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New York Journal of Mathematics
New York J. Math. 19 (2013) 657–668.

Isomorphisms of lattices of Bures-closed
bimodules over Cartan MASAs

Adam H. Fuller and David R. Pitts

Abstract. For i = 1, 2, let (Mi,Di) be pairs consisting of a Cartan
MASA Di in a von Neumann algebra Mi, let atom(Di) be the set of
atoms of Di, and let Si be the lattice of Bures-closed Di bimodules in
Mi. We show that when Mi have separable preduals, there is a lattice
isomorphism between S1 and S2 if and only if the sets

{(Q1, Q2) ∈ atom(Di)× atom(Di) : Q1MiQ2 6= (0)}
have the same cardinality. In particular, when Di is nonatomic, Si

is isomorphic to the lattice of projections in L∞([0, 1],m) where m is
Lebesgue measure, regardless of the isomorphism classes of M1 and M2.
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1. Introduction

Let M be a von Neumann algebra containing a Cartan MASA D; we
call (M,D) a Cartan pair. Feldman and Moore [6, 7] gave a construction of
Cartan pairs with separable preduals based on Borel measurable equivalence
relations and showed that all (separably acting) Cartan pairs arise from
their construction. Building on the work of Feldman and Moore [6, 7], and
Arveson [2], Muhly, Solel and Saito [11] introduced the Spectral Theorem
for Bimodules. They claimed that if S is a σ-weakly closed D-bimodule of
M, then there is a Borel subset B of the Feldman-Moore relation R such
that S consists of all those operators in M whose “matrices” are supported
in B. That is, the σ-weakly closed D-bimodule S is determined precisely by
its support B.
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Unfortunately, there is a gap in the proof of the Spectral Theorem for Bi-
modules; consult the “added in proof” portion of Aoi’s paper [1] for details.
While we are not aware of any complete proof of the Spectral Theorem for
Bimodules, Fulman [8] has established it when M is hyperfinite and M∗ is
separable.

In a recent paper, Cameron, the second author and Zarikian [4], intro-
duced a new perspective to the study of D-bimodules in a Cartan pair
(M,D). The approach in [4] is operator theoretic and avoids the measure
theoretic tools of Feldman and Moore. In [4], a version of the Spectral The-
orem for Bimodules is proved, not for σ-weakly closed bimodules but for
Bures-closed D-bimodules. In fact, it is shown that the Spectral Theorem
for Bimodules as introduced in [11] is true if and only if every σ-weakly
closed D-bimodule is itself Bures-closed.

In this paper, we continue the study of the Bures-closed D-bimodules in a
Cartan pair (M,D). Our main result, Theorem 4.3, shows that the lattice of
Bures-closed bimodules for a separably acting Cartan pair (M,D) depends
upon: i) whether D contains a diffuse part, and ii) the cardinality of the
restriction of the Murray–von Neumann equivalence relation for projections
of M to the atoms of D. In this sense, the lattice of Bures-closed bimodules
depends surprisingly little on the Cartan pair (M,D), when M is separably
acting. In particular, if (M1,D1) and (M2,D2) are any two Cartan pairs in
which D1 and D2 are separably acting diffuse algebras, then they share the
same lattice structure of Bures-closed D-bimodules.

Along the way, in Section 3, we give a fuller description of the supports of
partial isometry normalizers of D. In particular, we describe a pre-order on
GN(M,D), the set consisting of all partial isometry normalizers of D, which
is induced by their supports.

2. Background and preliminaries

Let M be a von Neumann algebra. A MASA (maximal abelian self-adjoint
subalgebra) D in M is Cartan if:

(a) There is a faithful, normal conditional expectation E : M→ D.
(b) span{U ∈ M : U is unitary and UDU∗ = D} is σ-weakly dense in

M.

If D is Cartan in M we call (M,D) a Cartan pair. The set of normalizers
for D is the set

N(M,D) = {v ∈M : v∗Dv ∪ vDv∗ ⊆ D}.

The groupoid normalizers, denoted GN(M,D), are the elements of N(M,D)
which are partial isometries. Clearly, N(M,D) and GN(M,D) are σ-weakly
dense in M when (M,D) is a Cartan pair.

