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Abstract

Background: As one of the most densely populated microbial communities on Earth, the gut microbiota serves
as an important reservoir of antibiotic resistance genes (ARGs), referred to as the gut resistome. Here, we
investigated the association of dietary nutritional content with gut ARG diversity and composition, using publicly
available shotgun metagenomic sequence data generated from canine and feline fecal samples. Also, based on
network theory, we explored ARG-sharing patterns between gut bacterial genera by identifying the linkage
structure between metagenomic assemblies and their functional genes obtained from the same data.

Results: In both canine and feline gut microbiota, an increase in protein and a reduction in carbohydrate in the
diet were associated with increased ARG diversity. ARG diversity of the canine gut microbiota also increased, but
less strongly, after a reduction in protein and an increase in carbohydrate in the diet. The association between ARG
and taxonomic composition suggests that diet-induced changes in the gut microbiota may be responsible for
changes in ARG composition, supporting the links between protein metabolism and antibiotic resistance in gut
microbes. In the analysis of the ARG-sharing patterns, 22 ARGs were shared among 46 genera in the canine gut
microbiota, and 11 ARGs among 28 genera in the feline gut microbiota. Of these ARGs, the tetracycline resistance
gene tet(W) was shared among the largest number of genera, predominantly among Firmicutes genera.
Bifidobacterium, a genus extensively used in the fermentation of dairy products and as probiotics, shared tet(W)
with a wide variety of other genera. Finally, genera from the same phylum were more likely to share ARGs than
with those from different phyla.

Conclusions: Our findings show that dietary nutritional content, especially protein content, is associated with
the gut resistome and suggest future research to explore the impact of dietary intervention on the development
of antibiotic resistance in clinically-relevant gut microbes. Our network analysis also reveals that the genetic
composition of bacteria acts as an important barrier to the horizontal transfer of ARGs. By capturing the underlying
gene-sharing relationships between different bacterial taxa from metagenomes, our network approach improves
our understanding of horizontal gene transfer dynamics.
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Background
The widespread use of antibiotics in human medicine,
veterinary medicine, and agriculture has created unre-
mitting selection pressure for antibiotic resistance since
antibiotics were first introduced in the 1940s [1]. Al-
though antibiotic resistance has become a global health
concern over the past few decades, genes conferring re-
sistance to antibiotics have long preceded antibiotic dis-
covery and usage, offering survival advantages to host
microbes through the various metabolic and regulatory
roles they play [1]. The gut microbiota is one of the
most densely populated microbial communities on Earth
[2, 3] and therefore serves as an important reservoir of
antibiotic resistance genes (ARGs), referred to as the gut
resistome [4]. The intestinal tract is colonized by com-
mensals as well as opportunistic pathogens, and is con-
stantly exposed to pathogenic and non-pathogenic
microbes via food and water. These microbes have
ample opportunity to interact closely with each other.
As a result, the gut provides an ideal environment for
the horizontal transfer of ARGs between different mem-
bers of the gut microbiota [4, 5].
In this study, we aimed to examine two different as-

pects of the gut microbiota, using publicly available
shotgun metagenomic sequence data generated from
canine and feline fecal samples. The first objective was
to assess whether dietary nutritional content was associ-
ated with gut ARG diversity and composition by com-
paring these across different diet groups. Diet is one of
the most influential factors shaping the gut microbiota
[6–10]. However, most studies exploring the impact of
diet on the gut microbiota have used amplicon sequence
data and therefore focused on the taxonomic profile of
gut microbes. Some have expanded their scope to the
functional profile using shotgun sequence data, but only
a few have explored the influence of diet on the gut
resistome [11]. Given the inextricable link between mi-
crobes and ARGs, we hypothesize that diet-induced
alteration in the gut microbiota changes gut ARG diver-
sity and composition, that is, the antibiotic resistance
potential of the gut microbiota.
The second objective was to understand ARG-sharing

relationships between gut bacterial genera by construct-
ing ARG-sharing networks between genera, identifying
genera that may play a key role in the horizontal transfer
of ARGs, and assessing the extent to which ARG sharing
between genera is constrained by bacterial taxonomic
classification. We defined ARG sharing as the presence
of a given ARG in different bacterial taxa. The recogni-
tion that horizontal gene transfer (HGT) plays a
significant role in microbial evolution has encouraged us
to consider a microbial community as a network of ac-
tors sharing genes. Recent studies have explored gene-
sharing relationships between microbial genomes by

applying network approaches to whole-genome sequence
data [12–15]. However, while these studies have ex-
panded our understanding of microbial evolution via
HGT, they are limited in their capacity to describe the
complex dynamics of HGT occurring in a particular mi-
crobial community, because they used bacterial genomes
isolated from various microbial communities. Here, we
present a network approach that captures the underlying
network structure between metagenomic assemblies and
their functional genes originating from a particular mi-
crobial community.

