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STRUCTURE FOR REGULAR INCLUSIONS

DAVID R. PITTS

Dedicated to the memory of William B. Arveson

Abstract. We study pairs (C,D) of unital C∗-algebras where D is an abelian C∗-subalgebra of C
which is regular in C in the sense that the span of {v ∈ C : vDv∗ ∪ v∗Dv ⊆ D} is dense in C. When
D is a MASA in C, we prove the existence and uniqueness of a completely positive unital map E

of C into the injective envelope I(D) of D whose restriction to D is the identity on D. We show
that the left kernel of E, L(C,D), is the unique closed two-sided ideal of C maximal with respect
to having trivial intersection with D. When L(C,D) = 0, we show the MASA D norms C in the
sense of Pop-Sinclair-Smith. We apply these results to significantly extend existing results in the
literature on isometric isomorphisms of norm-closed subalgebras which lie between D and C.

The map E can be used as a substitute for a conditional expectation in the construction of
coordinates for C relative to D. We show that coordinate constructions of Kumjian and Renault
which relied upon the existence of a faithful conditional expectation may partially be extended to
settings where no conditional expectation exists.

As an example, we consider the situation in which C is the reduced crossed product of a unital
abelian C∗-algebra D by an arbitrary discrete group Γ acting as automorphisms of D. We charac-
terize when the relative commutant Dc of D in C is abelian in terms of the dynamics of the action
of Γ and show that when Dc is abelian, L(C,Dc) = (0). This setting produces examples where no
conditional expectation of C onto D

c exists.
In general, pure states of D do not extend uniquely to states on C. However, when C is separable,

and D is a regular MASA in C, we show the set of pure states on D with unique state extensions to
C is dense in D. We introduce a new class of well behaved state extensions, the compatible states;
we identify compatible states when D is a MASA in C in terms of groups constructed from local

dynamics near an element ρ ∈ D̂.
A particularly nice class of regular inclusions is the class of C∗-diagonals; each pair in this

class has the extension property, and Kumjian has shown that coordinate systems for C∗-diagonals
are particularly well behaved. We show that the pair (C,D) regularly embeds into a C∗-diagonal
precisely when the intersection of the left kernels of the compatible states is trivial.
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1. Introduction, Background and Preliminaries

In this paper, we investigate the structure of the class of regular inclusions.

Definition 1.1. An inclusion is a pair (C,D) of C∗-algebras with D abelian, and D ⊆ C. When C

has a unit I, we always assume that I ∈ D. For any inclusion, let

N(C,D) := {v ∈ C : v∗Dv ∪ vDv∗ ⊆ D};

elements of N(C,D) are called normalizers. If (Ci,Di) (i = 1, 2) are inclusions, and θ : C1 → C2 is
a ∗-homomorphism, we will say that θ is a regular ∗-homomorphism if

θ(N(C1,D1)) ⊆ N(C2,D2).

When θ is regular and one-to-one, we will say that (C1,D1) regularly embeds into (C2,D2).
The inclusion (C,D) is a

regular inclusion if spanN(C,D) is norm-dense in C;
MASA inclusion if D is a MASA in C;

EP inclusion if D has the extension property relative to C, that is, every pure state σ on D

has a unique extension to a state on C and no pure state of C annihilates D;
Cartan inclusion if (C,D) is a regular MASA inclusion and there exists a faithful conditional

expectation E : C → D;
C∗-diagonal if (C,D) is a Cartan inclusion and also an EP-inclusion.

Examples of regular inclusions are commonplace in the theory of C∗-algebras: any MASA D in
a finite dimensional C∗-algebra C yields a C∗-diagonal (C,D); the categogy of C∗-diagonals and
regular ∗-monomorphisms is closed under inductive limits [10, Theorem 4.23]; when a discrete group
Γ acts topologically freely on a compact Hausdorff space X, the reduced crossed product C(X)⋊rΓ
together with the canonical embedding of C(X) yields a Cartan pair (C(X)⋊r Γ, C(X)) [31]; when
C is the C∗-algebra of a directed graph and D is the C∗-subalgebra generated by the range and
source projections of the partial isometries corresponding to the edges of the graph, the pair (C,D)
is a regular inclusion. Other examples arise from certain constructions in the theory of groupoid
C∗-algebras or from C∗-algebras constructed from combinatoral data.

In this paper, we present a number of structural results for regular inclusions. Our main results
include: Theorem 3.10, which establishes the existence and uniqueness of a psuedo-expectation
for a regular MASA inclusion; Theorem 3.22, which shows that the left kernel L(C,D)) of the
pseudo-expectation is a two-sided ideal in C which is maximal with respect to being diagaonal
disjoint; Theorem 5.9, which characterizes when a regular inclusion can be regularly embedded
into a C∗-diagonal; Theorem 8.14 which shows how constructions of Kumjian and Renault may
be used to produce a twist associated to a regular inclusion; Theorem 9.2, which shows that for a
regular MASA inclusion with L(C,D) = (0), D norms C in the sense of Pop-Sinclair-Smith; and
Theorem 9.4, which gives conditions on which an isometric isomorphism of a subalgebra A of C
containing D can be extended to a ∗ isomorphism of the C∗-algebra generated by A. We turn now
to some background.
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In a landmark paper, J. Feldman and C. Moore [13] considered pairs (M,D) consisting of a
(separably acting) von Neumann algebra M containing a MASA D ≃ L∞(X,µ) such that the set
of normalizing unitaries, {u ∈ M : u is unitary and uDu∗ = D}, has σ-weakly dense span in M

and there exists a faithful normal conditional expectation E : M → D. In this context, Feldman
and Moore showed that there is a Borel equivalence relation R on X and a cocycle c such that
the pair (M,D) can be identified with a von-Neumann algebra arising from certain Borel functions
on R. In a heuristic sense, their construction may be viewed as the left regular representation of
the equivalence relation where the multiplication is twisted by the cocycle c. This result may be
viewed as a means of coordinatizing the von Neumann algebra along D.

Work on a C∗-algebraic version of the Feldman-Moore result was studied by Kumjian in [22]. In
that article, Kumjian introduced the notion of a C∗-diagonals as well as the notion of regularity.
(We should mention that the axioms for a C∗-diagonal given in [22], while equivalent to the axioms
given in Definition 1.1, do not explicitly mention the extension property. In the sequel, we will
have considerable interest in the extension property or its failure, which is why we use the axioms

given in Definition 1.1.) Kumjian showed that if (C,D) is a C∗-diagonal, with C separable and D̂

second countable, then it can be coordinatized via a twisted groupoid over a topological equivalence
relation. This provided a very satisfying parallel to the von Neumann algebraic context.

The requirement of the extension property in the axioms for a C∗-diagonal is at times too
stringent, which is one of the advantages to Cartan inclusions, which need not have the extension
property. For example, let H = ℓ2(N), with the usual orthonormal basis {en}, and let S be the
unilateral shift, Sen = en+1. Let C := C∗(S) be the Toeplitz algebra, and let D = C∗({SnS∗n : n ≥
0}). Routine arguments show this is a Cartan inclusion, but the state ρ∞(T ) = limn→∞ 〈Ten, en〉
on D fails to have a unique extension to a state on C,

Cartan inclusions were introduced by Renault in [31], where he showed that if (C,D) is a Cartan
inclusion (again with the separability and second countability hypotheses), then there is a satis-
factory coordinatization of the pair (C,D) via a twisted groupoid. In this paper, Renault makes
a very convincing case that Cartan inclusions are the appropriate analog of the Feldman-Moore
setting in the C∗-context.

Let (C,D) be an inclusion. A conditional expectation E : C → D gives a preferred class,

{ρ ◦ E : ρ ∈ D̂}, of extensions of pure states on D to states on C, and when the expectation E is
unique, this class may be used for construction of coordinates. Indeed, when (C,D) is a Cartan
inclusion (or C∗-diagonal), elements of the twisted groupoid arise from ordered pairs [v, ρ], where

v ∈ N(C,D) and ρ ∈ D̂ with ρ(v∗v) 6= 0. Such a pair determines a linear functional of norm one on
C by the rule,

(1) [v, ρ](x) =
ρ(E(v∗x))

ρ(v∗v)1/2
(x ∈ C).

The work of Feldman-Moore also makes essential use of conditional expectations.
By [2, Theorem 3.4], any EP inclusion (C,D) has a unique conditional expectation E : C → D.

Thus for a C∗-diagonal, the extension property guarantees the the uniqueness of the expectation ex-
pectation E : C → D. Interestingly, the extension property is not necessary to guarantee uniqueness
of expectations. Indeed, Renault showed that when (C,D) is a Cartan inclusion, with expectation
E : C → D, then E is the unique conditional expectation of C onto D.

What other regular inclusions (C,D) have unique expectations of C onto D? While we do
not know the answer to this question in general, we give a positive result along these lines in
Theorem 2.10 below: this result shows that when (C,D) is a regular MASA inclusion with D

an injective C∗-algebra, then (C,D) is an EP inclusion, and therefore has a unique expectation.
Section 2 also contains results on dynamics of regular inclusions and introduces the notion of a
quasi-free action. Theorem 2.9 characterizes the extension property for regular MASA inclusions in

3



terms of the dynamics of regular inclusions: the regular MASA inclusion (C,D) is an EP-inclusion

if and only if the ∗-semigroup N(C,D) acts quasi-freely on D̂.
Unfortunately, conditional expectations do not always exist, even when (C,D) is a regular MASA

inclusion, and the C∗-algebras involved are well-behaved. Here is a simple example, which is a
special case of the far more general setting considered in Section 6.

Example 1.2. Let X be a connected, compact Hausdorff space, and let α : X → X be a home-
omorphism such that α2 is the identity map on X. Let F ◦ be the interior of the set of fixed
points for α; we assume that F ◦ is neither empty nor all of X. (For a concrete example, take
X = {z ∈ C : |z| ≤ 1 and ℜ(z)ℑ(z) = 0} and let α(z) = z.) Define θ : C(X) → C(X) by
θ(f) = f ◦ α−1, and set

C :=

{(
f0 f1
θ(f1) θ(f0)

)
: f0, f1 ∈ C(X)

}
and D :=

{(
f0 0
0 θ(f0)

)
: f0 ∈ C(X)

}
.

Then C is a C∗-subalgebra of M2(C(X)), and (C,D) is a regular inclusion. (C may be regarded as
C(X)⋊ (Z/2Z).)

A calculation shows that the relative commutant Dc of D in C is

Dc =

{(
f0 f1
θ(f1) θ(f0)

)
∈ C : supp(f1) ⊆ F ◦

}
.

As F ◦ /∈ {∅,X}, we have D ( Dc ( C, and another calculation shows Dc is abelian. Since(
0 1
1 0

)
∈ N(C,Dc), it follows that (C,Dc) is a regular MASA inclusion.

Suppose E : C → Dc is a conditional expectation. Then for some f0, f1 ∈ C(X) with supp(f1) ⊆

F ◦, we have E
(
0 I
I 0

)
=
( f0 f1
θ(f1) θ(f0)

)
. Notice θ(f1) = f1 and

( 0 f1
f1 0

)
∈ Dc. We have

(
f21 f1θ(f0)
f1f0 f21

)
=

(
0 f1
f1 0

)
E

(
0 I
I 0

)
= E

((
0 f1
f1 0

)(
0 I
I 0

))
=

(
f1 0
0 f1

)
,

so f21 = f1. As X is connected, this yields f1 = 0 or f1 = I. But supp(f1) ⊆ F ◦ 6= X, so f1 = 0.

Thus E(
(
0 I
I 0

)
) =

( f0 0
0 θ(f0)

)
.

Now if g1 ∈ D is such that supp(g1) ⊆ F ◦, then θ(g1) = g1, so
( 0 g1
g1 0

)
∈ Dc. Thus,

(
0 g1
g1 0

)
= E

((
g1 0
0 g1

)(
0 I
I 0

))
=

(
g1 0
0 g1

)
E

(
0 I
I 0

)
=

(
g1 0
0 g1

)(
f0 0
0 θ(f0)

)

=

(
g1f0 0
0 θ(g1f0)

)
.

Hence g1 = 0 for every such g1. This implies that F ◦ = ∅, contrary to hypothesis. Hence no
conditional expectation of C onto Dc exists.

One of the goals of this paper is to show that even though conditional expectations may fail to
exist for a regular MASA inclusion, there is a map which which may be used as a replacement.
Here is the relevant definition.

Definition 1.3. Let (C,D) be an inclusion and let (I(D), ι) be an injective envelope for D. A
pseudo-conditional expectation for ι, or more simply, a pseudo-expectation for ι, is a unital com-
pletely positive map E : C → I(D) such that E|D = ι. When the context is clear, we sometimes
drop the reference to ι and simply call E a pseudo-expectation.

The existence of pseudo-expectations follows immediately from the injectivity of I(D). In general,
the pseudo-expectation need not be unique.

However, in Section 3 below, we show that for any regular MASA inclusion (C,D), there is always
a unique pseudo-expectation E : C → I(D), see Theorem 3.10. Let Mod(C,D) be the family of all
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states on C which restrict to elements of D̂. The family of states, Ss(C,D) := {ρ ◦ E : ρ ∈ Î(D)}

covers D̂ in the sense that the restriction map, Ss(C,D) ∋ ρ 7→ ρ|D ∈ D̂, is onto. Interestingly,

Ss(C,D) is the unique minimal closed subset of Mod(C,D) which covers D̂, see Theorem 3.13. We
also show that Ss(C,D) is closely related to the extension property. When (C,D) is “countably
generated,” Theorem 3.13 also shows that Ss(C,D) is the closure of all states in Mod(C,D) whose
restrictions to D extend uniquely to C.

For a regular MASA inclusion, the intersection of the left kernels of the states in Ss(C,D) is the
left kernel of the pseudo-expectation E. Let L(C,D) be the left kernel of E. Theorem 3.22 shows
that L(C,D) is an ideal of C, and moreover, is the unique ideal of C which is maximal with respect
to the property of having trivial intersection with D. When the pseudo-expectation takes values in
D (rather than I(D)), the ideal L(C,D) may be viewed as a measure of the failure of the inclusion
to be Cartan in Renault’s sense.

We define a regular MASA inclusion to be a virtual Cartan inclusion when the pseudo-expectation
is faithful, or equivalently, when L(C,D) = 0. The purpose of Section 6 is to give a large class of
virtual Cartan inclusions. Theorem 6.9 shows that when C is the reduced crossed product of the
abelian C∗-algebra D by a discrete group Γ, then, provided the relative commutant Dc of D in C

is abelian, (C,Dc) is a virtual Cartan inclusion. We characterize when Dc is abelian in terms of

the dynamics of the action of Γ on D̂ in Theorem 6.6; this result shows that Dc is abelian precisely
when the germ isotropy subgroup Hx of Γ is abelian for every x ∈ D̂. The results of Section 6 are
summarized in Theorem 6.10.

One of the motivations for our study of inclusions was to provide a context for the study of
certain nonselfadjoint subalgebras. If (C,D) is a C∗-diagonal, there are numerous papers devoted
to the study of various (usually nonselfadjoint) closed algebras A with D ⊆ A ⊆ C, see [7, 9, 10, 21,
23, 24, 25] to name just a few. An often successful strategy for the analysis of the subalgebras of
C∗-diagonals is to use the coordinatization of (C,D) (via the twist) to impose coordinates on the
subalgebras; properties of the coordinate system then reflect properties of the subalgebra.

Since many classes of regular MASA inclusions are neither C∗-diagonals nor Cartan inclusions, it
is natural to wonder whether coordinate methods may be used to analyze nonselfadjoint subalgebras
of regular MASA inclusions. A strategy for doing so is to try to regularly embed a given regular
MASA inclusion (C,D) into a C∗-diagonal (C1,D1) and then to restrict the coordinates obtained
from (C1,D1) to the (C,D) or to the given subalgebra. This leads to the following problem.

Problem 1.4. Characterize when a given regular inclusion (C,D) can be regularly embedded into
a C∗-diagonal.

We give a solution to Problem 1.4 in Section 5. To do this, we introduce a new family S(C,D) ⊆
Mod(C,D), which we call compatible states. When (C,D) is a regular MASA inclusion, Ss(C,D) ⊆
S(C,D). The intersection of the left kernels of the states in S(C,D) is an ideal of C, Rad(C,D).
The regular inclusion (C,D) regularly embeds in a C∗-diagonal if and only if Rad(C,D) = (0), see
Theorem 5.9. In particular, any virtual Cartan inclusion regularly embeds into a C∗-diagonal.

The needed properties of compatible states are developed in Section 4. Compatible states can be
defined for any inclusion, and we expect that they may be useful in other contexts as well. While
compatible states exist in abundance for any regular MASA inclusion, Theorem 4.8 implies that
compatible states need not exist for a general regular inclusion.

For a regular MASA inclusion (C,D), it is always the case that Rad(C,D) ⊆ L(C,D). We have
been unable to resolve the question of whether equality holds. We provide some insight into this

question in Section 7. Given σ ∈ D̂, there is an equivalence relation R1 on Hσ := {v ∈ N(C,D) :
ρ(v∗dv) = ρ(d) for all d ∈ D}, and the set Hσ/R1 of equivalence classes of this equivalence relation
may be made into a T-group. The main result of this section, Theorem 7.13, shows that there
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is a bijective correspondence between {ρ ∈ S(C,D) : ρ|D = σ} and a certain family of pre-
homomorphisms on Hσ/R1. Theorem 7.13 thus gives a description of a certain class of state
extensions of σ. Our description leads us to suspect that it is possible for Rad(C,D) to be a proper
subset of L(C,D).

The purpose of Section 8 is to discuss certain twisted groupoids arising from a regular MASA
inclusion. The methods of this section are suitable modifications to our context of the methods used
by Kumjian and Renault when coordinatizing C∗-diagonals and Cartan inclusions. We show that
given any regular MASA inclusion (C,D), there is a twist associated to (C,D). We use Ss(C,D)
or another suitable subset F of S(C,D) as unit space of the twist, and define functionals [v, ρ] on
C much as in equation (1), except that the functional ρ ◦ E appearing in that formula is replaced
with an element of F . The main result of this section, Theorem 8.14, shows that when Rad(C,D)
is trivial, there is a regular ∗-monomorphism of (C,D) into the Cartan inclusion arising from the
twist associated to (C,D). This result gives perspective to the embedding results of Section 5, and
suggests that it is indeed possible to coordinatize subalgebras using this twist, as indicated prior
to Problem 1.4.

In [28], we gave a method for extending an isometric isomorphism between subalgebras Ai of
C∗-diagonals (Ci,Di) with Di ⊆ Ai ⊆ Ci to a ∗-isomorphism of the C∗-subalgebra C∗(A1) of C1

generated by A1 onto the corresponding subalgebra C∗(A2). The two main ingredients of this
method were: a) show that Di norms Ci in the sense of Pop-Sinclair-Smith ([29]), and b) show
that the C∗-envelope of Ai is isometrically isomorphic to C∗(Ai). In Section 9, we show that if
the hypothesis that (Ci,Di) is weakened from C∗-diagonal to virtual Cartan inclusion, then both
these ingredients still hold. Theorem 9.4 generalizes [28, Theorem 2.16] to the context of virtual
Cartan inclusions. This is a considerable generalization, and allows for the simplification of some
arguments in the literature.

The author is indebted to William Arveson, who greatly influenced the author and the field of
operator algebras. His passing saddens us all.

We thank Ken Davidson, Allan Donsig, William Grilliette, Vern Paulsen, and Vrej Zarikian for
several very helpful conversations.

1.1. Preliminaries. Given a Banach space X, we will use X# instead of the traditional X∗ to
denote the Banach space dual. Likewise if α : X → Y is a bounded linear map between Banach
spaces, we use α# to denote the adjoint map, f ∈ Y# 7→ f ◦ α ∈ X#.

If X is a topological space and E ⊆ X, E◦ denotes the interior of E. Also, for f : X → C, we
write supp f for the set {x ∈ X : f(x) 6= 0}.

Standing Assumption 1.5. For the remainder of this paper, all C∗-algebras will be unital, and
if D is a sub-C∗-algebra of the C∗-algebra C, we assume that the unit for D is the same as the unit
for C.

Let C be a C∗-algebra, and let S(C) be the state space of C. For ρ ∈ S(C) let Lρ = {x ∈ C :
ρ(x∗x) = 0} be the left kernel of ρ, and let (πρ,Hρ, ξ) be the GNS representation corresponding to
ρ. We regard C/Lρ as a dense subset of Hρ, and for x ∈ C will often write x + Lρ to denote the
vector πρ(x)ξ. Denote the inner product on Hρ by 〈·, ·〉ρ.

We now recall some facts about projective topological spaces, projective covers, and injective
envelopes of abelian C∗-algebras. Following [17], given a compact Hausdorff space X, a pair (P, f)
consisting of a compact Hausdorff space P and a continuous map f : P → X is called a cover
for X (or simply a cover) if f is surjective. A cover (P, f) is rigid if the only continuous map
h : P → P which satisfies f ◦ h = f is h = idP ; the cover (P, f) is essential if whenever Y is a
compact Hausdorff space and h : Y → P is continuous and satisfies f ◦ h is onto, then h is onto.

A compact Hausdorff space P is projective if whenever X and Y are compact Hausdorff spaces
and h : Y → X and f : P → X are continuous maps with h surjective, there exists a continuous
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map g : P → Y with g ◦h = f . A Hausdorff space which is extremally disconnected (i.e. the closure
of every open set is open) and compact is Stonean. In [15, Theorem 2.5], Gleason proved that a
compact Hausdorff space P is projective if and only P is Stonean.

By [17, Proposition 2.13], if (P, f) is a cover for X with P a projective space, then (P, f) is rigid
if and only if (P, f) is essential. A projective cover for X is a rigid cover (P, f) for X such that P
is projective. A projective cover for X always exists [17, Theorem 2.16] and is unique in the sense
that if (P1, f1) and (P2, f2) are projective covers for X, then there is a unique homeomorphism
h : P1 → P2 such that f1 = f2 ◦ h.

The concept of an injective envelope for an abelian unital C∗-algebras is dual to the concept of
a projective cover of a compact Hausdorff space: if (P, f) is a cover for X, let ι : C(X) → C(P ) be
the map d 7→ d ◦ f ; then (P, f) is a projective cover if and only if (C(P ), ι) is an injective, envelope
of C(X) [17, Corollary 2.18]. (Injective envelopes can be also be defined for general unital C∗-
algebras, not just abelian, unital C∗-algebras. Like projective covers, injective envelopes of unital
C∗-algebras have a uniqueness property. If A is a unital C∗-algebra, and (B1, σ1) and (B2, σ2)
are injective envelopes for A, then there exists a unique ∗-isomorphism θ : B1 → B2 such that
θ ◦ σ1 = σ2 [18, Theorem 4.1].)

Recall that a unital C∗-algebra C is monotone complete if every bounded increasing net in the
self-adjoint part, Cs.a., of C has a least upper bound in Cs.a.. Hamana [20] shows that every injective
C∗-algebra is monotone complete. When (xλ) is a bounded increasing net in Cs.a., supC xλ means
the least upper bound of (xλ) in C.

Theorem 6.6 of [20] implies that if A is a unital, abelian C∗-algebra then any injective envelope
(B, σ) for A is Hamana-regular in the sense that whenever x ∈ B is self-adjoint, x = supB{σ(a) :
a ∈ A, a = a∗ and a ≤ x}. (Since A is abelian, we regard {σ(a) : a ∈ A, a = a∗ and a ≤ x}
as a net indexed by itself.) As Hamana observes in [20], when x ∈ A is positive, then also,
x = supB{σ(a) : a ∈ A and 0 ≤ σ(a) ≤ b}.

Here is a description of an injective envelope of an abelian C∗-algebra. For details, see [16,
Theorem 1]. Let X be a compact Hausdorff space. Define an equivalence relation on the algebra
B(X) of all bounded Borel complex-valued functions on X by f ∼ g if and only if {x ∈ X :
f(x)−g(x) 6= 0} is a set of first category. The equivalence class J of the zero function is an ideal in
B(X) and the quotient D(X) := B(X)/J is called the Dixmier algebra. Define j : C(X) → D(X)
by j(f) = f + J . Then (D(X), j) is an injective envelope for D.

We conclude this section with a few comments regarding categories. Let C be the category of
unital abelian C∗-algebras with ∗-homomorphisms, and let O be the category of operator systems
with completely positive (unital) maps. LetD be a unital abelian C∗-algebra. ThenD is an injective
object in C if and only if D is an injective object in O, see [17, Theorem 2.4]. (The statement of [17,
Theorem 2.4], mentions the category of operator systems without explicitly giving the morphisms,
but the proof makes it clear that the authors mean the category of operator systems and unital,
completely positive maps.)

Hamana shows that in the category O, there is an injective object I(D) and a one-to-one com-
pletely positive ι : D → I(D) such that the extension (I(D), ι) is rigid and essential. Hamana and
Hadwin-Paulsen (see [19] and [17, Corollary 2.18]) observe that I(D) is endowed with a product

which makes it into an abelian C∗-algebra (and ι a ∗-monomorphism). Set X = D̂, and let (P, f)
be a projective cover for X, so that the map τ : D → C(P ) given by τ(x) = x̂ ◦ f is a one-to-one
∗-homomorphism of D into C(P ). Corollary 2.18 of [17] also shows the existence of a ∗-isomorphism
θ : C(P ) → I(D) such that θ ◦ τ = ι.

Thus, for us an injective envelope (I(D), ι) for D will be a rigid and essential extension of D in
the category C. The comments above show that this is equivalent to saying that (I(D), ι) is a rigid
and essential extension for D in O.
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2. Dynamics of Regular Inclusions

Given a regular inclusion (C,D), the ∗-semigroup N(C,D) of normalizers acts via partial home-

omorphisms on the maximal ideal space D̂ of D. The purpose of this section is to discuss some
of the features of this action. The first subsection is devoted to notation and some background
facts regarding normalizers and intertwiners. The second subsection gives a characterization of the
extension property in terms of the dynamics associated with the action of N(C,D) on D̂ (Theo-
rem 2.9). An interesting consequence is that for any regular MASA inclusion (C,D) withD injective
is an EP inclusion, see Theorem 2.10.

2.1. Normalizers and Intertwiners. Let (C,D) be an inclusion. Closely related to normalizers
are intertwiners.

Definition 2.1. An intertwiner for D is an element v ∈ C such that vD = Dv. We denote the set
of all intertwiners by I(C,D).

Proposition 3.3 of [10] shows that for any intertwiner v, the elements v∗v and vv∗ belong to the
relative commutant Dc of D in C. When v is a normalizer, the fact that D is unital shows that
both v∗v and vv∗ belong to D, and it is easy to see that {v ∈ I(C,D) : v∗v, vv∗ ∈ D} ⊆ N(C,D).
In general however, there exists v ∈ I(C,D) with {v∗v, vv∗} 6⊆ D. (For a simple example, observe
that every operator in M2(C) is an intertwiner for the inclusion, (M2(C),CI2).) Also, by [10,

Proposition 3.4], N(C,D) ⊆ I(C,D). However, the final paragraph of the proof of [10, Proposi-

tion 3.4], shows somewhat more than this, namely that {v ∈ I(C,D) : v∗v, vv∗ ∈ D} = N(C,D).
Summarizing, we have the following result.

Proposition 2.2 ([10, Propositions 3.3 and 3.4]). Let (C,D) be an inclusion. Then

{v ∈ I(C,D) : v∗v, vv∗ ∈ D} = N(C,D) ⊆ I(C,D).

Furthermore, when D is a MASA in C, N(C,D) = I(C,D).

The following example of a regular homomorphism will be useful in the sequel.

Lemma 2.3. Suppose (C,D) is an inclusion such that the relative commutant, Dc, of D in C is
abelian. Then (C,Dc) is a MASA inclusion and N(C,D) ⊆ N(C,Dc); in particular the identity map
id : (C,D) → (C,Dc) is a regular ∗-homomorphism.

Proof. Since D and Dc are abelian, (C,Dc) is a MASA inclusion.
To show that N(C,D) ⊆ N(C,Dc), suppose v ∈ I(C,D). Fix h ∈ Dc, and let d ∈ D be self-

adjoint. Since v is a D-intertwiner, we may find a self-adjoint d′ ∈ D so that dv = vd′. Then
d(vhv∗) = vd′hv∗ = vhd′v∗ = (vhv∗)d, from which it follows that vhv∗ ∈ Dc. Similarly, v∗hv ∈ Dc.
We conclude that I(C,D) ⊆ N(C,Dc). Since N(C,Dc) is norm-closed, Proposition 2.2 yields,

N(C,D) ⊆ I(C,D) ⊆ N(C,Dc).

