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H I G H L I G H T S

• Impacts of a hypothetical insecticide on
ecosystem services provided by a lake
were modeled.

• Complex response of fishing services
due to non-linear feedbacks in the lake
food web

• Water clarity increasedwith reduced in-
secticide use → increase in value by
waders and swimmers.

• Models can generalize to meaningful
endpoints and facilitate quantitative
scenario comparison.
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Assessing and managing risks of anthropogenic activities to ecological systems is necessary to ensure sustained
delivery of ecosystem services for future generations. Ecologicalmodels provide ameans of quantitatively linking
measured risk assessment endpoints with protection goals, by integrating potential chemical effectswith species
life history, ecological interactions, environmental drivers and other potential stressors. Here we demonstrate
how an ecosystem modeling approach can be used to quantify insecticide-induced impacts on ecosystem ser-
vices provided by a lake from toxicity data for organism-level endpoints. We used a publicly available aquatic
ecosystem model AQUATOX that integrates environmental fate of chemicals and their impacts on food webs in
aquatic environments. By simulating a range of exposure patterns, we illustrated how exposure to a hypothetical
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insecticide could affect aquatic species populations (e.g., recreational fish abundance) and environmental prop-
erties (e.g., water clarity) thatwould in turn affect delivery of ecosystem services. Different resultswere observed
for different species of fish, thus the decision to manage the use of the insecticide for ecosystem services derived
by anglers depends upon the favored species of fish. In our hypothetical shallow reservoir, water clarity was
mostly driven by changes in foodweb dynamics, specifically the presence of zooplankton. In contrast to the com-
plex response by fishing value,water clarity increasedwith reduced insecticide use,which produced amonotonic
increase in value by waders and swimmers. Our study clearly showed the importance of considering nonlinear
ecosystem feedbacks where the presence of insecticide changed themodeled food-web dynamics in unexpected
ways. Our study highlights one of themain advantages of using ecologicalmodels for risk assessment, namely the
ability to generalize to meaningful levels of organization and to facilitate quantitative comparisons among alter-
native scenarios and associated trade-offs among them while explicitly accounting for different groups of
beneficiaries.

© 2019 Elsevier B.V. All rights reserved.
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1. Introduction

Ecosystems provide various goods and services to human beneficia-
ries. These include food and water, flood protection, climate regulation,
and recreational opportunities (Fisher et al., 2009). Processes at the
population, community, and ecosystem scale contribute to various de-
grees to the delivery of ecosystem services (Luck et al., 2003). At the
same time, anthropogenic activities can potentially affect different eco-
systems and components adversely, thus interrupting service delivery
(Johnston et al., 2015; Tilman et al., 2017). Assessing and managing
risks of anthropogenic activities to ecological systems is necessary to en-
sure sustained delivery of ecosystem services for future generations.

Ecological risk assessment quantifies potential impacts on different
receptors (e.g. species), and typically focuses on individual responses
of a small set of representative species (Hommen et al., 2010). However,
when assessing potential environmental risks from chemicals, we are
interested in how chemicals might affect higher levels of organization,
such as populations (Efroymson et al., 2004), habitats (Efroymson
et al., 2010), ecological communities (Suter et al., 1999), ecosystems
and the services that they provide (Nienstedt et al., 2012).

When considering ecosystem services, relevant assessment end-
points may be at the population or community level. Standard toxicity
testing, the basis for chemical risk assessments, relies on testing a hand-
ful of species and focuses on effects at the individual level (Forbes and
Galic, 2016). For example, in freshwater ecosystems phytoplankton, in-
vertebrates and fish are often used as test organisms (Hommen et al.,
2010). Even though impacts on their survival, growth, and reproduction
are rigorously quantified and are assumed to be protective, these organ-
isms and corresponding endpoints do not directly represent services
that are valued by beneficiaries. Rather, beneficiaries may care about
clean drinking water, clean water for recreation (swimming and
boating), harvestable fish populations, and simply the aesthetic enjoy-
ment of experiencing freshwater ecosystems (Dodds et al., 2008;
Postel and Carpenter, 1997; Viscusi et al., 2008).

Ecological models provide a means of quantitatively linking mea-
sured risk assessment endpoints with protection goals (Forbes and
Galic, 2016; Forbes et al., 2017). By integrating potential chemical ef-
fects with species life history, ecological interactions, environmental
drivers and other potential stressors, we can predict long-term risks to
ecological entities that deliver valued ecosystem services (De Laender
and Janssen, 2013; Galic et al., 2012). Furthermore, we can easily and in-
expensively evaluatemultiplemanagement options and quantify trade-
offs among multiple services (Bennett et al., 2009).