Results
The dietary effect on the gut resistome
A total of 23 ARGs were identified in ≥50% of the sam-
ples in both canine and feline data, with tetracycline and
aminoglycoside resistance genes being the most frequent
ARGs (Fig. 1) (see Additional file 1: Table S1 for the
statistics of de novo assembly). The abundance of a
given ARG tended to respond to dietary intervention
similarly in both canine and feline data. For example,
dogs with the High-Protein/Low-Carbohydrate (HPLC)
diet tended to have a higher abundance of tet(W), tet(O),
tet (44) (tetracycline resistance genes), mefA and mel
(macrolide resistance genes), but a lower abundance of
CfxA6 (a beta-lactam antibiotic resistance gene), com-
pared with dogs with the baseline diet (Figs. 1a). The
abundance of these ARGs showed a similar pattern be-
tween HPLC-fed kittens and Moderate-Protein/Moder-
ate-Carbohydrate (MPMC)-fed kittens (Fig. 1c). Dietary
nutritional content also influenced overall diversity of
ARGs in both canine and feline gut data. In dogs,
changes of diet from the baseline to HPLC and Low-
Protein/High-Carbohydrate (LPHC) diets were both
associated with a significant increase in the Shannon di-
versity index of ARGs (p < 0.001 and p = 0.008, respect-
ively, Wilcoxon signed-rank test) (Fig. 2a–b). This
increase was more pronounced with the HPLC diet than
with the LPHC diet; the mean Shannon diversity index
of ARGs increased by 31.5% with the HPLC diet,
whereas it increased by approximately 10.2% with the
LPHC diet. This resulted in the mean Shannon diversity
index of ARGs being 15.7% higher in HPLC- than
LPHC-fed dogs (p = 0.023, Wilcoxon rank-sum test).
Likewise, the mean Shannon diversity index of ARGs
was 19.8% higher in HPLC-fed kittens than MPMC-fed
kittens (p = 0.005, Wilcoxon rank-sum test) (Fig. 2c). As
for taxonomic diversity, HPLC- and LPHC-fed dogs had
11.2 and 14.8% higher mean Shannon diversity index of
bacterial genera than dogs with the baseline diet (all p <
0.001, Wilcoxon signed-rank test). Also, the mean
Shannon diversity index of bacterial genera was 26.2%
higher in HPLC-fed kittens than MPMC-fed kittens (p <
0.001, Wilcoxon rank-sum test).
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Fig. 1 (See legend on next page.)
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When ARG composition was assessed between the
diet groups based on Bray-Curtis dissimilarity values,
there was a statistically significant association between
ARG composition and diet type in both canine and fe-
line data (all p < 0.001, permutational multivariate ana-
lysis of variance (PERMANOVA) test). In particular,
HPLC-fed dogs showed a more distinct separation from
those with a baseline diet than LPHC-fed dogs, as visual-
ized in nonmetric multidimensional scaling (NMDS) or-
dinations (Fig. 3a–b). Also, there was a clear separation
between HPLC-fed kittens and MPMC-fed kittens in the
feline data (Fig. 3c). Procrustes analysis showed a
statistically significant association between ARG and
taxonomic composition in both canine and feline data
(Fig. 4, all p < 0.001, procrustean randomization test),
suggesting that samples with a similar taxonomic com-
position were more likely to show similar patterns of
ARG composition than samples exhibiting different
taxonomic composition.

Antibiotic resistance gene-sharing relationships between
gut bacterial genera
We constructed two different types of ARG-sharing net-
work: (i) global networks including all ARGs identified,
and (ii) ARG-specific networks for which only one
specific ARG was accounted for. A total of 46 and 28
bacterial genera were connected through the sharing of
22 and 11 ARGs in the canine and feline global

networks, respectively (Fig. 5) (see Table 1 for bacterial
genera and Table 2 for shared ARGs). Twenty-three
genera and seven ARGs appeared in both networks.
Tetracycline resistance genes were most commonly
shared in both networks, followed by macrolide and
aminoglycoside resistance genes, with tet(W) being de-
tected in at least two genera in 93.8% (n = 60/64) of dogs
and 75.0% (n = 9/12) of cats (Table 2). While a substan-
tial majority of the genera were connected to a relatively
small number of other genera, some were connected to
a remarkably large number of other genera (Fig. 6). In
particular, Streptococcus and Clostridium shared ARGs
with the largest number of other genera in the canine
and feline networks, respectively (Fig. 6). Although
centrality measures (i.e., degree, eigenvector, and
betweenness) tended to be positively correlated with
one another, none of them was correlated with the
number of ARG types shared by each genus (Add-
itional file 2: Table S2). For example, Bifidobacterium
shared only one ARG type in the feline network and
two in the canine network, but with a large number
of other genera (Fig. 6).
In both canine and feline global networks, bacterial

genera were more likely to share ARGs with other gen-
era from the same phylum than genera belonging to dif-
ferent phyla, although this pattern was not statistically
significant in the feline network. The odds of sharing ≥1
ARG with genera from the same phylum were 4.0 times

