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H I G H L I G H T S

• Effects of an endocrine disruptor on in-
dividuals and populations of trout are
modeled.

• Impacts on populations are not directly
proportional to impacts in individuals.

• Importance of endocrine disruption and
inter-species competition is compared.

• Translating model outputs to ecosystem
services facilitates decision making.
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We demonstrate how mechanistic modeling can be used to predict whether and how biological responses to
chemicals at (sub)organismal levels in model species (i.e., what we typically measure) translate into impacts
on ecosystem service delivery (i.e., what we care about). We consider a hypothetical case study of two species
of trout, brown trout (Salmo trutta; BT) and greenback cutthroat trout (Oncorhynchus clarkii stomias; GCT).
These hypothetical populations live in a high-altitude river system and are exposed to human-derived estrogen
(17α‑ethinyl estradiol, EE2), which is the bioactive estrogen in many contraceptives. We use the individual-
basedmodel inSTREAM to explore how seasonally varying concentrations of EE2 could influencemale spawning
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and sperm quality. Resulting impacts on trout recruitment and the consequences of such for anglers and for the
continued viability of populations of GCT (the state fish of Colorado) are explored. inSTREAM incorporates sea-
sonally varying river flow and temperature, fishing pressure, the influence of EE2 on species-specific demogra-
phy, and inter-specific competition. The model facilitates quantitative exploration of the relative importance of
endocrine disruption and inter-species competition on trout population dynamics. Simulations predicted con-
stant EE2 loading to have more impacts on GCT than BT. However, increasing removal of BT by anglers can en-
hance the persistence of GCT and offset some of the negative effects of EE2. We demonstrate how models that
quantitatively link impacts of chemicals and other stressors on individual survival, growth, and reproduction
to consequences for populations and ecosystem service delivery, can be coupled with ecosystem service valua-
tion. The approach facilitates interpretation of toxicity data in an ecological context and gives beneficiaries of eco-
system services amore explicit role inmanagement decisions. Although challenges remain, this type of approach
may be particularly helpful for site-specific risk assessments and those in which tradeoffs and synergies among
ecosystem services need to be considered.

© 2018 Elsevier B.V. All rights reserved.
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Ecological risk assessment
Ecosystem services
FEGS
Individual-based model
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1. Introduction

This study provides a proof of concept to demonstrate how the kinds
of effects typicallymeasured in ecological risk assessments (i.e., lethal or
sublethal effects on individual organisms) can be mechanistically and
quantitatively linked to impacts of concern to society. Doing so can
strengthen the scientific basis of risk assessments and thereby better in-
form management and policy decisions.

Assessing and managing the risks of chemicals and other human in-
fluences on ecological systems often involves extrapolating information
collected at lower levels of biological organization to likely impacts at
higher levels of organization. One reason for this is that effects at
lower levels (i.e., on individual organisms or suborganismal processes)
may be more amenable to measurement at reasonable spatial and
temporal scales and under controlled laboratory conditions. In contrast,
particularly for larger, longer-lived species, effects at higher levels
(i.e., populations, communities, ecosystems) often involve measure-
ment over spatiotemporal scales that are impractical and confounded
by environmental variability that is difficult to account for. Mechanistic
effect models, defined as abstractions of real systems that represent bi-
ological, physical, and chemical processes and their consequences
within and across levels of biological organization in a mechanistic
way (Grimm and Martin, 2013), provide powerful tools for linking ef-
fects of stressors across levels of organization (Forbes and Calow,
2013; Hommen et al., 2015). Because they incorporatemechanistic rela-
tionships and express the linkages in quantitative terms, they facilitate
an increased understanding of key phenomena and provide a more ro-
bust basis for management decisions.

For example, under current chemical legislation in many jurisdic-
tions, assessment of chemical risks to the environment requires testing
a handful of species, most frequently for effects on individual survival,
growth and reproduction (EC, 2006; US EPA, 2017). This approach
relies on the assumption that individual responses directly link with
population dynamics, and hence persistence, of species in nature.
However, relationships between the survival, growth, and reproduction
of individuals and the dynamics of populations can be highly nonlinear
(Forbes et al., 2008). Furthermore, such relationships are not the same
across species due to differences in life history (Stark and Banks,
2003), and they may be further confounded by such factors as density
dependence and environmental variability.

With increased efforts to articulate environmental protection goals
in terms of ecosystem service delivery (i.e., benefits of the environment
to people; MEA, 2005, Nienstedt et al., 2012), it becomes necessary to
link risk assessment endpoints to relevant properties of ecosystem ser-
vices and quantify the relationships between the ecosystem services
and the resulting benefits to humanwell-being. Ideally, expressing pro-
tection goals in terms of ecosystem services should facilitate protection
goal valuation and may be particularly helpful for informing manage-
ment decisions when tradeoffs or synergies among multiple services

need to be considered (Power, 2010; McKane et al., 2014). To avoid
problems of double-counting that arise when both intermediate and
final services are valued (e.g., water pollutant removal by wetlands,
and the subsequent provision of that samewater by streams), it is useful
to focus specifically on final ecosystem goods and services (FEGS),
which are those goods or services that are directly consumed or enjoyed
by a human beneficiary (Boyd and Banzhaf, 2007; Nahlik et al., 2012).

In this study we demonstrate a recently developed framework
(Forbes et al., 2017) thatmechanistically and quantitatively links effects
of toxic chemicals and other stressors from impacts on individuals to the
delivery of FEGS. This case study developed as one of the outputs of a
National Institute of Mathematical and Biological Synthesis (NIMBioS)
working group (http://www.nimbios.org/workinggroups/WG_o2e). It
employs a well-tested and publicly available individual-based model
and is based on realistic though purely hypothetical scenarios. We
seek to demonstrate how a quantitative, mechanistic approach can pro-
vide important insights into human impacts on complex ecological sys-
tems and a solid foundation for informing environmental management.