The aim of this study was to demonstrate how an ecosystemmodel-
ing approach can be used to quantify insecticide-induced impacts on
ecosystem services from organism-level toxicity data. The case study
was developed as one of the outputs of a National Institute of Mathe-
matical and Biological Synthesis (NIMBioS) working group hosted by
the University of Tennessee in Knoxville (http://www.nimbios.org/
workinggroups/WG_o2e). It represents an example of a recently-

developed framework for extrapolating impacts of chemicals from indi-
vidual organisms to ecosystem services (Forbes et al., 2017).

The approach taken here was to quantify the benefits derived from a
Midwestern US lake relative to potential effects of a hypothetical insec-
ticide across a range of exposure scenarios, based on possiblemitigation
measures. We purposefully applied exposure scenarios that ensured a
large disruption to the lake ecosystem to observe and quantify impacts
on ecosystem services and any associated trade-offs. A well-tested lake
ecosystem model was used to simulate the effects of a hypothetical in-
secticide on sensitive aquatic crustaceans and fish species. The main
beneficiaries of ecosystem services were identified and provided by a
generic lake in the Midwestern US as recreational fishers, swimmers
and boaters. We focused on final ecosystem goods and services
(FEGS), i.e., those directly used or enjoyed by beneficiaries (Boyd and
Banzhaf, 2007; Bruins et al., 2017). A distinction is made between final
(direct) and intermediate (indirect) ecosystem services. For example,
most supporting services such as primary production or nutrient cycling
are intermediate because, although they are not directly valued by the
public, they support populations of game fish that are directly valued.

By simulating a range of exposure patterns, we illustrated how risks
from exposure to this hypothetical insecticide could affect aquatic spe-
cies populations (e.g., recreational fish abundance) and environmental
properties (e.g., water clarity) that would in turn affect delivery of eco-
system services. We used a publicly available aquatic ecosystem model
AQUATOX (Park et al., 2008), supported by the US Environmental Pro-
tection Agency. This model integrates environmental fate of chemicals
and their impacts on generic and specific food webs in aquatic environ-
ments. It may be used for assessing impacts on aquatic ecosystems
(Clough et al., 2017; Park et al., 2008), and a number of site- and
condition-specific scenarios exist that are readily available to use.

Impacts were translated on ecological entities to changes in services
delivered to beneficiaries, and benefits transfer methods were used to
assign economic values to them (Richardson et al., 2015).We further as-
sumed that certain mitigationmeasures (e.g., changes in insecticide ap-
plication rate or frequency or presence of buffers) would change the
insecticide loading that reaches the lake food web. We compared sev-
eral management options to demonstrate how applying a biophysical
model can advance our capabilities beyond risk assessment, i.e., to in-
form decision-making to improve the management of ecosystems fac-
ing various pressures from anthropogenic activities.

2. Methods

2.1. AQUATOX model

AQUATOX is an aquatic ecosystem simulationmodel, whichwas de-
veloped by the US Environmental Protection Agency, that links the
physical or abiotic environment (i.e., water quality) and aquatic com-
munities (Park et al., 2008). In this process-based mechanistic model,
different communities are represented as compartments of biomass
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that change based on the gains and losses defined for each group. In a
series of linked differential equations, biomass is gained through
growth, reproduction and external inflow, whereas biomass is lost
through natural mortality, respiration, predation, exposure to toxicants,
and emigration. The model also simulates cycling of all major nutrients,
oxygen dynamics, and different fate processes for organic toxicants
(Fig. 1). By simultaneously computing important chemical and biologi-
cal processes over time, the model helps to identify cause-effect rela-
tionships between chemical water quality, the physical environment,
and aquatic communities.

AQUATOX version 3.1 has been applied to simulate multiple envi-
ronmental stressors (including nutrients, organic loadings, sediments,
chemicals, and temperature) and their effects on algal, macrophyte, in-
vertebrate, and fish communities. Various model applications have rep-
resented different aquatic ecosystems, including vertically stratified
lakes, reservoirs and ponds, rivers and streams, and estuaries (Clough
et al., 2017).

Appendix B of Park and Clough (2014) includes the full list of point-
estimate parameters describing biota, chemicals, sites, and
remineralization, their units, and their manner of reference in the
AQUATOX software interface. The AQUATOX model is written in
object-oriented Pascal using the Delphi programming system for Win-
dows. As part of a case study scenario, initial conditions are set for
state variables. Site characteristics and any parameter estimates that
differ from AQUATOX default values are specified as part of each sce-
nario. Details on the equations in AQUATOX, its developmental history,
and use are provided in the technical documentation (Park and Clough,
2014).