(See figure on previous page.)
Fig. 1 Boxplots showing the square root transformed ARG abundance in the canine and feline gut microbiota. Reads per kilobase of transcript
per million mapped reads (RPKM) was used as the measure of ARG abundance. Boxplots show the abundance of a given ARG before and after
intervention with HPLC (a) and LPHC (b) diets in the canine data, respectively, and between different MPMC and HPLC diet groups in the feline
data (c). Non-parametric statistical methods were used. For the canine data, the Wilcoxon signed-rank test was used since samples collected from
the same animals comprised different diet groups. For the feline data, the Wilcoxon rank-sum test was used (*: p < 0.05, **: p < 0.01, ***: p < 0.001)

Fig. 2 The Shannon diversity index before and after intervention with HPLC (a) and LPHC (b) diets in the canine data, and between different
MPMC and HPLC diet groups in the feline data (c). Non-parametric statistical methods were used. For the canine data, the Wilcoxon signed-rank
test was used since samples collected from the same animals comprised different diet groups. For the feline data, the Wilcoxon rank-sum test
was used
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as high in the canine network (p < 0.001, Quadratic
Approximation Procedure (QAP) permutation test), and
2.3 times as high in the feline network (p = 0.164, QAP
permutation test), than the odds of sharing ≥1 ARG with
genera belonging to different phyla (Additional file 3:
Table S3). The fast greedy modularity optimisation algo-
rithm partitioned the canine and feline global networks
into six and five network communities, respectively,
which maximized the extent to which ARG sharing oc-
curs within communities (Fig. 5 and Table 1) [16]. The
network partitions were associated with phylum mem-
bership; genera from the same phylum were more likely
to be classified into the same network community than
those from different phyla in both canine (odds ratio =
4.6, p < 0.001, QAP permutation test) and feline (odds
ratio = 3.9, p < 0.001, QAP permutation test) networks
(Additional file 3: Table S3). The canine and feline glo-
bal networks were also partitioned based on structural
equivalence between genera. For example, two genera

were considered structurally equivalent if they were con-
nected to the same set of other genera through ARG
sharing [17]. In both global networks, genera were
classified as one of two structurally equivalent groups,
central and peripheral genera, with central genera having
higher centrality measures than peripheral genera (Figs. 5
and 6, and Table 1). Streptococcus, Clostridium, and
Eubacterium were classified as central genera in both
networks. Furthermore, while over 75% of all possible
connections between central genera were present, per-
ipheral genera were weakly connected to other periph-
eral and central genera (Additional file 4: Table S4).
The ARG-specific networks are presented in Figs. S1–2

and Tables S5–6 (Additional file 5). The canine and feline
tet(W) networks were the largest, consisting of 21 and 12
bacterial genera belonging to four and two different phyla,
respectively (Table 2). While Bifidobacterium had the
highest centrality measures in the canine tet(W) network,
Clostridium and Veillonella had the highest centrality

Fig. 3 ARG composition before and after intervention with HPLC (a, stress = 0.15) and LPHC (b, stress = 0.16) diets in the canine data, and
between different HPLC and MPMC diet groups in the feline data (c, stress = 0.10). In both data, there were statistically significant associations
between diet type and ARG composition (all p < 0.001, permutational multivariate analysis of variance test)

Fig. 4 Procrustes analysis of the association between ARG and taxonomic composition. Samples from the same animals are connected by a line,
with hollow and filled points representing samples positioned by bacterial and ARG composition, respectively. In the canine data, red and blue
circles represent samples with HPLC (a) and LPHC (b) diets, respectively, whereas grey triangles represent the baseline diet (a and b). In the feline
data (c), red circles represent samples with HPLC diet, and grey triangles represent samples with MPMC diet. Taxonomic composition was
assessed at the genus level. In both canine (a and b) and feline (c) data, there were statistically significant associations between ARG and
taxonomic composition (all p < 0.001, procrustean randomization test), suggesting that gut bacteria and ARGs have similar clustering patterns
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measures in the feline tet(W) network, followed by Bifido-
bacterium. Macrolide resistance genes (e.g., mefA and
mel) and other tetracycline resistance genes, such as
tet(O), tet(Q), and tet(44), formed relatively large canine
and feline ARG-specific networks (Additional file 5: Figure
S1–2). However, most of these ARGs were shared pre-
dominantly within a particular phylum. For example, in
both canine and feline ARG-specific networks, tet(O),
tet(44), mefA, and mel were shared mostly or exclusively
among Firmicutes genera, and tet(Q) among Bacteroidetes
genera (Additional file 5: Tables S7–8).

