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Analyzing the fracture of heterogeneous materials is a complex problem, due to the

fact that the mechanical behavior of a heterogeneous material is strongly dependent

on a variety of factors, such as its microstructure, the properties of each constituent,

and interactions between them. Therefore, these factors must be effectively taken

into account for accurate analysis, for which the multiscale method has been widely

used. In this scheme, the computational homogenization method is used to obtain the

effective macroscopic properties of a heterogeneous material based on the response of

a Representative Volume Element (RVE). The growth of damage in an RVE can be

simulated by using common damage theories (such as formation of microcracks) and

treated according to standard homogenization theories, which results in degradation

of the effective mechanical properties of the material. In most cases, increasing the

loading further causes microcracks to accumulate and to consequently form a local-

ized band within the RVE, which may become sufficiently large as compared to the

size of the RVE. Standard homogenization approaches have several theoretical short-

comings in dealing with localized RVE that bring into question their viability. This

study aims to develop and implement methods to account for localization of RVE
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and then reflecting it as a discontinuity on the macroscale model within a two-way

coupled multiscale framework. In the proposed method, localization of RVE is as-

sessed by bifurcation analysis, which is performed on the anisotropic tangent stiffness

tensor of the RVE. The anisotropic tangent stiffness tensor is obtained by separately

applying normal and shear displacement boundary conditions on the damaged RVE

at each time step. Once the bifurcation analysis meets the onset of weak disconti-

nuity requirement, a discontinuity is inserted on the macroscale model. The element

elimination method is used to simulate the discrete representation of cracks on the

macroscale model. The entire algorithm was implemented in the form of a two-way

linked multiscale code in FORTRAN. Additionally, certain examples were solved us-

ing the developed code to demonstrate the viability of the proposed method. The

results show that this approach can successfully simulate fracture in a heterogeneous

quasi-brittle material without losing its key microstructural details.
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Chapter 1

Introduction

1.1 Background

Almost all materials are heterogeneous at some length scales. In the continuum length

scale, heterogeneity is defined as any discontinuity and contrast in properties. When a

heterogeneous material is loaded, its nonuniform microstructure causes a nonuniform

distribution of stress and strain throughout the material [Nemat-Nasser and Hori,

2013]. As the loading increases, the material starts to degrade at certain regions that

experience higher stress and/or have weaker properties. In quasi-brittle materials,

material degradation occurs in forms of nucleation and growth of microcracks. It

has been shown that a further increase in loading can result in accumulation and

coalescence of microcracks and, consequently, failure of the material.

Akcaoglu et al. [Akcaoglu et al., 2005] quantified the density of microcracks in

fiber-reinforced cement paste samples under different stress levels. This work showed

that sample failure is due to the accumulation of microcracks, which is controlled

by the microstructure of the mixture. Wang et al. [Wang et al., 2007] investigated
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fracture of a metal matrix composite using the in situ scanning electron microscopy

(SEM). Their work showed that microcracks typically nucleate along the particle-

matrix interface where bonding between phases is weaker, and visible macrocracks

are the result of coalescence of microcracks, as shown in Figure 1.1.

The microstructural characteristics of a material, such as morphological charac-

teristics, properties of individual phases, and interaction between phases, play an

important role in nucleation and accumulation of microcracks and, consequently, in

the propagation of macrocracks. Ideally, the most straightforward analysis approach

to account for microstructural characteristics is to model them explicitly. However,

such a modelling of microstructural details in a single model, which is also known as

direct numerical simulation (DNS), is often impractical from a computational point

of view. Fortunately, in most cases, the effective microscale properties is sufficient to

predict macroscale behaviors with reasonable accuracy. There are many studies that

have accounted for the microstructural characteristics of materials and have implic-

itly related them to macroscale crack propagation models [Xia et al., 1995, Moorthy

and Ghosh, 1998, Bazant and Oh, 1983, Budarapu and Rabczuk, 2017]. Especially

over the past few decades, several studies have used multiscale approaches to link

macroscale crack propagation to microscale damage mechanisms. These studies used

the homogenized properties that were calculated over the microscale model to predict

crack propagation in heterogeneous materials. Although many studies have shown

the multiscale approach to be capable of dealing with material degradation due to

microscale damage, there has been little agreement on how to approach failure and

post-failure of microscale model in this framework.
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a b

Figure 1.1: Development of microcracks in a particulate composite material [Wang
et al., 2007].

1.2 Knowledge Gap

In an standard multiscale method, the effective macroscale properties of a heteroge-

neous material are obtained using standard homogenization methods on a Represen-

tative Volume Element (RVE). Using standard homogenization methods, growth of

damage in RVE is presented in the form of degradation of the effective properties.

In most cases, a further increase in loading causes the RVE to first become localized

and then to fail. Many researchers have interpreted localization or failure of RVE to

be formation of a discontinuity on the macroscale model. However, a review of the

literature shows that researchers have not agreed upon the following subjects:

• How failure or localization of a material at a microscale model should be as-

sessed.

• How the homogenization method should be applied on a microscale model with

a localized deformation pattern.

• How the failure of the microscale model should be reflected on the macroscale
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model.

1.3 Research Objectives

The objective of this dissertation is to develop a multiscale method that can be

used to simulate the fracture process in heterogeneous materials, thereby at least

partially filling the aforementioned gaps. More specifically, this dissertation seeks to

incorporate the following functionalities into a multiscale method framework:

• A new failure criterion for heterogeneous materials that incorporates material

degradation due to microcrack development that occurs at a microscale model.

• A fracture simulation method that is compatible with the multiscale method

and is able to represent a discontinuity in the macroscale model.

This study provides the theoretical framework and proof-of-concept by verifying

the numerical implications of the framework. To fully demonstrate the functionality

of this approach, validation is performed by comparing the simulation results with

experimental data. Also, the implications of the proposed framework is limited to

two-dimensional (2D) cases; however, the concept is applicable to three-dimensional

(3D) cases as well.

1.4 Hypothesis and Approach

This study hypothesizes that a two-way linked multiscale approach equipped with a

proper criterion to assess microscale model failure and an effective method to sim-

ulate cracking in the macroscale model can effectively model crack propagation in
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heterogeneous materials. The overall sketch of this approach is depicted in Figure

1.2. This research proposes that the following steps be considered in the multiscale

fracture simulation approach:

• Analyzing a heterogeneous system is performed by dividing the problem into two

separate length scales. The effective constitutive model of macroscale model is

derived from a microscale representative volume element (RVE) through a two-

way linked multiscale approach. This approach takes into account the softening

behavior of the material caused by development of evenly distributed micro-

damage within the RVE (for a detailed discussion, see section Core Part No.

1: Two-way Linked Multiscale Modeling). The cohesive zone model (CZM) is

used to simulate the microdamage mechanism within an RVE.

• As loading increases, microcracks may coalescence and create a weak band while

its length is comparable to the RVE’s length scale [Souza and Allen, 2011]. At

this stage, the RVE loses its material stability; however, it may still be able to

carry some load. It is assumed that the creation of a weak band is equivalent

to creation of a weak discontinuity surface that can be identified by performing

bifurcation analysis on tangent stiffness matrix of RVE (for a detailed discussion,

see section Core Part No. 2: Localization of RVE).

• Localization of an RVE determines whether a crack propagates/nucleates at

the macroscale model. In this process, it is assumed that when the weak dis-

continuity criterion is satisfied for an RVE, material separation occurs at the

corresponding location on the macroscale model. In general, this assumption

may not be true, but it is reasonable for quasi-brittle materials where the tran-

sition between forming a weak discontinuously band and complete separation of
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material is relatively negligible. To model material separation at the macroscale

model, an element elimination technique that explicitly inserts a strong discon-

tinuity in the Finite Element (FE) solution was selected (for a detailed discus-

sion, see section Core Part No. 3: Crack simulation Using Element Elimination

Method).

Figure 1.2: The sketch of multiscale simulation of fracture.

1.5 Dissertation Outline

Following Chapter 1: Introduction, this dissertation is organized as follows:

Chapter 2: Literature Review

Chapter 2 provides a brief overview of studies that used a multiscale approach to

simulate fracture in heterogeneous materials. This literature review focuses on stud-

ies that incorporate numerical implication of the two-way linked multiscale approach

in their framework. The objectives of this chapter are to present the current under-

standing of this approach and knowledge gaps.
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Chapter 3: Theory and Background

The third chapter is concerned with the theoretical background of topics that con-

tribute to the objectives of this dissertation. The proposed approach is built on

three main components: two-way linked multiscale modeling, bifurcation analysis,

and simulation of material separation using element elimination techniques. All three

components are covered in three separate sections.

Chapter 4: Implementation of Algorithms

Chapter 4 describes the algorithm associated with the multiscale fracture simulation

that is proposed in this study. Also, details of implementing of the proposed algorithm

into a finite element code is discussed in this chapter.

Chapter 5: Example Problems

Verification and example problems are presented in Chapter 5. Certain example

problems are solved in this chapter in order to represent accurate implementation of

the proposed algorithm, to prove the hypothesis, and to evaluate the capability of

this approach.

Chapter 6: Conclusions and Recommendations

The final chapter presents conclusions of this research, draws upon the proposed ap-

proach, addresses current limitations, and identifies potential future research topics.



8

Chapter 2

Literature Review

This chapter provides a literature review of studies that used numerical methods that

included material heterogeneity to predict crack propagation. Along with the current

understanding of the problem, research gaps are also presented in this chapter.

2.1 Introduction

Many researchers have studied the effect of material heterogeneity on microscopic

damage evolution and material failure at macroscopic scale. In an early study, An-

dersson (1977) investigated crack propagation by placing a special cell containing

only a single void along a crack path. This cell represented a simplified version of

microscopic heterogeneity of a material. Crack propagation was simulated by ana-

lyzing the void growth of the cell ahead of the crack tip [Andersson, 1977]. This is

similar to the void growth model that was initially introduced by Rice (1969) [Rice

and Tracey, 1969, Mishnaevsky Jr et al., 1998] and was extended for simulation of

ductile fracture by Xia (1995) [Xia and Shih, 1995a, Xia and Shih, 1995b, Xia and
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Shih, 1996, Xia et al., 1995]. The general concept of this approach is explained well

in [Broberg, 1997]. Broberg showed that crack growth can be modeled by analyzing

a cell of a material where “The cell is regarded as the smallest material unit that

contains reasonably sufficient information about crack growth in the material”.

Over the past two decades, a number of researchers have sought to predict crack

propagation at the macroscopic level using multiscale methods. Multiscale methods

are built upon micromechanics and are able to include sufficient details of material

heterogeneity for analyzing its behavior. In this approach, a heterogeneous material is

treated as a homogeneous material with effective properties. The effective properties

are obtained by analyzing a Representative Volume Element (RVE). The RVE should

include sufficient details of the microstructure of the material. The effective properties

of an RVE are calculated using the Homogenization methods [Nemat-Nasser and Hori,

2013, Hill, 1972]. In the absence of damage in an RVE – which means the RVE is not

evolving over time – the homogenized properties are obtained only once for a given

RVE. Such methods are generally known as Upscaling or Hierarchical methods in the

literature (Figure 2.1).

In contrast, when the RVE is evolving, the homogenization process needs to be

completed recursively over time to be able to capture potential progressive damage

within an RVE. This concept, which is known as the Two-way linked multiscale,

FE2, or Semi-concurrent approach, is well integrated with numerical methods such

as the Finite Element Method (FEM) and the Extended Finite Element Method

(XFEM) [Feyel and Chaboche, 2000, Massart et al., 2007, Ozdemir et al., 2008, Geers

et al., 2010, Belytschko and Song, 2010, Verhoosel et al., 2010b, Souza and Allen,

2010, Nguyen et al., 2011, Kim et al., 2013, Toro et al., 2016]. The process of the

two-way linked multiscale approach is presented in Figure 2.2. In this approach, the
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Homogenized properties

Figure 2.1: Upscaling method diagram.
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macroscale and microscale models are analyzed separately. As shown in Figure 2.2,

this method consists of three major steps that are completed at each time step.

1. The macroscopic scale is solved in order to obtain the stress and strain field

within the heterogeneous object. The current state of stress or strain at a

material point is applied to the RVE in the form of far field boundary condition.

2. The RVE is solved under the applied boundary condition in order to obtain the

response of the RVE. The effective constitutive properties are calculated based

on homogenization method from the response of the RVE. The homogenization

method takes into account microdamage of the RVE.

3. The homogenized constitutive properties are used to update the properties of

the material for the next time step.