2.2. Case study description

We chose to model the aquatic ecosystem of a generic reservoir in
the Midwestern US for this case study because such lake systems are
popular recreation destinations and therefore offer an opportunity to
evaluate potential tradeoffs among ecosystem services (Fig. 2). As a
starting point, we focused on a well-studied system, but modified it to

represent a clear reservoir that would increase its attractiveness to the
public.We identified Coralville Reservoir (CR), whichwe used as a tem-
plate to build a simulationmodel for a generic shallow reservoir in John-
ston County, Iowa (USA). It is also one of the study files that is included
in the installation of the AQUATOX software. Coralville Reservoir is a
run-of-river reservoir that is influenced by agricultural runoff
(Schnoor, 1981). As a result, the reservoir often experiences high turbid-
ity that substantially limits phytoplankton growth. Simulations of toxi-
cant impacts on zooplankton with original CR parameters did not
cause substantial changes in biomass of phytoplankton or in turbidity
because the influence of inorganic solids (i.e., silt from agricultural
lands) was so dominant. Therefore, we restricted that influence to rep-
resent a reservoir/lake without substantial riverine inputs of suspended
inorganic solids.

The approach to parameterization included an iterative process of
adjusting a few parameters for site characteristics and biota to achieve
a model reservoir in which phytoplankton dominate over submerged
aquatic macrophytes, and an impact on herbivorous zooplankton
leads to higher biomass of phytoplankton. The food web used in our
lake model included four species of forage fish (bluegill, shad, catfish,
and buffalofish), two piscivorous fish species (walleye and largemouth
bass), four zooplankton functional taxa (daphnids, rotifers, copepods,
and predatory zooplankton, i.e. Chaoborus), three benthic/epiphytic
functional taxa (chironomids, Tubifex, and sphaerids), and four phyto-
plankton taxa (diatoms, dinoflagellates, and green and blue-green
algae) (Forbes et al., 2017 – Fig. 3; Fig. 1). This is a realistic food-web dy-
namic in small lakes and reservoirs (Carpenter et al., 2010; Carpenter
et al., 1985) and provides an opportunity to examine tradeoffs among
ecosystem services. A more detailed description of these modifications,
aswell as the information on initial conditions, can be found in the Sup-
plementary Information (Table SI 1 and SI 3). Due to our modifications,
in the following we refer to this model system as the “case study
reservoir”.

For this case study, we assumed that the reservoir is exposed to a hy-
pothetical organophosphate insecticide. For simulation purposes, we
used available toxicity data for a representative organophosphate
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insecticide that is registered for use on corn, which is the predominant
crop in the watershed of the Coralville Reservoir. The case study chem-
ical was slightly mobile in soil (Koc = 6040 L/kg organic C) and moder-
ately persistent (aerobic soil metabolism t1/2 = 170 d). The most
sensitive taxa to this insecticide include zooplankton, especially cladoc-
erans (i.e. Daphnia sp.), and pan fish, such as bluegill, followed by wall-
eye and largemouth bass. Catfish and buffalo fish were the least
sensitive. AQUATOX implements acute (mortality) and chronic (growth
and reproduction) toxicity data in concentration-effects functions to
simulate chemical impacts on biomass of different taxa (Park and
Clough, 2014). We used surrogate species for those for which toxicity
data were lacking; a table with all toxicity parameters used in this
case study can be found in the Supplementary Information (Table SI
2). We made the conservative assumption that all agricultural land in
the watershed was used for growing corn, i.e., ~57% of the total water-
shed area (www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_
006352.pdf).Water concentrations of the case study insecticide loading
weremodeled using the Pesticide Root ZoneModel (PRZM, version 5.0)
(https://www.epa.gov/exposure-assessment-models/przm-version-
index) and theVariable VolumeWaterModel (VVWM), assuming label-
rate insecticide application to all corn acreage (applied at 1.68 kg active
ingredient/ha, twice per year) in the Coralville Reservoir watershed.
PRZM is a simulation model that takes into account rainfall and evapo-
transpiration, as well as agricultural practices, to calculate daily fate of
the pesticide in the field. Each PRZM scenario can be a unique combina-
tion of climatic conditions, crop-specific management practices, soil-
specific properties, site-specific hydrology, and pesticide-specific appli-
cation and dissipation processes (Young and Fry, 2016). Simulation out-
puts are daily edge-of-field runoff and spray drift loadings of pesticide
which are discharged into a standard water body simulated by the
VVWM (Young, 2016). This model simulates daily pesticide concentra-
tions accounting for the processes of volatilization, sorption, hydrolysis,
biodegradation, and photolysis.

Historical simulations were conducted for the period between
October 1969 and September 1978 – the choice of the simulation
period was driven by the availability of weather profiles in the
original AQUATOX template. The same weather profiles were used
to generate insecticide concentrations in PRZM and VVWM. We
further simulated several management scenarios (MS) by reducing
insecticide loading by different amounts. This was done assuming a
reduced pesticide load (i.e. 10×, 25× or 100×), but the same tem-
poral exposure pattern. We simulated the following management
scenarios: no reduction (MS 0), a 5× reduction (MS 5), a 10× re-
duction (MS 10), a 25× reduction (MS 25), a 100× reduction (MS
100), and a complete absence of the insecticide (MS No pesticide).
Management scenarios represent a reduction in total loading of the
insecticide into the watershed through a combination of relevant
mitigation measures. Conceptually, a given management scenario
may be achieved through a combination of actions, including re-
duced application rates, fewer applications per field (not tested in
this study) or use of riparian buffers; however, this analysis does
not quantify impacts of specific actions on loading.