2. Materials and methods

We simulated effects of the synthetic estrogen compound,
17a‑ethinyl estradiol (EE2), on trout populations and the FEGS they pro-
vide.We chose EE2 as amodel substance because it is a reference chem-
ical for investigating the mechanisms of action of endocrine-disrupting
chemicals on individualfish, and there arewidespread concerns regard-
ing the occurrence and population-level effects of chemicals such as
EE2, particularly in fish (Marty et al., 2017). The high estrogenic potency
of EE2 has been demonstrated in laboratory and field studies of a
number of fish species exposed over shorter periods (i.e., 21 days) or
multiple generations (Caldwell et al., 2012). Observed effects include
deformities, ovary degeneration, appearance of testis-ova, alteration of
sex-ratio and highermortality at early life stages, among others. In rain-
bow trout (O. mykiss), EE2 has been shown to cause changes in sperm
densities, reduction in testis mass, effects on embryonic development,
and at higher exposures, complete mortality (Schultz et al., 2003).
Therefore, data are available that can inform models linking effects ob-
served in laboratory tests to the dynamics of wild populations (Marty
et al., 2017). The case study simulates but does not attempt to represent
actual populations of two coexisting trout species: greenback cutthroat
trout (GCT), Oncorhynchus clarkii stomias and brown trout (BT), Salmo
trutta. The GCT subspecies is classified as threatened under the U.S. En-
dangered Species Act and is currently believed to persist in a very few
small tributaries of the Arkansas River in the Rocky Mountains of
Colorado. Historic threats to the GCT included mining pollution and
water diversions, but competition and hybridization with introduced
trout is likely the primary threat now (US FWS, 1998). The GCT is also
the state fish of Colorado. The case study addresses a hypothetical
population of GCT in a network of stream reaches with hydrology and
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temperature representing streams in the upper Arkansas River (details
presented below). The population is assumed to coexist with a popula-
tion of introduced brown trout (BT), Salmo trutta. BT is a favorite species
for angling and has been introduced throughout the US in the late
1800s. Its native range includes Europe, North Africa and Western
Asia. It is a known competitor of native fish species, specifically cut-
throat trout (McHugh and Budy, 2006), and has been shown to substan-
tially change and disrupt freshwater communities to which it has been
introduced (Milardi et al., 2016).

2.1. Population model

In this study, we use version 5.0 of inSTREAM, an individual-based
model (IBM) of trout (Railsback et al., 2009). We chose this model be-
cause it can represent key mechanisms through which EE2 and other
stressors affect individual trout and how these individual-level effects
impact population-level phenomena of interest. The model is well-
established: the inSTREAM family of salmonid IBMs has been used in
approximately 15 published studies since 1999, including a recent eval-
uation of its usefulness for complex management decision support
(Dudley, 2018). We briefly describe the model here, focusing on parts
especially relevant to this case study. Full documentation of the model
and the input used here is provided by Railsback et al. (2009) and
Harvey and Railsback (2012). A schematic of the model is provided in
Appendix 1.

InSTREAM explicitly incorporates spatio-temporal variation in habi-
tat. For this study, we represented a network of five stream reaches,
each made up of multiple cells with varied characteristics. Habitat
variables updated at the model's one-day time step include reach
flow, temperature, turbidity, and the depth and velocity in each cell.
Production of trout food is a function of each cell's depth and velocity.
Predation risk varies among cells, depending on depth and availability
of hiding cover.

The trout assemblage is represented by simulating individual fish
and how their behavior and state change daily. Individuals are assumed
to interact and competewith each other regardless of species, except for
parameter differences discussed below, so differences among species
emerge from how individual fish are affected by stressors and the envi-
ronment. Model fish execute four actions daily. First is habitat selection,
the primary adaptive behavior. In a size-based hierarchy (largest to
smallest individual), fish select the nearby cell that provides the best
tradeoff between growth and predation risk. The radius over which
individuals select cells increases with fish size, and competition is
represented via food depletion: large fish outcompete small fish for
access to food.

Second, fish size is updated with daily growth. Growth depends on
food intake, temperature, and the cost of swimming; growth rate varies
therefore with water velocity, the optimal velocity increasing with fish
size. The third action is survival: whether each fish lives or dies is a sto-
chastic event but the probabilities of surviving several causes of mortal-
ity (e.g., predation by terrestrial animals, predation by other fish,
starvation and disease) are deterministic functions of fish and habitat
variables. Survival is the main source of stochasticity in the model. The
last fish action is spawning: both male and female trout spawn at
most once per year, on days when a number of criteria (e.g., for date,
flow stability, and spawner age, size, and condition) are met.

Spawning by a female trout produces a redd, a nest containing eggs
that then incubate until the eggs turn into new juvenile trout. Fecundity
(number of eggs in a redd) increases as a power function of spawner
length. InSTREAM treats each redd as an object with variables for the
number of viable eggs and their development status. Development of
eggs proceeds daily as a function of temperature until eggs reach a
threshold for “emergence”: conversion of each viable egg to a new
trout. Some or all of the eggs in a redd can be killed by events including
scouring by floods and extended low flows that dewater redds and ex-
pose eggs to more-extreme air temperatures. Therefore, in addition to

the effects of EE2 described below, the number of juvenile trout pro-
duced each year is a function of the number and size of adult spawners
and hydrologic conditions during incubation, especially the frequency
of floods.

2.1.1. Modifications to original model
For this case study,wemodified Version 5.0 of inSTREAM. Themodel

was parameterized for GCT and BT, using respectively the same param-
eter values for rainbow and brown trout from Railsback et al. (2009).
The only important difference assumed between species is spawning
period: GCT spawn in early spring (April–May), and BT spawn in the
fall (October–December). The minimum temperature for spawning
was reduced from a standard value of 7 °C to 5 °C for GCT and 3 °C for
BT to reflect the colder climate of the simulated study site.