Thus, (C,Dc) is a MASA inclusion and the identity mapping id : (C,D) → (C,Dc) is a regular
∗-homomorphism. �

For any topological space X, a partial homeomorphism is a homeomorphism h : S → R, where
S and R are open subsets of X. As usual, dom(h) and ran(h) will denote the domain and range
of the partial homeomorphism h. We use InvO(X) to denote the inverse semigroup of all partial
homeomorphisms of X. When S is a ∗-semigroup, a semigroup homomorphism α : S → InvO(X)
is a ∗-homomorphism if for every s ∈ S, α(s∗) = α(s)−1. A subset G of InvO(X) which is closed
under composition and inverses (i.e. a sub inverse semigroup) is called a pseudo-group on X.
Associated to any pseudo-group G on X is the groupoid of germs which is the set of equivalence
classes, {[x, φ, y] : φ ∈ G, y ∈ dom(φ), x = φ(y)}, where [x, φ, y] = [x1, φ1, y1] if and only y = y1
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and there exists a neighborhood N of y such that φ|N = φ1|N . Elements [w,φ, x] and [y, ψ, z] are
composable if x = y and then [w,φ, x] [y, ψ, z] = [w,φψ, z] and [x, φ, y]−1 = [y, φ−1, x]. The range
and source maps are r([x, φ, y]) = x and s([x, φ, y]) = y. Thus X may be identified with the unit
space of the groupoid of germs.

Recall (see [22, Proposition 6]) that a normalizer v determines a partial homeomorphism

βv : {ρ ∈ D̂ : ρ(v∗v) > 0} → {ρ ∈ D̂ : ρ(vv∗) > 0} given by βv(ρ)(d) =
ρ(v∗dv)

ρ(v∗v)
(d ∈ D).

ClearlyN(C,D) and I(C,D) are ∗-semigroups under multiplication. Routine, but tedious, calcula-

tions show that the mapN(C,D) ∋ v 7→ βv is a ∗-semigroup homomorphism β : N(C,D) → InvO(D̂).
We record this fact as a proposition.

Proposition 2.4 ([31, Lemma 4.10]). Suppose (C,D) is an inclusion. Then the following state-
ments hold.

(1) Suppose that v,w ∈ N(C,D) and ρ ∈ D̂ satisfies ρ(w∗v∗vw) 6= 0. Then ρ(w∗w) 6= 0, and
βvw(ρ) = βv(βw(ρ)).

(2) For every v ∈ N(C,D), βv∗ = (βv)
−1.

Following Renault [31] we will call the collection,

PG(C,D) := {βv : v ∈ N(C,D)}

the Weyl pseudo-group of the inclusion. Also, the groupoid of germs of PG(C,D) is the Weyl
groupoid of the inclusion, which we denote by WG(C,D).

Remarks 2.5.

(1) Observe that if θ is a regular homomorphism, then θ(D1) ⊆ D2: indeed, for d ∈ D1

with d ≥ 0, d1/2 ∈ N(C1,D1) and so θ(d) = θ(d1/2)1θ(d1/2) ∈ D2. It follows that the
dynamics of inclusions under regular homomorphisms are well-behaved in the sense that if
θ : (C1,D1) → (C2,D2) is a regular homomorphism of the inclusions (Ci,Di), then whenever
v ∈ N(C1,D1) \ ker θ, the following diagram commutes:

D̂2 ⊇ dom(βθ(v))
βθ(v)

//

θ#

��

range(βθ(v)) ⊆ D̂2

θ#

��

D̂1 ⊇ dom(βv)
βv

// range(βv) ⊆ D̂1.

(2) For some purposes, it is easier to work with intertwiners than normalizers. Thus, one might
be tempted to define a regular homomorphism using intertwiners instead of normalizers,
that is, by mandating θ(I(C1,D1)) ⊆ I(C2,D2). However, a disadvantage of doing so is that
such a θ need not carry D1 into D2, which is why we use N(C,D) rather than I(C,D) in
Definition 1.1. For an example of this, let C = C([0, 1]) and let D = {f ∈ C([0, 1]) : f(0) =
f(1/2)}. Then C = I(C,D), and since every unitary in C normalizes D, we see that (C,D)
is regular (as in Definition 1.1). Taking (Ci,Di) = (C,D), then any automorphism θ of C
satisfies θ(I(C1,D1)) ⊆ I(C2,D2), yet clearly one may choose θ so that θ(D1) 6⊆ θ(D2).

2.2. Quasi-Freeness and the Extension Property. By Proposition 2.4, S := {βv : v ∈

N(C,D)} is an inverse semigroup of partial homeomorphisms of D̂. Recall that a group G of
homeomorphisms of a space X acts freely if whenever g ∈ G has a fixed point, then g is the
identity. Paralleling the notion for groups, we make the following definition.
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Definition 2.6. Suppose that S is a ∗-semigroup and X is a compact Hausdorff space, and that
α : S → InvO(X) is a ∗-semigroup homomorphism. We say that S acts quasi-freely on X if whenever
s ∈ S, {x ∈ dom(α(s)) : α(s)(x) = x} is an open set in X.

When Γ is a group acting quasi-freely on X, this says that for each s ∈ Γ, the set of fixed points
of α(s) is a clopen set; in particular, when X is a connected set, the notions of free and quasi-free
actions for a group (acting as homeomorphisms) on X coincide.

In some circumstance, quasi-freeness is automatic. Recall that a Hausdorff topological space X
is extremally disconnected if the closure of every open subset of X is open and that X is a Stonean
space if X is compact, Hausdorff, and extremally disconnected. We shall show that if a ∗-semigroup
acts on a Stonean space, then it acts quasi-freely. To do this we require the following topological
proposition. The proof is a straightforward adaptation of the elegant proof by Arhangel′skii of
Froĺık’s Theorem [14, Theorem 3.1] on fixed points of homeomorphisms of extremally disconnected
spaces. We provide a sketch of the proof for the convenience of the reader.

Proposition 2.7 (Froĺık’s Theorem). Let X be an extremally disconnected space, let V,W be clopen
subsets of X, and suppose h : V → W is a homeomorphism of V onto W . Then the set of fixed
points F := {x ∈ V : h(x) = x} is a clopen subset of X. Moreover, there are three disjoint clopen
subsets C1, C2, C3 of X such that for i = 1, 2, 3, h(Ci)∩Ci = ∅ = Ci∩F and V = F ∪C1∪C2∪C3.

Proof (see [4, Theorem 1]). Call an open subset A ⊆ V h-simple if h(A)∩A = ∅. By the Hausdorff
maximality theorem, there exists a maximal chain G of h-simple sets. Put U =

⋃
G. Then U is

also a h-simple subset of V , and since U is open, maximality shows that U is in fact clopen.
Next observe that h(U) ∩ V and h−1(U ∩W ) are clopen h-simple sets, and put

M = U ∪ (h(U) ∩ V ) ∪ h−1(U ∩W ).

Since the intersection of F with any h-simple subset of V is empty, we have M ∩ F = ∅. We shall
show that F = V \M .

Suppose to the contrary, that x ∈ V \M satisfies h(x) 6= x. Let H be an open subset of V such
that x ∈ H and H ∩M and h(H) ∩H are both empty. Then H is h-simple and

(2) H ∩ U = H ∩ (h(U) ∩ V ) = H ∩ h−1(U ∩W ) = ∅.

But (2) implies that H∪U is a h-simple set which properly contains U , contradicting the maximality
of U . So F = V \M .

Since both V and M are clopen, so is F . Finally, to complete the proof, take C1 := U , C2 :=
h(U) ∩ V, and C3 := h−1(U ∩W ) \ (h(U) ∩ V ). �

With this preparation, we now show that any action of a ∗-semigroup on a Stonean space is
quasi-free.

Theorem 2.8. Suppose that X is a Stonean space, S is a ∗-semigroup, and α : S → InvO(X) is a
∗-semigroup homomorphism. Then S acts quasi-freely on X.

Proof. Fix s ∈ S, and consider the open sets G := dom(α(s)) and H := ran(α(s)). Since X is com-
pact and extremally disconnected, the Stone-Čech compactifications βG and βH are homeomorphic
to G and H respectively ([34, Exercises 15G(1) and 19G(2)]). Since α(s) is a homeomorphism of
G onto H, general properties of the Stone-Čech compactification show that α(s) extends to a
homeomorphism h of G onto H.

Let F ⊆ G be the set of fixed points for h; Proposition 2.7 shows that F is clopen inX. Therefore,

{x ∈ dom(α(s)) : α(s)(x) = x} = F ∩ dom(α(s))

is open in X. Thus S acts quasi-freely on X. �
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Quasi-freeness is intimately related to the extension property. The following result is known in the
case when (C,D) is a regular MASA inclusion with faithful expectation, see [31, Proposition 5.11].
Parts of the proof below follow the proof of [10, Proposition 3.12], but we reproduce it here for
convenience of the reader.

Theorem 2.9. Let (C,D) be a regular inclusion. Then the following statements are equivalent:

a) D has the extension property in C;
b) D is a MASA in C and the action v 7→ βv of the semigroup N(C,D) is a quasi-free action

on D̂;

c) D is a MASA in C and for each σ ∈ D̂, the isotropy group of WG(C,D) at σ is the trivial
group.

Proof. (a)⇒(b). Suppose that D has the extension property. Then [3, Corollary 2.7] shows that
D is a MASA in C, and that there exists a conditional expectation E : C → D. Suppose that

v ∈ N(C,D), and σ ∈ D̂ satisfies σ(v∗v) > 0 and βv(σ) = σ. By [10, Proposition 3.12], we have
v∗E(v) ∈ D. Also, if G is the unitary group of D, we have for g ∈ G,

σ(v∗gvg−1) = σ(v∗gv)σ(g−1) = βv(σ)(g)σ(v
∗v)σ(g−1) = σ(g)σ(v∗v)σ(g−1) = σ(v∗v).

The extension property and [3, Theorem 3.7] show that E(v) ∈ co{gvg−1 : g ∈ G}, so that

σ(v∗E(v)) = σ(v∗v),

whence σ(v∗E(v)) = σ(v∗v) 6= 0.

Hence there exists an open set U ⊆ D̂ so that σ ∈ U and τ(v∗E(v)) 6= 0 for every τ ∈ U . Since
v∗E(v) ∈ D, we have τ = βv∗E(v)(τ) = βv∗(βE(v)(τ)) = βv∗(τ) for every τ ∈ U . But β−1

v = βv∗ , so

βv(τ) = τ for τ ∈ U . Thus {σ ∈ D̂ : σ(v∗v) > 0 and βv(σ) = σ} is open in D̂, so the semigroup

{βv : v ∈ N(C,D)} acts quasi-freely on D̂.
Before proving (b)⇒(a), we establish some notation. We use [C,D] for the set {cd − dc : d ∈

D, c ∈ C}. Also, a normalizer v ∈ N(C,D) is a free normalizer if v2 = 0. Kumjian notes in [22],

that any free normalizer belongs to span[C,D], because v(v∗v)1/n − (v∗v)1/nv = v(v∗v)1/n → v.
We turn now to the proof of (b)⇒(a). So assume that (b) holds. We shall prove that

(3) N(C,D) ⊆ D+ span[C,D].

Once this inclusion is established, an application of [3, Theorem 2.4] will show that whenever ρ1
and ρ2 are states of C with ρ1|D = ρ2|D ∈ D̂, then for every v ∈ N(C,D), ρ1(v) = ρ2(v). Regularity
of (C,D) then implies that ρ1 = ρ2, so that D has the extension property.

To show (3), fix v ∈ N(C,D). Let F = {σ ∈ D̂ : σ(v∗v) > 0 and βv(σ) = σ}. By hypothesis, F

is an open subset of D̂. Let ε > 0, and let

Xε := F ∩ {σ ∈ D̂ : σ(v∗v) ≥ ε2}.

Then Xε is a closed subset of D̂. Let fε ∈ D be such that 0 ≤ fε ≤ I, f̂ε|Xε ≡ 1 and supp(f̂ε) ⊆ F .
Next let

Yε := F c ∩ {σ ∈ D̂ : σ(v∗v) ≥ ε2}.

Clearly Yε ∩ supp(f̂ε) = ∅.

For σ ∈ Yε, we have βv(σ) 6= σ, so we may find d ∈ D with σ(d) = 1, 0 ≤ d ≤ 1, supp(d̂) ∩

supp(f̂ε) = ∅ and (vd)2 = 0. Compactness of Yε and a partition of unity argument show that there
exists n ∈ N and a collection of functions {gj}

n
j=1 ⊆ D such that, with gε =

∑n
j=1 gj, we have:

(vgj)
2 = 0, 0 ≤ gj ≤ I, supp(ĝj) ∩ supp(f̂ε) = ∅, 0 ≤ gε ≤ I, and ĝε|Yε ≡ 1.
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Then gεfε = 0, and ‖v(I − (fε + gε))‖ < ε. So v = limε→0(vfε + vgε). From Kumjian’s observa-

tion, vgε ∈ span[C,D]. Moreover, since the closed support of f̂ε is contained in F , we find that vfε
commutes with D. Hence vfε ∈ D, as D is a MASA in C.

Let εn be a sequence of positive numbers decreasing to 0. We may choose elements fεn ∈ D as

above but with the additional condition that fεm ≤ fεn whenever m < n. For n > m and σ ∈ D̂,
we have

(4) σ(v∗v(fεn − fεm)
2) =

{
0 if σ(fεn − fεm) = 0

σ(v∗v)σ(fεn − fεm)
2 if σ(fεn − fεm) 6= 0.

Notice that if σ ∈ F ∩ F c, then σ(v∗v) = 0. By continuity of v̂∗v, given δ > 0, there exists a open

set U ⊆ D̂ with U ⊇ F ∩ F c and σ(v∗v) < δ if σ ∈ U . Since supp(fεn − fεm) ⊆ U when n,m are
sufficiently large, it follows from (4) that vfεn is a Cauchy sequence in D, and hence converges to
k ∈ D. Then

v − k = lim
n→∞

(vgεn) ∈ span[C,D],

whence v = k + (v − k) ∈ D+ span[C,D]. As noted above, this is sufficient to complete the proof
that D has the extension property. Thus (a) holds.

(b)⇒(c). Fix σ ∈ D̂, and suppose that [σ, φ, σ] belongs to the isotropy group of WG(C,D) at σ.
Then there is an open set N and v ∈ N(C,D) such that with σ ∈ N ⊆ domφ ∩ domβv such that
βv|N = φ|N . By quasi-freeness of the action, there exists a neighborhood N1 of σ contained in N
such that βv|N1 = id|N1 . Thus, [σ, φ, σ] = [σ, id, σ] so that the isotropy group of WG(C,D) at σ is
trivial.

(c)⇒(b). Let v ∈ N(C,D) and suppose that σ ∈ dom(βv) is a fixed point for βv. Then [σ, βv , σ] is
in the isotropy group for WG(C,D) at σ, so that [σ, βv , σ] = [σ, id, σ]. By the definition of the Weyl
groupoid, σ belongs to the interior of {x ∈ dom(βv) : βv(x) = x}. Hence {x ∈ dom(βv) : βv(x) = x}
is an open set in X. As this holds for every v ∈ N(C,D), the action v 7→ βv is quasi-free. �

As an immediate corollary of our work, we have the following.

Theorem 2.10. Suppose (C,D) is a regular MASA inclusion, with D an injective C∗-algebra.
Then (C,D) has the extension property.

Proof. Results of Dixmier and Gonshor [8, 16] show that D is injective if and only if D̂ is a compact
extremally disconnected space. Now combine Theorems 2.8 with the equivalence of (a) and (b) in
Theorem 2.9. �

Example 2.11. Suppose that M is a von Neumann algebra and D ⊆ M is a MASA. Let C be the
norm-closure of N(M,D). Then (C,D) has the extension property. Note that in particular, when
D is a Cartan MASA in M in the sense of Feldman and Moore [13], then (C,D) is a C∗-diagonal.

Remark 2.12. The regularity hypothesis in Theorem 2.10 cannot be removed. Indeed, [1, Corol-
lary 4.7] shows that when C is the hyperfinite II1 factor, and D ⊆ C is any MASA, then (C,D) fails
to have the extension property.

2.3. D-modular states and ideals of (C,D). In this final subsection, we make a simple obser-

vation: the action N(C,D) ∋ v 7→ βv ∈ InvOD̂ may be regarded as an action on certain states of
C.

Definition 2.13. Let (C,D) be an inclusion. A state ρ on C is D-modular if for every x ∈ C and
d ∈ D,

ρ(dx) = ρ(d)ρ(x) = ρ(xd).
12



We let Mod(C,D) be the collection of all D-modular states on C; equip Mod(C,D) with the relative
weak-∗ topology. Then Mod(C,D) is closed and hence is compact. Using the Cauchy-Schwartz
inequality, it is easy to see that

Mod(C,D) = {ρ ∈ S(C) : ρ|D ∈ D̂}.

For σ ∈ D̂, let Mod(C,D, σ) be the set of all state extensions of σ, so

Mod(C,D, σ) := {ρ ∈ S(C) : ρ|D = σ}.

The following simple observation will be useful during the sequel.

Lemma 2.14. Let (C,D) be an inclusion, and v ∈ N(C,D). If σ ∈ dom(βv) and βv(σ) 6= σ, then
ρ(v) = 0 for every ρ ∈ Mod(C,D, σ).

Proof. Let d ∈ D satisfy βv(σ)(d) = 0 and σ(d) = 1. Then for ρ ∈ Mod(C,D, σ), we have

ρ(v) =
ρ(vv∗v)

ρ(v∗v)
=
ρ(dvv∗v)

σ(v∗v)
=
ρ(vv∗dv)

σ(v∗v)
= ρ(v)βv(σ)(d) = 0.

�

When ρ ∈ Mod(C,D) and v ∈ N(C,D) satisfies ρ(v∗v) 6= 0, the state β̃v(ρ) on C given by

β̃v(ρ)(x) :=
ρ(v∗xv)

ρ(v∗v)

again belongs to Mod(C,D). When there is no danger of confusion, we sometimes simplify no-

tation and write βv(ρ) instead of β̃v(ρ). Thus N(C,D) also acts on Mod(C,D), and for every

ρ ∈ Mod(C,D), we have β̃v(ρ)|D = βv(ρ|D).

Definition 2.15. A subset F ⊆ Mod(C,D) is N(C,D)-invariant if for every v ∈ N(C,D) and ρ ∈ F

with ρ(v∗v) 6= 0, we have β̃v(ρ) ∈ F .

We record the following fact for use in the sequel.

Proposition 2.16. Let (C,D) be a regular inclusion and suppose that F ⊆ Mod(C,D) is N(C,D)-
invariant. Then the set

KF := {x ∈ C : ρ(x∗x) = 0 for all ρ ∈ F}

is a closed, two-sided ideal in C. Moreover, if {ρ|D : ρ ∈ F} is weak-∗ dense in D̂, then KF∩D = (0).

Proof. As KF is the intersection of closed left-ideals, it remains only to prove that KF is a right
ideal. By regularity, it suffices to prove that if x ∈ KF and v ∈ N(C,D), then xv ∈ KF . Let ρ ∈ F .
If ρ(v∗v) 6= 0, then by hypothesis, we obtain ρ(v∗x∗xv) = βv(ρ)(x

∗x)ρ(v∗v) = 0. On the other
hand, if ρ(v∗v) = 0, then ρ(v∗x∗xv) ≤ ‖x∗x‖ ρ(v∗v) = 0. In either case, we find ρ(v∗x∗xv) = 0. As
this holds for every ρ ∈ F, we find xv ∈ KF , as desired. The final statement is obvious. �

3. Pseudo-Conditional Expectations for Regular MASA Inclusions

As noted in Example 1.2, there exist regular MASA inclusions (C,D) for which no conditional
expectation of C onto D exists. The purpose of this section is to show that nevertheless, there is
always a unique pseudo-expectation for a regular MASA inclusion.

Given a normalizer v, our first task is to connect the dynamics of βv with the ideal structure of
D.

Lemma 3.1. Let (C,D) be an inclusion and suppose v ∈ N(C,D). If d ∈ D and supp(d̂) ⊆ (fixβv)
◦,

then vd = dv. Moreover, if (C,D) is a MASA inclusion, then vd = dv ∈ D.
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Proof. Note that v∗dv and v∗vd both belong to D. We first show that for every ρ ∈ D̂,

(5) ρ(v∗dv) = ρ(v∗vd).

Let ρ ∈ D̂. There are three cases. First suppose ρ(v∗v) = 0. Then as ρ(v∗v) = ‖v‖2ρ, the Cauchy-
Schwartz inequality gives,

|ρ(v∗dv)| = | 〈dv, v〉ρ | ≤ ‖dv‖ρ ‖v‖ρ = 0,

so (5) holds when ρ(v∗v) = 0.

Suppose next that ρ(v∗v) > 0 and βv(ρ)(d) 6= 0. Then βv(ρ) ∈ supp(d̂), so βv(ρ) ∈ fixβv =
fixβv∗ . Thus, we get βv(ρ) = βv∗(βv(ρ)) = ρ, and hence ρ(v∗dv) = ρ(v∗v)ρ(d) = ρ(v∗vd).

Finally suppose that ρ(v∗v) > 0 and βv(ρ)(d) = 0. Then ρ(v∗dv) = 0. We shall show that ρ(d) =

0. If not, the hypothesis on d shows that ρ ∈ fixβv. Hence, 0 6= ρ(d) = βv(ρ)(d) = ρ(v∗dv)
ρ(v∗v) = 0,

which is absurd. So ρ(d) = 0, and (5) holds in this case also. Thus we have established (5) in all
cases.

Thus v∗dv = v∗vd. So for every n ∈ N,

0 = v∗dv − v∗vd = v∗(dv − vd) = vv∗(dv − vd) = (vv∗)n(dv − vd).

It follows that for every polynomial p with p(0) = 0, we have, p(vv∗)(dv − vd) = 0. Therefore, for
every n ∈ N,

0 = (vv∗)1/n(dv − vd) = d(vv∗)1/nv − (vv∗)1/nvd.

Since limn→∞(vv∗)1/nv = v, we have vd = dv.

Now suppose that (C,D) is a MASA inclusion. For a ∈ D, we have supp(d̂a) ⊆ supp(d̂) ⊆
(fixβv)

◦, so we have v(da) = (da)v. Since vd = dv, we get (vd)a = a(vd). Since D is a MASA,
vd ∈ D and the proof is complete. �

Let v ∈ N(C,D). Observe that if d ∈ D and supp(d̂) ⊆ fixβv, then we actually have supp(d̂) ⊆
(fixβv)

◦. Thus

{d ∈ D : supp(d̂) ⊆ fixβv} = {d ∈ D : supp(d̂) ⊆ (fixβv)
◦}

is a closed ideal of D isomorphic to C0((fixβv)
◦). By the Fuglede-Putnam-Rosenblum commutation

theorem,

(6) {d ∈ D : dv = vd} = {d ∈ D : dv∗ = v∗d},

and it follows that {d ∈ D : dv = vd ∈ D} is a closed ideal of D. The next proposition shows how
the set (fixβv)

◦ may be described algebraically.

Proposition 3.2. Let (C,D) be a MASA inclusion. If v ∈ N(C,D), then

{d ∈ D : supp(d̂) ⊆ (fixβv)
◦} = Dv∗v ∩ {d ∈ D : dv = vd ∈ D}.

Proof. Notice that Dv∗v = {d ∈ D : supp(d̂) ⊆ supp(v̂∗v)}. Since (fixβv)
◦ ⊆ supp(v̂∗v), Lemma 3.1

shows that

{d ∈ D : supp(d̂) ⊆ (fixβv)
◦} ⊆ Dv∗v ∩ {d ∈ D : dv = vd ∈ D}.

Now suppose that d ∈ Dv∗v ∩ {h ∈ D : hv = vh ∈ D} and d 6= 0. Let ρ0 ∈ supp(d̂) and set

r := |ρ0(d)|. Then r > 0. Put G = {ρ ∈ D̂ : |ρ(d)| > r/2}. We show that G ⊆ fixβv . Fix

ρ ∈ G. Since d ∈ Dv∗v, we have supp(d̂) ⊆ supp((v̂∗v)), so ρ(v∗v) 6= 0. Since d belongs to the ideal
{f ∈ D : fv = vf ∈ D}, we find (using (6)) that for every a ∈ D,

βv(ρ)(a) =
ρ(v∗av)

ρ(v∗v)
=

ρ(v∗avd)

ρ(v∗v)ρ(d)
=
ρ(v∗(ad)v)

ρ(v∗v)ρ(d)
=

ρ(adv∗v)

ρ(v∗v)ρ(d)
= ρ(a).
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It follows that G ⊆ fixβv . Since G is an open subset of D̂ with ρ0 ∈ G, we have ρ0 ∈ (fixβv)
◦. So

supp(d̂) ⊆ (fixβv)
◦, as desired.

�

We need some notation.

Notation. Let (C,D) be an inclusion.

a) For a closed ideal J in D, we let

J⊥ := {d ∈ D : dg = 0 for all g ∈ J}

denote the complement of J in the lattice of closed ideals of D.
b) Given any two closed ideals J1 and J2 in D, J1 ∨ J2 denotes the closed ideal generated by

J1 and J2.
c) For S ⊆ D, 〈S〉D denotes the closed two-sided ideal of D generated by the set S. When the

context is clear, we drop the subscript and simply use 〈S〉.
d) For v ∈ N(C,D), let

(7) Jv := {d ∈ D : vd = dv ∈ D} ∩ 〈v∗v〉 and Kv := 〈v∗v〉⊥ ∨ 〈{v∗hv − hv∗v : h ∈ D}〉 .

Recall that an ideal J in a C∗-algebra C is an essential ideal if J ∩ L 6= (0) for every closed
two-sided ideal (0) 6= L ⊆ C.

We will show Jv ∨Kv is an essential ideal in D. It is easy to see that Jv ⊆ K⊥
v . If equality holds,

then the fact that Jv ∨Kv is an essential ideal follows readily. However, we have not found a simple
proof of this fact, so we proceed along different lines.

Proposition 3.3. Let (C,D) be a regular MASA inclusion and let v ∈ N(C,D). Then Jv ∨Kv is
an essential ideal in D.

Proof. We shall show that Jv ∨ Kv is essential by showing that (Jv ∨ Kv)
⊥ = (0). Suppose that

d ∈ D and d(Jv ∨Kv) = 0.
First we show

(8) supp d̂ ⊆ supp v̂∗v.

Indeed, if ρ ∈ D̂ and ρ /∈ supp v̂∗v, then we may find h ∈ D such that ĥ(ρ) = 1 and ĥ(σ) = 0 for

every σ ∈ supp v̂∗v. Then h ∈ 〈v∗v〉⊥ ⊆ Kv, so dh = 0. As ρ(h) = 1, this shows that ρ /∈ supp d̂.
Thus (8) holds.

Next, we claim that

(9) supp d̂ ∩ supp v̂∗v ⊆ (fixβv)
◦.

Let ρ ∈ supp d̂ ∩ supp v̂∗v. For every h ∈ D, we have v∗hv − v∗vh ∈ Kv. Since ρ(d) 6= 0 and
d ∈ K⊥

v , this gives ρ(v∗hv) = ρ(v∗v)ρ(h) for every h ∈ D. Since ρ(v∗v) 6= 0 by hypothesis, we have

ρ ∈ fixβv. As supp d̂ ∩ supp v̂∗v is an open subset of D̂, we obtain (9).
Suppose that ρ ∈ (fixβv)

◦. By Proposition 3.2 there exists h ∈ Jv so that ρ(h) = 1. Since
d ∈ J⊥

v , we obtain ρ(d) = 0. Hence

(10) (fixβv)
◦ ∩ supp d̂ = ∅.

Combining (8), (9), and (10) we obtain,

supp d̂ ⊆ supp v̂∗v \ supp v̂∗v.

But supp v̂∗v \ supp v̂∗v has empty interior, so supp d̂ = ∅. Therefore, d = 0 as desired. �
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The following is probably well known, but we include it for completeness. Recall that if A is a
unital injective C∗-algebra, then any bounded increasing net xλ of self-adjoint elements of A has a
least upper bound in A, which we denote by supA xλ.

Lemma 3.4. Let D be a unital, abelian C∗-algebra, let (I(D), ι) be an injective envelope for D and
suppose that J ⊆ D is a closed ideal. Let J+

1 be the positive part of the unit ball of J and regard
J+
1 as a net indexed by itself. Put P := supI(D) ι(J

+
1 ). Then P is an projection in I(D).

If in addition, J is an essential ideal of D, the following hold:

i) if a, b ∈ I(D) and aι(h) = bι(h) for every h ∈ J , then a = b;
ii) P = I.

Proof. The mapping x ∈ J+
1 7→ x1/2 ∈ J+

1 is an order isomorphism of J+
1 , so P = supI(D){ι(x

1/2) :

x ∈ J+
1 }. So P 2 is also an upper bound for ι(J+

1 ). Hence P ≤ P 2. But as ‖P‖ ≤ 1, we have
P 2 ≤ P . So P is a projection.

Now assume J is an essential ideal, and suppose a, b ∈ I(D) satisfy (a − b)ι(h) = 0 for every
h ∈ J . By Hamana-regularity of ι(D) in I(D), we have |a−b| = supI(D){d ∈ D : 0 ≤ ι(d) ≤ |a−b|}.

But K := {d ∈ D : ι(d) ∈ 〈|a− b|〉I(D)} is a closed ideal of D with K ⊆ J⊥. Hence K = 0, so

|a− b| = 0.
Notice that if d ∈ J+

1 , then ι(d)P = ι(d). It follows that for every d ∈ J , ι(d)P = ι(d). By
part (i), P = I when J is an essential ideal. �

The following extension of Definition 2.13 will be useful.