Discussion
It is essential to identify factors shaping the gut resis-
tome and understand the dynamics of ARG transfer be-
tween gut bacteria to fully appreciate the antibiotic
resistance potential of the gut microbiota. Our study
shows that dietary nutritional content has implications
for the gut microbiota as the reservoir of ARGs. The
most intriguing finding is that the HPLC diet increased
ARG diversity and altered ARG composition. These
changes were likely to be driven by the changes in the
gut microbiota, as suggested by the association between
ARG and taxonomic composition in our study. The gut
resistome depends on the gut microbiota because ARGs

Fig. 5 The global ARG-sharing network of the canine (a) and feline (b) gut microbiota. Nodes represent genera, with their shapes and colors
representing phylum and network community memberships, respectively. Nodes with the same shape represent genera from the same phylum.
Nodes with the same color represent genera classified into the same network community, based on the network structure; bacterial genera in
the same network community shared ARGs more frequently among themselves than with genera belonging to other network communities. Two
genera were connected by an edge if their contigs shared ≥1 ARG in ≥1 sample. Genera were classified as central (red border and label) and
peripheral (black border and label) genera based on their structural equivalence. Node labels are IDs of genera (Table 1)

Table 1 List of bacterial genera in the canine and feline global
networks

ID Genus ID Genus ID Genus

1 Acidaminococcus 18 Corynebacterium 35 Parasutterella

2 Acinetobacter 19 Dorea 36 Porphyromonas

3 Actinomyces 20 Enterobacter 37 Prevotella

4 Alistipes 21 Enterococcus 38 Pseudoflavonifractor

5 Anaerostipes 22 Escherichia 39 Roseburia

6 Bacteroides 23 Eubacterium 40 Ruminococcus

7 Bifidobacterium 24 Faecalibacterium 41 Salmonella

8 Blautia 25 Fusobacterium 42 Staphylococcus

9 Brachyspira 26 Holdemania 43 Streptococcus

10 Butyrivibrio 27 Lactobacillus 44 Subdoligranulum

11 Campylobacter 28 Megamonas 45 Turicibacter

12 Capnocytophaga 29 Methanosarcina 46 Veillonella

13 Catenibacterium 30 Mitsuokella 47 Acetivibrio

14 Clostridium 31 Olsenella 48 Desulfosporosinus

15 Collinsella 32 Oscillibacter 49 Gordonibacter

16 Coprobacillus 33 Parabacteroides 50 Paenibacillus

17 Coprococcus 34 Paraprevotella 51 Phascolarctobacterium

The IDs of genera correspond to node labels in Fig. 5
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are generally integrated into bacterial genomes, except
when they are mobilized for HGT. However, it is unclear
why the HPLC diet particularly increased ARG diversity
in both canine and feline data. Our study showed that
both taxonomic and ARG diversity increased with the
HPLC diet. However, if bacteria that increased in abun-
dance with the HPLC diet tended to harbor fewer ARGs,
depending on the initial status of the gut resistome, this
could have decreased ARG diversity, contrary to our
observations in the present study. Additionally, after
dietary intervention, the increase in ARG diversity was
higher with the HPLC than LPHC diet, despite a larger
increase in taxonomic diversity with the LPHC than
HPLC diet. This suggests that the overall increase in
taxonomic diversity alone might not explain the overall
increase in ARG diversity.

