Thio) 
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Chapter 5.  Customized Fabric Measurement Results  

 

5.1. Power Generation from a Single Battery Cell 

 
The power generation capabilities of our in-house fabricated electrochemical 

fabrics, made in close collaboration with Dr. Co’s Electrochemistry Lab, were measured 

using standard electrochemistry techniques. To obtain the discharge characteristic of the 

printed battery cells, galvanostatic measurements (constant cell discharge) were 

performed that helped evaluate the voltage performance and capacity available.  

 

As a proof-of-concept, a conventional electrolyte for an alkaline Ag2O/Zn battery, 

10 M NaOH, was used to establish the discharge characteristics of the batteries printed on 

fabrics.  A constant discharge current of 100 µA was applied to a single pair of anode and 

cathode while the voltage of the cell was measured.  The results show that the customized 

printed battery cells are capable of producing upwards of 80 µW for several hours [29].  
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5.2. Power Scalability  

 
Table I shows the voltage boost achieved by connecting multiple printed battery 

cells in a series arrangement (see Fig. 4.2).  As shown, a single cell in 10 M NaOH 

generates 1.46 V, whereas the voltage is boosted to 2.54 V when two cells are connected 

in series, and to 2.85 V when three cells are connected in series.  Similar voltage scaling 

is observed when using DPBS buffer (mimicking wound fluid) and 0.5 M saline solution 

(mimicking human sweat) as the electrolyte. Since DPBS and saline are weaker 

electrolytes compared to 10 M NaOH, lower voltage levels are generated by the printed 

battery cell.  

 

As seen, and contrary to conventional batteries, the voltage boost from the 

batteries printed on fabrics is not linear. This non-linearity is due to the high built-in 

impedance associated with the printed battery cell. To better understand this non-

linearity, Fig. 5.1 shows an equivalent circuit model for two printed battery cells 

connected in series, while (3) shows how to calculate a potential voltage boost when the 

battery cells are connected to a sensor.   

 

V/01/23 = 2V5
67897:;

#6<=67897:;
                                            (3) 

 

Here, Vb is the voltage generated by each of the printed battery cells, Zb is their 

built-in impedance, and Zsensor is the impedance of a sensor device to be powered via the 
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proposed configuration. For a conventional battery, Zb is orders of magnitude less than 

Zsensor, so the Zb term in (3) is negligible and linear voltage scaling occurs. However, the 

built-in impedance of the printed battery cell is not negligible compared to a typical 

sensor impedance (e.g., Zsensor = 120 kΩ for the digital thermometer to be employed in 

Chapter 5.3); therefore, non-linear voltage scaling occurs. This high value for Zb is 

attributed to a range of factors, ranging from the exact geometry of the metal deposits on 

the fabric to possible impurities in the metals used to make the metal slurries. 

 

Table 1: Scalability results. 

Number of ‘printed’ 
battery cells in series  

0.5 M NACL 
SALINE SOLUTION 

DPBS BUFFER 
SOLUTION 

10 M NAOH 
SOLUTION 

1 0.96 V 0.97 V 1.46 V 
2 1.52 V 1.76 V 2.54 V 
3 2.07 V 2.41 V 2.85 V 

 

 

 
Figure 5.1: Equivalent circuit model for two printed battery cells in series arrangement. 

 

 

Vb ZbVb Zb

Zsensor

”printed‘ battery cell ”printed‘ battery cell
' 2

2
sensor

sensor b
b sensor

ZV V
Z Z

=
+

where contrary to conventional 
batteries, Zb>>1 and cannot be 
neglected.
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5.3. Proof-of-Concept Demonstration: Powering a Thermometer 

 
A proof-of-concept experiment was performed to demonstrate powering of a 

digital thermometer using the proposed printed batteries on fabrics. To do so, an Anpro 

thermometer was employed. The minimum operational voltage and current requirements 

for this device were measured to be 1.5 V and 12.5 µA, respectively. Under these 

conditions, the impedance of the thermometer was calculated to be 120 kΩ. According to 

Table I, the voltage level produced by a single printed battery cell was not enough to 

consistently power on the sensor. Hence, two printed battery cells wired in a series 

arrangement were used to meet the sensor power requirements. 