As long as microcracks are distributed evenly over the RVE, it can be treated

as stiffness reduction in the homogenized tangent stiffness matrix. However, micro-

damage can grow unevenly and form a localized band within the RVE, which can be

regarded as localization of RVE. Localization of RVE has two major consequences

that violate the basic assumptions of standard homogenization.

• The homogenization theory assumes that the RVE is statistically representative

of the material. However, localized RVE violates this assumption [Kouznetsova

et al., 2002, Gitman et al., 2007]. When strain localization occurs within an

RVE, the localized area does not scale with the size of the RVE; thus, the ho-

mogenized properties that are calculated using standard homogenization theo-

ries change with respect to RVE size.
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Figure 2.2: Two-way linked multiscale method diagram.
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• It is assumed that RVE represents a material point that experiences continuous

stress and strain fields [Inglis et al., 2008]. However, when localization occurs

in an RVE, this assumption is not valid.

The next section gives a brief overview of the recent works that address these

issues.

2.2 Relevant Studies

Verhoosel et al. [Verhoosel et al., 2010b] have proposed an averaging scheme that

provides traction-separation relation for evolution of macroscopic cohesive and adhe-

sive fraction based on FE2 method. This study extended the work done by Verhoosel

et al. in [Verhoosel et al., 2010a]. They applied the averaging process on microscale

models representing the bulk material and the adhesive layer in order to obtain the

traction-separation relation in the vicinity of a crack tip, as shown in Figure 2.3. In

addition, Figure 2.4 shows the schematic view of the microscale model. They have

considered different fracture models for adhesive and cohesive failure processes on the

microscale. Homogenized constitutive behavior of macroscale, before when the failure

criterion is met, is obtained using the volume averages of the microscopic quantities.

But in order to calculate homogenized cohesive interface traction-separation behavior,

the projection of microscale Cauchy stress on the macroscopic crack plane is used.

Neguyen et al. (2010) has implemented a multiscale approach for modeling crack

in heterogeneous material [Nguyen et al., 2010, Nguyen et al., 2011, Nguyen et al.,

2012a, Nguyen et al., 2012b, Nguyen et al., 2012c]. They replaced a heterogeneous

body undergoing a localized failure with a macro-scale homogenized body with a dis-

crete cohesive crack and a meso-scale model with a localized band of diffuse damage,
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Figure 2.3: Schematic representation of the macroscale model [Verhoosel et al.,
2010b].

Figure 2.4: Schematic representation of the microscale model [Verhoosel et al., 2010b].
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Figure 2.5: The multiscale scheme proposed by Neguyen et al. [Nguyen et al., 2012c].

as shown in Figure 2.5. The cohesive crack at macro-scale is simulated using XFEM.

The continuous-discontinuous computational homogenization is used to determine co-

hesive law for the cohesive macro-crack. In this method the homogenized stiffness

of bulk elements near to a macro-crack is obtained from unloading of the localized

RVE. In addition, an RVE with the boundary condition shown in Figure 2.5 is used to

obtain homogenized cohesive behavior on the macro-crack surface while the averaging

process is done over the active damaged zone, Ωm
d . This approach was later extended

by Karamnejad et al. for problems under impact loading [Karamnejad and Sluys,

2014, Karamnejad and Sluys, 2015, Karamnejad, 2016, Karamnejad et al., 2017].

Belytschko et al. (2007) proposed a multiscale method, Multiscale Aggregating

Discontinuities (MAD), as shown in Figure 2.6, to simulate fracture of heterogeneous

materials [Loehnert and Belytschko, 2007, Belytschko et al., 2008, Belytschko and

Song, 2010, Song and Belytschko, 2009]. In this approach, the problem is decomposed

into two scales: fine scale and coarse scale. The XFEM is utilized to simulate strong
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Figure 2.6: Schematic of macro–micro linkages of the MAD method [Belytschko and
Song, 2010].

discontinuity in both scales. When a fine scale model loses its strict ellipticity a

coarse-grained discontinuity is inserted to the macroscale model. The strict ellipticity

is defined based on the tangent matrix which relates the deformation gradient and

first Piola–Kirchhoff stress. The averaging quantities of localized fine scale model

is obtained from a “perforated” unit cell from which subdomains that are unstable

(where the material loses strict ellipticity, i.e. the areas of material that include

cracks) are excluded.

Oliver et al. [Oliver et al., 2014, Oliver et al., 2015] have formulated and simulated



17

material failure in a multiscale framework. Fracture in larger length scale is simulated

by a Continuum Strong Discontinuity Approach, introduced earlier by Oliver [Oliver,

1995]. The points of strain localization band are linked to a conventional RVE-like

cell, which is called failure-cell. The failure-cell is equipped with cohesive-bands with

a predefined position to capture damage in RVE. It is claimed that the failure-cell

does not need to be statistically representative of the material, however standard

homogenization procedures are applied to it. Strain-localization band width is de-

termined from size of failure-cell and the amount of activated failure mechanisms in

failure-cell.

Toro and coworkers [Toro et al., 2014, Toro et al., 2016] have extended a multiscale

failure method, which was initially developed by Sanchez et al. [Sanchez et al., 2013]

and named the method as the Failure-Oriented Multiscale Formulation (FOMF).

They tried to address the aforementioned issues regarding localization of RVE. They

introduced a failure mechanism in the larger length scale based on cohesive interface

model. The phenomenological model of cohesive interface is characterized through

homogenization of the RVE. They have proposed a homogenization method which

gives cohesive interface traction-separation relation from adopted RVE, while it is

objective with respect to the size of the RVE.

Souza and Allen employed two-way linked multiscale approach to simulate so-

called macrocracks as the result of accumulation of microcracks, as shown in Figure

2.7 [Souza and Allen, 2011]. In this approach, microcracks are simulated within RVE

using the Cohesive Zone Model (CZM). When density of microcracks in an RVE

meets a certain criteria, an equivalent to RVE localization, a cohesive element with

a proper direction will be inserted to the larger length scale problem such that it

follows the XFEM formulation (Figure 2.8). This cohesive element is then linked to
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an RVE which is cloned from the localized RVE. As loading continues, microcracks in

cloned RVE coalesces until the RVE completely fails and thereby the cohesive element

breaks into two traction-free surfaces.

Figure 2.7: Schematic representation of a two-scale IBVP [Souza and Allen, 2010].
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Figure 2.8: Cohesive zone insertion at global-scale elements [Souza and Allen, 2010].
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Chapter 3

Theory and Background

The proposed method in this dissertation is built on three major components:

• Two-way linked multiscale modeling

• Bifurcation analysis

• Element elimination method

This chapter gives the theoretical background of each component in three separate

sections.

3.1 Core Part No. 1: Two-way Linked Multiscale

Modeling

The two-way linked multiscale approach is entirely based on the postulate of statistical

homogeneity of a composite. It means that the geometrical microstructure of the

material can be expressed as an assembly of finite unit cells as shown in Figure 3.1.

This cell, also called as Representative Volume Element (RVE), must be sufficiently
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large to describe the overall properties of the composite [Hill, 1972, Qin and Yang,

2008]. This postulate implies that the overall effective properties of a composite is

equal to the volume average of those properties over an RVE of that composite. The

correct application of multiscale concept requires the following assumptions:

• The composite must be statistically homogeneous. A strict definition of a sta-

tistically homogeneous media is presented in terms of n-point probabilities and

ensemble averages, which indicates that probability of finding a phase at a point

is independent of the point’s location [Hori and Nemat-Nasser, 1999, Beran,

1965, Kroner, 1972].

• A definable RVE must exist and fully represent the characteristics of the hetero-

geneous material. The efficient size of the RVE can be found by monitoring the

RVE’s response versus its size. The minimum RVE size at which the effective

property converges to a constant value is sufficient to define the RVE [Gitman

et al., 2007].

• Characteristic length of a statistically homogenous object (L) and corresponding

RVE (l) must be widely separated [Hill, 1972].

Using this approach, a composite material can be simulated by dividing the prob-

lem into two separate length scales: global-scale or macro-scale and local-scale or

micro-scale. The global-scale model defines the geometry of the heterogeneous body.

The local-scale model is defined by a Representative Volume Element (RVE) that

describes the microstructure of the composite. It is assumed that an RVE ideally

represents a point at the global-scale model. Hence, the overall behavior of RVE

is assumed to be equivalent to the behavior of the composite at the corresponding
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L

l << L

Global-scale Local-scale

Figure 3.1: Schematic view of a heterogeneous body and its representative volume
element.

neighboring material. Hence, the effective (average) constitutive behavior of the com-

posite at the global-scale model is defined as the relation between the average of field

variables, i.e. stress and strain, over the RVE.

3.1.1 Homogeneous Boundary Conditions

The state variables can be determined by solving an initial boundary value problem

(IBVP) for the RVE, while it is subjected to a homogeneous boundary condition

which can be applied as either traction T̂i or displacement Ûi boundary conditions

[Souza et al., 2008, Souza and Allen, 2010, Kim et al., 2013]. The traction or dis-

placement boundary conditions are calculated based on the stress or strain values at

the corresponding location on the global-scale model. The boundary condition ap-

plied to the RVE must be homogeneous in order to expect statistically homogeneous

field variables. Equation 3.1 and Equation 3.2 are used to obtain the homogeneous
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traction and displacement boundary condition respectively [Hashin, 1983].

T̂i = σGijnj on SLE (3.1)

Ûi = εGijxj on SLE (3.2)

where σGij and εGij are the constant stress and constant strain of a point at the global-

scale model; T̂i and Ûi are the traction and displacement boundary conditions acting

on the RVE’s external boundary (SLE). Throughout this dissertation, the superscripts

G and L will be used to indicate global-scale and local-scale models respectively.

In the multiscale method, any stiffness reduction due to damage accumulation

in the RVE is reflected as a stiffness reduction in the effective tangent constitutive

tensor. Therefore, when there is progressive damage or microstructural change in the

local-scale model, the multiscale framework should be formulated in a two-way linked

and incremental form, as shown in Figure 3.2. Therefore, in a two-way multiscale

approach at each time step:

• The boundary conditions of RVE are updated according to the strain or stress

state at the global-scale model (global-scale to local-scale linking).

• The effective properties of the global-scale model are updated according to the

current response of the RVE (local-scale to global-scale linking).
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Figure 3.2: Algorithm of two-way linked multiscale method.

3.1.2 Homogenization

The two-way linked multiscale method is implemented in a recursive scheme, in which

the global-scale strain or stress tensor is used to calculate the RVE’s displacement

or traction boundary condition. Also the stiffness tangent tensor in the global-scale
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model is equivalent to the effective stiffness tensor obtained from solving the IBVP

of the RVE. The effective stiffness tensor is defined as the relationship between the

homogenized stress and strain field over an RVE.

σ̄Lij = C∗ijklε̄
L
kl (3.3)

ε̄Lij = S∗ijklσ̄
L
kl (3.4)

Since the heterogeneous material is assumed to be statistically homogeneous, the

volume averaging method is applicable to homogenize the field variables over the

RVE.

∆εGij = ∆ε̄Lij =
1

V L

∫
V L

∆εLijdV (3.5)

∆σGij = ∆σ̄Lij =
1

V L

∫
V L

∆σLijdV (3.6)

where σ̄Lij and ε̄Lij are the volume average of the stress and strain tensor over the RVE,

respectively. Using the divergence theorem, Equation 3.5 and 3.6 can be rewritten as

follows:

∆εGij = ∆ĒL
ij + ∆ēLij (3.7)

where

∆ĒL
ij =

1

V L

∫
SLE

1

2

(
∆uLi n

L
j + ∆uLj n

L
i

)
dS (3.8a)

∆ēLij =
1

V L

∫
SLI

1

2

(
∆uLi n

L
j + ∆uLj n

L
i

)
dS (3.8b)
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and

∆σGij = ∆σ̄Lij

=
1

V L

∫
SLE

∆σLijn
L
kx

L
j dS

(3.9)

where ĒL
ij and ēLij are the volume averaged strain over the external (SLE) and internal

(SLI ) boundaries over the RVE, respectively. nLi is the outward unit normal vector to

the external and internal boundaries.

It is worth to mention that the internal boundaries are due to developing microc-

racks (free surfaces) inside the RVE, which implies the averaged measure of damage.

Also, regarding Equation 3.9, the volume averaged stress is equal to the external

boundary averaged traction vectors only if the sum of traction vectors over the inter-

nal boundary surfaces is zero [Souza et al., 2008].

3.1.3 Governing Equations

Global-scale IBVP

Consider the global-scale problem as a general body with an interior V G and a bound-

ary SG, as shown in Figure 3.3, in the absence of body forces and inertial effects.