Notation 2.1. For any abelian von Neumann algebra W, atom(W) will
denote the set of atoms in W. Let (M,D) be a Cartan pair, and let Ra be the
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restriction of the Murray–von Neumann equivalence relation on projections
of M to atom(D). For A1, A2 ∈ atom(D) write A1 ∼ A2 when (A1, A2) ∈ Ra.

Notice that if v ∈ M is a partial isometry such that v∗v, vv∗ ∈ atom(D),
then v ∈ GN(M,D). Indeed, for d ∈ D, dv∗v ∈ Cv∗v, so vdv∗ = vdv∗vv∗ ∈
Cvv∗ ⊆ D. Likewise, v∗dv ∈ D.

Proposition 2.2. Let (M,D) be a Cartan pair, and set

X :=
∑

Q∈atom(D)

Q.

Then X is a central projection of M.

Proof. Let U ∈ GN(M,D) be a unitary normalizer. For each Q ∈ atom(D),
UQU∗ ∈ atom(D), and the map Q 7→ UQU∗ is a permutation of atom(D).
Hence UXU∗ = X, and hence X commutes with U . As M is generated by
its unitary normalizers, X is in the center of M. �

It follows that any Cartan pair decomposes as a direct sum of two Cartan
pairs, (M,D) = (Md,Dd)⊕ (Ma,Da), where (Md,Dd) = (MX⊥,DX⊥) and
(Ma,Da) = (MX,DX). Clearly, atom(Dc) = ∅ and Da is generated by its
atoms. We shall call (Md,Dd) and (Ma,Da) the diffuse and atomic parts
of (M,D) respectively.1

Henceforth, let (M,D) be a Cartan pair with conditional expectation
E. Fix a faithful normal semi-finite weight φ on M such that φ ◦ E = φ.
We shall freely use notation from [13] (see pages 41–42 for discussion of
nφ := {x ∈ M : φ(x∗x) < ∞}, Definition VII.1.5 for a discussion of the
semi-cyclic representation (πφ,Hφ, ηφ), etc.). The following follows from the
fact that φ ◦ E = φ; details of the proof are left for the reader.

Lemma 2.3. With this notation, nφ and n∗φ are D-bimodules, and for d ∈ D,
x ∈ nφ, and y ∈ n∗φ, we have

max{φ((dx)∗(dx)), φ((xd)∗(xd))} ≤ ‖d‖2 φ(x∗x),

max{φ((dy∗)∗(dy∗)), φ((y∗d)∗(y∗d))} ≤ ‖d‖2 φ(yy∗).

Definition 2.4. Modifying [13, Definition IX.1.13] very slightly, we will say
that a quadruple {π,H, J,P} is a standard form for M if π is a faithful nor-
mal representation of M on Hπ and {π(M),H, J,P} is a standard form for
π(M) as in [13, Definition IX.1.13]. Due to the uniqueness of the standard
form (see [13, Theorem IX.1.14]), we may, and sometimes will, assume with-
out loss of generality that {π(M),H, J,P} = {πφ(M),Hφ, Jφ,Pφ}, where φ
is a faithful, semi-finite, normal weight on M such that φ ◦ E = φ.

1In a previous version of this paper, we used different terminology for the diffuse part
of (M,D). We thank the referee for alerting us that our previous terminology conflicted
with terminology found in [5, Part 1, Chapter 8].
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When (M,D) is a Cartan pair and {π,H, J,P} is a standard form for M,
define representations π` and πr of D on Hπ by

(2.1) π`(d) = π(d) and πr(d) = Jπ(d∗)J,

and set

(2.2) Z = (π`(D) ∪ πr(D))′′.

The purpose of the following is to observe that Z is uniquely determined.
The proof is an immediate consequence of [4, Theorem 1.4.7] and [13, The-
orem IX.1.14].