2.3. Selection and valuation of ecosystem services

For this case study, ecosystem services were identified using U.S.
EPA's Final Ecosystem Goods and Services Classification System, or
FEGS-CS (Landers and Nahlik, 2013). The FEGS-CS classifies environ-
ments and the corresponding ecological components that are directly
enjoyed by different classes of beneficiaries.

Ecosystem services relevant to Midwestern reservoirs included the
ability to view the lake bottom in wading areas, abundance of game
fish, and water suitability for swimming (Table 1). We then identified
correspondingmetrics that could be estimated using AQUATOX outputs
(Table 1). Finally, we selected abundance of game fish and water suit-
ability for recreational purposes for economic valuation which was

Water suitability for swimming

Ability to view subsurface

Abundance/biomass of game fishes

FEGS Beneficiaries

Waders, Swimmers, and Divers

Experiencers, Viewers

Anglers

Fig. 2. Final ecosystem goods and services (FEGS) provided by a reservoir lake, representative of Midwestern lakes, and their beneficiaries.
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conducted using the benefits transfer method (Richardson et al., 2015).
This required us to assume that the transferred values pertain to this
case study and that the demographics of beneficiaries are similar.
Below we describe valuation methods for abundance of game fish and
the suitability of a water body for wading or swimming.

2.3.1. Abundance of game fish
To illustrate valuation of this ecosystem service, the potential for

fishing in the reservoir was translated from fish biomass (ρ) generated
by AQUATOX to value (V) in dollars of a specificMS (i) of the insecticide
loading (i.e., 25× decrease, 10× decrease, no insecticide use in the wa-
tershed). The focus of this analysis was on an annual change in the
value of fishing that could be attributed to a specific type of fish
(i.e., bluegill, bass, walleye or catfish). An annual time step (t) seemed
most realistic for the time frame inwhichwatershed and reservoirman-
agers could collect data (e.g., crop practices, number of anglers visiting
the reservoir, etc.) and make decisions.

For each type of fish, daily biomass values were generated by
AQUATOX (dry weight) for the baseline scenario (i.e., insecticide use
as on label) and for the three management scenarios. These values
were then converted from a dry to a wet weight (U.S. Environmental
Protection Agency, 1993). The daily change in biomass attributed to a
management scenariowas calculated as the difference between the bio-
mass in the management and baseline scenarios. For each of the simu-
lated full years (1970–1977), an average daily change in biomass ρ
was calculated (Eq. (1)) for each year t and type of fish i:

Δρi ¼
1

365
∑365

t¼1 ρi;t−ρbase;t

� � ð1Þ

For each year and each type of fish, the value of an insecticide man-
agement scenario ($; Vi; Eq. (2))was calculated bymultiplying the daily
change in density by willingness of fishers to pay (WTP) for a change in
fish biomass and the number of visits to the lake per year (N)

Vi ¼ Δρ �WTP � N ð2Þ

There were 187,382 visits to the reservoir in 2012 for fishing (U.S.
Army Corps of Engineers, 2014), and we used 187, 000 as the value
for all simulation years in further analyses.WTP data used in this analy-
sis were expressed as average cost ($) per trip per kg/ha increase in a
given type of fish. We assumed that all trips were attributed to a single
species and that there were no species preferences, i.e., trips were not
taken to fish for a specific species. This allowed us to weigh all species

equally for comparison. We used the following WTP: $1.55 for bluegill
(type of panfish), $1.57 for largemouth bass and $4.03 for walleye
(Melstrom et al., 2015). Comparable WTP data for the Midwest were
not found for catfish; however, some sources suggest that catfish may
be valued at a similar level as panfish and bass and half of the value of
walleye (Charbonneau and Hay, 1978). We, therefore, used the cost
per trip value of $1.55, which corresponds to bluegill, as a surrogate
for catfish.

2.3.2. Water suitability for wading or swimming
The goal of this analysis was to illustrate a valuation of improved

water clarity in the simulated reservoir. Water clarity is an important
ecosystem service that is valued by different types of beneficiary
(Fig. 2), including swimmers, boaters, and property owners; it has
been identified as the best measure of high-quality water (Kosten
et al., 2009; Peeters et al., 2009). Surveys show that clear water, mea-
sured by how many meters beneath the surface of the water a Secchi
disk is visible, is highly valued by the general public (Schuetz et al.,
2001). This is because the public has an intuitive understanding of
what it means, and that it is a single aggregated measure reflecting a
range of watershed impairments leading to eutrophication or high
suspended sediment concentrations. A positive hyperbolic relationship
exists between water clarity and an index of water quality (based on
several parameters, incl. dissolved oxygen, pH, total phosphorus, ni-
trates, turbidity) (Ge et al., 2013). There is a threshold increase at rela-
tively low Secchi depths (b1 m), which means that small increases in
Secchi depths will yield large increases in perceived water quality.
Secchi depths were generated in AQUATOX simulations for the scenar-
ios described in the Case Study Description (Section 2.2). Our valuation
considered the impact ofmanagement scenarios on the hypothetical in-
secticide. We examined the literature to determinewhat expressions of
Secchi depth (SD) should beused to evaluate FEGS for recreational users
of the modeled lake.