Hence, the mechanical IBVP is defined by a set of governing equations, boundary

conditions, and initial condition:

• Conservation of linear momentum

• Conservation of angular momentum

• Strain-displacement relations for small strain condition

• Constitutive equation
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σGji,j = 0 in V G (3.10)

σGij = σGji in V G and on SG (3.11)

εGij =
1

2

(
uGi,j + uGj,i

)
in V G (3.12)

σGij(t) = Ωτ=t
τ=−∞

{
εGkl(τ)

}
in V G (3.13)

where σij, εij, and ui are the Cauchy stress tensor, infinitesimal strain tensor, and

displacement vector, respectively; Ωτ=t
τ=−∞ represents a history-dependent constitutive

behavior.

The initial values for all the state variables are assumed to be zero.

σij(t = 0) = 0 in V G and on SG (3.14)

εij(t = 0) = 0 in V G and on SG (3.15)

ui(t = 0) = 0 in V G and on SG (3.16)

Also, both displacements and tractions are specified on the body as follows:

ui(t) = Ûi on SGEu (3.17)

ti(t) = σij nj = T̂i on SGEt (3.18)

where Ûi and T̂i are known boundary displacements and boundary tractions, respec-

tively; SGEu and SGEt are subdivisions of SGE such that SGEu∪S
G
Et

= SGE and SGEu∩S
G
Et

= ∅.

Local-scale IBVP

As mentioned earlier, the global-scale’s effective constitutive properties are derived

from the response of a local-scale RVE. The effective properties can be calculated by

averaging the local-scale state variables, stresses and strains, which are obtained from
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Figure 3.3: Global-scale initial boundary value problem.

solving the local-scale IBVP under homogenous displacement or traction boundary

condition. For each RVE, the homogeneous boundary condition is linked to the state

variables of the corresponding location in the global-scale model.

Let’s consider the local-scale body as a general body containing discrete cracks and

cohesive zones as shown in Figure 3.4. This body has an interior V L and a boundary

SL which consists of three parts: SLI which denotes the boundary of discrete cracks;

SLC which denotes the boundary of cohesive zones; and SLE which denotes the external

boundary of the local-scale body. Similar to the global-scale model, the IBVP at the

local-scale model is defined by the following governing equations:
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σLji,j = 0 in V L (3.19)

σLij = σLji in V L and on SL (3.20)

εLij =
1

2

(
uLi,j + uLj,i

)
in V L (3.21)

σLij(t) = Ωτ=t
τ=−∞

{
εLkl(τ)

}
in V L (3.22)

where all variables used here are the same as those used in the global-scale model,

except the superscript L which represents the local-scale model.

The behavior ahead of a crack tip is expressed by the general traction–displacement

relationship:

TLi (t) = T τ=t
τ=−∞{δuk(τ)} on SLC (3.23)

where T τ=t
τ=−∞ represents a history-dependent cohesive zone model traction–separation

relationship.

The initial values and boundary conditions are also specified as follows:

σij(t = 0) = 0 in V L and on SL (3.24)

εij(t = 0) = 0 in V L and on SL (3.25)

ui(t = 0) = 0 in V L and on SL (3.26)

ui(t) = Ûi on SLEu (3.27)

ti(t) = T̂i on SLEt (3.28)

where the superscript L represents the local-scale model.
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Figure 3.4: Local-scale initial boundary value problem.

3.1.4 Constitutive Equations

Elastic Constitutive Equation

The general elastic constitutive relationship, which is not time dependent, is given

by:

σij(t) = CE
ijkl εkl(t) in V (3.29)

where CE
ijkl is the fourth order elastic modulus tensor.

For isotropic materials, Equation 3.29 can be rewritten as the following form:

σij(t) =
Eν

(1 + ν)(1− 2ν)
δij εkk(t) +

E

(1 + ν)
εij(t) in V (3.30)

where E and ν are elastic modulus and Poisson’s ratio; δij is Kronecker delta.
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Viscoelastic Constitutive Equation

The constitutive equation is given for a general anisotropic and linear viscoelastic

material in the convolution integral form [Christensen, 2012]:

σij(t) =

∫ t

0

Cijkl(t− τ)
∂εkl(τ)

∂τ
dτ in V (3.31)

where Cijkl(t − τ) is the fourth order tensor of relaxation modulus; t is the time of

interest, while τ is the time-history integration variable.

Equation 3.31 can be rewritten for isotropic material, with a time-independent

Poisson’s ratio, by the following:

σij(t) =
ν

(1 + ν)(1− 2ν)

∫ t

0

E(t− τ)δij
∂εkk(τ)

∂τ
dτ

+
1

(1 + ν)

∫ t

0

E(t− τ)
∂εij(τ)

∂τ
dτ

in V (3.32)

where E(t) and ν are viscoelastic stress relaxation modulus and time-independent

Poisson’s ratio.

Viscoelastic Cohesive Zone Constitutive Equation

Evolving damage is taken into account by allowing for microcrack growth at the local-

scale. Crack initiation and propagation are modeled using a viscoelastic cohesive zone

model, in which the traction–separation relation is defined by Allen and Searcy [Allen

and Searcy, 2000]:

Ti(t) =
1

δi

ui(t)

λ(t)

(
1− α(t)

)(
σfi +

∫ t

0

EC(t− τ)
∂λ(τ)

∂τ
dτ

)
in ∂V L

I (3.33)

where i represents the local direction, normal n or tangential t (there is no summation

over the index i); Ti(t) and ui(t) are the cohesive zone traction and displacement,
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respectively; δi is the empirical material length parameter; α(t) is the internal damage

parameter; σfi is the state of stress in the vicinity of crack tip upon the initiation of

damage; EC(t− τ) is the uniaxial relaxation modulus of the cohesive zone; λ(t) is the

normalized cohesive zone opening displacement such that

λ(t) =

√(
un
δn

)2

+

(
ut
δt

)2

(3.34)

The material length parameters δn and δt can be determined by equating the total

work of separation dissipated by the cohesive zone to the energy released during crack

growth experiments.

A power law function can be used to represent the internal damage parameter,

such as [Allen and Searcy, 2000]:

α̇(t) =


Aλ(t)m, λ̇ ≥ 0 and α < 1

0, λ̇ ≤ 0 or α = 1

(3.35)

where A and m are material parameters; the dot indicates time derivatives.

3.1.5 Time Incrementalization of the Constitutive Equations

The process of obtaining numerical solutions of problems involving time- or history-

dependent constitutive equations are usually given in an incremental form. This

section includes the incremental formulation of the viscoelastic constitutive equation,

Equation 3.31, and cohesive zone traction–displacement law, Equation 3.33.
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Viscoelastic Constitutive Equation

The incremental formulation of linear viscoelastic stress–strain relationship, Equation

3.31, is presented here. The objective is to derive a method of expressing stresses at

time t+ ∆t in terms of stresses and strains at time t. The incrementalization process

summarized here was developed by Zocher et al. [Zocher et al., 1997]. First, let’s

define the following variables in the incremental forms:

∆εij ≡ εij(t+ ∆t)− εij(t) (3.36)

∆σij ≡ σij(t+ ∆t)− σij(t) (3.37)

∆Cijkl ≡ Cijkl(t+ ∆t)− Cijkl(t) (3.38)

Also, it is assumed εij(t) can be approximated by a linear function over each

interval t ≤ τ ≤ t+ ∆t. So:

εkl(τ) = εkl(t) +Rε(τ − t)H(τ − t) (3.39)

where is Rε a constant representing the strain rate over the interval; H(τ − t) is

Heaviside step function.

Therefore, the following expression is valid.

∂εkl(τ)

∂τ
≈ Rε ≡

∆εkl
∆t

(3.40)

Also, suppose that each element of Cijkl can be represented by the Wiechert model

in form of Prony series:

Cijkl(t) = Cijkl∞ +

Mijkl∑
m=1

Cijklme
−
Cijkl
ηijkl

t
(3.41)
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Therefore, the incremental form of viscoelastic constitutive equation can be writ-

ten as follows:

∆σij = C ′ijkl ∆εkl + ∆σRij (3.42)

where C ′ijkl is given by:

C ′ijkl = Cijkl∞ +
1

∆t

Mijkl∑
m=1

ηijklm

(
1− e−

Cijkl
ηijkl

∆t
)

(3.43)

and ∆σRij is given by

∆σRij = −
3∑

k=1

3∑
l=1

Aijkl (3.44)

where

Aijkl =

Mijkl∑
m=1

(
1− e−

Cijkl
ηijkl

∆t
)
Sijklm(t) (3.45)

and

Sijklm(t) = e
−
Cijkl
ηijkl

∆t
Sijklm(t−∆t) + ηijklmRε

(
1− e−

Cijkl
ηijkl

∆t
)

(3.46)

Note that there is no sum over i, j, k and l.

Viscoelastic Cohesive Zone Constitutive Equation

This section represents an incremental form of the viscoelastic cohesive zone traction–

separation relationship, Equation 3.33. The goal is to express the traction at time

t+∆t in terms of the properties at time t. This is done by Allen and Searcy (2000) and

it is summarized here [Allen and Searcy, 2000, Searcy, 1998]. To derive an expression
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for the increment in the cohesive traction, ∆Ti, the following incremental variables

are defined:

Ti(t+ ∆t) ≡ Ti(t) + ∆Ti (3.47)

ui(t+ ∆t) ≡ ui(t) + ∆ui (3.48)

λi(t+ ∆t) ≡ λi(t) + ∆λi (3.49)

α(t+ ∆t) ≡ α(t) + ∆α (3.50)

EC
i (t+ ∆t) ≡ EC

i (t) + ∆EC
i (3.51)

Also, suppose a linear variation can represent the displacement function over the

interval t ≤ τ ≤ t+ ∆t, which is defined by:

λ(τ) = λ(t) +Rλ(τ − t)H(τ − t) (3.52)

so,

∂λ

∂τ
= Rλ ≡

∆λ

∆t
(3.53)

Also, it is assumed that:

ui(t+ ∆t)

λ(t+ ∆t)
≈ ui(t)

λ(t)
(3.54)

and

∂λ

∂ui

∣∣∣
t
≈ 1

δi
(3.55)

Furthermore, when small time steps are taken, the increment in the damage is
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given by:

∆α = α̇(t) ∆t (3.56)

where α̇(t) is known at time t.

Now, suppose the following Prony series specifies the constitution for the cohesive

zone:

EC(t) = E∞ +
P∑
j=1

Eje
−
Ej
ηj
t

(3.57)

Finally, the resulting recursive traction for the viscoelastic cohesive zone can be

written as follows:

∆Ti = Ki ∆ui + ∆TRi (3.58)

where

Ki =
1

δ2
i

ui(t)

λ(t)

(
1− α(t+ ∆t)

)
EC(∆t) (3.59)

and

∆TRi =
−1

δi

ui(t)

λ(t)
∆α

(
σfi + E∞λ(t) +

P∑
j=1

Sj(t)

)

+
1

δi

ui(t)

λ(t)

(
1− α(t+ ∆t)

)(
−

P∑
j=1

(
1− e−

Ej
ηj

∆t
)
Sj(t)

) (3.60)

and

EC(∆t) = E∞ +
1

∆t

P∑
j=1

ηj

(
1− e−

Ej
ηj

∆t
)

(3.61)
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and

Sj(t) = e
−
Ej
ηj

∆t
Sj(t−∆t) + ηjRλ

(
1− e−

Ej
ηj

∆t
)

(3.62)

3.1.6 Finite Element Formulation

The main objective of solving a solid mechanic problem is to predict displacements,

strains, and stresses throughout an object when it is subjected to a set of boundary

conditions. In this study, a finite element (FE) formulation is utilized to predict

these unknown. This section explains the steps to obtain the FE formulation for

this problem. The weak formulation is obtained by multiplying conservation of linear

momentum by an arbitrary weight function, δui, and integrating it over domain V .

The resulting equation can be written in the symmetric variational form:∫
V

(
δuiσji

)
,j
dV =

∫
V

δui,jσji dV (3.63)

Applying the divergence theorem and Cauchy’s formula into Equation 3.63 yields:∫
V

δεij σji dV =

∫
SEt

δui T̂i dS +

∫
SC

δui Ti dS (3.64)

where traction, T̂i, is specified on SEt ; cohesive zone traction, Ti, is specified on SC ;

displacements are applied on SEu .