Definition 3.5. Let (C,D) be an inclusion and B an algebra.

(1) A linear map ∆ : C → B is D-modular (or more simply modular) if for every x ∈ C and
d ∈ D,

∆(xd) = ∆(x)∆(d) and ∆(dx) = ∆(d)∆(x).

(2) A homomorphism θ : D → B is D-thick in B if for every non-zero element b ∈ B, the ideal
{d ∈ D : bθ(d) = 0}⊥ is a non-zero ideal of D.

When B is abelian, notice that the restriction of a D-modular map to D is a homomorphism.
The next lemma gives an example which will be used in the proof of Theorem 3.10.

Lemma 3.6. Let D be an abelian C∗-algebra and let (I(D), ι) be an injective envelope for D. Then
ι is D-thick in I(D).

Proof. Suppose b ∈ I(D) is non-zero. The Hamana regularity of I(D) ensures that there exists a

non-zero h ∈ D such that 0 ≤ ι(h) ≤ b∗b. If d ∈ D satisfies ι(d)b = 0, then supp(ι̂(d))∩ supp(b̂) = ∅.

Since supp(ι̂(h)) ⊆ supp(b̂), we get ι(dh) = 0, whence h ∈ {d ∈ D : ι(d)b = 0}⊥. �

Our interest in D-thick homomorphisms will be with the restrictions of D-modular maps to D.
The following lemma will be useful.

Lemma 3.7. Let (C,D) be a regular MASA inclusion, let B be a unital abelian Banach algebra
and let v ∈ N(C,D). For i = 1, 2, suppose ∆i : C → B are bounded D-modular maps such that
∆1|D = ∆2|D and set ι := ∆i|D. Then for every h ∈ Jv ∨Kv,

(11) ∆1(vh) = ∆2(vh).

In fact,

a) for every h ∈ Kv, ∆1(vh) = 0 = ∆2(vh);
b) for every h ∈ Jv, ∆1(vh) = ι(vh) = ∆2(vh).

Moreover, if ι is also D-thick in B, then ∆1 = ∆2.
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Proof. For (a), we consider two cases. First, if h ∈ 〈v∗v〉⊥, then for i = 1, 2,

∆i(vh) = lim
n→∞

∆i(v(v
∗v)1/nh) = 0.

Second, suppose that h ∈ {v∗dv − v∗vd : d ∈ D}. Then for some d ∈ D,

∆i(vh) = ∆i(v(v
∗dv − v∗vd)) = ∆i(vv

∗dv) −∆i(vv
∗vd)

= ι(dv∗v)∆i(v) −∆i(vv
∗v)ι(d) = ι(d)∆i(v)ι(v

∗v)− ι(d)∆i(vv
∗v) = 0.

Thus ∆i(vh) = 0 for all h in a generating set for Kv. Since ∆i are D-modular and bounded, we
obtain (a).

Next, suppose that h ∈ Jv . Then since vh ∈ D,

(12) ∆1(vh) = ι(vh) = ∆2(vh).

This gives (b).
Parts (a) and (b) imply that ∆1(vh) = ∆2(vh) for all h in a generating set for Jv ∨ Kv, so

boundedness and D-modularity of ∆i yields (11).
Now suppose that ι is D-thick in B and v ∈ N(C,D). Let b = ∆1(v) − ∆2(v) and choose any

h ∈ {d ∈ D : bι(d) = 0}⊥ ∩ (Jv ∨Kv). Since h ∈ Jv ∨Kv, we have bι(h) = ∆1(v)ι(h)−∆2(v)ι(h) =
∆1(vh) − ∆2(vh) = 0. Since h ∈ {d ∈ D : bι(d) = 0}⊥, we get h2 = 0. As D is abelian, h = 0.
This shows that {d ∈ D : bι(d) = 0}⊥ ∩ (Jv ∨ Kv) = (0). Since Jv ∨ Kv is an essential ideal,
{d ∈ D : bι(d) = 0}⊥ = (0). Since ι is D-thick in B, we see that b = 0. Hence ∆1(v) = ∆2(v).

Since this holds for every v ∈ N(C,D), regularity of (C,D) yields ∆1 = ∆2.
�

Lemma 3.7 has an interesting consequence for uniqueness of extensions of pure states on D to C,
which we now present. This result generalizes a result found in [31], however, the proof is rather
different. Notice that Theorem 3.8 holds when C is separable or when there is a countable subset
X ⊆ N(C,D) such that C is the C∗-algebra generated by D and X. We shall use Theorem 3.8 in
the proof of Theorem 9.2.

Theorem 3.8. Suppose (C,D) is a regular MASA inclusion and that N ⊆ N(C,D) is a countable
set such that the norm-closed D-bimodule generated by N is C. Let

U := {σ ∈ D̂ : σ has a unique state extension to C}.

Then U is dense in D̂.

Proof. For each v ∈ N , let Gv := {σ ∈ D̂ : σ|Jv∨Kv 6= 0}. Clearly Gv is open in D̂ and since Jv ∨Kv

is an essential ideal in D, Gv is dense in D̂. Baire’s theorem shows that

P :=
⋂

v∈N

Gv

is dense in D̂.
Let σ ∈ P and suppose for i = 1, 2, ρi are states on C such that ρi|D = σ. The Cauchy-Schwartz

inequality shows that ρi : C → C are D-modular maps.
Fix v ∈ N . Since σ ∈ Gv , we may find h ∈ Jv ∨Kv such that σ(h) = 1. By Lemma 3.7 we have

ρ1(v) = ρ1(v)σ(h) = ρ1(vh) = ρ2(vh) = ρ2(v)σ(h) = ρ2(v).

Since N generates C as a D-bimodule and ρi are D-modular, we see that ρ1 = ρ2. Hence P ⊆ U,
and the proof is complete. �

We now show that any regular MASA inclusion has a unique completely positive mapping E :
C → I(D) which extends the inclusion mapping of D into I(D).
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Lemma 3.9. Let (C,D) be an inclusion and (I(D), ι) an injective envelope of D. Let E : C → I(D)
be a pseudo-expectation for ι. Then E is D-modular.

Proof. Let ρ ∈ Î(D) and put σ = ρ ◦E. Then σ|D ∈ D̂, so the Cauchy-Schwartz inequality implies
that for every x ∈ C and d ∈ D, σ(xd) = σ(x)σ(d). Hence,

ρ(E(xd)) = σ(xd) = σ(x)σ(d) = ρ(E(x))ρ(E(d)) = ρ(E(x)E(d)).

As this holds for every ρ ∈ Î(D), we obtain E(xd) = E(x)E(d). The proof that E(dx) = E(d)E(x)
is similar. �

Theorem 3.10. Let (C,D) be a regular MASA inclusion, and let (I(D), ι) be an injective envelope
of D. Then there exists a unique pseudo-expectation E : C → I(D) for ι. Furthermore, suppose
v ∈ N(C,D). Then

a) E(vh) = ι(vh) for every h ∈ Jv;
b) E(vh) = 0 for every h ∈ Kv;
c) |E(v)|2 = ι(v∗v)P , where P := supI(D)(ι((Jv)

+
1 )).

Proof. The injectivity of I(D) guarantees the existence of a completely positive unital map E :
C → I(D) such that for every d ∈ D,

(13) E(d) = ι(d).

Lemma 3.7 and Lemma 3.6 imply that E is unique.
Now suppose that v ∈ N(C,D). Since E|D = ι, parts (a) and (b) follow from Lemma 3.7.

We turn now to (c). Observe that Kv ⊆ J⊥
v . Indeed Jv ⊆ 〈v∗v〉, so if h ∈ 〈v∗v〉⊥ then hJv = 0.

On the other hand, if d ∈ D and h = v∗dv− v∗vd, then for g ∈ Jv, we have hg = (v∗dv− v∗vd)g =
v∗dgv − v∗vdg = 0 because dg ∈ Jv . Thus hJv = 0 for every h in a generating set for Kv, so
Kv ⊆ J⊥

v .
Now let h ∈ Kv . By [20, Corollary 4.10], we have

ι(h)∗Pι(h) = ι(h)∗

[
sup
I(D)

ι((Jv)
+
1 )

]
ι(h) = sup

I(D)
ι(h∗(Jv)

+
1 h) = 0.

Since P is a projection, it follows that ι(h)P = 0. Hence ι(v∗v)Pι(h∗h) = 0. Next, by part (b), we
have for every h ∈ Kv, |E(v)|2ι(h∗h) = ι(h∗)E(v)∗E(v)ι(h) = ι(h∗)E(v)∗E(vh) = 0. Therefore, for
h ∈ Kv ,

(14) |E(v)|2ι(h∗h) = ι(v∗v)Pι(h∗h) = 0.

Since E(vh) = ι(vh) for every h ∈ Jv, we see that for h ∈ Jv,

(15) E(v∗)E(v)ι(h∗h) = E((vh)∗)E(vh) = ι(h∗v∗)ι(vh) = ι(v∗v)ι(h∗h) = ι(v∗v)Pι(h∗h).

Combining (14) and (15), we see that for every h ∈ Jv ∨Kv,

E(v)∗E(v)ι(h∗h) = ι(v∗v)Pι(h∗h).

Then E(v)∗E(v) = ι(v∗v)P by Lemma 3.4, so we have (c). �

The following “dual” to Theorem 3.10 is now easily established. Notice that in the context of

Theorem 3.10, when ρ ∈ Î(D), E#(ρ) = ρ ◦ E ∈ Mod(C,D).

Theorem 3.11. Let (C,D) be a regular MASA inclusion, let (I(D), ι) be an injective envelope for

D, and let E be the pseudo-expectation for ι. The map E# : Î(D) → Mod(C,D) is the unique

continuous map of Î(D) into Mod(C,D) such that for every ρ ∈ Î(D), E#(ρ)|D = ρ ◦ ι.
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Proof. Clearly E# has the stated property, so we need only prove uniqueness.

Suppose that ℓ is a continuous map of Î(D) into Mod(C,D) such that for every ρ ∈ Î(D),

ℓ(ρ)|D = ρ ◦ ι. For x ∈ C, define a function φx : Î(D) → C by φx(ρ) = ℓ(ρ)(x). Since ℓ is
continuous, φx is continuous. Hence there exists a unique element E1(x) ∈ I(D) such that φx
is the Gelfand transform of E1(x). Using the fact that Mod(C,D) ⊆ S(C), we find E1 is linear,
bounded, unital and positive. Since I(D) is abelian, E1 is completely positive. For d ∈ D we
have ρ(E1(d)) = ℓ(ρ)(d) = ρ(ι(d)). Therefore, E1|D = ι, so E1 is a pseudo-expectation for ι. By
Theorem 3.10, E1 = E, hence ℓ = E#.

�

Definition 3.12. Let (C,D) be a regular MASA inclusion, let (I(D), ι) be a C∗-envelope for D,
and let E be the (unique) pseudo-expectation for ι. Define

Ss(C,D) := {ρ ◦ E : ρ ∈ Î(D)}.

We shall call states belonging to Ss(C,D) strongly compatible states. Clearly, Ss(C,D) is a closed

subset of Mod(C,D). Observe that D̂ = {τ |D : τ ∈ Ss(C,D)}; this is because D̂ = {ρ◦ι : ρ ∈ Î(D)}.

Let r : Mod(C,D) → D̂ be the restriction map, r(ρ) = ρ|D. We now show that Ss(C,D) is the
unique minimal closed subset of Mod(C,D) for which r is onto. In a certain sense, this allows us
to determine Ss(C,D) without the use of the pseudo-expectation.

Theorem 3.13. Let (C,D) be a regular MASA inclusion and suppose F ⊆ Mod(C,D) is closed and

r(F ) = D̂. Then Ss(C,D) ⊆ F .
Suppose further that there exists a countable subset N ⊆ N(C,D) such that the norm-closed

D-bimodule generated by N is C and set

U(C,D) := {ρ ∈ Mod(C,D) : ρ|D has a unique state extension to C}.

Then

Ss(C,D) = U(C,D)
w-∗
.

Proof. Since F is closed and Mod(C,D) is compact, F is compact and Hausdorff. As Î(D) is
projective (in the category of compact Hausdorff spaces and continuous maps) and r maps F onto

D̂, there exists a continuous map ℓ : Î(D) → F such that ι# = r ◦ ℓ. Let ǫ : F → Mod(C,D)

be the inclusion map. Then ℓ′ := ǫ ◦ ℓ is a continuous map of Î(D) into Mod(C,D) such that
r ◦ ℓ′ = ι#. Theorem 3.11 shows that ℓ′ = E#. Therefore, the range of E# is contained in F , that
is, Ss(C,D) ⊆ F .

Suppose now that there is a countable subset N ⊆ N(C,D) which generates C as a D-bimodule.

Theorem 3.8 implies that D̂ = r(U(C,D)), so we have Ss(C,D) ⊆ U(C,D). To complete the proof,
observe that Ss(C,D) is closed and U(C,D) ⊆ Ss(C,D). �

The following result shows that, in the terminology of Section 4, each element of Ss(C,D) is a
compatible state.

Proposition 3.14. Let (C,D) be a regular MASA inclusion and let σ ∈ Ss(C,D). Then for every
v ∈ N(C,D),

|σ(v)|2 ∈ {0, σ(v∗v)}.

Proof. Let ρ ∈ Î(D) be such that σ = ρ ◦ E and suppose v ∈ N(C,D) is such that σ(v) 6= 0. Then
0 6= |ρ(E(v))|2, so by part (c) of Theorem 3.10, ρ(P ) 6= 0. By Lemma 3.4, P is a projection, so
ρ(P ) = 1. Thus, |ρ(E(v))|2 = ρ(ι(v∗v)) = ρ(E(v∗v)) = σ(v∗v). �
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Our next goal is Theorem 3.21 below, which shows that Ss(C,D) is an N(C,D)-invariant subset of
Mod(C,D). In the case that C is countably generated as a D-bimodule, this follows from the second
part of Theorem 3.13, but we have not found a proof in the general case using Theorem 3.13. The
fact that the left kernel of the pseudo-expectation is an ideal will follow easily from Theorem 3.21,
see Theorem 3.22.

Our route to Theorem 3.21 involves a study of the Gelfand support of E(v) for v ∈ N(C,D); we
also obtain a formula for the Gelfand transform of E(v). We begin with three lemmas on properties
of projective covers.

Lemma 3.15. Let X be a compact Hausdorff space and let (P, f) be a projective cover for X.

a) If G ⊆ X is an open set, then (f−1(G), f |
f−1(G)

) is a projective cover for G.

b) If Q ⊆ P is clopen, then f(Q)◦ is dense in f(Q) and Q = f−1(f(Q)◦).

Proof. Before beginning the proof, observe that if ι : C(X) → C(P ) is given by ι(d) = d ◦ f , then
(C(P ), ι) is an injective envelope for C(X).

a) Let Y := f−1(G). Then Y is compact, so f(Y ) is a closed subset of X which contains
G. Hence G ⊆ f(Y ). On the other hand, f−1(G) is a closed subset of P containing f−1(G), so
Y ⊆ f−1(G). Hence f(Y ) ⊆ G. Therefore (Y, f) is a cover for G.

Since P is projective, it is Stonean, and hence Y is clopen in P . Since clopen subsets of projective
spaces are projective, Y is projective. The proof of part (a) will be complete once we show that
(Y, f |Y ) is a rigid cover for G (see [17, Theorem 2.16]).

So suppose that h : Y → Y is continuous and f ◦ h = f |Y . Define h̃ : P → P by

h̃(t) =

{
h(t) if t ∈ Y

t if t /∈ Y .

Since Y is clopen in P , h̃ is continuous. Moreover, f ◦ h̃ = f , so by the rigidity of (P, f), we see

that h̃ is the identity map on P . Therefore h is the identity map on Y , which shows that (Y, f |Y )
is a rigid cover.

b) The case when Q = ∅ is trivial, so we assume Q is non-empty. Let

M := {d ∈ C(X) : 0 ≤ ι(d) ≤ χQ} and set G :=
⋃

d∈M

supp(d).

Then G is non-empty because χQ 6= 0 and (C(P ), ι) is Hamana regular. Notice that f−1(G) ⊆ Q:
indeed, if p ∈ f−1(G), then there exists d ∈ M such that f(p) ∈ supp(d), so 0 < d(f(p)) ≤ χQ(p),
whence p ∈ Q.

As P is extremally disconnected, W := f−1(G) is a clopen subset of P . We will show that
W = Q. Clearly W ⊆ Q. If Q \W 6= ∅, then Q \W is a clopen subset of P , so we may find a non-
zero d1 ∈ C(X) with 0 ≤ ι(d1) ≤ χQ\W ≤ χQ. But then d1 ∈ M, so supp(ι(d1)) ⊆ f−1(G) ⊆ W,
contradicting 0 ≤ ι(d1) ≤ χQ\W . Hence W = Q.

By part (a), (W,f |W ) is a cover for G. Thus, f(W ) = f(Q) = G. As f−1(G) ⊆ Q, we have
G ⊆ f(Q)◦, so that f(Q)◦ is dense in f(Q).

Finally, put W1 := f−1(f(Q)◦). Since G ⊆ f(Q)◦, we have Q = W ⊆ W1. Part (a) again shows

that (W1, f |W1) is a projective cover for f(Q)◦ = f(Q), so in particular, this cover is essential. The
inclusion map α of W into W1 satisfies f(α(W )) = f(Q). Because (W1, f |W1) is an essential cover
of f(Q), we conclude α is onto. Thus W =W1, and the proof of (b) is complete. �

We leave the proof of the following lemma to the reader.
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Lemma 3.16. Suppose that for i ∈ {1, 2}, Xi is a compact Hausdorff space and that φ : X1 →
X2 is a homeomorphism. Let (Ci, fi) be a projective cover for Xi. Then there exists a unique
homeomorphism Φ : C1 → C2 such that f2 ◦Φ = φ ◦ f1.

Our final lemma on projective covers is a strengthening of Lemma 3.16: rather than extending
a homeomorphism to the injective envelope, partial homeomorphisms are extended.

Lemma 3.17. Let (P, f) be a projective cover for the compact Hausdorff space X and suppose
h ∈ InvO(X) is a partial homeomorphism. Then there exists a unique partial homeomorphism
I(h) ∈ InvO(P ) such that:

a) dom(I(h)) = f−1(dom(h)), range(I(h)) = f−1(range(h)) and
b) h ◦ f = f ◦ I(h).

Proof. Let H1 = dom(h) and H2 = range(h). Set

T := {G ⊆ H : G is open in X and G ⊆ H1}.

Let G ∈ T. Lemma 3.15 shows that (f−1(G), f) and (f−1(h(G)), f) are projective covers for G

and h(G). By Lemma 3.16, there exists a unique homeomorphism hG : f−1(G) → f−1(h(G)) such
that

h ◦ f |
f−1(G)

= f ◦ hG.

We now let I(h) be the inductive limit of {hG}G∈T. Here is an outline.
Since ⋃

G∈T

G = H1 =
⋃

G∈T

G we have
⋃

G∈T

f−1(G) = f−1(H1) =
⋃

G∈T

f−1(G).

Let G1, G2 ∈ T and suppose G1 ∩G2 6= ∅. Put Q := f−1(G1) ∩ f−1(G2). Then Q is a clopen set

in P , so by Lemma 3.15, Q = f−1(f(Q)◦). Note that f(Q)◦ ∈ T. Hence

h ◦ f |Q = h ◦ f |
f−1(f(Q)◦)

= f ◦ hf(Q)◦ .

Thus, for i = 1, 2,

f ◦ hGi |Q = h ◦ f |Q.

This means that given p ∈ P , we may define I(h)(p) = hG(p) where G is any element of T containing
p.

Clearly I(h) satisfies (a) and (b). If H is another such map, then for every G ∈ T, the restrictions

of H and I(h) to f−1(G) are both equal to hG; this gives uniqueness of I(h). The continuity and
bijectivity of I(h) are left to the reader.

�

When (I(D), ι) is an injective envelope for D, (Î(D), ι#|
Î(D)

) is a projective cover for D̂. In the

following technical result, we will simply write ι# instead of ι#|
Î(D)

.

Proposition 3.18. Suppose that (C,D) is a regular MASA inclusion and v ∈ N(C,D). Let (I(D), ι)
be an injective envelope for D, and let E be the pseudo-expectation for ι. Then

(16) (ι#)−1((fixβv)
◦) ⊆ supp(Ê(v)) ⊆ (ι#)−1(fixβv) and (ι#)−1((fix βv)◦) = supp(Ê(v)).

Moreover, if ρ ∈ (ι#)−1((fix βv)
◦), then for any d ∈ Jv with ρ(ι(d)) 6= 0,

(17) ρ(E(v)) =
ρ(ι(vd))

ρ(ι(d))
.
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Proof. Suppose that ρ ∈ Î(D) and ρ ◦ ι ∈ (fixβv)
◦. Then ρ(ι(v∗v)) 6= 0 (as fixβv ⊆ dom(βv) =

supp(v̂∗v)). By Proposition 3.2 there exists d ∈ Jv such that ρ(ι(d)) 6= 0. Since vd ∈ D,

0 6= ρ(ι(d∗d))ρ(ι(v∗v)) = ρ(ι(d∗v∗vd)) = |ρ(ι(vd))|2 .

Hence

ρ(E(v)) =
ρ(E(v))ρ(ι(d))

ρ(ι(d))
=
ρ(E(vd))

ρ(ι(d))
=
ρ(ι(vd))

ρ(ι(d))
6= 0.

Thus we obtain (17) and also (ι#)−1((fixβv)
◦) ⊆ supp(Ê(v)).

We next show

(18) supp(Ê(v)) ⊆ (ι#)−1(fixβv).

Suppose that ρ ∈ supp(Ê(v)). By Proposition 3.14, 0 6= |ρ(E(v))|2 = ρ(E(v∗v)) = ρ(ι(v∗v)).

Hence ρ ◦ ι ∈ dom(βv). Let d ∈ D be such that d ≥ 0 and ρ(ι(d)) 6= 0. Then ρ(E(d1/2v)) =

ρ(ι(d))1/2ρ(E(v)) 6= 0. Then

(19) βv(ρ ◦ ι)(d) =
ρ(ι(v∗dv))

ρ(ι(v∗v))
=
ρ(E(v∗dv))

ρ(ι(v∗v))
=
ρ(E((d1/2v)∗(d1/2v)))

ρ(ι(v∗v))
=

|ρ(E(d1/2v))|2

ρ(ι(v∗v))
6= 0.

(The last equality in (19) follows from Proposition 3.14.) As (19) holds for every d ∈ D+ with
ρ(ι(d)) 6= 0, we conclude that βv(ρ ◦ ι) = ρ ◦ ι. This gives (18).

The first paragraph of the proof gives (ι#)−1((fixβv)◦) ⊆ supp(Ê(v)). Let

Q := supp(Ê(v)) \ (ι#)−1((fixβv)◦) and I := {d ∈ D : supp ι̂(d) ⊆ Q}.

Then Q is a clopen set, and I is a closed ideal in D.
We claim that I ⊆ (Jv ∨Kv)

⊥. To see this, fix d ∈ I. Proposition 3.2 shows that for any h ∈ Jv ,

supp(ι̂(h)) ⊆ (ι#)−1((fix(βv)
◦)); thus dh = 0 for any h ∈ Jv. Now we show dKv = 0. Suppose

h ∈ Kv. By Theorem 3.10(b), E(v)ι(h) = 0, so ι̂(h) vanishes on supp(Ê(v)). Continuity implies

that ι̂(h) vanishes on Q as well. Therefore, ι(d)ι(h) = 0, so dh = 0. As dh = 0 for all h belonging
to a generating set for Jv ∨Kv, d ∈ (Jv ∨Kv)

⊥. The claim follows.
As Jv ∨Kv is an essential ideal, (Jv ∨Kv)

⊥ = (0), whence I = (0). The Hamana regularity of
(I(D), ι) now implies that Q = ∅, which completes the proof. �

Notation 3.19. Let (C,D) be a regular MASA inclusion, and let v ∈ N(C,D). Define v̂ :
(fixβv)

◦ → C as follows. Given σ ∈ (fixβv)
◦, choose d ∈ Jv so that σ(d) 6= 0 and set

v̂(σ) =
σ(vd)

σ(d)
.

Proposition 3.18 shows this is well-defined, and it is easy to show that v̂ is a bounded continuous

function on (fixβv)
◦. Extend v̂ to a bounded Borel function on D̂ by defining it to be zero off

(fixβv)
◦; we denote this extension by v̂ as well.

Remark 3.20. Take (I(D), ι) to be the Dixmier algebra of D̂ and ι to be the map which takes

d ∈ D to the equivalence class of d̂ in I(D). Then E(v) is the equivalence class of the bounded
Borel function v̂ in the Dixmier algebra.

Theorem 3.21. Suppose that (C,D) is a regular MASA inclusion. Then Ss(C,D) is a compact
N(C,D)-invariant subset of Mod(C,D) and the restriction mapping Ss(C,D) ∋ ρ 7→ ρ|D is a con-
tinuous surjection.

22



In fact, given v ∈ N(C,D) and ρ ∈ Ss(C,D) such that ρ(v∗v) 6= 0, let τ ∈ Î(D) satisfy ρ = τ ◦E.

Then β̃v(ρ) = I(βv)(τ) ◦ E.

Proof. As noted following Definition 3.12,Ss(C,D) is a closed subset of Mod(C,D) and r(Ss(C,D)) =

D̂. So Ss(C,D) is compact, and the weak-∗-weak-∗ continuity of r is clear.

Now let ρ ∈ Ss(C,D) and fix τ ∈ Î(D) so that ρ = τ ◦ E. Let v ∈ N(C,D) be such that
ρ(v∗v) 6= 0. Then τ(E(v∗v)) = τ(ι(v∗v)) 6= 0, so Lemma 3.17 shows that τ ∈ dom(I(βv)).

For λ ∈ dom(I(βv)), define states on C by

µλ(x) =
λ(E(v∗xv))

λ(ι(v∗v))
and µ′λ(x) = I(βv)(λ)(E(x)).

(Observe that µτ = β̃v(ρ).) Note that

µλ|D = βv(λ ◦ ι) = µ′λ|D.

Hence for d ∈ D and x ∈ C, we have

µλ(x)βv(λ ◦ ι)(d) = µλ(xd) and µ′λ(x)βv(λ ◦ ι)(d) = µ′λ(xd).

In particular, if w ∈ N(C,D) and d ∈ Jw we have

(20) µλ(w)βv(λ ◦ ι)(d) = µλ(wd) = βv(λ ◦ ι)(wd) = µ′λ(wd) = µ′λ(w)βv(λ ◦ ι)(d).

To complete the proof, it suffices to show that for every w ∈ N(C,D), µτ (w) = µ′τ (w). So fix
w ∈ N(C,D). We show that µτ (w) = µ′τ (w) by proving the following two statements:

(1) if µ′τ (w) 6= 0, then µτ (w) = µ′τ (w); and
(2) if µτ (w) 6= 0, then µ′τ (w) = µτ (w).

If µ′τ (w) 6= 0, then I(βv)(τ) ∈ supp(Ê(w)), so Proposition 3.18 implies that there exists a net

ρα ∈ (ι#)−1((fixβw)
◦) such that ρα → I(βv)(τ). As range(I(βv)) is an open subset of Î(D), we may

assume that ρα ∈ range(I(βv)) for every α. Put τα = I(βv)
−1(ρα), so (τα)α is a net in dom(I(βv))

such that τα → τ . Since ρα◦ι ∈ (fixβw)
◦, given α we may find dα ∈ Jw such that 0 6= ρα(ι(dα)). But

ρα(ι(dα)) = I(βv)(τα)(ι(dα)) = βv(τα ◦ ι)(dα). Taking λ = τα in (20) shows that µτα(w) = µ′τα(w).
Continuity of the maps λ 7→ µλ and λ 7→ µ′λ gives µτ (w) = µ′τ (w).

Turning to (2), suppose µτ (w) 6= 0. Then τ ∈ supp( ̂E(v∗wv)), so there exists a net τα ∈
(ι#)−1((fix βv∗wv)

◦) with τα → τ . Then τα ◦ ι ∈ dom(βv∗wv) ⊆ domβv . Thus, for a given α, we may
find a neighborhood N of τα ◦ ι with N ⊆ (fixβv∗wv)

◦ ∩ dom(βv). Now for each y ∈ N , we have
βv∗wv(y) = y, so βw((βv)(y)) = βv(y). Hence βv(N) ⊆ fix(βw). Therefore βv(τα ◦ ι) ∈ fix(βw)

◦.
So if d ∈ Jw satisfies βv(τα ◦ ι)(d) 6= 0, then (20) gives µ′τα(w) = µτα(w). Continuity again gives
µ′τ (w) = µτ (w).

Thus both (1) and (2) hold, and the proof is complete. �

We now show the left kernel of the pseudo-expectation on a regular MASA inclusion is an ideal
which is the unique ideal which is maximal with respect to being disjoint from D.