One possible explanation may be that genes for
protein metabolism and antibiotic resistance have been
co-selected in certain gut bacteria [18]. In support of
this, we note that animal protein is the primary source
of protein in most commercial pet foods, as in those
used in both the canine and feline studies [2, 3]. Antibi-
otics are used extensively in food animals, leading to
increasing levels of antibiotic-resistant bacteria and anti-
biotic residues in animal products [19–21]. Having been
exposed to animal protein under this circumstance, bac-
teria adapted to protein fermentation could have had
more opportunities to develop antibiotic resistance than
those adapted to the fermentation of other macronutri-
ents. Therefore, once genes for protein metabolism and
antibiotic resistance are co-selected [18], a protein-rich
diet could increase the abundance of bacteria promoting

Table 2 The frequency of ARG sharing among contigs

ARG type Canine data (n = 64) Feline data (n = 12)

No. animals a No. genera b No. phyla c No. sharing d No. animals a No. genera b No. phyla c No. sharing d

tet(W) 60 21 4 213 9 12 2 19

mefA 39 8 2 75 2 3 1 4

tet(O) 37 4 2 46 5 5 2 18

tet(Q) 29 7 2 73 7 4 1 12

mel 24 9 3 51 4 4 1 5

lnuC 13 8 4 20 3 4 2 5

OXA-85 11 4 4 16 – – –

APH(3″)-Ib 9 3 1 15 – – –

tet(M) 6 2 1 7 – – –

APH(6)-Id 5 4 1 5 – – –

tet(44) 4 3 1 9 4 4 1 5

CfxA3 4 3 1 4 – – –

CfxA6 3 3 1 4 – – –

tet(32) 2 3 1 4 – – –

mdtM 2 2 1 2 – – –

lnuA 2 2 1 3 – – –

bacA 2 2 1 4 – – –

cmeB 1 2 2 1 – – –

AAC(6′)-Ip 1 2 2 1 – – –

aadA2 1 2 1 2 – – –

mdtO 1 2 1 2 – – –

mdtP 1 2 1 1 – – –

ermB – 3 2 1 7

aad(6) – 4 7 2 10

catS – 3 3 1 5

SAT-4 – 1 2 1 1
a The number of animals in which a given ARG was shared by contigs belonging to different bacterial genera at least once
b The number of bacterial genera that shared a given ARG with other bacterial genera
c The number of bacterial phyla that shared a given ARG with other bacterial genera
d The frequency that a given ARG was found in two contigs annotated to different bacterial genera across the animals of a given animal species
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Fig. 6 (See legend on next page.)
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protein fermentation and, consequently, the abundance
of ARGs carried by these bacteria, in the gut.
However, these findings should be interpreted with

care. Even though overall ARG diversity increased with
the HPLC diet, this was not always the case when the in-
dividual ARG abundances were compared between the
diet groups. For example, the abundance of some ARGs
such as the lincosamide resistance gene lnuC and the
beta-lactamase resistance gene CfxA6 decreased with the
HPLC diet. Additionally, in contradiction to our hypoth-
esis, overall ARG diversity also increased with the LPHC
diet in the canine data, although the magnitude of the
increase was lower than with the HPLC diet. These ob-
servations could be explained by the fact that the diets
differed not only in protein content but also in their
content of other macronutrients and the source of ingre-
dients. In particular, the increase in ARG diversity with
the LPHC diet was likely to be caused by differences
other than protein content, because protein content of
the LPHC diet was similar to the baseline diet, whereas
protein content in the HPLC diet was almost twice as
high as that of the baseline diet [2].
Some of the ARGs whose abundance was altered with

dietary intervention also deserve special attention be-
cause they are known to confer resistance to antibiotics
used frequently in primary care small animal veterinary
practices (e.g., CfxA6 for beta-lactam antibiotics) or to
those classified as critically important by the World
Health Organization (e.g., ermB, mefA, and mel for
macrolides) [22, 23]. These findings suggest future re-
search to explore the clinical implications of dietary
intervention in dogs and cats. In particular, it should be
noted that dietary intervention forms the mainstay of
chronic enteropathy management in these animals, and
diets recommended for chronic enteropathies have dif-
ferent nutritional content from standard diets because
they are generally hydrolyzed, highly digestible, and
moderately fat-restricted [24]. Therefore, future research
could investigate whether the dietary management of
chronic enteropathies influences the antibiotic potential
of the gut microbiota and whether such influences are
linked to the development of antibiotic resistance in
clinically-relevant gut microbes. Such research will be of
particular importance because antibiotics are used in the
second-line treatment of chronic enteropathies, follow-
ing dietary management.
Our study also investigated the sharing of ARGs be-

tween bacterial taxa by identifying the linkage structure

between metagenomic assemblies and their functional
genes obtained from canine and feline fecal samples. Al-
though gene sharing does not necessarily provide direct
evidence for HGT, network approaches can provide new
insights into microbial evolution because HGT inevitably
creates networks of microbes over a wide range of evolu-
tionary distances [12, 25]. Several studies have employed
network approaches to understand the gene-sharing re-
lationships between microbial genomes [12–14, 26]. The
gene-sharing networks of these studies were constructed
from the genomes of microbes isolated from different
origins and are therefore useful in providing information
on the cumulative impact of HGT over a long evolution-
ary timescale. However, the findings of these studies
were inherently limited to the selected genomes and
might not adequately explain the dynamics of HGT oc-
curring in a particular ecological niche, especially those
considered hotspots of HGT (e.g., the gut). In this re-
gard, our network approach should make important
contributions to the field of microbial ecology, because
it allows us to study the gene-sharing relationships be-
tween bacterial taxa based on metagenomes originating
from a particular ecological niche. Here, we focused on
ARGs, but our approach could be extended to all genes
to provide broader insights into functional relationships
between co-existing microorganisms.
Our networks show the extensive sharing of ARGs be-