The state variables can be expressed in incremental form as follows:

∆σij ≡ σij(t+ ∆t)− σij(t) (3.65a)

∆εij ≡ εij(t+ ∆t)− εij(t) (3.65b)

∆ui ≡ ui(t+ ∆t)− ui(t) (3.65c)
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Substituting Equation 3.65c into Equation 3.64 and reformulating gives:∫
V

δ∆εij σji(t) dV +

∫
V

δ∆εij ∆σji dV

=

∫
SEt

δ∆ui T̂i(t+ ∆t) dS −
∫
SC

δ∆ui Ti(t) dS −
∫
SC

δ∆ui ∆Ti dS (3.66)

Introducing Equations 3.58 and 3.42 in Equation 3.66 and rearranging gives the

following relation:∫
V

δ∆εij C
′
ijkl ∆εkl dV +

∫
SC

δ∆uiKi∆ui dS

=

∫
SEt

δ∆ui T̂i(t+ ∆t) dS

−
∫
V

δ∆εij σij(t) dV −
∫
V

δ∆εij ∆σRij dV −
∫
SC

δ∆ui Ti(t) dS −
∫
SC

δ∆ui ∆T
R
i dS

(3.67)

Applying the displacement shape function, {∆u} = [N ]{∆U}, strain–displacement

operator, {∆ε} = [B]{∆U}, and displacement transformation function, {∆u} =

[NC ]{∆U}, gives:∫
V

[
δ∆U

]T [
B
]T [
C′][B]T [∆U]dV +

∫
SC

[
δ∆U

]T [
NC

]T [
K
][
NC

]T [
∆U

]
dS

=

∫
SEt

[
δ∆U

]T [
N
]T [
T̂ (t+ ∆t)

]
dS

−
∫
V

[
δ∆U

]T [
B
]T [
σ(t)

]
dV −

∫
V

[
δ∆U

]T [
B
]T [

∆σR
]
dV

−
∫
SC

[
δ∆U

]T [
NC

]T [
T (t)

]
dS −

∫
SC

[
δ∆U

]T [
NC

]T [
∆TR

]
dS (3.68)

Since [δ∆U ]T is arbitrary, it can be factored out. Then Equation 3.68 can be

represented for each element as follows:{
F e
}

=
[
Ke
]{

∆U e
}

(3.69)



39

where

[
Ke
]

=
[
Ke

1

]
+
[
Ke

2

]
(3.70)

[
Ke

1

]
=

∫
V e

[
B
]T [
C′][B]T [∆U]dV (3.71a)[

Ke
2

]
=

∫
SeC

[
NC

]T [
K
][
NC

]T [
∆U

]
dS (3.71b)

and

[
f e
]

=
[
f e1
]

+
[
f e2
]

+
[
f e3
]

+
[
f e4
]

+
[
f e5
]

(3.72)

[
f e1
]

=

∫
SEt

[
N
]T [
T̂ (t+ ∆t)

]
dS (3.73a)

[
f e2
]

= −
∫
V e

[
B
]T [
σ(t)

]
dV (3.73b)[

f e3
]

= −
∫
V e

[
B
]T [

∆σR
]
dV (3.73c)[

f e4
]

= −
∫
SeC

[
NC

]T [
T (t)

]
dS (3.73d)

[
f e5
]

= −
∫
SeC

[
NC

]T [
∆TR

]
dS (3.73e)

where [Ke] is the elemental stiffness matrix including stiffness of bulk element, [Ke
1 ],

and the effects from neighboring cohesive zones, [Ke
2 ]; [f e] is the elemental force

matrix including the contributions from surface tractions, [f e1 ], stresses at the previous

time step, [f e2 ], changes in stresses during the current time step, [f e3 ], cohesive zone

tractions at the previous time step, [f e4 ], and changes in cohesive zone tractions during

the current time step, [f e5 ].

Global system of equations can be obtained by assembling elemental stiffness
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matrices and force vectors, as follows:

[
Kg
]{

∆U g
}

=
{
F g
}

(3.74)

where [Kg] is the total global stiffness matrix; {F g} is the total global force vector;

{∆U g} is the global displacement increment during ∆t, which is unknown.

Shape Functions of CST Elements

Displacements in the domain of a finite element can be interpolated by the following

relation {
u
}

=
[
N
]{
U
}

(3.75)

where {U} is the nodal displacement vector and [N ] is the shape function matrix

defined as follows [
N
]

=

N1 0 N2 0 N3 0

0 N1 0 N2 0 N3

 (3.76)

For Constant Strain Triangle (CST) element the shape functions are given by

N e
1 =

1

2Ae

(
xe2y

e
3 − xe3ye2 +

(
ye2 − ye3

)
x+

(
xe3 − xe2

)
y

)
N e

2 =
1

2Ae

(
xe3y

e
1 − xe1ye2 +

(
ye3 − ye1

)
x+

(
xe1 − xe2

)
y

)
N e

3 =
1

2Ae

(
xe1y

e
2 − xe2ye1 +

(
ye1 − ye2

)
x+

(
xe2 − xe1

)
y

) (3.77)

where

2Ae =
(
xe2y

e
3 − xe3ye2

)
+
(
xe3y

e
1 − xe1ye3

)
+
(
xe1y

e
2 − xe2ye1

)
(3.78)

Also, the strain of a CST element can be estimated by

{
ε
}

=
[
B
]{
U
}

(3.79)
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where the derivatives of shape functions for CST elements are given by

[
B
]

=


∂N1

∂x
0 ∂N2

∂x
0 ∂N3

∂x
0

0 ∂N1

∂y
0 ∂N2

∂y
0 ∂N3

∂y

∂N1

∂y
∂N1

∂x
∂N2

∂y
∂N2

∂x
∂N3

∂y
∂N3

∂x

 (3.80)

Transformation Funcions of Cohesive Zone Interface Elements

The four-noded interface elements are used in this study to model the cohesive cracks,

as shown in Figure 3.5. Each node has two degrees of freedom. Hence, the interface

elements can have relative opening in normal direction, δUn = U2
n−U1

n, and tangential

direction, δUt = U2
t −U1

t . The superscripts indicate node numbers and the subscripts

refer to the coordinate system. The constitutive equation relating the transferred

loads to the relative opening of interface elements in the local coordinate system is

as follows:

{
F l
}

=
[
El
]{
δU l

}
(3.81)

where

{
F l
}

=

FnFt
 (3.82)

{
El
}

=

En 0

0 Et

 (3.83)

and

[
∆U l

]
=

∆Un

∆Ut

 (3.84)
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It should be mentioned that Fi = Tiw and Ei = Kiw where w is the width of

the cohesive interface element. Ti and Ki are transferred load and tangent stiffness

of cohesive zone respectively. Ti and Ki can be calculated at each time step using

Equation 3.47 and Equation 3.59. The subscripts t and n indicates the normal and

tangential directions in the local coordinate system.

!

"

#

$

1
2

'

Figure 3.5: The four-node cohesive interface elements.

Because the cohesive constitutive relationship is defined in terms of local separa-

tion and traction of cohesive interface element, a transformation between local and

global coordinate system is necessary. Let’s assume the crack direction, t, makes an

angle of π/2 + ϕ with the x axis in the global coordinate system, as shown in Figure

3.5. The global relative opening of cohesive interface element can be obtained as

∆Un

∆Ut

 =
[
NC

]


U1
x

U1
y

U2
x

U2
y


(3.85)



43

where [
NC

]
=

− cos(φ) − sin(φ) cos(φ) sin(φ)

sin(φ) − cos(φ) − sin(φ) cos(φ)

 (3.86)

The elemental stiffness matrix
{
Kg
}

and the nodal force vector
{
F g
}

in the

global coordinate system can be derived based on transformation relations.

{
F g
}

=
[
NC

]T{
F l
}

(3.87)

{
Kg
}

=
[
NC

]T{
K l
}[
NC

]
(3.88)

3.2 Core Part No. 2: Localization of RVE

In this study, it is assumed that an RVE fails when a localized band forms inside

the RVE. Localization is regarded as onset of weak discontinuity surface. Before

explaining the theoretical aspect of weak discontinuity surface for 2D cases, first the

nature of the localization phenomena is explained using a simple 1D example [Jirasek,

2007].

Consider a straight bar, as shown in Figure 3.6, which is made of a material

with a bilinear stress–strain behavior. As shown in Figure 3.7, the first part of

stress–strain curve is a linear elastic behavior up to σt, while the second phase is a

linear softening behavior. Assume the bar is under a uniaxial tensile loading by an

applied displacement of u. The bar’s response remains in elastic regime while the

resultant stress is less than σt. The equilibrium condition dictates a uniform stress

along the bar. Therefore, all points along the bar experience a unique stress and a

corresponding strain. Once the stress level reaches the peak stress, σt, any further

loading causes resistance reduction of the bar. Hence, the load carrying capacity of
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the bar decreases. For any stress level of σ less than σt there are two strain levels

which satisfy constitutive equation, εe and εs in Figure 3.7. This means unlike the

stress profile, the strain profile does not have to be constant through the bar. Any

piecewise constant strain profile such as the one shown in Figure 3.6 (b) represents a

valid answer. Therefore, the problem has an infinite number of answers. If the bar

is truly homogeneous, every point along bar reaches the σt and then experience the

softening behavior. However, in reality a bar cannot be perfectly uniform. Usually

there are some imperfections which make a material point slightly weaker as compared

to the neighbor material points. Those points, such as the regions in darker color in

Figure 3.6 (a), will reach to the peak stress sooner than the remaining portion of the

bar. Then softening starts at weaker points and stress level decreases through the

bar. The parts of the bar outside the weaker region unloads elastically, however the

weaker regions show increasing strain εs following a softening behavior. The softening

behavior happens only in those areas with minimum strength which can be arbitrarily

small. This one-dimensional example explains how localized inelastic strain happens

as a process zone with an arbitrarily small width.

The previous simple example explains the localization of deformation in one-

dimensional problems. In one-dimensional problems, the criterion for localization

can be as simple as when the stress level reaches the peak of the stress–strain curve

where the tangent modulus ceases to be positive. In multi-dimensional problems,

onset of localization is usually identified through analysis of tangent modulus tensor.

The following section mathematically shows that under which conditions localization

happens in multi-dimensional problems [Jirasek, 2007]. Localization of deformation

is defined as when the inelastic strain increments are localized in an infinitely narrow

band which is separated from the neighboring points by weak discontinuity surfaces.
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Figure 3.6: (a) A bar under uniaxial tension, (b) and its strain profile.
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Figure 3.7: Stress–strain diagram.

Weak discontinuity surface is where displacement field is continuous but displacement

gradient field, i.e. strain, can have a jump. The onset of localization is when the strain

field still remains continuous but the strain rate show potential jumps. Consider a

localized deformation surface splits a body into + and − subdomains as shown in

Figure 3.8. The unit normal vector to the surface oriented toward + is n.

However, there are jumps in stress and strain rates at the localized surface, while

the traction and displacement are continuous. The traction continuity is written as

n.σ̇+ = n.σ̇− (3.89)

where + and − superscripts denote from which side a value is approached. The strain

discontinuity condition can be written in the following form

ε̇+ = ε̇− +
1

2
(m⊗ n+ n⊗m).ė (3.90)
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Figure 3.8: Body split by a potential localized deformation surface.

𝑛 𝑚 𝑛
𝑚

(a) (b)

Figure 3.9: Localization band, (a) tensile failure, (b) shear failure.

where m is a unit first-order tensor called polarization vector ; And ė is the magnitude

of the jump.

Unit vector m shows the direction of strain rate. Hence, the angle between unit

vectors m and n describes the failure mode, ranging from opening mode to sliding

mode, as shown in Figure 3.9.

The stress and strain rates are connected through the constitutive law as follows

σ̇+ = C : ε̇+, σ̇− = C : ε̇− (3.91)

where C is the tangent stiffness tensor. For simplification it is assumed that at the
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onset of localization C+ = C−.

Substituting Equation 3.91 into Equation 3.45, replacing ε̇+ using Equation 3.90,

and using the minor symmetry of C lead to

n.C : ε̇− + n.C : (m⊗ n).ė = n.C : ε̇− (3.92)

By reorganizing the equation and the fact that ė 6= 0, we obtain

(n.C.n).m = 0 (3.93)

The second-order tensor Q = n.C.n is called localization tensor. Therefore, for-

mation of localized strain band requires that the localization tensor be singular, i.e.

det(Q) = 0, where m is its eigenvector associated with eigenvalue zero. Also, singu-

larity of localization tensor is also called the loss of ellipticity. Loss of ellipticity is

necessary but not sufficient for the formation of localized band with a weak discon-

tinuity, because the analysis presented here is limited to a point xd and its infinitely

small neighborhood. Localization tensor can also be written in index notation form

as follows.

Qij = nkCikljnl (3.94)

Localization tensor is a function of tangent stiffness tensor C and unit vector n.