Standard versions of inSTREAMdonot explicitly representmating as
part of spawning, instead simply assuming that onemale spawnswhen-
ever one female does. Because our simulated effects of EE2 (below) are
on male trout, it was necessary to add mating to translate those effects
into reproductive success.We therefore added the assumption that a fe-
male cannot spawn (produce a redd, lay eggs, and suffer the resulting
weight loss) unless there is a male ready for spawning in the same
stream reach. Both males and females spawn at most once per year.

We added a simple representation of angling impacts to themodel be-
cause production of fish desired by anglers is one of the FEGSwe quantify,
and because we consider angling regulations (i.e., encouraging the
removal of BT) as a management alternative for mitigating effects of
EE2 on GCT. Catch-and-release angling is the norm in Rocky Mountain
streams bearing wild trout populations, but angling can cause mortality
due to the stress of being hooked (Bartholomew and Bohnsack, 2005)
and the occasional intentional harvest. To represent how angling
techniques and gear target larger fish,we assumed that the risk of angling
mortality increases with trout length following a logistic curve, with a
maximum daily risk of 0.5% (Fig. 1). Data to calibrate this function were
not available, so angling mortality results of the model are treated as
indicators for comparison of scenarios and not quantitative predictions.
Thismortality function determineswhich and howmany fish die because
of angling.

To evaluate the angling experience itself, we estimated the number
of fish that were caught, including those safely released, by dividing
the number that died by a factor representing the percentage of caught
fish that die due to hooking stress and intentional harvest. This factor
was set to 10%, suggested by Bartholomew and Bohnsack (2005) as
reasonable for a catch-and-release stream trout fishery. Because of
repeated release, the estimated number of fish caught exceeds the
catchable population.

To represent the seasonality of angling, a trout's daily risk of angling
mortality was assumed to increase logistically with water temperature,

Trout length (cm)

ytilatro
m

gnilgnafo
ksir

ylia
D

0 5 10 15 20 25
0

0.001

0.002

0.003

0.004

0.005

0.006

Fig. 1. Assumed relationship between trout length and a trout's daily risk of angling
mortality.

951V.E. Forbes et al. / Science of the Total Environment 649 (2019) 949–959



such that risk at 5 °C is 90% lower than at typical summer temperatures.
This risk does not influence habitat selection.

2.1.2. Model input
We consider the simulated stream to consist of a network of five

reaches, with no barriers to fish movement among them (Figs. 2 and
3A). We defined one mainstem reach, using the physical and hydraulic
habitat representation of a site (“Dog Gulch”, length 230 m) on Clear
Creek, CA, just downstream of Whiskeytown Reservoir (Railsback
et al., 2015). In addition, we defined two 115-m fork reaches, which
each drain into the mainstem reach, and two 75-m tributary reaches,
which each drain into the upper end of a fork reach. The tributaries
and forks use the habitat representation of Little Jones Creek CA tribu-
taries and forks of Harvey and Railsback (2012). The combined extent
of the simulated habitat is small compared to the upper Arkansas
River watershed but sufficient, in our experience, to allow simulation
of population-level results such as abundance and frequency of local
extinction.

The simulated hydrologic and temperature regimes were designed
to represent the native habitat of GCT. Daily flow and temperature
data from the Arkansas River, CO (US Geological Survey gage
07086000, Arkansas River at Granite, CO) were obtained for the period
of record, water years (October–September) 1993 to 2016. Mainstem
flows (Fig. 3B) were adjusted by the ratio of mean flow at the site
where habitat data were developed (Clear Creek and Little Jones
Creek, CA) to mean flow at the Arkansas River gage. Small differences
in flow between the two forks, and between the two tributaries, were
induced by using slightly different slopes and intercepts in the relation-
ships between Arkansas River and model reach flows. Temperature
input was unmodified from data measured at gage 394220106431500,
and the same values were used for all reaches (Fig. 3C). Turbidity was
assumed to be negligible.

2.1.3. Model calibration
Male GCT have been reported to spawn for the first time in their sec-

ond summer and females in their third or fourth (USFWS, 2017;
Coleman, 2007). However, sexual maturity and fecundity are more
closely related to size than age in salmonids, and female GCT have
been reported to reach sexual maturity between 14.6 and 18 cm de-
pending on location (Coleman, 2007). Elsewhere, adult GCT have been
defined as fish N12 cm in total length (USFWS, 1998). For our case
study, we chose 15 cm as the minimum length at spawning. Generally,
few fish reach sizes larger than 25 cm in the small, high elevation
streams with short growing seasons where GCT populations are found
today (Coleman, 2007). Because GCT are so rare, few field observations
are available for model calibration. Instead, calibration targets were

based on observed fall abundance and size of coastal cutthroat trout at
Little Jones Creek, with the abundance adjusted for the larger size of
the mainstem reach. The abundance target was thus a mean of 50 sex-
ually mature trout for both species. Length targets were: mean lengths
of 11 cmat age 1, 15 cmat age 2, and20 cm for age 3 and older, averaged
over both species. Calibration was conducted simply by adjusting food
availability and the overall risk of predation by terrestrial animals to ob-
tain long-term average results close to the calibration targets.

2.1.4. Effects of EE2 on trout
We modified inSTREAM to represent two ways that EE2 affects the

reproductive biology of individual trout. Neither mechanism assumes
acute toxicity of EE2. Both mechanisms depend on the exposure of
male trout to EE2 as testes and sperm develop before spawning.
Therefore, for both mechanisms the exposure variable was the mean
EE2 concentration (ng/L) a male trout experienced over 90-d prior to
spawning. This window was based on EE2 effects observed on trout in
laboratory studies in which sustained exposure during similar time
frames was necessary for effects to occur (Schultz et al., 2012, 2013).