tween a wide variety of genera in the canine and feline
gut microbiota. The findings that genera from the same
phylum tended to share ARGs and be classified into the
same network community suggest that differences in the
genetic composition of bacteria may limit the transfer
and survival of ARGs in the new host genome. In par-
ticular, most ARGs tended to be shared exclusively by
specific phyla. For example, tet(Q) was predominantly
shared between Bacteroidetes genera in our study. tet(Q)
has been associated with plasmids and conjugative trans-
posons generally found in Bacteroides and close rela-
tives, such as Prevotella and Porphyromonas (27–30). If
these transmissible elements have been adapted to Bac-
teroidetes bacteria, they might have limited capacity to
transfer genes to non-Bacteroidetes bacteria.
However, it should also be noted that certain ARGs,

such as tet(W) and lnuC, were shared extensively be-
tween different phyla, suggesting that transmissible ele-
ments involved in the transfer of these ARGs may have
broad host ranges. In particular, tet(W) networks com-
prised the largest ARG-specific networks, consistent

(See figure on previous page.)
Fig. 6 Centrality and the number of shared ARG types in the global ARG-sharing network of the canine (a) and feline (b) gut microbiota. The
number of shared ARG types represents the number of ARG types a given genus shared with other genera. Genera are classified as central (red
label) and peripheral (black label) genera based their structural equivalence. The histogram represents the degree distribution of each
ARG-sharing network
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with the fact that tet(W) is one of the most prevalent
tetracycline resistance genes in mammalian gut bacteria
[27]. Bifidobacterium had the highest centrality in both
canine and feline tet(W) networks, suggesting that this
genus has the potential to modulate the HGT dynamics
of tet(W). Its high centrality could be explained by the
flanking of tet(W) by transposase genes in Bifidobacter-
ium [28]. Transposase is an enzyme that catalyzes the
movement of DNA fragments within and between
bacterial genomes [28]. Thus, its presence could have
facilitated the horizontal transfer of tet(W) from
Bifidobacterium to other bacteria in the canine and fe-
line gut microbiota. Considering the widespread use of
Bifidobacterium in the fermentation of dairy products
and as probiotics [29, 30], our finding suggests that the
presence and horizontal transfer of tet(W) should be
closely monitored when Bifidobacterium is used in food
products.
Our study has some limitations. First, although

MyTaxa, a homology-based taxonomy classifier used to
annotate contigs to bacterial genera and phyla, has rela-
tively high accuracy at the phylum and genus levels and
is considered to be superior to other annotation tools
[31], it is still possible that some contigs were incorrectly
annotated, leading to classification bias in the study re-
sults. If such misclassifications occurred and were biased
towards specific bacterial taxa, it could result in overesti-
mation of the influence of these bacteria in the net-
works. Second, our network approach is dependent on
the assembly of short reads. Thus, low-abundance bac-
teria and ARGs might not have been included in the net-
works if their sequencing depths were insufficient to be
assembled into contigs [32]. Additionally, the canine and
feline networks were constructed with different numbers
of samples. Therefore, different numbers of genera in
the canine and feline networks might have been caused
partly by different sequencing depths and sample sizes,
in addition to inter-species differences in the gut micro-
biota. Third, we used 100% pairwise BLASTN sequence
identity as the threshold for the most recent HGT
events. However, edges in the networks might not neces-
sarily represent HGT events that occurred at the same
molecular timescale because different ARGs could have
different mutation rates. Thus, accounting for ARG-
specific mutation rates (should such information become
available) would allow more reliable construction of
ARG-sharing networks.

Conclusions
Our study shows that dietary nutritional content alters the
antibiotic resistance potential of the gut microbiota, sup-
porting the hypothesis that there are intrinsic links be-
tween protein metabolism and antibiotic resistance.
Future research should investigate whether such alteration

in the gut resistome is indeed linked to the development
of antibiotic resistance in clinically-relevant gut microbes.
Our network approach shows the extensive sharing of
ARGs across a wide range of canine and feline gut bac-
teria, suggesting that the gut microbiota serves as an im-
portant ARG reservoir and HGT hotspot. The modular
network structure reflects the barriers to ARG spreading
between bacterial genera, with phylum membership play-
ing a significant role.