However tangent stiffness matrix is known at each stage, unit vector n is not given

a priori. So, the first step is to find a unit vector n such that the det(Q) becomes

zero. If such a vector does not exist, the strain field remains continuous. If there is a

unit vector n that satisfies singularity of the localization tensor, a weak discontinuity

surface with a normal n can form [Jirasek, 2007].
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As discussed earlier, for nonlinear finite-deformation problems the relation be-

tween stress and strain is expressed in an incremental form:

∆σij = Cijkl ∆εkl (3.95)

According to the principle of conservation of angular momentum, the stress tensor

is symmetric, σij = σji. In small strain deformation, the linearized strain tensor is

also symmetric by definition, εij = εji. Symmetry of stress and strain tensor lead to

the conclusion that C must have minor symmetry as follows:

Cijkl = Cjikl = Cijlk (3.96)

If the material possess a strain energy density function, the tensor C exhibits the

major symmetry which reduces the number of independent constants even further as

follows:

Cijkl = Cklij (3.97)

In 3D space, the minor symmetry of C tensor reduces the number of independent

terms from 3 × 3 × 3 × 3 = 81, to 36. If besides minor symmetry the C tensor

has major symmetry, it features only 21 independent terms. For a fully anisotropic

material without major symmetry, the stress and strain relation can be written in
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matrix form in the following way [Weinberg, 2008, Aboudi et al., 2012]:

σ11

σ22

σ33

σ23

σ13

σ12



=



C1111 C1122 C1133 C1123 C1113 C1112

C2211 C2222 C2233 C2223 C2213 C2212

C3311 C3322 C3333 C3323 C3313 C3312

C2311 C2322 C2333 C2323 C2313 C2312

C1311 C1322 C1333 C1323 C1313 C1312

C1211 C1222 C1233 C1223 C1213 C1212





ε11

ε22

ε33

ε23

ε13

ε12



(3.98)

which for 2D problems can be represented by:
σ11

σ22

σ12

 =


C1111 C1122 C1112

C2211 C2222 C2212

C1211 C1222 C1212



ε11

ε22

ε12

 (3.99)

Equation 3.99 can be written in terms of compliance as well:
ε11

ε22

ε12

 =


S1111 S1122 S1112

S2211 S2222 S2212

S1211 S1222 S1212



σ11

σ22

σ12

 (3.100)

In equations 3.98, and 3.99, 3.100, the C matrix possesses only the minor sym-

metry, which leaves 9 independent entries for 2D cases.

3.3 Core Part No. 3: Crack Simulation Using El-

ement Elimination Method

Crack propagation can be regraded as creation of new traction-free boundaries, crack

faces. Numerous techniques have been developed and implemented in FE framework
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to simulate crack nucleation and propagation. Some of the techniques to simulate

crack advancement are based on consecutively redefining FE mesh, such as node de-

coupling, element splitting, and element elimination methods [Mishnaevsky Jr, 2007].

In node decoupling method, which is also called as node splitting method, a crack

grows once a node ahead of a crack tip is cloned and decoupled from the original

node (Figure 3.10 (a)). This technique allows cracks to grow only on the edges of the

elements which leads to a mesh-dependent results [Mishnaevsky Jr, 2007]. Element

splitting technique allows a crack to propagate through an element as it is shown

in Figure 3.10 (b) [Wang et al., 2009, Johnson et al., 2005]. This method is less

mesh-bias as compared to the node decoupling method because the crack path is not

limited to the element edges, but more challenging numerically [Leon et al., 2014].

Element elimination method does not require cloning nodes. The new boundaries,

i.e. crack walls, are created by removing an element or elements ahead of the crack tip

for which the failure criterion is satisfied, as shown in Figure 3.10 (c). However, this

method clearly induces physical inaccuracy by violating the conservation of mass and

mesh-dependency, while the overall accuracy can be improved by defining a finer and

unstructured mesh [Lee et al., 2009, Leon et al., 2014]. Element elimination method

has been implemented by many commercial FE software, such as ABAQUS and LS-

DYNA due to its simplicity and fast performance. Also, since the failed element

is removed in this method, this method can overcome the stress concentration at

the cracked surface and thereby prevent over-estimation of stress and strain values.

Element elimination method has fundamental similarities with Element Weakening

method, in which when the failure criterion is met for an element, the element is not

removed but its stiffness is set to a very low value [Mishnaevsky Jr, 2007].

This study uses artificial elimination of failed elements from the finite element
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solution without changing the mesh structure. The flowchart of implementation of

element elimination method within a FE framework is illustrated in Figure 3.11.

Instead of removing a failed element from the FE solution, its contribution is excluded

from updating stiffness matrix and force vector. The implementation of this method

requires three steps that are repeated at each time step:

• Identifying failed elements: A failure criterion determines those elements

that need to be eliminated at each time step. When the failure criterion are

met for an element/elements, candidate element/elements for elimination will

be stored for the next time step. In this study, it is assumed that once an

element meet the weak discontinuity criterion, it is no longer able to carry load.

• Eliminating failed elements: Failed elements are excluded from connectivity

matrix. In order to do that the contribution of failed elements to stiffness matrix

and force vector is excluded during assembling of the global stiffness matrix and

global force vector without changing the connectivity matrix or renumbering

mesh.

• Adjusting boundary condition: Excluding element may result in producing

isolated nodes. Isolated nodes are the ones that remain without involving in

neighboring elements when all the surrounding elements are eliminated. If these

nodes are part of boundary condition nodes, the boundary condition should be

adjusted appropriately.
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New boundary
Disconnected node

New boundary

New boundary
Splitting path

(a)

(b)

(c)

Figure 3.10: Sketch of (a) node decoupling method (b) element splitting method (c)
element elimination method for crack simulation.
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Start

Adjust boundary
condition nodes

Form stiffness matrix
excluding the effect
of failed elements

Form force vector ex-
cluding the effect
of failed elements

Solve the linear sys-
tem of equations

Update failed elements list

Next time step?

End

Yes

No

Figure 3.11: Flowchart of implementation of element elimination method into a FE
framework.
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Chapter 4

Implementation of Algorithms

4.1 Introduction

This chapter explains the Finite Element (FE) algorithm utilized to simulate crack

propagation in heterogeneous materials using a multiscale approach. The entire al-

gorithm is implemented in an in-house FORTRAN 77 code. The initial version of the

code, MULTISCALE-SADISTIC, was developed by David H. Allen and is capable of

predicting global-scale stiffness reduction due to evolution of damage in local-scale.

In the original version of this code, it was assumed that the RVE is isotropic and will

remain isotropic even after development of microcracks. In this study, the code was

extended as follows:

• Improvement to the cohesive zone model by implementing a penalty method

that can avoid interpenetration issue of interface elements.

• Implementation of uniform displacement boundary condition for RVEs.

• Implementation of an algorithm that obtains the anisotropic tangent stiffness
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matrix of RVE at each time step.

• Implementation of the bifurcation analysis subroutine to evaluate the onset of

weak discontinuity surface in RVE.

• Integration of an element elimination method in global-scale FE in order to

simulate discrete fracture.

In a finite element framework, the two-way linked multiscale approach includes

solving two Initial Boundary Value Problems (IBVPs) using the nonlinear FE method:

global-scale FE problem and local-scale FE problem. Each integration point in global-

scale is linked to its exclusive local-scale RVE. The response of RVE governs the con-

stitutive behavior of the integration point. Thus, the local-scale FE problem is solved

within the global-scale FE problem to obtain the unknown macroscopic constitutive

behavior. Both FE problems are identical in terms of the implementation algorithm.

The next section describes the implementation of a nonlinear FE framework in an

incrementalized form.

4.2 Nonlinear Finite Element Framework

To capture the time-dependent constitutive properties of materials and progressive

damage within an RVE, the nonlinear FE solver was developed in a time incremental

form. The step-by-step algorithms of global-scale and local-scale FE solvers are sim-

ilar and are represented in an incrementalized form in Figure 4.1. Prior to the start

of solving the IBVP, the program initializes all state variables to zero and then it

enforces the effect of traction BC to the force matrix. After traction BC, the stiffness

matrix is calculated for each element, [Ke]. The element stiffness matrices are as-
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sembled to obtain the global stiffness matrix, [Kg]. The force vector is also obtained

for each element, {F e}, and is assembled over the entire domain to obtain the global

force vector, {F g}. Once [Kg] and {F g} are calculated, both are adjusted based on

the effect of the displacement BC. Finally, the linear system of equations given by

the assembled stiffness matrix and the assembled force vector is solved for unknown

displacement increments using Equation 3.74. Once displacement increments are ob-

tained, the corresponding strain increments, ∆εij, and stress increments, ∆σij, are

calculated.

4.3 Two-way Linked Multiscale Modeling of Frac-

ture Framework

All the steps used to obtain the solution of multiscale simulation of crack propagation

are presented in Figure 4.2. For each time step, global-scale IBVP is solved to obtain

the solution for global-scale state variables. At each integration point in global-scale

that is linked to local-scale RVE, the FE solution results are exchanged between the

global-scale FE model and the local-scale FE model and vice versa, as follows:

• Global-scale to local-scale: The global-scale incremental responses, ∆σGij

and ∆εGij, are sent to the local-scale model to determine the equivalent RVE

responses.

• Local-scale to global-scale: The homogenized tangent stiffness tensor C∗ijkl

is sent to the global-scale for the next time step analysis.

In this study, the global-scale strain solution is used to obtain homogeneous dis-

placement boundary condition on an RVE as expressed in Equation 3.2. Considering
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Initialize variables

Apply traction BC

Compute element stiffness
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Assemble stiffness matrix

Compute element force
vector contributions
using equation 3.72
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Solve the linear system
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Next time step?

End
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No

Figure 4.1: Flowchart of forming and solving an IBVP using an incrementalized FE
algorithm.
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Figure 4.2: Algorithm for multiscale fracture simulation.
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Figure 4.3: Homogeneous displacement boundary condition.

the RVE shown in Figure 4.3, the following incremental displacement boundary con-

dition is applied to the external boundary of RVE:

∆Û left
x =

1

2
∆εGxy y (4.1)

∆Û left
y = 0 (4.2)

∆Û top
x =

1

2
∆εGxy wRV E (4.3)

∆Û top
y = ∆εGyy wRV E +

1

2
∆εGxy x (4.4)

∆Û right
x = ∆εGxx wRV E +

1

2
∆εGxy y (4.5)

∆Û right
y =

1

2
∆εGxy wRV E (4.6)

∆Û bottom
x = 0 (4.7)

∆Û bottom
y =

1

2
∆εGxy x (4.8)

where wRV E is the width of the RVE.

Then the RVE IBVP is solved under prescribed boundary condition for incremen-
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tal strain and stress. The response of RVE represents the current stage of RVE which

may involve development of microcracks. The response of RVE is used to obtain the

homogenized tangent stiffness tensor, as shown in Equation 3.3. If the damaged RVE

can be reasonably approximated by an isotropic constitutive model, the Equation 3.3

is reduced to the following form, at each time step:

∆σ̄Lij = λ∗ ∆ε̄Lkk δij + 2µ∗ ∆ε̄Lij (4.9)

where λ and µ are the Lame parameters; the superscript ∗ indicates the homogenized

quantities. Lame parameters are calculated using the following equations:

µ∗ =
1

2

∆σ̄Lij
2 ∆ε̄Lij

(4.10)

λ∗ =
1

3

∆σ̄Lkk
2 ∆ε̄Lkk

− 2

3
µ∗ (4.11)

The lame parameters are used to calculate elastic moduli and Poisson’s ratio:

E∗ =
µ∗(3λ∗ + 2µ∗)

λ∗ + µ∗
(4.12)

ν∗ =
λ∗

2(λ∗ + µ∗)
(4.13)

For plane strain and plane stress deformations, the isotropic tangent stiffness can

be simplified and written in terms of E∗ and ν∗.

• For plane strain:

C∗ =
E∗

(1 + ν∗)(1− 2ν∗)


1− ν∗ ν∗ 0

ν∗ 1− ν∗ 0

0 0 1−2ν∗

2

 (4.14)
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• For plane stress:

C∗ =
E∗

1− ν∗2


1 ν∗ 0

ν∗ 1 0

0 0 1−ν∗
2

 (4.15)

If the RVE is not isotropic due to either its original microstructure or microcrack

distribution and orientation, the homogenized tangent stiffness/compliance tensor

contains nine unknown components. These components can be determined by sepa-

rately applying arbitrary small uniaxial normals and shear prescribed displacement

increments to the RVE at the end of each time step as shown in Figure 4.4. The un-

known components of the anisotropic homogenized tangent compliance matrix, S∗,

can be obtained using the following three equations which correspond to each loading

scenarios presented in Figure 4.4:
ε̄xx

ε̄yy

ε̄xy

 =


S∗11 Arb. Arb.