We relied on a water clarity valuation model developed using 2002
water quality data and a survey of Iowa households to quantify recrea-
tional visits to Iowa lakes in the same year (Egan et al., 2009). The
resulting logistic model linked two responses: 1) the change in number
of visits to lakes and 2) willingness-to-pay (WTP, 2009$US/household)
for increasing water clarity associated with a set of unimpaired lakes
(annual median Secchi depth = 1.27 m) compared to impaired lakes
(annual median Secchi depth = 0.81 m). From this, we estimated a
marginal value (per-meter increase in Secchi depth). We then summa-
rized our simulated data for April–October, which is assumed to be the
time period representative of the recreational season for swimmers and

Table 1
Framework for economic valuation of changes in final ecosystem goods and services (FEGS) across case study scenarios. Abbreviations are: final ecosystem goods & services (FEGS), FEGS
classification system (FEGS-CS), and willingness-to-pay (WTP).

FEGS Beneficiary Available benefit transfer data Corresponding model
endpoint

From FEGS-CS In case
study

From FEGS-CS In case study

Presence of the
environment/water
suitability for swimming

Mean
seasonal
Secchi depth
(m)a

Recreational/waders,
swimmers, and divers

Recreational users of the
case study reservoir

WTP (Iowans' travel to Iowa
lakes) for change in water clarity
= $0.21 m−1 household−1 lake−1

y−1

(Egan et al., 2009)

Change in seasonal Secchi depth
(m) in different management
scenarios

Presence of the
environment/ability to
view subsurface
environment

Mean
seasonal
Secchi depth
(m)a

Recreational/experiencers
and viewers

General public and
property owners at the
case study reservoir

This FEGS was assumed to overlap
with the previous one

Change in Secchi depth (m)

Fish/abundances of game
fish

Biomass of
several fish
species

Recreational/anglers Recreational anglers of
the case study reservoir

WTP (Michigan anglers' travel to
Michigan rivers, streams,
impoundments) per additional
fish caught = $1.55 for panfish,
$1.57 for largemouth bass, $4.03
for walleye (Melstrom et al.,
2015)

Change in biomass of the four
species of interest for angling:
largemouth bass, walleye, bluegill,
catfish

a Secchi depths are defined as the number of meters beneath the surface of the water where a Secchi disk is visible.
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boaters. From that, we calculated median Secchi depths for each simu-
lated year and scenario. From changes in clarity (differences in median
Secchi depth between impaired and non-impaired lakes) we estimated
changes in the number of trips and value per household.Water clarity is
appreciated regionally, so the above estimates of value per household
were expanded by estimating the number of households likely to visit
the reservoir. The 2009 US Census estimated 55,967 households for
Johnston County (where Coralville Reservoir is located), representing
4.2% of Iowa households (www.census.gov/2010census/popmap/
ipmtext.php?fl=19). The WTP data based on annual Secchi depth
values were the only data available to us, and using these data for the
valuation of our seasonal patterns is a clear limitation of this analysis.
Ideally,wewould prefer to use a value representative of the recreational
period (e.g., median values representing Secchi depths from April–
October).

3. Results

3.1. Ecosystem dynamics under exposure to a hypothetical insecticide

Exposure to insecticide concentrations resulting from loadings pro-
vided by PRZM had substantial impacts on several taxa in the food
web/ecosystem (relative to a scenario with no pesticide; Fig. 3). We
show only a subset of compartments that AQUATOX simulated. Under
the nomanagement scenario (MS 0), biomass of daphnids, bluegill sun-
fish, and largemouth bass were kept low. Conversely, biomasses of phy-
toplankton and catfish benefitted from insecticide exposure and both
increased. By applying different management scenarios that reduced

exposure concentrations, we found concentration–response relation-
ships that differed among taxa. For themajority of taxa, a 25× reduction
in insecticide exposure (MS 25) yielded biomass values that did not vis-
ibly differ from those in which no insecticide was assumed (MS No pes-
ticide). Bluegill biomass was reduced even at 100× reduction in
exposure (MS 100, as compared withMS No pesticide), whereas catfish
biomass declined as insecticide exposure decreased. In further analyses,
we show only scenarios with no management (MS 0), with 10× reduc-
tion (MS 10), with 25× reduction (MS 25) and the scenario with no in-
secticide (MS No pesticide).