The first mechanism is a reduction in the success of egg fertilization.
Brown et al. (2007) observed that males exposed to low (≤1 ng/L) con-
centrations of EE2 produced sperm capable of fertilizing eggs, but there
was about a 15% decline in egg survival compared to controls 19 days
post fertilization. We modeled this effect using an inverse exponential
function that caused the fraction of fertilized eggs that die to rise sharply
and asymptotically from 0.0 to 0.28 as exposure to EE2 increases to re-
flect the data of Brown et al. (2007) and Schultz et al. (2012, 2013)
(Fig. 4). This relationship can be modeled as: EE2EggEffect =
EE2MaxEggEffect × (1.0 − exp(EE2Param × EE2Exposure)) where
EE2EggEffect is the fraction of fertilized eggs that die instead of develop;
EE2MaxEffect is the asymptotic value of EE2EggEffect (estimated as
0.28); EE2Param is a scaling parameter estimated by calibration as
−0.4, and EE2Exposure is the average EE2 concentration the male
experienced over the 90 d prior to spawning. Because EE2 concentration
depends on river flow (Section 2.2, below), exposure varies among
years and (to a lesser degree) among individual fish and is therefore
an output of the model, not an input.

The number of viable eggswas therefore assumed equal to fecundity×
fishSpawnEggViability × (1 − EE2EggEffect), where fecundity is the
number of eggs produced by a female upon spawning (a nonlinear
function of female length) and fishSpawnEggViability is inSTREAM's
parameter for the fraction of eggs successfully fertilized under normal
conditions. Fertilization success in wild populations is difficult to
estimate; the standard value in inSTREAM is 0.8, but to correspond
with the data of Brown et al. (2007), we used a value of 0.7. EE2 can
also affect fish by preventing males from spawning by inhibiting the

Fig. 2. Characteristics of the stream simulated for this case study and properties of themainstem and tributaries adapted fromRailsback et al. (2015) and Harvey and Railsback (2012). The
colors represent different velocities with darker (orange) shades representing higher velocities and lighter (yellow) shades representing lower velocities.
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development of gonads. This effect increases with pre-spawning
exposure to EE2.

No literature data are currently available for EE2 (or other
endocrine-active substances) that quantitatively describe how
exposure concentration and duration affect gonad development in
male trout. However, in laboratory studies with rainbow trout, no
effects on male spawningwere observed at constant EE2 exposure con-
centrations of 2 ng/L for a period of five months, whereas at 20 ng/L no
fish spawned (Irv Schultz, personal communication). Schubert et al.
(2008) exposed brown trout to a mixture of estrogen-active endocrine
disruptors for 5 months. No effect on fertility occurred at low exposure
concentrations (estrone (E1) = 14 ng/L, estradiol (E2) = 2 ng/L,
and nonylphenol (NP) = 111 ng/L), whereas higher concentrations

(E1 = 56.6 ng/L, E2 = 7 ng/L, NP = 1006 ng/L) caused a 9% decrease
in fertilization success. Werner et al. (2006) showed that lake trout
were insensitive to a 3-year exposure to 5–6 ng/L of EE2.

We assumed that each adult male trout is in a particular gonadal
development status at the start of its spawning season, i.e., ready for
spawning or not (Railsback et al., 2009). This status is assumed to de-
pend on previous exposure to EE2. It is modeled as a stochastic event
with the probability of becoming ready to spawn as a declining logistic
function of EE2Exposure evaluated at the start of the spawning season
(April 1 for GCT, October 1 for BT). The logistic function was parameter-
ized so that the probability of a male becoming ready to spawn is 90% at
EE2Exposure=2 ng/L and 10% at 20 ng/L. We assume that this status is
not reversible within a spawning season, but that effects are reversible
between spawning seasons, i.e., a male can spawn in subsequent years
even if it did not spawn in one year, and males ready one year may
not spawn in subsequent years. Because we assume males spawn at
most once per year, reductions in the number of ready males cannot
be compensated for by multiple spawning of the males that do mature.
We assume that GCT and BT have identical exposure-response relation-
ships for EE2.

2.2. Exposure of trout to EE2

Reported values for EE2 concentrations in effluents and surface wa-
ters typically range from b0.05 ng/L up to 9 ng/L (Schultz et al., 2003),
but values for U.S. waters have been reported to be as high as 73 to
831 ng/L (Kolpin et al., 2002). For our case study, EE2 exposure was
modeled as a function of a daily contaminant loading (rate of EE2
mass discharged to streams, habEE2Loading, in units of ng/s). Each of
the five simulated reaches had its own EE2 loading (i.e., due to a point
source discharge at its upper end), in addition to what it received
from upstream reaches, if any. We assumed no loss or transformation
of EE2 over the simulated reaches. For the simulations reported here,
we assumed constant loading over time, so the EE2 concentration in
each reach was inversely related to daily flow, due to dilution. There-
fore, the simulated concentration varied on a daily basis. Although con-
stant loading from a point source (e.g., a waste water treatment plant

Fig. 3. A) Colorado, USA location of river subbasin used to characterize environmental drivers B) mean daily flow, cms, and C) mean daily water temperature, °C, in simulations.