Proposition 2.5. Let (M,D) be a Cartan pair. For i = 1, 2, suppose
{πi,Hi, Ji,Pi} are standard forms for M, and let πri and Zi be as in (2.1)
and (2.2). Then there exists a unique unitary operator U ∈ B(H1,H2) such
that:

(a) π2(x) = Uπ1(x)U∗, for all x ∈M.
(b) J2 = UJ1U

∗.
(c) P2 = UP1.
(d) πr2(d) = Uπr1(d)U∗, d ∈ D.
(e) Zi is a MASA in B(Hi).
(f) Z1 3 z 7→ UzU∗ is an isomorphism of Z1 onto Z2.

2.6. Bimodules. The Bures topology, see [3], on M is the locally convex
topology generated by the family of seminorms

{T 7→
√
τ(E(T ∗T )) : τ ∈ (D∗)

+}.

In this note we are primarily interested in the Bures-closed D-bimodules
in M. When the Cartan MASA is understood, we will sometimes simply
say “bimodule” in place of “D-bimodule.” Any Bures-closed D-bimodule is
necessarily σ-weakly closed.

It is shown in [4, Theorem 2.5.1] that if S ⊆M is a nonzero Bures-closed
D-bimodule, then S ∩ GN(M,D) generates S as a Bures-closed bimodule.
We will make frequent use of this fact.

Given a σ-weakly closed D-bimodule S in M, the support of S, denoted
by supp(S), is the orthogonal projection onto the Z-invariant subspace,

πφ(S)ηφ(nφ ∩D); as Z is a MASA in B(H), supp(S) is a projection in Z. For
an operator T ∈ M, define supp(T ) to be the support of the Bures-closed
bimodule generated by T . The definition of the support of a bimodule given
here is as introduced in [4]. The original concept was introduced in [11].

For a partial isometry w ∈ GN(M,D) we denote supp(w) by Pw. Picking
and choosing results from [4] we have the following alternative descriptions
of Pw.

Lemma 2.7 ([4, Lemma 1.4.6 and Lemma 2.1.3]). Given any operator w ∈
GN(M,D) the following hold.
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(a) Let Λ be an invariant mean on the (discrete) group of unitaries in
D, U(D) (which we may assume to satisfy

Λ
U∈U(D)

f(U) = Λ
U∈U(D)

f(U∗)

for every f ∈ `∞(U(D)). Then

Pw = Λ
U∈U(D)

π`(wUw
∗)πr(U

∗).

(b) Pw is the orthogonal projection onto {ηφ(wd) : d ∈ nφ ∩D}, and for
x ∈ nφ,

Pwηφ(x) = ηφ(wE(w∗x)).

We may view S 7→ supp(S) as a map from the set of D-bimodules of M
into the projection lattice of Z. Conversely, given a projection Q in Z, define
a D-bimodule, bimod(Q), by

bimod(Q) = {T ∈M : supp(T ) ≤ Q}.

It follows from [4, Lemma 2.1.4(c)] that bimod(Q) is Bures-closed. The
operations bimod and supp satisfy the following “reflexivity-type” condition.

Theorem 2.8 ([4, Theorem 2.5.1]). A D-bimodule S ⊆ M is Bures-closed
if and only if

S = bimod(supp(S)).

3. Projections and relations

Throughout this section, let (M,D) be a Cartan pair with conditional
expectation E. Let {π,H, J,P} be a standard form of M, and construct the
maximal abelian algebra Z in B(H) as discussed in Section 2. We do not
impose any condition of separable predual in this section.

Our aim in this section is to better describe how the projections in D

relate to each other, in terms of the normalizers in N(M,D). This in turn
will provide us with a better description of some of the projections in Z.
In Proposition 3.3, we will describe exactly when π`(Q1)πr(Q2) = 0 for
projections Q1, Q2 ∈ D. This will be determined by the existence of certain
normalizers in N(M,D). In the case of atomic projections in Z we will
be able to go further. In Proposition 3.7 we will show that the atomic
projections of Z are completely determined by the atomic projections in D.
This is a key tool in proving our main result.

Lemma 3.1. Let Q1, Q2 be projections in D. If w ∈ GN(M,D) then ww∗ ≤
Q1 and w∗w ≤ Q2 if and only if w ∈ bimod(π`(Q1)πr(Q2)).