S∗21 Arb. Arb.

S∗31 Arb. Arb.



σ̄xx

0

0

 (4.16)


ε̄xx

ε̄yy

ε̄xy

 =


Arb. S∗12 Arb.

Arb. S∗22 Arb.

Arb. S∗32 Arb.




0

σ̄yy

0

 (4.17)


ε̄xx

ε̄yy

ε̄xy

 =


Arb. Arb. S∗13

Arb. Arb. S∗23

Arb. Arb. S∗33




0

0

σ̄xy

 (4.18)

The homogenized tangent stiffness matrix, C∗, is simply equal to the inverse of

S∗ matrix.
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Figure 4.4: Homogeneous displacement boundary condition: (a) Uniaxial tension in
X Dir., (b) Uniaxial tension in Y Dir., (c) Pure shear.

Then the anisotropic homogenized tangent stiffness tensor is utilized to predict the

onset of localization of RVE using a bifurcation analysis. Based on the status of the

RVE, two scenarios can happen. If the RVE satisfies the weak discontinuity criterion,

the corresponding element at global-scale will be eliminated. If the RVE is not failed,

the global-scale element properties will be updated using the homogenized tangent

stiffness tensor. It is worthy to mention that calculating homogenized stiffness tensor

and assessing localization of RVE, which are highlighted by a dashed box in Figure

4.2, are repeated for each integration point that is linked to the local-scale RVE.

Bifurcation analysis requires that the stiffness tensor be anisotropic without isotropy

assumption.
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Chapter 5

Example Problems

In this chapter, the viability of the proposed method is demonstrated by solving a few

example problems and analyzing the results. First, the process of obtaining the FE

model of an RVE is explained. Then, certain example cases are solved to show the

capabilities of the proposed approach. The examples are categorized in two groups:

first, the models in which no damage is allowed to occur in the RVE, and second, the

models in which microcracks are allowed to develop in a user-defined area.

The first step in implementation of the homogenization theory is to define an RVE.

In periodic materials, one can simply choose the unit cell of the microstructure as an

RVE. However, in random medias, defining an RVE is more complicated. A widely

accepted method is to use statistical measures to determine the condition of statistical

homogeneity, such as to reach a convergence of effective homogenized properties of

RVE [Beran, 2001, Hill, 1972]. According to this approach, one can specify the

dimension of an RVE such that the averaged properties of the material is equivalent

to the averaged properties obtained from the RVE. The next section describes the

process of creating FE model of an RVE of a random particulate composite.



65

5.1 Obtaining Microstructural FE Model of RVE

In the multiscale modeling approach, the heterogeneity of the material is represented

by RVE. So obtaining an RVE that fully represents the features of the actual mi-

crostructure, including random spatial distribution and irregular shapes of particles,

is crucial, yet is sometimes difficult and time-consuming, especially when the par-

ticles have irregular shapes, sizes, and random distribution. Fortunately, there are

many imaging technologies such as optical microscopy, scanning electron microscopy

(SEM), and atomic force microscopy (AFM) that allow the microstructure of materi-

als to be captured at a wide range of length scales. These microstructure images can

be effectively used to create an accurate FE model of heterogeneous materials. In this

section, a program, MIDAS-VT-Pre, is designed and developed in MATLAB to assist

with generating the two-dimensional FE mesh of particle/fiber embedded composites

directly from microstructure images without losing significant morphological details

[Zare-Rami, 2018, Zare-Rami and Kim, 2019]. The MIDAS-VT-Pre user’s manual is

presented in Appendix A.

As mentioned previously, the cohesive zone model (CZM) is used to simulate mi-

crocrack development in local-scale RVE [Kim, 2011, Rami et al., 2017]. This method

assumes that there is a fictitious fracture process zone ahead of the crack tip that

follows a softening behavior. The fracture process zone is simulated using cohesive

interface elements. Interface elements connect the two edges shared between adja-

cent continuum elements. MIDAS-VT-Pre is equipped with a feature for embedding

cohesive zone interface elements within the FE mesh structure to simulate potential

microcrack propagation. MIDAS-VT-Pre first identifies the microstructure of the

heterogeneous material using an image processing method, then meshes the sample
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with or without cohesive zone interface elements. These two steps are explained in

detail below.

5.1.1 Image processing

MIDAS-VT-Pre is equipped with an image processing module that identifies the mi-

crostructure geometry of RVE. This module uses color segmentation tools available in

the Image Processing Toolbox of MATLAB. The color segmentation method requires

color intensity contrast between constituents. The current version of MIDAS-VT-Pre

is capable of handling two-phase mixtures, including distinct particles within a con-

tinuous matrix phase. The steps used to obtain an accurate 2D microstructure of the

particle/fiber embedded composite are illustrated in Figure 5.1. The program dis-

tinguishes particles from the background based on the difference between their color

intensities, then converts the original image to a binary one. In the image processing

module, it is assumed that the particles are lighter than the background, as shown in

Figure 5.1(a). Figure 5.1(b) shows the resulting binary image in which the particles

are represented as white objects, while the surrounding matrix phase is represented

by the black background. In the next step, the boundary pixels of particles are trans-

formed into a vectoral format to describe the geometry of each particle in the form

of a polygon (Figure 5.1(c)). The resulting geometry consists of polygons with a

large number of vertices, equal to the number of boundary pixels of the particles.

Defining particles with an unreasonably large number of vertices may induce an un-

desired extremely fine mesh. Therefore, the program removes unnecessary vertices of

each polygon in order to define each particle with a much smaller number of vertices,

while important geometric features of polygons are retained (Figure 5.1(d)). The

image processing module defines the preliminary microstructure in terms of a coordi-
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nate system defined by image pixels. Thus, prior to the meshing step, the preliminary

microstructure must be scaled from pixel coordinates to the actual size of the sample.

5.1.2 Cohesive Zone Interface Element Insertion

MIDAS-VT-Pre has an automated interface element insertion module. As previously

mentioned, the cohesive zone interface element is a four-node element that allows

crack propagation within the FE framework to be simulated. The insertion process

of cohesive zone interface elements is shown in Figure 5.2. Assume the two bulk

elements at the right side are in the non-cracking region, while the other two elements

are in the cracking region. Using this method, the interface elements are added

within the cracking region; i.e., between elements 1 and 2, and along the boundary

of the cracking region; i.e., between elements 2 and 3. Algorithm 1 describes the

pseudocode for insertion of interface elements. To define interface elements between

the existing mesh structure, the nodes within the cracking region are first duplicated

in such a way that no elements share any nodes. Thus, unlike the regular FE mesh,

multiple nodes may have the same coordinates (Figure 5.2(b)). Once the new nodes

are generated, the element connectivity matrix is updated accordingly. The cohesive

interface elements are then defined between adjacent bulk elements using the nodes

of overlapped edges, as shown in Figure 5.2(c) and Algorithm 1, lines 10 to 20. Since

the node duplication process changes the node numbering order, the Reverse Cuthill-

McKee algorithm is used to optimize the nodal numbering in order to minimize the

size of the stiffness matrix [Liu and Sherman, 1976].
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(a) Original image

(b) Binary image (B/W) (c) Preliminary microstructure

(d) Final microstructure

Figure 5.1: Steps of generating 2D microstructure of RVE.
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Algorithm 1: Embedding interface elements between bulk elements.

Duplicate nodes and update element connectivity

1: for i = 1 : number of bulk elements do

2: if element i ∈ cracking zone then

3: for j = 1 : 3 do . Loop over element’s nodes

4: NewNode(c, 1:3) = OldNode(OldConn(i, j), 1:3)

5: NewConn(i, j) = c . Update the element connectivity matrix

6: c = c+ 1

7: end for

8: end if

9: end for

Define interface elements

10: for i = 1 : number of bulk elements do

11: if element i ∈ cracking zone then

12: for j = 1 : 3 do . Loop over element’s edges

13: k ← neighboring element number

14: m← the first node of the overlapped edge

15: n← the second node of the overlapped edge

16: CohConn(c, 1:4) = [NewConn(i,m : n) NewConn(k,m : n)]

17: c = c+ 1

18: end for

19: end if

20: end for
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Figure 5.2: Embedding cohesive zone elements between bulk elements.
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5.2 Analyzing Isotropic and Anisotropic RVE with-

out Damage

To show the viability of the proposed method for obtaining the anisotropic tangent

stiffness matrix of an RVE in a two-way linked multiscale framework, three multiscale

examples are solved and presented in this section. These example problems simulate

a three-point bending test in which the integration points of elements of the vertical

midline of the beam are linked to an RVE, as shown in Figure 5.3. For applying

load to the beam, a displacement control movement is applied to the mid-span of the

top of the beam. To minimize the computational cost, a simplified microstructure

consisting of one particle is used. The simulation was performed for three different

scenarios: Case I, Case II, and Case III. In Case I, Case II, and Case III the global-

scale model was linked to RVEs with a circular, horizontal ellipse, and vertical ellipse

respectively, as shown in Figure 5.3. These three particle shapes were selected to

represent both microstructural isotropy and anisotropy of the RVE even without

any damage associated. It should be noted that these models are intended only

to illustrate the viability of the proposed model, not to simulate a specific test or

material. Thus, the material properties and model dimensions are arbitrarily selected.

The material properties for the global and local-scale are presented in Table 5.1. Only

the global elements that are not linked to a local-scale model require defined material

properties. The properties of the global-scale elements that are linked to the local-

scale come from the homogenization of the local-scale response.

The resulting stress contour plots of the global-scale and the local-scale models

are illustrated in Figure 5.4. The response of the RVE at two different locations along

the midline of the beam was selected to be shown for the three cases. As the beam is
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Case I Case II Case III

Matrix

Particle

Figure 5.3: A sketch of the multiscale model of a three-point bending test wherein
the midline elements are two-way linked to an RVE without damage.

loaded, different elements of the beam experience different states of strain and stress.

The global-scale strain (or stress) at each time step is used to obtain the uniform

displacement (or traction) boundary condition, which is applied to the corresponding

RVE. Thus, it is expected that the RVE linked to location A experiences higher

tensile stress as compared to the one linked to location B. The RVE at location A in

Case I, II, and III is subjected to almost identical boundary conditions; however, the

resulting stress distribution in local-scale model is different. This difference in stress

distribution is the result of different RVE microstructures. That explains why two

identical objects, except with different microstructure, may result in different amount

of damage under the same loading condition.

In order to obtain the anisotropic tangent stiffness matrix, arbitrary displacement

boundary conditions are separately applied at each time step to the current stage of
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Table 5.1: Material properties of each constituent.

Global-scale bulk element
Elastic properties:
E = 5000 (MPa) ν =0.2

Local-scale particle
Elastic properties:
E = 2000 (MPa) ν =0.2

Local-scale matrix
Elastic properties:
E = 5000 (MPa) ν =0.2

RVE to create simple tension in the x-direction, simple tension in the y-direction,

and pure shear, as shown in Figure 5.5. The response of RVE for each loading case

is then homogenized and used to calculate the nine independent components of the

anisotropic tangent stiffness matrix (Equation 3.100). This method takes into account

capturing microstructure- or damage-induced anisotropy during the simulation. The

accuracy of this process was assessed by comparing the components of tangent stiffness

matrix obtained for Case I under the isotropic assumption (Equations 4.15 and 4.14)

with the ones derived under the anisotropic assumption (Equation 4.18). Since the

RVE in Case I is isotropic, the C matrix components obtained from both assumptions

should be consistent with each other. The result presented in Figure 5.6 agrees with

the expectations.

The components of the anisotropic tangent stiffness matrix for RVE with horizon-

tal ellipse particle are tracked over time and are plotted in Figure 5.7. No damage

is allowed to occur in the RVE; thus, it is clear that C matrix components remain

constant over time. In the case of growing damage in the RVE, the components of

C matrix reduce possibly in different rates, depending on the orientation of microc-

racks. Also, as shown in Figure 5.7, the proposed approach can correctly capture the

anisotropy resulting from the anisotropic microstructure.
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Figure 5.4: Three-point bending multiscale model result (no damage allowed in the
RVE).



75

(a) (b) (c)

Figure 5.5: RVE with circular particle under: (a) uniaxial tension in the x-direction;
(b) uniaxial tension in the y-direction; (c) pure shear (no damage allowed in the
RVE).
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Figure 5.6: Components of C matrix for RVE with a circular particle obtained based
on isotropic and anisotropic assumptions.