EE2 exposure (ng/L)
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Fig. 4. Exposure-response relationship for the effect of EE2 on egg viability. The observed
data are from Brown et al. (2007); the modeled values were produced by the inSTREAM
relation described in the text. The X axis is the mean EE2 concentration (ng/L) a male
trout experienced over a 90-d period prior to when the effect was simulated. The Y axis
is the % mortality of fertilized eggs caused by EE2 exposure of males.
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(WWTP)) may not occur in reality (e.g., due to differences in EE2 input
from the population served by that WWTP), it is expected that daily
concentrations in natural waters will vary. Therefore, this approach al-
lows us to simulate effects of varying concentrations over time by ac-
counting for different volumes of water. The daily concentration of
EE2 (ng/L) in each reach was therefore calculated as habEE2Loading
(ng/s) / [flow (m3/s) × 1000 L/m3], where habEE2Loading is the sum of
loading to the reach and any upstream reaches, and where flow is the
reach's daily stream flow. The relationship among loading, concentra-
tion, andflow is nonlinear, so calculating the loading that produces a de-
sired mean stream concentration (i.e. sufficiently high to elicit adverse
effects in exposedmale fish) was not straightforward. By dividing load-
ing by daily flow and averaging over all simulated days, we determined
that the following constant loadings (ng/s) produce a long-term mean
concentration of 10 ng/L in our case study: Mainstem: 35,000; Left
Fork: 2600; Right Fork: 2660; Left Tributary: 3500; Right Tributary:
3340. These loadings sum to 47,100 ng/s or 4.07 g/d, and were used as
our baseline exposure scenario. The mean concentration of 10 ng/L in
our baseline scenario is relatively high but not unreasonable compared
to concentrations that may be reached in some natural flowing water
bodies (Kolpin et al., 2002; Schultz et al., 2003); this scenario included
substantial seasonal variation (Fig. 5).

2.3. Simulation experiment design

We simulated the effects of five discrete EE2 loading scenarios: 0,
0.5, 1, 2, and 3 times the baseline loadings. These scenarios encompass
a range of EE2 exposure concentrations thatwould be expected to result
in no effects (0 ng/L) to severe effects (~25 ng/L) on male trout (Schultz
et al., 2003; Brown et al., 2007). For each of these scenarios we con-
ducted 10 replicate simulations so that the magnitude of EE2 effects
could be compared to themagnitude of natural variation in trout popu-
lations. Replicates were generated not by simply changing the sequence
of pseudorandom numbers in the inSTREAM simulations (the model is
not highly stochastic) but by randomly shuffling the sequence of input
data years (daily flow and temperature input values, starting July 1).
Hence, the replicates represent variation due to patterns of year-to-
year variability in weather and hydrology.

We examined two population-levelmodel results that represent the
FEGS provided by GCT and BT, and several individual-level results
necessary to understand the population-level outcomes. The primary
FEGS that we consider are the abundance of catchable (i.e., adult-sized)
trout and persistence of the simulated GCT population. Population

persistence of GCTwas evaluated as themean number of years the simu-
lated GCT population persisted over the 10 replicate simulations. This
years-to-extirpation measure has a maximum value of 22 years, the
length of the simulations. Abundance of catchable trout is evaluated
simply as the abundance of age 1 and older trout in late September. The
estimated number of trout caught is closely related to the catchable pop-
ulation, as explained earlier, albeit much larger due to individuals being
caught repeatedly. We also examined several individual-level results
that help explain the FEGS results. These results are the mean EE2 expo-
sure of males that spawn (the value of EE2Exposure evaluated at the
time of spawning), the fraction of potential male spawners (males with
an age of 1 or higher at the start of the spawning season) that are ready
for spawning, and the number of spawning events (indicating the effect
of EE2 on male readiness and effects of EE2 on spawner abundance). To
reduce the effects of initial conditions (all simulations started with the
same initial trout populations), results for abundance did not include out-
put from the first two of the 22 simulated years.

We then conducted several additional sets of simulation experi-
ments to elucidate the importance of different processes affecting the
GCT population. First, to evaluate the relative importance of the two
simulated effects of EE2 on male reproductive biology, we conducted a
second set of simulations inwhich thefirstmechanism—reduced egg vi-
ability—was turned off. Second, to illustrate the relative importance of
the two stressors on GCT, EE2 and competition with BT, we repeated
the EE2 exposure simulations in the absence of BT. Finally, to illustrate
a realistic management measure to mitigate EE2 effects on GCT and en-
hance their populations,we simulated a simple change infisheriesman-
agement: encouraging angler removal of BT but not GCT. We simulated
this management action by increasing the maximum daily risk of an-
gling mortality from 0.5% to 1.5% for BT.

2.4. Ecosystem services valuation

Our goal in this case study is to highlight the potential for using
mechanistic modeling to quantify sub-organismal effects of stressors
on ecosystem services. In this case study, a meaningful effect on
anecosystem service implies a change in economic value. Estimation of
value depends on (a) identifying specific ecosystem services that are
affected by case study scenarios, (b) determining the corresponding
ecological qualities that provide those services, (c) quantifying the
changes in those qualities and (d) estimating the value, for example
through an economic evaluation such as beneficiary willingness-to-pay
(WTP). For purposes of this proof-of-concept study, our goal is only to
demonstrate the feasibility of determining economic values, not to
estimate those values.

Using US EPA's FEGS Classification System (Landers and Nahlik,
2013), we identified two FEGS-beneficiary combinations that are
applicable to our case and involve FEGS which can be approximated
by our model: “fish – recreational anglers,” and “presence of the
environment – people who care” (Table 1). We interpret “fish” that
benefit anglers as BT and GCT of catchable size, estimated in our
model runs as fish of age 1+, and recreational anglers to be those
who fish in Colorado streams supporting BT and GCT. We interpret
“presence of the environment” as the presence of streams, or stream
reaches, supporting a population of GCT. InSTREAM results show the
time to extirpation of GCT in themodeled stream reaches. We interpret
“people who care” as households, particularly in Colorado, that would
be willing to pay something to help ensure the continued survival of
Colorado's State Fish, even if they never intend to fish for or observe
them.We added a further FEGS-beneficiary combination, “fish – people
who care,” that is not currently listed in the FEGS-CS matrix but is
warranted by observations of household willingness to pay for the exis-
tence, or increase, of threatened salmonid populations (Loomis and
Richardson, 2008).