Methods
Study population and metagenomic data
We analyzed publicly available shotgun metagenomic se-
quence data generated by two previous studies [2, 3].
These studies assessed the impact of dietary nutritional
content on the canine and feline gut microbiota, with a
particular focus on the overall taxonomic and functional
profiles of gut microbes. Briefly, 128 fecal samples were
collected from 64 dogs, and 36 fecal samples from 12
cats, and their sequence data were used in our study as
canine and feline data, respectively. In the canine study,
64 dogs received a baseline diet for the first 4 weeks.
They were then equally split into two groups, each re-
ceiving for the next 4 weeks one of two intervention di-
ets that mainly differed in protein and carbohydrate
content: HPLC or LPHC. On a dry matter basis, protein
content was highest in the HPLC diet (53.9%). The base-
line and LPHC diet had relatively similar protein content
at 29.9 and 27.3%, respectively [2]. Fecal samples were
collected once before and once after dietary intervention.
In the feline study, 12 kittens were split into two diet
groups of equal size: HPLC or MPMC. On a dry matter
basis, protein content was 52.9% in the HPLC diet and
34.3% in the MPMC diet [3]. They were housed with
their mothers until 8 weeks of age and fed the same di-
ets as their mothers after weaning. Three fecal samples
were collected from each kitten at approximately 8, 12,
and 16 weeks of age. The information on study design
and dietary nutritional content is provided in detail in
the previous studies [2, 3].

Taxonomic and antibiotic resistance gene annotation
After removing paired-end reads with low-quality bases
(quality scores < 20), reads < 30 bases, and PCR
duplicates from the data using the pipeline we described
before [33, 34], we performed taxonomic and ARG
annotation separately for each sample. For taxonomic
annotation, we randomly extracted 1 million reads and
aligned them against 16S ribosomal RNA (rRNA) se-
quences in the SILVA rRNA database (SSURef_132_
NR99) [35] using BLASTn with an E-value threshold of
10− 5 [36]. We classified the aligned 16S paired-end short
reads into bacterial genera using the Ribosomal Database
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Project (RDP) Classifier [37] and computed the per cent
abundance of each genus.
For ARG annotation, we performed de novo assembly

of paired-end short reads from each animal into contigs
using IDBA-UD [38, 39]. After assembly, we predicted
functional genes on contigs using MetaGeneMark [40],
mapped short reads to the genes [41], and computed
reads per kilobase of transcript per million mapped
reads (RPKM) for each gene. We used RPKM as the
measure of gene abundance normalized for sequencing
depth, gene length, and per-base coverage [42]. Finally,
we aligned the predicted genes to the nucleotide se-
quences in the Comprehensive Antibiotic Resistance
Database (CARD) [43] using BLASTn [36]. We deter-
mined the genes as ARGs if they were aligned with an
E-value threshold of 10− 5 and with more than 90% iden-
tity and 50% coverage. We obtained the normalized
abundance of ARGs by summing the RPKM values of
the genes aligned with the same ARG.

Statistical analysis for the dietary effect on the gut
resistome
We analyzed the canine and feline studies separately be-
cause their study designs were different. First, we identi-
fied the core ARGs, defined as the ARGs present in
≥50% of the samples. Second, we assessed the diversity
of ARGs by computing the Shannon diversity index,
which accounts for both richness (i.e., the number of dif-
ferent ARGs) and evenness (i.e., the relative abundance
of different ARGs) [44]. We hypothesized that an in-
crease in protein and a reduction in carbohydrate in the
diet increase gut ARG diversity. To test this hypothesis,
we used non-parametric statistical tests because normal-
ity could not be assumed in some data. For the canine
data, we used the Wilcoxon signed-rank test to compare
the diet groups based on samples collected before and
after dietary intervention and the Wilcoxon rank-sum
test when the comparison was made based only on sam-
ples collected after dietary intervention. For the feline
data, we used the Wilcoxon rank-sum test. We also
computed the Shannon diversity index of bacterial gen-
era and compared between the diet groups with the
same statistical tests to assess whether bacterial diversity
had the same trend as ARG diversity.
We then assessed whether ARG composition was asso-

ciated with dietary nutritional content in the following
way. We computed Bray-Curtis dissimilarity values for
all possible pairs of samples based on the normalized
ARG abundance data. Bray-Curtis dissimilarity values
range from 0 to 1, with higher values indicating more
dissimilar ARG composition between two given samples.
Based on these values, we ordinated samples in reduced
space using NMDS [45] and performed PERMANOVA
tests using the adonis function of the vegan package [46]