 



23 
 

 

Figure 5.2: Two printed Zn/Ag2O battery cells deposited onto a flexible fabric, wired in 
series using thin Cu/Ni E-thread and soaked in 10M NaOH, powering a digital 

thermometer. (Photo taken while collaborating with Wesley Thio) 

 

Our proof-of-concept experimental set-up is shown in Fig. 5.2. Specifically, the 

employed printed battery cells were fabricated based on the process described in Chapter 

4.2, connected via conductive E-threads as shown in Fig. 4.2, and further moistened by: 

a) a conventional 10 M NaOH solution, b) a buffer solution (mimicking human body 

fluid) and c) a saline solution (mimicking human sweat). In all three cases, and as shown 

in Fig. 5.2, the power levels were high enough to successfully power the digital 

thermometer. 
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Chapter 6.  Future Research Thrusts 

 
6.1. Operation under Biological Conditions 

 
The majority of the results presented throughout this thesis were taken for a 

printed battery cell in an ideal 10 M NaOH electrolyte. The 10 M NaOH ideal electrolyte 

was chosen because it is consistent with the electrolyte used in similar Ag/Zn 

electrochemical cells used for hearing aids. However, as outlined in Chapter 1 and 

Chapter 2, a key novel function of our flexible power generation source is operation 

under biological conditions. In particular, this implies consistent power generation when 

readily available bodily electrolytes (sweat, wound fluid, etc.) are used as the electrolyte 

for the printed battery cell. While this concept of using biological electrolytes is slightly 

explored throughout this thesis (see Table 1) and tested in our proof-of-concept 

demonstration, consistent plots detailing the power discharge of a printed battery cell in a 

biological electrolyte were not observed. In fact, Fig. 6.1 shows the results of measuring 

the power discharge of a printed battery cell in biological electrolytes (data taken and 

plotted by Wesley Thio). The observed discharge plot was inconsistent, with noticeable 

fluctuations in the observed voltage over time.  This large variance in voltage is likely 

due to secondary redox reactions taking place with the complex, biological electrolytes 

and the Ag/Zn printed battery cell system. Therefore, future work must be done in order 
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to fully understand the functioning of the printed battery cell system under biological 

conditions in order to ensure consistent power generation.  

 

 
Figure 6.1: Power discharge curves comparing ideal electrolyte versus biological 

electrolytes (buffer and saline). (Data gathered and plotted by Wesley Thio) 

 

6.2. Optimize Manufacturing 

 
The second envisioned research thrust relates to the way in which the printed 

battery cells are manufactured. Currently, as described in Chapter 4, the printed battery 

cells are manufactured by hand, a very tedious and inaccurate process. While the 

geometry and mass of the printed battery cells are standardized, due to the process being 

done by hand, it is nearly impossible to get a smooth/even distribution of the metallic 

slurry on the surface. So, occasionally, the manufactured cells end up with a non-uniform 

distribution of the slurry material on one of the printed battery cell ends––leading to a 

non-circular anode/cathode post drying in an oven, as shown in Fig. 6.2.  
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 In general, manufacturing is a reoccurring problem because slight variances in the 

construction and geometry of the printed battery cell can lead to drastic effects on the 

internal impedance of the battery cell. The internal impedance characteristics of the 

printed battery cells is outlined briefly in Chapter 5; however, formal experimental 

analysis is required to fully determine how the geometry of the battery cell impacts its 

impedance.  

 

 In order to solve potential problems arising due to inconsistent printed battery cell 

manufacturing, as well as reduce the variance in constructing battery cells to fully 

characterize the internal impedance, a customized ink-jet printer might be used. The ink 

cartridge of the printer can be customized to hold various metallic slurries and the printer 

head can be fine-tuned in order to consistently deposit the material onto fabrics. 

Furthermore, the ink-jet printer will allow the team to experiment various metallic 

slurries in order to rapidly test the redox reaction capabilities of other cathode/anode 

pairs.  

 
 

Figure 6.2: Manufacturing difficulties of the printed battery cells due to human error. 
(Photo taken by Wesley Thio) 
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6.3. Medical Dosing 

 
 The third envisioned research thrust is inspired by the medical research described 

in [14]-[16], related to electroceutical uses of the printed battery cells. The inspiration for 

this project, Procellera, as described in Chapter 3 was the utilization of charged fabrics to 

speed up wound healing. In fact, research completed at Dr. Chandan Sen’s lab at The 

Ohio State University shows that charged fabrics have a potential to kill viruses and 

bacteria otherwise immune to conventional pharmaceutical techniques. In particular, this 

research thrust leverages the scalable nature of the printed battery cells in order to 

provide an “electrical dose” for electroceutical treatment. Currently, the purpose of the 

work described in this thesis is to generate power, however the electroceutical nature of 

the solution can be exploited in the future for more medically relevant projects.  