The value of a change in FEGS experienced by beneficiaries can often
be revealed by the beneficiary's expenditures (e.g., the travel-cost
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Fig. 5. The simulated distribution of daily concentrations of EE2 in the left tributary reach.
Concentrations were calculated by dividing EE2 loading (assumed constant over time) by
daily flows; therefore, high concentrations occur during low flows (most common in
winter when precipitation is mainly snow) and low concentrations during high flows
(which are most frequent during spring-summer snow melt). Flows were estimated by
adjusting gage data from water years 1994–2015 as described in Section 2.1.2. Other
reaches exhibit similar patterns.
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method; Wilson and Carpenter, 1999) or by surveying beneficiaries
to ask how much they would be willing to pay (WTP) to use or
enjoy a FEGS (e.g., contingent valuation; Wilson and Carpenter,
1999). Using a process termed benefits transfer, values determined
for an ecosystem good in one setting can be transferred to another
setting, although differences in the location, the policy setting, the
beneficiaries or the nature of the good may introduce uncertainty
(Newbold et al., 2018).

Economic studies are available to illustrate the feasibility and limita-
tions of benefits transfer for catchable trout, the presence of GCT popu-
lations, and the presence of streams supporting GCT (Table 1). Loomis
(2005) surveyed anglers on Snake River segments in Southeast Idaho
and Southwest Wyoming in the US to determine both their WTP per
day of angling and the change in WTP per additional trout caught. In
our model, number caught is a function of the catchable population;
therefore, modeled changes in trout populations could be valued, as
long as the number of angler-days for streams affected by EE2 exposure
could be estimated (Table 1). Loomis and Richardson (2008) reviewed
literature on economic values of salmon in the US, where many salmon
runs are threatened by dams and habitat degradation, and could be en-
hanced by restoration actions. Theirmeta-analysis estimated household
WTP for changes in salmon populations (Table 1). BecauseGCThas been
designated the state fish for Colorado, WTP for modeled changes in the
countable (i.e., adult) GCT population are assumed to apply to house-
holds in the state.

Changes in the presence of streams supporting GCT populations are
more difficult to value; we were unable to find data that could be used
for benefits transfer for threatened salmonids expressed in terms of
stream length. Holmes et al. (2004) found household WTP of $4.54
per mile for trout stream restoration along the Little Tennessee River
in western North Carolina, USA (Table 1), but this payment was for a
bundle of ecosystem services associated with changes in stream habitat
quality (abundance of game fish, water clarity, wildlife habitat, allow-
able water uses and ecosystem naturalness), rather than focusing just
on game fish. Further, while the “Mean time to extirpation of GCT”met-
ric is illustrative for scenario comparison, metapopulation modeling to
account for local extirpations and reinvasions would be required for a
realistic quantification of occupied reaches. Thus, this endpoint was
not considered further in a valuation context.

3. Results and discussion

3.1. Trout exposure and individual-level responses

Across the five scenarios of increasing EE2 loading, exposure of
pre-spawning trout to EE2 increased approximately linearly with
loading, as expected (Fig. 6). Because of the difference in the timing
of spawning between species, GCT exposure during a sensitive time

window in the life cycle averaged almost 1.5 times that of BT. The
90-day period before BT spawning falls in mid- to late-summer
months when EE2 concentrations are relatively low because dilution
by river flow is high (Fig. 5), whereas for GCT this period falls in the
winter months when river flow is lowest so EE2 concentrations are at
their highest.

In our virtual experiment, EE2 exposure sharply decreased male
spawning readiness (Fig. 7). For instance, the standard EE2 loading re-
duced the percentage of males prepared to spawn by 50% for GCT and
by approximately 20% for BT in comparison to the zero-loading sce-
nario. The percentage of GCT males prepared to spawn asymptotically
approached zero as the loading increased from two to three times the
standard loading. Because of their lower exposure, substantially higher
percentages of BT males were prepared to spawn.

We found that the number of spawning events decreased as EE2
loading increased (Fig. 8). This was caused by decreases in simulated
male spawning readiness, and the resulting population declines.
Interestingly, however, the number of spawning events did not de-
crease as rapidly with EE2 loading as did male spawning readiness.
This difference indicates the presence of a buffer mechanism that
partially compensates for the declining percentage of ready males. The
most likely mechanism is a surplus of male spawners: in inSTREAM
simulations not all females spawn every year, so with an even sex
ratio there are likely to bemoremales available than spawning females.
Hence, the percentage of redds that can be fertilized does not decline as
rapidly as the percentage of spawning males.

Table 1
Framework for economic valuation of changes in final ecosystem goods and services (FEGS) across case study scenarios. Additional abbreviations: FEGS classification system (FEGS-CS),
brown trout (BT), greenback cutthroat trout (GCT), and willingness-to-pay (WTP), standard error of the mean (SE).

FEGS Beneficiary Examples of benefit transfer data Corresponding model endpoint; and
valuation feasibility

From FEGS-CS In case study From FEGS-CS In case study

Fish (in the water) Population of catchable
(i.e., adult) BT or GCT

Recreational
anglers

Recreational anglers
on Colorado streams
supporting BT or GCT

WTP per angler-day (Snake River) = $85
WTP per additional wild trout caught =
$12–23 (Loomis, 2005)

Change in catch of BT + GCT
(estimated as function of catchable
populations); valuation feasibile

Fish (in the water) Population of countable
(i.e., adult) GCT

People who care Households in
Colorado

Household WTP per 1000 wild salmon =
$63 (SE = $32)
WTP for 1% change in wild salmon
population = $0.84 (SE = $0.11)
(Loomis and Richardson, 2008)

Change in census of age 1+ GCT;
valuation feasibile

Presence of the
environment

Presence of streams
supporting GCT

People who care Households in
Colorado

Household WTP per mile for trout stream
restoration (Little Tennessee River in
western North Carolina, USA) = $4.54
(Holmes et al., 2004)