Catfish, bluegill sunfish, and largemouth bass experienced very dif-
ferent dynamics due to exposure in the four management scenarios
(Fig. 4). We compared biomass in different scenarios to the scenario
without any exposure (MS No pesticide). Bluegill biomass declined al-
most instantly after exposure to the insecticide and did not recover in
the three management scenarios with partial reduction of insecticide
loading. Biomass of largemouth basswas almost zero in the nomanage-
ment scenario and dropped substantially inMS 10 after 3 years of expo-
sure, with a subsequent recovery after 3 additional years. Biomass
dynamics of both largemouth bass andwalleyewere similar and consis-
tently higher through the simulation period inMS25 than inMSNopes-
ticide (Fig. 4). Biomass of catfish consistently declined with reductions
in exposure (MS 0 N MS 10 N MS 25 N MS No pesticide).

Secchi depths varied across years and management scenarios
(Fig. 5). The lower variability in 1969 was due to the simulation period
capturing only the last 31 days of the season when the exposure con-
centrations were low, i.e. treatments were almost identical to controls
for any management scenario. The exposure was high enough to
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perturb the system in the following season (spring 1970) which re-
sulted in more variability across management scenarios and years. Nev-
ertheless, there was a clear impact of the insecticide. In the years
1971–1972, when simulated concentrations were higher than in other
years (Fig. 4), Secchi depths for all insecticide-use scenarios were
smaller than in other years. Across all simulation years, mean water
clarity in the recreational seasonwas 0.88m (±0.51 SD) in the noman-
agement scenario, 1.5 (±0.8 SD) in the MS 10, 1.8 m (±0.77 SD) in the
MS 25, and 2.02 m (±0.6 SD) in the scenario with no insecticide use.

3.2. Ecosystem services valuation

3.2.1. Abundance of game fish
Valuation of the ecosystem service of abundance of game fish for an-

glers estimated the marginal values of management scenarios consid-
ered here over the baseline (MS 0) to increase between $300,000 and
$500,000 for bass and walleye (Fig. 6), with overlapping confidence in-
tervals. As walleye had the same responses as largemouth bass, values
for both species were increased in the MS 25 when compared to MS
No pesticide. Bluegill did not increase in value, except in theMS No pes-
ticide scenario, in which the value was increased by $276,000. Catfish
decreased in value for all scenarios presented here. Decreases ranged
from $500,000 to $800,000 over the nine year simulation period.

3.2.2. Water suitability for swimming
We estimated amarginal change in water clarity value of $0.21 m−1

household−1 lake−1 y−1 based on (Egan et al., 2009). The number of
reservoir visits per household increased from a median below 0.1 for
MS 10 to a median of 0.18 as exposure to the insecticide decreased
(Fig. 7). This increase in visits was associated with a higher willingness
to pay on a per-household basis for increased water clarity (results not
shown). When expanded to the number of households in Johnston
County, we estimated a regional economic benefit realized by waders
and swimmers of between $6000 (MS 10) and $15,000 (MS No pesti-
cide) (Fig. 7). Furthermore, the variability in values declined as the
level of insecticide decreased in the simulated lake.

4. Discussion

The goal of this study was to use an ecological model to quantify
changes in the provisioning of ecosystem services associated with

alternative management scenarios. We applied a well-established
aquatic ecosystem model to quantify the impacts of a hypothetical in-
secticide on several ecosystem services provided by a generic reservoir
lake. Our case study illustrates a modeling framework that can prove
useful in evaluating management approaches and resolving tradeoffs
in ecosystem services. Although the results are purely dependent on
the assumptions and data for this hypothetical case study, they none-
theless show that the best management approach may depend on
which services we aim to protect. We have shown that ecosystem ser-
vices can respond to the presence of an insecticide differently and that
careful consideration of service beneficiaries and their values needs to
be incorporated into the risk assessment process if ecosystem service
delivery is a protection goal.

4.1. Abundance of game fish

Hypothetical exposure to the insecticide affected fish species differ-
ently. Differences depended on the magnitude of direct effects, i.e. the
species sensitivity to the chemical, and indirect effects, i.e. effects medi-
ated through the food web. Both bluegills and their main prey
(daphnids) were highly sensitive to the modeled insecticide (lowest
toxicity endpoints, SI Table 1). Consequently, management scenarios
that resulted in large insecticide runoff to the reservoir resulted in extir-
pation of both populations. However, at MS 10 and 25 daphnids recov-
ered, but the bluegills did not. Being one of the main preys of
largemouth bass, which had the highest biomass at MS 25, resulted in
relatively low overall bluegill biomass for the majority of management
scenarios. Largemouth bass and walleye experienced similar dynamics
(data for walleye not shown because they are the same as bass). Both
populations reached very low levels in scenarios with higher insecticide
concentrations. However, biomass of both species was highest in a low-
insecticide scenario, MS 25, suggesting that they benefitted from low
concentrations of the modeled insecticide in the system. A closer in-
spection of the trophic matrix (SI Table 2) suggested that a potential
cause could be increased detrital biomass which then impacted bass
andwalleye via the detrital food web. Detritivores, such as chironomids
and Tubifex, represent themain food resource for largemouth bass juve-
niles. However, the prey base for walleye included mostly other fish
species such as shad and especially buffalofish, which are relatively in-
sensitive to the modeled insecticide and feeds largely on detritivores.
So even though biomass increases of both species were driven by the
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detrital food web, the effect on bass was direct, whereas increased re-
sources for walleye were mediated by intermediary prey species.