Theorem 3.22. Let (C,D) be a regular MASA inclusion. Then the left kernel of the pseudo-
expectation E,

L(C,D) := {x ∈ C : E(x∗x) = 0}

is an ideal of C such that L(C,D) ∩D = (0).
Moreover, if K ⊆ C is an ideal such that K ∩D = (0), then K ⊆ L(C,D).

Proof. Theorem 3.21 shows that Ss(C,D) satisfies the hypotheses of Proposition 2.16. In the
notation of Proposition 2.16, we have L(C,D) = KSs(C,D), so L(C,D) is a norm-closed two-sided
ideal of C. If x ∈ L(C,D) ∩D, then 0 = E(x∗x) = ι(x∗x). As ι is one-to-one, x = 0.
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Suppose now that K ⊆ C is an ideal with K∩D = (0). Let C1 = C/K, and let q : C → C1 be the
quotient map. Since K ∩D = (0), q|D is faithful, so we may regard D as a subalgebra of C1. Let
F := {ρ ◦ q : ρ ∈ Mod(C1,D)}. Then F is a closed subset of Mod(C,D), and the restriction map,

f ∈ F 7→ f |D maps F onto D̂. By Theorem 3.13, Ss(C,D) ⊆ F . Hence every element of Ss(C,D)
annihilates K, so K ⊆ L(C,D). �

The ideal L(C,D) behaves reasonably well with respect to certain regular ∗-homomorphisms, as
the next result shows.

Corollary 3.23. Suppose for i = 1, 2 that (Ci,Di) are regular MASA inclusions, and that α :
(C1,D1) → (C2,D2) is a regular ∗-homomorphism such that α|D is one-to-one. Then

(21) {x ∈ C1 : α(a) ∈ L(C2,D2)} ⊆ L(C1,D1).

Proof. The set {x ∈ C1 : α(x) ∈ L(C2,D2)} is an ideal of C1 whose intersection with D1 is
trivial. �

Remark 3.24. We expect that equality holds in (21) if for every 0 ≤ h ∈ D2, h = supD2
{α(d) :

d ∈ D1 and 0 ≤ α(d) ≤ h}. Also, it would not be surprising if this condition characterized equality
in (21).

Since every Cartan inclusion (C,D) satisfies L(C,D) = (0), we make the following definition.

Definition 3.25. A virtual Cartan inclusion is a regular MASA inclusion such that L(C,D) = (0).

4. Compatible States

Since the extension property does not always hold for an inclusion (C,D), we identify a useful
class of states in Mod(C,D), which we call D-compatible states.

To motivate the definition, observe that when (C,D) is a regular EP inclusion, the only way to

extend a pure state σ ∈ D̂ to C is via composition with the expectation: ρ := σ ◦E. Then the GNS
representation (πρ,Hρ) arising from ρ has the property that for any v ∈ N(C,D) either I +Lρ and
v + Lρ are orthogonal in the Hilbert space Hρ, or one is a scalar multiple of the other, according
to whether or not the Gelfand transform of E(v) is zero in a neighborhood of σ. Furthermore,
the techniques used in the proof of [10, Proposition 5.4] show that πρ(D)′′ is an atomic MASA in
B(Hρ) and also that for every v ∈ N(C,D), v + Lρ is an eigenvector for πρ(D). The intersection J

of the kernels of such representations is the left kernel of the expectation E, D ∩ J = (0), and the
quotient of (C,D) by J yields a C∗-diagonal with the same coordinate system as (C,D), see [10,
Theorem 4.8].

We shall define the set of compatible states to be those states ρ on C for which the vectors
{v+Lρ : v ∈ N(C,D)} form an orthogonal set of vectors. These states have many of the properties
listed in the previous paragraph, but have the advantage of not needing the extension property or
a conditional expectation for their definition. Here is the formal definition.

Definition 4.1. Let (C,D) be an inclusion.

(1) A state ρ on C is called D-compatible if for every v ∈ N(C,D),

|ρ(v)|2 ∈ {0, ρ(v∗v)}.

When the context is clear, we will simply use the term compatible state instead of D-
compatible state.

(2) We will use S(C,D) to denote the set of all D-compatible states on C. Topologize S(C,D)
with the relative weak-∗ topology.
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(3) For ρ ∈ S(C,D), let ∆ρ := {v ∈ N(C,D) : ρ(v) 6= 0}, and Λρ := {v ∈ N(C,D) : ρ(v∗v) > 0}.
Define a relation ∼ρ on Λρ by (v,w) ∈∼ρ if and only if v∗w ∈ ∆ρ. (We shall prove that ∼ρ

is an equivalence relation momentarily, and then will simply write v ∼ρ w.)

Remarks 4.2.

(1) When (C,D) is a regular MASA inclusion, Proposition 3.14 shows that Ss(C,D) ⊆ S(C,D).
(2) As |ρ(x)|2 ≤ ρ(x∗x) for any state ρ ∈ C# and any x ∈ C, we see that D-compatible states

satisfy an extremal property relative to the normalizers for D, and one might expect an
inclusion relationship between compatible states and pure states. However, there is not.
Example 7.17 gives an example of a Cartan inclusion (C,D) and element of S(C,D) which is
not a pure state on C, while Example 7.16 gives an example of a Cartan inclusion (C,D) and
a pure state ρ on C such that ρ ∈ Mod(C,D), yet ρ /∈ S(C,D). As we shall see momentarily,
S(C,D) ⊆ Mod(C,D). Thus no such inclusion relationship exists.

(3) For general inclusions, it is possible that S(C,D) = ∅ (see Theorem 4.8).
(4) The following simple observation will be useful during the sequel: for i = 1, 2, let (Ci,Di)

be inclusions and suppose that α : C1 → C2 is a regular and unital ∗-homomorphism. Then

α#(S(C2,D2)) ⊆ S(C1,D1).

Here are some properties of elements of S(C,D) which hold for any inclusion.

Proposition 4.3. Let (C,D) be an inclusion and let ρ ∈ S(C,D). The following statements hold.

(1) Suppose v ∈ ∆ρ. Then for every x ∈ C,

ρ(vx) = ρ(v)ρ(x) = ρ(xv).

(2) The restriction of ρ to D is a multiplicative linear functional on D.
(3) Suppose v ∈ ∆ρ. Then for every x ∈ C,

ρ(v∗xv) = ρ(v∗v)ρ(x).

(4) If v1, v2 ∈ Λρ and (v1, v2) ∈∼ρ, then

|ρ(v∗1v2)|
2 = ρ(v∗1v1)ρ(v

∗
2v2).

Moreover, ∼ρ is an equivalence relation on Λρ.
(5) S(C,D) is an N(C,D)-invariant subset of Mod(C,D).
(6) If v ∈ Λρ, then v + Lρ is an eigenvector for πρ(D); in particular, for every d ∈ D,

πρ(d)(v + Lρ) =
ρ(v∗dv)

ρ(v∗v)
v + Lρ.

(7) The set S(C,D) is weak-∗ closed in C# and the restriction mapping, ρ ∈ S(C,D) 7→ ρ|D,

is a weak-∗–weak-∗ continuous mapping of S(C,D) into D̂.

Proof. Statement (1). Since ρ ∈ S(C,D), an easy calculation yields v − ρ(v)I ∈ Lρ. But Lρ is a
left ideal and Lρ ⊆ ker ρ. So for x ∈ C, we have ρ(x(v − ρ(v)I)) = 0. So ρ(xv) = ρ(x)ρ(v). As

ρ(v∗) = ρ(v) 6= 0, a similar argument shows that 0 = ρ((v − ρ(v)I)x). So part (1) holds.
Statement (2). Since D ⊆ N(C,D), this follows from part (1) and continuity of ρ.
Statement (3). This follows from part (1) and the fact that ∆ρ is closed under the adjoint

operation.
Statement (4). Let σ = ρ|D and for i = 1, 2 put σi = βvi(σ). Then σ1 = σ2 by statement (3) and

Proposition 2.4. Therefore, since ρ(v∗1v2) 6= 0, we have

|ρ(v∗1v2)|
2 = ρ(v∗2v1v

∗
1v2) = σ2(v1v

∗
1)σ(v

∗
2v2) = σ1(v1v

∗
1)σ(v

∗
2v2) = ρ(v∗1v1)ρ(v

∗
2v2).
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Clearly the relation ∼ρ is reflexive and symmetric on Λρ. For i = 1, 2, 3, suppose vi ∈ Λρ,
(v1, v2) ∈∼ρ and (v2, v3) ∈∼ρ. The equality verified in the previous paragraph shows that in Hρ,

| 〈v1 + Lρ, v2 + Lρ〉ρ |
2 = ‖v1 + Lρ‖

2
ρ ‖v2 + Lρ‖

2
ρ. Hence there exists a non-zero scalar t such that

tv1 + Lρ = v2 + Lρ. Similarly, there exists a non-zero scalar s such that v2 + Lρ = sv3 + Lρ. So
{v1 +Lρ, v3 +Lρ} is a linearly dependent set of non-zero linearly vectors in Hρ. Thus ρ(v

∗
1v3) 6= 0,

whence (v1, v3) ∼ρ .
Statement (5). Let v ∈ Λρ. For w ∈ N(C,D), we claim that |ρ(w∗v)|2 ∈ {0, ρ(w∗w)ρ(v∗v)}. If

ρ(w∗v) 6= 0, then as |ρ(w∗v)|2 ≤ ρ(w∗w)ρ(v∗v), we find that w ∈ Λρ and w ∼ρ v, so the claim holds
by statement (4). Hence

|βv(ρ)(w)|
2 =

|ρ(v∗(wv))|2

ρ(v∗v)2
∈

{
0,
ρ(v∗v)ρ(v∗w∗wv)

ρ(v∗v)2

}
= {0, βv(ρ)(w

∗w)},

so βv(ρ) ∈ S(C,D).

Statement (6). Suppose v ∈ N(C,D) and that ρ(v∗v) 6= 0. For d ∈ D, let σ1(d) =
ρ(v∗dv)

ρ(v∗v)
. Then

σ1 ∈ D̂, and for d ∈ D, we have

‖(πρ(d)− σ1(d)I)v + Lρ‖
2
ρ = ρ(v∗(d− σ1(d)I)

∗(d− σ1(d)I)v)

= σ1((d− σ1(d)I)
∗(d− σ1(d)I))ρ(v

∗v) = 0.

We conclude that πρ(d)v+Lρ = σ1(d)v+Lρ, so v+Lρ is an eigenvector for πρ(D) and statement (6)
holds.

Statement (7). Suppose (ρλ)λ∈Λ is a net in S(C,D) and ρλ converges weak-∗ to ρ ∈ C#. Let
v ∈ N(C,D). If ρ(v) 6= 0, then for large enough λ, ρλ(v) 6= 0. Hence |ρ(v)|2 = limλ |ρλ(v)|

2 =
limλ ρλ(v

∗v) = ρ(v∗v). It follows that ρ ∈ S(C,D), so S(C,D) is weak-∗ closed. The continuity of
the restriction mapping is obvious.

�

Remark 4.4. Statement (1) says that if v ∈ ∆ρ, then v ∈ Mρ, where Mρ = {x ∈ C : ρ(xy) =
ρ(yx) = ρ(x)ρ(y) ∀ y ∈ C}, see [2]. Also, if B is the closed linear span of ∆ρ, then B is a C∗-algebra
because ∆ρ is closed under multiplication. Clearly D ⊆ B, so that (B,D) is an inclusion enjoying
the properties of regularity or MASA inclusion when (C,D) has the same properties.

We turn now to the issue of existence of compatible states. When (C,D) is a regular MASA

inclusion, Theorem 3.21, shows that every σ ∈ D̂ extends to an element of Ss(C,D). Applying
Proposition 3.14, we see that compatible states exist in abundance for regular MASA inclusions.
We record this fact as a theorem.

Theorem 4.5. Let (C,D) be a regular MASA inclusion. If σ ∈ D̂, there exists ρ ∈ S(C,D) such
that ρ|D = σ. Moreover, ρ may be chosen so that ρ ∈ Ss(C,D).

The following result summarizes what we know regarding the existence of compatible states when
the hypothesis of regularity in Theorem 4.5 is weakened. Notice that in both parts of the following
result, a conditional expectation is present.

Theorem 4.6. Suppose (C,D) is an inclusion.

a) If (C,D) is a MASA inclusion and there exists a conditional expectation E : C → D, then

E#|
D̂

is a continuous one-to-one map of D̂ into S(C,D).

b) When (C,D) has the extension property (but is not necessarily regular), then E#|
D̂

is a

homeomorphism of D̂ onto S(C,D).
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Proof. a) Since E is onto, E# is injective and continuous. We must show that E# carries D̂ into
S(C,D).

Let σ ∈ D̂ and set ρ = σ ◦ E. Suppose v ∈ N(C,D), and ρ(v) 6= 0. By the Cauchy-Schwartz

inequality, ρ(vv∗) 6= 0. The definition of ρ shows E(v) 6= 0. Let x :=
v∗E(v)

ρ(vv∗)
.

We claim that x commutes with D. This is easy to see when v ∈ I(C,D). Since D is a MASA,

Proposition 2.2 gives N(C,D) = I(C,D). A continuity argument now establishes the claim.
Therefore, x ∈ D. Hence ρ(v)ρ(x) = ρ(vx) = ρ(vv∗E(v)ρ(vv∗)−1) = ρ(v), so that ρ(x) = 1.

Since vx ∈ D we obtain,

|ρ(v)|2 = |ρ(vx)|2 = ρ(x∗v∗vx) = ρ(x∗)ρ(v∗v)ρ(x) = ρ(v∗v).

We conclude that ρ ∈ S(C,D), as desired.
b) Now suppose that (C,D) has the extension property. If ρ ∈ S(C,D), put σ = ρ|D. Then

σ ∈ D̂. By the extension property, we have ρ = σ ◦ E, so ρ = E#(σ), whence E#|
D̂

is onto. If

E#(σ1) = E#(σ2), then the extension property yields σ1 = σ2. So E
# is a continuous bijection of

D̂ onto S(C,D). Since D̂ and S(C,D) are both compact and Hausdorff, E#|
D̂
is a homeomorphism.

�

Theorem 4.7. Let (C,D) be a regular inclusion (we do not assume D is a MASA in C). The
following statements hold.

i) Suppose (C1,D1) is a regular MASA inclusion and α : (C,D) → (C1,D1) is a regular and
unital ∗-homomorphism. Then α# maps Ss(C1,D1) into S(C,D).

ii) If the relative commutant Dc of D in C is abelian, then Ss(C,D
c) ⊆ S(C,D) and the

restriction map ρ ∈ Ss(C,D
c) 7→ ρ|D, is a weak-∗–weak-∗ continuous mapping of Ss(C,D

c)

onto D̂.

Proof. We have already observed in Remark 4.2(4) that α# carries S(C1,D1) into S(C,D). As
Ss(C1,D1) ⊆ S(C1,D1), the first statement holds.

Now suppose that Dc is abelian. Lemma 2.3 shows that (C,Dc) is a regular MASA inclusion

and that the identity mapping of C onto itself is regular. By part (i), Id# carries Ss(C,D
c) into

S(C,D); thus Ss(C,D
c) ⊆ S(C,D). As any element of D̂ can be extended to an element of D̂c, we

see that the restriction map is onto. Part (7) of Proposition 4.3 gives the weak-∗ continuity.
�

We turn now to a result which shows that there are inclusions with few compatible states. In
fact, some inclusions have no compatible states. This result applies when the relative commutant
of D in C is all of C, e.g. (C,CI). The result shows that when N(C,D) is too large, it may happen
that S(C,D) is empty. For example, when C is a unital simple C∗-algebra with dim(C) > 1, then
S(C,CI) = ∅.

Theorem 4.8. Let (C,D) be an inclusion and let U(C) be the unitary group of C. Assume that
U(C) ⊆ N(C,D). Then (C,D) is regular and S(C,D) is the set of all multiplicative linear functionals
on C.

Proof. Since span(U(C)) = C, (C,D) is a regular inclusion. As every multiplicative linear functional
on C is a compatible state, we need only prove that every element of S(C,D) is a multiplicative
linear functional.

Fix ρ ∈ S(C,D). Then for every unitary U ∈ C we have ρ(U) ∈ {0} ∪ T. Let π be a universal
representation of C, and identify C## with the von Neumann algebra π(C)′′. Also, regard C as a
subalgebra of C##. Let ρ## denote the normal state on C## obtained from ρ. By [33, II.4.11], every
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unitary in C## is the strong-∗ limit of a net of unitaries in C. Since ρ## is normal, ρ##(W ) ∈ {0}∪T
for every unitary W ∈ C##.

Let P be a projection in C##. We shall show that ρ##(P ) ∈ {0, 1}. We argue by contradiction.
Suppose that 0 < ρ##(P ) < 1. Then 0 < |ρ##(P ) + iρ##(I − P )| < 1. Put W = P + i(I − P ).
ThenW is a unitary belonging to C##, and therefore we may find a net Uα of unitaries in C so that
Uα converges strong-∗ to W . But then |ρ(Uα)| → |ρ##(W )| ∈ (0, 1). This implies that there exists
a unitary U ∈ C such that |ρ(U)| ∈ (0, 1), which is a contradiction. Therefore ρ##(P ) ∈ {0, 1} for
every projection P ∈ C##.

Now let P,Q ∈ C## be projections. We claim that ρ##(PQ) = ρ##(P )ρ##(Q). By the Cauchy-
Schwartz inequality, |ρ##(PQ)| ≤ ρ##(P )ρ##(Q), so that ρ##(PQ) = 0 if 0 ∈ {ρ##(P ), ρ##(Q)}.
Suppose then that ρ##(P ) = ρ##(Q) = 1. Since 2P − I and 2Q− I are unitaries in C##, we may
find nets of unitaries uα and vα in C so that uα and vα converge ∗-strongly to 2P − I and 2Q − I
respectively. Both ρ(uα) and ρ(vα) are eventually non-zero because

lim ρ(uα) = ρ##(2P − I) = 1 = ρ##(2Q− I) = lim ρ(vα).

As multiplication on bounded subsets of C## is jointly continuous in the strong-∗ topology, uαvα
converges strongly to (2P − I)(2Q− I). By Proposition 4.3(1),

ρ##((2P − I)(2Q− I)) = lim ρ(uαvα) = lim ρ(uα)ρ(vα) = ρ##(2P − I)ρ##(2Q− I) = 1.

On the other hand, a calculation shows that

ρ##((2P − I)(2Q− I)) = 4ρ##(PQ)− 3.

Combining these equalities gives ρ##(PQ) = 1, as desired. The claim follows.
Let X =

∑n
j=1 λjPj and Y =

∑n
j=1 µjQj be linear combinations of projections {Pj}

n
j=1 and

{Qj}
n
j=1 in C##. It follows from the previous paragraph that ρ##(XY ) = ρ##(X)ρ##(Y ). Since

any von Neumann algebra is the norm closure of the span of its projections, ρ## is multiplicative
on C##. It then follows that ρ is multiplicative on C.

�

We now turn to the representations arising from states in S(C,D). We begin with a simple
lemma concerning states on regular inclusions, whose proof we leave to the reader.

Lemma 4.9. Let (C,D) be a regular inclusion and suppose that ρ is a state on C. Then

span{v + Lρ : v ∈ N(C,D), ρ(v∗v) > 0}

is norm-dense in Hρ.

Proposition 4.10. Let (C,D) be a regular inclusion, let ρ ∈ S(C,D), and let T ⊆ Λρ be chosen
so that for every v ∈ T , ρ(v∗v) = 1 and T contains exactly one element from each ∼ρ equivalence
class. Then the following statements hold.

(1) {v + Lρ : v ∈ T} is an orthonormal basis for Hρ.
(2) For v ∈ T , let Kv := {ξ ∈ Hρ : πρ(d)ξ = ρ(v∗dv)ξ for all d ∈ D} and let σ = ρ|D. Then

Kv = span{w + Lρ : w ∈ T and βw(σ) = βv(σ)}.
(3) For v ∈ T , let Pv be the orthogonal projection of Hρ onto Kv. Then Pv is a minimal

projection in πρ(D)′′ and
∨

v∈T Pv = I.
(4) πρ(D)′′ is an abelian and atomic von Neumann algebra.

Proof. Statement (1). If v,w ∈ T are distinct, then ρ(v∗w) = 0, so that {v + Lρ : v ∈ T} is
an orthonormal set. Part (4) of Proposition 4.3 and the Cauchy-Schwartz inequality show that
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if v ∈ T , and w ∈ Λρ is such that v ∼ρ w, then w + Lρ ∈ span{v + Lρ}. This, together with
Lemma 4.9, shows that

span{v + Lρ : v ∈ T} = span{v + Lρ : v ∈ Λρ} = span{v + Lρ : v ∈ N(C,D)} = Hρ.

Thus {v + Lρ : v ∈ T} is an orthonormal basis for Hρ.
Statement (2). If ξ ∈ span{w + Lρ : βw(σ) = βv(σ)}, Part (6) of Proposition 4.3 implies that

ξ ∈ Kv. For the opposite inclusion, suppose ξ ∈ Kv. Then for w ∈ T and d ∈ D we have

βv(σ)(d) 〈ξ, w + Lρ〉 = 〈πρ(d)ξ, w + Lρ〉 = 〈ξ, πρ(d
∗)(w + Lρ)〉 = βw(ρ)(d) 〈ξ, w + Lρ〉 .

Hence if 〈ξ, w + Lρ〉 6= 0, then βv(σ) = βw(σ). This yields ξ ∈ span{w + Lρ : w ∈ T and βw(σ) =
βv(σ)}.

Statement (3). First note that for v ∈ T , v + Lρ ∈ Kv; thus, since {v + Lρ : v ∈ T} is an
orthonormal basis for Hρ, we obtain

∨
v∈T Pv = I.

Let X ∈ πρ(D)′ and ξ ∈ Kv. Then for d ∈ D,

πρ(d)Xξ = Xπρ(d)ξ = ρ(v∗dv)Xξ.

Therefore Xξ ∈ Kv, showing that Kv is an invariant subspace for X. As this holds for every
X ∈ πρ(D)′, we conclude that Pv ∈ πρ(D)′′.

Let v ∈ T and suppose that Q ∈ πρ(D)′′ is a projection with 0 ≤ Q ≤ Pv. For all d ∈ D we have
πρ(d)Pv = βv(σ)(d)Pv = 〈πρ(d)(v + Lρ), v + Lρ〉Pv. The Kaplansky Density Theorem shows that
for every X ∈ πρ(D)′′ we have XPv = 〈X(v + Lρ), v + Lρ〉Pv ∈ CPv. Since Q commutes with Pv ,
QPv is a projection; hence QPv ∈ {0, Pv}, so Pv is a minimal projection in πρ(D)′′.

Statement (4). This follows from statement (3).
�

The following result shows that elements of S(C,D) arise from regular representations π of
(C,D), which can be taken so that π(D)′′ is atomic. For vectors h1, h2 in a Hilbert space H we use
the notation h1h

∗
2 for the rank-one operator h 7→ 〈h, h2〉h1.

Theorem 4.11. Let (C,D) be a regular inclusion. The following statements hold.

i) Let ρ ∈ S(C,D). and let

Aρ := {(v + Lρ)(v + Lρ)
∗ : v ∈ N(C,D)}′′ ⊆ B(Hρ).

Then Aρ is an atomic MASA in B(Hρ) and πρ : (C,D) → (B(Hρ),Aρ) is a regular ∗-
homomorphism.

ii) Conversely, suppose π : C → B(H) is a regular ∗-homomorphism with π(D)′′ a (not neces-
sarily atomic) MASA in B(H), and let E : B(H) → π(D)′′ be any conditional expectation.
Then for any pure state σ of π(D)′′, σ ◦ E ◦ π ∈ S(C,D).

Proof. For the first statement, choose T as in the statement of Proposition 4.10. For v ∈ N(C,D),
we have v + Lρ = 0 if v /∈ Λρ; and if v + Lρ 6= 0, then there exists w ∈ T such that v ∼ρ w, so
(v+Lρ)(v +Lρ)

∗ ∈ C(w+Lρ)(w+Lρ)
∗. Since B := {w+Lρ : w ∈ T} is an orthonormal basis for

Hρ, we see that Aρ is an atomic MASA in B(Hρ).
We now show that πρ is a regular homomorphism. Let v ∈ N(C,D) and let w ∈ T . Then

πρ(v)(w +Lρ)(w +Lρ)
∗πρ(v)

∗ = (vw +Lρ)(vw +Lρ)
∗ ∈ Aρ. As span{(w + Lρ)(w +Lρ)

∗ : w ∈ T}
is weakly dense in Aρ, we conclude that πρ(v)Aρπρ(v)

∗ ⊆ Aρ. Similarly πρ(v)
∗Aρπρ(v) ⊆ Aρ. Thus

πρ is a regular ∗-homomorphism.

For the second statement, Theorem 4.6 shows that if σ ∈ π̂ρ(D)′′, then σ ◦E ∈ S(B(H), π(D)′′).
Remark 4.2(4) completes the proof. �
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Remark 4.12. We have πρ(D)′′ ⊆ Aρ always, but in general they can be very different. Consider
the state ρ = ρ∞ from Example 7.17. Then, using the notation from that example, {Sn+Lρ : n ∈ Z}
is an orthonormal basis for Hρ (where Sn = S∗|n| when n < 0). Note that πρ(D)′′ = CI, while Aρ

is a MASA.

The following proposition characterizes when πρ(D)′′ and Aρ coincide. We first make a definition.

Definition 4.13. Let (C,D) be an inclusion and let f ∈ Mod(C,D). The D-stabilizer of f is the
set,

D-stab(f) := {v ∈ N(C,D) : for all d ∈ D, f(v∗dv) = f(d)}.

If for every v ∈ D-stab(f) and x ∈ C, we have f(x) = f(v∗xv), then we call f a D-rigid state.

Proposition 4.14. Let (C,D) be a regular inclusion, and suppose that ρ ∈ S(C,D). The following
statements are equivalent.

(1) πρ(D)′′ is a MASA in B(Hρ).
(2) If v ∈ D-stab(ρ), then ρ(v) 6= 0.
(3) ρ is a pure and D-rigid state.

Proof. Throughout the proof, we let σ = ρ|D, which by Proposition 4.3(2), belongs to D̂.
Suppose πρ(D)′′ is a MASA in B(Hρ) and let v ∈ D-stab(ρ), so v ∈ Λρ and βv(σ) = σ. Then,

using the notation of Proposition 4.10, we find that PI(v+Lρ) = v+Lρ. Since πρ(D)′′ is a MASA,
PI is the orthogonal projection onto C(I + Lρ). We conclude that v + Lρ is a non-zero scalar
multiple of I + Lρ. Hence 0 6= 〈v + Lρ, I + Lρ〉 = ρ(v). Thus v ∈ ∆ρ, so statement (1) implies
statement (2).

Before proving the next implication, we pause for some generalities. Suppose that f is any state
on C with the property that f |D = σ. If v ∈ N(C,D) and f(v∗v) = 0, then the Cauchy-Schwartz
inequality yields f(v) = 0. Also note that if v ∈ Λρ satisfies βv(σ) 6= σ, then f(v) = 0. Indeed, for
such v ∈ Λρ, choose d ∈ D so that βv(σ)(d) = 0 and σ(d) = 1. Then as v∗dv ∈ D,

0 = f(v∗dv) = f(v)f(v∗dv) = f(vv∗dv) = f(dvv∗v) = f(d)f(v)f(v∗v).

As f(d) and f(v∗v) are both non-zero, we conclude that f(v) = 0.
Now suppose statement (2) holds. We first prove that ρ is pure. So suppose that t ∈ [0, 1] and

that for i = 1, 2, ρi are states on C and ρ = tρ1 + (1 − t)ρ2. As ρ|D is a pure state on D, we have
ρi|D = σ. We claim that for every v ∈ N(C,D), ρ1(v) = ρ2(v) = ρ(v). By the previous paragraph,
it remains only to prove this for v ∈ Λρ such that βv(σ) = σ. So suppose v has this property. By

the hypothesis in statement (2), ρ(v) 6= 0. Clearly |ρi(v)| ≤ ρi(v
∗v)1/2 = ρ(v∗v)1/2 = |ρ(v)|. Thus

we have

t
ρ1(v)

ρ(v)
+ (1− t)

ρ2(v)

ρ(v)
= 1,

which expresses 1 as a convex combination of elements of the closed unit disk. Hence ρi(v) = ρ(v),
establishing the claim. By regularity, we conclude that ρ1 = ρ2 = ρ, so ρ is a pure state.

Next, if v ∈ Λρ and βv(σ) = σ, then by hypothesis, ρ(v) 6= 0. So the final part of statement (3)
follows from part (1) of Proposition 4.3. Thus statement (2) implies statement (3).