Proof. Suppose ww∗ ≤ Q1 and w∗w ≤ Q2. By [4, Lemma 2.1.4] it suffices
to show that πφ(w)ηφ(nφ∩D) ⊆ range(π`(Q1)πr(Q2)). Take any d ∈ nφ∩D.
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Then

π`(Q1)πr(Q2)πφ(w)ηφ(d) = ηφ(Q1wdQ2)

= ηφ(Q1wQ2d)

= ηφ(wd)

= πφ(w)ηφ(d).

Hence we have πφ(w)ηφ(nφ ∩ D) ⊆ range(π`(Q1)πr(Q2)) and thus w ∈
bimod(π`(Q1)πr(Q2)).

Conversely, suppose w ∈ GN(M,D) ∩ bimod(π`(Q1)πr(Q2)). Let

v = w −Q1wQ2.

We will be done once we show that v = 0. Note that, again by [4, Lem-
ma 2.1.4], πφ(w)ηφ(d) ∈ range(π`(Q1)πr(Q2)). Thus for d ∈ nφ ∩ D we
have

πφ(v)ηφ(d) = πφ(w)ηφ(d)− πφ(Q1wQ2)ηφ(d)

= πφ(w)ηφ(d)− ηφ(Q1wdQ2)

= πφ(w)ηφ(d)− π`(Q1)πr(Q2)πφ(w)ηφ(d)

= 0

Hence ηφ(vd) = 0 for all d ∈ nφ ∩D. By the faithfulness of φ it follows that
vd = 0 for all d ∈ nφ ∩D. Since nφ ∩D is weak-∗ dense in D, it follows that
vd = 0 for every d ∈ D. Hence v = 0. �

We will give a more complete description of the relationship between the
projections {Pv : v ∈ GN(M,D) and the partial isometries in GN(M,D) in
Lemma 3.6. For the time being, Lemma 3.1 gives the following statement.

Corollary 3.2. If u, v ∈ GN(M,D) and Pu = Pv, then vv∗ = uu∗ and
v∗v = u∗u.

Proof. This follows immediately from Lemma 3.1: if Pu ≤ Pv, then, since
Pv ≤ π`(vv∗)πr(v∗v), uu∗ ≤ vv∗ and u∗u ≤ v∗v. �

Proposition 3.3. For any two projections Q1 and Q2 in D, the following
are equivalent:

(a) π`(Q1)πr(Q2) 6= 0.
(b) there is a nonzero v ∈ GN(M,D) such that vv∗ ≤ Q1 and v∗v ≤ Q2.
(c) Q1MQ2 6= {0}.
(d) there exists a σ-weakly closed D-bimodule S ⊆M such that

Q1SQ2 6= {0}.

Proof. Since π`(Q1)πr(Q2) 6= 0 implies that bimod(π`(Q1)πr(Q2)) 6= {0},
the equivalence of (a) and (b) follows immediately from Lemma 3.1.

Suppose (b) holds. Given v ∈ GN(M,D) such that vv∗ ≤ Q1 and v∗v ≤
Q2, we have Q1vQ2 = v and so Q1MQ2 6= {0}. This gives (c).
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That (c) implies (d) is obvious. Finally suppose (d) holds. Clearly, Q1SQ2

is a σ-weakly closed D-bimodule. By [4, Proposition 1.3.4], there exists
0 6= v ∈ GN(M,D) ∩ Q1SQ2. Then v = Q1vQ2, vv

∗ ≤ Q1 and v∗v ≤ Q2.
Hence (b) holds, and we are done. �

The support projections {Pw ∈ Z : w ∈ GN(M,D)} have a natural partial
ordering on them, induced from the partial ordering of the projections in Z.
This ordering imposes a pre-order on GN(M,D), which we now describe.

Definition 3.4. For u, v ∈ GN(M,D) we write u ≤D v if there is a d in D

such that u = vd.

It is not hard to see that ≤D is a pre-order on GN(M,D). For any scalar
λ with |λ| = 1 and v ∈ GN(M,D) we have v ≤D λv and λv ≤D v so ≤D

is indeed a pre-order and not a partial order. Recall that partial isometries
come already equipped with a partial ordering ≤ (see, for example, [9]). In
this order u ≤ v if and only if there is a projection P such that u = vP . In
fact, P can be chosen to be u∗u. It follows that if u, v ∈ GN(M,D) and u ≤ v
then u ≤D v. Hence the ordering ≤D is coarser than the usual ordering ≤
on partial isometries.