On the other end of fish responseswas the three-fold increase in cat-
fish biomass in the baseline scenario which could not be explained
merely by low sensitivity to themodeled insecticide. The trophicmatrix
details revealed thatwalleye substantially rely on catfish and buffalofish
and that the insecticide-induced decline in walleye released juvenile
catfish from predation; at MS 25 the high walleye biomass induced
the biggest decline in catfish out of all management scenarios. Insecti-
cide use also led to an increase in chironomid biomass which forms
the base of the catfish diet and thus further increased catfish biomass.
A combination of low sensitivity to the insecticide, diminished preda-
tion pressure and an increase in prey biomass resulted in overall posi-
tive impacts of the modeled insecticide for this species.

These differences in fish biomass dynamics translated into different
economic benefits and losses among scenarios, which varied substan-
tially across years. Variability in economic value was expressed as the
difference across years attributed to differences in biomass output of
AQUATOX. This difference was likely driven by simulated weather that
influenced insecticide loading to the reservoir, e.g., increased rainfall
leads to increased runoff from treated fields, and by temperature im-
pacts on the simulated community. Year-to-year variability in number
of trips or WTPwas not accounted for, as these data were not available.

These results illustrate how tradeoffs among ecosystem services
may influence management decisions. Because different results were
observed for different species of fish, the decision to manage the use
of the insecticide for the ecosystem service of angling will depend
upon the favored species of fish. If beneficiaries value walleye and
bass fishing above fishing for bluegill, anymanagement that reduces in-
secticide exposure (fromMS10 toMS100)will be sufficient for improv-
ing the ecosystem service of interest. On the other hand, if anglers prefer
to fish for bluegill, then only no use of the insecticide in the watershed
will be sufficient. Any management of the insecticide would result in
economic losses if anglers prefer to fish for catfish.

4.2. Water clarity

We simulated the impacts of an insecticide on grazing zooplankton,
which resulted in increased phytoplankton biomass and decreased
water clarity in the reservoir. Our case study showed that waders and
swimmers experienced a monotonic increase in this ecosystem service
in response to reduced insecticide use. Water clarity, as measured by
Secchi depth, varied substantially across years and simulated scenarios,
possibly because phytoplankton biomass is driven by amultitude of fac-
tors (Boyce et al., 2010; Carpenter et al., 1998b).Water clarity is affected
by ecosystem properties, such as fish community composition and the
relative abundance of macrophytes versus algae. In real systems, other
drivers also contribute to water clarity, such as suspended sediment
(Davies-Colley and Smith, 2001), dissolved organic matter (Solomon
et al., 2015) or water chemistry, such as presence of tannins (Stumm
and Morgan, 1970). In our hypothetical shallow reservoir, water clarity
was mostly driven by changes in food web dynamics, specifically the
presence of zooplankton, which is common in shallow lakes (Jeppesen
et al., 1999).

The increase in water clarity with reduced insecticide use described
abovewas accompanied by amonotonic increase in value. A significant,
linear relationship was reported between Secchi depth and distance
traveled to visit lakes in Iowa and Minnesota, as determined by photo-
visitation (Keeler et al., 2015). The relationship was significant for
Iowa lakes alone, where mean Secchi depth was 1.1 m, but not for Min-
nesota lakes alone, which have a mean Secchi depth of 2.7 m. This may
suggest that differences in clarity become less important as clarity im-
proves, afinding thatwas not possible to consider in our case study. Fur-
thermore, the public benefits more from paying to improve at least one
lake to a higher level of clarity than to increase the clarity of all lakes by a
smaller amount (Egan et al., 2009). This is, in part, because clarity

improvements smaller than 0.5 m are visually imperceptible
(Smeltzer andHeiskary, 1990). In our study, changes in Secchi depthbe-
tween scenarios with no insecticides and those in which different man-
agement strategies were implemented ranged from 0.7 (MS 0 toMS 10)
to 1.1 m (MS 0 to MS No pesticide). This suggests that improvements
would be visible to, and presumably valued by the public.