Finally, suppose that statement (3) holds. Let v,w ∈ Λρ be such that βv(σ) = βw(σ). We shall
show that {v+Lρ, w+Lρ} is a linearly dependent set, showing that Kv is one-dimensional. We have

βw∗v(σ) = σ = βv∗w(σ), so ρ(v
∗ww∗v)−1/2w∗v ∈ D-stab(ρ). By hypothesis, ρ(x) =

ρ(v∗wxw∗v)

ρ(v∗ww∗v)

for every x ∈ C. Thus if η = ρ(v∗ww∗v)−1/2w∗v+Lρ, we have 〈πρ(x)η, η〉 = 〈πρ(x)(I + Lρ), I + Lρ〉
for every x ∈ C. Since ρ is pure, πρ(C)

′′ = B(Hρ), so that for every T ∈ B(Hρ) we obtain

〈Tη, η〉 = 〈T (I + Lρ), I + Lρ〉 .
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Hence {η, I + Lρ} is a linearly dependent set. Thus, {w∗v + Lρ, I + Lρ} is linearly dependent.
Since both vectors in this set are non-zero, we find 0 6= 〈w∗v + Lρ, I + Lρ〉 = ρ(w∗v). Applying
part (4) of Proposition 4.3 and the Cauchy-Schwartz inequality, we obtain {v + Lρ, w + Lρ} is
linearly dependent, as desired.

As Kv is one-dimensional, Proposition 4.10 implies that πρ(D)′′ is a MASA.
�

5. The D-Radical and Embedding Theorems

Our purpose in this section is to prove two embedding theorems. The first characterizes when
a regular inclusion can be regularly embedded into a regular MASA inclusion, while the second
characterizes when a regular inclusion may be regularly embedded into a C∗-diagonal.

The first of these theorems shows that the obvious necessary condition suffices.

Theorem 5.1. Let (C,D) be a regular inclusion. The following statements are equivalent.

a) There exists a regular MASA inclusion (C1,D1) and a regular ∗-monomorphism α : (C,D) →
(C1,D1).

b) The relative commutant Dc of D in C is abelian.

Proof. Suppose that (C1,D1) is a regular MASA inclusion and α : (C,D) → (C1,D1) is a regular
∗-monomorphism. Let (I(D1), ι1) be an injective envelope for D1 and let E1 : C1 → I(C1) be the
pseudo-expectation for ι1.

Observe that (Dc,D) is a regular inclusion, and N(Dc,D) ⊆ N(C,D). Let ρ ∈ Ss(C1,D1).
Part (i) of Theorem 4.7 shows that ρ ◦ α ∈ S(C,D), and hence ρ ◦ α|Dc ∈ S(Dc,D). Theorem 4.8
implies ρ ◦ α|Dc is a multiplicative linear functional on Dc. By the definition of Ss(C1,D1), we see

that for every τ ∈ Î(D1), τ ◦ E1 ◦ α|Dc is a multiplicative linear functional on Dc. We conclude
E1 ◦ α|Dc is a ∗-homomorphism of Dc into I(D1).

Let u ∈ Dc be a unitary element. Clearly, u ∈ N(C,D), so regularity of α implies that α(u) ∈
N(C1,D1). Let Jα(u) be the ideal of D1 as defined in (7). Since E1(α(u)) is unitary, Theorem 3.10(c)

shows supI(D1)(ι(Jα(u))
+
1 ) is the identity of I(D1). Hence Jα(u) is an essential ideal in D1. Then

(fixβα(u))
◦ is dense in D̂1 by Proposition 3.2. As dom(βα(u)) = D̂1, we get D̂1 = (fixβα(u))◦ =

fixβα(u). Therefore, D̂1 = (fixβα(u))
◦. Another application of Proposition 3.2 gives Jα(u) = D1,

and hence α(u) ∈ D1. This shows that the image of the unitary group of Dc under α is abelian.
Since α is faithful, we see that the unitary group of Dc is abelian, and hence Dc is abelian.

For the converse, take α to be the identity map on C. Lemma 2.3 shows that α : (C,D) → (C,Dc)
is regular, so statement (a) follows from statement (b).

�

Question 5.2. When does a regular inclusion regularly embed into a regular EP-inclusion?

We conjecture that the conditions of Theorem 5.1 also characterize when a regular inclusion may
be regularly embedded into a regular EP-inclusion. Here is an approach to this problem. Suppose
(C,D) is a regular inclusion with Dc abelian. Let π : C → B(H) be a faithful representation of C,
let D1 = π(Dc)′′ and let C1 be the (concrete) C∗-algebra generated by π(C) and D1. Then (C1,D1)
is regular, and π : (C,D) → (C1,D1) is a regular ∗-monomorphism. If D1 is a MASA in C1, then
Theorem 2.10 shows that (C1,D1) is an EP-inclusion. Unfortunately, we have not been able to
decide whether the faithful represetation π can be chosen so that (C1,D1) is a MASA inclusion.

We now define a certain ideal, the D-radical of an inclusion, and show its relevance to embedding
regular inclusions into C∗-diagonals.

Definition 5.3. For an inclusion (C,D), the D-radical of (C,D) is the set

Rad(C,D) := {x ∈ C : ‖πρ(x)‖ = 0 for all ρ ∈ S(C,D)},
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provided S(C,D) 6= ∅; otherwise define Rad(C,D) = C. (Note that Rad(C,D) 6= C whenever (C,D)
is a regular MASA inclusion.)

When (C,D) is a regular inclusion, we have the following description of Rad(C,D).

Proposition 5.4. Suppose that (C,D) is a regular inclusion. Then

Rad(C,D) = {x ∈ C : ρ(x∗x) = 0 for all ρ ∈ S(C,D)}.

Proof. Let J := {x ∈ C : ρ(x∗x) = 0 for all ρ ∈ S(C,D)}. If x ∈ Rad(C,D) and ρ ∈ S(C,D), then
ρ(x∗x) = ‖πρ(x)(I + Lρ)‖ = 0, and we find that Rad(C,D) ⊆ J . For the opposite inclusion, let
x ∈ J . Part (5) of Proposition 4.3 and Corollary 2.16 show that J is a closed, two-sided ideal of
C. Hence for every c ∈ C and ρ ∈ S(C,D) we have ρ(c∗x∗xc) = 0, which means that πρ(x) = 0 for
every ρ. So x ∈ Rad(C,D), showing Rad(C,D) = J .

�

Examples 5.5. Here are some examples of the D-radical.

(1) By Proposition 5.7, Rad(C,D) = (0) for any Cartan inclusion.
(2) Suppose that (C,D) is a regular EP inclusion. Then Rad(C,D) is the left kernel of the

associated conditional expectation E, that is, Rad(C,D) = {x ∈ C : E(x∗x) = 0}. This
follows from Propositions 5.4 and 4.6.

(3) Suppose that (C,D) is an inclusion such that U(C) ⊆ N(C,D). Then Theorem 4.8 shows
that S(C,D) is the set of characters on C. Since the intersection of the kernels of all
characters is the commutator ideal, it follows from Proposition 5.4 that Rad(C,D) is the
commutator ideal of C.

Question 5.6. Observe that when (C,D) is a regular MASA inclusion, Rad(C,D) ⊆ L(C,D),
because Ss(C,D) ⊆ S(C,D). Is it possible for the inclusion to be proper?

Proposition 5.7. Let (C,D) be a regular inclusion and suppose (C1,D1) is a regular MASA in-
clusion. If α : (C,D) → (C1,D1) is a regular and unital ∗-homomorphism, then Rad(C,D) ⊆
α−1(L(C1,D1)).

Proof. By Theorem 4.7, α(Rad(C,D)) ⊆ L(C1,D1). �

Notice that when L(C1,D1) = (0), Proposition 5.7 implies that Rad(C,D) ⊆ kerα. We have
been unable to decide whether equality holds in general. However, the following lemma shows that
one can construct a C∗-diagonal and a regular ∗-homomorphism such that equality holds.

Lemma 5.8. Suppose that (C,D) is a regular inclusion. Then there exists a C∗-diagonal (C1,D1)
and a regular ∗-homomorphism α : (C,D) → (C,D1) with kerα = Rad(C,D).

Proof. For each ρ ∈ S(C,D), let (πρ,Hρ) be the GNS representation of C arising from ρ. Let
H :=

⊕
ρ∈S(C,D)Hρ and let D1 =

⊕
ρ∈S(C,D)Aρ, where Aρ is as in the statement of Theorem 4.11.

As Aρ is an atomic MASA in B(Hρ), we see that D1 is an atomic MASA in B(H). Let C1 =
spanN(B(H),D1). By Theorem 2.10 and the fact that the expectation onto an atomic MASA in
B(H) is faithful, (C1,D1) is a C

∗-diagonal.
For each v ∈ N(C,D), the regularity of πρ (Theorem 4.11) shows that

⊕
ρ∈S(C,D) πρ(v) ∈

N(B(H),D1). Hence for each x ∈ C,
⊕

ρ∈S(C,D) πρ(x) ∈ C1. Thus if α : C → C1 is given by α(x) =⊕
ρ∈S(C,D) πρ(x), then α is a regular ∗-homomorphism. By construction, kerα = Rad(C,D). �

The following is our main embedding result.

Theorem 5.9. Let (C,D) be a regular inclusion. Then there exists a C∗-diagonal (C1,D1) and a
regular ∗-monomorphism α : (C,D) → (C1,D1) if and only if Rad(C,D) = 0.
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Proof. Suppose that (C1,D1) is a C
∗-diagonal and α : (C,D) → (C1,D1) is a regular ∗-monomorphism.

Since L(C1,D1) = (0), Proposition 5.7 gives Rad(C,D) ⊆ kerα = (0).
The converse follows from Lemma 5.8.

�

Corollary 5.10. Suppose that (C,D) is an inclusion such that U(C) ⊆ N(C,D). Then there is a
regular ∗-monomorphism of (C,D) into a C∗-diagonal if and only if C is abelian.

Proof. Since the commutator ideal is the intersection of the kernels of all multiplicative linear
functionals, the result follows directly from Theorem 4.8 and Example 5.5(3). �

6. An Example: Reduced Crossed Products by Discrete Groups

In this section we consider the regular inclusion (C,D), where C = D⋊r Γ is the reduced crossed
product of the unital abelian C∗-algebra D = C(X) by a discrete group Γ of homeomorphisms of
X.

The main results of this section are: Theorem 6.6, which characterizes when the relative commu-
tant Dc of D in D⋊r Γ is abelian in terms of the associated dynamical system; Theorem 6.9, which
shows that when Dc is abelian, L(D ⋊r Γ,D

c) = (0); and a summary result, Theorem 6.10 which
gives a number of characterizations for when (D⋊r Γ,D) regularly embeds into a C∗-diagonal. By
choosing the space X and group Γ appropriately, the methods in this section can be used to produce
an example of a virtual Cartan inclusion (C,D) where C is not nuclear, see [6, Theorem 4.4.3 or
Theorem 5.1.6].

Some of the results in this section complement results from [32].
We begin by establishing our notation. This is standard material, but we include it because

there are a number of variations in the literature.
Throughout, let X be a compact Hausdorff space, let Γ be a discrete group with unit element

e acting on X as homeomorphisms of X. Thus there is a homomorphism Ξ of Γ into the group
of homeomorphisms of X, and for (s, x) ∈ Γ × X, we will write sx instead of Ξ(s)(x). We will
sometimes refer to the pair (X,Γ) as a discrete dynamical system. For s ∈ Γ, let αs ∈ Aut(C(X))
be given by

(αs(f))(x) = f(s−1x), f ∈ C(X), x ∈ X.

If Y is any set, and z ∈ Y , we use δz to denote the characteristic function of the singleton set
{z}.

Let D = C(X), and let Cc(Γ,D) be the set of all functions a : Γ → D such that {s ∈ Γ : a(s) 6= 0}
is a finite set. We will sometimes write a(s, x) for the value of a(s) at x ∈ X instead of a(s)(x).
Then Cc(Γ,D) is a ∗-algebra under the usual twisted convolution product and adjoint operation:
for a, b ∈ Cc(Γ,D),

(ab)(t) =
∑

r∈Γ

a(r)αr(b(r
−1t)) and (a∗)(t) = αt(a(t

−1))∗.

Let C = C(X)⋊r Γ be the reduced crossed product of C(X) by Γ.
The group Γ is naturally embedded into C via s 7→ ws, where ws is the element of Cc(Γ,D) given

by ws(t) =

{
0 if t 6= s

I if t = s.
Also, D is embedded into Cc(Γ,D) via the map d 7→ dwe and we identify

D with its image under this map. Now wsdws−1 = αs(d) and span{dws : d ∈ D, s ∈ Γ} is norm
dense in C, so {ws : s ∈ Γ} ⊆ N(C,D). Thus (C,D) is a regular inclusion.

It is well known (see for example, the discussion of crossed products in [6]) that the map E :
Cc(Γ,D) → D given by E(a) = a(e) extends to a faithful conditional expectation E of C onto D.
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Likewise, the maps Es : Cc(Γ,D) → D given by Es(a) = a(s) extend to norm-one linear mappings
Es of C onto D. Notice that for a ∈ C and s ∈ Γ,

Es(a) = E(aws−1).

The maps Es allow a useful “Fourier series” viewpoint for elements of C: a ∼
∑

s∈Γ Es(a)ws.
The following is well-known. We sketch a proof for convenience of the reader.

Proposition 6.1. If a ∈ C and Es(a) = 0 for every s ∈ Γ, then a = 0.

Proof. For a ∈ Cc(Γ,D) and s, t ∈ Γ, a calculation shows that

(22) Es(wtawt−1) = αt(Et−1st(a));

a continuity argument then shows that (22) actually holds for every a ∈ C.
Let J = {a ∈ C : Et(a) = 0 ∀t ∈ Γ}. Clearly J is closed. Then (22) shows that if a ∈ J and

s ∈ Γ, then wsaws−1 ∈ J . Easy calculations now show that if d ∈ D, s ∈ Γ and a ∈ J , then
{da, ad,wsa, aws} ⊆ J , and by taking linear combinations and closures, we find that J is a closed
two-sided ideal of C. Thus, if a ∈ J , a∗a ∈ J , so that Ee(a

∗a) = E(a∗a) = 0. Hence a = 0 by
faithfulness of E. This shows that J = (0), completing the proof. �

Definition 6.2. We make the following definitions.

(1) For s ∈ Γ, let Fs = {x ∈ X : sx = x} be the set of fixed points of s.
(2) For s ∈ Γ, let Fs = {f ∈ D : supp(f)) ⊆ F ◦

s }. Thus {Fs : s ∈ Γ} is a family of closed ideals
in D.

(3) For x ∈ X, let Γx := {s ∈ Γ : sx = x} be the isotropy group at x.
(4) For x ∈ X, let Hx := {s ∈ Γ : x ∈ (Fs)

◦}. We will call Hx the germ isotropy group at x.

Remarks. We chose the terminology ‘germ isotropy’ because s ∈ Hx if and only if the homeomor-
phisms s and id|X agree in a neighborhood of x, that is, they have the same germ. It is easy to see
that Hx is a group; in fact, Hx is a normal subgroup of Γx. To see that Hx is a normal subgroup
of Γx, fix x ∈ X and let s ∈ Hx. Then there exists an open neighborhood V of x such that V ⊆ Fs.
Let t ∈ Γx and put W = t−1V . Since tx = x, x ∈ W . For y ∈ W , ty ∈ V , so sty = ty. Hence
t−1sty = y. Therefore, W ⊆ Ft−1st. As W is open and x ∈W , we see that x belongs to the interior
of Ft−1st, so t

−1st ∈ Hx as desired.
Simple examples show the inclusion of Hx in Γx can be proper.

We record a description of the relative commutant of D in C.

Proposition 6.3. We have

Dc = {a ∈ C : αs(d)Es(a) = dEs(a) for all d ∈ D and all s ∈ Γ}

= {a ∈ C : Es(a) ∈ Fs for all s ∈ Γ}.

Proof. A computation shows that for a ∈ C, d ∈ D and s ∈ Γ,

(23) Es(da− ad) = (d− αs(d))Es(a).

Thus if a ∈ Dc, we obtain αs(d)Es(a) = dEs(a) for every d ∈ D and s ∈ Γ. Conversely, if
Es(a)αs(d) = dEs(a) for every d ∈ D and s ∈ Γ, Proposition 6.1 gives a ∈ Dc.

For the second equality, suppose that a ∈ C and Es(a) ∈ Fs for every s ∈ Γ. Since Es(a)
is supported in F ◦

s , an examination of (23) shows that Es(da − ad) = 0 for every d ∈ D. By
Proposition 6.1 again, a ∈ Dc. For the reverse inclusion, suppose that a ∈ Dc. Then for d ∈ D

and s ∈ Γ, 0 = (d− αs(d))Es(a). Thus if x ∈ X and Es(a)(x) 6= 0, we have d(x)− d(s−1x) = 0 for
every d ∈ D. It follows that the support of Es(a) is contained in Fs. But supp(Es(a)) is open, so
the reverse inclusion holds. �
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We now describe a representation useful for establishing certain formulae.

The very discrete representation. Let H = ℓ2(Γ × X). Then {δ(t,y) : (t, y) ∈ Γ × X} is an
orthonormal basis for H. For f ∈ C(X), s ∈ Γ, and ξ ∈ H, define representations π of C(X) and
U of Γ on H by

(π(f)ξ)(t, y) = f(ty)ξ(t, y) and (Usξ)(t, y) = ξ(s−1t, y).

In particular,
π(f)δ(t,y) = f(ty)δ(t,y) and Usδ(t,y) = δ(st,y).

The C∗-algebra generated by the images of π and U is isometrically isomorphic to the reduced
crossed product of C(X) by Γ (see [6, pages 117-118]), and hence determines a faithful representa-
tion θ : C → B(H).

A computation shows that for a ∈ C, t, r ∈ Γ and x, y ∈ X,

〈
θ(a)δ(t,y), δ(r,x)

〉
=

{
0 if x 6= y;

Ert−1(a)(ry) if x = y.

Also for a ∈ C, t ∈ Γ and y ∈ X, we have

(24) θ(a)δ(t,y) =
∑

s∈Γ

Es(a)(sty)δ(st,y).

We now define some notation. Let λ : Γ → B(ℓ2(Γ)) be the left regular representation, and
for x ∈ X, regard ℓ2(Hx) as a subspace of ℓ2(Γ). Then C∗

r (H
x) is the C∗-algebra generated by

{λs|ℓ2(Hx) : s ∈ H
x}. Define Vx : ℓ2(Hx) → H by

(Vxη)(s, y) =

{
0 if (s, y) /∈ Hx × {x}

η(s) if (s, y) ∈ Hx × {x}.

Then for r ∈ Hx, we have Vxδr = δ(r,x), so Vx is an isometry.

Proposition 6.4. For x ∈ X and a ∈ C, define Φx(a) := V ∗
x θ(a)Vx. Then Φx is a completely

positive unital mapping of C onto C∗
r (H

x) and Φx|Dc is a ∗-epimorphism of Dc onto C∗
r (H

x).

Proof. Clearly Φx is completely positive and unital. For d ∈ D, r ∈ Γ and s, t ∈ Hx we have

〈Φx(dwr)δs, δt〉 = 〈V ∗
x θ(dwr)Vxδs, δt〉 =

〈
π(d)Urδ(s,x), δ(t,x)

〉
(25)

=
〈
π(d)δ(rs,x), δ(t,x)

〉
= d(rsx)

〈
δ(rs,x), δ(t,x)

〉
= d(rx) 〈δrs, δt〉

= d(rx) 〈λrδs, δt〉 .

Hence for every d ∈ D and r ∈ Γ,

(26) Φx(dwr) =

{
0 if r /∈ Hx,

d(x)λr|ℓ2(Hx) if r ∈ Hx.

Therefore Φx maps a set of generators for C into C∗
r (H

x), giving Φx(C) ⊆ C∗
r (H

x).
To show that Φx|Dc is a ∗-homomorphism, it suffices to prove that the range of Vx is an invariant

subspace for θ(Dc). Note that range(Vx) = span{δ(t,x) : t ∈ Hx}. Let a ∈ Dc and fix t ∈ Hx. We
claim that if s ∈ Γ, d ∈ Fs and stx ∈ supp(d), then s ∈ Hx. Indeed, suppose that stx ∈ supp(d).
As t ∈ Hx, stx = sx. So sx ∈ F ◦

s = F ◦
s−1 , which yields x ∈ F ◦

s . Thus s ∈ H
x, so the claim holds.

Next by (24) and Proposition 6.3, for t ∈ Hx, we have

θ(a)δ(t,x) =
∑

s∈Γ

Es(a)(stx)δ(st,x) =
∑

s∈Hx

Es(a)(stx)δ(st,x) ∈ range(Vx),

as desired. It follows that Φx|Dc is a ∗-homomorphism.
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It remains to show Φx(D
c) = C∗

r (H
x). If s ∈ Hx, let d ∈ Fs be such that d(x) = 1, and

put a = dws. Then (26) shows that Φx(a) = λs|ℓ2(Hx). By Proposition 6.3, a ∈ Dc, and hence
Φx(D

c) is dense in C∗
r (H

x). Since Φx|Dc is a homomorphism, it has closed range. Therefore
Φx(D

c) = C∗
r (H

x).
�

Let
⊕

x∈X

C∗
r (H

x) :=

{
f ∈

∏

x∈X

C∗
r (H

x) : sup
x∈X

‖f(x)‖ <∞

}

and for f ∈
⊕

x∈X C
∗
r (H

x), define ‖f‖ = supx∈X ‖f(x)‖. Then with product, addition, scalar
multiplication and involution defined point-wise,

⊕
x∈X C

∗
r (H

x) is a C∗-algebra.

Corollary 6.5. The map Φ : C →
⊕

x∈X C
∗
r (H

x) given by Φ(a)(x) = Φx(a) is a faithful completely
positive unital mapping such that Φ|Dc is a ∗-monomorphism.

Proof. It follows from the definition of Φx that Φ is unital and completely positive. Proposition 6.4
shows that Φ|Dc is a ∗-homomorphism; it remains to check that Φ is faithful.

For x ∈ X, let trx be the the trace on C∗
r (H

x). For d ∈ D and s ∈ Γ equation (26) gives,

trx(Φx(dws)) =

{
0 if s 6= e

d(x) if s = e

}
= E(dws)(x).

This formula extends by linearity and continuity, so that for a ∈ C, trx(Φx(a)) = E(a)(x). So if
a ≥ 0 belongs to C and Φ(a) = 0, then E(a) = 0, so a = 0. Thus, Φ is faithful. �

Theorem 6.6. The relative commutant, Dc, of D in C is abelian if and only if Hx is an abelian
group for every x ∈ X.

Proof. Corollary 6.5 shows that if Hx is abelian for every x ∈ X, then Dc is abelian.
For the converse, we prove the contrapositive. Suppose that Hx is non-abelian for some x ∈ X.

Fix s, t ∈ Hx so that st 6= ts. Then x ∈ (Fs)
◦ ∩ (Ft)

◦, so we may find d ∈ D so that d(x) = 1 and
supp(d) ⊆ (Fs)

◦ ∩ (Ft)
◦. Then for h ∈ D and z ∈ X we have (by examining the cases z ∈ Fs and

z /∈ Fs),

(αs(h)(z) − h(z))d(z) = (h(s−1z)− h(z))d(z) = 0.

Proposition 6.3 shows that dws ∈ Dc. Likewise, dwt ∈ Dc.
Then dwsdwt = dαs(d)wst. Note that by choice of d, s supp(d) = supp(d). For z ∈ X,

αs(d)(z) = d(s−1z) =

{
0 if z /∈ supp(d)

d(z) if z ∈ supp(d).

Thus, αs(d) = d, and likewise, αt(d) = d. Therefore,

(dws)(dwt) = d2wst 6= d2wts = (dwt)(dws),

so Dc is not abelian.
�

Proposition 6.7. Let (X,Γ) be a discrete dynamical system such that for each x ∈ X, the germ
isotropy group Hx is abelian. Let Γ1 ⊆ Γ be a subgroup of Γ, set

C1 := D⋊r Γ1, and let D1 = {x ∈ C1 : xd = dx for all d ∈ D}.

Then (C1,D1) is a regular MASA inclusion and C1 ∩L(C,Dc) ⊆ L(C1,D1).
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Proof. As D1 ⊆ Dc, D1 is abelian, and as D1 is the relative commutant of D in C1, (C1,D1) is
a regular MASA inclusion. Let ǫ : C1 → C be the inclusion map. Notice that each map in the
diagram,

(C1,D1)
ǫ

// (C,D1)
id

// (C,Dc)

is a regular map. The first is clearly regular, while the regularity of the second follows from the
fact that the relative commutant of D1 in C is Dc and an application of Lemma 2.3. Therefore,
ǫ : (C1,D1) → (C,Dc) is a regular ∗-monomorphism. An application of Corollary 3.23 completes
the proof. �

Notation 6.8. When G is an abelian group with dual group Ĝ, we use the notation 〈g, γ〉 to

denote the value of γ ∈ Ĝ at g ∈ G. Also, we will identify C∗(G) with C(Ĝ); lastly, for γ ∈ Ĝ and
a ∈ C∗(G), we will write γ(a) instead of â(γ).

Theorem 6.9. Suppose that (X,Γ) is a discrete dynamical system such that for each x ∈ X, the
germ isotropy group Hx is abelian. Then L(C,Dc) = (0).

Proof. First assume that Γ is a countable discrete group. Let

P =
∏

x∈X

Ĥx

be the Cartesian product of the dual groups. Denote by p(x) the “x-th component” of p ∈ P . For
(x, p) ∈ X × P , define a state ρ(x,p) on C by

ρ(x,p)(a) = p(x) (Φx(a)) (here a ∈ C), and let A := {ρ(x,p) : (x, p) ∈ X × P}.

Corollary 6.5 shows that the restriction of ρ(x,p) to Dc is a multiplicative linear functional, so in
particular, A ⊆ Mod(C,Dc).

For each s ∈ Γ, let
Xs := (X \ Fs) ∪ F

◦
s .

Then Xs is a dense, open subset of X. Set

Y :=
⋂

s∈Γ

Xs and B := {ρ(y,p) : (y, p) ∈ Y × P}.

Our goal is to show that

(27) B ⊆ Ss(C,D
c).

Fix (y, p) ∈ Y × P , and suppose that τ ∈ Mod(C,Dc) satisfies ρ(y,p)|Dc = τ |Dc . We claim that
ρ(y,p) = τ . To see this, it suffices to show that for each s ∈ Γ, ρ(y,p)(ws) = τ(ws). Given s ∈ Γ, if
sy 6= y, we may choose d ∈ D so that d(sy) = 1 and d(y) = 0. Using (26),

ρ(y,p)(d) = p(y)(Φy(d)) = 0 and ρ(y,p)(w
∗
sdws) = ρ(y,p)(αs−1(d)) = p(y)(d(sy)I) = 1.

Then

ρ(y,p)(ws) = ρ(y,p)(ws)ρ(y,p)(w
∗
sdws) = ρ(y,p)(ws(w

∗
sdws)) = ρ(y,p)(d)ρ(y,p)(ws) = 0.

Likewise, τ(ws) = 0, so τ(ws) = ρ(y,p)(ws) = 0 when y /∈ Fs.
On the other hand, if sy = y, then as y ∈ Xs, we have y ∈ F ◦

s , so s ∈ H
y. Choose d ∈ D so that

d̂(y) = 1 and supp d̂ ⊆ F ◦
s . Then dws ∈ Dc, so that

ρ(p,y)(ws) = ρ(y,p)(dws) = τ(dws) = τ(ws).

Therefore, ρ(p,y) = τ .
Let U(C,Dc) = {τ ∈ Mod(C,Dc) : τ |Dc extends uniquely to C}. The previous paragraph shows

that B ⊆ U(C,Dc). By Theorem 3.13, B ⊆ U(C,Dc) = Ss(C,D
c), so (27) holds.
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Suppose now that a ∈ L(C,Dc). Then for every ρ ∈ Ss(C,D
c), we have ρ(a∗a) = 0. In particular,

for each (y, p) ∈ Y × P ,

0 = ρ(y,p)(a
∗a) = p(y) (Φy(a

∗a)) .

Now Ĥy = {p(y) : p ∈ P}, so holding y fixed and varying p, yields Φy(a
∗a) = 0. Hence, we

have Ee(a
∗a)(y) = E(a∗a)(y) = 0 for every y ∈ Y . By Baire’s theorem, Y is dense in X, so that

E(a∗a) = 0. Since E is faithful, a = 0. This gives the theorem in the case when Γ is countable.
We turn now to the general case. Let Γ be any discrete group and suppose a ∈ L(C,Dc). Then

there exists a countable subgroup Γ1 ⊆ Γ such that a ∈ D ⋊r Γ1. Put C1 = D ⋊r Γ1 and let
D1 = {x ∈ C1 : dx = xd for all d ∈ D} be the relative commutant of D in C1. By Proposition 6.7,
we have a ∈ L(C1,D1) = (0). This completes the proof. �

We collect the main results of this section into a main theorem.

Theorem 6.10. Let X be a compact Hausdorff space and let Γ be a discrete group acting as
homeomorphisms on X. Let C = C(X) ⋊r Γ and D = C(X). The following statements are
equivalent.

a) For every x ∈ X, the germ isotropy group Hx is abelian;
b) The relative commutant, Dc, of D in C is abelian;
c) L(C,Dc) = (0);
d) (C,D) regularly embeds into a C∗-diagonal.

Proof. Theorem 6.6 gives the equivalence of (a) and (b) and Theorem 6.9 shows that (a) implies
(c).