Change in mean time to extirpation of
GCT; valuation not feasibile

Fig. 6. Relationship between loading of EE2 and mean annual exposure of male trout
during the 90 day period prior to spawning for BT (triangles) and GCT (circles). The
baseline loading (factor = 1.0 on the X axis) was calibrated to result in an annual
average exposure concentration of EE2 of 10 ng/L. Error bars indicate standard
deviations around the mean of 10 replicate simulations.
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3.2. Impacts of EE2 on trout populations

In the absence of EE2, BT aremore abundant than GCT, with an aver-
age of 22 GCT present in the whole stream system compared to 273 BT
(Fig. 9). Fall-spawning BT tend to dominate spring-spawning GCT be-
cause, as long as their redds are not washed out by winter storms,
their juveniles hatch earlier in the spring and hence have a competitive
(size) advantage from the beginning of life (e.g., Strange et al., 1992). In
our simulations, winter conditions for BT redds were usually benign be-
cause winter storms produce snow instead of runoff. As EE2 loading in-
creases, GCT abundance declines more steeply than BT abundance such
that at the highest EE2 loading, the GCT population has declined by 73%
and the BT population has declined by 32% compared to the zero-
loading scenario. This difference in response between species is due to
both the higher exposure of GCT during a sensitive time window
discussed in Section 3.1 and the additional effect of competition by BT.
The combined effects of EE2 and competition with BT caused the
simulated GCT populations to be extirpated in all simulations, with
the simulated time to extirpation decreasing as EE2 loading increased
(Fig. 10). The extirpations further reduced the mean abundance
reported in Fig. 9: calculation of mean abundance over a simulation
included zeroes for years in which the population was extirpated.

3.3. Relative impacts of the two EE2 effect mechanisms

Section 3.2 illustrated that EE2 exposure to high concentrations
(25 ng/L) led to strong effects on simulated trout populations, especially

for GCT. Population-level effects are not linearly related to the reproduc-
tive effects. Understanding of population responses requires investigat-
ing how the various reproductive effects at play are inter-related. In
particular, the question of which of the two mechanisms of EE2 is
most responsible for the decrease in reproduction is important because
neither mechanism is well understood. To address this question, we re-
peated the simulations with one mechanism—reduced egg fertility—
turned off. These results therefore show the effect only of reduced
readiness of males to spawn.

This virtual experiment produced a somewhat weaker effect of EE2
on trout abundance (Fig. 11, compared to Fig. 9). With the single EE2
mechanism, abundance of GCT decreased an average of 61% and BT
18% as EE2 loading was increased from zero to three times the baseline
loading, compared to 73% and 32% declines with both EE2mechanisms.
The response of years to extirpation to EE2 loading in this experiment
remained very similar to that with both EE2 mechanisms, indicating
that the reducedmale readiness represented here is the dominant effect
mechanism over the full range of exposures. However, Fig. 11 indicates
little effect of EE2 at loadings between zero and the baseline level (1.0).
This suggests that a buffer mechanism is also at play that can partially
make up for reduced male readiness to spawn (which in this experi-
ment is the same as indicated in Fig. 7).

3.4. Effects and management of competition with BT

Our simulation results indicate that the GCT population is stressed
even in the absence of EE2 since the population went extinct within

Fig. 7. Fraction of male trout ready for spawning. Black bars are BT and gray bars are GCT.
The baseline loading (factor = 1.0 on the X axis) was calibrated to result in an annual
average exposure concentration of EE2 of 10 ng/L. Error bars are standard deviations
around the mean of 10 replicate simulations.

Fig. 8.Mean number of spawning events per year for BT (triangles) and GCT (circles). The
baseline loading (factor= 1.0 on the X axis) was calibrated to result in an annual average
exposure concentration of EE2 of 10 ng/L. Error bars are standard deviations around the
mean of 10 replicate simulations.

Fig. 9. Effect of EE2 loading on themean fall abundance of catchable BT (triangles) andGCT
(circles). The baseline loading (factor = 1.0 on the X axis) was calibrated to result in an
annual average exposure concentration of EE2 of 10 ng/L. Error bars are standard
deviations around the mean of 10 replicate simulations.

Fig. 10.Number of years until extirpation of the simulatedGCT population, for thefive EE2
loadings. The baseline loading (factor = 1.0 on the X axis) was calibrated to result in an
annual average exposure concentration of EE2 of 10 ng/L. Error bars are standard
deviations around the mean of 10 replicate simulations.
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the 22 year simulation period even with no EE2 present (Fig. 10). Be-
cause inSTREAM automatically represents the cumulative effects of
both EE2 and BT on GCT populations, it is ideal for exploring the impacts
of multiple stressors under ecologically realistic conditions. To under-
stand how BT affect the response of GCT to EE2 we ran additional EE2
exposure simulations without BT. Finally, to illustrate a realistic man-
agement option, we simulated changes in angling regulations to en-
courage removal of BT to suppress their populations and thus the
degree of competition with GCT. This virtual experiment showed that
suppressing BT could make the GCT population more resilient to EE2,
particularly if EE2 loading is not very high (Fig. 12). Because both spe-
cies of trout provide valued FEGS, management of BT by increasing re-
moval by anglers could simultaneously increase the persistence of GCT
and help tomake the GCT population less susceptible to other stressors,
such as toxicants.

3.5. Valuation of ecosystem services provided by trout

Economic valuation of the potential benefits of EE2 management
would require evaluation of changes in two modeled endpoints that
can be related both to FEGS and to beneficiary WTP – i.e., total catch of
BT + GCT and change in adult GCT population (see Table 1). We evalu-
ated the implications of changes from the baseline condition,
i.e., baseline EE2 loading (EE2 × 1.0), with nomanagement of BT popu-
lations. The two loading scenarios selected represent either the achieve-
ment of 50% EE2 control or, for comparison, a doubling of EE2 loadings.
The BT management scenario examined increased removal of BT by an-
glers. Because available benefits-transfer data are based on either nu-
meric or percentage changes in salmonid abundance, we display all
changes in both numeric and percentage terms (Table 2). Whereas we
use the “Mean time to extirpation of GCT” to compare total value across
scenarios, more refined estimates could be made by using metapopula-
tion modeling to account for local extirpations and recolonization.