in R [47] to assess whether the gut microbiota exposed
to different dietary nutritional content have different
ARG composition [48].
Finally, we performed a Procrustes analysis to test the

hypothesis that ARG composition is associated with
taxonomic composition in the gut microbiota. Briefly,
two NMDS ordinations by ARG and taxonomic
composition were uniformly scaled and rotated until the
squared differences between them were minimized [49].
We then performed procrustean randomization tests
using the protest function of the vegan package (30)
in R [47] to assess the correlation between the two
NMDS ordinations. For PERMANOVA and procrus-
tean randomization tests, to account for the sampling
design, samples were permuted within those collected
from the same animals for the canine data and within
those collected in the same weeks for feline data.

Network analysis
We constructed networks that described ARG-sharing
patterns between gut bacterial genera based on taxo-
nomic and ARG annotation of shotgun metagenomic
sequence data (Fig. 7). For taxonomic annotation, we an-
notated contigs to bacterial genera and phyla using a
homology-based taxonomy classifier, MyTaxa [31]. Al-
though MyTaxa has relatively high accuracy at the
phylum and genus levels and is considered superior to
other annotation tools (30), it was still possible that
some contigs were misclassified. Therefore, as a screen-
ing step, we considered bacterial genera to be false posi-
tives and removed them from the networks if they were
determined non-existent in the samples according to
16S rRNA-based taxonomic annotation of short reads.
For ARG annotation, we annotated predicted genes to
the nucleotide sequences in the CARD [43] using
BLASTn. If contigs Ci and Cj annotated to bacterial gen-
era Bi and Bj, respectively, contained predicted genes an-
notated to a specific ARG, Bi and Bj were assumed to
share that ARG in their genomes. The predicted genes
were assumed to represent the same ARG if their
BLASTn sequence identity was 100%, to assess ARG-
sharing relationships within the most recent molecular
timescale. Networks were constructed for each animal
species. They were unweighted and undirected, with
nodes representing bacterial genera found to share
ARGs in the sampled canine or feline gut microbiota.
Two bacterial genera were linked by an edge if at least
one ARG was found on contigs belonging to these two
genera and originating from the same animal. For each
animal species, we constructed two different types of
network: (i) global networks including all ARGs identi-
fied in the gut microbiota, and (ii) ARG-specific net-
works for which only one specific ARG was accounted
for. For example, while an edge represented the sharing
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of ≥1 ARG of any kind in the global networks, in a net-
work specific to the tetracycline resistance gene tet(W),
an edge represented the sharing of ≥1 tet(W) genes be-
tween two bacterial genera. The global networks showed
the overall distribution of ARGs across microbial taxa,
whereas ARG-specific networks revealed patterns spe-
cific to individual ARGs.
For both network types, we assessed the centrality of

each genus by computing the degree, eigenvector, and
betweenness using the igraph package [50] in R [47] to
identify the most influential genera in the ARG-sharing
networks. Degree was the number of other genera with
which a given genus shared at least one ARG. Eigenvector
accounted for the centrality of the genus and other genera
with which it shared at least one ARG [16]. Betweenness
quantified the extent to which the genus was laid on paths
between other genera [16]. We also examined the degree
distribution and correlation between centrality measures
using the Kendall rank correlation test in R [47].
The structure of each global network was then charac-

terized. First, we performed a QAP logistic regression to
assess whether genera from the same phylum were more
likely to share ARGs than with those from different phyla
[51, 52]. We used phylum membership as an explanatory
variable and ARG sharing as a response variable, and per-
formed the QAP logistic regression using the sna package
[53] in R [47]. Second, we identified network communities
of genera that shared ARGs more frequently among them-
selves than with other genera. The fast greedy modularity
optimisation algorithm was used to identify the network
partition which maximized the modularity (i.e., the extent
to which ARG sharing occurs within communities rather
than between communities) [16]. We also performed the
QAP logistic regression to assess whether genera from the

same phylum tended to belong to the same network com-
munity, using phylum membership as an explanatory vari-
able and network community membership as a response
variable. Finally, we identified groups of genera with simi-
lar ARG-sharing patterns by partitioning each network
into groups based on structural equivalence. Two genera
were considered structurally equivalent if they shared
ARGs with the same set of other genera [17]. Ward’s hier-
archical clustering method was used to partition each net-
work into groups based on the Euclidian distance between
any two genera as the measure of structural equivalence
[17, 54, 55]. That is, genera classified as the same group
were considered to have similar ARG-sharing patterns.
All p-values in this study were adjusted by the false

discovery rate [56].
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