0.0E+00

1.0E+03

2.0E+03

3.0E+03

4.0E+03

5.0E+03

6.0E+03

0 5 10 15 20

C
om

po
ne

nt
s o

f C

Time Step

C_1111

C_2222

C_1122

C_1112

Figure 5.7: Components of C matrix for RVE with a horizontal ellipse particle.
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Bifurcation analysis has been widely used to predict strain localization [Bigoni

and Hueckel, 1991]. Following the idea of strain localization discussed in section 3.2,

the localization criterion is equivalent to the determinant of the acoustic tensor being

zero. The singularity of the acoustic tensor significantly depends on the homogenized

constitutive model, which is determined from the response of an RVE. For cases

where no damage is allowed in the RVE to initiate a weak discontinuity band, the

determinant of Q remains constant with time. However, the bifurcation analysis can

still be used to determine the critical angle that corresponds to the minimum value

of the Det(Q). The relationship between the computed determinant of the acoustic

tensor and the angle that the unit normal vector of a potential weak discontinuity

surface makes with the x-axis, α, is given in Figure 5.8. The Det(Q) obtained from

Case I is nearly constant with respect to α, while those obtained from Case II and

Case III vary. The minimum value of Det(Q) is found where there is a weak axis in

the RVE. For example, for Case II, the minimum value at α = 0 indicates that the

RVE possesses a weak surface that is oriented along the y-axis.

5.3 Analyzing RVE with Damage

In order to show the capabilities of the proposed approach for simulating crack prop-

agation in heterogeneous materials, a three-point bending test was simulated using

the multiscale approach in which the midline elements of the beam were linked to

an RVE consisting of one circular particle. This model is identical to model Case I

defined previously except formation of microcracks is allowed within the RVE, which

is simulated by the cohesive zone model. The cohesive zone interface elements are

introduced everywhere in the matrix phase and along the boundary of the particle.
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Figure 5.8: Determinant of acoustic tensor, Q, versus potential weak discontinuity
band orientation.

This model is intended for illustrative purposes and not for replicating a specific ma-

terial behavior; thus, the material properties are selected arbitrarily. The material

constitutive properties used to define the local-scale are presented in Table 5.2.

At each time step, global-scale IBVP is solved in order to obtain the stress and

strain throughout the beam. For each global-scale element that is linked to an RVE,

the calculated strain is applied to the corresponding RVE in the form of uniform

displacement BC. The resulting stress contour plots of global-scale and local-scale

models are shown in Figure 5.9. Snapshots of the RVE at selected times at two differ-

ent locations along the midline of the beam are presented in Figure 5.9. Considering

the loading condition of the global-scale model, the RVE linked to location A experi-

enced higher tensile strain and hence it failed earlier than the RVE linked to location

B. At time step 24, the RVE A had the highest stress, yet no microcrack formed.

At time step 34, some microcracks were formed, which resulted in reduction of the
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Table 5.2: Material properties of local-scale RVE.

Particle
Elastic properties:
E = 2000 (MPa) ν =0.2

Matrix
Elastic properties:
E = 5000 (MPa) ν =0.2
Cohesive zone viscoelastic properties (in Prony series):
E∞ = 5000 (MPa) E1 = 5000 (MPa) ρ1 = 1 s ν = 0.2
δ∗s = 1.0 δ∗t = 1.0

σfs = 0.0 σft = 0.0
A = 2.0 m = 0.2

overall stress of the RVE. At time step 38, the RVE linked to location A was severely

damaged such that the failure criterion was met. Failure of an RVE is reflected to the

global-scale model by elimination of the corresponding element. Removing the failed

element from the global-scale changed the response of the beam that can be seen in

the load-displacement curve shown in Figure 5.10. The red dashed line indicates the

moment (time step 39) at which the RVE A failed. At time step 46, six additional

elements also failed at the same time. It was assumed that failure of those elements

is equivalent to the failure of the beam, hence the simulation was stopped. Assessing

the failure of RVE A was obtained through the bifurcation analysis, which is discussed

in the next section by analyzing the behavior of C and Det(Q).
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Figure 5.9: Three-point bending test multiscale simulation result (damage is allowed

in RVE).
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Figure 5.10: Load-displacement curve for three-point bending test multiscale simula-

tion.

The evolution of the components of tangent stiffness tensor, C1111 and C2222, with

respect to time step are shown in Figure 5.11, which shows the effect of accumulated

damage on tangent stiffness reduction. C1111 and C2222 decreased gradually then

dropped quickly at time step 35. This gradual decrease was due to the effect of pre-

failure softening behavior of cohesive zones, while the sharp drop occurred when a

number of the cohesive elements failed, which created internal free surfaces within the

RVE. The formation of an internal boundary causes an increase in the averaged strain

(Equation 3.8) which results in decrease in homogenized stiffness. Since the RVE was

initially isotropic, C1111 and C2222 were equal at the early stages of loading. But, as

the loading increased, the discrepancy between the C1111 and C2222 was magnified,

which corresponds to the anisotropic development of damage. At location A, σ11

was dominant, so damage grew faster in the direction perpendicular to the highest

principal stress. Consequently, the reduction of C1111 was faster as compared to C2222.
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Figure 5.11: Components of tangent stiffness matrix of RVE at location A over time.

In order to study the performance of bifurcation analysis, the determinant of the

acoustic tensor is plotted as a function of potential weak discontinuity surface orien-

tation for different time steps, as shown in Figure 5.12. This determinant function is

used to identify the onset of strain localization. When the acoustic tensor becomes

non-positive definite for a certain direction, strain localization takes place in the RVE.

As the load increases, the cohesive zone elements expand and energy dissipates,

and therefore damage accumulates. As damage accumulates, the stiffness of the

RVE reduces, and as more damage occurs perpendicular to the loading axis, the

tangent stiffness tensor, which was initially symmetrical, becomes asymmetrical. In

this example, the cohesive damage variables developed faster in the y-direction, hence

the localization zone formed vertically and the material was subjected to a mode I

failure. Figure 5.12 shows how the changes in stiffness tensor make Det(Q) at α = 0

close to zero with time. It is worth mentioning that if the primary stress direction at

location A in the global-scale changes, new microcracks develop in a different direction
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and, consequently, the shape of Det(Q) changes because the tangent stiffness tensor

is altered.
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Figure 5.12: Determinant of acoustic tensor, Q, versus potential weak discontinuity

band orientation.

In the next example, the proposed multiscale method is further demonstrated by

a two-way linked multiscale model where its RVE has a more complex microstructure.

The global-scale model is the same as the one used in previous examples, while the

local-scale RVE is composed of randomly embedded particles in an isotropic matrix.

The RVE is a 2D representation of unidirectional fiber-reinforced composite in direc-

tion transverse to the fiber orientation. The fiber volume fraction is 55%, as shown

in Figure 5.13.

Since the RVE represents a random heterogenous microstructure, the RVE size

must be determined first. The minimum RVE size depends on the property of interest

that is measured. A common practice is to plot the quantity of interest with respect to

the RVE size. The size at which the quantity does not show a significant variation is
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regarded as the minimum required RVE size. From the computational point of view,

the RVE should not be larger than the optimum size in order to prevent redundant

calculations from being performed [Gitman et al., 2007, Kim et al., 2009, Nguyen

et al., 2010]. To obtain the average stiffness of RVE, a simple tension test simulation

was performed on four square trial RVEs with increasing size. The FE model of RVEs

were obtained from the cross-sectional image of a fiber-reinforced composite (Figure

5.13). The average stiffness is plotted as a function of trial RVE size in Figure 5.14.

By comparing the four different RVE, the 30 µm × 30 µm RVE is assumed to be large

enough to be representative of the composite and used for multiscale simulations.

The multiscale modeling approach requires only the mechanical properties of RVE

components as model inputs. In this study, the mechanical properties include elastic

properties of the individual phases and fracture properties of matrix phases, which

is subjected to cracking. These properties can be either obtained directly from ex-

perimental tests or back-calculated through a calibration process, however, they were

arbitrarily assumed for the purpose of this example. The material properties are pre-

sented in Table 5.3. To reduce the modeling complexity at this stage, two assumptions

were made. First, microcracks nucleate and propagate only within the matrix and

along the boundaries between matrix and fibers in the RVE. Second, cohesive fracture

within the matrix was assumed to be the same as the adhesive fracture between the

matrix and fibers.
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Table 5.3: Material properties of local-scale RVE of composite.

Fiber
Elastic properties:
E = 5000 (MPa) ν =0.2

Matrix
Elastic properties:
E = 2000 (MPa) ν =0.2
Cohesive zone viscoelastic properties (in Prony series):
E∞ = 2000 (MPa) E1 = 2000 (MPa) ρ1 = 1 s ν = 0.2
δ∗s = 0.5 δ∗t = 0.5

σfs = 0.0 σft = 0.0
A = 2.0 m = 0.2

(a) (b) (c)

Matrix

Fiber

Figure 5.13: Obtaining FE model of RVE: (a) cross-sectional image of composite; (b)

microstructure geometry; (c) FE model.
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Figure 5.14: RVE size investigation.

In this example, the three-point bending beam, which is the global-scale model,

was discretized using linear triangle elements. Based on physical observations from the

specimens tested, it was reasonably assumed that the crack nucleates and propagates

only through the vertical midline of the beam, while development of damage in other

parts of the beam was neglected. For the areas without damage, the properties

of global-scale element were obtained through a hierarchical multiscale method in

which the response of RVE is homogenized once. The homogenized stiffness was

calculated over the RVE which underwent a uniaxial tension test while no microcrack

was allowed to form. On the other hand, the elements of vertical midline along the

potential crack zone (the red zone in Figure 5.15) were linked to the RVE in two-way

linked multiscale manner. The two-way linked multiscale method allows for stiffness

reduction due to microcracking in RVE, which is consequently reflected in the form of

stiffness reduction of the corresponding global-scale elements. Since each global-scale

element experiences a unique loading history, each element is linked to its exclusive

RVE. Hence, the number of global-scale elements that are linked to RVE significantly

affects the computational efficiency of the two-way linked multiscale approach. In
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this example, the number of elements linked to local-scale RVEs were limited to 4

elements (the red zone in Figure 5.15) that are critical in failure of the global-scale

model.

Two-way linked One-way linked

Figure 5.15: A sketch of the two-way linked multiscale model of the three-point

bending test.

Simulation results are represented in the form of contours of horizontal component

of stress, σ11, for both global-scale beam specimen and local-scale RVE at three

different stages (time step 18, 28, and 38), as shown in Figure 5.16. Local-scale plots

represents the status of the RVE linked to the critical location at the global-scale

model which has the highest tensile stress. At each time step the strain of global-scale

element is converted to uniform displacement boundary condition and applied to the

local-scale RVE (global-to-local linking), and cracking in the RVE due to progressive
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loading is homogenized to update the effective properties of the global-scale element

(local-to-global linking). When a cohesive zone opening reaches the critical opening

displacement, a crack develops fully, and an internal boundary creates. Creation of

internal boundaries results in loss of effective stiffness of an RVE. As the simulation

continues, more microcracks develop in RVE until the determinant of acoustic tensor

reaches a value close to zero which is assumed to be equivalent to crack initiation in

the global-scale model (Figure 5.17).
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Figure 5.16: Three-point bending test multiscale simulation result.
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Figure 5.17: Determinant of acoustic tensor, Q, versus potential weak discontinuity

band orientation.

In this section the effect of material properties of local-scale model on the global-

scale structural performance were investigated. For illustration purpose, the damage

evolution factor in Equation 3.35, A, was varied while other material properties were

kept constant. Figure 5.18 shows how C1111 component of homogenized tangent

stiffness of each RVE changed with time. The slope of this curve shows how brittle

or ductile the material is. The graph demonstrates that this material is brittle.

Homogenized stiffness tends to drop sooner when the damage evolution factor is

higher. The link between RVE to global-scale model through homogenization ensures

that a change in local-scale properties affects the overall global-scale response. Figure

5.19 shows the load–displacement curve of the global-scale beam. In this particular

example, the load–displacement curves evolved similarly up to the point when the

beam started to fail, however, the failure loads were different. For instance, reducing

A from 2.0 to 1.5, caused 25% increase in the maximum load.
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Figure 5.18: Homogenized tangent stiffness matrix component, C1111, of RVE.
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Chapter 6

Conclusions and Recommendations

6.1 Concluding Remarks

The macroscopic behavior of heterogeneous materials is highly dependent on the mi-

crostructure and properties of different components of microscopic scale. The two-way

linked multiscale approach was effectively used to simulate the behavior of heteroge-

neous materials while taking into account the microscopic details of the material. The

aim of this dissertation is to develop and implement algorithms to account for localiza-

tion of RVE and then reflecting it as a discontinuity on the macroscale model within

a two-way linked multiscale framework for heterogeneous materials. In this approach,

a macroscopic model (global-scale) with effective properties is linked to a heteroge-

neous RVE (local-scale). The RVE is allowed to develop microcracks, i.e. initiate

and propagate, that is represented by the cohesive zone fracture model. Degrada-

tion of material due to growth in damage in the RVE is addressed as a reduction

of components of tangent stiffness tensor. Accumulation of microcracks within the

RVE may form the strain localization band that is assessed using bifurcation analysis.
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Once an RVE is localized, a discontinuity is placed in the macroscopic model using

the element elimination method. This approach was implemented in a multiscale FE

FORTRAN code. The viability of the method was then demonstrated by simulating

some example cases. The main contributions and findings of this research relative to

previous works include:

• The homogenized anisotropic tangent stiffness tensor can be obtained at each

time step by applying arbitrary normal and shear BC to the current stage of

RVE. The anisotropy of the RVE can be induced by anisotropic microstructure

of the original RVE, anisotropic microstructural evolution of the RVE due to

growth of damage, or both.