Lemma 3.5. Let u, v ∈ GN(M,D). If u ≤D v, then v∗u ∈ D and u =
v(v∗u).

Proof. As u ≤D v there is a d ∈ D such that u = vd. Then v∗u = v∗vd is
in D. Let

a = vd− vv∗u.
We will show a = 0. We have,

a∗a = (vd− vv∗u)∗(vd− vv∗u)

= d∗v∗vd− d∗v∗u− u∗vd+ u∗vv∗u

= d∗v∗vd− d∗v∗vd− d∗v∗vd+ d∗v∗vv∗vd (since u = vd)

= 0. �

Now we relate the pre-ordering to supports of elements of GN(M,D).

Lemma 3.6. Let u, v ∈ GN(M,D). The following are equivalent:

(a) u ≤D v.
(b) u = vE(v∗u).
(c) Pu ≤ Pv.

Proof. The previous lemma shows that (a) implies (b).
Suppose next that u = vE(v∗u). For any x ∈ nφ we see that

PvPuηφ(x) = Pvηφ(uE(u∗x))

= ηφ(vE(v∗u)E(u∗x))

= ηφ(uE(u∗x)) = Puηφ(x).

Thus Pu ≤ Pv. So (b) implies (c).
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Now assume that Pu ≤ Pv for some u, v ∈ GN(M,D). We aim to show
that u = vE(v∗u). As Pu ≤ Pv a similar calculation to above shows that,
for all x ∈ nφ

ηφ(vE(v∗u)E(u∗x)) = ηφ(uE(u∗x)).

As φ is faithful, it follows that for all x ∈ nφ we have

vE(v∗u)E(u∗x) = uE(u∗x).

As nφ is weak-∗ dense in M and E is normal, the above equation holds for
all x ∈M. In particular it holds when x = u, and hence u = vE(v∗u) ∈ vD.
Therefore u ≤D v. �

We now classify the atomic projections of Z in terms of the atomic pro-
jections in D.

Proposition 3.7. Let (M,D) be a Cartan pair and let {π,H, J,P} be a
standard form for M. The following statements hold.

(a) If A ∈ atom(Z), then there exist unique Q1, Q2 ∈ atom(D) such that
A = π`(Q1)πr(Q2). In addition, Q1 ∼ Q2.

(b) For i = 1, 2, suppose Qi ∈ atom(D) and Q1 ∼ Q2. Then

π`(Q1)πr(Q2) ∈ atom(Z).

(c) The algebras Z and D satisfy,∑
Q∈atom(D)

Q < ID if and only if
∑

A∈atom(Z)

A < IZ.

Proof. (a) Take any nonzero A ∈ atom(Z). As A 6= 0 there is a nonzero
v ∈ GN(M,D) ∩ bimod(A). Hence Pv is a nonzero projection satisfying
Pv ≤ A. As A is atomic it follows that Pv = A. Let Q1 = vv∗ and
Q2 = v∗v. Obviously, Q1 ∼ Q2. We aim to show that Q1 and Q2 are atoms
of D.

Suppose that P ≤ Q1 is a nonzero projection in D. Let u = Pv. Then
uu∗ = P and u∗u ≤ Q2. We also have that u ∈ GN(M,D) and u ≤ v.
Hence u ≤D v. By Lemma 3.6, we have that Pu ≤ Pv. As u is nonzero and
Pv is atomic it follows that Pu = Pv. By Corollary 3.2, P = Q1, and thus
Q1 ∈ atom(D). A similar argument shows Q2 ∈ atom(D).

Recall that a projection B in an abelian von Neumann algebra W belongs
to atom(W) if and only if WB is one-dimensional. Thus, for any h, k ∈ D,
we have

π`(h)πr(k)π`(Q1)πr(Q2) ∈ Cπ`(Q1)πr(Q2).