Suppose (c) holds. Since Rad(C,Dc) ⊆ L(C,Dc), Theorem 5.9 shows that (C,Dc) regularly
embeds into a C∗-diagonal. Lemma 2.3 shows that the inclusion map of (C,D) into (C,Dc) is
a regular ∗-monomorphism. Composing the embedding of (C,Dc) into a C∗-diagonal with the
inclusion map shows that (c) implies (d).

Finally, if (d) holds, Theorem 5.1 shows that Dc is abelian, so (d) implies (b). �

7. A Description of S(C,D) for a Regular MASA Inclusion

For a regular inclusion, (C,D), the D-radical, Rad(C,D) is the intersection of the left kernels of
compatible states, and when (C,D) is a regular MASA inclusion, L(C,D) is the intersection of the
left kernels of strongly compatible states. Question 5.6 asks whether it is possible for these ideals
to be distinct. In order to make progress on this question, it seems likely that a description of
S(C,D) will be useful. The purpose of this section is to provide this description.

The description is in terms of groups which are determined locally by the action of N(C,D) and
certain positive definite forms on these groups.

We begin with some generalities on T-groups, and describe a class of positive-definite functions
on T-groups which behave like compatible states. The following is more-or-less standard.

Definition 7.1. Let G be a locally compact group with identity element 1, and let U be the
connected component of the identity. We say that G is a T-group if U is clopen, isomorphic and
homeomorphic to T, and contained in the center of G. A subgroup H of G is a T-subgroup of G
if H contains U . When G is a T-group, we will always identify U with T (and so will write G/T
instead of G/U).

Equivalently, a T-group is a central extension of T by a discrete group K,

1 → T →֒ G
q
։ K → 1.

If f : G → T is a continuous homomorphism, we define the index of f to be the unique integer n
for which f(λ) = λn for every λ ∈ T.

38



As a set, G may be identified with T × K, and the topology on G is the product of the usual
topology on T with the discrete topology on K. Also, the Haar measure on G is the product of
Haar measure on T with the counting measure on K.

The T-subgroups of G are in one-to-one correspondence with the subgroups of K: if H is a T-
subgroup of G, then q(H) is a subgroup of K and for any subgroup Γ of K, q−1(Γ) is a T-subgroup
of G.

We also recall that a function f : G → C is positive definite if f is continuous, and if for every
n ∈ N and g1, . . . , gn ∈ G, the n× n complex matrix, A := (f(g−1

i gj))i,j satisfies A ≥ 0.

Proposition 7.2. Let G be a T-group with identity 1.

(1) Let f : G → C be a positive-definite function such that f(1) = 1 and which satisfies
|f(g)| ∈ {0, 1} for every g ∈ G. Set

H := {g ∈ G : f(g) 6= 0}.

Then
a) f(g1g2) = f(g1)f(g2) for any g1, g2 ∈ G such that H ∩ {g1, g2} 6= ∅; and
b) H is a T-subgroup of G and f |H is a continuous homomorphism of H onto T.

(2) Let H ⊆ G be a T-subgroup and suppose φ : H → T is a continuous homomorphism. Define
f : G→ C by

f(g) =

{
φ(h) if h ∈ H

0 if h /∈ H.

Then f is a positive definite function on G such that f(1) = 1 and for every g ∈ G,
|f(g)| ∈ {0, 1}.

Proof. Suppose f satisfies the hypotheses in (1). Since f(1) = 1 and f is positive definite, we have

f(g) = f(g−1) for every g ∈ G. Continuity of f and connectedness of T yield T ⊆ H.
Recall that if H1 and H2 are Hilbert spaces, A ∈ B(H1), C ∈ B(H2), and B ∈ B(H2,H1) with

A invertible, then

(28)

(
A B
B∗ C

)
≥ 0 if and only if A ≥ 0, C ≥ 0 and C −B∗A−1B ≥ 0.

Let g1, g2 ∈ G. Then the positive definiteness of f (using the group elements h1 = 1, h2 = g−1
1 ,

and h3 = g2) implies that 


1 f(g−1
1 ) f(g2)

f(g1) 1 f(g1g2)
f(g−1

2 ) f(g−1
2 g−1

1 ) 1


 ≥ 0.

Applying (28) with A = (1), B =
(
f(g−1

1 ) f(g2)
)
, and C =

(
1 f(g1g2)

f(g−1
2 g−1

1 ) 1

)
gives

0 ≤

(
1− f(g1)f(g

−1
1 ) f(g1g2)− f(g1)f(g2)

f(g−1
2 g−1

1 )− f(g−1
2 )f(g−1

1 ) 1− f(g−1
2 )f(g2)

)
=:M.

Suppose now that g2 ∈ H, that is, f(g2) 6= 0. Then f(g2)f(g
−1
2 ) = 1, so that

M =

(
1− f(g−1

1 )f(g1) f(g1g2)− f(g1)f(g2)
f(g−1

2 g−1
1 )− f(g−1

2 )f(g−1
1 ) 0

)
.

But then 0 ≤ det(M) = −|f(g1g2)− f(g1)f(g2)|
2, so f(g1g2) = f(g1)f(g2).

The case when f(g1) 6= 0 is the same. Thus when H ∩ {g1, g2} 6= ∅ we obtain,

f(g1g2) = f(g1)f(g2).
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The facts that H is a T-subgroup of G and f |H : H → T is a continuous homomorphism are now
apparent.

Turning now to statement (2), let H be a T-subgroup of G, and φ a continuous homomorphism
of H into T. Let f : G → T be given as in the statement. The continuity of f is clear, as is
the fact that f(1) = 1 and |f(g)| ∈ {0, 1} for every g ∈ G. To show f is positive definite, let

g1, . . . , gn ∈ G. Since φ(h) = φ(h−1), it follows that f(g−1
i gj) = f(g−1

j gi). Put X = {1, . . . , n}.

Define an equivalence relation R on X by (i, j) ∈ R if and only if g−1
i gj ∈ H, and let X/R be the

set of equivalence classes. Let q : X → X/R be the map which sends j ∈ X to its equivalence class,
and let u : X/R → X be a section for q. Let δx,y be the Kronecker delta function on X/R and for
x ∈ X/R, define

cx :=
(
f(g−1

u(q(1))g1)δq(1),x . . . f(g−1
u(q(n))gn)δq(n),x

)
.

Then c∗xcx is an n× n matrix whose i, j-th entry is

f(g−1
i gu(q(i)))f(g

−1
u(q(j))gj)δq(i),xδq(j),x =

{
f(g−1

i gj) if q(i) = q(j) = x

0 otherwise.

Hence the i, j-th entry of
∑

x∈X/R c
∗
xcx is f(g−1

i gj) if (i, j) ∈ R and 0 otherwise. Therefore

(f(g−1
i gj))i,j∈X =

∑

x∈X/R

c∗xcx ≥ 0,

as desired.
�

Corollary 7.3. Let f be a continuous positive definite function on the T-group G such that |f(g)| ∈
{0, 1} for every g ∈ G. Then there exists p ∈ Z such that for every λ ∈ T and g ∈ G,

f(λg) = λpf(g).

Proof. The set {g ∈ G : f(g) 6= 0} contains T, and Proposition 7.2 shows the restriction of f to T
is a character on T. So there exists p ∈ Z such that f(λ) = λp for every λ ∈ T. The corollary now
follows from another application of Proposition 7.2. �

Definition 7.4. Given a T-group G, call a positive-definite function f on G satisfying f(1) = 1
and |f(g)| ∈ {0, 1} a pre-homomorphism.

We will call the number p appearing in Corollary 7.3 the index of f , and will denote it by ind(f).
Finally, the group H := {g ∈ G : f(g) 6= 0} will be called the supporting subgroup for f , and will
be denoted by supp(f).

Notation. Some notation will be useful.

(1) Let (C,D) be an inclusion. For σ ∈ D̂, let

S(C,D, σ) := {ρ ∈ S(C,D) : ρ|D = σ}, and

Ss(C,D, σ) := {ρ ∈ Ss(C,D) : ρ|D = σ}.

(2) For any T-group G, let pHom1(G) denote the set of all pre-homomorphisms f : G→ T∪{0}
with ind(f) = 1.

(3) Finally, recall the seminorms, Bρ,σ on C from [10, Definition 2.4]: for each ρ, σ ∈ D̂, the
seminorm Bρ,σ is defined on C by

Bρ,σ(x) := inf{‖dxe‖ : d, e ∈ D, ρ(d) = σ(e) = 1} (x ∈ C).

We shall require these seminorms for ρ = σ; however, instead of writing Bσ,σ we shall write
Bσ.
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Associated to each regular inclusion (C,D) and σ ∈ D̂ is a certain T-group, denoted Hσ/R1,
which we now construct. We produce a distinguished unitary representation T of Hσ/R1. Our goal
is to exhibit a bijection between elements of

{f ∈ pHom1(Hσ/R1) : f determines a state on the C∗-algebra generated by T (Hσ/R1)}

and S(C,D, σ).

Definition 7.5. Let (C,D) be an inclusion, and let σ ∈ D̂.

(1) Define

Hσ := {v ∈ N(C,D) : σ(v∗dv) = σ(d) for every d ∈ D}.

We remark that Hσ is the set which arises when considering the D-stabilizer of ρ ∈
Mod(C,D), where σ = ρ|D (see Definition 4.13). However, there our interest was in a
particular extension of σ, while here we do not wish to specify the extension.

Notice that for v ∈ Hσ, we have σ(v∗v) = 1, and that Hσ is closed under the adjoint
operation: replace d by v∗dv in the definition. Furthermore, it is easy to see that Hσ is a
∗-semigroup.

(2) Let Λ ⊆ T be a subgroup, (we write the product multiplicatively). Define

RΛ := {(v,w) ∈ Hσ ×Hσ : Bσ(λI − w∗v) = 0 for some λ ∈ Λ}.

When Λ = {1}, we write R1 instead of R{1}.

Lemma 7.6. Let (C,D) be an inclusion, let σ ∈ D̂, and let v,w ∈ Hσ. Then

Bσ(v) = 1 and Bσ(v − w) = Bσ(I − v∗w) = Bσ(I − vw∗).

Proof. Note that for any h ∈ D, |σ(h)| = inf{‖d∗hd‖ : d ∈ D, σ(d) = 1}. Hence given ε > 0, and
e ∈ D with σ(e) = 1, we may find d ∈ D with σ(d) = 1 and

|‖d∗v∗e∗evd‖ − σ(v∗e∗ev)| < ε.

Since σ(v∗e∗ev) = σ(e∗e) = 1, we obtain 1 − ε < ‖evd‖2 < 1 + ε. Hence 1 − ε < Bσ(v)
2 < 1 + ε,

and the fact that Bσ(v) = 1 follows.
Next, let x, d, e ∈ D with σ(x) = σ(d) = σ(e) = 1. Since σ(xvdv∗) = 1, we have

Bσ(v − w) ≤ ‖(xvdv∗)(v − w)e‖ = ‖xv(dv∗ve− dv∗we)‖

≤ ‖xv‖ ‖dv∗ve− dv∗we‖

≤ ‖xv‖ [‖dv∗ve− de‖+ ‖d(I − v∗w)e‖] .

It follows that

Bσ(v − w) ≤ Bσ(I − v∗w).

A similar argument using multiplication on the right by w∗ewx gives Bσ(I − v∗w) ≤ Bσ(w
∗ − v∗).

But Bσ(v
∗ − w∗) = Bσ(v − w), so we obtain Bσ(v − w) = Bσ(I − v∗w). Finally, Bσ(v − w) =

Bσ(v
∗ − w∗) = Bσ(I − vw∗).

�

Proposition 7.7. Let (C,D) be a regular MASA inclusion, σ ∈ D̂ and suppose that v ∈ Hσ. Let
Λ ⊆ T be a subgroup. The following statements are equivalent:

(1) for some λ ∈ Λ, Bσ(λI − v) = 0;
(2) there exists λ ∈ Λ such that f(v) = λ whenever f ∈ Mod(C,D, σ);
(3) there exists λ ∈ Λ such that ρ(v) = λ whenever ρ ∈ Ss(C,D, σ);
(4) σ ∈ (fixβv)

◦ and v̂(σ) ∈ Λ (where v̂ is as in Remark 3.19);
(5) there exists λ ∈ Λ and h, k ∈ D such that σ(h) = 1 = σ(k) and vh = λk.
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Proof. (1) ⇒ (2). If f ∈ Mod(C,D, σ) and x ∈ C, then |f(x)| = |f(dxe)| ≤ ‖dxe‖ whenever d, e ∈ D

and σ(d) = σ(e) = 1. Thus, |f(x)| ≤ Bσ(x) for every x ∈ C. The implication (1) ⇒ (2) follows.
(2) ⇒ (3) is trivial.
(3) ⇒ (4). Suppose λ ∈ Λ and that ρ(v) = λ for every ρ ∈ {f ∈ Ss(C,D) : f |D = σ}. By

Lemma 2.14, σ ∈ fixβv. To show that σ ∈ (fixβv)
◦, we argue by contradiction. So suppose that

σ ∈ fixβv \(fix βv)
◦. Then every neighborhood of σ contains an element in D̂\fix βv. Hence we may

find a net (σs) in D̂ such that σs → σ and such that σs /∈ fixβv . By Theorem 3.21, the restriction

map f 7→ f |D from Ss(C,D) to D̂ is onto. Thus we may choose fs ∈ Ss(C,D) such that fs|D = σs.
By passing to a subnet if necessary, we may assume that fs converges to a state f . Theorem 3.21
shows that Ss(C,D) is closed, so f ∈ Ss(C,D). Clearly f |D = σ. Lemma 2.14 gives fs(v) = 0 for
every s, so 0 6= λ = f(v) = lims fs(v) = 0. This is absurd, so we conclude that σ ∈ (fixβv)

◦.
Let ρ ∈ Ss(C,D, σ). Then for h ∈ Jv , we have

(29) v̂(σ)σ(h) = σ(vh) = ρ(vh) = ρ(v)σ(h).

By Proposition 3.2, σ|Jv 6= 0. Statement (4) now follows from equation (29).
(4) ⇒ (5). Let λ = v̂(σ) and choose h ∈ Jv such that σ(h) = 1. Then σ(vh) = v̂(σ). Put

k = v̂(σ)vh.
(5) ⇒ (1). Let h, k ∈ D be chosen so that σ(h) = σ(k) = 1 and vh = λk. Then

Bσ(λI − v) ≤ inf
{d∈D:σ(d)=1}

‖d(λI − v)hd‖ = |σ(λh− vh)| = 0.

Thus (1) holds.
�

We next observe that Bσ gives the quotient norm on the quotient of spanHσ by the ideal generated
by ker σ.

Proposition 7.8. Let (C,D) be a regular inclusion and suppose σ ∈ D̂. Let Cσ = spanHσ. Then
(Cσ,D) is a regular inclusion. If Iσ is the closed, two-sided ideal of Cσ generated by kerσ, then Bσ

vanishes on Iσ, and for x ∈ Cσ,

Bσ(x) = inf{‖x+ j‖ : j ∈ Iσ}.

Moreover, the following statements hold.

(1) If ρ is a state on Cσ which annihilates Iσ, then ρ extends uniquely to a state ρ̃ on C. When
ρ ∈ S(Cσ,D) annihilates Iσ, ρ̃ ∈ S(C,D).

(2) The map Hσ ∋ u 7→ u+ Iσ ∈ Cσ/Iσ is a ∗-homomorphism of the ∗-semigroup Hσ into the
unitary group of Cσ/Iσ .

Proof. Since Hσ is closed under multiplication and the adjoint map, we see that Cσ is a C∗-algebra.
For d ∈ D, d = limt→0 tI + d. But for all sufficiently small t 6= 0, (t + σ(d))−1(tI + d) ∈ Hσ,

so d is a limit of scalar multiples of elements of Hσ. So D ⊆ Cσ. Therefore (Cσ,D) is a regular
inclusion.

Next, suppose that x ∈ C and d ∈ ker σ. Then Bσ(xd) = Bσ(dx) = 0. When x = v ∈ Hσ and
y ∈ Cσ,

Bσ(vdy) = Bσ(vv
∗vdy) = Bσ(vdv

∗vy) = |σ(vdv∗)|Bσ(vy) = 0.

It follows that when x ∈ spanHσ, we have Bσ(xdy) = 0. Taking closures we obtain Bσ(xdy) = 0
when x, y ∈ Cσ and d ∈ kerσ. Therefore, Bσ(z) = 0 for every z ∈ Iσ.

This gives Bσ(x) ≤ Bσ(x+ j)+Bσ(j) = Bσ(x+ j) ≤ ‖x+ j‖ for every x ∈ Cσ and j ∈ Iσ. Thus,
Bσ(x) ≤ dist(x,Iσ).
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Notice that if ρ is a state on Cσ which annihilates Iσ, then ρ|D annihilates ker σ, so ρ|D = σ.
Any extension of σ to a state g on C belongs to Mod(C,D). Hence |g(x)| ≤ Bσ(x) for every x ∈ C.
In particular, |ρ(x)| ≤ Bσ(x) for every x ∈ Cσ. So if x ∈ Cσ, we obtain,

‖x+ Iσ‖ = sup{|ρ(x)| : ρ is a state on Cσ and ρ|Iσ = 0} ≤ Bσ(x).

Hence Bσ gives the quotient norm on Cσ/Iσ.
Turning now to statement (1), let ρ be a state on Cσ which annihilates Iσ, and suppose for

i = 1, 2, that τi are states on C with τi|Cσ = ρ. Let v ∈ N(C,D) \ {λu : u ∈ Hσ and λ ∈ C}.
We claim that τi(v) = 0. Since ρ annihilates Iσ, we have σ = ρ|D = τi|D. Suppose that

σ(v∗v) 6= 0. By multiplying v by a suitable scalar, we may assume that σ(v∗v) = 1. Since v is not
a scalar multiple of an element of Hσ, we see that βv(σ) 6= σ. Lemma 2.14 shows that τi(v) = 0.

On the other hand, if σ(v∗v) = 0, then v∗v ∈ Iσ, so τi(v) = limn→∞ τi(v(v
∗v)1/n) = 0. Thus the

claim holds.
Since τ1(v) = τ2(v) for every v ∈ Hσ, we have τ1(v) = τ2(v) for every v ∈ N(C,D). Hence

τ1 = τ2. Thus ρ extends uniquely to a state on C. Notice also that if ρ ∈ S(Cσ,D), then this
argument shows that ρ̃ ∈ S(C,D).

To prove statement (2), use the fact that Bσ gives the quotient norm on Cσ/Iσ and apply
Lemma 7.6 to u ∈ Hσ. �

The following is a corollary of Proposition 7.8.

Proposition 7.9. Let (C,D) be a regular inclusion, σ ∈ D̂ and let Λ be a subgroup of T. Then
RΛ is an equivalence relation on Hσ. Denote the equivalence class of v ∈ Hσ by [v]Λ. The product
[v]Λ[w]Λ := [vw]Λ is a well-defined product on Hσ/RΛ. With this product, [I]Λ is the unit and for
each v ∈ Hσ, [v]

−1
Λ = [v∗]Λ. Thus Hσ/RΛ is a group.

Furthermore, the map Tσ : Hσ/R1 → Cσ/Iσ given by Tσ([u]1) = u + Iσ is a one-to-one group
homomorphism of Hσ/R1 into the unitary group of Cσ/Iσ, and Tσ(Hσ/Iσ) generates Cσ/Iσ.

Proof. Let u, v ∈ Hσ. By Proposition 7.8 and Lemma 7.6, (u, v) ∈ RΛ if and only if there exists
λ ∈ Λ such that u+ Iσ = λv+ Iσ. Routine arguments now show that Hσ/RΛ is a group under the
indicated operations. The final statement follows from Proposition 7.8(2).

�

Lemma 7.10. Let (C,D) be a regular MASA inclusion, σ ∈ D̂, and suppose u, v ∈ Hσ are such
that (u, v) ∈ R1. Then the following statements hold.

(1) If ρ ∈ S(C,D, σ), then

ρ(v) = ρ(u).

If in addition, 0 6= ρ(v) then ρ(v) ∈ T.
(2) σ ∈ (fixβv)

◦ if and only if σ ∈ (fixβu)
◦, and when this occurs, v̂(σ) = û(σ) ∈ T.

Proof. Suppose ρ(v) 6= 0. Since |ρ(x)| ≤ Bσ(x) for every x ∈ C and Bσ(I − u∗v) = 0, we have
ρ(u∗v) = 1. Therefore, by part 1 of Proposition 4.3,

ρ(u) = ρ(u)ρ(u∗v) = ρ(uu∗v) = σ(uu∗)ρ(v) = ρ(v).

Likewise, if ρ(u) 6= 0, then ρ(u) = ρ(v). Thus, we have ρ(u) = ρ(v) whenever ρ ∈ S(C,D, σ).
Next, when ρ(v) 6= 0, the fact that ρ ∈ S(C,D) gives

|ρ(v)|2 = ρ(v∗v) = σ(v∗v) = 1,

so ρ(v) ∈ T. This completes the proof of the first statement.
We now turn to the second statement. Since (u, v) ∈ R1, Proposition 7.7 implies σ ∈ (fixβv∗u)

◦.
Thus σ ∈ (fixβv)

◦ if and only if σ ∈ (fixβu)
◦.
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Next suppose that σ ∈ (fix(βv))
◦. Let (I(D), ι) be an injective envelope for D and let E be the

pseudo-expectation for ι. Let h ∈ Jv satisfy σ(h) = 1 and let ρ ∈ Î(D) be such that ρ◦ ι = σ. Then

ρ ◦ E ∈ Ss(C,D), and Proposition 3.18 shows that ρ ∈ supp(Ê(v)). Thus

v̂(σ) = σ(vh) = ρ(E(v)) = ρ(E(w)) = σ(wh) = ŵ(σ).

Since ρ(E(v)) 6= 0, we have v̂(σ) ∈ T by part (1). �

Remark. Lemma 7.10 shows that for ρ ∈ S(C,D) with ρ|D = σ, we have a well-defined map
ρ̃ : Hσ/R1 → T ∪ {0} given by ρ̃([v]) = ρ(v).

Theorem 7.11. Let (C,D) be a regular MASA inclusion, and let σ ∈ D̂. The function

d([v], [w]) := Bσ(v − w)

is a well defined metric on Hσ/R1 and makes Hσ/R1 into a T-group. More specifically, the following
statements hold.

(1) Let

U = {[v] ∈ Hσ/R1 : σ ∈ (fixβv)
◦}.

Then U is clopen and is the connected component of the identity in Hσ/R1.
(2) The subgroup U is contained in the center of Hσ/R1.
(3) The map [v] ∈ U 7→ v̂(σ) is an isomorphism of U onto T.
(4) The quotient of Hσ/R1 by U is Hσ/RT.

Proof. Let Tσ be the isomorphism of Hσ/R1 onto a subgroup of the unitary group of Cσ/Iσ defined
in Proposition 7.9. Then

d([v], [w]) = ‖Tσ([v])− Tσ([w])‖Cσ/Iσ
.

It follows that d is a well-defined metric which makes Hσ/R1 into a topological group.
We now show that U is an open set. Let u ∈ Hσ be such that [u] ∈ U and suppose that v ∈ Hσ

satisfies d([u], [v]) < 1/2. We will show that σ ∈ (fixβv)
◦. To do this we modify the proof of the

implication (3) ⇒ (4) in Proposition 7.7 slightly. Since Bσ(u − v) < 1/2, for every ρ ∈ Ss(C,D),
we have |ρ(u) − ρ(v)| < 1/2.

Suppose, to obtain a contradiction, that σ /∈ (fixβv)
◦. Then we may find find a directed set S

and a net (σs)s∈S such that σs /∈ fixβv for every s and such that σs → σ. As usual, let (I(D), ι) be

an injective envelope for D and let E be the pseudo-expectation for ι. For each s, choose τs ∈ Î(D)

such that τs◦ι = σs. Passing to a subnet if necessary, we may assume that τs converges to τ ∈ Î(D).
Then τ ◦E ∈ Ss(C,D) and τ ◦E|D = σ. Notice that τ(E(v)) 6= 0 because |τ(E(v))−τ(E(u))| < 1/2
and τ(E(u)) ∈ T. Since τs ◦ E|D = σs /∈ fixβv, Lemma 2.14 shows that τs(E(v)) = 0 for every
s ∈ S. Then

τ(E(v)) = lim
s
τs(E(v)) = 0,

contradicting the fact that τ(E(v)) 6= 0. Thus σ ∈ (fixβv)
◦. Therefore [v] ∈ U , so U is an open

subset of Hσ/R1.
Similarly, the complement of U is open in Hσ/R1, so U is also closed.
Let γ : U → T be the map γ([u]) = û(σ). Suppose that [u], [v] ∈ U and û(σ) = v̂(σ). Then

d([u], [v]) = Bσ(u− v) ≤ Bσ(u− û(σ)I) +Bσ(v̂(σ)I − v) = 0,

so γ is one-to-one. Since γ([λu]) = λγ([u]) for any λ ∈ T, γ is onto.
Let ρ ∈ S(C,D, σ). Since

|ρ̃([v]) − ρ̃([w])| = |ρ(v − w)| ≤ Bσ(v − w) = d([v], [w]),
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we see that ρ̃ is a continuous map on Hσ/R1. By Lemma 7.10, for [v] ∈ U, ρ̃([v]) = γ([v]). So γ is
also continuous. The map λ ∈ T 7→ [λI] is the inverse of γ, and we see that γ is a homeomorphism.
In particular, U is connected, and hence U is the connected component of the identity in Hσ/R1.

To see that U is contained in the center ofHσ/R1, observe that for [u] ∈ U , we have [u] = [γ([u])I],
which evidently belongs to the center of Hσ/R1.

Since the connected component of the identity is compact, Hσ/R1 is a locally compact group.
Finally, [v] = [w] mod U if and only if [v∗w] ∈ U . Therefore, [v] = [w] mod U if and only if
Bσ(γ([v

∗w])I − v∗w) = 0. Hence the quotient of Hσ/R1 by U is Hσ/RT.
�

We now are prepared to exhibit a bijection between S(C,D, σ) and a class of pre-homomorphisms
on Hσ/R1. We pause for some notation.

Let q : Cσ → Cσ/Iσ be the quotient map. Define a ∗-homomorphism θ : Cc(Hσ/R1) → Cσ/Iσ by

θ(φ) =

∫

Hσ/R1

φ(s)Tσ(s) ds,

where ds is Haar measure on Hσ/R1. Then the image of θ is dense in Cσ/Iσ .

Definition 7.12. We will say that a positive definite function f on Hσ/R1 is dominated by Bσ if
for every φ ∈ Cc(G),

∣∣∣∣∣

∫

Hσ/R1

φ(t)f(t) dt

∣∣∣∣∣ ≤
∥∥∥∥∥

∫

Hσ/R1

φ(t)Tσ(t) dt

∥∥∥∥∥
Cσ/Iσ

.

Theorem 7.13. Let (C,D) be a regular MASA inclusion and let σ ∈ D̂. Let

Mσ := {f ∈ pHom1(Hσ/R1) : f is dominated by Bσ}.

For τ ∈ S(C,D, σ) the map τ̃ : Hσ/R1 → C given by

τ̃([v]1) = τ(v)

is well-defined, and τ̃ ∈Mσ. Moreover, the map τ 7→ τ̃ is a bijection between S(C,D, σ) and Mσ.

Proof. If τ ∈ S(C,D, σ), then |τ(x)| ≤ Bσ(x). Hence τ annihilates Iσ, so that τ determines a state
τ ′ on Cσ/Iσ such that

τ |Cσ = τ ′ ◦ q.

Then τ̃ = τ ′ ◦ Tσ, so τ̃ is well-defined.
Set

G := {[v] ∈ Hσ/R1 : τ̃([v]) 6= 0}.

Proposition 4.3(1) implies that G is closed under products. For v ∈ Hσ with [v] ∈ G, we have

τ(v) ∈ T, and as τ is a state, τ(v∗) = τ(v). Therefore, [v]−1 = [v∗] ∈ G, so G is closed under
inverses. It follows that G is a T-subgroup of Hσ/R1. Since τ ∈ S(C,D), |τ([v])| ∈ {0, 1} for every
[v] ∈ Hσ/R1. Proposition 7.2 implies that τ̃ is a pre-homomorphism on Hσ/R1. Since τ is linear,
for λ ∈ T and v ∈ Hσ, we have τ̃([λv]1) = τ(λv) = λτ̃([v]1). So ind(τ̃) = 1.

For φ ∈ Cc(Hσ/R1) we have
∣∣∣∣∣

∫

Hσ/R1

φ(s)τ̃(s) ds

∣∣∣∣∣ =
∣∣∣∣∣τ

′

(∫

Hσ/R1

φ(s)Tσ(s) ds

)∣∣∣∣∣ ≤
∥∥∥∥∥

∫

Hσ/R1

φ(s)Tσ(s) ds

∥∥∥∥∥
Cσ/Iσ

.