• Weak discontinuity band within an RVE can be predicted by performing a

bifurcation analysis on the homogenized anisotropic tangent stiffness tensor of

the RVE.

• Localization of RVE can be successfully reflected on the macroscopic scale by

eliminating the corresponding element from the solution.

It is expected that a successful two-way linked multiscale computational model

such as the one proposed herein can be beneficial in the following scenarios:

• Despite the technological advances in material characterization at microscopic

length scales, there are still limitations regarding experimental investigation of

damage-related properties at very small length scales. This approach provides

a numerical bridging between microscopic and macroscopic length scales that

allows use of macroscopic testing results (which are usually feasible to obtain)

to indirectly characterize smaller-scale properties.
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• The proposed approach provides opportunities to investigate the effect of micro-

scopic heterogeneity on the macroscopic performance of structures. Using this

method, materials’ microstructure and properties of microscopic components

can be regarded as design variables in order to achieve better macroscopic per-

formance.

6.2 Recommendations and Future Work

Although, the proposed method herein can simulate fracture within the heteroge-

neous material using the two-way linked multiscale approach, many additional im-

provements can be made. Some of these potential improvements are summarized

below:

• The main objective of this research was to propose and implement an effective

multiscale method for dealing with localized RVE in situations where standard

homogenization methods fail. Although, the proposed method was demon-

strated with several example problems, the validity of this method still needs

to be investigated by simulating real-world problems; i.e., problems with true

microstructure and material properties and comparing the results with experi-

mental data.

• Localization of RVE is equivalent to the formation of strain weak discontinuity

band on the global-scale; however, in this study, the localized RVE was replaced

with a discrete fracture (strong discontinuity) on the global-scale. In a more

rigorous approach, localization of RVE should be represented by inserting a

weak discontinuity surface within the global-scale element.
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• One of the main advantages of the multiscale approach as compared to direct

numerical simulation (DNS) models is that a single scale large BVP with a

large number of degrees of freedom (DOF) can be split into multiple BVPs

with a significantly reduced number of DOF. In this case, higher computational

efficiency can be achieved by employing parallel computing techniques that

enable use of multiple CPUs simultaneously solve a number of local-scale BVPs.

• The code developed in this dissertation only allows linkage between global-

scale elements to RVEs that possess an identical microstructure. This can be

extended by linking each global-scale element to a different RVE, yet they all

represent the same microstructure. This may be an interesting topic for future

research, as it may capture random propagation path and branching of cracks

that are usually observed in many real materials with random heterogeneity.

• The proposed method can be coupled with multiphysics aspects, such as ther-

mal effects, in order to perform thermo-mechanical analysis. However, further

investigation is needed to properly adjust the imposed boundary conditions on

the RVE and the homogenization procedures.
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Appendix A

MIDAS-VT-Pre

A.1 Overview

MIDAS-VT-Pre, MIDAS-VT Preprocessor, is a part of MIDAS-VT, Microstructure

Inelastic Damage Analysis Software-Virtual Tester, package that generates finite ele-

ment model of common mechanical test settings. It is equipped with a unique meshing

algorithm which inserts cohesive elements within a user-defined area. MIDAS-VT-

Pre can be used to generate FE model of square RVEs. These RVE FE model can

be used later in multiscale simulations involving progressive damage. The package is

currently tailored to create microstructural FE model of two-phase materials. The

overall flow of MIDAS-VT-Pre is shown in A.1. MIDAS-VT-Pre provides two options

for the users:

• Case I: Generates the FE model directly from the RVE image or geometry

• Case II: Adds cohesive elements into FE mesh which is generated in advance
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Add cohesive zone interface 
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Meshing

two-phase 
geometry

FE mesh without 
cohesive zone 
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Start

Case I:
Using sample’s geometry

Case II:
Using predefined mesh

Figure A.1: Flowchart of MIDAS-VT-Pre.
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A.2 Start MIDAS-VT-Pre

1. Package must have the following files:

• MIDAS VT Pre.exe

• Gallery folder

• splash.PNG

2. Install the prerequisite:

• 64-bit version of MATLAB Runtime version 9.5 (R2018b)

3. Run MIDAS VT Pre.exe

Note: all the output messages will be stored in STATUS.txt for future reference.

Note: The execution may take several minutes.

A.3 MIDAS-VT-Pre Description

MIDAS-VT-Pre starts with a pop-up window, Figure A.2, offering two options. The

first option is used when the user is going to generate the FE model directly from

the RVE image or geometry. This option corresponds to Case I in Figure A.1. The

second option is used when the user is going to add cohesive elements into a regular

FE mesh which is generated in advance. This option corresponds to Case II in Figure

A.1.

A.3.1 Preprocessor Case I

Choosing Case I presented in Figure A.2, directs the user to the window shown in

Figure A.3. There are four steps to generate the model:
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Figure A.2: MIDAS–VT–Pre starting window.

1. Specimen Geometry

2. Microstructure

3. Mesh

4. Export Output

For each section there are several inputs and actions required which are described

bellow.

Specimen Geometry

At this panel, the user needs to select either simple tension test or simple shear test

and provide the RVE dimensions.

Microstructure

MIDAS-VT-Pre is able to create either homogeneous (one-phase) or heterogenous

(two-phase) models. In homogenous case, the software generates model geometry

using RVE’s dimensions provided in the first section. In the second case, a heteroge-

nous material is defined as a two-phase material where non-contact random particles
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Figure A.3: MIDAS–VT–Pre Case I.
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are scattered within a matrix phase. MIDAS-VT-Pre is equipped with an image-

processing tool which obtains mixture’s microstructure from the actual image of a

RVE. The user needs to provide the software with the cross-section image of the RVE

and follow the steps one to five in image processing tool shown in Figure A.4. In the

cross-section image, particles must be lighter in color than the matrix background.

MIDAS-VT-Pre uses color segmentation method to distinguish particles from matrix

phase. Color segmentation threshold is a value between 0 to 1, which defines the

boundary between particles (light color areas) and matrix phase (dark color areas).

This value will be calculated automatically, however the user can adjust the value,

if necessary. Also, convexing factor allows the user to adjust how particles’ periph-

erals are being bounded. Setting convexing factor to 0 gives a convex hull around

the particles while setting it to higher values gives a compact boundary around the

particles (the default value is 0.2). The proper values of color segmentation threshold

and convexing factor depends on the image and can be obtained by trial and error.

When the image segmentation process is done, the user can compare the result

to the actual microstructure (Figure A.5). If the microstructure is similar enough to

the original image, the user can approve the image segmentation result and go to the

meshing step by clicking “Yes” button. If there are still mismatches that cannot be

improved by changing color segmentation threshold and convexing factor, the user

needs to modify the image manually. The manual image treatment is basically re-

painting the indistinct areas or separating connected particles in the image. Modify

particles or matrix areas should be done using a proper color of which lightness/dark-

ness matches the average intensity of the corresponding area (particles or matrix). To

facilitate the manual treatment procedure, Microsoft Paint software is integrated with

MIDAS-VT-Pre. By clicking “No (redo)” button (Figure A.4) the original image will
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Figure A.4: MIDAS-VT-Pre Case I, image processing module.
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Figure A.5: Original image vs obtained microstructure.

be opened in Microsoft Paint for potential treatments. When the image treatment is

finished, the user needs to do the image processing process again step one to five (see

Figure A.4). This procedure may be repeated until the desired accuracy is obtained.

Mesh

The meshing module meshes the geometry using three-node elements. The user can

adjust the maximum mesh size and mesh growth rate. The later one is specified as

a scalar strictly between 1 and 2 and defines how the mesh size increases away from

small parts of the geometry. The meshing module comes with an automated cohesive

element insertion feature. Cohesive elements allow to simulate crack initiation and
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propagation using cohesive zone model. Cohesive elements are zero thickness elements

that links adjacent nodes of three-node elements [Rami et al., 2017]. The add cohesive

element checkbox permits the user to add cohesive element between regular three-

node elements over the RVE. The cohesive elements will be added within the matrix

phase, which are labeled cohesive element, and particle-matrix interface, which are

labeled adhesive element.

Export Output

The output produced by MIDAS-VT-Pre includes mesh data containing node co-

ordinates and element connectivity matrix, element sets which list the elements ID

within each set, and node sets which list the boundary nodes. The output data can

be exported in two formats: one is compatible with MIDAS-VT, which is saved as a

.mat file, the other is compatible with common FE software such as ABAQUS, which

is saved as a .inp file. The later one contains the following information:

• Nodes coordinate matrix

∗Node

Entry 1 Entry 2 Entry 3

. . .

Entry 1: node ID

Entry 2: x-coordinate of node

Entry 3: y-coordinate of node

• Bulk elements connectivity matrix

∗Element , type= Entry 0

Entry 1 Entry 2 Entry 3 Entry 4
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. . .

Entry 0: bulk element type, which is 3-node

Entry 1: element ID

Entry 2: 1st node number in global numbering system

Entry 3: 2nd node number in global numbering system

Entry 4: 3nd node number in global numbering system

• Cohesive element connectivity matrix

∗Element , type= Entry 0

Entry 1 Entry 2 Entry 3 Entry 4 Entry 5

. . .

Entry 0: cohesive element type, which is 4-node cohesive

Entry 1: element ID

Entry 2: 1st node number in global numbering system

Entry 3: 2nd node number in global numbering system

Entry 4: 3rd node number in global numbering system

Entry 5: 4th node number in global numbering system

• Element sets

∗Elset , e l s e t= Entry 0

Entry 1 [ Entry 2 ] . . .

. . .



116

Entry 0:

Set ID, which are: Phase1, which represents elements in

matrix phase,

Phase2, which represents elements in particles,

Cohesive Elements,

and Adhesive Elements

Entry <i>: element ID

• Node sets

This section will not be used in RVE studies and can be removed from the

output.

A.3.2 Preprocessor Case II

This feature is provided for the case in which the model is meshed in advance using

three-node elements. Selecting case II in Figure A.2, directs the user to MIDAS-VT-

Pre Case II window, as shown in Figure A.6. To generate the model the user needs

to finish steps one to four.

Specimen Geometry

Similar to the MIDAS-VT-Pre Case I the user must select test type (either simple

tension or simple shear test) and input RVE dimensions as shown in Figure A.6.

There is no need to specify the cracking region in this section. The cracking region

is specified by introducing the elements within the cracking region as a separate set

(see next section).
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Input Mesh Data

The mesh data must include nodal coordinates, elemental connectivity, and element

sets and be written in a single .txt or .inp file using the following format:

• Nodes coordinate matrix

∗Node

Entry 1 Entry 2 Entry 3

. . .

Entry 1: node ID

Entry 2: x-coordinate of node

Entry 3: y-coordinate of node

• Bulk elements connectivity matrix

∗Element , type= Entry 0

Entry 1 Entry 2 Entry 3 Entry 4

. . .

Entry 0: bulk element type, which is 3-node

Entry 1: element ID

Entry 2: 1st node number in global numbering system

Entry 3: 2nd node number in global numbering system

Entry 4: 3nd node number in global numbering system

• Element sets

∗Elset , e l s e t= Entry 0

Entry 1 [ Entry 2 ] . . .

. . .
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Entry 0:

Set ID, which are: Phase1, which represents elements in

matrix phase,

Phase2, which represents elements in particles,

CZ, which represents cracking zone

Entry <i>: element ID

note: In common FE software such as ABAQUS, partitioning and element set

tools are available to group elements in sets and assign associated tag.

Mesh Generation

This module adds zero thickness cohesive elements between bulk elements within the

cracking region [Rami et al., 2017].

Export Output

This step is identical to export output in MIDAS-VT-Pre Case I.
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Figure A.6: MIDAS-VT-Pre Case II.
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