Since Z = spanweak-∗{π`(h)πr(k) : h, k ∈ D}, it follows that π`(Q1)πr(Q2)Z
is one-dimensional and hence π`(Q1)πr(Q2) ∈ atom(Z). As

A = Pv ≤ π`(Q1)πr(Q2),

it follows that A = π`(Q1)πr(Q2). Uniqueness of Q1 and Q2 follows from
Corollary 3.2.



LATTICES OF BURES BIMODULES 665

(b) Suppose that for i = 1, 2, Qi ∈ atom(D) and Q1 ∼ Q2. Let v ∈ M

be a partial isometry so that vv∗ = Q1 and v∗v = Q2. As observed earlier,
v ∈ GN(M,D). Hence, π`(Q1)πr(Q2) 6= 0 by Proposition 3.3. An argument
similar to that used in part (a) shows π`(Q1)πr(Q2) ∈ atom(Z).

(c) Parts (a) and (b) show that atom(D) and atom(Z) are both empty or
both nonempty. If both are empty, part (c) holds trivially.

Assume then that atom(Z) and atom(D) are both nonempty. Let

X :=
∑

Q∈atom(D)

Q and Y :=
∑

A∈atom(Z)

A.

Suppose X < ID. Then π`(ID −X) 6= 0, and if A ∈ atom(Z),

Aπ`(ID −X) = 0

by part (a). So π`(ID −X) < IZ − Y ; hence Y < IZ.
Conversely, suppose Y < IZ. Then 0 6= bimod(IZ − Y ), so there exists

0 6= v ∈ GN(M,D) ∩ bimod(IZ − Y ). Hence Pv ≤ (IZ − Y ).
Suppose there is a Q ∈ atom(D) such that vQ 6= 0. Let w = vQ ∈

GN(M,D). Clearly w ≤D v, and so by Lemma 3.6 we have Pw ≤ Pv. Note
that w∗w = Q is in atom(D) and hence ww∗ is in atom(D). By part (b)
and Proposition 3.3 we have that π`(ww

∗)πr(w
∗w) is a nonzero projection

in atom(Z). However, as Pw ≤ π`(ww
∗)πr(w

∗w) and π`(ww
∗)πr(w

∗w) is
atomic, it follows that Pw = π`(ww

∗)πr(w
∗w). Hence we have

π`(ww
∗)πr(w

∗w) = Pw ≤ Pv ≤ (IZ − Y ).

This is a contradiction. Hence vQ = 0 for every Q ∈ atom(D). As v is
nonzero it follows that X < ID. �

The following description of Ra is an immediate consequence of Proposi-
tions 3.3 and 3.7.

Corollary 3.8.

Ra = {(Q1, Q2) ∈ atom(D)× atom(D) : Q1MQ2 6= (0)}.

4. Main result

In this section, we prove our main result, Theorem 4.3. This result shows
when the Cartan pair (M,D) has separable predual, the isomorphism class
of the family of Bures-closed bimodules for (M,D) depends mostly upon the
atomic part (Ma,Da) of (M,D).

Notation 4.1. If S is any set, card(S) will denote the cardinality of S.

Lemma 4.2. Let (M,D) be a Cartan inclusion. Then

card(Ra) = card(atom(Z)).
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Proof. Let q : atom(D) → atom(D)/Ra be the quotient map. Define
a map φ : atom(Z) → atom(D)/Ra as follows. For A ∈ atom(Z), let
Q1, Q2 ∈ atom(D) be the unique atoms of D such that A = π`(Q1)πr(Q2),
see Proposition 3.7. Now set φ(A) = q(Q1).

Observe that φ is onto: if x ∈ atom(D)/Ra and Q ∈ q−1(x), then

A := π`(Q)πr(Q) ∈ atom(Z)

(see Proposition 3.7) and φ(A) = x.
Fixing x ∈ atom(D)/Ra, Proposition 3.7 implies that there is a bijection

αx : q−1(x)× q−1(x)→ φ−1(x),

where αx is the map given by

q−1(x)× q−1(x) 3 (Q1, Q2) 7→ π`(Q1)πr(Q2) ∈ φ−1(x).