Here, we have demonstrated the implications for management of
taking different beneficiary preferences into account. If walleye or
largemouth bass are preferred over other fish, then reducing insecticide
loading by a factor of 10wouldmarkedly increase service delivery com-
pared to the baseline (nomanagement) scenario. At the same time, cat-
fish would incur a modest reduction in biomass, and there would be a
substantial increase in water clarity. In monetary terms, the MS 10
would yield a net benefit of ~$670,000which is the sum of themean in-
creased value of largemouth bass, walleye biomass, and bluegill and
water clarity. If we were to add the losses associated with reduced cat-
fish, then a net benefit of $32,000 would be expected. For comparison,
removing insecticide use from the region would yield a benefit of ~
$1,100,000; this is the sum of the mean increase in biomass of
largemouth bass, walleye, and bluegill and increased water clarity.
Subtracting the losses from reduced catfish biomass results in a net
value of $270,000 over the whole simulation period.

It is worth noting that we did not account for services derived from
agriculture in the watershed surrounding this reservoir. Furthermore,
we did not account for direct or indirect costs of different management
scenarios on agriculture.We assumed that insecticide loading in thewa-
tershed could be reduced with different mitigation measures, such as
reduced application rates and frequencies or use of buffer strips, or wet-
lands (Reichenberger et al., 2007); however, these mitigation measures
may come at a cost to growers. For example, constructingwetlandsmay
be costly whereas using the appropriate insecticide application nozzle
size is less so (Reichenberger et al., 2007). In some cases, mitigation
can also generate income for farmers. For example, three-stage buffers
from which perennial grasses, willow and poplar are harvested for bio-
mass energy (Jager and Efroymson, 2018; Maringanti et al., 2011). In
order to consider additional impacts of possible management options,
it may be useful to include a quantitative analysis of the costs or benefits
associated with actions that would serve to implement the possible
management scenarios.

Furthermore, our hypothetical example was designed to illustrate
the worst-case insecticide effects using available models and data ex-
pected to be available for an insecticide. The model we used to derive
exposure concentrations is conservative in its choice of parameters
and assumptions, yielding worst-case exposure concentrations. There
are other factors that may impact pesticide loading, such as implemen-
tation of agricultural best management practices, use of lower rates
(than allowed on the label) and a lower proportion of fields treated
within the watershed (i.e., we assumed all of the agricultural acres in
thewatershedwere treated). Analysis of water samples from reservoirs
in the Northern Great Plains reveals that for the period of 2003–2005,
the maximum detected concentration of the organophosphate chlor-
pyrifos was 0.02 μg/L (Donald et al., 2007). Observations that empirical
concentrations are orders of magnitude lower than modeled estimates
(mean simulated concentration was 5 μg/L), support the assumption
that the baseline exposure (MS 0) modeled in this analysis was conser-
vative. This suggests that risk assessments should take into account
measured, and not exclusively modeled, exposures. Moreover, other
consequences of agricultural practices were also omitted from this
study. Nutrient run-off may cause substantial disruption to aquatic eco-
systems, including algal blooms, hypoxic events or shifts in the whole
food web (Carpenter et al., 1998a; Scheffer et al., 1993). Increased
input of suspended inorganic solids has been demonstrated to adversely
affect biomass and diversity of both plants and consumers in streams
and experimental systems (Matthaei et al., 2010; Townsend et al.,
2008). However, our aim was not to perform an actual risk assessment,
which would need to take into account various other sources of stress,
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but instead to provide an example of how provision of ecosystem ser-
vices to different beneficiaries can be simulated under different insecti-
cide management scenarios to facilitate decision-making in ecological
risk assessment and management (Evans et al., 2013; Forbes et al.,
2017). To clearly demonstrate this, we used a wide range of exposures
that ensured a larger disruption to the ecosystem and possible ecosys-
tem service trade-offs. Finally, it is also important to note that pesticides
with other modes of action would likely result in different outcomes.
Quantifying impacts on ecosystem services fromexposure to herbicides,
fungicides, or other insecticides, was beyond the aims of this study.
However, if toxicity data exist, the methodology reported here could
readily be applied to other classes of chemicals.

Our study clearly showed the importance of considering nonlinear
ecosystem feedbacks when attempting to assess risk from chemicals
and other stressors (De Laender and Janssen, 2013). The presence of
some level of insecticide changed the modeled food-web dynamics in
non-linear ways, resulting in increased catfish biomass in all scenarios,
and walleye and largemouth bass in low insecticide scenarios (MS
25). It is highly unlikely that such responses would have been detected
without theuse of quantitativemodels that integrate relevant ecological
information. Our study highlights one of the main advantages of using
ecological models for risk assessment, namely the ability to generalize
to meaningful levels of organization that matter to society, rather than
individual-level toxicological sensitivity of a handful of species (Forbes
and Galic, 2016; Forbes et al., 2017). Themodels also facilitate quantita-
tive comparisons among alternative scenarios while explicitly account-
ing for different groups of beneficiaries and potential trade-offs among
them. This approach has the potential to enhance the transparency
and consistency of risk assessments by enlisting and representingdiffer-
ent stakeholder communities, andmay thereby improve environmental
management decisions.
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