Without any BT control, the 50% reduction of EE2 loading resulted in
only a slight increase in total salmonid catch, but improvements (25%)
in GCT population abundance. Doubling EE2 loading reduced (−39%)
GCT population abundance (Table 2). The simulated management pol-
icy of increased BT removal alone (with no change in EE2)was sufficient
to almost completely eliminate BT from the regulated reaches (−99.6%;
results not shown). The resulting release from competition with BT in-
creased the adult GCT population abundance by 370%, but reduced the
combined angling catch by 80%. GCT populations benefited even more
from the 50% EE2 loading reduction However, the population experi-
enced a smaller (34%) increase relative to the baseline under a scenario
with doubled EE2 loading (Fig. 13).

These results suggest that in streams supporting GCT, both competi-
tion from non-native BT populations and high loadings of EE2 could
negatively affect GCT populations. Policies to encourage control of BT
could, depending on their real-world effectiveness, be as important as
ormore important than EE2 loading reduction in ensuring GCT survival.
The value of a BT control policy, considered apart from EE2 loading
mitigation, would entail valuing the nearly 4-fold increase in GCT

Fig. 11. Effect of EE2 loading on the mean fall abundance (number) of catchable BT
(triangles) and GCT (circles) for simulations with EE2 effects on male spawning only
(effects on egg fertility turned off). The baseline loading (factor = 1.0 on the X axis) was
calibrated to result in an annual average exposure concentration of EE2 of 10 ng/L. Error
bars are standard deviations around the mean of 10 replicate simulations.

Fig. 12. Effect of BT on the response of GCT to EE2. Top) Effect of EE2 loading on themean
fall abundance (number) of catchable GCT in the absence of BT or with increased BT
removal; Bottom) Number of years until extirpation of the simulated GCT population in
the absence of BT or with increased BT removal. BT absent = diamonds; Increased BT
removal = circles. The baseline loading (factor = 1.0 on the X axis) was calibrated to
result in an annual average exposure concentration of EE2 of 10 ng/L. Error bars are
standard deviations around the mean of 10 replicate simulations. The GCT population
persisted the maximum of 22 years in all replicates when EE2 was zero and BT absent.

Table 2
Modeled endpoints useful for valuation. Numeric (number of fish) and percentage
changes in total angling catch and GCT adult population abundance, under differing EE2
loadings and BTmanagement scenarios, as compared to the baseline condition (bold text)
of baseline EE2 loading (EE2 × 1.0) and no control of BT. Values represent means over 10
simulations.

No BT Control Increased BT Removal

Loading Basis Catch of
BT + GCT

GCT Adult
Population

Catch of
BT + GCT

GCT Adult
Population

EE2 ∗ 1.0 No. NA NA −2157 55
% NA NA −80.2 370

EE2 ∗ 0.5 No. 78 3.7 −1911 74
% 2.9 25.1 −71.1 496

EE2 ∗ 2.0 No. −310 −5.8 −2521 5.0
% −11.5 −39.1 −93.8 33.7
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populations (presumably valued by households across Colorado) against
reductions in salmonid catch (important to anglers) and the cost of the
program. Because both the numeric catch reductions and the percentage
GCT population abundance increases are large, the uncertainties inherent
in benefits transfer would require careful evaluation to determine net
benefit. Furthermore, society'sWTP for preservation canbehighly nonlin-
ear; as a species becomes rarer, the risk of extirpation and society's WTP
for preservation both increase exponentially (Bulte and van Kooten,
1999; Efroymson et al., 2009). The nonlinear nature of the EE2 loading-
response relationship also introduces uncertainty. In our simulations, a
50% reduction in EE2 loading created only modest improvements in the
valued endpoints when BT populations were controlled, but a doubling
of EE2 reduced the benefits of BT control.

4. Conclusions

Ourmodel simulations suggest that among the various mechanisms
of EE2 impact on trout reproduction we considered in this study, re-
duced male readiness might be the dominant effect mechanism for
explaining population-level effects. Our simulations suggest that, be-
cause not all females spawn every year, EE2 effects on male readiness
to spawn are somewhat buffered at the population level. Simulations
showed that high EE2 loadings are likely to cause strong population-
level effects on both trout species and that competition with BT has an
even larger negative impact on GCT persistence than EE2. Competition
with BT appears to have strong cumulative effects with EE2, and
suppression of BT (e.g., via angling regulations) could enable GCT popu-
lations to overcome contaminant effects on reproduction. We empha-
size that our study provides a proof-of-concept to demonstrate a
novel extrapolation framework anddoes not intend to serve as an actual
risk assessment. For the latter, assumptions regarding the mechanistic
basis of EE2 effects on trout would need to be revisited and confirmed.

Mechanistic models of the kind used here provide quantitative links
from individual to population-level impacts, incorporate ecological

complexity in a meaningful way, and improve the usefulness of organ-
ismal studies of sublethal effects for risk assessment. Expressing the out-
put of such models in terms of final ecosystem goods and services with
direct connections to beneficiaries provides metrics that can be valued,
and this can facilitate stakeholder engagement and decision making. In
this case, benefits of either BT suppression or EE2 loading mitigation
would be experienced differently by two different beneficiary groups
for which transferable WTP data were available – anglers, and people
in the state of CO who care about the size of threatened GCT popula-
tions. These benefits would need to be weighed against the costs of BT
management and wastewater treatment to remove EE2. Quantifying
human-caused impacts to ecosystem services produced by nature – in
this case trout populations – and expressing these in monetary
(or other comparable) units can be helpful, particularly where tradeoffs
or synergies among services occur and/or where the costs or conse-
quences of different management options vary widely.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2018.08.344.
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