Since atom(Z) and Ra are the disjoint unions,

atom(Z) =
⋃

x∈atom(D)/Ra

φ−1(x),

Ra =
⋃

x∈atom(D)/Ra

(q−1(x)× q−1(x)),

there exists a bijection
α : Ra → atom(Z)

given by α(Q1, Q2) = αx(Q1, Q2) if (Q1, Q2) ∈ q−1(x)× q−1(x). �

For the following result we restrict our attention to the separably acting
case.

Theorem 4.3. For i = 1, 2, let (Mi,Di) be Cartan pairs where Mi has
separable predual, and let Si be the lattice of all Bures-closed Di-bimodules
contained in Mi. The following statements are equivalent.

(a) There is a lattice isomorphism α of S1 onto S2.
(b) There is a lattice isomorphism α′ from the projection lattice of Z1

onto the projection lattice of Z2.
(c) There is a von Neumann algebra isomorphism Θ of Z1 onto Z2.
(d) The relations Ra,i for (Mi,Di) satisfy card(Ra,1) = card(Ra,2).

Proof. Statements (a) and (b) are equivalent by [4, Theorem 2.5.8]. The
equivalence of (b) and (c) is a piece of folklore about abelian von Neu-
mann algebras. (Here is a sketch of the nontrivial direction. Suppose α′

is an isomorphism of the projection lattices. For every finite Boolean al-
gebra, A ⊆ proj(Z1), α

′|A extends uniquely to a C∗-algebra isomorphism
ΘA of C∗(A) onto C∗(α′(A)). As Z1 is the C∗-inductive limit of the family
{C∗(A) : A a finite Boolean algebra of proj(Z1)} (with inclusion maps), the
inductive limit Θ of the maps ΘA is an isomorphism of Z1 onto Z2. But
every isomorphism between von Neumann algebras is weak-∗ continuous, so
Z1 and Z2 are isomorphic von Neumann algebras.)
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If (c) holds, then atom(Z1) and atom(Z2) have the same cardinality, so
Lemma 4.2 implies (d) holds. Conversely, if (d) holds, then the atomic parts
of Z1 and Z2 are isomorphic. As Zi are MASAs acting on separable Hilbert
spaces, Proposition 3.7(c) implies the nonatomic parts of Z1 and Z2 are
isomorphic. Therefore, Z1 is unitarily equivalent to Z2, and (c) holds. �

Theorem 4.3 is perhaps initially most remarkable when we consider von
Neumann algebras without atoms. For example, let (M1,D1) and (M2,D2)
be Cartan pairs where M1 is of type II1 and M2 is of type IIIλ for some
λ. Theorem 4.3 tells us that, while M1 and M2 are quite different as von
Neumann algebras, the lattice of Bures-closed D1-bimodules of M1 is iso-
morphic to the lattice of Bures-closed D2-bimodules of M2. The following
simple example illustrates the situation regarding the atoms in Theorem 4.3.

Example 4.4. For any n ∈ N, let Dn ⊆Mn(C) be the set of diagonal n×n
matrices. Let (M1,D1) = (M2(C), D2), and let (M2,D2) = (D4, D4). Then
Z1 is isomorphic to D4, so these Cartan pairs have isomorphic lattices of
bimodules.

Remark 4.5. The nonseparable case is complicated by the fact that there
are many isomorphism classes of nonatomic abelian von Neumann algebras.
Indeed, if H is nonseparable and D ⊆ B(H) is a nonatomic MASA with a
unit cyclic vector ξ, then there is a countable set I such that D is isomor-
phic to the direct sum,

⊕
i∈I L

∞(Xi, µi), where Xi = [0, 1]Ai is a Cartesian
product of the unit interval, µi is product measure, and for at least one i,
Ai is a set with card(Ai) > ℵ0 (see [10] and [12]). A general MASA decom-
poses into a direct sum of cyclic MASAs, hence there is a family {Qα}α∈I
of projections in D, for which QαD is isomorphic to L∞([0, 1]Aα). Since Qα
is not minimal, the arguments of Proposition 3.7 do not seem to apply, and
it is not clear how the statement of Theorem 4.3 should be modified in the
nonseparable case.
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