Thus, τ̃ is dominated by Bσ. Therefore, τ̃ ∈Mσ.
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Next we show that the map τ 7→ τ̃ is surjective. So suppose that f : Hσ/R1 → {0} ∪ T is a
pre-homomorphism dominated by Bσ and ind(f) = 1. Then the map F0 : θ(Cc(Hσ/R1)) → C
given by

F0

(∫

Hσ/R1

φ(t)Tσ(t) dt

)
=

∫

Hσ/R1

φ(t)f(t) dt (φ ∈ Cc(Hσ/R1))

extends by continuity to a bounded linear functional F on Cσ/Iσ . Since θ is a ∗-homomorphism
and f is a positive definite function, F is a positive linear functional. Clearly ‖F‖ ≤ 1.

We next show that F (v+Iσ) = f([v]) for every v ∈ Hσ. SinceHσ/R1 is a T-group, the connected
component of the identity is T. Since f is continuous, ind(f) = 1 and f(1) = 1, we have f(λ) = λ
for every λ ∈ T. Given v ∈ Hσ, let φ ∈ Cc(Hσ/R1) be the function given by

φ(t) =

{
λ if t = [λv]1 for some λ ∈ T

0 otherwise.

Now for t ∈ {[λv]1 : λ ∈ T} ⊆ Hσ/R1, we have Tσ(t) = λq(v), so

θ(φ) =

∫

Hσ/R1

φ(t)Tσ(t) dt =

∫

T
λq(λv)dt = q(v).

Thus,

F (q(v)) =

∫

Hσ/R1

φ(t)f(t) dt =

∫

T
λf([λv]1) dt = f([v]1).

It follows that ‖F‖ = 1, so F is a state on Cσ/Iσ .
As N(Cσ,D) ⊆ N(C,D), we see that if w ∈ N(Cσ ,D), then w is a scalar multiple of an element of

Hσ. Since |F ◦ q(v)| = |f([v]1)| ∈ {0, 1} for each v ∈ Hσ, we find F ◦ q ∈ S(Cσ,D). Proposition 7.8
shows that F ◦ q extends uniquely to an element τ ∈ S(C,D, σ). As τ̃ = f , we find that the map
τ 7→ τ̃ is onto.

To show that τ 7→ τ̃ is one-to-one, suppose τ and τ1 belong to S(C,D, σ) and τ̃ = τ̃1. Then
τ(v) = τ1(v) for every v ∈ Hσ, so that τ |Cσ = τ1|Cσ . Proposition 7.8 then shows τ = τ1.

Thus the mapping τ 7→ τ̃ is indeed a bijection. �

We conclude this section with a pair of very closely related questions and two examples.

Notation 7.14. Let (C,D) be a regular inclusion and let

B(C,D) := {x ∈ C : Bσ(x) = 0 for all σ ∈ D̂}.

By Proposition 7.8, B(C,D) = {x ∈ C : ρ(x∗x) = 0 for all ρ ∈ Mod(C,D)}, and by Proposi-
tion 2.16, B(C,D) is an ideal of C which satisfies

(30) B(C,D) ⊆ Rad(C,D).

Question 7.15. Let (C,D) be a regular MASA inclusion.

(1) Let σ ∈ D̂. For x ∈ C, is Bσ(x) = supρ∈S(C,D) ρ(x
∗x)1/2?

(2) Is B(C,D) = Rad(C,D)?

When Rad(C,D) = (0), the answer to both questions is yes.

Example 7.16. This example applies the previous results to a special case of reduced crossed
products to produce a Cartan inclusion (C,D) and a pure state τ on C such that τ |D ∈ D̂, yet
τ /∈ S(C,D).
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Let Γ be an infinite discrete group, let X := Γ∪{∞} be the one-point compactification of Γ and
let Γ act on X by extending the left regular representation to X: for s ∈ Γ and x ∈ X, let

sx :=

{
sx if x ∈ Γ;

x if x = ∞.

We now use the notation from Section 6: let C = C(X)⋊r Γ and D be the cannonical image of

C(X) in C. We identify D̂ with X. The action of Γ on X is topologically free, so (C,D) is a regular
MASA inclusion. Moreover, the conditional expectation E : C → D is the pseudo-expectation.

Let σ ∈ D̂ be the map σ(f) = f(∞). We claim that Hσ/RT = Γ and Hσ/R1 = T× Γ. Observe
first that S(C,D, σ) = {σ ◦ E} and the map θ : Γ → Hσ/RT given by θ(s) = [ws]T is a group
homomorphism. Next, suppose v ∈ Hσ. Then there exists t ∈ Γ, so that Et(v) = E(vwt−1) 6= 0.
Since both v and wt−1 ∈ Hσ we have vwt−1 ∈ Hσ, so σ(E(vwt−1)) 6= 0. By Proposition 7.7,
(v,wt) ∈ RT. Thus θ is surjective. Proposition 7.7 also implies θ is one-to-one: if [ws]T = [wt]T
then σ(E(wst−1)) 6= 0, so that E(wst−1) 6= 0. Thus s = t. Therefore θ is an isomorphism of Hσ/RT

onto Γ, and we use θ to identify Γ with Hσ/RT. The map Γ ∋ s 7→ [ws]1 ∈ Hσ/R1 is a group
homomorphism and also a section for the quotient map of Hσ/R1 onto Hσ/RT. It follows that
Hσ/R1 is isomorphic to T× Γ.

Let ρ = σ ◦ E and let (πρ,Hρ) be the GNS representation of C associated to ρ. Proposition 7.8
implies that Iσ ⊆ ker πρ, so πρ induces a representation, again denoted πρ, of Cσ/Iσ on Hσ.

We shall show that the image of Cσ/Iσ under πρ is isomorphic to C∗
r (Γ). To do this, first

observe that for v,w ∈ Hσ, v + Lρ = w + Lρ if and only if (v,w) ∈ R1. Indeed, since v,w ∈ Hσ,
ρ(w∗w) = ρ(v∗v) = 1, so ρ((v − w)∗(v − w)) = 2 − 2ℜ(ρ(v∗w)). Since |ρ(v∗w)| ∈ {0, 1}, we get
v + Lρ = w + Lρ if and only if ρ(v∗w) = 1, which by Proposition 7.7 gives the observation. This
observation and regularity of Cσ implies that

{ws + Lρ : s ∈ Γ}

is an orthonormal basis for Hρ. Thus there is a unitary operator U : ℓ2(Γ) onto Hρ which carries
the basis element δs ∈ ℓ2(Γ) to ws + Lρ ∈ Hρ.

Now let λ : Γ → B(ℓ2(Γ)) be the left regular representation. For s, t ∈ Γ we have Uλ(s)δt =
wst + Lρ = πρ(ws)Uδt, so

(31) Uλ(s) = πρ(ws)U.

It follows from Proposition 7.9 that the set {ws + Iσ : s ∈ Γ} generates Cσ/Iσ , so (31) shows that
πρ(Cσ/Iσ) is isomorphic to C∗

r (Γ).
Thus there is a surjective ∗-homomorphism Ψ : Cσ → C∗

r (Γ) which annihilates Iσ. The composi-
tion of Ψ with any pure state f on C∗

r (Γ) yields a pure state on Cσ, which in turn may be extended
to a pure state τ ∈ Mod(C,D, σ). Apply this process when Γ = F2 is the free group on 2-generators
u1 and u2. By [26, Theorem 2.6 and Remark 3.4], there exists a pure state f on C∗

r (F
2) such that

|f(u1)| /∈ {0, 1}. It follows that there exists a pure state τ on C such that τ |D = σ, yet τ /∈ S(C,D).

Example 7.17. Denote by {en}n∈N the standard orthonormal basis for H := ℓ2(N). Consider the
inclusion (C,D), where C is the Toeplitz algebra (the C∗-algebra generated by the unilateral shift
S acting on H) and D ⊆ B(H) is the C∗-algebra generated by {SkS∗k : k ≥ 0}. Then (C,D) is a

regular MASA inclusion and D̂ is homeomorphic to the one-point compactification of N, N∪ {∞}.

We identify D̂ with this space.
Here the pseudo-expectation is the conditional expectation E : C → D which takes T ∈ C to the

operator E(T ) which acts on basis elements via E(T )en = 〈Ten, en〉 en.
We shall do the following:

(1) give a description of S(C,D);
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(2) show that not every element of S(C,D) is a pure state of C and identify the pure states in
S(C,D).

The strongly compatible states are easy to identify. Let ρn and ρ∞ be the states on C given by
ρn(X) = 〈Xen, en〉 and ρ∞(X) = limn→∞ ρn(X). Then

Ss(C,D) = {ρn : n ∈ N ∪ {∞}} = {σ ◦E : σ ∈ D̂}.

For each n ∈ N, the set {n} is clopen in D̂, so ρn is the unique extension of ρn|D to a state on C.
(This can be proved directly or viewed as a consequence of Theorem 3.8.)

Thus, to complete a description of S(C,D), we need only describe S(C,D, σ∞), where σ∞ =
ρ∞|D.

To do this, let K = K(H) be the compact operators and let q : C → C/K = C(T) be the quotient
map. Given z ∈ T, we write τz for the state on C given by τz(T ) = q(T )(z). Also, for z ∈ T,
we let αz be the gauge automorphism on C determined by αz(S) = zS. For each N ∈ N, let
λ(N) = exp(2πi/N) and define ΦN : C → C by

ΦN (T ) :=
1

N

N−1∑

k=0

αk
λ(N)(T ).

(Note that if T =
∑p

k=−p akS
k is a “trigonometric polynomial,” then ΦN (T ) =

∑
k∈NZ akS

k.)

We claim that

(32) S(C,D, σ∞) = {ρ∞} ∪ {τz ◦ ΦN : z ∈ T, N ∈ N}.

Each state of the form τz ◦ Φ1 = τz is multiplicative on C. Therefore, {τz ◦ Φ1 : z ∈ T} is a set
of pure states and is a subset of S(C,D). Also, we have

ρ∞ =

∫

T
τz dz and for N ≥ 1, τz ◦ΦN =

1

N

N−1∑

k=0

τλ(N)kz,

so the only pure states on the right hand side of (32) are those of the form τz. We will show that
states of the form τz ◦ ΦN are compatible states. We proceed by first identifying the elements of
N(C,D) with σ∞(v∗v) 6= 0.

Suppose v ∈ N(C,D) satisfies σ∞(v∗v) > 0. Put Av = {n ∈ N : 〈v∗ven, en〉 6= 0} and Bv = {n ∈
N : 〈vv∗en, en〉 6= 0}. Then βv induces a bijection f : Av → Bv, and there exist scalars cj so that

vij := 〈vej , ei〉 =

{
cj if i = f(j);

0 otherwise.

Moreover, note that q(v) = cq(S)m for some c ∈ C and m ∈ Z. Since σ∞(v∗v) 6= 0, c 6= 0, so v
is a Fredholm operator. Let m be the Fredholm index of v. Then q(v) = ρ∞(vS−m)q(S)m. Thus
v = Smd for some d ∈ D with σ∞(d) 6= 0. The fact that each τz ◦ ΦN ∈ S(C,D), now follows. It
remains to show that we have found all elements of S(C,D, σ∞).

We will write H∞, B∞, C∞, and J∞ rather than the more cumbersome Hσ∞
, Bσ∞

, Cσ∞
, and

Jσ∞
. Then

H∞ = {Smd : m ∈ Z and d ∈ D, σ∞(d) ∈ T}.

Thus, J∞ = K and C∞ = C. By Proposition 7.8, B∞ gives the quotient norm on C∞/J∞ = C(T).
Next, for v,w ∈ H∞, we have B∞(v − w) = 0 if and only if ρ∞(w∗v) = 1. In other words,

(v,w) ∈ R1 if and only if q(v) = q(w). Therefore, H∞/R1 is isomorphic to the direct product
T× Z. Observe that H∞/RT is isomorphic to Z, and we obtain the trivial T-group extension,

1 → T → T× Z → Z → 1.
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The generators of the subgroups of Z are the non-negative integers, so the T-subgroups of T × Z
are

{T× nZ : n ≥ 0}.

Let f be a pre-homomorphism of index 1 on H∞/R1. Then there exists a non-negative integer
N such that f is a character on T × NZ. Since f has index 1, there exists λ ∈ Z such that for
(z, n) ∈ T× Z = H∞/R1,

f(z, n) =

{
zλn if n ∈ NZ;

0 otherwise.

As B∞ is the quotient norm on C∞, f is dominated by B∞. Let τ = τz ◦ ΦN . With the notation
of Theorem 7.13, we get τ̃ = f , so by Theorem 7.13, the compatible state corresponding to f is
τz ◦ΦN . This completes the proof of (32).

We now identify the topology onS(C,D). Notice that ifM,N are positive integers withN /∈MZ,
then for any z ∈ T, τz(ΦN (SN )) = τz(S

N ) = zN 6= 0 = τz(ΦM (SN )). Given distinct positive
integers N,M , either N /∈ MZ or M /∈ NZ. Thus for N > 0, {φz ◦ ΦN : z ∈ T} is a connected
component of S(C,D) and is homeomorphic to T.

We next show that if G is a weak-∗ open neighborhood of ρ∞, then there exists N ∈ N such that
Tn := {τz ◦ Φn : z ∈ Z} ⊆ G for every n ≥ N . To do this, it suffices to show that for every a ∈ C

and ε > 0, the set Ga,ε := {φ ∈ S(C,D) : |φ(a) − ρ∞(a)| < ε} contains Tn for all sufficiently large
n, and this is what we shall do. First observe that for every b ∈ C,

(33) lim
n→∞

‖Φn(b)− E(b)‖ = 0.

(This is clear for “trigonometric polynomials” in S, approximate b in norm with a trigonometric
polynomial to obtain (33).) Fix N ∈ N so that ‖Φn(a)− E(a)‖ < ε for every n ≥ N . For any
z ∈ T, we have τz(E(a)) = ρ∞(a), so we find

|τz(Φn(a)) − ρ∞(a)| < ε.

So Tn ⊆ Ga,ε for all n ≥ N .
We conclude that

S(C,D) = Ss(C,D) ∪ {τz ◦ ΦN : z ∈ T, N ∈ N},

which may be viewed as the one-point compactification of the space N ∪
(⋃

N∈N T× {N}
)
, with

ρ∞ corresponding to the point at infinity.

8. The Twist of a Regular Inclusion

Throughout this section, we fix, once and for all, a regular inclusion (C,D) and a closed N(C,D)-
invariant subset F ⊆ S(C,D) such that the restriction map, f ∈ F 7→ f |D, is a surjection of F onto

D̂. When (C,D) is a regular MASA inclusion, Theorem 3.13 shows Ss(C,D) ⊆ F . For this reason,
we have in mind taking F = Ss(C,D), though other choices (e.g. F = S(C,D)) may be useful for
some purposes.

In this section, we show that associated to this data, there is a twist (Σ, G), which, when (C,D)
is a C∗-diagonal (in which case F is necessarily Ss(C,D)) or a Cartan pair (with F = Ss(C,D))
gives the twist of the pair as defined by Kumjian [22] for C∗-diagonals, or for Cartan pairs given
by Renault in [31]. The set F will be used as the unit space for the étale groupoid G associated to
the twist (Σ, G).

Our construction parallels the constructions by Kumjian and Renault, but with several differ-
ences. First, in the Renault and Kumjian contexts, a conditional expectation E : C → D is present,

and since {ρ ◦E : ρ ∈ D̂} is homeomorphic to D̂, Renault and Kumjian use D̂ as the unit space for
the twists they construct. In our context, we need not have a conditional expectation, so we use the
set F as a replacement for D̂. Next, as in the constructions of Kumjian and Renault, we construct a
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regular ∗-homomorphism θ : (C,D) → (C∗
r (Σ, G), C(G(◦))), however, θ(C) need not equal C∗

r (Σ, G),
and the kernel of θ is not trivial unless the ideal KF = {x ∈ C : f(x∗x) = 0 for all f ∈ F} = (0).
We note however, that this ideal is trivial in the cases considered by Kumjian and Renault.

8.1. Twists and their C∗-algebras. Before proceeding, it is helpful to recall some generalities
on twists and the (reduced) C∗-algebras associated to them.

Definition 8.1. The pair (Σ, G) is a twist if Σ and G are Hausdorff locally compact topological
groupoids, G is an étale groupoid and the following hold:

(1) there is a free action of T by homeomorphisms of Σ such that whenever (σ1, σ2) ∈ Σ(2) and

z1, z2 ∈ T, we have (z1σ1, z2σ2) ∈ Σ(2) and (z1σ1)(z2σ2) = (z1z2)(σ1σ2);
(2) there is a continuous surjective groupoid homomorphism γ : Σ ։ G such that for every

σ ∈ Σ, γ−1(γ(σ)) = {zσ : z ∈ T};
(3) the bundle (Σ, G, γ) is locally trivial.

Notice that γ|Σ(◦) : Σ(◦) → G(◦) is a homeomorphism of the unit space of Σ onto the unit space

of G. We will usually use this map to identify Σ(◦) and G(◦).

Recall that given a twist Σ over the étale topological groupoid G, one can form the twisted
groupoid C∗-algebra of the pair (Σ, G). We summarize the construction in our context, for details,
see [31, Section 4] and [22, Section 2]. We note that in both [31] and [22], there is a blanket
assumption that the étale groupoid G is second countable. However, for what we require here, this
hypothesis is not used. The reader may also wish to consult Section 3 of [12].

Let Cc(Σ, G) be the family of all compactly supported continuous complex valued functions f
on Σ which are equivariant, that is, which satisfy f(zσ) = zf(σ) for all σ ∈ Σ, z ∈ T. Given
f, g ∈ Cc(Σ, G), notice whenever τ, σ ∈ Σ with s(τ) = s(σ) and z ∈ T, we have f(στ−1)g(τ) =
f(σ(zτ)−1)g(zτ). For x ∈ G and σ ∈ Σ with s(x) = s(σ), let τ ∈ γ−1(x). Then

(f ⊛ g)(σ, x) := f(στ−1)g(τ)

does not depend on the choice of τ ∈ γ−1(x). The product of f with g is defined by

(f ⋆ g)(σ) =
∑

x∈G
s(x)=s(σ)

(f ⊛ g)(σ, x),

and the adjoint operation is defined by

f∗(σ) = f(σ−1).

These operations make Cc(Σ, G) into a ∗-algebra.
Similarly, notice that for f ∈ Cc(Σ, G), z ∈ T and σ ∈ Σ, |f(σ)| = |f(zσ)|, so for x ∈ G, we

denote by |f(x)| the number |f(σ)|, where σ ∈ γ−1(x). In particular, |f | may be viewed as a
function on G.

One may norm Cc(Σ, G) as in [31] or [22]. For convenience, we provide a sketch of an equivalent,

but slightly different method. Given x ∈ G(◦), let ηx : Cc(Σ, G) → C by ηx(f) = f(x). Then
ηx is a positive linear functional in the sense that for each f ∈ Cc(Σ, G), ηx(f

∗ ⋆ f) ≥ 0. Let
Nx := {f ∈ Cc(Σ, G) : ηx(f

∗ ⋆ f) = 0} and let Hx be the completion of Cc(Σ, G)/Nx with respect
to the inner product 〈f +Nx, g +Nx〉 = ηx(g

∗ ⋆ f).
Recall that a slice of G is an open set U ⊆ G so that r|U and s|U are one-to-one. By [12,

Proposition 3.10], given f ∈ Cc(Σ, G), there exist n ∈ N and slices U1, . . . , Un of G such that the
support of |f | is contained in

⋃n
k=1 Uk. Let n(f) ≥ 0 be the smallest integer such that there exist

slices U1, . . . Un(f) with the support of |f | is contained in
⋃n(f)

k=1 Uk.
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For f, g ∈ Cc(Σ, G), a calculation shows that

‖(f ⋆ g) +Nx‖ ≤ n(f) ‖f‖∞ ‖g +Nx‖Hx
.

Therefore, the map g +Nx 7→ (f ⋆ g) + Nx extends to a bounded linear operator πx(f) on Hx. It

is easy to see that πx is a ∗-representation of Cc(Σ, G). Also, if πx(f) = 0 for every x ∈ G(◦), then

‖f +Nx‖Hx
= 0 for each x ∈ G(◦). A calculation then gives f = 0. Thus,

‖f‖ := sup
x

‖πx(f)‖ .

defines a norm on Cc(Σ, G). The (reduced) twisted C∗-algebra, C∗(Σ, G), is the completion of
Cc(Σ, G) relative to this norm. Clearly, the representation πx extend by continuity to a represen-
tation, again called πx, of C

∗(Σ, G).
As observed in the remarks following [31, Proposition 4.1], elements of C∗(Σ, G) may be regarded

as equivariant continuous functions on Σ, and the formulas defining the product and involution on
Cc(Σ, G) remain valid for elements of C∗(Σ, G). Also, as in [31, Proposition 4.1], for σ ∈ Σ, and
f ∈ C∗(Σ, G),

|f(σ)| ≤ ‖f‖ .

Definition 8.2. We shall call the smallest topology on C∗(Σ, G) such that for every σ ∈ Σ, the

point evaluation functional, C∗(Σ, G) ∋ f 7→ f(σ) is continuous, the G(◦)-compatible topology on
C∗(Σ, G). Clearly this topology is Hausdorff.

The open support of f ∈ C∗(Σ, G) is supp(f) = {σ ∈ Σ : f(σ) 6= 0}. Then C0(G
(◦)) may be

identified with

{f ∈ C∗(Σ, G) : supp(f) ⊆ G(◦)}.

In order to remain within the unital context, we now assume that the unit space of G is compact.
In this case C∗(Σ, G) is unital, and C(G(◦)) ⊆ C∗(Σ, G), so that (C∗(Σ, G), C(G(◦))) is an inclusion.
We wish to show that it is a regular inclusion.

Recall (see [12, Section 3]) that a slice (or G-set) of G is an open subset S ⊆ G such that
the restrictions of the range and source maps to S are one-to-one. We will say that an element
f ∈ C∗(Σ, G) is supported in the slice S if γ(supp(f)) ⊆ S.

If f ∈ C∗(Σ, G) is supported in a slice U , then a computation (see [31, Proposition 4.8]) shows

that f ∈ N(C∗(Σ, G), C(G(◦))), and because the collection of slices forms a basis for the topology of

G ([12, Proposition 3.5]), it follows (as in [31, Corollary 4.9]) that (C∗(Σ, G), C(G(◦))) is a regular
inclusion.

Proposition 8.3. Let Σ be a twist over the Hausdorff étale groupoid G. Assume that the unit
space X of G is compact. Then there is a faithful conditional expectation E : C∗(Σ, G) →
C(G(◦)), the inclusion (C∗(Σ, G), C(G(◦))) is regular. If in addition, is C(G(◦)) is a MASA, then

Rad(C∗(Σ, G), C(G(◦))) = (0).

Remark 8.4. The condition that C(G(◦)) is a MASA is satisfied when G(◦) is second countable

and G is essentially principal, that is, when the interior of the isotropy bundle for G is G(◦), see [31,
Proposition 4.2]. We expect that it is possible to remove the hypothesis of second countability here,
but we have not verified this.

Proof of Proposition 8.3. The existence of the conditional expectation is proved as in [31, Propo-
sition 4.3] or [30, Proposition II.4.8], and we have already observed that the inclusion is regular.

When C(G(◦)) is a MASA in C∗(Σ, G), the triviality of the radical follows from Proposition 5.7.
�
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8.2. Compatible Eigenfunctionals and the Twist for (C,D). We turn next to a discussion
of eigenfunctionals, for a certain class of eigenfunctionals will yield our twist. Recall (see [10])
that an eigenfunctional is a non-zero element φ ∈ C# which is an eigenvector for both the left and

right actions of D on C#; when this occurs, there exist unique elements ρ, σ ∈ D̂ so that whenever
d1, d2 ∈ D and x ∈ C, we have φ(d1xd2) = ρ(d1)φ(x)σ(d2). We write

s(φ) := σ and r(φ) := ρ.

Definition 8.5. A compatible eigenfunctional is a eigenfunctional φ such that for every v ∈
N(C,D),

(34) |φ(v)|2 ∈ {0, s(φ)(v∗v)}.

Let Ec(C,D) denote the set consisting of the zero functional together with the set of all compatible
eigenfunctionals, and let E1

c(C,D) be the set of compatible eigenfunctionals which have unit norm.
Equip both Ec(C,D) and E1

c(C,D) with the relative σ(C#,C) topology.

Remark. Notice that when φ is an eigenfunctional and v ∈ N(C,D) is such that φ(v) 6= 0, then
for every d ∈ D,

(35)
s(φ)(v∗dv)

s(φ)(v∗v)
= r(φ)(d).

Indeed, φ(v)s(φ)(v∗dv) = φ(vv∗dv) = φ(dvv∗v) = r(φ)(d)φ(v)s(φ)(v∗v). Thus, taking d = 1, the
condition in (34) is equivalent to

(36) |φ(v)|2 ∈ {0, r(φ)(vv∗)}.

We now show that associated with each φ ∈ E1
c(C,D) is a pair f, g ∈ S(C,D) which extend r(φ)

and s(φ). Note that regularity of the inclusion (C,D) ensures the existence of v ∈ N(C,D) such
that φ(v) > 0.

Proposition 8.6. Let φ ∈ E1
c(C,D), and let v ∈ N(C,D) satisfy φ(v) > 0. Define elements

f, g ∈ C# by

f(x) =
φ(xv)

φ(v)
and g(x) =

φ(vx)

φ(v)
.

Then the following statements hold.

i) f, g ∈ S(C,D), r(φ) = f |D and s(φ) = g|D.
ii) For every x ∈ C,

φ(x) =
g(v∗x)

g(v∗v)1/2
=

f(xv∗)

f(vv∗)1/2
.

iii) For every x ∈ C, g(v∗xv) = g(v∗v)f(x) and f(vxv∗) = f(vv∗)g(x).

Proof. The definitions show f |D = r(φ) and g|D = s(φ). We next claim that ‖f‖ = ‖g‖ = 1. For
any d ∈ D with s(φ)(d) = 1, replacing v by vd in the definition of f does not change f . Thus, if

x ∈ C and ‖x‖ ≤ 1, we have |f(x)| ≤ inf{‖vd‖
φ(v) : d ∈ D, s(φ)(d) = 1} = 1 (because d may be chosen

so that ‖vd‖ = ‖d∗v∗vd‖1/2 is as close to s(φ)(v∗v)1/2 as desired). This shows ‖f‖ = 1. Likewise
‖g‖ = 1. As f(1) = g(1) = 1, both f and g are states on C.

If w ∈ N(C,D) and f(w) 6= 0, we have (using (35))

|f(w)|2 =

∣∣∣∣
φ(wv)2

φ(v)

∣∣∣∣
2

=
s(φ)(v∗w∗wv)

s(φ)(v∗v)
= r(φ)(w∗w) = f(w∗w),

and it follows that f ∈ S(C,D). Likewise, g ∈ S(C,D).
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Statements (ii) and (iii) are calculations using (34) and (36) whose verification is left to the
reader. �

Notation. For v ∈ N(C,D) and f ∈ S(C,D) such that f(v∗v) > 0, let [v, f ] ∈ C# be defined by

[v, f ](x) :=
f(v∗x)

f(v∗v)1/2
=

〈
x+ Lf ,

v + Lf

‖v + Lf‖Hf

〉

Hf

.

(This notation is borrowed from Kumjian [22]. There, Kumjian works in the context of C∗-diagonals

and uses states on C of the form σ ◦E with σ ∈ D̂. As we assume no conditional expectation here,
we replace functionals of the form σ ◦ E, with elements from S(C,D). See also [31].)

We have the following.

Lemma 8.7. If v ∈ N(C,D) and f ∈ S(C,D) with f(v∗v) > 0, then [v, f ] ∈ E1
c(C,D) and the

following statements hold.

i) s([v, f ]) = f |D and r([v, f ]) = βv(f |D).
ii) [v, f ] = [w, g] if and only if f = g and f(v∗w) > 0.

Proof. Suppose that f ∈ S(C,D), v ∈ N(C,D) and f(v∗v) 6= 0. Let φ = [v, f ]. A calculation shows
that φ is a norm-one eigenfunctional and that statement (i) holds.

If w ∈ N(C,D) and φ(w) 6= 0, then

|φ(w)|2 =
|f(v∗w)|2

f(v∗v)
=
f(v∗ww∗v)

f(v∗v)
= βv(s(φ))(ww

∗) = r(φ)(ww∗),

so φ belongs to E1
c(C,D) by (36).

Turning now to part (ii), suppose that φ = [v, f ] = [w, g]. Then we have s(φ) = f |D = g|D. For
every x ∈ C, Proposition 8.6 gives

f(x) =
φ(vx)

φ(v)
and g(x) =

φ(wx)

φ(w)
.

Since g(w∗v)

g(w∗w)1/2
= φ(v) = f(v∗v)1/2, we obtain

g(w∗v) = f(v∗v)1/2g(w∗w)1/2 > 0.