 

6.4. Further Integration with Wearable Electronics 

  
 Finally, the prototype printed battery cells were used in order to power a low-

power thermometer, as seen in Chapter 5. Future research thrusts aim to expand this 

proof-of-concept demonstration and integrate the printed battery cells with a wide array 

of wearable sensors. As a starting point, the team has identified Battery Assisted Passive 

(BAP) RFID tags as a first step towards wearable integration. Specifically, the current 

problem with integrating the designed battery cells with wearable electronics is that the 

wireless communication modules on the wearable electronics draw too much power—

typically in the milliwatts range. However, even the customized printed battery cell only 
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produces power in the microwatt range [29]. Hence, BAP RFID’s have been targeted 

because they rely on a RFID reader in order to supply the power for wireless 

communication, but the printed battery cells can still be effectively used to power any 

sensors attached to the BAP RFID.  

 

 Furthermore, robust integration with wearable antenna modules is envisioned for 

the near future. The Wearable and Implantable Technologies (WIT) lab at The Ohio State 

University has had success in creating textile antennas that seamlessly integrate onto a 

fabric. The end goal is to have the printed battery cells and textile antennas lie on the 

same fabric plane—creating the first truly unobtrusive, wireless wearable solution. Fig. 

6.3 shows two printed battery cells wired in series and attached to a sample textile 

antenna. This demonstration is to just show the two solutions integrated on the same 

fabric plane, and future work must be done to actually integrate their functionalities. 

 

 
 

Figure 6.3: Potential integration of printed battery cell with textile antenna. (Photo taken 
by Wesley Thio) 
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Chapter 7.  Conclusion 

We introduced a novel method for powering wearable electronics by integrating 

electrochemical storage onto fabrics. Contrary to conventional powering techniques 

(batteries, RF power harvesting, etc.), the designed method leverages conductive liquids 

readily available on the body (sweat, wound fluid, etc.), and is fully flexible, behaving 

like regular clothing. Proof-of-concept results with the Procellera® wound dressing 

indicate the feasibility of having creating electrochemical storage on fabrics and using it 

to power sensors. Furthermore, in-house customized printed battery cells demonstrated 

sustained power generation capable of powering low-power electronics for sustained 

periods of time [29]. Importantly, multiple of these printed battery cells can be inter-

connected to scale the DC power, hence, allowing flexibility in meeting various 

application/sensor requirements. As an example, a series combination of two Procellera® 

fabrics was shown to successfully result in a voltage boost—a similar combination of the 

in-house fabricated fabrics was also shown to produce a voltage boost.  

 

Scalable DC power up to the mW range and for long periods of time is envisioned 

for the future, to be realized via optimization of the associated materials, pattern design, 

internal impedance characteristics, and inter-connections. Overall, this novel technology 
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is expected to be vital for unobtrusively powering electronics in military, sports, and 

emergency operations, among others.  
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Appendix A 

 
 

Slurry Procedure 
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Procedure for preparing Ag2O and Zn slurry (90% wt.) 
 

1. Add 0.4 grams Polyvinylidene fluoride (PVDF) powder to a 100 mL beaker.  
 

2. Add 3.3 grams of N-Methyl-2-pyrrolidone (NMP) to the beaker and slowly stir. 
The NMP solution acts as an organic solvent for the PVDF binder because the 
PVDF will not dissolve in water.  

 
3. Fully mix the solution until the PVDF is completely dissolved in the NMP.  

 
4. Add 3.6 grams of the desired metal (Ag2O or Zn). 

 
5. Mix the solution until a paste-like viscosity is reached and store in a sealed 

container.  
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Glossary  

Relevant Acronyms 
 

1. WIT:  Wearable and Implantable Technologies 
2. RF:  Radio-Frequency 
3. AC:  Alternating Current 
4. DC:  Direct Current 
5. FFT:  Fast-Fourier-Transform 
6. PVDF:  Polyvinylidene Fluoride 
7. NMP:  n-methyl-2-pyrrolidone 
8. DPBS:  Dulbecco’s Phosphate-Buffered Saline 
9. BAP:  Battery Assisted Passive  
10. RFID:  Radio-Frequency Identification 