Likewise, f(v∗w) > 0. Also,

f(x) =
φ(vx)

φ(v)
=

[w, g](vx)

[v, f ](v)
=

g(w∗vx)

f(v∗v)1/2g(w∗w)1/2
=
g(w∗v)g(x)

g(w∗v)
= g(x),

where the fourth equality follows from Proposition 4.3.
Conversely, if f ∈ S(C,D) and v,w ∈ N(C,D) with f(v∗w) > 0, Proposition 4.3 shows that

f(v∗w)2 = f(w∗w)f(v∗v), so that in the GNS Hilbert space Hf , we have 〈v + Lf , w + Lf 〉 =
‖v + Lf‖ ‖w + Lf‖. By the Cauchy-Schwartz inequality, there exists a positive real number t so
that v + Lf = tw + Lf . But then for any x ∈ C,

[v, f ](x) =
〈x+ Lf , v + Lf 〉

‖v + Lf‖
=

〈x+ Lf , tw + Lf 〉

‖tw + Lf‖
= [w, f ](x).

�

Combining Proposition 8.6 and Lemma 8.7 we obtain the following.
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Theorem 8.8. If φ ∈ E1
c(C,D), then there exist unique elements s(φ), r(φ) ∈ S(C,D) such that

whenever v ∈ N(C,D) satisfies φ(v) 6= 0 and x ∈ C,

φ(vx) = φ(v) s(φ)(x) and φ(xv) = r(φ)(x)φ(v).

If v ∈ N(C,D) satisfies φ(v) > 0, then φ = [v, s(φ)]. Moreover,

E1
c(C,D) = {[v, f ] : v ∈ N(C,D), f ∈ S(C,D) and f(v∗v) 6= 0}.

Proof. Suppose v,w ∈ N(C,D) are such that φ(v) > 0 and φ(w) > 0. For x ∈ C, set

f(x) :=
φ(vx)

φ(v)
and g(x) :=

φ(wx)

φ(w)
.

Proposition 8.6 shows that φ = [v, f ] = [w, g]. Lemma 8.7 yields f = g. Another application of
Proposition 8.6 shows that for any x ∈ C,

φ(xv)

φ(v)
=
φ(xw)

φ(w)
.

Then taking s(φ) = f , and r(φ) = φ(xv)
φ(v) , we obtain the result. �

Notice that for φ ∈ E1
c(C,D), we have s(φ) ∈ F if and only if r(φ) ∈ F .

Definition 8.9. Let E1
F (C,D) := {φ ∈ E1

c(C,D) : s(φ) ∈ F}. We shall call φ ∈ E1
F (C,D) an

F -compatible eigenfunctional. Notice that

E1
F (C,D) = {[v, f ] : f ∈ F and f(v∗v) 6= 0}.

With these preparations in hand, we can show that E1
F (C,D) forms a topological groupoid. The

topology has already been defined, so we need to define the source and range maps, composition
and inverses.

Definition 8.10. Given φ ∈ E1
F (C,D), let v ∈ N(C,D) be such that φ(v) > 0. We make the

following definitions.

(1) We say that s(φ) and r(φ) are the source and range of φ respectively.
(2) Define the inverse, φ−1 by the formula,

φ−1(x) := φ(x∗).

If φ ∈ E1
c(C,D) and v ∈ N(C,D) is such that φ(v) > 0, (so that φ = [v, s(φ)]), then a

calculation shows that φ−1 = [v∗, r(φ)]. The fact that F is N(C,D)-invariant ensures that
φ−1 ∈ E1

F (C,D). Thus, our definition of φ−1 is consistent with the definition of inverse in
the definition of the twist of a C∗-diagonal arising in [22] and the twist of a Cartan MASA
from [31].

(3) For i = 1, 2, let φi ∈ E1
F (C,D). We say that the pair (φ1, φ2) is a composable pair if

s(φ2) = r(φ1). As is customary, we write E1
F (C,D)(2) for the set of composable pairs. To

define the composition, choose vi ∈ N(C,D) with φi(vi) > 0, so that φi = [vi, s(φi)]. By
Proposition 8.6(iii), we have

s(φ2)(v
∗
2v

∗
1v1v2) = r(φ2)(v

∗
1v1)s(φ2)(v

∗
2v2) = s(φ1)(v

∗
1v1)s(φ2)(v

∗
2v2) > 0,

so that [v1v2, s(φ2)] is defined. The product is then defined to be φ1φ2 := [v1v2, s(φ2)].

We show now that this product is well defined. Suppose that (φ1, φ2) ∈ E1
F (C,D)(2),

f = s(φ2), r(φ2) = g = s(φ1), and that for i = 1, 2, vi, wi ∈ N(C,D) are such that
φ1 = [v1, g] = [w1, g] and [v2, f ] = [w2, f ]. Then using Lemma 8.7, we have g(w∗

1v1) > 0 and
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f(v∗2w2) > 0, so, as f ∈ S(C,D), there exists a positive scalar t such that v2+Lf = tw2+Lf .
Hence,

f((w1w2)
∗(v1v2)) = 〈πf (v1)(v2 + Lf ), πf (w1)(w2 + Lf )〉

= t 〈πf (v1)(w2 + Lf ), πf (w1)(w2 + Lf )〉

= tf(w∗
2(w

∗
1v1)w2)

= tf(w∗
2w2)r(φ2)(w

∗
1v1)

= tf(w∗
2w2)s(φ1)(w

∗
1v1)

= tf(w∗
2w2)g(w

∗
1v1) > 0.

By Lemma 8.7, [v1v2, f ] = [w1w2, f ], so that the product is well defined.
(4) For φ ∈ E1

F (C,D), denote the map C ∋ x 7→ |φ(x)| by |φ|. Observe that for φ,ψ ∈ E1
F (C,D),

|φ| = |ψ| if and only if there exists z ∈ T such that φ = zψ. Let RF (C,D) := {|φ| : φ ∈
E1
F (C,D)}. We now define source and range maps, along with inverse and product maps on

RF (C,D).
Since a state on C is determined by its values on the positive elements of C, we identify

f ∈ S(C,D) with |f | ∈ RF (C,D). Define s(|φ|) = s(φ) and r(|φ|) = r(φ). Next we

define inversion in RF (C,D) by |φ|−1 = |φ−1|, and composable pairs by RF (C,D)(2) :=

{(|φ|, |ψ|) : (φ,ψ) ∈ E1
c(C,D)(2)}, and the product by RF (C,D)(2) ∋ (|φ|, |ψ|) 7→ |φψ|.

Topologize RF (C,D) with the topology of point-wise convergence: |φλ| → |φ| if and only if
|φλ|(x) → |φ|(x) for every x ∈ C. We call RF (C,D) the spectral groupoid over F of (C,D).

(5) Define an action of T on E1
F (C,D) by T× E1

F (C,D) ∋ (z, φ) 7→ zφ, where (zφ)(x) = φ(zx).
Notice that if φ is written as φ = [v, f ], where v ∈ N(C,D) and f ∈ F , then zφ = [zv, f ].

We have the following fact, whose proof is essentially the same as that of [10, Proposition 2.3]
(the continuity of the range and source maps follows from their definition).

Proposition 8.11. The set E1
F (C,D) ∪ {0} is a weak-∗ compact subset of C#, and the maps

s, r : E1
F (C,D) → S(C,D) are weak-∗–weak-∗ continuous.

Theorem 8.12. Let E1
F (C,D) and RF (C,D) be as above. Then E1

F (C,D) and RF (C,D) are locally
compact Hausdorff topological groupoids and RF (C,D) is an étale groupoid. Their unit spaces

are E1
F (C,D)(◦) = RF (C,D)(◦) = F . Moreover, E1

F (C,D) is a locally trivial topological twist over
RF (C,D).

Proof. That inversion on E1
F (C,D) is continuous follows readily from the definition of inverse map

and the weak-∗ topology. Suppose (φλ)λ∈Λ and (ψλ)λ∈Λ are nets in E1
F (C,D) converging to φ,ψ ∈

E1
F (C,D) respectively, and such that (φλ, ψλ) ∈ E1

F (C,D)(2) for all λ. Since the source and range

maps are continuous, we find that s(φ) = limλ s(φλ) = limλ r(ψλ) = r(ψ), so (φ,ψ) ∈ E1
F (C,D)(2).

Let v,w ∈ N(C,D) be such that φ(v) > 0 and ψ(w) > 0. There exists λ0, so that λ ≥ λ0
implies φλ(v) and ψλ(w) are non-zero. For each λ ≥ λ0, there exists scalars ξλ, ηλ ∈ T such that
φλ(v) = ξλ[v, s(φλ)] and ψλ = ηλ[v, s(ψλ)]. Since

lim
λ
φλ(v) = φ(v) = lim

λ
[v, s(φλ)](v) and lim

λ
ψλ(v) = ψ(v) = lim

λ
[v, s(ψλ)](v),

we conclude that lim ηλ = 1 = lim ξλ. So for any x ∈ C,

(φψ)(x) =
s(ψ)((vw)∗x)

(s(ψ)((vw)∗(vw)))1/2
= lim

λ

s(ψλ)((vw)
∗x)

(s(ψλ)((vw)∗(vw)))1/2
= lim

λ
[v, s(φλ)][w, s(ψλ)]

= lim
λ
(φλψλ)(x),
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giving continuity of multiplication. Notice that for φ ∈ E1
F (C,D), s(φ) = φ−1φ and r(φ) = φφ−1,

and F ⊆ E1
F (C,D). Thus, E1

F (C,D) is a locally compact Hausdorff topological groupoid with unit
space F .

The definitions show that RF (C,D) is a groupoid. By construction, the map q defined by φ 7→ |φ|
is continuous and is a surjective groupoid homomorphism. The topology on RF (C,D) is clearly
Hausdorff. If φ ∈ E1

F (C,D), and v ∈ N(C,D) is such that φ(v) 6= 0, then W := {α ∈ RF (C,D) :
α(v) > |φ(v)|/2} has compact closure so RF (C,D) is locally compact. Also, if α1, α2 ∈ W and
r(α1) = r(α2) = f , then writing αi = |ψi| for ψi ∈ E1

F (C,D), we see that ψi(v) 6= 0, so there exist
z1, z2 ∈ T so that for i = 1, 2 and every x ∈ C, ψi(x) = zif(xv

∗)f(v)−1. Hence α1 = α2 showing
that the range map is locally injective. We already know that the range map is continuous, so by
local compactness, the range map is a local homeomorphism.

Note that convergent nets in RF (C,D) can be lifted to convergent nets in E1
F (C,D). Indeed, if

q(φλ) → q(φ) for some net (φλ) and φ in E1
F (C,D), choose v ∈ N(C,D) so that φ(v) > 0. Then for

large enough λ, φλ(v) 6= 0, and we have [φλ, s(φλ)] → φ. Also, |[φλ, s(φλ)]| → |φ|. The fact that
the groupoid operations on RF (C,D) are continuous now follows easily from the continuity of the
groupoid operations on E1

F (C,D). Thus RF (C,D) is a locally compact Hausdorff étale groupoid.
Finally, q(φ1) = q(φ2) if and only if there exist z ∈ T so that φ1 = zφ2. Moreover, for each

v ∈ N(C,D), the map f 7→ [v, f ], where f ∈ {g ∈ S(C,D) : g(v∗v) > 0} is a continuous section for
q. Also, the action of T on E1

F (C,D). given above makes E1
F (C,D) into a T-groupoid. So E1

F (C,D)
is a twist over RF (C,D).

�

Notation 8.13. We now let

Σ = E1
F (C,D) and G = RF (C,D), so that G(◦) = F.

For a ∈ C, define â : E1
F (C,D) → C to be the ‘Gelfand’ map: for φ ∈ E1

F (C,D), â(φ) = φ(a). Then
â is a continuous equivariant function on E1

F (C,D).

Note that if w ∈ N(C,D), then ŵ is compactly supported. Indeed, for φ = [v, f ] ∈ E1
F (C,D),

φ ∈ supp(ŵ) if and only if [v, f ](w) 6= 0, which occurs exactly when f(v∗w) 6= 0. Proposition 4.3
shows this occurs precisely when f(w∗w) 6= 0. Hence,

supp ŵ = {φ ∈ E1
F (C,D) : s(φ)(w∗w) 6= 0},

and it follows that ŵ has compact support. Moreover, ŵ is supported on a slice, so that we find
ŵ ∈ N(C∗(Σ, G), C(G(◦))).

Before stating the main result of this section, recall that Proposition 2.16 shows that KF = {x ∈
C : f(x∗x) = 0 for all f ∈ F} is an ideal of C whose intersection with D is trivial.

Theorem 8.14. Let (C,D) be a regular inclusion, and let G := RF (C,D) and Σ := E1
F (C,D).

The map sending w ∈ N(C,D) to ŵ ∈ C∗(Σ, G) extends uniquely to a regular ∗-homomorphism

θ : (C,D) → (C∗(Σ, G), C(G(◦))) with ker θ = KF . Furthermore, θ(C) is dense in C∗(Σ, G) in the
G(◦)-compatible topology.

Remark. In general, θ(C) and θ(D) may be proper subsets of C∗(Σ, G) and C(G(◦)) respectively.

Proof. The point is that the norms on C/KF and C∗(Σ, G) both arise from the left regular repre-
sentation on appropriate spaces. Here are the details.

We have already observed that the map w 7→ ŵ sends normalizers to normalizers. Let C0 =
spanN(C,D). Then for any a ∈ C0, â ∈ Cc(Σ, G).
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Let f ∈ F = G(◦). Then f can be regarded as either a state on C or as determining a state on
C∗(Σ, G) via evaluation at f . We write fC when viewing f as a state on C, and fΣ when viewing
f as a state on C∗(Σ, G).

Let (πC,f ,HC,f ) be the GNS representation of C arising from fC, and let (πΣ,f ,HΣ,f ) be the GNS
representation of C∗(Σ, G) determined by fΣ. (Writing x = f , the restriction of πΣ,f to Cc(Σ, G)
is the representation πx discussed above when defining the norm on Cc(Σ, G).)

For typographical reasons, when the particular f is understood, we will drop the extra f in the
notation: write πC or πΣ instead of πC,f or πΣ,f .

Now fix f ∈ G(◦). For a ∈ C0, we claim that

(37) ‖â+Nf‖HΣ
= ‖a+ Lf‖HC

.

Let T ⊆ Λf be chosen so that f(w∗w) = 1 for every w ∈ T and so that T contains exactly one
element from each ∼f equivalence class. Proposition 8.7 shows that when w1, w2 ∈ Λf , we have
|[w1, f ]| = |[w2, f ]| if and only if w1 ∼f w2. Proposition 4.10 shows that {w + Lf : w ∈ T} is an
orthonormal basis for HC. Writing φ = [w, f ], we have,

‖â+Nf‖
2
HΣ

=
∑

|φ|∈G
s(|φ|)=f

|â(|φ|)|2 =
∑

w∈T

|[w, f ](a)|2 =
∑

w∈T

|f(w∗a)|2

=
∑

w∈T

| 〈a+ Lf , w + Lf 〉 |
2 = ‖a+ Lf‖

2
HC

.

It follows that the map a+ Lf 7→ â+Nf extends to an isometry Wf : HC → HΣ.
To see that Wf is a unitary operator, fix ξ ∈ Cc(Σ, G). Since ξ is compactly supported, the set

Sξ := {|φ| ∈ G : s(|φ|) = f and ξ(|φ|) 6= 0}

is a finite set. Let |φ1|, . . . , |φn| be the elements of Sξ. For 1 ≤ j ≤ n, we may find vj ∈ N(C,D)
such that |φj | = |[vj , f ]|. By Proposition 8.7, we may assume each vj belongs to the set T . Let
zj = ξ(φj) and set a =

∑n
j=1 zjvj. Clearly a ∈ C0. Using the fact that f(w∗w) = 1 for each w ∈ T

and the fact that f(w∗
1w2) = 0 for distinct elements w1, w2 ∈ T , we find that for 1 ≤ k ≤ n,

[vk, f ](a) = zk.

Then

‖(â− ξ) +Nf‖
2
HΣ

= fΣ ((â− ξ)∗ ⋆ (â− ξ)) =
n∑

j=1

|(â− ξ)(|φj |)|
2

=

n∑

j=1

(â(φj)− ξ(φj))(â(φj)− ξ(φj)) =

n∑

j=1

|([vj , f ](a)− ξ(φj))|
2

=

n∑

j=1

(zj − ξ(φj))
2 = 0.

Therefore, {â+Nf : a ∈ C0} = {ξ+Nf : ξ ∈ Cc(Σ, G)}. As this set is dense in HΣ, Wf is a unitary
operator.

Next, we show that for a ∈ C0, we have

(38) πΣ(â)Wf =WfπC(a).

To do this, it suffices to show that for each v ∈ T ,

πΣ(â)Wf (v + Lf ) =WfπC(a)(v + Lf ).
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Letting φ = [w1, f ] and y = [w2, f ] we find φy−1 = [w1w2, βw2(f)], and a computation yields,

â(φy−1)v̂(y) =
f(w∗

1aw2)f(w
∗
2v)

f(w1w1)1/2f(w∗
2w2)

=




0 if w2 6∼f v
f(w∗

1av)

f(w∗
1w1)1/2

if w2 ∼f v
=

{
0 if w2 6∼f v

âv(φ) if w2 ∼f v.

Therefore, when s(φ) = f , we have

(â ⋆ v̂)(φ) =
∑

|y|∈G
s(|y|)=f

(â⊛ v̂)(φ, |y|) = âv(φ).

So for |y| ∈ G with s(|y|) = f , |(â ⋆ v̂ − âv)(|y|)| = 0. Then,

â ⋆ v̂ +Nf = âv +Nf

because

‖((â ⋆ v̂)− âv) +Nf‖
2
Hσ

=
∑

|y|∈G
s(|y|)=f

|(â ⋆ v̂ − âv)(|y|)|2 = 0.

Hence,

πΣ(â)Wf (v + Lf ) = πΣ(â)(v̂ +Nf ) = âv +Nf =Wf (πC(a))(v + Lf ),

which gives (38).

The definition of the norm on C∗(Σ, G) and (38) imply that for a, b ∈ C0,
∥∥∥âb− âb̂

∥∥∥
C∗(Σ,G)

= 0.

Therefore, the map a ∈ C0 7→ â is multiplicative and

‖â‖C∗(Σ,G) = sup
f∈S(C,D)

∥∥πC,f (a)
∥∥ .

The existence of θ now follows from continuity, and the fact that ker θ = KF follows from Propo-
sition 5.4. For v ∈ N(C,D), θ(v) = v̂ belongs to N(C∗(Σ, G), C(G(◦))), so θ is a regular ∗-
homomorphism.

Finally, we turn to showing the G(◦)-compatible density of θ(C) in C∗(Σ, G). Let M ⊆ C∗(Σ, G)#

be the linear span of the evaluation functionals ξ 7→ ξ(σ) where ξ ∈ C∗(Σ, G) and σ ∈ Σ. Suppose
µ ∈ M annihilates θ(C). Then there exists n ∈ N, scalars λ1, . . . , λn, elements v1, . . . , vn ∈ N(C,D)
and f1, . . . , fn ∈ F such that for any ξ ∈ C∗(Σ, G),

µ(ξ) =

n∑

k=1

λkξ([vk, fk]).

Without loss of generality we may assume that [vi, fi] 6= [vj , fj] if i 6= j. Since µ annilhlates θ(C),
for every a ∈ C0,

0 = µ(â) =

n∑

k=1

λk[vk, fk](a).

Fix 1 ≤ j ≤ n, and let d, e ∈ D be such that βvj (fj)(d) = fj(e) = 1. For i 6= j, since [vi, fi] 6= [vj , fj],
either fj 6= fi or βvi(fi) 6= βvj (fj). Hence we assume that d and e have been chosen so that if i 6= j,
then [vi, fi](dvje) = 0. Then

µ(v̂j) = λjfj(v
∗
j vj)

1/2 = 0.

As fj(v
∗
j vj) 6= 0, we obtain λj = 0. It follows that µ = 0. Since the dual of C∗(Σ, G) equipped with

the G(◦)-compatible topology is M, we conclude that θ(C) is dense in the G(◦)-compatible topology
on C∗(Σ, G). This completes the proof.

�
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9. Applications

In this section we give some applications which apply to regular MASA inclusions with L(C,D) =
(0). Theorem 6.10 gives a very large class of such inclusions.

Here is an application of our work to norming algebras. We begin with a definition. Recall that
N(C,D) is a closed ∗-semigroup containing D.

Definition 9.1. A ∗-subsemigroup F ⊆ N(C,D) with D ⊆ F is countably generated over D if there
exists a countable set F ⊆ F so that the smallest ∗-subsemigroup of N(C,D) containing F ∪D is
F. The set F will be called a generating set for F.

We will say that the inclusion (C,D) is countably regular if there exists a ∗-subsemigroup F ⊆
N(C,D) such that F is countably generated over D and C = span(F).

The following result generalizes [28, Lemma 2.15] and gives a large class of norming algebras. In
particular, notice that the result holds for Cartan inclusions.

Theorem 9.2. Suppose (C,D) is a regular MASA inclusion such that L(C,D) = (0). Then D

norms C.

Proof. Let F ⊆ N(C,D) be a ∗-subsemigroup which is countably generated over D by the (count-
able) set F . Let CF ⊆ C be the C∗-subalgebra generated by F. (Notice that CF is simply the closed
linear span of F.) Then (CF,D) is a countably regular MASA inclusion.

We will show that D norms CF. Let

Y := {σ ∈ D̂ : σ has a unique state extention to CF}.

Theorem 3.8 shows that Y is dense in D̂. For each element σ ∈ Y , let σ′ denote the unique extension

of σ to all of CF. Notice that if ρ ∈ Î(D) and ρ ◦ ι = σ, then σ′ = ρ ◦E because σ′|D = σ = ρ ◦E|D.
For σ ∈ Y , let πσ be the GNS representation for σ′. Proposition 4.14 shows that πσ(D)′′ is a

MASA in B(Hσ).
Define an equivalence relation R on Y by σ1 ∼ σ2 if and only if there exists v ∈ F such that

σ2 = βv(σ1). (Since F is a ∗-semigroup, this is an equivalence relation.)
We claim that if πσ1 is unitarily equivalent to πσ2 , then σ1 ∼ σ2. To see this, we use a modification

of the argument in [10, Lemma 5.8]. Let U ∈ B(Hσ2 ,Hσ1) be a unitary operator such that

U∗πσ1U = πσ2 .

Let Lσi be the left kernel of σ′i. Since πσi is irreducible, C/Lσi = Hσi . Hence we may find X ∈ C

such that U(I + Lσ2) = X + Lσ1 . Then for every x ∈ C,

σ′2(x) = 〈πσ2(x)(I + Lσ2), (I + Lσ2)〉 = σ′1(X
∗xX).

Fix ρi ∈ Î(D) such that ρi ◦ ι = σi.
The map C ∋ x 7→ σ′1(X

∗x) is a non-zero linear bounded linear functional on C. Since span(F) is
dense in C, there exists v ∈ F so that σ′1(X

∗v) 6= 0. The Cauchy-Schwartz inequality for completely
positive maps shows that for any d ∈ D,

|σ′1(X
∗vd)|2 = ρ1(E(X∗vd)E(d∗v∗X)) ≤ ρ1(E(X∗vdd∗v∗X)) = σ′1(X

∗vdd∗v∗X) = σ2(vdd
∗v∗).

When d ∈ D and σ1(d) 6= 0, we have σ′1(X
∗vd) = σ′1(X

∗v)σ1(d) 6= 0. Therefore, when d ∈ D

satisfies σ1(d) 6= 0,

(39) 0 < σ2(vdd
∗v∗).

In particular, σ2(vv
∗) 6= 0. For any d ∈ D, we have

βv∗(σ2)(d) =
σ2(vdv

∗)

σ2(vv∗)
.
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If βv∗(σ2) 6= σ1, then there exists d ∈ D with σ1(dd
∗) 6= 0 and βv∗(dd

∗) = 0. But this is impossible
by (39). So βv∗(σ2) = σ1. Hence σ1 ∼ σ2 as claimed.

Thus, if σ1 6∼ σ2, then πσ1 and πσ2 are disjoint representations (as they are both irreducible).
Let Y ⊆ Y be chosen so that Y contains exactly one element from each equivalence class of Y .

Put

π =
⊕

σ∈Y

πσ.

Then

(40) kerπ =
⋂

σ∈Y

ker πσ =
⋂

σ∈Y

ker πσ = {x ∈ CF : σ′(z∗x∗xz) = 0 for all σ ∈ Y and all z ∈ CF}.

We next prove that

(41) L(CF,D) ⊇ kerπ.

Suppose to obtain a contradiction, that x ∈ kerπ and that E(x∗x) is a non-zero element of I(D).
Let

L := {ρ ∈ Î(D) : ρ(E(x∗x)) > ‖E(x∗x)‖ /2}.

Then L is a clopen set. By Lemma 3.15, ι∗(L) = {σ ∈ D̂ : σ = ρ ◦ ι for some ρ ∈ L} has non-

empty interior. Since Y is dense in D̂, we may find σ ∈ Y and ρ ∈ L such that ρ ◦ ι = σ. Then
σ′(x∗x) = ρ(E(x∗x)) 6= 0, so x /∈ kerπρ, contradicting (40). Hence (41) holds.

Since L(C,D) ⊇ L(CF,D) ⊇ ker π, we see that π is a faithful representation of CF.
Since the representations in the definition of π are disjoint and each πσ(D)′′ is a MASA in B(Hσ),

π(D)′′ is an atomic MASA in B(Hπ). Therefore, π(D)′′ is locally cyclic (see [29, p. 173]) for B(Hπ).
By [29, Theorem 2.7 and Lemma 2.3] π(D) norms B(Hπ). But then π(D) norms π(CF). Since π is
faithful, D norms CF.

Finally, suppose that k ∈ N and that x = (xij) ∈ Mn(C). For each n ∈ N and i, j ∈ {1, . . . , k},

we may find a finite set Fn,i,j ⊆ N(C,D) so that
∥∥∥xij −

∑
v∈Fn,i,j

v
∥∥∥ < 1/n. Let

F = ∪{Fn,i,j : n ∈ N, i, j ∈ {1, . . . , k}}.

Then F is countable. Let F be the closed ∗-subsemigroup of N(C,D) generated by F and D. Then
for i, j ∈ {1, . . . , k}, xij ∈ CF. Since D norms CF, we conclude that

‖x‖Mk(C)
= ‖x‖Mk(CF)

= sup{‖RxC‖ : R ∈M1,n(D), C ∈Mn,1(D), ‖R‖ ≤ 1, ‖C‖ ≤ 1}.

Hence D norms C.
�

For any norm closed subalgebra A of the C∗-algebra C, let C∗(A) be the C∗-subalgebra of C
generated by A, and let C∗

e (A) be the C∗-envelope of A. (There are a number of references which
discuss C∗-envelopes; see [5, 11, 27].)

The following result is a significant generalization of [10, Theorem 4.21]. Theorem 9.3 was
observed by Vrej Zarikian, who has kindly consented to its inclusion here.

Theorem 9.3. Let C and D be C∗-algebras, with D ⊆ C (D is not assumed abelian). Let (I(D), ι)
be an injective envelope for D. Suppose there exists a unique unital completely positive map Φ : C →
I(D) such that Φ|D = ι, and assume also that Φ is faithful. Let A be a norm-closed (not necessarily
self-adjoint) subalgebra of C such that D ⊆ A ⊆ C. Then the C∗-subalgebra of C generated by A is
the C∗-envelope of A.
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Proof. Let θ : A → C∗
e (A) be a unital completely isometric (unital) homomorphism such that

the C∗-algebra generated by the image of θ is C∗
e (A). Then there exists a unique ∗-epimorphism

q : C∗(A) → C∗
e (A) such that q|A = θ. Our task is to show that q is one-to-one.

Since I(D) is injective in the category of operator systems and completely contractive maps,
there exists a unital completely contractive map Φe : C∗

e (A) → I(D) such that Φe ◦ θ = ι. Also,
there exists a unital completely contractive map ∆ : C → I(D) so that ∆|C∗(A) = Φe ◦ q. Then for
d ∈ D, we have θ(d) = q(d), so ι(d) = Φe(θ(d)) = Φe(q(d)) = ∆(d). The uniqueness of Φ gives
∆ = Φ. Then if x ∈ C∗(A) and q(x) = 0, we have Φ(q(x∗x)) = 0, so q(x∗x) = 0 by the faithfulness
of Φ. Thus q is one-to-one, and the proof is complete. �

We now obtain the following generalization of [28, Theorem 2.16]. While the outline of the proof
is the same as the proof of [28, Theorem 2.16], the details in obtaining norming subalgebras are
different.

Theorem 9.4. For i = 1, 2, suppose that (Ci,Di) are regular MASA inclusions such that L(Ci,Di) =
(0) and that Ai ⊆ Ci are norm closed subalgebras such that Di ⊆ Ai ⊆ Ci. Let C∗(Ai) be the C∗-
subalgebra of Ci generated by Ai. If u : A1 → A2 is an isometric isomorphism, then u extends
uniquely to a ∗-isomorphism of C∗(A1) onto C

∗(A2).

Proof. Theorem 9.2 implies that Di norms Ci. Taken together, Theorem 3.10 and Theorem 9.3
imply that C∗(Ai) is the C

∗-envelope of Ai. Finally, an application of [28, Corollary 1.5] completes
the proof. �
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